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TEST OF A FLEXIBLE SPACECRAFT DYNAMICS SIMULATOR

Donald Dichmann* and Joseph Sedlak t

There are a number of approaches one can take to modeling the dynamics of a

flexible body. While one can attempt to capture the full dynamical behavior

subject to disturbances from actuators and environmental torques, such a

detailed description often is unnecessary. Simplification is possible either by
limiting the amplitude of motion to permit linearization of the dynamics

equations or by restricting the types of allowed motion. In this work, we study

the nonlinear dynamics of bending deformations of wire booms on spinning

spacecraft. The theory allows for large amplitude excursions from equilibrium
while enforcing constraints on the dynamics to prohibit those modes that are

physically less relevant or are expected to damp out fast. These constraints
explicitly remove the acoustic modes (i.e., longitudinal sound waves and shear
waves) while allowing for arbitrary bending and twisting motions which

typically are of lower frequency.

As a test case, a spin axis reorientation maneuver by the Polar Plasma

Laboratory (POLAR) spacecraft has been simulated. POLAR was chosen as a
representative spacecraft because it has flexible wire antennas that extend to a

length of 65 meters. Bending deformations in these antennas could be quite large

and have a significant effect on the attitude dynamics of the spacecraft body.
Summary results from the simulation are presented along with a comparison with

POLAR flight data.

INTRODUCTION

This work describes the design and application of a flexible spacecraft dynamics

simulator, named Cartwheel, to model a spin axis reorientation maneuver by the Polar

Plasma Laboratory (POLAR) spacecraft. It presents a summary of the simulation results

and a comparison with flight data. Overviews of the theory and the software are also

given.

The general purpose of this research was to study the applicability of a particular

flexible dynamics method to spacecraft attitude dynamics. As described below, the Cart-

wheel simulator captures the most important parts of the nonlinear dynamics but leaves

out a number of smaller effects. As a prototype analysis tool, Cartwheel has been used for

basic theoretical tests but is not intended for operations support.
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We chose POLAR as a representative spacecraft because it has flexible wire anten-

nas that extend up to 65 m in length, so the wire antennas contribute a large fraction of

the total moment of inertia. Due to the great length of these thin wire booms, bending de-

formations can have a significant effect on the attitude dynamics of the hub of the

spacecraft body. Flexure of the antennas can cause large changes in the total moment of

inertia, which, in turn, can affect the spacecraft rotation rate. The motions of the antennas

couple through the rigid hub. In addition, the antennas have some intrinsic stiffness, that

is, a tendency to spring back to their default orientation (normally straight). The resulting

highly nonlinear dynamics leads to complex perturbations to the attitude.

The POLAR spacecraft periodically executes a 180 degree spin reorientation man-

euver to prevent the Sun from coming into view of certain instruments. We anticipated

that this type of maneuver would induce vibration in the wire booms that could meas-

urably influence the attitude dynamics of the hub. This paper describes the application of
the Cartwheel simulator to such a maneuver.

The next sections contain overviews of the dynamics theory and the Cartwheel soft-

ware. This is followed by a description of the POLAR spacecraft, orbit, attitude, and the

spin axis reorientation maneuver. Finally, a summary of the simulation results and com-

parison with POLAR flight data is given.

THEORY

The flexible spacecraft dynamics simulation program, Cartwheel, was designed to

model the nonlinear dynamics of large bending deformations of wire booms on space-

craft. In these simulations, we enforce constraints on the dynamics to prohibit the gener-

ally lower amplitude, higher frequency acoustic modes (i.e., longitudinal sound waves

and shear waves) but to allow the larger, lower frequency bending and twisting motions.

While it is possible to model the full dynamical problem, this is made difficult by the

presence of both very slow and very fast characteristic appendage motions. Describing all

the characteristic frequencies accurately leads to difficulties and inefficiencies when

integrating the governing equations. Dynamical systems with this problem are called stiff.

There are two broad kinds of simplifications that make solution of the governing equa-

tions more tractable. One can assume the deviations of the appendages from their equil-

ibrium positions are of low amplitude and then discard all terms in the equations that are

of second or higher order in this amplitude. The resulting linear system of equations can

be analyzed in terms of its normal modes of vibration. Alternatively, one can disallow

types of motion that are physically less important for the system under consideration. The

approach taken in this work is to discard the generally high frequency motions associated

with stretching and sheafing of the appendages (acoustic modes) while keeping the full

nonlinear description of the rest of the motion (flexing and twisting).

