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EFFECT OF CONTRACTION ON TURBULENCE AND TEMPERATURE

FLUCTUATIONS GENERATED BY A WARM GRID

By Robert R. Mills, Jr., and Stanley Corrsin

SUMMARY

Hot-wire anemometer measurements were made of several statistical

properties of approximately homogeneous and isotropic fields of turbu-

lence and temperature fluctuations generated by a warm grid in a uniform

airstream sent through a 4-to-1 contraction. These measurements were

made both in the contraction and in the axisymmetric domain farther

downstream.

In addition to confirming the well-known turbulence anisotropy

induced by strain, the data show effects on the skewnesses of both lon-

gitudinal velocity fluctuation (which has zero skewness in isotropic

turbulence) and its derivative.

Theconcomitant anisotropy in the temperature field accelerates the

decay of temperature fluctuations.

INTRODUCTION

Significant measurements of the effects of gross strain upon homo-

geneous turbulence have been made by Townsend (ref. i) and Uberoi

(refs. 2 and 3)- Townsend ran grid-produced turbulence through a nearly
constant-area distortion in which the channel section went from a 4-to-i

rectangle to a l-to-k rectangle. The mean velocity was nearly constant.

Uberoi ran grid-produced turbulence through a square channel contraction,

which was essentially an axially symmetric distortion. He tested with

contraction ratios of 4 to i, 9 to i, and 16 to i.

They both made measurements of the three components of turbulent

kinetic energy, the mean-square derivatives (giving the values of dissi-

pation scales), as well as of the pertinent turbulent energy spectra

before and after distortion.



Their principal results maybe qualitatively summarizedas follows:

(a) Distortion of roughly isotropic turbulence increases the veloc-
ities associated with the vorticity componentswhich amplify by vortex
line stretching. This phenomenonwas predicted and estimated by Prandtl
(ref. 4).

(b) The gross strain destroys isotropy not only of the energy-bearing

eddies but also of the turbulent fine structure. There was departure from
"local isotropy" in the distorting part of the channels.

(c) The longitudinal and lateral spectra are deformed somewhat as

predicted by the calculations of Ribner and Tucker (ref. 5) and Batchelor
and Proudman (ref. 6).

(d) Neither arrangement corresponded to a "rapid" distortion. There

was appreciable transfer of energy among turbulence components during the
straining process.

(e) In a straight channel following th_ distorting section, the

return to local isotropy is fairly rapid, b_t the return to general

isotropy is relatively slow.

Direct theoretical work on this problem began with Prandtl who used

models consisting of steady, inviscid-stre_m tubes and vortex tubes

(ref. 4). This work was followed by the cellular vortex analysis of
Taylor (ref. 7), which is the basis for the more recent work. Ribner

and Tucker (ref. 5) and Batchelor and Proudnan (ref. 6) independently

applied Taylor's model more realistically b_r simple Fourier synthesis.

This most recent theory assumes (!) instantaneous distortion, so there

is no decay or intercomponent transfer durizz:_ distortion, and (2) homo-

geneous distortion. Ribner and Tucker appended a semiempirical correc-

tion to include decay when the distortion i_ not instantaneous. Using

the same model, Acharya recently calculated some details of the case in

which the unstrained field is axisymmetric iref. 8).

The present investigation was undertak, m to confirm and extend the

To_rnsend-Uberoi findings on turbulence dyn_lics. In addition, a roughly
isotropic (scalar) field of small temperat_'e fluctuations was added to

the turbulence so that the effect of gross c[istortion upon homogeneous

turbulent mixing could be studied. Explicit predictions on the relative

structure of scalar and velocity fields haw_ been given chiefly in the

isotropic case (refs. 9 to ii), although so_le exploratory analysis has

also been directed at the axisymmetric case (refs. 12 and 13). Experi-

mental study of this homogeneous mixing pro1,1em has been confined to the

nearly isotropic fields behind a warm grid (refs. 14 and 15).



