

TECHNICAL NOTE D-453

LANDING ENERGY DISSIPATION FOR MANNED REENTRY VEHICLES By Lloyd J. Fisher, Jr.

Langley Research Center
Langley Field, Va.

LANDING ENERGY DISSIPATION FOR MANNED REENIRY VEHICLES
By Lloyd J. Fisher, Jr.

SUMMARY

Analytical and experimental investigations have been made to determine the landing-energy-dissipation characteristics for several types of landing gear for manned reentry vehicles. The landing vehicles are considered in two categories: those having essentially vertical-descent paths, the parachute-supported vehicles, and those having essentially horizontal paths, the lifting vehicles. The energy-dissipation devices discussed are crushable materials such as foamed plastics and honeycomb for internal application in couch-support systems, yielding metal elements as part of the structure of capsules or as alternates for oleos in landing-gear struts, inflatable bags, braking rockets, and shaped surfaces for water impact.

It appears feasible to readily evaluate landing-gear systems for internal or external application in hard-surface or water landings by using computational procedures and free-body landing techniques with dynamic models. The systems investigated have shown very interesting energy-dissipation characteristics over a considerable range of landing parameters. Acceptable gear can be developed along lines similar to those presented if stroke requirements and human-tolerance limits are considered.

INIRODUCTION

The landing vehicles for manned reentry are considered in two categories: those having essentially vertical-descent paths, the parachute-supported vehicles, and those having essentially horizontal paths, the lifting vehicles. Because of the nature of the operation, numerous maintenance free landings are not required; consequently, one-shot landing gears having replaceable elements are particularly interesting. This paper presents some brief results from analytical and experimental investigations of energy dissipation with such landing gear in order to give a general idea of feasibility.

STATEMENT OF PROBLEM

The major variables of landing energy dissipation are velocity and stopping distance and the quantities to be determined as far as man is concerned are maximum acceleration, duration, and onset rate of acceleration. (See ref. l.) Possible acceleration time histories for reentry landings are shown in figure l. For orientation purposes typical accelerations are shown by the broken lines. Maximum acceleration and duration are apparent on a time history but onset rate is not so obvious. For purposes of this paper onset rate is considered as the ratio of plateau acceleration to time for reaching plateau. The plateau value is obtained by approximating the more complicated time histories with a simple trapezoid as shown by the solid line.

Acceleration and onset rate determine men's tolerance to impact and the physical relationship of these parameters shows what compromises can be made between the two for the stopping distances available. These relationships are shown in figure 2 where maximum acceleration in g units is plotted against stopping distance in inches. (See ref. 2.) The data shown are at an impact velocity of $30 \mathrm{ft} / \mathrm{sec}$, a value familiar for parachute-supported vehicles. The lower curve is for an infinite onset rate and the curves for onset rates of $9,000,1,500$, and $400 \mathrm{~g} / \mathrm{sec}$ are from trapezoidal acceleration time histories. The dashed curve represents a linear buildup to maximum acceleration at maximum time and with the curve for infinite onset rate forms a limit for the given conditions. A frequently quoted tolerance for man with load applied sternumward is shown by the point at $40 \mathrm{~g}, 1,500 \mathrm{~g} / \mathrm{sec}$, and about $8 \frac{1}{2}$ inches stopping distance. It should be realized that the stopping distances shown in this figure are the absolute minimum for the given conditions.

DISCUSSION

A short motion-picture film supplement illustrating the effects discussed in this paper has been prepared and is available on loan. A request card form and a description of the film will be found at the end of this paper, on the page immediately preceding the abstract and index imes.

Various energy-uissipation devices are bきing considered for manned reentry vehic. $\quad{ }_{i}$ an receiving most attention presently are yielding metal elements : u the structure of caosules or as alternates for cleos in landing :ar otruts, inflatable bags, crushable materials such as foamed plastice and hrneycombs, braring roskets, and shaped surfaces for water impact.

