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TECHNICAL PUBLICATION

VOLCANISM, COLD TEMPERATURE, AND PAUCITY OF SUNSPOT

OBSERVING DAYS (1818-1858): A CONNECTION?

1. INTRODUCTION

Although sunspots have been observed on occasion with the naked eye for thousands of years and

routinely using the telescope since the early 17th century, l-3 it was not until the mid 19th century that the

quasi-periodic variation of the spottedness of the Sun was truly recognized. 4, 5 Today, we call this cyclic

variation of the number of spots on the Sun with time, simply, the "sunspot cycle."

The person who first suggested the existence of the sunspot cycle was Samuel Heinrich Schwabe, a

German apothecary and amateur astronomer, 6 who diligently and meticulously observed the Sun for more

than four decades (1826-1868) 3 from Dessau, Germany, in the mid 19th century. His observations of the

annual number of "clusters of spots" and annual number of "days when no spots were observed" showed

clearly that the spottedness of the Sun varied from a minimum in number (when the count of clusters was

least and the count of days without spots was greatest) to a maximum in number (when the relative counts

were reversed) and then again to another minimum over an interval, or period, of about 10 yr, with the

rising portion (minimum to maximum) being shorter in duration than the declining portion (maximum to

minimum).2, 7-9 (While Schwabe is credited with being the first to publicly acknowledge the existence of

the sunspot cycle, Hoyt and Schatten 3 have noted that the basis for a sunspot cycle of decadal length was

clearly evident in the observations of monthly mean number of sunspot groups that were recorded by

Christian Horrebow and his colleagues in 1761-I 777.)

Following this discovery, Rudolf Wolf, a Swiss astronomer from Ztirich, Switzerland set out to establish

whether or not the cyclic appearance of sunspots, as deduced by Schwabe, was a real and continuing ef-

fect (also, he wanted to show a causal connection between terrestrial and solar events, like aurora and

sunspots).5, 9, 10 In order to accomplish this task, in 1848 Wolf introduced his now famous "relative sunspot

number" (i.e., r = k(f+ 10g), wherefis the number of individual spots counted on a specific day, g is the

number of sunspot groups counted on the same day, and k is a factor that is dependent upon the qualities of

the observer, the observing site, and the telescope) and used it to reconstruct the historical record of sunspot

variation (from various sources) as far back in time as he could go. From his efforts, he was able to confirm

the existence of the cyclic nature of sunspots, as purported by Schwabe, deducing the average period to be

closer to about 11 yr in length, rather than 10 yr. More importantly, his efforts to initiate a means whereby

one would have a coherent, continuous record of numbers of sunspots resulted in the successful establishment

of an international collaboration involving many countries from around the world that continues even

today to faithfully monitor and report the daily number of spots on the Sun, so that the record is now

complete (without gaps) from 1849.



While Wolf's recordof sunspotnumberis only completesince1849,thereconstructedportionprior
to 1849(basedonmanyobserversfrom manysites)is foundto vary,from nearlycompletecoverageduring
someportionsof ayearto nearlydevoidcoverageduringotherportionsof theyear,backto 1818,Wolf's
first entry for monthly meansunspotnumberbasedondaily values(e.g.,seethedaily listingsasgivenin
Waldmeierl°).Interestingly,Schwabe'srecord(basedonanindividualobserverfrom asinglesite--Dessau,
Germany)alsois foundtovary in similarfashion,butbecausehefollowedhisownuniquewayof carefully
observingtheSun, thevariation in daily coverageis found to continuebeyond1848,certainlyupuntil
1858,the lastavailableentry for this study.Thus,for an intervalof at least40yr (1818-1858),onehasa
daily recordof observingsunspotsthatis foundto sometimesvaryconsiderably(regardingitscompleteness)
from oneyearto thenext.

A dedicatedobserver,asSchwabeundoubtedlywas,ll will alwaysfollow his passion--toobserve.
Therefore,his lack of observations(alsonoticedin Wolf's reconstructedrecord)may well bespeakof
somethingthatmusthaveinfluencedhis(andalsothosewhocontributedto Wolf's quest)ability to observe.
Whatevercausedthispaucityof observations,certainlymusthavebeenpervasive,affectingmuchof Europe,
andapparently,wasquite persistentaswell. Indeed,closeexaminationof Schwabe'sandWolf's records
showsthatthepaucity/profusionof annualsunspotobservingdaysoccurred,nothaphazardly,butratherin
anorderlyprogression(pattern),describedhereasanabruptdecreaseinnumberof observingdaysperyear
thatis followedby a gradualincrease(to levelsthatexistedbeforethedecreasebegan),with eachepisode
lastingtypically 1-3yr (or more).So,whileWaldmeier1° has suggested that the gaps in the early sunspot

record arise from "bad weather conditions," their persistence and coupled behavior strongly suggest an

association with some sort of short-term climatic fluctuation, perhaps due to either large, cataclysmic

volcanic eruptions (known to globally perturb climate !2-14) or, less likely, to the occurrences of near moderate

to very strong El Nifio events,15, 16 which somehow may have affected Europe.

