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ATTITUDE/ATTITUDE-RATE ESTIMATION
FROM GPS DIFFERENTIAL PHASE MEASUREMENTS

USING INTEGRATED-RATE PARAMETERS

Yaakov Oshman* and F. Landis Markley t

A sequential filtering algorithm is presented for attitude and attitude-rate estima-

tion from Global Positioning System (GPS) differential carrier phase measurements.

A third-order, minimal-parameter method for solving the attitude matrix kinematic

equation is used to parameterize the filter's state, which renders the resulting estima-

tor computationally efficient. Borrowing from tracking theory concepts, the angular
acceleration is modeled as an exponentially autocorrelated stochastic process, thus

avoiding the use of the uncertain spacecraft dynamic model. The new formulation
facilitates the use of aiding vector observations in a unified filtering algorithm, which

can enhance the method's robustness and accuracy. Numerical examples are used to'

demonstrate the performance of the method.

INTRODUCTION

Attitude determination methods using Global Positioning System (GPS) signals have been inten-
sively investigated in recent years. In general, these methods can be classified into two main classes.
Point estimation algorithms (also called "deterministic" algorithms), in which the GPS measure-
ments at each time point are utilized to obtain an attitude solution independently of the solutions at
other time points, were introduced, among others, in Refs. 1, 2 and 3. Stochastic filtering algorithms,
which process the measurements sequentially and retain the information content of past measure-
ments, can produce better attitude solutions by more effectively filtering the noisy measurements.
Such algorithms were recently introduced in Refs. 4 and 5, both of which utilized extended Kalman
filtering to sequentially estimate the attitude from GPS carrier phase difference measurements. Both
attitude and attitude-rate were estimated, and the filters used the nonlinear Euler equations of mo-
tion for attitude propagation. While avoiding the traditional usage of the costly and unreliable gyro
package, this approach rendered the resulting filters computationally burdensome and sensitive to
inevitable modeling errors, s In Ref. 4 an attempt was made to robustify the dynamics-based filter
by estimating the unknown disturbance torques, modeled as unknown constants.

Although GPS-based attitude estimation methods should enjoy, in principle, the low price and
low power consumption of state-of-the-art GPS receivers, and the general availability and robustness
of the global positioning system, these methods are very sensitive to multipath effects and to the

geometry of the antennae baseline configuration, and they inherently rely on precise knowledge
of the antennae baselines in the spacecraft body frame. On the other hand, methods based on
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vector observationshave reached maturity and popularityinthe lastthree decades. However, as is

well known, they too sufferfrom disadvantages,that can be attributedto the particularattitude

sensorson which they are based. Thus, while theirreadingsare relativelynoiseless,Sun sensorsare

very sensitiveto Earth radiationeffects,and are rendered completely uselessduring Eclipse. Star

trackerscan provide accuracy on the order of a few arc-sec,but are usuallyextremely expensive.

Magnetometers always provide measurements ofthe Earth magnetic fieldinspacecraftflyingin low

Earth orbits,but they are sensitiveto unmodeled residualmagnetic fieldsin the spacecraftand to

magnetic fieldmodel imperfectionsand variations.

The method presentedhereinisa sequentialestimatorforboth the spacecraftattitudematrix and

attitude-rate,which mainly uses differentialGPS carrierphase measurements, but can alsoprocess

aidingvectorobservations(such as low accuracy coarse Sun sensormeasurements, or magnetic field

measurements). Conceptually similarto the principleofcomplementary filtering,the ideaunderlying

this estimator is that, due to the different nature of these signals, the combination of both in a unified

data processing algorithm can benefit from the relative advantages of both sensor systems, while

alleviating the disadvantages of both.
The new estimator is based on a third-order minimal-parameter method for solving the attitude

matrix evolution equation using integrated-rate parameters (IRP). 7 Similarly to Refs. 5 and 4,

the new estimator is a sequential filtering algorithm and not a deterministic (point estimation)

algorithm. However, the new algorithm differs from other works addressing the same problem in
two main respects. First, the estimator's propagation model does not utilize the nonlinear Euler

equations. Instead, employing an approach borrowed from linear tracking theory, s the uncertain

dynamic model of the spacecraftisabandoned, and the angular accelerationismodeled as a zero-

mean stochastic"process with exponential autocorrelation.Combined with the extremely simple

evolution equation of the integrated-rateparameters, this resultsin a simple,linearpropagation

model. Second, in contrast with other methods relyingmainly on the attitude quaternion, the

algorithm presented herein directly estimates the attitude matrix, a natural, nonsingular attitude
representation. Building upon the minimal, third-order integrated-rate parametrization, the new

estimator assigns just three state variables for the parametrization of the nine-parameter attitude

matrix, which is at the heart of its computational e_ciency.

