
Z

Z _

p

q_

NASA TN D-338

TECHNICAL NOTE

D-338

EFFECTS OF SWEEP ANGLE ON THE BOUNDARY-LAYER STABILITY

CHARACTERISTICS OF AN UNTAPERED _'ING AT LOW SPEEDS

By Frederick W. Boltz, George C. Kenyon,

and Clyde Q. Allen

Ames Research Center

Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON October 1960



_L

ml

4" ----



IG

NATIONALAERONAUTICS AND SPACE AD_NISTRATION

TECHNICAL NOTE D-338

EFFECTS OF SWEEP ANGLE ON THE BOUNDARY-LAYeR STABILITY

CHARACTERISTICS OF AN UNTAPERED WING AT LOW SPEEDS

By Frederick W. Boltz_ George C. Kenyonj

and Clyde Q. Allen

S_MARY

An investigation was conducted in the Ames 12-Foot Low-Turbulence

Pressure Tunnel to determine the effects of sweep on the boundary-layer

stability characteristics of an untapered variable-sweep wing having an

NACA 642A015 section normal to the leading edge. Pressure distribution

and transition were measured on the wing at low speeds at sweep angles

of 0°; i0°; 20°_ 30°; 40°a and 50 ° and at angles of attack from -3 ° to
3°. The investigation also included flow-visualization studies on the

surface at sweep angles from 0 ° to 50 ° and total pressure surveys in

the boundary layer at a sweep angle of 30 ° for angles of attack from
-12 ° to 0 °.

It was found that sweep caused premature transition on the wing

under certain conditions. This effect resulted from the formation of

vortices in the boundary layer when a critical combination of sweep

angle_ pressure gradient; and stream Reynolds number was attained. A

useful parameter in indicating the combined effect of these flow vari-

ables on vortex formation and on beginning transition is the crossflow

Reynolds number. The critical values of crossflow Reynolds number for

vortex formation found in this investigation range from about 135 to

190 and are in good agrement with those reported in previous investiga-

tions. The values of crossflow Reynolds number for beginning transitions

were found to be between 190 and 260. For each condition (i.e. 3 develop-

ment of vortices and initiation of transition at a given location) the

lower values in the specified ranges were obtained with a light coating
of flow-visualization material on the surface.

A method is presented for the rapid computation of crossflow

Reynolds number on any swept surface for which the pressure distribution

is known. From calculations based on this method 3 it was found that the

maximum values of crossflow Reynolds number are attained under conditions

of a strong pressure gradient and at a sweep angle of about 50 ° . Due

to the primary dependence on pressure gradient_ effects of sweep in

causing premature transition are generally first encountered on the lower

surfaces of wings operating at positive angles of attack.
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INTRODUCTION

In general_ there are three distinct types of laminar boundary-layer
instability which maybe encountered in real viscous flows. These have
been classified by several authors according to their predominent
characteristics. The following convention Will be adopted in this report.

(i) Dynamic (Taylor-G_rtler) instability.

(2) Viscous (Tollmien-Schlichting) instability.

(3) Inflectional instability.

Dynamic instability is the type in which energy is transferred from
the meanflow to the disturbance motion in the boundary layer through the
action of forces other than viscous; it is found in the flow over concave
surfaces where the velocity increases in the direction toward the center
of curvature. Viscous instability is the type in which energy is trans-
ferred from the meanflow to the disturbance motion in the boundary layer
through the action of viscosity; it is found in the flow over flat or
convex surfaces where the potential flow is nearly two-dimensional and the
stream turbulence level is low. Inflectional instability exists when the
boundary-layer velocity profile contains an inflection point. (Such veloc-
ity profiles are found in regions of positive pressure gradient on unswept
wings.) This type of instability is more powerful than the viscous type
and3 when present_ generally governs the behavior of the boundary layer.

Through experimental and theoretical work reported in references i
to 3_ it has been established that another manifestation of inflectional
instability is to be found in the boundary-layer flow on swept wings.
This instability arises from the secondary (spanwise) flow in the boundary
layer and is operative in regions of negative as well as positive pressure
gradients. The result of this type of instability is that discrete
vortices form in the boundary layer when critical flow conditions are
attained. It has been suggested in reference i that a significant param-
eter in indics%ing the onset of these critical conditions is the crossflow
Reynolds number.

Although the results of references i to 3 provide considerable
evidence that the instability limiting the length of laminar boundary-
layer flow on a swept wing is of the inflectional type_ the extent of
available knowledge concerning the conditions required for this instability
to develop is rather limited. Furthermore_ there is at present no
definitive information as to the effect of wing sweepon the location of
beginning transition. The purpose of the present report is to supply
such information as well as to provide further experimental data concerning
the effects of wing sweepon boundary-layer stability for a wide range of
sweepangles and angles of attack. The experimental data are analyzed
in conjunction with theoretical boundary-layer calculations in order to
determine whether or not there are critical values of crossf!ow Reynolds
n_mberfor vortex formation and for the beginning of transition.
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The following symbols are used throughout the report:

p-p_
pressure coefficient_

q_

boundary-layer velocity-profile parameter, 2_ - 2_ s + _4

(l_n) a
boundary-layer velocity-profile parameter,

free-stream Blaeh number

chord Reynolds number based on flow in streamvise direction

transition Reynolds number based on flow in streamwise

direction

WnmaxSX

crossflow Reynolds numberj v

component of potential-flow velocity normal to leading

edge of wing

component of free-stream velocity normal to leading edge

of wing

component of potential-flow velocity parallel to leading

edge of wing

component of free-stream velocity parallel to leading

edge of wing

resultant potential-flow velocity

free-stream velocity

speed of sound

wing chord in streamwise direction

section lift
section lift coefficient_

cq_

wing chord in direction normal to leading edge

function of CpA=0 and A

local static pressure

p_ free-stream static pressure
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_x
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_x

free-stream dynamic pressure

surface distance normal to leading edge from forward

stagnation point

boundary-layer velocity component normal to leading edge

of wing

boundary-layer velocity component parallel to leading edge

of wing

resultant boundary-layer velocity

boundary-layer velocity component normal to potential-flow
streamline

boundary-layer velocity component parallel to potential-flow
streamline

chord distance normal to leading edge of wing

chord distance in streamwise direction from leading edge

of wing

distance parallel to leading edge of wing

distance from surface of wing

angle of sweep of leading edge

angle of attack in streamwise plane

boundary-layer thickness for flow in •x direction

boundary-layer thickness for flow in y direction

z

dimensionless distance normal to surface_ _x

dimensionless distance normal to sumface at which wn is
a maximum value

z

dimensionless distance normal to surface_ 8y

8x a dU
Pohlhausen boundary-layer parameter,

v ds

kinematic viscosity

tan" l V
U
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A=O conditions which would exist if the componentof stream
flow normal to the leading edge of the wing were the
resultant stream flow

MODELANDINSTRUMENTATION
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The model used in this investigation was a constant-chord_ variable-
sweepwing with an NACA642A015section normal to the leading edge.
Coordinates of the airfoil section were obtained in reference 4_ and are
listed in table I. The wing_ which had a 4-foot chord, was of all steel
construction and was mounted in semispanmanneron the turntable in the
test section of the Ames12-Foot Pressure Tunnel_ as shownin figures i
and 2. In the unswept position_ the wing had a nominal aspect ratio of
2.5_ based on its actual dimensions_ and an effective aspect ratio of
5.0 considering it as a semispanmodel.

Sweepangles of 0°_ i0°_ 20°_ 30°_ 40°_ and _0° were attainable with
replacement of aluminum leading- and trailing-edge fairings at the root
of the wing. For sweepangles of 0°, i0°_ and 20° a half body of molded
Fiberglas and resin_ with radii corresponding to the airfoil ordinates_
was used to form the wing tip. For sweepangles of 30°_ 40°_ and 50°j
a tip extension was fastened to the wing. This extension also had a
molded Fiberglas half body at its tip which madean angle of 40° with
respect to the leading edge. The wing at 0° and 40° of sweepis shown
in figure 2 installed in the test section.

The surface of the wing was formed from 3/8-inch-thick steel plates
which were rolled to the approximate contourj welded to three channel
beamspars_ and machined to the airfoil shape. The final metal finish
was obtained by sanding with number400 sandpaper. The surface waviness
was found to be less than 0.000_ inch per inch as measuredwith a 2-1/2-
inch-span surface gage. In order to obtain a dark surface suitable for
flow-visualization studies_ the wing was aprayed with a primer and several
coats of flat black lacquer. White stripes were added at intervals of
approximately i0 percent of the chord to provide a frame of reference in
these tests. The surface was then hand rubbed to a smooth finish with
number 600 sandpaper.

The model was equipped with two rows of static-pressure orifices_
0.030 inch in diameter_ on both the upper and lower surfaces as indicated
in figure i and listed in table II. Pressure distributions were measured
on multiple-tube manometersand were recorded photographically. Transi-
tion detection was accomplished through the use of small microphones
located in the model and closely coupled to the static-pressure orifices
(see table II). These microphones were magnetic-type receivers used in



headsets (U. S. Signal Corps Headset HS-30-U). The output signal from
each microphone was amplified and passed through a band-pass filter to a
headset receiver and an oscilloscope, permitting the signal to be
interpreted both audibly and visually.

A small surface probe was used in observing the distribution of total
pressure in the boundary layer at several distances from the model surface.
The probe consisted of a battery of 30 hypodermic needles 3 0.016 inch
O.D. and 0.004-inch wall thickness, laid side by side and soldered
together.

TESTS

The tests of the wing at sweepangles of 0° to 90°, inclusive,
were conducted in the Ames12-Foot Pressure Tunnel. This is a low-
turbulence facility in which the level of true turbulence or turbulent
velocity fluctuations 2_J/U is believed to be less than about 0.02
percent for the entire ra_e of operation. However3 as is true in any
wind tunnel, there is a large increase in the noise level in the test
section with increasing Machnumber. A detailed study of the noise
level has been made3 and the results are to be found in reference 9.
From an analysis of these results, it has been determined that the lowest
noise level in the test section 3 for a given value of unit Reynolds
number (Reynolds numberper foot), is obtained by operating the tunnel at
maximumpressure. Thus, in order to reduce the disturbing effect of
noise 3 most of the transition measurementsof the present investigation
were madeat or near the maximumallowable stagnation pressure of the
tunnel, 60 pounds per square inch gage.