The purpose of this investigation, then, is to examine the annual and monthly counts of sunspot

observing days from the historical records of Schwabe and Wolf for the interval of 1818-1858, comparing

these records with estimates of annual mean temperatures (i.e., equivalents of mean temperature, based

upon spot measurements of temperature), as recorded at Armagh Observatoryl 7 and with the occurrences

of large, cataclysmic volcanic eruptions 18and of near moderate to very strong El Nifio events. 19 The result

of this statistical study is that, indeed, large, cataclysmic volcanic eruptions appear to account for the

paucity of sunspot observing days during the early years of sunspot observation (1818-1858) and that

colder annual mean temperatures, likewise, are associated with them. In particular, the effects of Tambora

(1815), Galunggung (1822), Cosguina (1835), and, perhaps, Hekla (1845) are found to be quite dramatic.



2. RESULTS AND DISCUSSION

2.1. Annual Numbers of Sunspot Observing Days (1818-1858)

Schwabe 7 reports annual numbers of observing days (i.e., cumulative counts, along with annual

numbers of clusters of spots and of days when no spots were seen) when he actually observed sunspots

from Dessau, Germany, during the interval of 1826-1843. Each year subsequent to this, Schwabe 2°-34

routinely reported monthly numbers of observing days (along with monthly numbers of clusters of spots

and of days when no spots were observed) for the interval of 1844-1858. Because Schwabe died in 1875,

it may be that published reports for additional observing years might exist beyond 1858. Unfortunately,

appropriate issues of Astronomiche Nachrichten, which is the journal containing his yearly summaries,

were not readily available for these intervening years (at Redstone Scientific Information Center, Huntsville,

Alabama). Consequently, this preliminary study is limited to those years prior to 1859. (As previously

noted, according to Hoyt and Schatten, 3 Schwabe continued to make and report his observations until

1868; so, eventually his final l0 yr of monthly reports may be recovered.)

Wolf's reconstructed record can be found in Waldmeier I° and McKinnon, 35 which easily allows for

a determination of the number of sunspot observing days (per month and/or per year) for the interval of

1818-1848. Recall that the record is complete after 1848, so no gaps in coverage exist after this date.

Figure l displays the number of observing days per year for the interval of 1818-1860, spanning the

decline of cycle 6 through the maximum of cycle 10. Schwabe's numbers are shown as the heavy line,

while Wolf's numbers are shown as the dashed line. Also displayed as the thin line is the number of

observing days per year when J.W. Passtorff (Drossen, Germany) observed the Sun between 1819-1833,

taken from Hoyt and Schatten. I I Across the top are marked the occurrences of the minima (unfilled triangles)

and maxima (filled triangles) for cycles 7-10, where the placement of maximum for cycle 7 is found to

differ, dependent upon whose annual data are being used (i.e., Schwabe's, denoted S, maximum number of

clusters of spots, as compared to Wolf's, denoted W, maximum relative sunspot number). Also identified in

Figure 1 is the occurrence of the "Dalton minimum" (also called the "Little Maunder minimum" by Eddy36),

a brief interval of inferred reduced solar activity between about 1795 and 1823.

Quite noticeable in Figure I are several dips (listed sequentially from 1 through 7), or decreases, in

the annual number of observing days. Dip number 1, unique to Wolf's reconstructed record, refers to the

broader timeframe before 1822, when the number of observing days per year was rising, rather than

specifically to the local dip in 1820. Dip number 2, also unique to Wolf's reconstructed data set, occurs

during the rise of cycle 7, while Dip number 3, which is found in all three records, occurs near sunspot

maximum for cycle 7. Dip number 4, noted in both Wolf's reconstructed record and Schwabe's actual

observational record, is quite large (about a 40-50 percent decrease in annual number of observing days)

and long-lasting (several consecutive years of reduced annual number of observing days) and occurs during

the rising portion and maximum phase of cycle 8. Dip number 5, also noted in both Wolf's reconstructed

record and Schwabe's actual observational record, occurs during the rising portion and maximum phase of

cycle 9. Finally, two very small 1-yr dips (of questionable significance) occur about 1853 and 1855, during

the declining portion of cycle 9.
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Simple runs testing 37 shows that both of the annual number of observing days as reconstructed by