It has long been knownthat in the absence of shear stresses aniso-
tropic turbulence will tend to becomeisotropic at sufficiently large
Reynolds numbers. For example, the turbulence generated by a regular
grid in a uniform stream reaches a fairly homogeneousbut somewhataxi-
symmetric state by perhaps 30 mesh lengths downstream (refs. 16 and 17).
This tends to becomeisotropic farther downstream. Townsendand Uberoi
found this tendency in their postdistortion fields. Remarkably, the
theoretical studies of homogeneousaxisymmetric turbulence (refs. 18 to
20 and 12) have still produced no prediction of the rate at which this
occurs. Therefore, it seemeddesirable to makesomedetailed measure-
ments at the downstreamend of the channel for comparison with the
immediate postcontraction turbulence.

This work was carried out at the Johns Hopkins University under the
sponsorship and with the financial support of the National Advisory
Committee for Aeronautics. The authors would like to thank Dr. L. S. G.
Kovasznay, Dr. R. Betchov, Dr. F. H. Clauser, Mr. L. T. Miller, and
Dr. D. W. Dunnof the Aeronautics Department of the Johns Hopkins
University for their helpful interest and Mr. S. Bhaduri for his care-
ful preparation of the figures.

SYMBOLS

a

c

E

el,e 2

f,g

K

k

L

hot-wire sensitivity

mean velocity ratio (hence streamwise distortion), U21_I

(when used as a variable, c(x) _ _(x)]_l)

one-dimensional energy spectrum (subscript indicates field

variable)

voltage fluctuations across two hot wires

principal two-point velocity correlations in isotropic
turbulence

two-point velocity triple-correlation coefficient of

u12u2/u12---u2 ,

wave number in x-direction

U,

integral scale of random field (subscript indicates field

f?variable), (Correlation function)dr
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M

m

n

m,n

P

Q

q

r

S,Su, Se

x,y_z

Xi,Xj,X k

_2

7

q

@

k

grid mesh size

two-point temperature double-correlation coefficient,

e- /el' e2'

two-point temperature triple-correlation coefficient,

e1282/_1282 '

indices

static pressure

two -point velocity double -correlation-coefficient functions

resultant fluctuation velocity, _u 2 + v2 + w 2

scalar distance between two obser-_ation points

skewness factors for

time

_u

_, u, and e, respectively

mean velocity components along x, y, and z axes

velocity fluctuation components along x, y, and z axes,

respectively

Cartesian coordinates

Cartesian coordinates, tensor _otation

angle between tunnel axis and lire joining deflection points

in section downstream of contrsction

angle measured around tunnel axis

thermal diffusivity

coordinate difference in y-direclion

mean temperature rise across grid

temperature fluctuation

dissipative scale of random field. (subscript indicates

field variable)



P

()

(),

Subscripts :

ax axi symmetric

f,g

i,j,k

iso

Z,m,n

o

u_v,9

1,2

±

kinematic viscosity

coordinate difference in x-directlon

fluid density

average value

root-mean-square value, _( )2

refer to f and g correlations, respectively

tensor notation referring to x-, y-, and z-directions,

respectively

value for isotropic (undistorted) field at equal time

indices
0

reference value

refer to u, v 3 and fl, respectively

upstream and downstream of contraction, respectively

parallel to tunnel axis

perpendicular to tunnel axis

EXPERIMENTAL ARRANG]_IENT

The basic wind tunnel was the open-return unit sketched in refer-

ence 9. The only addition was a secondary contraction with 4-to-i veloc-

ity ratio starting i_ inches downstream of the grid (fig. i). After the

contraction was an almost uniform channel, slightly divergent to maintain

constant static pressure (hence constant velocity) in spite of boundary-

layer growth. This channel permitted some study of the history of the

axisymmetric turbulence emerging from the contraction.



The measuredmean-velocity distribution of the tunnel is shownin
figure 2. The free-stream velocity fluctuation levels upstream of the

u' w'grid were _ 0.08 percent and v'-- - _ 0.i percent. An apprecia-
U U

ble part of this was pulsation resulting from the unbalance inevitable

in the low-quality centrifugal fan used to move the air. The relative

excess energy in lateral fluctuations is, of course, characteristic of
wind tunnels with contractions and is consistent with the behavior of

the contracted grid turbulence which is the primary subject of this

study.

