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A TRANSITION MATRIX APPROACH

TO THE DAVENPORT GYRO CALIBRATION SCHEME

G. A. Natanson +

The in-flight gyro calibration scheme commonly used by NASA Goddard Space

Flight Center (GSFC) attitude ground support teams closely follows an original

version of the Davenport algorithm developed in the late seventies. Its basic

idea is to minimize the least-squares differences between attitudes gyro-

propagated over the course of a maneuver and those determined using post-

manuever sensor measurements. The paper represents the scheme in a recursive

form by combining necessary partials into a rectangular matrix, which is

propagated in exactly the same way as a Kalman filter's square transition matrix.

The nontrivial structure of the propagation matrix arises from the fact that
attitude errors are not included in the state vector, and therefore their derivatives

with respect to estimated gyro parameters do not appear in the transition matrix

defined in the conventional way.

In cases when the required accuracy can be achieved by a single iteration,

representation of the Davenport gyro calibration scheme in a recursive form
allows one to discard each gyro measurement immediately after it was used to

propagate the attitude and state transition matrix. Another advantage of the new

approach is that it utilizes the same expression for the error sensitivity matrix as
that used by the Kalman filter. As a result the suggested modification of the

Davenport algorithm made it possible to reuse software modules implemented in
the Kalman filter estimator, where both attitude errors and gyro calibration

parameters are included in the state vector.

The new approach has been implemented in the ground calibration utilities used

to support the Tropical Rainfall Measuring Mission (TRMM). The paper

analyzes some preliminary results of gyro calibration performed by the TRMM

ground attitude support team. It is demonstrated that an effect of the second
iteration on estimated values of calibration parameters is negligibly small, and

therefore there is no need to store processed gyro data. This opens a promising

opportunity for onboard implementation of the suggested recursive procedure

by combining it with the Kaiman filter used to obtain necessary attitude

solutions at the beginning and end of each maneuver.

* This work was supported by the National Aeronautics and Space Administration (NASA) / Goddard Space Flight
Center (GSFC), Greenbelt, Maryland, Contract GS-35F-4381 G, Task Order No. S-03365-Y.

I" Computer Sciences Corporation (CSC), 10110 Aerospace Rd., Seabrook, MD, USA 20706
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I. INTRODUCTION

Propagation of a state vector from one measurement time to another is usually done _ by

introducing a transition matrix formed by partial derivatives of the current state with respect to

the state at an epoch time. A well-known technique z.3 has been developed to propagate the

transition matrix between sequential measurements using gyro data. The paper extends this

propagation technique to the Davenport gyro calibration scheme? -7 The main obstacle to such

an extension comes from the fact that the cited gyro calibration scheme treats an a priori given

change in the spacecraft attitude within a specified time interval as a pseudo-measurement, and

therefore attitude errors are not included in the state vector anymore; as a result, their derivatives

with respect to estimated gyro parameters (such as misalignments, biases, and scale factors) do

not appear in the transition matrix defined in the conventional way. To overcome this

complication, the new approach combines necessary partials into a rectangular matrix, which

can be propagated in exactly the same way as the conventional (square by definition) transition
matrix, r-3

Assuming that the first iteration eliminates bulk errors, representation of the least-squares gyro

calibration scheme in a recursive form allows one to discard each gyro measurement
immediately after it is used to propagate the attitude and state transition matrix. Due to a

significant decrease in required storage size, this feature of the new approach seems especially
promising for onboard applications.

The next Section presents a simplified derivation of the original version of the Davenport
algorithm? .5 Its final result is an explicit expression of the vector attitude residual in terms of the

error sensitivity matrices _, k utilized by Kalman filter estimator? It is shown that the derived

expression turns into the conventional onC if only linear terms are kept in the expansion of each

matrix W k as a Taylor series in the duration At k of the kth propagation interval.

Section III introduces a rectangular matrix which gyro-governed evolution is performed via the

same recurrence relations as those used for gyro propagation of the conventional state transition

matrix. The derivation is accomplished in Section IV, which outlines main steps of the
suggested recursive procedure.