INTEGRATED-RATE PARAMETERS

Consider the matrix differentialequation

V(t) = W(t)V(t), V(t0) = V0 (I)

where V(t) E R _'n,W(t) = -wT(t) for allt >_to,VoVoT = I and the overdot indicatesthe temporal

derivative.Defining

A(t, to) *- W(r) dr (2)

Wo(t) A W(t) - (t - to)W(t) (3)

it can be shown that the following matrix-valued function is a third-order approximation of V(t):

(4)

Moreover, _" is a third-order approximation of an orthogonM matrix, i.e., l"(t,to)_'T(t, to) = I +

O((t -- t0) 4) where O(x) denotes a function of x that has the property that O(x)/x is bounded as
z --+ 0.

In the 3-D case, the off-diagonal entries of A(t, to), termed integrated-rate parameters, have a

simple geometric interpretation: they are the angles resulting from a temporal-integration of the
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three components of the angular velocityvector wit) A [wxit) w2it) 0)3it)]T, where w_ is the

angular velocitycomponent along the /-axisof the initialcoordinate system, and i -- 1,2,3 for

x,y,z,respectively.The orthogonal matrix differentialequation (1) isrewritten,in thiscase,as

D(t) = fl(t)D(t), D(to) = Do (5)

where Oit ) is the attitude matrix, or the direction cosine matrix (DCM), flit ) = -[wit ) x], and

[w(t) x] is the usual cross product matrix corresponding to wit ). In this case, the matrix A(t, to)
takes the form

A(t, to) & -[e(t) x] (6)

where the parameter vector 0(t) is defined as

"--[0 ( )B(t) it

and

02(t) 0z(t)] T (7)

/2e_(t) --" _(r) dr, i = 1,2,3 (S)

Let the sampling period be denoted by T _ tk+l --tk. Using the notation 0(k) & _(tk),the

parameter vector at time tk is 0ik) = [01i k) 82i k) 83ik)] T and Eq. is) implies

/?O_(k)= w_(_-)dr, i = 1,2, 3

From Eq. (9) we have

t_+l0(k + 1) = 0(k) + _(_) dr
Jtk

Define A(k + 1, k) to be the discrete-time analog of A(t, to), i.e.,

A(k + 1,k) _-- [(0(k+ 1) - 0(k))x]

Also, let @(k + 1) _ -[¢(k + 1)x], where

¢(k + 1) _ _(k + 1) - _(k + I)T

Then, the corresponding discrete-time equivalent of Eq. (4) is

Dik+l)={I+Aik+l,k)+lA2ik-i-l,k)+6A3(k+l,k)

+6T[Aik+l,k)e2ik+ 1)- _(k + 1)A(k + 1, k)]}Dik )

which, using Eqs. (11) and i12), can be written as

D(k + 1) = D[O(k + 1) - Oik),wik + 1),dJik + 1), D(k)]

(9)

(10)

(11)

(12)

(13)

(14)
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KINEMATIC MOTION MODEL

To avoid using the uncertain spacecraft dynamic model, the spacecraft angular acceleration is mod-
eled as a zero-mean stochastic process with exponential autocorrelation function. The acceleration

dynamic model is, therefore, the following first-order Markov process,

_(t) = -_(t) + #(t) (15)

For simplicity, a decoupled kinematic model is chosen for the three angular rate components, i.e.,
A --* diag{v_ "1, v_-1, 7-3"1}, where {7-i}i3=1 are the acceleration decorrelation times associated with

the corresponding body axes. The driving noise is a zero-mean white process, with power spectral
density (PSD) matrix

