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The SKY2000 Master Star Catalog (MC), Version 2 and its predecessors have

been designed to provide the basic astronomical input data needed for satellite

acquisition and attitude determination on NASA spacecraft. Stellar positions and

proper motions are the primary MC data required for operations support followed

closely by the stellar bri_htness observed in various standard astronomical

passbands. The instrumental red-magnitude prediction subsystem (REDMAG) in

the MMSCAT software package computes the expected instrumental color index

(CI) [sensor color correction] from an observed astronomical stellar magnitude in

the MC and the characteristics of the stellar spectrum, astronomical passband, and
sensor sensitivity curve. The computation is more error prone the greater the

mismatch of the sensor sensitivity curve characteristics and those of the observed

astronomical passbands. See Figure 3 for comparison of the sensitivity curve of a

typical new-generation red-sensitive charge-coupled-device (CCD) star tracker

(ST) with the standard passbands (UBVR1). Here, the effective wavelen_ of the

very broad sensor curve is shifted well away from that of the much narrower

visual (V) passband.

This paper presents the preliminary performance analysis of a typical red-sensitive

CCDST during acquisition of sensor data from the two Ball CT-601 ST's onboard

the Rossi X-Ray Timing Explorer (RXTE). A comparison is made of relative star

positions measured in the ST FOV coordinate system with the expected results

computed from the recently released Tycho Catalogue (Reference I). The

comparison is repeated for a group of observed stars with nearby, bright

neighbors in order to determine the tracker behavior in the presence of an
interfering near neighbor ('N'N). The results of this analysis will be used to help

define a new photoelectric photometric instrumental sensor magnitude system (S)

that is based on several thousand bright star magnitudes observed with the RXTE

ST's. This new system will be implemented in Version 2 of the SKY2000 MC to

provide improved predicted magnitudes in the mission run catalogs.

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard

Space Flight Center (GSFC), Greenbelt, Maryland, USA, under Contract GS-35F-4381G, Task Order No.
S-03365-Y.
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INTRODUCTION

The current operational version of the SKYMAP MC, known as SKY2000 MC, Version l was produced

in 1996-7 and represents the last version of the MC to contain data solely from ground-based sources. It is

to be replaced by SKY2000 MC, Version 2, which will incorporate data from several newly available

spaceborne sources, including astrometric and photometric data from the European Space Agency (ESA)

Hipparcos mission and sensor photometric data acquired from the R.XTE spacecraft. This catalog is to be a

comprehensive all-sky star catalog down to approximately visual magnitude 9 that includes astrometric,

photometric, and many other types of stellar data for approximately 300,000 stars. The MMSCAT

software package is used to generate specialized subcatalogs called mission run catalogs for satellite

attitude support using the SKY2000 MC, Version 2 as input. All mission run catalog stars include a

predicted sensor magnitude (ms) calculated by the REDMAG subsystem. The observed sensor magnitudes

from the RXTE ST's will provide an additional group of input magnitudes to the software for several
thousand of the brightest stars.

BACKGROUND

Rossi X-Ray Timing Explorer:

The RXTE spacecrait was launched by a Delta II ELV on December 30, 1995, to study the time

variability in emissions of x-ray sources over the spectral range 2-250 keV. Two Ball CT-601 CCDST's
were carried as part of the spacecraft's attitude control system (ACS). Each tracker is capable of

identifying up to five stars simultaneously for use in attitude determination (see Figure l). Beginning in

March, 1997, the Attitude Model Support Task began collecting additional star observations from both star

trackers to tel'me the sensor calibration, to def'me a new observed photometric sensor system (S) for the

MC, Version 2, and to determine near neighbor (NN) effects on measured sensor positions and magnitudes.
In less than six months, more than 7700 observations have been obtained of several thousand different

stars. Sky coverage has not been uniform because of mission constraints, but enough sensor magnitudes

have been obtained to allow the creation of a new observed RXTE photometric sensor system. Stars

having observed RXTE magnitudes will have magnitudes available that will more nearly match the
effective wavelength and bandwidth of other CCDST's than those observed in the standard UBVRI

passbands. Predicted instrumental ms'S based upon RXTE input magnitudes are expected to be improved

over those based upon the UBVRI passbands. The data acquired permit an examination of CCDST

performance, primarily in the areas of measured star positions and measured sensor magnitudes, which are

the most important pieces of information coming out of the ST's from the operational standpoint. The

knowledge gained will be of use in improving the generation of future mission run catalogs for other

satellites using CCDST's.
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Figure 1 Rossi X-ray Timing Explorer

Characterization of the CCDST Data:

The body of data acquired by the Attitude Model Support Task includes measured positions in field of

view (FOV) coordinates and measured instrumental magnitudes with data points at two-second intervals

during periods of successful star identification. Observations were acquired both during periods of

spacecraft inertial pointing and during slews between points. Up to five stars may be identified

simultaneously by each star tracker. The trackers are mounted with a boresight separation of 9.9 degrees

along the diagonal of each FOV, so that there is a little more than one degree in common between the

nominal 8x8 degree FOV's at the overlapping comers. This arrangement allows for the possibility of

simultaneous observation of the same star by both trackers.