The new algorithm has been implemented s and successfully used to calibrate gyros 9 for the

Tropical Rainfall Measuring Mission (TRMM). One of the advantages of the suggested

modification of the Davenport algorithm is that it allowed a reuse of software modules

implemented in the Kalman filter estimator, 3 where both attitude errors and gyro calibration

parameters are included in the solve-for state vector. Section V discusses some preliminary

results of the TRMM gyro calibration. It is shown that the required accuracy of gyro calibration

can be indeed achieved by a single iteration, and therefore each gyro measurement can be indeed

discarded immediately after it was used. The paper also studies a possibility to reduce a volume

of processed gyro data without jeopardizing the accuracy of calibration.
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II. MATHEMATICAL GROUNDS OF DAVENPORT ALGORITHM

The Davenport method 4 is a two-step procedure. The first step is to determine attitudes at the

ends of specially selected calibration intervals. For successful calibration, the selected time

intervals usually cover a series of maneuvers associated with significant changes in body rates.

It is essential that, regardless of maneuver specifics, each calibration interval must both start and

end in a constant-rate mode. To determine the spacecraft attitude at the ends of each interval,

sensor measurements are then collected only during time periods within constant-rate modes,

when unknown errors in gyro misalignments and scale factors are compensated by additional

gyro biases estimated simultaneously with the spacecraft attitude. As a result, one can assume

that gyro propagation from one sensor measurement time to another is done accurately enough,

despite the fact that gyros have not been properly calibrated yet.

The second step is quaternion propagation starting from the predetermined attitude quaternion at

the beginning of each calibration interval and stopping at its end. The resultant propagated

quaternion is then compared with the second of two attitude quaternions predetermined for this

calibration interval. The comparison is done by multiplying one of the two quaternions at the

ending time by the inverse of other. The vector part of the product is then treated as a vector
residual, with the total number of these attitude quaternion vector residuals (AQVRs) always

equal to the number of the calibration intervals.

Davenport's principal result is an approximate expression for the AQVRs in terms of vector

deviations of the observed angular velocity vectors from the true rates. The outline of the

Davenport method presented here mainly follows Keat's 5 interpretation of Davenport's original
work? To simplify the notation, the discussion will be limited only to a single maneuver so that

the index labeling different maneuvers can be omitted. An extension of the final expression for

an AQVR to a series of sequential maneuvers is performed in a trivial way by attaching an

additional index to both residual and all angular velocity vectors.

Let c_ _J be an observed angular velocity vector obtained by adjusting measured rates with some

estimated parameters, where subscript k refers to the k-th available gyro measurement within the

maneuver in question. The observed vector differs from a true vector r_ k by a rate error 5o k,

that is,

Both vectors t_ _dj and _ k are assumed to remain constant during a time interval At k so that the

quaternion propagated over n intervals (starting from the known quaternion qiait ) can be

represented as

n

qptop = qinit r[ q((._ _JAt k), (2)
k=l
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where '° _(_At)=[o3 sin(_/2),cos(d_/2)], with o3- /Ic31 and #--Ir l/xt. The AQVR

is defined via the relation:*

---1
(3)

where qtin is the given attitude quaternion in the end of the maneuver.

It is assumed that the attitude quaternion qfin can be obtained from qinit by propagating the

latter with the true constant angular velocity vectors r_ k over the time intervals At k , so that

n

qfin = q'-'mit1-'[ q(_ kAtk)- (4)
k=l

To express the AQVR Z in terms of errors in gyro parameters, one first needs to linearize the
-d

quaternion product qfin qprop in 80 k" At this point one has to deal with unnormalized

quaternions, which form the so-called 'associative algebra'. Note that both attitude and

propagation quaternions discussed above are normalized quaternions, which cannot be either

summed up or multiplied by a scalar, in contrast with unnormalized quaternions. On the other
---| o

hand, the inverse operation q is well defined just for normalized quaternions. Only the

multiplication law given by Eq. (D-8) in Ref. 10 is common for both normalized and

unnormalized quaternions. It is essential that, by analogy with orthogonal matrices, the

multiplication law is associative, i. e., _(_'_")=(_')_" for any three unnormalized

quaternions, _,_', and _". Another important features of the multiplication law are that

_(_'+_") =_'+_" and that _(k_')=tk_)_' for a scalar multiplication. After the

mentioned features of the multiplication law are established, unnormalized quaternions can be

formally treated in the same way as square matrices, with the norm of quaternion given by Eq.

(D-9) in Ref. 10 used instead of the matrix determinant. In particular, all Taylor expansions look

very similarly, except that each product should be computed based on the quaternion

multiplication law.