Both pressure-distribution and transition data on the wing were
obtained, for all sweepangles, at angles of attack from -3° to 3° •
In the case of 0° of sweep, transition measurementswere madealso at
an angle of attack of 4° • Pressure-distributions were measured in
all cases at atmospheric pressure and at a Machnumber of 0.27. Because
of several small leaks which developed in the internal tubing to the
orifices on the upper surface_ where the microphones were connected_
the pressure distributions presented in the report are those which were
measuredon the lower surface. These leaks did not have any significant
effect on the transition data obtained for sweepangles greater than !0 °.
The data for sweepangles of 2003 30° , 40° , and 50° were obtained by
increasing the tunnel speed until the onset of transition occurred at
successive detection (orifice) stations, beginning at the rear and moving
forward. At sweepangles of 0° and i0°_ however_ it was necessary to
isolate individual orifices from contamination 3 whenmaking transition
measurements3 by plugging the orifices ahead of the one being considered.
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Since there was found to be close agreement between the transition

data obtained at the inboard and outboard orifice stations 3 only those

data for the outboard station are presented in the report. The outboard

station was selected because the inboard row of orifices was close to the

tunnel wall at the higher sweep angles.

Flow-visualization studies were conducted on the upper surface of

the wing at atmospheric stagnation pressure along with total-pressure

surveys through the boundary layer. During these tests the model was

set at angles of attack from -12 ° to 4° . All sweep angles were included

in the visual-flow studies whereas only 30 ° of sweep was employed in the

total-pressure boundary-layer surveys. In order to visualize the paths

of the vortices and the regions of transition_ the model was sprayed with

a solution of about one part (by volume) biphenyl crystals dissolved in

eight parts of petroleum ether. This left a fine residue of biphenyl

crystals on the surface which slowly sublimed 3 differentiating regions

of high and low surface shear.

All of the wing data presented have been corrected for blockage

effects by the method of reference 6. There is believed to be a small

rotation of the flow in the test section resulting in a maximum helix

angle of the order of 0.25°_ but no correction for this has been applied

to the data.

RESULTS AND DISCUSSION

In general_ there are two rather different types of destabilizing

mechanisms operating in the boundary-layer flow on a swept wing. One

of these is the usual viscous instability which 3 in combination with

disturbances introduced into the boundary layer_ governs the extent of

laminar flow according to Tollmien-Schlichting two-dimensional theory or

a modification of this theory to account for three-dimensional effects.

The other is an inflectional instability which can produce greatly

increased amplification of disturbance waves in regions of positive

pressure gradient 3 or can result in the development of stationary waves

or fixed vortices in regions of negative pressure gradient. The primary

factors that determine which type of instability prevails3 in a given

case 3 are the intensity levels and frequency spectra of disturbances

present in the stream 3 the angle of sweepj the Reynolds number 3 and the

pressure distribution on the surface. The combined effects of the angle

of sweep 3 the Reynolds number 3 and the pressure distribution on boundary-

layer stability are the subject of the present report.

It has been shown for the case of viscous instability (see refs. 5

and 7) that the effects of Reynolds number and pressure distributions on

transition are intimately related to the intensity and frequency spectra

of disturbances present in the stream. In order to minimize the effects
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of these disturbances_ most of the boundary-layer transition data

presented in this report were obtained for test conditions which would

provide the least possible noise and turbulence in the test section of
the wind tunnel.

In the case of swept wings_ results presented in reference i indi-

cate that there is a critical value of crossflow Reynolds number above

which vortices develop. These vortices in turn generally cause reductions

in the length of "laminar" flow. _ Both types of instability are greatly

influenced by the local static-pressure gradient_ and the pressure

distribution which existed on the wing at various sweep angles will be

presented prior to the presentation and discussion of the boundary-layer
transition results.

Pressure-Distribution Characteristics

A
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2

2

The chord_ise distributions of static-pressure coefficient on the

upper surface of the _ing in a direction normal to the leading edge are

presented for t_o span_se stations in figures 3 and 4. Data are

presented for angles of attack from -3 ° to 3 ° at sweep angles of 0°3 i0°_

20°3 30°_ 40 °, and 50°. Since the wing was uncambered_ the pressure dis-

tributions for the lower surface of the wing at a given angle of attack

are found by simply changing the signs of the angles of attack indicated

in the figures.

The pressure distributions for the unswept _ng have been compared

in figure 5 with theoretical pressure distributions for the NACA 642A015

section. The theoretical curves were obtained by using an experimentally

obtained value of section lift-curve slope in conjunction with the basic

theoretical data for the NACA 64_015 section given in reference 4.
Comparisons of the _ept-wing pressure distributions at the outboard

station with those calculated according to simple-sweep theory are shown

in figure 6.

From an inspection of the data presented in figures 3 and 4_ it is

seen that small but significant differences existed in the pressure

distributions measured at the inboard and outboard stations of the wing,

particularly at the lower angles of sweep and at zero sweep. Thus_ the

boundary-layer flow over the wing only approximated infinite-span condi-

tions. Since the differences in the pressure distributions over the

forward portions were greatest in the case of the unswept wing and

occurred even at zero liftj it is believed that they resulted from the

combination of a small residual rotation of the flow entering the test

section and a three-dimensional finite-span effect.