Each star image detected by the CCDST is defocused so that its image is spread over 4x4 to 5x5 pixels.

Each pixel on the CCD is approximately 60x60 arcsecond. The calculated centroid of this defocused

image over 16 to 25 pixels yields a position in FOV coordinates and integration of the flux over the same

image yields a sensor magnitude. Since a real-time spacecraft attitude was not recorded during the data

acquisition, only the angular separation of neighboring pairs of stars in the FOV at the same time is useful

in comparison with other independent source catalog positions (e.g., the Tycho Catalogue [Ref. 1]).

Stars which were mis-identified in the attitude determination software used to process the star tracker

data were identified by the large deviations in the measured angular separation from that predicted for the
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pair. These large deviations were typically on the order of several degrees and were well outside the range
of variation examined for NN effects.

A comparison of the observed RXTE magnitudes with the predicted REDMAG subsystem values was

done to validate the REDMAG algorithms. For the purposes of this analysis, a group of stars observed
simultaneously in the FOV of RXTE ST 1 was chosen and divided into two subgroups, one of the stars not

expected to have NN-related identification problems and the other stars in which at least one star of the pair

has a bright NN. These stars were identified in the Tycho Catalogue and independent Tycho positions and

V magnitudes were obtained.

TRACKER POSITION PERFORMANCE COMPARED WITH TYCHO

Star-Pair Angular Separations:

Angular separations of star pairs were calculated both from the RXTE FOV coordinates and from the
Tycho positions. For the stats with NN's brighter than approximately V = 10.0, the effects on the observed

RXTE star by it's near-neighbor were measured in a shift in position relative to another observed RXTE
star in the FOV at the same time.

Figure 2 shows the effects of NN interference on the measured position of the centroid by plotting the

deviation of the predicted pair separation from the measured separation (taken as measured minus

predicted) as a function of NN angular separation (AO) and the magnitude difference (Am) of the primary

and secondary NN stars. The horizontal axis represents the NN A0 in arcseconds, while the vertical axis

represents the component Am (in magnitudes), and the contours are the measured AOo minus the predicted

A0p in arcseconds. The horizontal axis is marked in one-pixel increments. The location of each data point
used in the plot has been superimposed over the contours as an oval symbol. The region in the lower left-

hand comer corresponds to stars with small NN separations and a bright companion star. Due to these

characteristics, this region (0 < Am < l; 0 < AB <_ 60) is devoid of features because the attitude

determination software rejected the stars seen by the star tracker for identification. The difference between

the AOo and AOp separations is probably not bounded; the maxima and minima in Figure 2 probably
indicate regions in which star identification often fails in the soRware. The 10-arcsecond or less contours

correspond to the noise (standard deviation between the AOo and AOp values for the group of stars without
interfering NN's). This number is in good agreement with the 6 arcsecond error (in each coordinate) found

during calibration maneuvers early in the RXTE mission (Ref. 2).
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Figure 2 Near-Neighbor Effects on Measured Separations (Arcseconds)

CCDST MAGNITUDE MEASUREMENT COMPARED TO PREDICTION

Star-Pair Magnitude Differences:

All observed RXTE stars have V magnitudes obtained either from the Tycho Catalogue, the Catalog of

Red Magnitudes (Ref. 3), or from the Mermilliod UBV Catalogue (Ref. 4). These magnitudes are not
directly useful, as the sensitivity curves of the CCDSTs on RXTE are not close to that of the Johnson V

passband (see Figure 3). However, these magnitudes together with available Johnson and Cousins red

magnitudes from Reference 3 (R passband) could be used as input to the REDMAG magnitude prediction

subsystem of the MMSCAT catalog generation software. REDMAG uses the sensitivity curve of the

R.XTE CCDSTs (an average of the curves for trackers I and 2) together with spectrophotometric scans of

different stellar spectral types to calculate a color correction (CI) to the input astronomical magnitude in

order to predict the instrumental RXTE ms. See the Appendix and Ref. 5 for discussions of REDMAG

algorithms. The residuals between measurement and prediction were investigated for the stars without an

interfering near neighbor and found to be in accordance with results documented elsewhere (Ref. 6), and

then separately for the subgroup where at least one star of the pair was expected to show the effects of NN
interference.
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Figure 3 Johnson Standard UBVRI Passbands Compared to Ball