Constraining the dynamics to disallow acoustic modes makes numerical solutions

easier to obtain without appreciably limiting their validity. The only motions of interest

here are those that affect the spacecraft attitude; these are likely to be combinations of

simple oscillations and possibly "whiplash" motions of the booms. These motions are not
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likely to excite or couple strongly to the acoustic modes. In addition, acoustic modes are

likely to damp out fast in the multi-stranded boom material. Eliminating these modes

from the start is very nearly the same as describing the full dynamics of a system with

highly damped acoustic modes.

The method chosen for enforcing the dynamical constraints is called the impetus-

striction method (Ref. 1). The method has proven valuable in theoretical analyses of

stability conditions (Ref. 2) as well as in numerical simulations to rod dynamics (Ref. 3).

The key features of the impetus-striction method are as follows:

• The method applies to systems having a Lagrangian formulation subject to holo-

nomic constraints. It transforms constrained Lagrangian dynamics into an uncon-

strained Hamiltonian formulation where constraints appear as constants of the

motion.

• Each constraint equation is replaced by its time-derivative; the Lagrange multipliers

associated with these time-differentiated constraints are called the strictions and

have dimensions of momentum.

• One derives the conjugate variables to be used in the Hamiltonian formulation from

the constrained Lagrangian (the classical Lagrangian plus constraint terms). Thus,

the conjugate variables are not quite the same as the usual momentum variables that

arise from the classical Lagrangian alone; these new variables are the impetuses.

-Roughly speaking, the striction describes that part of the momentum arising

from the constraint forces, and the impetus describes that part due to the

remaining forces. Note that if there are no external forces, it is still the total

momentum that is conserved, not the impetus.

• One constructs a "pre-Hamiltonian" from the constrained Lagrangian; this differs

from the usual Hamiltonian only in that it still depends on the as yet undetermined

strictions.

• The Hamihonian is obtained by minimizing the pre-Hamihonian with respect to the

strictions for fixed values of the state variables. This minimization determines the

strictions and can usually be reduced to the solution of a system of linear algebraic

equations.

• The resulting unconstrained Hamiltonian system is integrated in time, solving for

the strictions at each time step.

OVERVIEW OF CARTWHEEL

The physical model of the boom dynamics yields a system of nonlinear partial dif-

ferential equations in which the independent variables are time and arc length along each

boom, both of which must be discretized for the numerical implementation.

For the discretization in arc length (often called the semi-discretization), we model

each boom as a sequence of Nn elastically connected rigid segments. As implemented, the
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integrationerrorsare of order h 2 as the segment length, h, goes to zero, and the errors

vanish for any segment length when the spacecraft rotates uniformly with zero deflection
in the wires.

There is a position and orientation associated with each boom segraent. Orientations

are represented by quaternions, so there are seven configuration variables for each seg-

ment, along with their conjugates (the impetuses). Note that the quatemion normaliza-

tions are not imposed by brute force but are maintained by the integration method. There

are Na antennas (N,, can be different for each antenna). There also is a position and orien-

tation for the spacecraft hub and a position for the center of mass of the entire system.

For each time step, the strictions are calculated as the solution of a linear system of

equations; the number of strictions is 3N,,N,, representing the stretch and shear constraints

for each segment, plus 3Na to constrain the position of the antenna attachments to the

hub, plus 3 more to separate relative position coordinates from the system center of mass.

(The striction equations decouple into Na banded, linear systems, each with 3N,, un-

knowns, together with the solution of one system with 3N,, unknowns, and one with 3

unknowns for the center of mass.)

For the discretization in time, the Hamiltonian system, consisting of (14N,,N,, + 20)

first-order ordinary differential equations for the coordinates and conjugate impetuses, is

stepped forward using a midpoint method. That is, if z k is the state at time tk and F(z) is its

time derivative, then

z..= . (1)

This is an implicit integration scheme wherein the time derivative evaluation requires

knowledge of the new state. Implicit methods are numerically more stable than explicit

methods but require solution of a possibly nonlinear system of equations for Z_÷1 at each

time step. Equation (1) is solved by a fixed-point iteration method but a Newton method
could also be used.