Couch Support

The crushable materials are receiving most attention for internal application in couch-support systems. It is difficult to scale such materials; therefore, full-scale testing appears best. Results from drop tests using a combination of semirigid plastic and aluminum honeycomb are given in figure 3. (See ref. 2.) The drop-test model consisted of 4 inches of each material with a metal plate separating the two. The static loading for the test weight was 1 psi . Aluminum honeycomb is an efficient material for impact load alleviation since up to 80 percent of its depth is usable and there is little rebound. However, the stiffness of the material results in high onset rates of acceleration. These may be controlled by reducing the initial area of contact, by precrushing, or by combining with foamed plastic as shown here. Plateau acceleration was about 30 g and the onset rate was about $2,500 \mathrm{~g} / \mathrm{sec}$ for this combination. The initial shape of the acceleration followed the simple one-degree-of-freedom spring constant for springs in series. One of the problems inherent in work of this nature is shown by the sharp peaks in the record indicating that the test weight "virtually" bottomed before the impact velocity had been completely dissipated.

Vertical-Landing Vehicles

It usually is feasible to absorb only part of the landing energy with coach or seat supports; therefore, some external absorption must be provided. The inflatable bag lends itself very well to energy absorption for the vertical-landing vehicle. Included in this category are the emergency escape pods and the reentry ballistic capsules. A number of bag shapes such as a cylinder, sphere, or torus might be used depending on design requirements. (See ref. 3.)

Torus-shaped bag.- A drawing of a model of a torus-shaped landing bag is shown in figure 4. This bag is divided into eight compartments, the partitions of which are shown by dashed lines in the plan view of the torus. The compartments are needed in cocked landings to permit pressure buildup under that part of the capsule impactics first. Each compartment has a blowout patch so that air can escape from the bag to regulate acceleration and prevent rebound. The patches are designed to blow out at scale pressure.

Sequence photographs of landings of the torus-bag model ase giver: in figure 5. Figure 5 (a) shows the model in a vertical flight path. The blowout patches (little white disks) can be secii just aiter blowout in the fourth picture of the sequence. Figure 5(b) shows the model in a 63° flight path. An additional air bag has been used in this
condition to ease turnover impact. Turnover results if horizontal velocity is too great but turnover is a secondary problem which can be solved by the same technique used for the main air bag.

Figure 6 gives full-scale accelerations for torus bag landings at several attitudes in a flight path that would result from a horizontal wind velocity of about 9 knots. The positive and negative attitudes and axes of the capsule are illustrated by the sketches with direction of flight path shown by the arrows. These data are for a vertical impact velocity of $30 \mathrm{ft} / \mathrm{sec}$, a flight-path angle of 60°, a vehicle weight of 1,200 pounds, and a 3.5 -foot torus section diameter. The acceleration along the X-axis shows a maximum of about 30 g (full scale) at a 0° landing with a decrease in acceleration as attitude is changed. The acceleration along the Z -axis is zero at a 0° landing and increases in magnitude as attitude is changed. Maximum onset rate for this air bag was about $600 \mathrm{~g} / \mathrm{sec}$.

Vertical-cylinder bag.- A drawing of a vertical-cylinder landingbag model is shown in figure 7. The air chamber upper body of the model is used to improve scaling accuracy and is not a part of an actual vehicle. The air bag is installed between the air chamber and a heat shield and is opened from a collapsed position by the weight of the heat shield. There is essentially unrestricted flow between the air bag and air chamber. Orifices which are always open are Jocated around the upper part of the bag. The bag is dimensionally representative of a prototype 6 feet in diameter, 4 feet long, used with a 2,000 -pound capsule.

An acceleration time history for this corfiguration in a landing on concrete at a flight-path angle of 90° (vertical) and a 0° contact attitude is given in figure 8. Computed and experimental results are in good agreement at model scale and scale up to full size as shown here. Comparisons with large-scale model tests also indicate agreement. This bag was designed for low accelerations ard results in a maximum value of about 10 g . Onset rate was about $200 \mathrm{~g} / \mathrm{sec}$. Landings at other flight-path angles and attitudes have shown similarly acceptable acceleration.

Computations of acceleration for the various systems discussed herein have been made at the 0° attitude, vertical flight-path condition only.

Compliable metal legs.- A drawing of a molel used to investigate energy dissipation and scaling methods for compliable-metal-leg shock absorbers is shown in figure 9. The model consisted of a steel weight attached to a wooden base by $3003-\mathrm{Hl} 4$ aluminum-alloy legs and weighed about 30 pounds. The legs were made of rectangular strips bent as shown. This initial bend was used in an attemot to reduce onset rate
and to control the location of bending during impact. A large-scale model similar to this one and weighing about 200 pounds was also tested.