Wolf for the interval of 1818-1848 and as reported by Schwabe for the interval of 1826-1858 are found to

vary nonrandomly; hence, the dips are probably not due to chance. For example, based on Wolf's

reconstructed record, a median of 268 observing days per year is found, with 16 yr having a value larger

than or equal to the median and with 15 yr having a value less than the median, occurring in seven runs.

Such a distribution strongly suggests that the variation in Wolf's annual number of observing days is

nonrandom (at <5 percent level of statistical significance, equivalent to >95-percent level of confidence).

Similarly, based on Schwabe's actual observational record, a median of 282 observing days per year is

found, with 17 yr having a value greater than or equal to the median and with 16 yr having a value less than

the median, occurring in six runs. This distribution, likewise, strongly favors a nonrandom variation for

Schwabe's annual number of observing days (at <5 percent level of statistical significance). So, it seems

highly probable that the variation in observing days per year, whether one subscribes to Wolf's reconstructed

record or to Schwabe's actual observational record, is not due to chance (random noise). Because many of

the dips are found in both records (with one occurring in three records), the occurrences of the dips suggest

that they are real and symptomatic of some sort of regional (global?) short-term climatic perturbation that

affected, at least, much of Europe during the premodern era years of sunspot observations.

2,2, Comparison of Annual Numbers of Sunspot Observing Days to the Annual Variation

of Equivalent Mean Temperature at Armagh Observatory and to the Occurrences of

Near Moderate to Very Strong E! Nifio and of Large, Cataclysmic Volcanic Eruptions

Figure 2 replots the annual number of observing days from Wolf's reconstructed record and Schwabe's

actual observational record (following the same format as shown in Fig. 1), identifying the dips (numbers

1-7) with shading, and plots the equivalent mean temperature (°C) at Armagh Observatory, both as a

yearly mean (taken from Butler and Johnston 17) and as a 4-yr moving average (also called the 5-yr running

mean, shown as the heavier line; the 4-yr moving average ignores single year decreases), with the shading

corresponding to the occurrences of the intervals containing the dips in annual number of observing days.

The Armagh Observatory is located at 54 ° 21.2' N (latitude) and 6 ° 38.9' W (longitude) at an altitude of

about 64 m above sea level near the city of Armagh, Northern Ireland. Daily air temperature measurements

have been made at Armagh from 1795 to the present day and are complete, except for a brief 9-yr period

from 1825-1833 when no data have yet to be found (hence, this period will be called the "lost record

years"). Prior to 1833, the record is based on daily measurements obtained three times each day (8 a.m.,

noon, and 8 p.m.), while it is based on twice daily readings (10 a.m. and 10 p.m.) from 1833. Butler 38 and

Butler and Johnston 17, 39 have discussed the relevance of the Armagh temperature records, in particular, as

related to the subject of climatic change, two chief reasons being its extraordinary length (over 200 yr) and

its strong correlation with the northern hemispheric mean temperature record (1880-1985), as given by

Hansen and Lebedeff. 4° (The provisional annual mean temperature data set, called Series I, actually extends

to 1882, thereafter, being discontinued in lieu of another provisional annual mean temperature data set,

called Series II, that began in 1843 and continues through today, being based on the use of maximum and

minimum thermometers. The provisional records are presently being reexamined by Butler and his colleagues

to see whether or not any additional corrections are necessary---cf. Wilson. 41)

Identified above the temperatures are the occurrences of near moderate to very strong El Nifio events

(where unfilled triangles refer to the occurrences of moderate events and filled triangles refer to the

occurrences of strong events), the annual frequency of known volcanic eruptions (having a Volcanic
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near moderate to very strong El Nifio events and of major volcanic eruptions. Dips numbered

1-7 are shown in the bottom panel. The "lost record years" of 1825-1833 are indicated (as
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years. The frequency of known volcanic eruptions, having a Volcanic Explosivity Index (VEI),

>3 is plotted above the El Nifio event timeline. Individual large, cataclysmic (VEI >4) volcanic

eruptions are identified, with their corresponding VEI in parentheses. Those of VEI >5, including