•The word "laminar"_ as used here 3 includes the type of ordered

vortex motion resulting from the existence of chordwise vortices in the

boundary layer.
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From the data presented in figure 5, it appears that better agreement

was obtained between the experimental and theoretical pressure distribu-

tions at the inboard station of the unswept wing than at the outboard

station. However, this result is partly due to the use of the same value

of lift-curve slope, 0.092 per degree, in the theoretical calculations of

the pressure distributions for the two stations. As indicated in refer-

ence 8, the experimental value of lift-curve slope for two-dimensional

NACA 64-series airfoils having a thickness-chord ratio of 0.15 is very

close to the theoretical value for thin airfoils of 2_ per radian or

0.ii0 per degree. From an integration of the experimental pressure distri-

butions, it was found that the values of section lift-curve slope at the

inboard and outboard stations of the wing were approximately 0.092 and

0.073, respectively. The reduction in section lift-curve slope outboard

is a reflection of the variation in additional loading occurring along

the span of finite straight wings.

A_thongh good agreement between experiment and theory (based on

experimental values of lift-curve slope) was obtained for the pressure

distributions at the inboard station_ such was not the case at the out-

board station. In this case it was found that the use of a higher value

of lift-curve slope than that determined from the experimental data

provided better agreement between the experimental and calculated pressure

distributions insofar as the shapes of the curves were concerned. Since

the pressure or velocity gradients are primary factors in boundary-layer

calculations_ the value of 0.092 for section lift-curve slope has been

considered applicable to the wing as a whole for the purpose of calculating

crossflow Reynolds numbers.

According to simple-sweep theory_ the relationship between the static-

pressure coefficients based on the flow in the streamwise direction over

a swept wing and those based on the flow in the direction normal to the

leading edge (i.e._ unswept wing) is given by the expression

Cp = CPA=0Cos2A

In figure 6 the agreement of the swept-wing pressure distributions with

those derived by the application of simple-sweep theory to the unswept-

wing pressure-distribution data is shown to be generally very good. All

of the data used in these comparisons were obtained at the outboard

station of the wing. it should be noted that better agreement is obtained

for the higher angles of sweep (A _ 30 ° ) if the unswept data obtained at

the inboard station are used. The reason why this change in station

gives better correlation for these conditions appears to be that the

effective spanwise locations of the outboard station is reduced with

increasing angles of sweep.
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Transition Reynolds NumberCharacteristics

The transition Reynolds numberson the upper surface of the wing
at sweepangles from 0° to 50° are presented in figures 7_ 8_ and 9-
Transition data are shownfor an_les of attack from -3° to 4° • As
noted in the discussion of the pressure distributionsj the data correspond-
ing to the lower surface of the wing at a given angle of attack are
obtained by changing the signs of the angles of attack indicated in the
figures.

In figure 7 the variation of transition Reynolds numberwith angle
of attack is presented for the various sweepangles with transition
occurring at successive chordwise locations on the surface. The data
for the unswept wig_ in this figure indicate a consistent trend of increas-
ing transition Reynolds numberwith decreasing angle of attack for
transition locations from 0.2_le to 0.45c. This result is as would be
expected in consideration of the increasingly favorable pressure gradients
developing on the upper surface with reductions in the angle of attack.
In the case of finite angles of sweep_however, a different result is
obtained. Although a similar trend to that found for the unswept wing
exists at the higher (positive) angles of attack_ a lower limit is
attained below which a completely different trend is observed. The value
of this lower limit in smile of attack appears to be a function of sweep
angle and increases with increasing sweepangle. It is believed that this
latter trend is the result of vortex formation and that the angle of
attack where one trend changes over into the other defines the condition
Hhere vortices (of considerable strength) first appear in the boundary
layer. Thus_ the pesk of the curves shownin figure 7 divides conditions
for which the extent of laminar flow in the boundary layer on a swept
wing is governed by inflectional instability from conditions for which
it is governed by viscous instability.

The transition data of figure 7have been presented in a different
manner in figure 8 wherein the variation of transition Reynolds number
with sweepangle is shownfor several angles of attack. This figure
illustrates the powerful effect that sweephas in lowering the transition
Reynolds numbers on the upper surface at the lower (negative) angles of
attack. The slight reductions in transition Reynolds numberwith sweep
angle at the higher angles of attack are explained by the reductions in
the favorable pressure gradients with increasing sweepat a given angle of
attack.

A final form of the transition _ata for the upper surface of the wing
is presented in figure 9- The transition Reynolds numbersat various
angles of sweepare plotted as functions of the chord Reynolds numberon
logarithmic scales for several angles of attack. In this type of plot,
the lines of constant percent chord appear as a series of parallel lines
as indicated in the figure. In order to extend the range of chordwise
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stations covered at the higher sweep a_les, the basic data of figure 7

have been augmented with data obtained at a lower tunnel pressure. These

lower pressure data are not always in close agreement with corresponding

(i.e., equal Reynolds number) high-pressure data. In fact, in certain

instances transition data obtained at different tunnel pressures have

exhibited rather large (i0 to 20 percent) quantitative differences,

possibly due to different sound spectra present in the free stream.

However, the trends which appear in low-speed data obtained at different

pressures are nearly always similar.

In figure 9 the individual curves for the different sweep angles

show how the location of beginning transition on the wing and the value

of transition Reynolds number vary as the chord Reynolds number increases.