Q(t) = 2AE 2, E A diag{a1,az,c3} (16)

The noisevariancesin Eq. (16)were chosen according to the Singer angular accelerationprobabilis-

tic model,s in which the angular accelerationcomponents, {dJi}3=l,can be 1) equal to CbMi with

probabilityPMi, 2) equal to --&M_ with probabilityPM_, 3) equal to zero with probabilityP0i,or

4) uniformly distributedover the interval[--&M_,dJM_] with the remaining probabilitymass. Using
this model, itfollowsthat

0.2 = _(1 + 4pM, - Po,) (17)

The parameters (#M_, PM_ and P0_ are considered as filter tuning parameters. As customarily done,

they are selected by experience with real and simulated data, so as to optimally adapt the filter to
the characteristics of the problem at hand.

Now let the system's state vector be defined as x(t) _- [0T(t) wT(t) _T(_)] T, then the state
equation is

_(t)= Fx(0 + _(t)-
i I

0

0 o,[:]zA x(0 +- (t)
(18)

with obvious definitions of F and 9(t). Corresponding to the sampling interval T, .the discrete-time
state equation is

x(k+l)=_(T)x(k)+v(k)

where the transitionmMrix is

¢(T) _ eFT = 10

[0

TI A-2(e -^T- I +TA)_
- 1 -ATx A ) /

0 e -AT J

and v(k) is a zero-mean, white noise sequence, with covariance matrix

q(k) & E{v(k)vr(k)} = eF(T-t)diag{O, O, Q(t)}e FT(T-') dt

(19)

(20)

(21)

MEASUREMENT PROCESSING

GPS Differential Phase Measurements

Consider the basic GPS antenna array, depicted in Fig. 1. The array consists of the master antenna,
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Figure 1. GPS Phase Difference Measurement Geometry

Am, and the slave antenna, Aj. These antennas are located on the satellite's surface, such that the

baseline vector between them, resolved in a body-fixed coordinate system, is b_. It is assumed that
the entire system consists of mb antennas, in addition to the master antenna, so that there exist m b

independent baselines. It is also assumed that at time tk+1, ms GPS satellites are in view.

Consider the ith satellite, and denote the sightline (unit) direction vector to that satellite, resolved

in an inertial coordinate system, by s_. Let D(k + 1) be the attitude matrix transforming vectors in

the inertial coordinate system to their body-fixed system representations at time t_+l. Let N,j (k + 1)

and A¢O (k + 1) denote the integer and fractional parts, respectively, of the phase difference between

the two carrier signals, corresponding to the ith satellite, as acquired by the antennas Am and Aj.

Denoting by A the GPS carrier wavelength, the true (noiseless) signals satisfy

[A¢,j(k + 1) + N_i(k + 1)]A = bTD(k + 1)s_ (22)

The standard GPS carrier wavelength is 19.03 cm. In this work, it is assumed that the integer part

of the phase difference between the two receivers is known from a previous solution. 1'9

In practice, the phase measurements will be contaminated by noise, the primary source of which

is due to the multipath effect. 1 Denoting the noise corresponding to the baseline bj and the sightline

s, by fi,j(k + 1), the real measurement equation is

[A¢_j(k + 1) + N_j(k + 1)]A = bTD(k + 1)s, + fi,j(k + 1) (23)

where it is assumed that fiij(k + 1) _ 3g(O, F2ij(k + 1)). Typically it can be assumed that the noise

standard deviation is on the order of 5 ram. 1 From Eq. (23) we obtain the normalized measurement

equation

A¢,j(k + 1) + N_j(k + 1) = bTD(k + 1)s, + n,j(k + 1) (24)

where we have defined bj & bj/A and no(k + 1) & fi,j(k + 1)/X. The normalized measurement noise

satisfies n,j(k + 1) -_ :N(0, a_j(k + 1)), where a,j(k + 1) = 6qi(k + 1)/k.

