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INTRODUCTION

Consider a vehicle of initial mass rn0 moving at velocity v0 through a medium which is

initially at rest. One dimensional motion will be assumed. The vehicle initially has stored

energy E_. At a later time, the stored energy has all been used, and the vehicle has mass rn v and

velocity vp. The vehicle has interacted with a total mass ms of the medium. The vehicle exhaust
of mass

m r = R1o -mp

has been expelled into the medium.

following equations.

movo = mpVp-(ma + mr)(vr)av

Conservation of momentum and energy lead to the

Es + 2 m0v0 = _-mpVp v

(Vr)=, is the average velocity of the medium with which the vehicle interacts together with the

expelled exhaust products, taken to be in the opposite direction from v 0 and vp. The total mass of

medium with which the vehicle interacts is m_. The two equations can be combined to give the

following equation for the variance of the air velocity distribution.

v 2 -mp(mo +m_)v2p +2mpmoVpVo +mo(mp +ma)v2o +2E,(mr +ms)
cr2 =(v:)a .-( r),, = (m r +m,) 2

The equation above can be rearranged as an equation for the velocity increase.

Vp -- V 0 =

I (mo + m,) 2 m-maY°+ m°v_+ mp [( '+m')Es-m°(mp-ma)v_-°2(mr+m')2]

mo +m a

The vehicle velocity increase is greatest for the smallest variance in the velocity imparted

to the medium. In this case, we have

Vp -- V 0 = !1

u _t+laa

where

Ill 0 In a
= _ and _, = --

tllp lllp
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Even if we assume o2=0, the momentum transfer is not well defined until a model is specified for

the mass of the interacting medium. It is instructive to consider a limiting case before

proceeding to a more realistic model. In the limit m_ _ oo we have the following.

Vp --U VO = _+| VOu

This limit is appropriate if a vehicle pushes against an entire planet. It would apply to an

automobile, for example (assuming the automobile carries its own oxygen and the exhaust is left

at rest with respect to the road). For v0=0, the fight-hand side approaches unity, which means

that all of the initial stored energy becomes payload kinetic energy.

The model above is not realistic because of the assumption a=0. In order to control o,

one would need a means of storing some of the energy when fuel is burned in order to use it at a

later time. More realistically, the energy must be used at the time the fuel is burned. Despite

this, the calculation correctly shows that a performance benefit can be realized when a rocket

pushes against the medium through which it travels.

OPTIMAL PROPULSION IN A MEDIUM

I now construct a more realistic model in which the energy from the fuel is used

immediately to accelerate air and propellant. This implies that

dE = 7dm

where 7 is the specific energy of the fuel. Also, the interacting air mass in any time interval is

proportional to the volume swept out by the vehicle in the same interval.

dm = pAvdt

Conservation of momentum and energy in any time interval can be written as follows.

mv = (m + drn)(v + dr)-(din a - din)v,

E + ½my = = E + dE + ½(m + dm)(v + dr) _ + _(dm, -dm)v 2,

The quantifies dm and dE, the changes in mass and stored energy of the vehicle in a time

interval, are both negative. The density of the medium is p and the cross-sectional area of the

medium swept up for propulsion is A. The acceleration can be used to eliminate the time

increment.

dv
dt=_

_t
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Thereactionspeedv_canbeeliminatedto givethe following differentialequationfor the
velocitychangeasafunctionof themasschange.

dv= -2ydm

• 'pAy"') /pAv/2 ("pAv'b_ v2_2_,m+_ +k 2a; (2y+v2)2-<-_-aJ[2'+ )

The equation has been integrated numerically for constant A. p, and a to give the curves of

Figure 1.
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Performance of rocket augmented by pushing on bypassing air.

The four

curves of Figure 1

apply to

atmospheric

densities typical of

altitudes of 20, 40,

60, and 80 km, for a

cross-sectional area,

payload mass, and

specific energy

typical of the space
shuttle with the

external tank

attached. At the

higher densities, the

performance graphs

are near unity. Even

at an air density

representative of 60

km, the optimal air

pusher has a large

performance advantage over a conventional rocket for vehicles with a high initial to payload

mass ratio. When the vehicle is used at 80 km, however, the advantage of air pushing is very
little.