It is to be noted that, for a given value of chord Reynolds number, the

stream unit Reynolds number (or Reynolds number per foot) decreases with

increasing sweep angle. Thus, if the data were plotted in terms of unit

Reynolds number, an even greater spread between the various sweep angles

would appear. It is seen that, for most of the swept _ing data, the curves

indicate an abrupt forward movement of transition and a corresponding

reduction in transition Reynolds number as the chord or unit Reynolds

number is increased. In some cases the trend is seen to be more abrupt

than in others, with transition moving suddenly from behind 0.40c to ahead

of 0.20c. A certain amount of scatter is present in the data, due to

the fact that the detection stations were not alined in the stream_se

direction for finite angles of sweep. The lateral displacement of the

detection stations (in the direction normal to the free stream) increased

with sweep angle, thereby increasing the possibility of having three-

dimensional flow effects appear in the data. In all cases, however, it

is believed that the formation of vortices was responsible for the sharp

reductions in transition Reynolds number.

Experimental Evidence of Vortex Formation

The transition results of the preceding section strongly suggest

that there was a sudden development of vortices in the boundary layer on

the wing and it was considered advisable to attempt to obtain additional

evidence of their existence. This was done in two different ways: (i)

by means of flow-visualization tests, and (2) by means of total-pressure

surveys through the boundary layer. It was also hoped that these tests

would establish whether or not the vortex pattern remained fixed with

respect to the wing surface and if there existed a double set of vortices

in the boundary layer as was found theoretically in reference 3 for the

case of the rotating disk in inviscid flow.

Although flow-visualization studies on the wing were conducted at

various angles of attack for sweep angles from 0° to 50 ° , no evidence of

vortices was ever found at sweep angles of 0 ° and I0 °. However, ample
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evidence of their existence was obtained at sweepangles of 20° , 30° ,
4003 and 50°. The explanation of why vortex evidence was not found at

I0 ° of sweep is that all of these flow-visualization tests were conducted

at atmospheric stagnation pressure in the wind tunnelj and it was not

possible to obtain the necessary stream Reynolds number for vortex forma-

tion as indicated in the transition Reynolds number results. In general 3

it was found that the initial appearance of vorticesj with increasing

Reynolds number3 immediately preceded the fo_d movement of the point

of beginning transition.

A few representative photographs of the type of results obtained at
30 ° of sweep are presented in figure i0. From the evidence of vortex

activity shown here and observed in many close visual inspections of the

sprayed ving surface_ a few salient features may be noted. First, it

would appear that, at least with the coating of biphenyl crystals on the

wing surface 3 the vortex pattern remains fixed in position. Second, the

spacing of the vortex cores is not always uniform, although the average

distance between adjacent cores was found to be roughly proportional to

the boundary-layer thickness. Third, the vortices appear to originate

at vsmious distances from the stagnation line 3 depending on the angle of

attack_ angle of sweep_ and stream Reynolds numberp and to follow the

paths of the potential-flow streamlines. Fourth, the spread of turbulence

in the transition region appears to be consistently asymmetrical a certain

way_ suggesting that the direction of rotation is the same for all

vortices. This result is that which would be expected if a double set

of vortices existed as pictured in reference 3.

From observations made using the 30-tube total-pressure probe paral-

lel to the wing surface at x/c = 0.30 for a sweep angle of 30 ° , it was

found that a marked waviness im the total-pressure distribution existed

under certain flow conditons. It appears that this type of periodic

pressure pattern was probably due to the presence of vortices in the

boundary layer. In an attempt to determine whether or not a second set

of vortices farther from the surface existed in combination with the set

near the surface, traverses of the total-pressure rake through the bound-

arylayer were made at several different flow conditions. If a double

set of vortices did exist_ it was expected that there would be two distinct

periodic patterns in total pressure at different heights from the surface

and laterally displaced. However, in no case was this result obtained;

only a single vortex pattern was found and the spacing was consistent

with that in the sublimation photographs. The flow conditions at which

the waviness initially appeared in the total-pressure distributions have

been used in calculating the critical values of crossfiow Reynolds number

for the onset of vortex development.
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Critical Values of Crossflow Reynolds Number

In order to establish whether or not there are certain v_lues of

crossflow Reynolds number associated with the onset of vortex develop-

ment and beginning transition_ the results of the flow-visualization

studies and the experimental transition data of figure 9 have been analyzed

in conjunction with the theoretical boundary-layer calculations described

in the appendix. The results of the analysis are summarized in figure ii

which shows the variation with angle of attack of the critical bands of

crossflow Reynolds number for several angles of sweep and at various

chordwise locations on the wing. The critical values of crossflow Reynolds

number for the onset of vortex development and for beginning transition

are seen to remain essentially constant for angles of attack below about

-0.5 ° • The explanation for the reduction in the critical values of

crossflow Reynolds number at higher angles of attack (_ > -0.5 °) is

that viscous instability probably causes transition to occur before

vortices are sufficiently strong to do so. It is to be noted that some-

what lower critical values of crossflow Reynolds number were obtained by

using the results of the flow-visualization studies than were obtained

by using the results of the total-pressure surveys (for an indication of

vortex initiation) and the microphone-detection meastLrements of beginning

transition. In the case of initial vortex development at a given location,

critical crossflow Reynolds numbers of about 135-160 compared to about

180-190 were obtained_ and_ in the case of beginning transition 3 critical

crossflow Reynolds numbers of 190-210 compared to about 210-260 were

obtained. Thus 3 it w_uld appear that the light coating of biphenyl

crystals on the wing during the flow-visualization tests may have caused

premature vortex development (i.e., at a lower Reynolds number) and pre-

mature beginning transition at a given location. It should be noted that

the critical values of crossflow Reynolds number obtained from the results

of the sublimation studies in the present test are in good agreement with

those values reported in other investigations using flow-visualization

techniques (e.g., see ref. i).