Substituting Eqs. (2) and (4) into Eq. (3) and keeping only terms linear in 50 k, one can

represent the latter expression as

where

q+ -" - -qk--*n 5qk qk--,n,
k=l

(5)

k+Ak

qk-_k÷ak -- 1-I q(c_JAtk,) forAk=l ..... n-k>O, (6a)
k'fk+l

Note that our definition of the AQVR differs by the factor (-1) from that used by Keat. 5
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(6b)
and

[zk, _l-lzkl 2 ]=_qk--q(-_ kAtk)q(CO_ jAtk)" (7)

Note that the sum in the right-hand side of Eq. (5) is formed by the products of normalized

quaternions, and hence, to simplify each product, one can take advantage of the existent

isomorphism between normalized quatemions and 3 x 3 orthogonal matrices. Making use of

Eq. (12-7b) in Ref. 10, one can easily verify that

R A( _)R T = A(R_), (8)

where R is an arbitrary 3x 3 orthogonai matrix, whereas the rotation matrix A(_) associated

with the Gibbs vector _ is given by Eq. (12-7b) in Ref. I0, with _- _tan(_/2). Representing

Eq. (8) in the quatemion form and substituting the resultant expression in the sum in the right-

hand side of Eq. (5), one can finally represent the AQVR Z as

k=l

where Rk_.t: is the rotation matrix associated with the propagation quaternion qk--_k' "

As discussed in detail in Ref. 11, an explicitly expression of the vector Zk in terms of the rate

error5C0 k has theform:

Zk -----l_¢/k _('Ok + O( _('_k 2)' (10)

where _#k is the error sensitivity matrix used by the Kalman filter estimator, 3 that is,

t[/k _ 13 Atk _ lrr_ adJ x ]At2 V2(t_kadJ/2) + 2 [_ _dJ X]2 rl(t_k_i) At_, (11)
2tWk

with v(9 ) -sintp/q), vl(q) ) - 0.5 (1-sinq))/9 2 , and _adj _[c_dj [Atk" Note that a slightly

different representation for error sensitivity matrix (11), compared with Ref. 3, makes it possible

to compute this matrix using expansions explicitly stable at the limit [co _dJ[-_ 0.

Finally, AQVRs (9) are represented as linear combinations of errors Ax i (i=l ..... p) in gyro

parameters:
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by substituting the rate errors

(13)

into Eq. (10). Computation of necessary partials is then performed in a trivial way.

Note that Keat's formula s for the AQVR (utilized in the conventional version 7 of the Davenport

algorithm') is obtained from Eq. (13) by keeping only the first term in the right-hand side of Eq.

(11), which seems to be a sufficiently accurate approximation in most cases (see comments made

in the end of Section V). Another minor modification comes from a slightly different choice of

the state vector AK, which is formed by three bias errors Ab i (i=1,2,3), three scale factor errors

Ak i (i=1,2,3), and two misalignment angle errors _k,i (k=l, 2) for each of three gyros 0=1,2,3).

Such a choice of gyro calibration parameters 8 makes it possible to calibrate each gyro

separately, which is convenient in case of a spacecraR having only one gyro, such as Solar and

Heliospheric Observatory (SOHO).'2

III. PROPAGATION OF ATTITUDE MATRIX VECTOR RESIDUALS

The main purpose of this Section is to show that an attitude residual can be represented in the
general form:

= H_)state AX, (14)

where O, Ag, H, and _state are usually referred to as a measurement residual, a state error

vector, a sensitivity matrix, and a state transition matrix, respectively. The crucial point is that

the transition matrix _state can be computed as the last term _state=On in a sequence of

recurrence relations:

t_ k = t_k.1...,k t_k. 1 , (15)

where the (p +3) x (p+3) matrix Ok-i_k is an incremental transition matrix conventionally used

in Kalman filter applications to propagate the attitude state vector (see, for example. Eq. (F8-26)

in Ref. 3). A certain complication, however, comes from the fact that the calibration scheme in

question estimates only gyro calibration parameters, and therefore attitude errors are not

included into the state vector Ai. As a result t_ k turn out to be rectangular matrices having

p+3 rows but only p columns.

