





# ATM Service Categories for Data Unspecified Bit Rate (UBR): User sends whenever it wants. No guarantees made by network Guaranteed Frame Rate (GFR): User sends whenever it wants. Network guarantees a minimum frame rate, and fair usage of excess capacity. Needs frame delineation info Available Bit Rate (ABR): User follows network feedback. Network guarantees a minimum cell rate, and fair usage of excess capacity. Network guarantees cell loss ratio Non-Real Time Variable Bit Rate (nrt-VBR): User declares peak and average rates. Network guarantees cell loss ratio Designed for best effort and non-real time traffic

# ATM Service Categories (contd.) Real Time Variable Bit Rate (VBR): User declares peak and average rates. Network guarantees cell delay, cell delay variation and cell loss ratio Constant Bit Rate (CBR): User declares peak rate. Network guarantees cell delay, cell delay variation and cell loss ratio Designed for real time traffic

Rohit Goyal. The Ohio State University







### **Unspecified Bit Rate (UBR)**

- Queuing: Single UBR queue
- Buffer Management
  - Tail Drop: Low efficiency, low fairness
  - Early Packet Discard: Low fairness
  - Per-VC accounting: High efficiency, high fairness
- End-system Policies
  - Vanilla TCP: Poor performance
  - Fast Retrans. & Recov.: Bad for long latency
  - Selective Ack: Good performance for long latency
- No control over sources ⇒ Potentially Large queues in network

Rohit Goyal. The Ohio State University

## UBR with Guaranteed Rate (GR)

- Queuing:
  - Single queue with guaranteed minimum service rate
- Buffer management: Same as UBR
- End system policies: Same as UBR
- Improved performance of TCP due to guaranteed rate
- Cannot isolate traffic from different organizations
  - Will not work for backbone networks
  - May be OK for access networks

Rohit Goyal. The Ohio State University

NASA Workshop'98

# **Guaranteed Frame Rate (GFR)**

- Minimum rate guarantee for frames
- Complete frames are accepted or discarded in the switch
- Traffic policing is frame based
- Traffic conforming to MCR is served with low cell loss
- Traffic above MCR is served as best effort
- CLP=0 frames given higher priority than CLP=1 frames
- Network can optionally tag frames exceeding MCR (GFR.2)
- Good for backbone as well as access networks

Rohit Goyal. The Ohio State University

NASA Workshop'98

| Queuing                          | Per-VC               | FIFO                |
|----------------------------------|----------------------|---------------------|
| Buffer Management                | Per-VC<br>Thresholds | Global<br>Threshold |
| <b>Fag-sensitive Buffer Mgmt</b> | 2 Thresholds         | 1 Threshold         |

- Difficult to provide per-VC MCR with FIFO for TCP/IP traffic with high MCR allocation
- Easy to provide per-VC MCR with per-VC queuing

Rohit Goyal. The Ohio State University

### Available Bit Rate (ABR)

- Queuing: Single ABR queue or per-VC queues
- Feedback Control:
  - Bit Based: Slow control, bad for long latency networks
  - Explicit Rate: Fast control, bounded buffer requirements
  - *Virtual Source/Virtual Destination*: Allows hop-by-hop control & isolates terrestrial switches from effects of satellite latency
- Buffer Management:
  - Less important with a good explicit rate scheme like ERICA+
  - Bounded buffer requirements (Constant × round trip delay × bandwidth) for zero loss for TCP/IP over ABR
  - UBR-like buffer requirements at the edges of the ABR network

Rohit Goyal. The Ohio State University

| UBR                         | GFR                        | ABR           |
|-----------------------------|----------------------------|---------------|
| No guarantee.               | Minimum rate + fair excess |               |
| Unfair                      | Fair                       |               |
| Queue in                    | network                    | Queue at      |
|                             |                            | network edges |
| Simple for user             |                            | Good for      |
|                             |                            | provider      |
| Same end-to-end or backbone |                            | Good if end-  |
|                             |                            | to-end ATM    |

### Summary

- Design issues for TCP over ATM
  - End system policies: Vanilla TCP, Fast Retr. Recov., SACK
  - Feedback control: Explicit rate, binary, end-to-end, VS/VD
  - Buffer management: tail drop, EPD, per-VC acc., tag sensitive
  - Queuing: Per-Class, per-VC
- UBR: No guarantees, poor performance
- UBR w/ per-VC accounting: Good efficiency+fairness
- GR: Cannot isolate different VCs
- GFR: Per-VC minimum rate guarantees
- ABR: Congestion shifted to edge of network
- VS/VD: Isolate terrestrial segments from satellite

Rohit Goyal. The Ohio State University