In order to arrive at a possible explanation for the difference in

the rates at which transition moves toward the leading edge with increasing

chord Reynolds number_ reference is made to the calculations of crossf!ow

Reynolds number given in the appendix. It is shown that 3 in addition to

attaining considerably greater values_ the crossflow Reynolds numbers for

negative section lift coefficients and angles of attack have a chordwise

variation different from those for positive section lift coefficients and

angles of attack. Moreover 3 this effect is magnified with increasing

sweep angle where larger differences in values exist. (It may be noted

that chordwise distributions of crossflow Reynolds number are similar in

their shape to distributions of pressure coefficient or potential-flow

velocity along the surface_ although the similarity does not extend to

the relative values attained for various angles of attack.)
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Assuming a constant critical value of crossflow Reynolds number

for the onset of instability and vortex development, it is apparent that_

for large angles of sweep and negative angles of attack_ vortices should

first appear near the end of the laminar run and progress forward

gradually with further increase in chord Reynolds number. At small

positive angles of attack (0° < _ < 1.5 °) it is to be expected that

vortices would progress for_ard rapidly with a small increase in Reynolds

number after their initial appearance. Thus_ in one case a gradual for-

yard movement of transition with increasing chord Reynolds number might

be expected compared to a more abrupt movement in the other case.

When suitable conditions for vortex formation are not present, as

was apparently the case for the wing at 0° sweep and on the upper surface

of the wing at i0 ° and 20 ° sweep for certain angles of attack, transition

results from viscous instability or inflectional instability associated

with an adverse gradient. The slight reductions in transition Reynolds

number under these conditions_ as the stream Reynolds number was increased

and the location of beginning transition moved forward on the wing_ are

believed to have been due to changes in the intensity and frequency

spectrum of tunnel sound (e.g._ see ref. 5). This trend of a reduction

in transition Reynolds number with increasing stream Reynolds number was

generally reversed as the location of transition moved further forward

into regions of more favorable pressure gradients.

Airfoil Section Characteristics at Maximum Transition Reynolds Number

A

2

2

2

As has been indicated in the foregoing discussion 3 the boundary layer

on a swept wing is governed by both viscous and inflectional instability.

It has been found that, in the general case_ one or the other of these

two types of instability is responsible for the breakdo%m of laminar

flow. In the special case where conditions are such that both types of

instability occur simultaneously on an airfoil and promote transition,

the greatest possible value of transition Reynolds number is attained

for the particular surface. The optimum condition then, from the stand-

point of maximum laminar boundary-layer flow_ is one where this particular

situation exists on both surfaces at the design lift coefficient.

The situation that prevailed on a portion of the finite-span_

of the present investigation is illustrated by the summary data presented

in figure 12. The transition Reynolds numbers indicated in this figure

were obtained by taking the maximum values from the separate curves for

the various angles of attack and angles of sweep in figure 9. It is to

be noted that 3 in all cases of finite sweep ang!e_ there is one angle

of attack where these maximum values of transition Reynolds number in turn

reach a maximum. This is the optimum condition described above.
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In order to provide a comparison of the pressure and velocity

gradients required for optimum boundary-!ayer stability characteristics

on the wing at various sweep angles_ the chordwise distributions of

pressure coefficient (in streamwise direction) and velocity (normal to

leading edge) at the angles of attack for the maximum values of

(Rtrans)ma x shown in figure 12 are presented in figure 13. The velocity

distributions were obtained from the corresponding pressure distributions

which were obtained from the experimental pressure distributions at the

outboard wing station by interpolation. Since no maximum value is

believed to exist at 0° sweep (except as might possibly result due to

stream turbulence effects in a wind tunnel)_ there is no single value of

pressure gradient which is optimum in this case. This is in accord with

the generally accepted rule that more negative pressure gradients result

in increased boundary-layer stability on unswept surfaces.

SUMMARY OF RESULTS

The boundary layer on a swept wing is governed by two types of

instability_ viscous instability and inflectional instability. Viscous

instability is the type that is associated with the development of

Tollmien-Schlichting waves (laminar oscillations) on unswept surfaces

under proper conditions of stream turbulence. Inflectional instability

is the type that exists when the boundary-layer velocity profile contains

an inflection point. This type of profile is found in the laminar

boundary layer on both swept and unswept surfaces in the presence of an

adverse (positive) pressure gradient and also in a direction normal to

the potential-flow streamlines on swept surfaces in the presence of either

a positive or negative pressure gradient. Inflectional instability may

lead to the formation of discrete vortices parallel to the potential-flow

streamlines in the case of swept wings. It has been suggested in previous

studies that a useful parameter which may be used as a criterion for the

onset of vortex formation is the crossfiow Reynolds number. This param-

eter is based on the local boundary-layer thickness and the maximnm

component of velocity in the transverse direction (normal to the potential-
flow streamlines).

From an investigation of the effects of sweep on the boundary-layer

stability and transition characteristics Of an untapered wing having

an NACA 642A015 section normal to the leading edge, the following results
are obtained.

i. There was found to be a deleterious effect of sweep in causing

premature transition to take place on either surface of the wing under

certain conditions. This effect generally resulted in an abrupt forward
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movement of the location of beginning transition with increasing stream

Reynolds n_uber, accompanied by a marked reduction in the transition

Reynolds number.