The biplane, square-mesh, fluctuation-generating grid was of

i/4-inch-diameter, round metal rods (Calrod heating units) set 1 inch

on centers. It was heated with 60-cycle, 220-volt, 3-phase alternating

current, and had sufficient thermal inertia that no 120-cycle periodic

temperature fluctuations could be detected downstream.

A principal difficulty to be overcome was a "built-in" vertical

mean-temperature gradient characteristic of the wind-tunnel-plus-room

system. Individual current controls on the horizontal rods permitted

reducing this to a difference of 0.2 ° C over the height of the tunnel

working section. Figure 8 of reference 15 shows this, as well as a

typical horizontal distribution of mean temperature, which was uniform
to within _0.05 ° C. The mean-temperature rise through the grid @ was

5° C at a wind speed of 14 feet per second.

Both velocity and temperature fluctuations were reasonably homoge-

neous over the tunnel cross section at some distance behind the grid.

Typical traverses of root-mean-square temperature e' and velocity u'
fluctuations before and after contraction are given in figures 3(a) and

3(b). The two sets of points in figure 3(b) were run at different times.

The negligibility of the effect of all-density fluctuations upon

the turbulence dynamics was confirmed by t_e equality of turbulence

levels and velocity correlation functions _ith and without heating.

MEASURING EQUIPMent

Velocity and temperature fluctuations were both measured with a

hot-wire anemometer (ref. 21). The basic equipment is described in

reference 22. The auxiliary circuitry for squaring, cubing, etc. is

described in reference 15.

Because of the extremely small temperature fluctuations to be

detected, unusually high-resistance hot-wires (between 75 and 150 ohms)

were used. These were of 0.O0005-inch-diameter platinum (Wollaston)



about 0.i inch long. No length corrections have been applied to the
data, but the high wire resistance necessitated correction for current
fluctuations in this nominally constant current equipment.

EXPERIMENTAL PROCEDURES

The experimental procedures used here were largely the same as those

described in reference 15. The only additional variables were the lat-

eral velocity fluctuations v and w. These were detected in standard

fashion by the difference voltage of a (directionally sensitive) x-meter.

Power spectra of u, v, and e were determined with the aid of a

Hewlett-Packard 300-A wave analyzer. All double correlations as well

as the isotropic precontraction triple correlations were obtained as

in reference 15, but the postcontraction triple correlations of u

required a bit more elaborate procedure in regions where u3 _ O. The

extra effect can be schematically shown by assuming linearized and iden-

tical wire response, compensated for thermal lag, so that the two output

voltage fluctuations due to velocity are

qThon

eI = -au(x,y,z,t)

Je2 = -au(x+_,y+B,z,t)

(I)

6a3u2(x,y,z,t)u(x+_,y+B,z,t) = (e I - e2)3 - (e I + e2)3 + 2e2_ (2)

In true isotropic or axisymmetric turbulence, u-_ must be zero, so e23

is also zero within the approximation of linear wire response.

In practice, of course, equation (2) was not used directly but was

corrected for (a) unequal sensitivities of the two wires and (b) non-

linearity of wire response, as outlined in the appendix of reference 15.

An attempt was made to determine the triple correlations

02(x,y,z,t)_(x+_,y+_,z,t) and u(x,y,z,t)6(x,y,z,t)e(x+_,y+B,z,t), but

the combination of small thermal signals and complex triple-correlation
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computation procedure yielded excessive scatter in the data, especially

for the latter quantity.

EXPERIMENTAL RE_JLTS

Figure 4 demonstrates that the velocity and temperature fields are

both axisymmetric after the contraction. This shows double-correlation

values measured with two wires separated bj a fixed radius in the same

yz plane (_2 = 90o) • One wire was fixed on the tunnel axis, and the

other was rotated to a series of positions on a circle about the axis.