Tambora (7), Galunggung (5), Cosiguina (5), Chikurachki (5?), and Sheveluch (5), are

highlighted.
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Explosivity Index (VEI) _>3), and the occurrences (by name and VEI) of the larger, cataclysmic volcanic

eruptions (i.e., those having a VEI _>4). The listing of near moderate to very strong El Nifio events is taken

from Quinn et al., 19 while the annual frequency of known volcanic eruptions and the listing of large,
cataclysmic volcanic eruptions are taken from Simkin and Siebert. 18

The historical El Nifio activity (from the early 1500's to 1987), as determined by Quinn et al., _9 was

deduced by them primarily on evidence obtained from the west coast region of northern South America

and its adjacent Pacific Ocean waters, and emphasizes stronger events (i.e., weaker events were not included

in their listings). The evidence was initially limited to descriptions from published writings, involving five

languages (Spanish, English, German, French, and Dutch), although with the passage of time, meteorological,

hydrological, and oceanographic data became increasingly available and were used by them to augment

their findings. While, strictly speaking, these historical El Nifio events were determined on the basis of

their regional characteristics, it is now apparent that they are better perceived as being manifestations of a

larger, oceanic-atmospheric phenomenon, known as the E1 Nifio-Southern Oscillation (ENSO) event (which

has been linked to unusual weather episodes on the global scale4249). It is also noteworthy that Quinn

et al. _9 have emphasized that the period of 1812-1832, of which this study is concerned, in part, was

unusually active, with some eight events of near moderate to very strong intensity occurring in the brief

span of just 20 yr (inferring a frequency of one event per 2.5 yr, as compared to one event per 3.8 yr, on

average).

The chronology of volcanic eruptions, as determined by Simkin and Siebert, ls provides an exhaustive

record of all volcanism known to have taken place in each year (from betk-_re 8000 B.C. to the end of 1993 ).

Following Robock and Mao, 12 it has become clear in the last decade that the effect of a volcano on climate

is most directly related to the sulfur content of emissions that reach into the stratosphere and not directly to

the explosivity of the eruption, although the two are highly correlated. 5°- 5J The sulfur gases (e.g., SO_)

eventually convert to a global layer of sulfuric acid (H2SO4) aerosols and sulfate particles, which persist

for several years (typically, 1-2 yr or more) in the stratosphere and efficiently scatter incoming sunlight,

thereby, reducing the direct and total solar radiation reaching the ground. Furthermore, the volcanic dust

veil (or pall; see Lamb 52) and aerosols (see Carroll 14) absorb long-wave and short-wave radiation, thereby,

heating the stratosphere and producing anomalous stratospheric circulation when there is a gradient in the

heating. Because less explosive volcanic eruptions (i.e., those having a VEI <2) are considered unlikely

candidates of stratospheric injection of sulfur gases, 53 in figure 2 only the yearly occurrences of eruptions

having a VEI _>3 are shown (as previously noted, taken from Simkin and SiebertlS). (It may be of interest

to note that during this span of time, no extra-tropical southern hemispheric volcanic eruptions of VEI >4

are known to have occurred; all 21 events identified at the top of figure 2 are either tropical events or events

that occurred in the extra-tropical northern hemisphere. Lamb 52 and Legrand and Delmas 54 have noted

that extra-tropical volcanic eruptions seem only to affect the hemisphere in which they are located, while

tropical eruptions can have a direct influence on both hemispheres. Hence, any induced short-term climatic

perturbation that might result from a volcanic eruption seems to be of concern to Europe only when it

occurs either in the tropics or in the extra-tropical northern hemisphere.)

Simple statistical testing (based on Bernoulli trials and the binomial formula) 37 shows that there is a

close statistical association between the dips in number of observing days per year and periods of colder

temperature as measured at Armagh Observatory. For example, discarding Dip number 3 (owing to a lack

of mean temperature data because of the "lost record years"), one finds that each of the remaining six dips



(shaded portions) is found to contain at least one major yearly temperature decline as well. The probability

of this occurring by chance is easily computed to be 1.6 percent. So, it may be that this inferred statistical

association between decreases in number of observing days per year and declines in mean temperature is

indicative of real, consequential behavior (which, in turn, may be the result of the episodic appearance of

persistent bad weather--overcast conditions involving much, if not all, of Europe; i.e., short-term climatic

fluctuation). Support for this conjecture is also found from the behavior of the 4-yr moving average of

equivalent mean temperature when it is compared to the occurrences of the dips in number of observing

days per year, which shows that each dip starts when a decline in temperature first begins to appear and

ends when the temperature is nearly fully recovered. (Similar dips appear in the June mean temperature

records for New Haven, Connecticut, as recorded by former presidents of Yale; 55 thus, the dips in temperature

appear to be pervasive, spanning both sides of the Atlantic Ocean in the northern hemisphere.)