Aerospace CT-601 Sensitivity Curve (Rossi XTE)

For the stars with interfering NN's, the magnitude residuals were then related to separations and
magnitude differences obtained from various catalog sources, usually Tycho or the Washington Catalog of
Visual Double Stars 1994. 0 (Ref. 7), with the qualifier that predicted sensor magnitudes for the primaries
and secondaries were used to generate sensor passband magnitude differences for the pairs involved. Also,
it was apparent that the observed sensor magnitudes from the defocused CCDST images can be modeled
better by using the standard astronomical formula for a blended pair magnitude with the standard
astronomical passband magnitudes and magnitude differences replaced by predicted sensor magnitudes and
magnitude differences (compare Figures 4 and 5, see Eq. 1).

m (blend) = m (primary) -2.5 log,0( 1+2.51 19 "a") (1)

Figure 4 shows the effects of NN interference on the measured CCDST magnitudes, expressed as the
difference between the measured sensor magnitude and the unblended predicted magnitude. The
horizontal and vertical axes are the same as in Figure 2, but the contours in Figure 4 represent the
difference between the measured and predicted magnitudes of the stars. The magnitude difference on the
vertical axis is the sensor passband magnitude difference, and the horizontal axis represents the separation
in arcseconds between the primary and secondary components of the pair.
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Figure 4 Near-Neighbor Effects on Measured Magnitude, Non-Blended

Predicted Magnitudes

Figure 5 is the same plot, but using blended predicted magnitudes, where the blended magnitude is

computed from the predicted primary magnitude and the sensor passband magnitude difference. Both

figures show features near the CCDST pixel boundaries which may be associated with the algorithm used

by the manufacturer to sum the incident flux and produce a measured sensor magnitude. Further analysis

of this effect may require knowledge of the manufacturer's algorithm, which is not available at present.

Figure 5 shows an improvement in the agreement of the predicted magnitudes with the measured

magnitudes over the region in which a blended image is seen by the tracker, but the blended predicted

values become too bright in the region in which the tracker begins to separate the images (4-5 pixels

separation).
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Figure 5 Near-Neighbor Effects on Measured Magnitude, Blended

Predicted Magnitudes
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Figure 6 Near-Neighbor Effects on Measured Magnitude, Blended

Predicted Magnitudes (Spectral Types O-F)

Since the CT-601 CCDST is known to be selectively more sensitive in red wavelengths, the stars plotted in

Figures 4 and 5 were further separated into two groups, one composed of stars with spectral types between

O and F, and one composed of stars with spectral types K, M, or redder. Figures 6 and 7 highlight the fact

that the predicted magnitudes are not as accurate for the redder stars, as expected (Ref. 6). The region in

Figure 7 corresponding to NN's brighter than two magnitudes fainter than the primary and closer than 4

pixels (240 arcseconds) is devoid of data points, which may indicate that the star identification software

fails for red primary stars in this region.
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Figure 7 Near-Neighbor Effects on Measured Magnitude, Blended

Predicted Magnitudes (Spectral Types K, M, and Redder)

DISCUSSION

The manufacturer of the CT-601 CCDST states that NN's separated by more than four pixels (240

arcseconds) from a measured star should have a _eatly reduced effect on the position determination. This

appears to be well borne out by the data. For example, replacement of primary component positions with

center-of-light positions showed no significant improvement in the residuals in the region where blended

magnitudes improved the magnitude residuals (less than four pixels NN separation). Calculated positions

can deviate by tens of arcseconds from predicted values in cases of extreme interference, but most attitude

determination software applies constraints to the identification process and properly setting them can

eliminate many of the affected stars from an attitude solution. Also, there does seem to be a significant

pixel edge-related effect on the measured positions, but at this point in the analysis it has not been

examined closely (Figure 2).

The manufacturer also recommends that no star brighter than 4 magnitudes fainter than a potential

candidate catalog star be located within 0.1 degree (6 pixels) of that candidate star in order to reduce the

contamination of the image. Within this 0.I-degree region, it appears that stars 3 or more magnitudes

fainter than the catalog star produce little or no observable interference (Figure 5). As the NN brightness
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andpositionapproachesthecatalogstar,theinterferenceincreases until the image measured by the star

tracker deviates too much from the catalog prediction, whereupon most attitude software will reject the
star. This situation can be improved by the use of blended sensor magnitudes for pairs separated by

approximately 3 pixels (compare Figures 4 and 5), but the blended magnitudes are less accurate than

unblended predictions at separations of approximately four or more pixeis (Figure 5). The positive

deviations in Figure 5 indicate that the blended predictions are brighter than what is observed, possibly

indicating that the tracker no longer sees a blended image.