GPS Measurement Linearization

At tk+i the minimum mean square error (MMSE) predicted vector is &(k+llk), and its corresponding

prediction error covariance matrix is P(k + llk) _ E{_(k + l[k)_.T(k +l[k)}, where the estimation
error is _.(j[k) a_ x(j) - _(j]k). Using Eq. (14), Eq. (24) is rewritten as

N,j(k + 1) + A¢,j(k + 1) = bTD[O(k + 1) - O(k),w(k + 1),&(k + 1), D(k)]si + n,j(k + 1) (25)

315



Next,we linearize the nonlinear measurement equation (25) about the most recent estimate at t_+l,

i.e.,

+ 11k)1 +1)1
=(k + 1) = 2(k +llk ) + 6x(k + 1) = I¢(k + ilk)/ +/5,(k + 1)/

L,,:,(k+ llk)J L_,Z(k+ 1)J
(26)

where 69(k + 1), 6w(k + 1) and 6d_(k+ 1) are the perturbations of the state components about the
nominal (i.e., predicted) state. Let D'(klk) denote the a posteriori, orthogonaZized estimate of the
attitude matrix at time tk, to be discussed in the next section. Using now the most recent estimates

for D(k) and x(k), namely D*(k[k) and _(klk), respectively, in Eq. (25), it follows that

_,:;b_/(k+ 1)-t-N_j(k -I-1)= bTD[O(k+llk) + ae(k+ 1)- _(klk),C,(k+llk) + 6_(k + 1),

,5(k+ llk) + a_(k + 1),b'(klk)]s,_ + no(k + 1) (27)

As discussed in the sequel, the a posteriori IRP estimate is zeroed after each measurement update

(due to full reset control of the IRP state). We will, therefore, use the reset value of the IRP estimate,

OC(klk ) = 0, in Eq. (27). Now expand D about the nominal state using a first-order Taylor series

expansion, i.e.,

D[O(k +lik) + ,_0(k + 1),&(k +lik ) + 6w(k + 1),_,(k + llk)+ ,_,Z,(_+ 1), D'(k[k)]

aD[O(k+ 1),_,(k+ llk),,i,(k +llk), b'(klk)]
= D(k +llk) -+- 00_ la(k+_Ik)6¢(k + 1)

i----1

"_ E3 aD[_(k+ llk),w(k+ l),j(k+ llk),b.(klk)]laW' _(k÷llk) 6w_(k + i)

iffil

£ aD[_(k+ 11k),_(k+ 11k),_(k+ 1),b'(klk)] _,(_+ 1)
i----I

(28)

I denotes 'evaluated at ¢' and D(k+ llk) A D[_(k+ llk),_(k+ llk),_(k+ llk), D'(klk)]where (o) ¢

Differentiating Eq. (13), the sensitivity matrices appearing in Eq. (28) are computed as

o-_D[_(k+l),&(k+llk),_(k+lik),

b_D[e(k+l]k),w(k+l),_(k+lik),

o_D[_(k+llk),_(k+llk),d_(k+ 1),

D* (klk)] -- G,[O(k+ 1),¢(k + llk)] b" (klk) (29a)

b'(_l_)] = _TF, [_(k + ll_)]b'(klk) (29b)

D°(klk)] = -1T2F_[O(k+ llk)]D*(klk) (29c)

for i = 1, 2, 3, where ¢(k +llk) -_ &(k + llk) - T[_(k +llk), and

1 1 T 10, [Ox]C,(O,¢) = l(°eT2 + e'OT) - o,I - (I - _ IIOll_)[e,×]+ _rCCe, - eil,bT) -Jr

F,(e) = e_er - eeT

(30a)

(sOb)

where ei is the unit vector on the ith axis, i = 1, 2, 3.

Using Eqs. (28), (29) and (30) in Eq. (27) yields

A¢,_(k + 1) + N,.j(k + 1) - bT,D(k + llk)s, -= hT(k + 1)6x(k + 1) + n,j(k + 1) (31)
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where the observation vector hij(k + 1) E R ° is defined as

ao,j(k + I) (32)

and the elements of the vectors haii(k + 1) E R 3, h_j(k + 1) E R a and h_ij(k + 1) E R a are

ho,jp(;¢ + 1) = brGp[_(k + llk), _(k + llk)]b'(klk)s,, p = 1, 2, 3 (33a)

1 T "
ho_,jp(k + 1) = gTb i Fp [8(k +llk)] D*(klk)s,, p = 1, 2, 3 (33b)

hc,_ip(k + 1) = -Th_ip(k + 1), p - 1, 2, 3 (33c)

Define now the effective GPS measurement to be

y_(k + 1) & A¢,i(k + 1) + N, i - bTD(k + llk)s, (34)

Then, using this definition in Eq. (31) yields the foUowing scalar measurement equation:

y_(k + 1) = h,iT(k + 1)Sx(k + 1) + n,j(k + 1) (35)

For the mb baselines and ms sightlines, there exist ms x mb scalar measurements like Eq. (35).