Figure 3 plots yearly equivalent mean temperature at Armagh against the yearly number of observing

days, separately for Schwabe (left panel) and Wolf (right panel). Surprisingly, when the comparison is

between temperature and Schwabe's number of observing days, a preferential association between the

parameters is strongly suggested, whereas none is suggested when the comparison is between temperature
and Wolf's reconstructed (or blended) number of observing days. Forthe former comparison (i.e., between

temperature and Schwabe's number of observing days; left panel), on the basis of Fisher's exact test 56 one

computes the probability of obtaining the observed 2x2 contingency table (i.e., the one formed by the

medians, shown as the thin vertical and horizontal lines, parallel to the x and y axes), or one more suggestive

of a departure from independence (chance), to be 1.3 percent, while it is 50 percent for the latter comparison

(i.e., between temperature and Wolf's number of observing days; right panel). For Schwabe's data, at

least, this suggests that when the number of observing days was >304 (the median), the yearly equivalent

mean temperature at Armagh was usually >8.9 °C (the median), while when the number of observing days

was <304, the yearly equivalent mean temperature was usually <8.9 °C (and vice versa). On the basis of

linear regression analysis between temperature and Schwabe's number of observing days, one infers that

a loose (r = 0.5), yet statistically significant (at >98 percent level of confidence), positive correlation

seems to exist between them (shown in Figure 3 as the diagonals, 9 and 2, for the two cases of using

Schwabe's data or temperature as the independent variable, respectively). Thus, from Schwabe's

observational record, because of the observed decrease--Dip number 3 (with the decrease beginning after

1828 and ending by 1834)--to 217 observing days in 1830, one infers that a corresponding dip in yearly

equivalent mean temperature, quite possibly, occurred, as well (i.e., during the "lost record years"). The

inferred temperature in 1830 is estimated from the regression to have been about 8.6 °C, while it is estimated
to have been about 9.0 °C in 1828. (The lack of a statistically significant association between yearly

equivalent mean temperatures at Armagh and Wolf's reconstructed record of observing days suggests that

the blending of data, that Wolf needed to have to reveal the workings of the sunspot cycle, unfortunately,

destroyed whatever temperature-observing day relationship for Switzerland that might have been found to

exist, had he chosen not to blend his data with those from others.)

Returning to Figure 2, one can compare separately first differences in yearly temperatures and/or

number of observing days against the yearly occurrences of El Nifio years and large, cataclysmic volcanic

eruptions to determine which event, El Nifio or volcano (if either), might potentially be the causal agent

for the inferred, induced short-term climatic fluctuation. Figure 4 displays the results of this analysis.

All the top panels in Figure 4 show the resultant 2x2 contingency tables, comparing first differences

(in particular, answering the question, yes or no, that the value of the first difference is >0) of equivalent
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mean temperature (upper left), Schwabe's yearly number of observing days (upper middle), and Wolf's

yearly number of observing days (upper right) to whether (yes) or not (no) an El Nifio event occurred

during a given year, while all the bottom panels show the resultant 2x2 contingency tables, comparing the

parametric first differences to whether or not a large, cataclysmic volcanic eruption occurred during a

given year. Recall that the first difference of a parameter is simply the numeric difference between next

year's value with this year's value. Thus, the first difference provides an additional means whereby one can

easily determine whether or not a preferential association might exist between the observed parametric

behavior (higher or lower value in the next year, corresponding to either the yes or no response, respectively)

and a suspected causal agent (here, either the year marking the occurrence of an El Nifio event or of a large,

cataclysmic volcanic eruption).

Concerning the behavior of the first difference in equivalent mean temperature (left panels), one

finds that there appears to be no preferential association between it and whether or not an E1 Nifio event

occurred during any given year. The probability of obtaining the observed result (i.e., the 2x2 contingency

table, 8:5:13: 15), or one more suggestive of a departure from independence, is computed to be (from

Fisher's exact test) 44.7 percent, inferring that chance alone can easily account for the observed result. In

contrast, a preferential association (of marginal statistical significance) is indicated between the first

difference in equivalent mean temperature and whether or not a large, cataclysmic volcanic eruption occurred

during any given year. The probability of obtaining the observed result (5:9:9:18), or one more suggestive

of a departure from independence, is computed to be 5.9 percent. Thus, when a year is described as being

(or not being) an El Nifio year, this alone is insufficient to estimate the direction of the trend in temperature

at Armagh (i.e., warmer or colder in the next year), while when a year is described as being (or not being)

a large, cataclysmic volcanic eruption year, the probable trend may be reckoned (i.e., colder in the next

year when the answer is yes and warmer in the next year when the answer is no).