The recommendation from the manufacturer that stars with NN's violating the preceding constraints be

excluded from a mission star catalog would probably be too harsh a restriction. Instead, alterations in the

NN data fields of the input MC and in the REDMAG subsystem of the MMSCAT software could be made

in order to produce better predictions for CCDST's. Catalog entries could be blended into single entries

for stars with significantly interfering NN's, which would also eliminate a problem seen for stars with NN

separations of around four pixels, in which the identification produced by the attitude software "flip-flops"

between the two stars of the pair. A single, blended catalog entry would obviously eliminate the possibility

of a "flip-flop" in the software and is probably a better prediction of what the CCDST will see for stars

with interfering NN's.
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APPENDIX

Instrumental Magnitude Prediction Algorithm

The instrumental red-magnitude prediction subsystem (REDMAG) in the MMSCAT software package
computes the expected instrumental color index (CIsz) [sensor color correction] from a stellar magnitude

(mz) observed through an astronomical passband (2) and the spectral type (MK) both recorded in the

Master Star Catalog (MC), and the characteristics of the Z passband response curve (Pz) and sensor
passband (S) sensitivity curve (Is). mz is corrected by Clsz to give the expected sensor magnitude (m s =

mz + Clsz). The Clsz algorithm follows from Reference 5:

where each set of double brackets ((.)) gives the energy flux of the stellar spectrum (_ intercepted by

the response curve (P). The Morgan-Keenan-Johnson (MK) spectral type gives access to the proper

spectrophotometric spectrum in the REDMAG scan file. Each scan is normalized to 1.0 at the effective

(2Veff) of the visual passband (I0 and each response curve is normalized to 1.0 at its maximumwavelength

value. All N's and P's are functions of wavelength (2.) and their product function is defined as

where

® np

((P-N))= SP(2)N(2)d2 _. Y. P(2i)N(2i)d2 i
0 i=1

np= the total number of data points in the summation

Specific variables and functions are defined as

Clsz = notation for the (S-Z) sensor color

Z = V(typically); the preferred order of use for the RXTE mission is red (R) first, then V

when R is not available, then photovisual (ptv), followed by infrared (/), blue (B), photographic (ptg), or

ultraviolet (U) as available

Pv = response curve of the V passband
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Ps = sensitivity curve of the sensor (5)

Pz = response curve of an observed standard astronomical passband (Z)

N = normalized stellar spectrophotometric scan

A v = interstellar absorption index in the V passband is computed using the difference between

the observed color (B-V)_o, and intrinsic [standard] color (B-VZn,; the MK spectral type of the star in the

MC gives access to the REDMAG standard colors file.

W(2) = Whitford interstellar reddening function normalized to 2veff

N®lO-O'4W(gldv = stellar spectral scan reddened by interstellar absorption

N AOV = spectral scan of an AOVreference type

(,) = typically AOK GOV, KOV or other reference selected for the mission sensor; frequently

different from the standard AOV reference used for astonomical passbands (UBVRI)

N _*) = normalized spectral scan for the mission sensor reference type (,)

In general, the contribution from each of three ratios in the Clsz expression above is given by

ziClsz(ratio) = -2.51og l o(ratio value)

Once the value of (.) has been selected for the mission, the contribution of the last ratio is a constant,

unchanged for all stars and all observed astronomical passbands. [Examples: (.) = AOV and dClsz(last) =

zero for the RXTE; (.) = GOV and dClsa(last) = 0.455 magnitude for the SWAS.] Similarily,

zlCIsz(middle ) is unchanged for all stars but does change with the observed astronomical passband used in

each computation. AClsz(firsO changes with each star and the observed passband (2) used. Due to the

non-flat stellar spectrum of the typical star, it is clear that the closer 2Zeff effective bandwidth (AgZeff), and

shape of Pz is to Psthe closer dClsz(firsO comes to zero and the less critical the uncertainty in the

computation. See Figure 8 for the product functions Ps oN and Pv ,,N for RXTE.
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FIGURE 8 TYPICAL STAR MEASURED IN V & XTE (BALL CT-601) BANDS

Usually Z = Y and Pz becomes Pv since there are many more accurate, observed roy's in the MC than

any other magnitude. The first equation above reduces to the following:

..,
CIsv - -z'm t°8'o IL<<--_v:N® 10-o.,,_,_,_>'---__] <<---/_...N,>>

The Clsv = ms - my is the sensor color correction supplied by the vendor which includes the effect of the

reference spectral type (,) selected for the mission. At the selected reference, CIsv = 0 (ms = my). Note

that at the selected reference, when Z ;_ V, in general Clsz ;_ 0 (ms _ mz).
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