We next aggregate all of these equations into a single vector equation, such that the measurement

associated with the baseline bi and sightline si corresponds to the pth component of the vector
measurement equation, where p = (j - 1)ms + i. This yields

y¢(k + 1) = gV(k + 1)Sx(k + 1) + nV(k + 1) (36)

where the iota row of the matrix H¢(k + 1) is h,iT(k+ 1), nV(k + 1) ._ N'(0, R¢(k+ 1)), and R¢(k + 1)

is a diagonal matrix whose diagonal elements are/_(k + 1) = a_i.

Vector Observation Aiding

If the sole source of attitude information is the GPS carrier phase signals, then Eq. (36) should serve

as the basis for the development of the measurement update algorithm (in the next section). In the

case that vector observations are available, this information structure needs to be augmented.

Assume that a new pair of corresponding noisy vector measurements is acquired at tk+l. This

pair consists of the unit vectors u(k + 1) and v(k + 1), which represent the values of the same vector

r(k + 1), as modeled in the reference coordinate system and measured in the body coordinate system,

respectively. The direction-cosine matrix D(k + 1) transforms the true vector representation u0 into

its corresponding true representation v0 according to

vo(k + 1) = D(k + 1)u0(k + 1) (37)

Assuming no constraint on the measurement noise direction, the body-frame measured unit vector,

v(k + 1), is related to the true vector according to

vo(k + 1) + n_(k + 1) (38)
v(k + 1) = Ilvo(k + 1) + n'(k + 1)11

where the white sensor measurement noise is n'(k + 1) --_N(0, R'(k + 1)). Since both vo(k + 1) and

v(k + 1) are unit vectors, it follows from Eq. (38) that

v(k + 1) = vo(k + 1) + n,(k + 1) (39)
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wheren_(k + 1) =_ T,,'Lo(k + l)n'(k + l) and _o( k.L+ 1) =_ I - vo(k + 1)VoT(k + 1). To a good approx-
imation, the effective measurement noise is a zero mean, white Gaussian sequence with covazia_ce

P_(k + 1) = T_o(k + 1)R'(k + 1)T_o(k + 1) (40)

To account for non-ideal effects (e.g., star catalog errors), it is assumed that the modeled reference
vector is related to the true vector according to

u(k + 1) = uo(k + 1) + n_(k + 1) (41)

where n_ .L Uo is a zero mean, white Gaussian noise, that is uncorrelated with nv and has a known

covariaace matrix P_(k).

Vector Measurement kinearization

Using Eqs. (lli, (12) mad (13), Eq. (37) can be rewritten as

vo(k + I) = D[O(k + 1)- O(k),w(k + l),¢b(k+ 1),D(k)]uo(k + i) (42)

Linearizing about the predicted estimates and using Eqs. (26), (39) and (41), it follows that

v(k + I) - nv(k + I) --D[_(k +llk) + ,_0(k+ 1),C,(k+ Ilk)+ &o(k + I),

w(k +llk ) + 6&(k + 1), D'(klk)] [u(k + 1) - nu(k + 1)] (43)

where the reset value of the IRP estimate, _C(kIk) = 0, has been used. Expanding D about the

nominal state using the first-order Taylor series (28) yields

3

_,(k+ z) - b(k + ll_)u(k + z) = _ [C,[_(k + Zl_),,_(k+ Zlk)],_O,(k+ _)
i----.1

1
+ -_TF,[O(k + llk)]6w,(k + 1)- _T_F, EO(k + llk)]6_,(k + 1)]b'(klk)u(k + 1)

1 .