2. Flow-visualization and boundary-layer surveys have demonstrated

that vortices did exist on the wing and were the cause of the premature

transition behavior. It is believed that, in general, the initial develop-

ment of vortices, with increasing Reynolds number, immediately preceded

the forward movement of beginning transition.

3- It _as found that the stream Reynolds number at which vortices

first develop depends on the angle of swee_and the pressure distribution

on the surface. The results indicate that_ for a given two-dimensional

wing, the minimum stream Reynolds number at which vortices appear occurs

at a sweep angle close to 50 °. Since strong pressure gradients on swept

surfaces are more conducive to vortex development than are weak gradients,

the effects of sweep in causing premature transition forward of the

minimumpressure station are generally first encountered on the lower

surfaces of wings operating at positive angles of attack or lift coeffi-

cients. When conditions suitable for the formation of vortices are not

present, as is often the case on the upper surface of swept wings_ tran-

sition results from viscous instability or adverse-gradient-type

inflectional instability as in the case of unswept wings.

4. The crossflow Reynolds number was found to correlate the onset

of vortex development and subsequent beginning transition very well.

The critical values of this parameter obtained for vortex formation and

for beginning transition at sweep angles of 20 ° to 500 range from about

135 to 190 and from about 190 to 260, respectively. The lower values in

these ranges were obtained with a light coating of biphenyl crystals on

the surface of the wing (for flow-visualization purposes), suggesting that

this material may have induced premature vortex development and premature

beginning transition at a given location. The critical values of cross-

flow Reynolds number for vortex development are in good agreement with

those reported in previous investigations.

5- An approximate method is presented for computing the distribution

of crossflow Reynolds number on any two-dimensional swept surface for

which the pressure distribution is known. Using this distribution

together with "critical" crossflow Reynolds number values of 180 and 240

(for vortex development and beginning transition, respectively), it is

possible to obtain an estimate of the stream Reynolds number at which

vortices will develop and induce the beginning of transition.

A

2

2

2

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., July 19, 1960
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APPENDIX

APPROXIMATE CALCULATION OF CROSSFLOW REYNOLDS NUMBER

Determination of Boundary-Layer Profile Normal

to Potential-Flow Streamline

A

2

2

2

According to the usual definition, the crossflow Reynolds number

at any location on a swept surface is based on the maximum boundary-

layer velocity component normal to the potential-flow streamline and on

the boundary-layer thickness (as well, of course, as on the kinematic

viscosity of the fluid). The following determination of the boundary-

layer velocity profile normal to the potential-flow streamline is based

on the approximate two-dimensional boundary-layer theory of PohJ_hausen

(see ref. 9) and on the approximate swept-wing boundary-layer theory

given by Rott and Crabtree in reference 10.

If it is assumed, according to reference 10_ that the boundary-

layer velocity profile in the x direction (normal to the leading edge

of the wing) is independent of the spanwise flow (i.e., that it depends

only on the component of the flow normal to the leading edge of the

wing), then, according to Pohlhausen

where

= F( x)+
U

and

F(_ x) = 2_x-2_xS + _x4

_x 8

G( x)= 7 (l-4x)

5x e dU
b-

y ds

z

_x = 5x

5x = boundary-layer thickness based on

chordwise velocity profile

The functions F(q x) and G(_x) are shown in figure 14.
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If it is also assumed_according to reference i0_ that the boundary-
layer velocity profile in the y direction (parallel to the leading
edge of the wing) is constant and equal to the Blasius or flat-plate
profile_ then

_-=vF(_y)

: 2_ - 2_ + _ _ (A3)

where

z

= boundary-layer thickness based on spanwise
velocity profile

It follows that

5 x

From the flow diagram shown in figure 15(a) it is apparent that

the resultant potential-flow velocity is given by

A

2

2

2

and that

w --J_-_++v_ (AS)

= tan 8 (A6)
U

If w n is now defined as the b0undary-layer velocity component normal

to the potential streamline, it is readily seen from figure 15(b) that

where

w n = u sin 8 - v cos 8

= U[F(_x) + _G(_x)]

(A7)



A
2
2
2

Thlis

wn = UEF(_x ) + hG(_x )]sin 0 - VF _ cos 0

= U sin 8 [F(_x)+hG(_ x) - F (_ qx) ]

_ uv [F(_x) +_(_x) _F(_]
4U_7_

Introducing now the local static-pressure coefficient _A=0'

which can be assumed to depend only on the component of flow in the

direction_ so that in low-speed flow

CPA=0 = i - <_2

it is found that

UV U_JI-CpA=0 sin A

,,,,,.J,_-c.,_o..,.,,,.
l-Cp 'cos_

A=0

Thus, equation (AS) can be written as

WooJl- CPA=0sin 2A

Wn !J I'CPA=0C°S2A

= T q PA=o I

19

(A8)

X

(A9)

(_o)

(All)
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<C ,A) with ang!e of sveep A forThe variation of the function f PA=O

several values of presstLve coefficient C_ is shown in figure 16.
=A= 0

Determination of Maximum Value of wn

Although an expression has been developed in the previous section

for the component of velocity normal to the potential-flow streamline at

any distance from the surface in the boundary layer, we are only concerned

with the maximum value of velocity in this profile for the calculation

of crossflow Reynolds number. In order to find the value of _x (=_x ')

at which w n is a maximum, we first set the derivative of w n with

respect to _x equal to 0.