OPTIMAL MEDIUM INTAKE

We have seen that the physical performance limits are higher for a vehicle which pushes

on its medium than for a completely closed system, particularly at low initial to final mass ratios.

The analysis so far has not included drag. It will now be shown that when drag is included, there

is a well-defmed intake size for optimum performance.

With drag, the momentum and energy equations are as follows.
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m v = (m + dm)(v + dr)- (pA a vdt- drn)v r + PAdV 2dt

E+Tmv" '= E+dE+_(m+dm)(v+dv) 2 +T(pAav-dt-drn)v2'" +PAdvBdt

The drag area Ad is usually related to the frontal area A with the drag coefficient. The

effective intake area is A,. The elimination of vr can be done as before, which leaves the

following relation among dm, dv, and dt.

Instead of eliminating dt at this point, I will consider flight at constant v. This enables the

analysis of the optimum intake size at various speeds and air densities. The full treatment of

accelerated motion should be in qualitative agreement, except that very large intakes will be

discouraged by the mass penalW.

The rate of fuel consumption as a function of velocity for v<u is approximately

dm -PAdV3(2A_ +Ad)

dt 2yA a

Note that the area factors are separate from the density and velocity, so that within this model the

intake size scales independently of the velocity and the density. The fuel consumption rate can

be written

dill = - pv3F

dt 2),

where the geometric factor F is given by

F= Ad(2Aa +Ad)

Aa

At first glance it would appear that A, should be made as large as possible, but this is not correct,

since A., is not independent of A a. A simple model for the areas includes an irreducible area A)
associated with the payload. In addition, there is an intake which can be modeled as a thin

annulus of radius r and width w. Then the geometric factor in the fuel consumption is

F = (Ap + 2m'wX2rtr2 + A p + 2re'w)

lit2

As an example, suppose A_=50 m z and w=l m. Figure 2 shows the geometric factor F for this

example. The optimal radius is 6.1 m. The intake area in this case is about 2.3 times the

effective frontal area of the payload. When the mass is taken into account for an accelerating
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vehicle, the optimal intake area will be somewhat smaller. Note that the minimum is such that

the performance suffers only slightly if the radius is decreased to about 3m, but then the

performance degrades severely for smaller intakes. For the smaller intake, the intake area is

about 60 % of the effective area

for drag.
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Figure 2. Geometric factor in fuel consumption for

augmented rocket propulsion at constant velocity. The

effective area for drag is taken to be 50 m. The intake is

modeled as an annulus of thickness I m.

CONCLUSIONS

Rocket propulsion is not

ideal when the propellant is not

ejected at a unique velocity in an

inertial frame. An ideal velocity

distribution requires that the

exhaust velocity vary linearly with

the velocity of the vehicle in an

inertial frame. It also requires that

the velocity distribution variance

as a thermodynamic quantity be

minimized.

A rocket vehicle with an

inert propellant is not optimal,

because it does not take advantage

of the propellant mass for energy

storage. Nor is it logical to

provide another energy storage
device in order to realize variable

exhaust velocity, because it would

have to be partly unfilled at the

beginning of the mission.

Performance is enhanced by pushing on the surrounding because it increases the reaction

mass and decreases the reaction jet velocity. This decreases the fraction of the energy taken

away by the propellant and increases the share taken by the payload. For an optimal model with

the propellant used as fuel, the augmentation realized by pushing on air is greatest for vehicles

with a low initial/final mass ratio. For a typical vehicle in the Earth's atmosphere, the

augmentation is seen mainly at altitudes below about 80 km. When drag is taken into account,

there is a well-defined optimum size for the air intake.

Pushing on air has the potential to increase the performance of rockets which pass

through the atmosphere. This is apart from benefits derived from "air breathing", or using the

oxygen in the atmosphere to reduce the mass of on-board oxidizer. Because of the potential of

these measures, it is vital to model these effects more carefully and explore technology that may

realize their advantages.
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