- D(k + Zlk)n,,(k+ I)+ n,,(k+ 1) = H"(k + 1),Sx(k+ 1)- D(k + Ilk)'n_(k+ 1)+ n_(k + I)

(44)

where the observation matrix H_(k + I) iswritten in block matrix form as

H_(k + l)-= [Hx(k + l) H2(k + l) H3(k + l)] ER s'9 (45)

and the columns of the submatrices H_(k + 1) E R 3'3, i = 1,2,3 are

HU(k + 1) = Gj [#(k+ llk),'_(k+ llk)]D'(klk)u(k + I) (46a)

1 [@(k+ llk)]b'(klk)_,(k+ 1) (46b)H2_(k + 1) = -_TFj

H3j(k + 1) = -TH2i(k + 1) (46c)

for j = 1, 2, 3. Define now the effective measurement and measurement noise to be, respectively,

yU(k + 1) & v(k + 1) - D(k + llk)u(k + 1) (47)

n_(k + 1) & nv(k + 1) - b(k + llk)n_(k + 1) (48)
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Then, using these definitions in Eq. (44) yields the following measurement equation:

y"(k + 1) = H"(k + 1)6x(k + 1) + n"(k + 1) (49)

where n_(k + 1) -_ :N(0, R_'(k + 1)) is the white measurement noise, and

R"(k + 1) _ P_(k + 1) +/9(k + llk)P_(k + 1)/gT(k +llk ) (50)

Measurement Update

To process the measurements, define now

y= y_ , n=_ n_ (51)

where n -_ N(0,R) and R & diag{R¢,Rv}. Since 6x(k + 1) = x(k + 1) - _(k +l[k) = _(k +l[k)

and _(k + lJk) is an unbiased, MMSE predictor, we have E{6x(k + 1)} = E{_(k + lIk)} = 0 and

cov{6x(k + 1)} -- cov{_(k + 1]k)} -- P(k +llk), thus 6x(k .4- 1) ,., :N(O,P(k +llk)). Using the
linearized measurement equation and the statistical properties of the measurement and prediction

errors, the MMSE estimator of 6x(k + 1) is

6x(k +llk + 1) = g(k + !)y(k + 1) (52)

where K(k + 1), the estimator gain matrix, is computed as

g(k + l) = P(k + llk)gT(k + l)[H(k + l)P(k + llk)HT(k + l) + R(k + l)] -1 (53)

Also, 6x(k+lJk+l) = 2(k+llk+l )-2(k+llk ) which, used in Eq. (52), yields the state measurement
update equation

&(k +llk + 1) = _(k +llk ) + g(k + 1)y(k + 1) (54)

Subtracting x(k + 1) from both sides of the last equation yields

i(k +llk + 1) = [I - g(k + 1)g(k + 1)]i(k +llk ) - g(k + 1)n(k + 1) (55)

from which the resulting covariance update equation is

P(k +llk + 1) = [I - g(k + 1)g(k + 1)]P(k +llk ) [I - g(k + 1)H(k + 1)] T

+ g(k + 1)R(k + 1)gT(k + 1) (56)

where the filtering error covariance is P(k +lIk + 1) -_ E{_(k + l[k + 1)_T(k +llk + 1)}.

To compute the measurement-updated attitude matrix at time tk+1, we use the most recent

estimate _(k +llk + 1) and the estimated attitude matrix corresponding to time tk in Eq. (13). This

yields

+11k+ {;+ + +l,k)+ + l,k)b(k
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where the a posterioriestimates of A(k + I,k) and _(k + I)are defined,respectively,as

A(k ÷ l,k)_--[O(k ÷ llk÷ l)x], @(k + llk÷1) _--[_b(k+ llk÷1)x] (58)

where ¢(k+l]k+l / & _(k+llk+l) -T_(k+l[k+ll, and D'(klk) is the a posteriori, orthogonalized
estimate of the attitude matrix at time tk, to be discussed in the next section.

Finally, since the a posteriori attitude matrix, D(k + l[k+ 1), is computed based on the a

posteriori estimate, 0(k + 1]k ÷ 1), this implies a full reset control of the parameter vector, i.e.,

OC(k + 1) = O(k + 1) - 0(k +llk + 1), where OC(k + 1) is the reset state vector at tk+l, and a

corresponding reset of the state estimate, 0C(k +llk + 1) = 0, which is then used in the ensuing

time propagation step. Since the reset control is applied to both the state vector and its estimate,
no changes are necessary in the estimation error covariance matrix.