Concerning the behaviors of the first difference in Schwabe's (middle panels) and Wolf's (right panels)

yearly number of observing days in comparison to whether or not an E1 Nifio event or a large cataclysmic

volcanic eruption occurred, one finds that the resultant 2x2 contingency tables, similarly (a la the first

difference in equivalent mean temperature), do not support the contention that a preferential association

exists between the first difference in yearly numbers of observing days and the occurrence of an E1 Nifio

year, while they do favor the existence of a preferential association, at least, for Schwabe's case, between

the first difference in yearly number of observing days and the occurrence of a large cataclysmic volcanic

eruption year (statistically speaking, the inferred preferential association is only of marginal statistical

significance--8.5 percent). Thus, when a year is described as being (or not being) an E1 Nifio year, this

alone is insufficient to determine the direction of the trend in yearly number of observing days (whether

one uses Schwabe's record or Wolf's reconstructed record), while when a year is described as being (or not

being) a large cataclysmic volcanic eruption year, the probable trend may be reckoned (i.e., a reduction in

the yearly number of observing days in the next year when the answer is yes and an increase in the yearly

number of observing days in the next year when the answer is no).

To summarize this subsection, statistically speaking, there appears to be evidence suggesting a

preferential association between dips in yearly numbers of observing days in Europe (i.e., a paucity of

observing days) and episodes of colder clime as recorded at Armagh Observatory (Northern Ireland), with

both, possibly, being the consequence of large cataclysmic (VEI >4) volcanic eruptions that occurred either

in the tropics or in the extra-tropical northern hemisphere. In the following subsections, closer examination

10
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Figure 4. 2×2 contingency tables comparing years of E1 Nifio occurrences (top tier) and years of large,

cataclysmic volcanic eruptions (bottom tier) against the first difference in temperature (left

column) and number of observing days in the middle (Schwabe) and right (Wolf) columns. For

E1 Nifio events and large, cataclysmic volcanic eruptions, a yes response means that such an

occurrence was seen for that year, while a no response means that such an occurrence was not

seen for that year. Similarly, a yes response for the first difference means that the first difference

is >0, inferring that temperature is either the same or warrner and number of observing days is

either the same or more in the following year, while a no response means that the first difference

is <0, inferring that temperature is cooler and number of observing days is fewer in the next

year. The 2×2 tables suggest that El Nifio events do not appear to be the causal agent for changes

in temperature at Armagh or changes in number of observing days, while they support

(marginally) the contention that large, cataclysmic volcanic eruptions may induce the observed

changes in temperature and number of observing days.
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of the larger specific dips, numbers 1,2, 4, and 5, will be accomplished, using appropriate monthly counts

of observing days relative to the month of occurrence for particular large, cataclysmic volcanic eruptions,

the ones suspected as being the causal agents.

2.3 Specific Examples

Prior to the examination of these dips, because one now will be using monthly data, it is essential that

any seasonal effects, should they be found to exist, be removed. Figure 5 plots the monthly averages of

number of observing days based, separately, on Schwabe's observed record (the solid line) and Wolf's

reconstructed record (the dashed line). Clearly, a seasonal effect, indeed, is found in both, with the number

of observing days per month, on average, being lowest for November through February and highest for

May through August, and with the months in between showing transition (i.e., increasing in number of

observing days in March-April and decreasing in number of observing days in September-October). The

question now is, after correcting for this seasonal effect in the data, do the number of observing days still

vary in any preferential way? One anticipates that if a real preferential association truly exists between the

behavior of number of observing days and the occurrence of a large, cataclysmic volcanic eruption, then

evidence for a persistent behavioral pattern should remain. In particular, one expects either that many, if

not most, of the months following a large, cataclysmic volcanic eruption (either as an immediate response

or, possibly, as a delayed response, dependent upon the time of year of the eruption and its location 52, 57)

to, generally, be below average in number of observing days as compared to times when an eruption either

did not occur or has not occurred for sometime---or that certain seasons might contribute more strongly to

the paucity of observing days, as compared to others.