As mentioned above, the initial and final attitudes in the Davenport method are determined using

sensor measurements in constant-rate modes, when solved-for biases compensate for errors in

gyro misalignments and scale factors. The attitude matrix vector residual (AMVR), 0, is then
defined via the relation:
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exp[0 x] - Aob s ApTop , (16)

where Aob $ and Aprop are the attitude matrices associated with the attitude quaternions qfin

and qprop in the previous Section.* One thus finds

sin(]0 l/2)/]0 f=Z. (17)

Since we are interested only in terms linear in gyro errors, one can simply put

0_2Z (18)

and make use of Eq. (12) to represent the AMVR 0 as the last term 0 _ 0 n in the sequence

i=l

with 00 --fi "

Eq. (19) immediately leads to the conventional Kalman filter expression 3 for propagation of the

combined attitude error / gyro calibration parameter state vector:

[°1 r°]= (I)k_l___ k , (20)

A_ L A_

where

with

(I)k-l--+k_ I[R

k-l--_k

L OP x3

---
By initializing sequence (15) via the relation

(21)

(22)

"The author is thankful to J. Sedlak for pointing to a misprint in the definition of the AMVR0 in Ref. 11

leading to a sign error in Eqs. (III-5), (III-6), (lII-8), (Ill-14), and (III-17) there.
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-LI j

one finds that

Ip J

and hence,making useofEq. (20)atk=l,

with

(23)

(24)

(25)

H-=[Is 0Sxp]. (26)

By applying mathematical induction to Eq. (20) and making use of the fact that the first three

rows of the matrix H_k coincide with the first three rows of the transition matrix _k for any

k, one can easily verify that

Ok = H_k A_- (27)

Substituting the state transition matrix _state for _. then immediately leads to Eq. (14), which

constitutes the main result of this work.

IV. REPRESENTATION OF THE DAVENPORT GYRO CALIBRATION SCHEME IN A
RECURSIVE FORM

The suggested recursive procedure has been implemented in the following way)

Estimation starts by setting elements of the so-called 'measurement accumulation' vector Aft to

zero. One also initializes elements of the covariance matrix P with some a priori values. The

attitude matrix is then propagated from one gyro measurement to another:

Ak --Rk.l._>kAk.1 (28)

starting from the given observed attitude A 0 associated with the quaternion qinit at the

beginning of the first maneuver. At the same step one also computes error sensitivity matrix

(I1) and rate-dependent partials in the right-hand side of Eq. (22) which are then substituted,

380



togetherwith the rotation matrix Rkq__k, into Eq. (21) for the matrix _k-I--}k used to propagate

the state transition matrix via recurrence sequence (15). At the end of the maneuver the AMVR

is computed by linearizing Eqs. (I 6):

=l[sA23-SA32, 8A3,-SA13 , 8At2-SA2,] T (29)

where ¢_Aij are elements of the orthogonal matrix

T
_SA - Aob s Aprop . (30)

After the AMVR 0 is computed, one updates the measurement accumulation vector and the

inverse covariance matrix W - Pq according to the standard equations:

A_ <--.-A_ +_TtcfirC-10 (31)

and

• _T _T -1_
W<---W+_stmI-I C l-I_st_t _,

where C is a 3x3 measurement covariance matrix.

_0 and the processing continues starting from the beginning of the next maneuver.

(32)

The state transition matrix is then reset to

After the last maneuver is processed, one obtains the covariance matrix P by inverting the

resultant W matrix and computing the state error vector A_ from the measurement

accumulation vector A_"

Ai = P A_. (33)

The magnitude of the state error vector A_ is then compared with the given tolerance to proceed

with iterations if necessary.

V. TRMM IN-FLIGHT GYRO CALIBRATION

The TRMM is an Earth-pointing three-axis stabilized spacecraft. Its body z-axis is nominally

pointed along the geodetic nadir? 3 It can be in '+x forward' or '-x forward' nominal mode, with

its body x-axis being approximately either parallel or anti-parallel to the spacecraft velocity. For

power and thermal protection of science instruments from direct exposure to the Sun, yaw

maneuvers from one nominal mode to another (similar to those depicted in Figs. la and lb) are

periodically performed. Since the body y-axis is parallel (anti-parallel) to the orbit normal in the

'-x forward' ('+x forward') mode, the only nonzero component of the spacecraft angular velocity

vector is the pitch rate, nominally equal to +1 revolution per orbit (RPO) in the '-x forward'
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mode and -1 RPO in '+x forward' mode. This is illustrated by the fiat portions of"the dashed

curves in Figures la and lb. It is essential that rates remain nearly constant in both nominal

modes, and therefore the spacecraft attitude can be determined with a sufficient accuracy without

a complete gyro calibration, provided that gyro biases are included in the state vector to be

solved for. (Unknown errors in scale factors and gyro misalignments manifest themselves as

some additional biases, which differ for different modes.)
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Figure 1. TRMM body rates during +X to -X (upper) and -X to +X (lower) yaw maneuvers.

On December 14, 1997 the TRMM was also placed in the '-y forward' mode to calibrate

scientific instruments, with the y body axis being anti-parallel to the spacecraft velocity vector.