The value of r is the radius of this circle.

Figure 5(a) gives local turbulence levels along the tunnel axis.

It was found that w' _ v', so only v' data were taken extensively.

A more dramatic indication of the amplific_tion of lateral fluctuations

is given by numbers proportional to the root-mean-square fluctuations

themselves, as in figure 5(b).

For comparing the histories of strained and unstrained turbulence,

time rather than distance is obviously the appropriate reference. The

conversion curve from x/M to a dimensionless time tUl_M is given in

figure 6. Figure 7(a) shows the first such comparison, the square root

(
of the total turbulent energy \=q' _ + . The unstrained
results here, as in several other figures, are taken from reference 15.

These results are sometimes called isotrop[c. The data on root-mean-

square temperature fluctuation (fig. 7(b)) are contrasted with the

unstrained case in figure 7(c). Evidently the distortion hastens

decay.

A class of important statistical poin_ functions of turbulence is

the "skewness factor" of any variable. This is a dimensionless measure

of the third moment of the probability den3ity and is central in that it

may be a measure of nonlinear effects. In isotropic turbulence, the

velocity fluctuations themselves must have zero skewness because of the

required invariance to coordinate reflection; for example,

u5
Su= = 0

This condition is well met by grid-generated turbulence. However, isot-

ropy does not require that velocity-component derivatives in the direc-

tion of the components _u/Sx, 8v/_y, and _w/Sz have zero skewness.
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One of the quantitative challenges to any Isotroplc theory is the pre-

diction of the generally measured value of about -0.4 for quantities

such as

s-= _x

Figures 8(a) and 8(b) show the considerable effect of the contrac-

tion on these two skewness factors. Figure 8(c) summarizes the data on

a time scale.

The small d_screpancy between S in the unstrained field just
ahead of contraction and S at the same station without later contrac-

tion (ref. 15) is probably a chance inconsistency between sets of data

taken some weeks apart and at slightly different locations in the cross
section of the duct.

The return to isotropic values by both Su and S is evidently

more rapid than the return of v'/u'

A condition of isotropy in a scalar field like e does not require

that e have statistical symmetry. Nevertheless, it was found in the

unstrained case (ref. 15) that Se approaches zero rapidly. Figures 8(d)

and 8(e) show that although the strained e approaches zero skewness

later in space, it actually goes down faster in time.

The temperature-gradient fluctuation, being a vector, must be sta-

tistically symmetrical in an isotropic field, and an attempt was made to

measure the skewness of 8e/_x along the axis of the duct. Unfortu-

nately, differentiation with respect to time _x _ St/ decreased the

signal-to-noise ratio too much for reliable measurement.

The effect of contraction on the energy spectra of longitudinal and

lateral velocity fluctuations is at least qualitatively detectable in

figures 9(a) and 9(b). The abscissae of the postcontraction curves are

U2 k instead of k so that the simple geometrical distortion effect is

Ul
removcd. Relatively, then, it is clear that the strain has favored the
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small structure in u and the large structure In v. Thls is consistent
with previous work, both experimental and theoretical.

The temperature spectra, similarly compared (fig. 9(c)), showless
difference. This meansthat the contraction has acted primarily as a
geometrical distortion of the scalar field.

Double- and triple-correlation functions downstreamof the contrac-
tion at x/M = 45 and 73 (fig. lO) provide a fairly detailed picture of
the nature of the distorted fields and their subsequent development. The
precontraction correlations at x/M = 17 are given in figures 17(b),
19(b), 21(a), and 22(a) of reference 15.

The double correlations of u and 8 are each given for three dif-
ferent values of _2_ the angle between the tunnel axis and the line
Joining the detection points. The v-correlations were measuredat only
two angles. Comparisonof figures lO(a) and lO(b) show_a decided trend
toward isotropy in the straight duct following the contraction.