The integrator was chosen not only for its inherent stability but because it is one of

the simplest of the symplectic integration methods. One consequence of this is that it pre-

serves quadratic invariants (see, for example, Ref. 4). This means that any theoretical

constant of the motion that is quadratic in the state variables will not be subject to any

numerical error beyond machine roundoff. In practice, the error level is determined by the

tolerance allowed when iterating for a solution to Eq. (1).

Some examples of quadratic invariants are the quaternion norms and the amount of

stretch and shear between segments of the appendages. Other invariants may depend on

the boundary conditions of a particular example. For this problem, total linear momentum

and total angular momentum are quadratic invariants. On the other hand, although the

total energy is a conserved quantity (there is no damping in the model), the Hamiltonian

is not quadratic in the state variables. Consequently, the code is not expected to conserve

the energy as well as the quadratic invariants.
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Note that this formalism enforcesthe constraintsby solving for and imposing the
requisiteforces,andtheresultingaugmented Hamiltonian system is unconstrained. Thus,

while the stretch and shear are constrained to vanish, they are not set to zero ad hoc. They

are free to take on any value but remain small only because of the imposed forces (the

strictions). The point here is that the finite step size in the time-integration scheme could

conceivably cause growing errors in the constraints. The use of a symplectic integrator

guarantees that this will not happen.

The first test of the code was to examine the invariants. The errors in the quadratic

invariants should remain small (close to the tolerance of the solution of Eq. (1)), and the

error in the total energy should grow with a slope proportional to the time step squared.

This has been demonstrated remarkably well for both single rod and closed ring

simulations (Ref. 3). (Interest in these early rod and ring tests goes beyond just verifying

the impetus-striction method. They are well suited for modeling some aspects of

biomolecules such as bacterial DNA (Ref. 5).)

Later tests verified that the invariants are properly conserved also for the full space-

craft model (multiple booms coupled through a rigid hub) and that accurate results are ob-

tained for small perturbations with the booms discretized into relatively few segments.

THE POLAR SPACECRAFT

The mission of the POLAR spacecraft is to observe the electromagnetic field of the

Earth's polar regions. The hub of the spacecraft is about 1.58 m in radius. The mass is

roughly 1000 kg. Nominally, the spacecraft spins at a rate of 10 revolutions per minute

(rpm) with the spin axis oriented near the orbit normal vector. Spin axis direction is deter-

mined using a Sun sensor and an Earth sensor. The spacecraft has two axial booms exten-

ding along the positive and negative spin axes. The axial booms are effectively rigid and

are rigidly attached to the spacecraft hub. The spacecraft also has two radial booms, hold-

ing magnetometers, that are effectively rigid and rigidly attached to the spacecraft hub.

The spacecraft has four flexible wire booms extending radially from the hub and

arranged symmetrically. Each wire boom can be deployed to a maximum length of 65 m.
Each wire has a radius of 1 mm. The wire booms serve as antennas to observe the

ambient electromagnetic field and also to help stabilize the spacecraft rotation. During the

phase of the mission treated in this study, one pair of wire booms was deployed to 50 m

while the other was deployed to 65 m.

The POLAR spacecraft orbits the Earth in a near polar, elliptical orbit (roughly 2x9

Earth radii). The pre-maneuver orbit had semimajor axis equal to 34251 km, the

eccentricity was 0.662, the inclination was 86.01 deg, and the right ascension of the

ascending node was 26.809 deg. The orbital period is approximately 12 hours.

During most of the mission, the spacecraft spin axis is maintained along the positive

or negative orbit normal. As the Sun-orbit plane geometry changes, it is necessary about

every 6 months to reorient the spin axis for solar thermal constraints and to keep the Sun

out of the field of view of sensitive instruments. At those times, the spin axis is reoriented
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by 180 (:legfrom positive to negativeorbit normal, or vice versa. This is done while

keeping the Sun vector nearly perpendicular to the spin axis. Due to current thruster

limitations, this maneuver is performed in two separate 90 degree slews, each lasting

roughly 3.5 hours.