ATTITUDE MATRIX ORTHOGONALIZATION

To improve the algorithm'saccuracy and enhance itsstability,an additionalorthogonalizationpro-

cedure isintroduced intothe estimator,followingthe measurement update stage.In thisprocedure,

the orthogonal matrix closestto the filteredattitudematrix iscomputed.

Given the filteredattitudematrix D(k +llk + 1),the matrix orthogonalizationproblem isto
findthe matrix

Being a specialcase ofthe orthogonal Procrustesproblem, the matrix orthogonalizationproblem

can be easilysolved using the singularvalue decomposition (SVD). In cases where the excessive

computational burden associatedwith the SVD might render itsuse prohibitive,e.g.,in real-time

attitudedetermination and control,the followingapproximate orthogonalizationmethod, based on

the iterativemethod introduced in Ref. 10, can be utilized:

b*(k + Ilk + 1) = N(k + l/D(k + 1]k + 11 (60)

where

N(k ÷ 11A 3 1_I - b(k + Ilk + 1)DT(k + Ilk + 1) (61)

Remark 1. Using an approach similar to that used in Ref. 11, it can be shown that, to first-order

accuracy, the orthogonalization procedure does not affect the statistical properties of the estimator
and, therefore, does not necessitate any adjustments in the algorithm.

PREDICTION

In the predictionstep at tk, the reseta posterioriestimate at time tk,_C(k[k) (computed with the

resetIRP estimateI and itscorresponding errorcovariancematrix, P(klk), axe propagated to time
tk+1.

Using Eq. (19),we have

_(k + llk) = @(T)_C(klk)

Using this result with Eq. (19) yields the covariance propagation equation

P(k +llk) = @(T)P(klk)¢T(T) + r(T)Q/(k)rr(T)

(62)

(631
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To propagate the attitude matrix to tk+l we use the most recent IRP, attitude-rate and angular

acceleration estimates, and the orthogonalised DCM estimate corresponding to tk, in Eq. (13). This

yields

/)(k+l/k)= {I+A(k+l,k)+lA2(k+l,k)+lAa(k+l,k)

+ 1T[ft(k+ 1, k)_(k +llk ) - _(k+ l[k)i(k+ 1, k)] }Z)'(k,k) (64)

where the a priori estimates of A(k + 1, k) and _2(k + 1) are defined, respectively, as

A(k+l,k) -_ -[_(k+llk)×], #(k+ll k) a -[¢(k+llk)x ] (65)

NUMERICAL STUDY

Example I

In this example, three non-orthogonal baselines were used: bl-- [1.0, 1.0, 0.0] T, _ ---- [0.0, 1.0, 0.0] T,

b3 = [0.0,0.0,1.0]T. Two fixedsightlineswere observed at alltimes,Sl = _3 [I.0,1.0,1.0]T and

s2 = :_2[0.0,1.0,1.0]T. The non-normalized GPS signalnoise standard deviation was 5.0 ram.

When vectormeasurements were used,the noiseequivalentangle ofthe inertiaUy-referencedobser-

vations was set to 5.0 arc-s,while the body-referenced vector measurements were simulated to be

acquired by a low accuracy attitudesensor with a noise equivalentangle of 0.1 deg. These mea-

surements corresponded to a randomly selectedvector,which was kept constant throughout the

run.

The angular ratesofthe satellitesatisfiedwi(t)= Ai sin(_t + ¢i),where Ai = 0.02,0.05,0.03

deg/s, ¢i = Ir/4,7r/2,3_r/4rad, and Ti = 85,45,65 s for i= I,2,3,respectively.The initialangular

rate estimateswere allsetto zero.The true initialattitude corresponded to Euler anglesof 30 deg,

20 deg and 10 deg inroll,pitch and yaw, respectively,while the filter'sinitialstatecorresponded to

Euler anglesof 25 deg, 18 deg and 5 deg, respectively.The filterwas run at a rate of 20 Hz, and

the measurement processingrate was I0 Hz. The Singer angular accelerationmodel was used with

parameters set to _-= I0 s,d_M = 10-4 rad/s2,PM = P0 = .001 for allthree axes.