As seen from gyro rate profiles depicted in Fig. 2, the spacecrat_ was rotating for about one hour

around its body x-axis with the rate of+I RPO, before coming back to the '-x forward' mode.
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In addition to maneuvers between the three Earth-pointing modes mentioned above, the TRMM

was commanded on January 7, 1998 to stay for one orbit in the inertial hold mode used to

calibrate a science instrument by pointing it toward cold space. Fig. 3 presents the

corresponding x and y body rates. (The z body rate is omitted since its deviations from zero

would be practically invisible at the figure scale.)
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Figure 3. TRMM body rates during inertial hold.
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Table 1 lists time intervals selected for calibration of the TRMM inertial reference unit (IRU)?

The reference attitudes were determined at the beginning and at the end of each maneuver using

Digital Sun Sensor (DSS) and Barnes Static Earth Sensor Assembly (SESA) measurements, z3

Table 1 - Intervals of Gyro Data Used for IRU Calibration

Maneuvers Time Interval

1 9:45:00 - 11:25:00, Dec. 13, 1997

2 13:11:00 - 13:29:00, Dec. 13, 1997

3 15:05:00- 16:40:00, Dec. 13, 1997

4 11:43:30- 12:58:00, Dec. 14, 1997

5 13:07:00- 14:39:15, Jan. 7, 1998

6 20:47:30 - 21:06:00, Jan. 14, 1998

Spacecraft Activity

+x forward

+x to -x yaw maneuver

-x forward

-y forward mode
Inertial hold

-x to +x yaw maneuver

Three residuals per maneuver were then obtained by propagating the spacecraft attitude with

gyro rates from the beginning of each maneuver and comparing the result with the predetermined
reference attitude at the end of the maneuver. Table 2 presents roll, pitch, and yaw attitude

residuals obtained by gyro propagation with pre-launch and calibrated gyro biases, scale factors,

and misalignment matrix. The corresponding values of calibration parameters for each gyro

(i. e., a bias, a scale factor, and misalignment angles* relative to body axes) are listed in Table 3.

• A deviation of the gyro axis from its nominal direction can be derived from two other misalignments;
however, it is included in Table 2 just to simplify the notation, with zeros standing for some rather small

numbers completely irrelevant to our discussion.
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Table 2- Roll, Pitch, and Yaw Attitude Residuals (deg) Before and After Calibration

Maneuvers

2

6

Pre-launch

At = 0.5 s At=Is At=2s

0.012 0.022 -0.008

-0.044 -0.072 -0.105

0.045 0.030 0.053

0.195 0.212 0.202

0.002 -0.001 -0.003

0.024 0.031 0.031

0.018 0.015 -0.021

-0.433 -0.412 -0.441

-0.011 0.003 0.034

0.235 0.233 0.265

-0.243 -0.233 -0.243

-0.108 -0.116 -0.131

0.073 0.094 0.099

-0.194 -0.223 -0.248

0.066 0.071 0.075

0.273 0.266 0.271

0.105 0.086 0.078

0.047 0.045 0.074

1st iteration

At=0.5 s At= 1 s At=2 s

0.005 0.024 0.001

-0.015 -0.004 -0.008

0.002 0.002 0.012

-0.006 0.009 -0.009

-0.004 -0.003 -0.001

0.003 -0.004 0.002

0.006 0.001 -0.040

-0.007 -0.002 -0.003

0.003 0.008 -0.042

-0.0002 0.001 -0.001

-0.0001 -0.001 -0.001

0.003 -0.006 0.007

-0.003 -0.001 -0.001

0.028 0.008 0.011

0.024 0.008 0.006

0.002 -0.004 0.006

0.010 0.005 0.003

0.006 -0.005 0.004

Biases

(deg/sec)

Scale factors

Tabi_

Misalignment angles (deg)

relative body axis x

Misalignment angles (deg)

relative body axis y

Misalignment angles (deg)

relative body axis z

3 - Calibration parameters

Pre-launch

-1.41 xl0 _

1.58 xl0 _

0.86 xl0"

1.00000

1.00000

1.00000

At= 0.5 s

1st iteration

At=Is At=2s

-1.55 xl0 _

1.98 xlO _

0.78 xlO _

-1.58 xl0 _ -1.59 xl0 _

2.00 xl0 _ 2.04 xl0 _

0.75 xl0 _ 0.73 xl0"

1.00044 1.00035 1.00031

1.00053 1.00046 1.00046

1.00088 1.00092 1.00096

0.000 0.000 0.000

0.044 0.051 0.044

0.054 0.067 0.071

0.000

0.059

0.005

-0.036
0.000

0.030

0.006

-0.033

0.000

-0.058 -0.068 -0.086

0.000 0.000 0.000

0.096 0.063 0.079

0.039 0.034 0.033

-0.124 -0.119 -0.118
0.000 0.000 0.000
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To investigate the possibility of reducing the amount of processed gyro data (about 60 000 points

for all six maneuvers), propagation was performed using several time steps: At = 0.5 s, I s, 2s.