Figures 6 (Wolf's data) and 7 (Schwabe's data) plot the number of observing months per year when

below average, seasonally adjusted number of observing days occurred and shows the occurrences of

specific large, cataclysmic volcanic eruptions. For Wolf's data (1818-1848), a fairly strong, seemingly

preferential, response is found for the eruptions of Tambora (1815), Galunggung (1822), Cosiguina (1835),

and Hekla (1845), corresponding to Dips numbered 1, 2, 4, and 5, respectively, with a possible (but obviously

weaker) response found for Kliuchevskoi (1829), corresponding to Dip number 3. For Schwabe's data

(1844-1858; recall that his earlier data, 1826-1843, have only been published in terms of yearly counts),

because they are available in monthly format only from 1844, a fairly strong, seemingly preferential,

response is found only for Hekla (1845), corresponding to Dip number 5. It is noteworthy that the eruptions

of Tambora and Cosiguina have been identified as the source regions (i.e., causal agents) for specific

signatures in the Greenlandic/Antarctic ice core deposits, 54, 58-64 thereby, indicating that these events were

truly globally effective.

2.3.1. Tambora (1815): The Interval of 1818-1821 (Dip Number 1)

Figure 8 displays the monthly residual determined from Wolf's data (defined here as NW - S(NW),

where NW is the number of observing days per month and S(NW) is the appropriate interval monthly

average; i.e., the seasonal adjustment term), where negative values indicate a loss of observing days and

positive values indicate an excess of observing days for each month as compared to the average frequency,

for the interval of 1818-1821, which corresponds to Dip number 1, and is plotted in relation (elapsed time)

to the eruption of Tambora (VEI = 7), located on Sumbawa Island, Indonesia (8.25°S, 118.00°E), in April

1815. The Tambora event is the largest (and deadliest), cataclysmic volcanic eruption that is known to have

12
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Figure 5. The average monthly number of observing days over a year. The solid line refers to Schwabe's 
data (1 844-1858) and the dashed line refers to Wolf's reconstructed data (1 8 18-1 848). The 
winter months of December-February, on average, tend to have the fewest number of observing 
days. 
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Figure 6. Number of months within a year that are below the seasonally adjusted average, using Wolf's 
reconstructed data. The years of 18 18-1 820,1824,1835-1 840, and 1845-1 848 are found to be, 
more often than not, years when the number of observing days were markedly reduced. The 
remaining years are found to be, more often than not, years when the number of observing days 
were markedly enhanced. The occurrences of specific volcanic eruptions are given. 
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Figure 7. Number of months within a year that are below the seasonally adjusted average, using Schwabe's 
data. The years of 1847-1 849 and 1855 are found to be, more often than not, years when the 
number of observing days were markedly reduced. The remaining years are found to be, more 
often than not, years when the number of observing days were markedly enhanced. The 
occurrences of specific volcanic eruptions are given. 



occurred in, at least, the past 500 yr (possibly even longer), and it has been associated with the "year 
without a summer" in 1816 (see Stomrnel and ~ t o m m e l ? ~    tot hers,^^ and references cited therein). The 
heavier line is the 4-mo moving average (which ignores single-month variations) and the shaded portions 
correspond to the winter seasons (December-February). Two smaller eruptions (in 18 17 and 18 18) are also 
identified that may be related to a restrengthening of the decrease after 1819.' 

It is unfortunate that the record of monthly observations begins in 1818 rather than some earlier time 
before 18 15. Had the observing record begun at a slightly earlier date, one would have been able to see the 
full ramification of the suspected, induced climatic perturbation (that surely must have accompanied it) of 
this truly spectacular event, instead of just speculating about it, especially, with regards to the loss in 
observing days (perhaps, to a number of observing days substantially smaller than was seen in 1818). 
Figure 8 shows that, while the number of observing days, as reconstructed by Wolf, was slowly increasing 
between 18 18 and 18 19 (typically, the net loss was worst in the winter seasons of 18 17-1 8 18 and 18 18- 
1819), throughout all of 1818 it was negative in value (i.e., below average in number), and it continued so 
until the spring of 1819 when recovery appears to be finished. From this, one infers that the effects of the 
Tambora event lasted approximately 4 yr (in agreement with Stother's optical depth curve).65 Following 
recovery, another dip (of smaller size) is suggested which may be related (as noted above) to the smaller 
eruptions of Raung (VEI = 4?) on the island of Java (Indonesia) in January 1817 and/or Colima Volc. 
Complex (VEI = 4) in Mexico in February 1 8 1 8. The smaller, gentler dip that seems to begin in 1 8 19 and 
ends in early 1821 has its greatest monthly losses in July 18 19 and July 1820, as well as the winter season 
of 1820-1821. 