Typical two-point velocity triple-correLation functions in the post-
contraction turbulence (figs. lO(g) and 10(h)) also showa trend toward
isotropy. Inadequate signal-to-noise ratio Led to excessive scatter in
the attempts to measure the temperature triple correlations. Still, the
general character for three different directions after distortion at
x/M = 45 can be gleaned from figure 10(i). The corresponding precon-
traction data (nearly isotropic, at x/M = 17) are in figure 25 of
reference 15.

"Integral scales" are defined from velo._ity double-correlation
functions. At a given (nominal) value of x:

OOLI I(_2) - . QI 1(r'_) dr

L L - J dr
' 0

(3)

In figure ll(a) these are compared with the isotropic integral

scales,

Lf - _ f(r) dr

oo

Lg /0 g(r) d]'

(4)
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where, in isotropic turbulence,

QII(r'O°) = Q± (r'90°) = f(r) I

%

Ql(r,O°) = Qll(r,90°) = g(r)]

(7)

Therefore, in figure ll(a), LII(5°) and L±(90 °) have departed from

the Lf curve. There is not enough information in the figure to tell

even roughly when these integral scales will reach their isotropic rela-
tive values.

The same is true of the thermal integral scales (fig. ll(b)). In

this case, however, the rough spectral similarity maintained through the

contraction (fig. 9(c)) suggests that one look for a corresponding pro-

* tUl- L8(5°) _ 3
portional distortion of the values of Le: at 7q _= 27,

L8(90 o) Leiso
and _ 0.6. For simple instantaneous affine distortion these

Leiso

values would be 4 and 0.5, respectively.

Some of the dissipative scales have been obtained graphically from

double-correlation functions. They are the abscissa intercepts of the

vertex-osculating parabolas:

_I12(cu2) : - 218r2 Qll(r'(_2 r=O

l - 1 2X.L2(a,2) 2 i_r 2 . r=O

1

i _[_ m(r,_2)l2 J r=0

(6)

The values of hll and _ are compared with the undistorted dis-

sipative scales in figure 12(a). These isotropic values are taken from

reference 15:
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(7)

Here hL_5°) and hl(90 °) are departures from _f_ kil(90°) and k±(5 °)

are departures from hg. As with the integral scales, not all of these

quantities appear to return rapidly to their Isotroplc relative values.

However, the more extensive data on mean-square velocity derivatives

(also related to the values of _) taken by Townsend and Uberol do show

a strong return to isotropy. The evidence in figure 12(a) must be

regarded as simply inadequate to permit any independent conclusion.

tU1

The values of _ at _ = 27 (fig. 12(b)) are moderately con-

sistent with interpretation in terms of simple geometrical distortion

%(5 °)
through the contraction: _ 4.1

keiso

tU I tU I
interval from - 27 to - 34

M M

toward isotropy in the k8 values.

and ke(9°°) _ 0.7. In the

Xelso

ther_ is no appreciable return

Figure 13 is a rough estimate, from th_ data, of the relative decay

rates of temperature and velocity fluctuations. In the unstrained case

(dashed line, from ref. 15) this quantity appears to approach an asymptote

of 0.6.

TURBULENCE LEVELS

qhc behavior of v'/u' in a contraction is qualitatively given by

Prlndtl's theory of differential vortex stretching (ref. 4). For a quan-

titutive theoretical prediction one can turn to the Ribner-Tucker analy-

sis (ref. 5). Values obtained by this analysis, including a semiempirical

estimate of energy decay from isotropic data, compare with those in fig-

_re 5(b) as follows:
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Ratio

u 2 '/u I '

v 2 '/v I '

(V2'/U2' )

(Vl'/Ul' )

Ribner-Tucker
Measured

method

0.4 0.7

1.5 1.4

3.8 2.0

0nly the v' prediction appears to be satisfactory, but even this

conclusion must be tempered by the likelihood that there is appreciable

transfer of energy from v' and w' to u' during the straining proc-

ess. Such an effect could account for the particularly low u 2' esti-

mated by the Ribner-Tucker method. On the basis of total turbulent

energy, the agreement is good:

Ratio Ribner-Tucker Measured
method

q2'/ql' 1.2 1.2

It was concluded that the gross strain rate inflicted on the turbu-

lence field was far from rapid, a conclusion also reached by Townsend

and by Uberoi for their experiments. Both the energy decay and the inter-

component transfer were appreciable during the O.033-second-contraction

transit time. A characteristic decay time is _/u', which was about

0.025 second just entering the contraction. For a rapid strain, the
transit time would have to be much less than this.