Figure 10 gives an acceleration time history for the compliable-metal-leg models in landings on concrete. The small-scale-model data are shown by the long-dash-short-dash line and the large-scale-model data by the dashed line. The agreement is very good. The computed acceleration time history shown by the solid line uses a value of yield stress about one-fourth greater than the handbook value because of work hardening during fabrication, high strain rates during impact, and plastic flow.

The onset rate of acceleration for these configurations is high, about $10,000 \mathrm{~g} / \mathrm{sec}$. Other investigations using tapered legs have given onset rates of about $2,000 \mathrm{~g} / \mathrm{sec}$ for the same design maximum acceleration. A photograph showing the tapered compliable metal legs installed between a capsule and heat shield is shown as figure ll. The tapered legs are prebent into a modified " S " curve. Typical sequence photographs of a landing on concrete are given in figure 12.

Water impact. - Another method for landing a space capsule is the water landing. (The configurations discussed previously have lower accelerations in water landings than in hard-surface landings.) The water landing provides a way of obtaining long stroke without onboard devices, that is, by shaping the vehicle for water penetration. It is also of interest where accuracy for hitting a landing area is a question. Peak impact accelerations for two capsules landing on water are given in figure 13. (See refs. 4 and 5.) One capsule impacts on a l26-inch spherical radius heat shield and the other on a 53° conical heat shield. Both model and full-scale experimental investigations were made for the l26-inch spherical radius model. The model results are shown by the solid line and full-scale results by the dashed line. Experimental model results for the 53° conical model are shown by the lower solid line. Computed results for both configurations, by using well established procedures, are shown by the circles. Excellent agreement is indicated between model, full scale, and computation. The curves show that configuration shape has a significant influence on landing acceleration. At 0° contact attitude the $126-1 n c h$ spherical radius model has a blunt shape, water penetration is small, and the peak acceleration is high. Onset rate is about $20,000 \mathrm{~g} / \mathrm{sec}$. As contact attitude changes from 0°, the accelerations decrease rapidly and onset rate also decreases to about $800 \mathrm{~g} / \mathrm{sec}$ at a 30° contact attitude. The difference is due to the more pointed shape of the impacting surface as attitude increases. The 53° conical model has fairly low accelerations, about 10 g , and shows little change with change in attitude. Onset rate is about $400 \mathrm{~g} / \mathrm{sec}$. The accelerations in the 10 g region for both models result from fairly deep water penetration or in other words relatively long strokes.

 in a capsule landing is the braking rocket. This system employs rocket

 this madel but the behayjor, gnd centrol have beem werysgogdira maximamis acceleration of about $3 g$ occurred in these tests. A change inolandiagisin condition such as an increase in speed would result in higher accelera-

 and stroke is mosibie with the brakingrosket.000.


```
        -oJov: M, Hopizontal-Landing Vehicze
```

Each of the systems discussed has special advantages, as an example the compliable metal elements emn be mofe radar table to spage envifon-
 shock-aborber stmitip An applicatign of the compliable matal principle.

 photograph of the modal. The Ianding gear corststs af a pair of mainc, is: skids aft and a dual nose whe ht with thres forwarde simple wielding ergi metal strips are incorporated intothencgear stmots and shey deform in bending durne Ianding impact Brife tests were als made with the nose wheat moxed aft and with a nose skid repiacing the quiginal whetat
 nose-whel tand ng gear are iven of a anding made with the man akiad first then the modgeare given in fetncre ine. "me moln gean contacts: the shoct strut if def trims down, and the nose whes impacta thus of mo: the shoqk stryt fs deformed

A schematic time chistory of pant of m janifig is given in figure in7: Shown in this figure is attitude acceleratitn sity the nases geantrend in

 nose-gear shock strut deformed, dursigimpact at potith aris At about the :O same time a reaction acceleration ocfurred yht hocqused the madikegat struts to yieid at point 3 . During the nose-wheel impact the force or acceleretions buitt $4 p$ along an elastic alne pid upont neaching the or
 or deformation stroker in the caseofs the mainb gears fhe strputs. yjele 004
 tion bullds up again because the gear bottomed. Maximum landing accetera tion always occurred at nose-gear impact and whs about 5 g . Moving the
nose wheel aft or replacing the wheel with the nose skid had little effect on acceleration or stability.