In Fig. 2, the true and estimated yaw angle time histories,and theircorresponding estimation

errors,areshown fora typicalrun, with and without vectormeasurement aiding.(The estimated yaw

angle was computed using the estimated attitudematrix, assuming a 3-2-1 Euler angle sequence).

Using only GPS measurements, the averageyaw estimationerrorwas 7.15x 10-3 deg, with a standard

deviationof0.095 deg. When vectormeasurements were used in combination with the GPS signals,

the average estimation error was 9.87 x 10-4 deg, and the estimation error standard deviation

reduced to 0.022 deg. In Fig. 3,the third component of the angular velocityvector,itsestimates

and corresponding estimation errorsare shown for the same run. Using GPS only measurements,

the steady stateestimationerror standard deviationwas 0.015 deg/s. When vector measurements

were used incombination with the GPS signals,the estimation errorstandard deviation reduced to

0.0065 deg/s (the averagerate estimationerrorswere on the order of 10-4 deg/s in both cases).

Example II

In this example, the same parameters were used as in Example I, except for the following. The

three baselinesused were now bl = [0.I,1.0,0.I]T, _ = [0.0,1.0,0.0]T, b3 = [0.0,0.0,1.0]T. As

can be observed,the firsttwo baselinesare almost colinear.The angular ratesof the satellitewere

fw = 0,236, 0 deg/hr. The Singer angular acceleration model parameters were set to r = 10 s,
_'M 10 .5 r /s 2, PM = _ = .001 for all three axes. As in the first example, vector measurements,

when available, corresponded to a randomly selected, constant vector.
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Figure 2. Yaw Angle Estimation: (a) and (b) GPS Only Measurements, (c) and (d)
With Vector Measurement Aiding.

In Fig. 4, the true yaw angle time history is shown, along with the estimation error time histories
corresponding to the cases where only GPS measurements were used and where vector observations

were used along with the GPS measurements. (The estimated yaw angle was computed using the
estimated attitude matrix, assuming a 3-2-1 Euler angle sequence). As can be observed from Fig. 4,

the effect of aiding the GPS measurements with vector observations is very substantial in this ill-

conditioned case. Using only GPS measurements, the average yaw angle steady-state estimation

error in this run was 7.72 x 10 -s deg, with an estimation error standard deviation of 0.087 deg.

When the GPS measurements were aided by vector measurements, the average Euler angle steady-
state estimation error reduced to 4.6 x 10 -3 deg, with an estimation error standard deviation of

0.022 deg. In Fig. 5, the estimation error of the third rate component is shown, with and without

vector observation aiding. Using GPS only measurements, the steady-state rate estimation error
standard deviation was 9.34 x 10 -4 deg/s. When vector measurements were used in combination with

the GPS signals, the standard deviation reduced to 3.51 x 10 -4 deg/s (the average rate estimation
error was on the order of 10 -5 deg/s in both cases).
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Figure 3. a_3 Estimation: (a) and (b) GPS Only Measurements, (c) and (d) With Vector
Measurement Aiding.

CONCLUSIONS

A nonlinear sequential estimator has been presented, that uses differential GPS carrier phase mea-
surements to estimate both the attitude matrix and the angular velocity of a spacecraft. The

algorithm is based on the IRP third-order minimal parametrization of the attitude matrix, which
is at the heart of its computational efficiency. Avoiding the use of the typically uncertain (and

frequently unknown) spacecraft dynamic model, the filter uses a polynomial state space model, in

which the spacecraft angular acceleration is modeled as an exponentially autocorrelated stochastic

process. When vector observations are available (e.g., from low accuracy Sun sensors or magnetome-

ters), the estimator's structure can be easily modified to exploit this additional information and,
thereby, significantly enhance the algorithm's robustness and accuracy. Numerical examples have

been presented, that demonstrate the performance of the proposed algorithm and the advantages of

aiding the GPS carrier phase signals with vector observations, even when the vector measurements

are of relatively low accuracy.
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