There is still insufficient axisymmetric turbulence theory to define

a time characterizing its rate of approach to isotropy, for example, an

intercomponent-energy transfer time. If, however, this is an inertial

effect (acting through the pressure-velocity correlations), Lg/u' might

be a plausible choice. This was 0.044 second entering the contraction.

The foregoing paragraphs raise the question of whether it is feasi-

ble to produce rapid contraction of turbulence in the laboratory. For

example, the contraction nozzle used in the present tests probably could

not be shortened by more than a factor of 2 without inducing boundary-

layer separation immediately upstream or downstream. But even halving

the transit time would not make it negligible compared with hg/U' or

Lg/u'
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Foregoing the assumption of instantaneous distortion, the down-

stream development of the turbulence can be displayed by means of

Reynolds' turbulent-energy equatlons.

For the three component energies,

m

__%_
2 _xk

m

:-uu__- __(u3_ -_u-_+_u_
_xi 2 _xj\ / 8x

(8)

n

l_k ____2_u_.V_V-
2 _xk _x i

(9)

½_ _: _uU__
8x k _xi

+
2 8xj k / P w

(lO)

or, adding these,

1_k_q__2: _m
8x k -uium 8x i 2 j P 8x_

A first approximation, suitable for the present case, follows from

the assumption that turbulent mean values a_e nearly constant in the

yz plane, for example, that << . This also involves

8x

_x ' although there is no such inequality for V and W. Then

- _ - __
1 U _u2 _ -u 2 8_ 1 8u3 1 _8-_-_ 8x 2 8x p u + vuCu (12)

lucy2 " 8v_ 18uv 2 iv _+vv_2v (z3)-- __ _ _V 2

2 _x _y 2 8x P ()y

1 U _w2 _w 2 _W _ 1 8uw 2 1 w _z + vwZ_w (14)
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In this approximation, it is also assumed that uv, vw, and wu are

negligible. Adding to get the total turbulent kinetic energy and using

7axial symmetry (e.g., = w2) as well as mean-flow continuity,

2 _x P _x up + vujV2uj
(15)

A still rougher approximation follows from restricting to very small

turbulence levels, so that one can expect inequalities like

If p'

neglected:

is of the order pu 23 the static-pressure term can also be

! U au_3_ _u2 S_ + vu@_
2 8x _x

Since v2 = w 2, add equations (15) and (14) and eliminate
terms of U:

(16)

(17)

m m

V and W in

_x 2 _x
(18)

Comparison of the first terms on the right-hand sides of equations (17)

-and (18) shows clearly that values of --> 0 tend to decrease u 2 and

to increase v2 and w 2.

The q-_ equation simplifies to

m

2 _
(19)

Equations (17) and (18) cannot be used further without an estimate

of the viscous terms. First, it is convenient to transform

l@u-_ _u 8u- (2o)
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with corresponding forms for v, w, and uj. Even in turbulent shear

flows the first of these terms is usually negligible, and the second is

a good approximation to the dissipation. Then equations (17) and (18)
are

2 _x 2 _x

_v
(22)

An estimate, very rough indeed, could now be made by assuming simple
geometrical distortion to relate these viscous terms to those in unstrained

turbulence at equal times. It is already well established, however, that

the behavior of the velocity field under strain involves dynamics as well

as kinematics. It seems more reasonable, therefore, to save the technique

outlined for a more appropriate problem, t_at of the strained temperature
field.

TEMPERATURE FLUC_ATIONS

Without mean-temperature gradients, fluld strain has no effect on

the probability density of the 8-field. Hence it has no instantaneous

effect on moments such as e-_. The strain obviously changes the

temperature-gradient field, however, and hence the rate of decay of 8-'_.