Inspection of Table 2 and Table 4 shows that every other gyro measurement can be successfully

skipped without any noticeable effect on the accuracy of estimation. Skipping three of every

four gyro measurements still gives reasonably good results, though some degradation in the

accuracy can be clearly seen.

Table 4 - Mean and RMS Residuals (deg)

Mean

Residuals

RMS

Residuals

Pre-launch

At = 0.5 s At-- 1 s At=2 s

0.1343 0.1404 0.1343

-0.1343 -0.1426 -0.1603

0.0103 0.0105 0.0226

0.0694 0.0707 0.0738

0.0908 0.0892 0.0960

0.0242 0.0249 0.0303

1st iteration

At=0.5s At=ls At=2s

0.0008 0.0050 -0.0073

0.0016 0.0004 0.0001

0.0068 0.0004 0.0123

0.0015 0.0043 0.0070

0.0058 0.0019 0.0024

0.0043 0.0024 0.0075

It is essential that the calibration be accomplished by a single iteration. This can be easily seen

by comparing corrections to gyro biases and elements of the G-matrix due to the first and second

iterations, presented in Table 5. Contributions to attitude residuals from the second iteration are

so small that they would have no effect on the values t in Tables 2 and 4 (to the precision

shown).

Table 5- Bias and G-Matrix Corrections

Bias
corrections

(deg/sec)
Corrections
to G-matrix
elements

1st iteration 2nd iteration

x-gyro y-gyro z-gyro x-gyro y-gyro z-gyro

-1.74x10 "5 4.15x10 "5 -1.15 xl0 "5 -3.89x10 "s 4.18x10 "s 0.11 xl0 -s

-0.44x10 "3 0.39 xlO "3 -0.57 xlO "3

0.27 xlO "3 -0.54 xlO "3 1.59 xlO "3

-0.86x10 3 -1.16x10 3 -0.88x10 "3

-2.69x10 _ -1.90x10 _ -0.72 xl0 _

-2.86x10 _ -0.58x10 _ 0.81 xl0 _

-0.85 xl0 _ -4.08 xl0 _ -1.43 xl0 _

To study the significance of higher-order powers of At_ in the error sensitivity, calibration was

repeated using only the linear terms in Eq. (I 1), which is equivalent to the use of the Davenport

method in its conventional implementation: It was found that neglecting higher- order terms

does not practically affect the calibration results, so that the linear approximation seems to be

sufficiently accurate for calibration purposes.
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VI. CONCLUSIONS

A new approach has been implemented in the ground calibration utilities sand successfully used
for the TRMM [RU calibration. It has been shown that the required accuracy can be achieved
by a single iteration. As a result the new approach seems to be especially useful for onboard
applications by allowing one to discard each gyro measurement immediately after it is used to
update the state vector and covariance matrix.

Recently the Rossi X-Ray Timing Explorer (RATE) ground launch support team has reported _4
some problems in Kalman filter estimation of gyro scale factors and gyro misalignments, and the

new least-squares approach to gyro calibration makes it possible to extend advantages of the

Davenport algorithm to onboard applications. To avoid memory-consuming batch attitude

determination, one can use the Kalman filter to determine the spacecraft attitudes before and

after each of the selected maneuvers. The Kalman filter state vector is composed only of attitude
and gyro bias errors, so that gyro biases will change with each new gyro measurement, in

contrast with those used in the Davenport method. For this reason one has to propagate in

parallel two separate transition matrices, namely, propagation rates for the spacecraft attitude and

the transition matrix used by the suggested recursive algorithm are obtained by adjusting raw
measurements with a priori biases which remain the same for all the selected maneuvers. On the

other hand, propagation rates for attitude errors and the transition matrix utilized by the Kalman

filter are obtained by adjusting raw measurements with the solved-for biases (and the same scale

factors and misalignments as in the former case). Feasibility of this approach is currently
investigated using Submillimeter Wave Astronomy Satellite (SWAS) simulated data.
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