POLAR spacecraftand insb'uments

\
MFE

UVI

CEPPAD/SEPS

EF_PWI

HYDRA

CEPPAD

EFI

TgVIAS and CAPRvllCE, notshown,

are on the far side of PJ_espacecraE

Figure 1. The POLAR spacecraft and instruments.

This study discusses one such maneuver that was performed on April 16-17, 1996.

We anticipated that the maneuver, although performed slowly, would induce small

vibrations in the flexible wire booms. There are no instruments onboard the spacecraft to

measure directly the deformations of the booms. However, due to their length during this

phase of the mission, the booms contribute about 50% of the total moment of inertia

about the spacecraft's spin axis. It was therefore expected that if there were any flexure of

the booms, this would have a measurable effect on the attitude of the spacecraft hub.

SIMULATION RESULTS

In this section, we describe the results of numerical simulations of the POLAR spin

reorientation maneuver and compare results from flexible and rigid body models. Our

simulations focused upon the effects of boom flexibility on the attitude dynamics of the

spacecraft hub. Because of their length, the booms could exhibit large bending motions

under the appropriate circumstances. However, because the spacecraft spins at 10 rpm,

each boom experiences a stiffening centrifugal force that tends to inhibit deformations. In

addition, the rate of the spin reorientation maneuver is small (90 degrees in 3.5 hours), so
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the perturbingforcesand torquesactingon the boomsaresmall. For thesereasons,only
smalldeformationsof thewire boomswerefound.

To displaythedeformations,thepositionof theendof eachsegmentis represented
in a rotating bodycoordinatesystemattachedto thespacecrafthub. If a boom continued
to point radially outwardfrom the hub, as it doesduring a steadyspin, then the boom
would exhibit no motion in this body frame. During the simulation of the spin
reorientationmaneuver,eachboom oscillatedprimarily out of thespin planeand parallel
to thehub'sspin axis, designatedasthez-axis.This motion is shownin Figure 2, where
the tip's displacementis plotted as a function of time each0.5 second.The spacecraft
rotates200 times during the 20 minute period shown.In Figure 2, the displacementis
displayedas a fraction of the boom length, which is 50 meters.The amplitude of the
oscillation is about0.014of thetotal length,or about0.7m.
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Figure 2. Out-of-plane displacement of boom tip for model with two unequal length pairs

of wire booms (peak amplitude corresponds to 0.7 m).

The complex motion in Figure 2 can be approximated well by a superposition of

three distinct oscillations:

3

Z(t) = _, A i cos(2rct / Tj )+ Bj sin(2rl:t / Tj ) (2)
j=l

where the periods are Tt = 6.0 sec, 7"_,= 5.778 sec, and 7"3= 5.872 sec. The amplitudes are

A, = -5.25x10 3 , B, = 2.8x10 6, A2 = 6.91x10 3 , B2 = -3.6x10 5 , A3 = -1.85x10 3 , and B3 =

1.3x10 -6.

The oscillation with 6 sec period is associated with the spin rate of the spacecraft.

The other two frequencies appear to be associated with driven oscillations of the two

pairs of booms of length 50 m and 65 m, respectively. To test this, we ran a simulation
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with equal lengthboomsandall other parameters the same. The resulting motion of the

tip of each boom was less complex and decomposed into the sum of oscillations with

only two distinct periods of 6.00 sec and 5.79 sec as shown in Figure 3.

-0.015
0 200 400 600 800 1000 1200

time from maneuver (seconds)

Figure 3. Out-of-plane displacement of boom tip for model with four equal length booms

(peak amplitude corresponds to 0.5 m).

Although the motion of the tip of each boom is fairly complex, each boom moves

nearly as a rigid rod. To demonstrate this, Figure 4 shows the maximum deviation of a

boom from the straight line between its base and its tip. Thus, the oscillations shown in

Figure 2 are subtracted out, leaving only the deviation caused by any curvature of the
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Figure 4. Maximum deviation of boom from straight line (peak amplitude corresponds to 3 mm).
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boom. Again, the displacement is measured as a fraction of the boom length. The

maximum displacement from the straight configuration is seen to be only about 6xl0 "5

times the 50 m length, or 3 mm.