In fact, it is just this kind of effe;t which enables turbulent

motion (through its random strain field) to promote rapid molecular-

scale mixing.

The crudest estimate of mean-strain-a.:celerated 8-_ decay (fig. 7(c))

can be made by assuming statistically homogeneous and uniform mean strain.

Then the decay equation is (ref. 10)

m

de_2 = -2_ 8e 80

dt _xi _:i

Suppose the field is instantaneously strained by a factor

the x-direction and 1/_ in the y- and z-dlrections.

(23)

With an isotropic
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(be)o_field before distortion, _x

postdistortion derivatives are

= = , and the immediate
t,_)o TZo

Xazl \_)o

(24)

The decay rate immediately after distortion is then

a-_ : \_X/o + 2 (27)

Assuming the unstrained history 0i2(t) is knob-n, the relative decay

rate is initially

(26)

Rather than attempt to apply this instantaneous-distortion analysis to

the experiments, it seems worthwhile to consider a more general approach.

A more reasonable estimate requires (a) using the general 82 equa-

tion without assuming homogeneity (ref. 23), and (b) including c = c(x)

where c(x) = U(x)/U I. With constant mean temperature,

m

1 Ui b82 1 b {u_-_ek 78_--_ (27)_ : 2 _xktuk I +

With x the direction of largest gradients 3

1u _e-_ 1_ (u-_)_e_---_ (28)
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and for very small turbulence level, the triple correlation term is

neglected. Making use of a transformation like equation (20) and

neglecting the second derivative term,

m

U be__2_-2_ be be
bx 8xi _xl

(29)

Finallyj ignoring the differences between the diffusion-induced growth

rate of _ in strained and unstrained flows,

= _j _ 2c ----_
Xe i

(30)

where c(x) = _(x)and _ei
UI

ease at the same time.

is the dissip_tive scale for the unstrained

With time t as the independent variaole,

tion (29) becomes

8 _ld

_ _, and equa-

m

deZ= -"7 e2 f.u + 2c)
dt Xeiakc2

(}l)

With given values of c(t) and _ei(t) this could be numerically inte-

grated, but the latter can be eliminated by seeking only the ratio of _

in the strained and isotropic cases.

In terms of time, equation (29) can be written for the isotropic

cas_ as

de7 -127 oil (52)
dt xei2



From equations (31) and (32),
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or

(33)

loge_ 1 _-4y ,#0t (c_+ 2c- 3)dtl

\el2/ ?_ei2

(34)

Numerical integration of equation (54) from x/M = 15 (where it

starts to deviate from the unstrained curve) to x/M = 35 gives as theo-

retical estimate for the difference

8i ' - 8'
0-15

e'

But the experimental value, from figure 8(e), is

ei' - e'
= 0.35

e'

which is more than twice as large. The weakest link in the analysis is

probably equation (30). Inclusion of the effect of increased q--2 (which

reduces dissipative scales by increasing turbulence Reynolds number) only
increases the theoretical estimate to 0.19.

SKEWNESS AND INHOMOGENEITY

For turbulence dynamics, the principal results are the effects of

contraction on the skewnesses of u and _ (_l_).U The generation

of Su during the straining process, when its value was negligible

upstream, is evidence that the strain is appreciably inhomogeneous. The

statistical symmetry of a homogeneous strain would preclude the produc-

tion of u3 unless it were present at the start.
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A good theoretical estimate of _(x) is madedifficult to obtain
by the lack of knowledge of pressure-field statistics. The equation for

u3 is derived by multiplying the u-equation by u2 and then averaging:

+ u2"--v _ + u2--'-w_ 1 + 1
3

÷

For a first approximation, it may be reasonable to assume

Then equation (35) reduces to

(36)

w

3 _x _x

1 _u4 i ()(u2) _
+

3_ 2 ,..3x
i u2 _ + vu2_u
P

(37)