F(sx) + xa(nx)- = o
dn x

(._2)

When equations (A2) are used in conjunction with equation (AI2) and the

resulting expression rearranged to group terms in equal powers of _x'

together 3 the fol!o_ing equation is obtained

A
2

2

2

(m3)

with h and 5_5_ considered to be constants for any given case. It
is possible to f!nd roots of this cubic equation in terms of h and

5_. However_ it is more convenient to calculate h for different

values of _x' and 5x/_. If equation (_3) is solved for h, we _tain

x :
i 3 e 2 s

-gnx'

This function is plotted versus _x' with 6x/6y as a parameter in

figure 17. In order to determine the value of _x' for a given value

of h, it is first necessary to evaluate 5x/6y at the given surface
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location. The method used to obtain the values of 8--/5 in the present_y
calculations is based on the approximate theory of reference i0.

Calculation of R./R I/a

A
2
2
2

If the nrossflow Reynolds number is _ritten as

Wnmax 5x
R.-

v

and the stream Reynolds numbers based on flow in the stre_se and

chordwise direction_ respectively_ as

w_c
v

Uooc ±

R± - v = R cosaA

then, using equation (All) and the relationship

h- 5xa dU
w ds

= \cj _ d(_/cD

it is found that

R. = _ R cos A ±L\CJ d(s/cD
a(_x') + F(_x')

-, <,,,:o.-) (A_5)

where 9x' indicates the value of 9x for the condition of Wnmax.

As a final form of this expression we write
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'-= -[ R L\C._' d(s/c.,.)

F(_x') F 8<_ )] (%A A)+ - _x' f =0 _
(AI6)

where the functions F, G, and f are evaluated using equations (A2) and

(AIO), respectively, along with the values of 7x' and _x/_. The value

of (_x/c±)Rl I/e which is proportional to the boundary-layer thickness in

the x direction may be calculated by any one of several approximate

methods (e.g.; see ref. 9). The calculated chordwise distributions of

R./RI/e for the wing of the present investigation at several angles of

sweep and at several values of unswept section lift coefficient_ C_A=O_

are presented in figures i8 and 19. The v_riation of R. R I/2 with

CiA=O for several chordwise locations on the wing at a sweep angle of

30 ° is presented in figure 20. In order to determine the value of

CZA:O corresponding to a given angle of attack, the following relation-

ship between the angle of attack of a swept wing (measured in the stream-

wise plane) and the angle of attack for the corresponding unswept wing

(measured in a plane normal to the leading edge)

c_ = c_A=0cos A

may be used in conjunction with the value of section lift-curve slope

(0.092 for the wing of the present investigation) to obtain the expression

r

A

2

2

2

cZA:O cZc_
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TABLE I .- NACA 642A015 WiNG COORDINATES
(All dimensions given in percent length)

Station Ordinate

0

.50

.75

1.25

2•50

5.OO

7.5O
i0.00

i5.oo
20.00

25.oo
3o.oo

35.oo

0

i .193

i .436

i .8i5

2.5o8

3.477

4.2o2

4. 799

5. 732

6.423

6.926

7.270

7.463

Station

40.00 7

45.00 7

5o.oo 6

55.oo 6

6o.oo 5

65.oo 5
7o.oo 4

75.00 3

8O.OO 3

85.00 2

9o.oo I

95.00
i00.00

Ordinate

•487

.3i3

.978

.5i7

.956

•3ii
.600

.847

•084

.32i

.558

•795

.032

L. E. radius 1.561 percent, 0.749 inch

T. E. radius 0.037 percent, 0.018 inch

A

2

2

2

TABLE STATIC-I_RESSURE ORIFICE LOCATIONS (45 AND 80 PERCENT SPAN)

[All dimensions given in percent length]

Upper and lower surface meridians

Station Station

1.4

4.1

7.0"

i0 .i*

15.9*
20.8*

23.9*

29.9*

34.8*

39.8*

44.8*

49.9*

54.9*

59.9*
65.0"

69.0"

75.0"
80.0"

85 .o*

89 .o*

94.8*

*Microphone at inboard and outboard

upper surface orifice station
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\

A

2

2

2

(a) A = 0°
A-25580

i

A-26901

(b)A = 40°

Figure 2.- The model mounted in the test section at 0° and 40° of sweep.

r
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i
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(a) A = o°

Figure 3.- The chord_ise distributions of static-pressure coefficient

on the upper surface of the wing at the inboard station.
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Figure 3-- Continued.
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1.0

Figure 3.- Continued.
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Figure 3.- Concluded.
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(a) A = 0°

Figure 4.- The chordwise distributions of static-pressure coefficient

on the upper surface of the wing at the outboard station.
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Figure 4.- Continued.
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Figure 4.- Continued.
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(a) Inboard station.

Figure 5.- Comparisons of the experimental and theoretical pressure
distributions on the upper surface of the wing at 0° of sweep.
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(a) A = i0 °

Figure 6.- Comparisons of the experimental pressure distributions on the

upper surface of the wing at the outboard station with those derived

using simple-sweep theory.
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(b) A = 20°

Figure 19.- The distribution of crossflow Reynolds number in the chord-

wise direction on the upper surface of the wing for several values of

section lift ccefficient at several angles of sweep.
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