Because each boom behaves essentially as a rigid body, the most significant

flexibility effects can be captured by representing each boom as a rigid rod attached to the

hub by a flexible hinge. Simulations with various, reasonable amounts of spring force in

the hinge at the base show that even this elasticity has only a small effect. Thus, one can

set the deformation restoring force to zero at the base.

In this simulation, the initial conditions were taken from the April 1996 reorien-

tation maneuver. The spin axis was initially pointing toward right ascension 116.3 deg

and declination -7.7 deg. The final attitude following the first 90 deg maneuver segment

was estimated to be right ascension 27.2 deg and declination -80.0 deg (Ref. 6). Figure 5

shows the right ascension and declination of the hub for the simulated maneuver. For

comparison, the simulation for a totally rigid spacecraft with the same mass properties is

also shown. (Note that the initial attitude differs somewhat from values given in Ref. 6.

This small offset is caused by a different choice of sensor biases solved for together with

the attitude and does not affect the analysis.)
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Figure 5. Rigid body and flexible model simulations showing right ascension and declination of spin
axis for the first 1200 seconds of spin reorientation maneuver.
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Comparison of the two simulations (flexible and rigid body) allows the effects of

flexibility to be seen clearly. The flexible body simulation shows sinusoidal oscillations

absent from the rigid body simulation. The period of the oscillation is about 2.6 minutes.

The maximum difference in right ascension between rigid and flexible model is about 0.3

degrees. The maximum difference in declination is about 0.15 degrees. (There also are

higher frequency oscillations in the rigid body attitude due to nutation that are too low in

amplitude to show clearly on these plots.)

It should be noted that the flexible dynamics simulator neglects several perturbing

forces that could influence the spacecraft motion. It is expected that most of these distur-

bances are negligible for the case under consideration. For example, gravity-gradient

torques are not included. The spacecraft is near apogee during the maneuver, so the large

distance from the Earth (9 Earth radii) greatly reduces the influence of gravity-gradient

torque.

Internal dissipation within the wire booms could have a more significant effect on

the dynamics. In particular, internal dissipation tends to damp out oscillations in the

wires. Thus the current model would not yield physically correct results over long periods

of time, but should be accurate for times shorter than the decay time. This is observed to

be on the order of tens of minutes (see results below). An accurate, model of internal

dissipation could be difficult, due to the complex composite structure of the wire, and

would require a more detailed knowledge of the material parameters.

The driving torque was modeled as continuous and constant. In reality, thrusters are

used to supply the torque. They are fired in pulses, timed with the spin period, to perform

the maneuver. The periodic pulsing of the control torque is expected to excite higher

frequency vibrations of the wires that are not excited in the model.

Thermal effects are known to influence the dynamics on other spacecraft. However,

these tend to be small and brief disturbances. Furthermore, for the orbital geometry

during this reorientation maneuver, the POLAR spacecraft does not enter the Earth's

shadow so the wire temperature is not expected to vary significantly.

Some other effects one might consider are perturbations due to atmospheric drag

and fuel slosh. However, the spacecraft is at a sufficiently high altitude that torques from

atmospheric drag are negligible, and fuel slosh is not a factor because the maneuver is

performed sufficiently slowly compared to the spin rate.

COMPARISON OF SIMULATION WITH FLIGHT DATA

To estimate the true attitude of the POLAR spacecraft during the maneuver, the

spacecraft telemetry was processed using an Attitude Ground Support System (Ref. 7)

designed for spinning spacecraft. Attitude estimation was based upon Earth horizon sen-

sor and spinning Sun sensor readings. The Earth and Sun angle measurements later were

reprocessed using MATLAB where it was possible to insert sensor biases overlooked in

the initial processing. In particular, this reprocessing corrected timing errors and rejected

spurious solutions.
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Knowing the Sun and Earth reference vectors, the measured Earth midscan angle

yields the angle from the spin axis to the nadir vector with twofold ambiguity. (As the

spacecraft spins, the Earth is measured as a time offset from the Sun pulse. This is

converted into an angle using the spin period determined from the time between Sun

pulses.) The spin axis then is found at the intersection of the two cones defined by the

nadir and Sun angles (another twofold ambiguity). Knowing the path of the planned

maneuver made it simple to select the correct solution. (The initial spin direction is

unambiguously estimated from a large batch of data obtained before the slew.) Reference

8 gives details on methods for spacecraft attitude determination.