Restriction to a low turbulence level does l_ot permit neglecting the _K

and (_) u3 U tests because u3 is initially

zero while On the oF;her hand, u 2 _ is zero in

isotropic turbulence. If it is assumed that p' = O(D_)# restriction

to a small turbulence level permits neglecting the pressure-velocity

terms relative to the

and u 2 are not.
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term. If, furthermore, u-_ is estimated roughly in terms of u-_ by

taking the Gaussian equality _ 3(u-_)2, equation (36) becomes

1U _ _ -u3 _ 1 8 + vu2_2u3 8x 2 8x
(38)

Some qualitative confirmation of this form can be obtained by using

it to predict the sign of u3 in the early stages of the straining proc-

ess. If u3 is identically zero at the origin of x and the effect of

viscous force is ignored, equation (58) predicts u3 > 0 for small values

of x. In the present experiments it turned out that u5 > 0 for all

values of x.

Doubtless some knowledge of the viscous term in equation (38),

u2_= 1 _2_ _u _u2

3 8xi_x i 8xj 8xj

_u _u2 (39)

8xj 8xj

would be required for an estimate of u3(x). On the other hand, there

u3
may be less effect of viscosity on the dimensionless ratio = Su-

(u')3

Furthermore, it is possible that u2 _p in equation (36) may still be
8x

negligible for low enough turbulence levels: with distortion it departs

from zero, but so does the term _ __UU
ex

By chain differentiation,

1 _u-Y 3 Su _u 2
(40)
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Substituting from equations (17) and (38), less viscous terms, this

become s

(41)

Furthermore, u' can be expressed in terms of U by integrating the

Invlscid form of equation (17)

u'(x) _ __ul ul, (42)
U(x)

so that

_Su_ _1ui, _ _u (43)

Therefore

!

s_(x)--3 ul-/'{1
U1 \

(44)

Entering the contraction,

tion (43) predicts that

about 0.075.

Ul--_'_ 0.025. i_t the end, U/U 1 = 4, so equa-

ul
Su _ 0.07 at the end; the measured value is

It is clear that this good agreement must be in part fortuitous.

For example, in the straight section foiL)wing the contraction equa-

tion (43) predicts a constant value of S_ _ 0.07. Yet, in fact, Su

returns rather rapidly to zero. It has long been known that the inter-

component energy transfer (accompanying a trend toward isotropy in homo-

geneous turbulence) depends upon pressure-velocity correlations which

were neglected in this analysis.
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CONCLUDING REMARKS

Measurements of the turbulence levels of grid-produced turbulence

passing through a 4-to-i contraction and a downstream straight duct agree

with the results of Uberoi. They confirm in general the conclusions of

both Townsend and Uberoi that reasonably smooth channel distortions can-

not be regarded as sudden in terms of ordinary grid turbulence structure.

In addition, the relatively strong effects of this contraction on

skewnesses of both the longitudinal velocity fluctuation and its deriva-

tive indicate that the contraction cannot even be regarded as homogeneous.

Establishment of this contraction as a rather slow and inhomogeneous

distortion of this turbulence reduces the incentive for carrying out a

detailed comparison of the correlation functions with predictions of a

Ribner-Tucker-Batchelor-Proudman type of analysis. Neverthelessj the

homogeneous_ instantaneous approach accompanied by correction for dissi-

pation does seem to give a satisfactory estimate for total turbulent-

energy change.

The effect of a contraction in increasing the root-mean-square veloc-

ity fluctuation components v' and w' relative to u' suggests that

nearly isotropic turbulence behind a grid (where v' and w' are less

than u') may be obtained by a suitably small amount of contraction prior

to the straight duct. (Uberoi reported in a private communication that

he has tried this and found a strong tendency for the turbulence in the

straight section to return to its axisymmetric state.)

The accelerated temperature-fluctuation decay due to strain is qual-

itatively understandable. The failure of the present (noninstantaneous)

simple geometrical theory certainly indicates the need for a more detailed

look at the problem.

Mechanical Engineering Department,

The Johns Hopkins University,

Baltimore, Md., March 23, 1958.
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