CONCLUDING REMARKS

It appears feasible to readily evaluate landing-gear systems for internal or external application in hard-surface or water landings by computation methods and free-body landing techniques with dynamic models. The systems investigated have shown very interesting landing-energydissipation characteristics over a considerable range of landing parameters. Acceptable gear could be developed along lines similar to those presented if stroke requirements and human-tolerance limits are considered.

Langley Research Center,
National Aeronautics and Space Administration, Langley Field, Va., April 12, 1960.

REFERENCES

1. Eiband, A. Martin: Human Tolerance to Rapidly Applied Accelerations: A Summary of the Iiterature. NASA MEMO 5-19-59E, 1959.
2. O'Bryan, Thomas C., and Hatch, Howard G., Jr.: Limited Investigation of Crushable Structures for Acceleration Protection of Occupants of Vehicles at Low Impact Speeds. NASA TN D-158, 1959.
3. Esgar, Jack B., and Morgan, William C.: Analytical Study of Soft Landings on Gas-Filled Bags. NASA TR R-75, 1960.
4. Vaughan, Victor L., Jr.: Water-Landing Impact Accelerations for Three Models of Reentry Capsules. NASA TN D-145, 1959.
5. McGehee, John R., Hathaway, Melvin E., and Vaughan, Victor L., Jr.: Water-Landing Characteristics of a Reentry Capsule. NASA MEMO 5-23-591, 1959.

TYPICAL ACCELERATION TIME HISTORIES

Figure 1

VARIATION OF MAXIMUM ACCELERATION WI'H STOPPING DISTANCE IMPACT VELOCITY $=30 \mathrm{FT} / \mathrm{SEC}$

Figure 2

ACCELERATION TIME HISTORY FOR COMBINATION OF ALUMINUM HONEYCOMB AND FOAMED PLASTIC VERTICAL IMPACT VELOCITY, 30 FT/SEC; STATIC LOADING, I PSI

Figure 3

TORUS-SHAPED LANDING-BAG MODEL

Figure 4

SEQUENCE OF TORUS BAG LANDINGS ON CONCRETE FLIGHT-PATH ANGLE, 90°; CONTACT ATTITUDE, 0°

Figure 5(a)

SEQUENCE OF TORUS BAG LANDINGS ON CONCRETE FLIGHT-PATH ANGLE, 63°; CONTACT ATTITLDE, -26°

1

4

2

5

3

6

L-59-6105
Figure 5(b)

ACCELERATIONS FOR
TORUS AIR BAG LANDINGS ON CONCRETE VERTICAL IMPACT VELOCITY, $30 \mathrm{FT} / \mathrm{SEC}$; FLIGHT-PATH ANGLE, 60°; WEIGHT, I,2OO LB; TORUS SECTION DIAMETER, 3.5 FT

Figure 6

Figure 7

Figure 8

SMALL-SCALE COMPLIABLE-METAL-LEG MODEL

Figure 9

ACCELERATION TIME HISTORY FOR COMPLIABLE-METAL-LEG MODEL LANDINGS ON CONCRETE IMPACT VELOCITY (FULL SCALE), 30 FT/SEC FLIGHT-PATH ANGLE, 90°; CONTACT ATTITUDE, O

Figure 10

DYNAMIC MODEL WITH COMPLIABLE METAL LEGS BETWEEN CAPSULE AND HEAT SHIELD

L-60-2464
Figure 11

SEQUENCE OF COMPLIABLE-METAL-LEG MODEL LANDING ON CONGRETE
FLIGHT-PATH ANGLE, 90°; CONTACT ATTITUDE, 30°

1

4

2

5

3

6
L-59-6203

Figure 12

ACCELERATIONS FOR CAPSULES LANDING ON WATER IMPACT VELOCITY (FULL. SCALE), 30 FT/SEC; FLGHT-PATH ANGLE, 90°; WEIGHT (FULL SCALE), 2,000 LB

Figure 13

SEQUENCE OF BRAKING-ROCKET MODEL LANDING ON CONCRETE
FLIGHT-PATH ANGLE, 60°

Figure 14

DYNAMIC MODEL OF HORIZONTAL-LANDING REENTRY VEHICLE

Figure 15
L-59-6533

Figure 17