Figure 6 shows the estimated spin axis right ascension and declination angles for

POLAR during the interval 03:16:46 GMT to 03:40:06 GMT, on April 16, 1996. The

spin reorientation maneuver begins at time 03:20:06 GMT. The results of the flexible

dynamics simulation from Figure 5 are also overlaid on Figure 6.
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Figure 6. Observed and simulated spin axis attitude for the first 1200 seconds of spin reorientation
maneuver (observations are from POLAR spacecraft maneuver on April 16, 1996).

As the maneuver progresses, the Earth horizon sensor scans across the Earth along

various chords. The scan cone moves off the Earth at 03:42:58 GMT (time = 1372 sec,

off scale on Figure 6). After that time, only Sun data is available and there is insufficient

information to compute an attitude until the Earth again comes into view near the end of

the maneuver. The estimated attitude also is less reliable due to larger Earth sensor un-

certainty during the minutes immediately before the Earth horizon signal is lost. Thus,
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although this 90 deg segment of the maneuver takes 3.5 hrs, the attitude is observable

only for the first 23 min while both the Sun and Earth are detectable, and the final 3 min
are discarded.

As seen in Figure 6, the flexible body model exhibits oscillations that are qualitativ-

ely similar to the oscillations in the observed flight data. These slow oscillations are not

present in the rigid body model in Figure 5. The flexible model oscillations match up

exactly with the envelope of the boom tip displacements shown in Figure 2 and probably

correspond to a beat frequency between two out-of-plane modes.

The quantitative features of the slow oscillations depend primarily on the material

parameters of the wire booms, in particular the mass density and the bending stiffnesses.

The periods are approximately 2.6 rain for the flexible simulation and 2.2 min for the

observed attitude. This 15% difference might be attributed to uncertainties in the material

parameters available to us.

There also is fairly good agreement between the simulated and observed amplitudes,

however the observed oscillation decays with time while the amplitude of the simulation

does not. This reflects the absence of dissipative terms in the dynamics model. As ex-

pected, there also are higher frequency oscillations (dominated by a mode with a 30 sec

period) that are not found in the simulation results. The simulation would likely have

shown a much richer spectrum if the model had included more realistic pulsed thrusters

rather than a continuous control torque.

CONCLUSIONS

In this study we have examined the attitude of the POLAR spacecraft during a

reorientation maneuver of the spin axis. The attitude computed using flight telemetry was

compared with simulated data obtained by modeling the spacecraft as a rigid hub with

four flexible wire booms. A comparison with a totally rigid body model also was given.

The flexible model simulation captures the most important qualitative features of the

flight data and is in reasonable quantitative agreement, as well.

The Cartwheel simulator employs an implicit midpoint time-stepping scheme to

perform the numerical time integration and to preserve the dynamics constraints to a high

accuracy. If high numerical accuracy is not maintained, the simulation will diverge after

only a few minutes of simulated dynamics. The price for high accuracy is relatively slow

computational speed. For example, with each boom represented as a single rigid rod,

twenty minutes of simulated data required about ten minutes of CPU time on a DEC

Alpha workstation. When each boom was subdivided into five-meter segments, yielding

46 segments in all, then twenty minutes of simulated data required about ten hours of
CPU time.

A number of features could be added to Cartwheel to improve its accuracy. The

most important additional feature would be a more complete actuator model, particularly

pulsed thrusters. Following this, one could improve the modeled material properties of

the wire booms, including dissipation and more accurate mass and stiffness parameter
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values.Environmentalperturbationscouldcontributesmallcorrections,andsophisticated
control laws wouldallow testingawider varietyof scenarios.Theseimprovementscould
be implementedwithout making major changesto the underlying flexible dynamics
model. With theseadditions,Cartwheelwould be usefulas ananalysistool to studythe
nonlineardynamicsof extendedsystemssuchas long-boomspinnersor tetheredsatel-
lites. Its strengthwould be most apparentfor applicationsto systemsundercontingency
conditions wherethe deformationsare too extremeto be describedusing linearizedor
modaldynamics.
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