The initial behavior of increasing number of observing days from 18 18 through 1819 is taken as 
evidence for improving atmospheric conditions following the Tambora event. Recall, that the estimated 
stratospheric loading of sulfur (based on ice core records; e.g., Delmas et a ~ . ~ l )  that has been attributed to 
the Tambora event of 1815, the event marking the end of a 3-yr period of continuous volcanic activity of 
Mt. Tambora (1 8 12-1 8 15), is the largest loading that has been found in the ice core records over the past 
five centuries. It measures about twice that of a suspected, yet unidentified, volcanic eruption that is believed 
to have occurred in the tropics around 1 8 0 9 ~ ~ >  61, 64 and measures several times larger than that attributed 
to the eruptions of Krakatau (VEI = 6) in 1883 or Agung (VEI = 4) in 1 9 6 3 , ~ ~  both of these events also 
being located in Indonesia. 

According to Landsberg a n d ~ l b e r t , ~ ~   toth hers,^^ and Simkin and siebert,18 the devastating Tambora 
event of 1815 reduced the height of Mt. Tambora from 4 km to about 2.85 km; it took the lives of about 
92,000 people; it was audible from at least 2,600 km away; it generated a tsunami of 1-4 m in height that 
spread outward at least 1,200 km; it caused pitch darkness, lasting up to 2 days, over a distance of 600 km; 
it created unusual twilight and atmospheric conditions in North America and Europe that persisted from 
months to years; and it appears to have evoked (or, at least, contributed to) a global cooling in surface 
temperature that did not recover until the end of the second decade of the 180OYs, a cooling that, very well, 
is of similar or greater magnitude than that which was seen following the more recent eruptions of Krakatau 
(VEI = 6) in 1883, Santa Maria (VEI = 6) in 1902, Katrnai (VEI = 6) in 1912, Agung (VEI = 4) in 1963, El 
Chich6n (VEI = 5) in 1982, and Pinatubo (VEI = 6) in 1991 .I2> l3 The inferred cooling, and subsequent 
warming, is quite apparent in the Armagh record of equivalent mean temperature (see Figure 2; also, it is 
very apparent in the June mean temperature records for New Haven, ~onnec t i cu t~~) ,  and the increasing 
number of observing days per month (from Europe), following the event, certainly hints that some sort of 
recovery process was taking place between 181 8 and 18 19. Furthermore, it seems noteworthy that the 



years (and individual seasons) following the Tambora event rank near the top in several categories of 
anomalous behaviors as gleaned from tree ring studies. For example, Lough and ~ r i t t s ~ ~  have found the 
summer and fall seasons of 18 15 and the winter and spring seasons of 18 16 to be among the most anomalous 
of periods, based on tree ring chronologies from North America. Also, Briffa et a1.68, 69 have found the 
reconstruction of surface temperature, based upon "maximum latewood densities," to suggest that, beginning 
about 1812, a sharp lowering of temperature in Europe and North America occurred which persisted until 
about 1820, with the years 18 12, 18 14, and 18 16 being extremely cool, especially the summers (see also, 
Jones et ale70). 

2.3.2. Galunggung (1822): The Interval of 1822-1825 (Dip Number 2) 

Figure 9 displays Wolf's residual for the years of 1821-1 828, which spans the interval of 1822-1 825, 
corresponding to Dip number 2. Galunggung (VEI = 5), located on the island of Java, Indonesia (7.25"S, 
108.05"E) erupted in October 1822. Prior to the eruption and continuing a few months after the eruption, 
the residual is found to be well in excess of the average monthly frequency, indicating very good weather 
(and warmer clime) in Europe. Following the first winter season, however, the number of observing days 
falls precipitously from an excess of more than 13 days above average in January 1823 to a loss of about 18 
observing days below average for February 1824, with the winter of 1823-1 824 being extremely harsh, as 
adjudged by the number of lost observing days. Thereafter, in a series of ups and downs, spanning the 
spring and summer seasons of 1824, the number of observing days increases and returns to prevent levels 
(indicative of better weather and warmer clime; see Figure 2). According to Sirnkin and siebert,18 about 
4,000 people perished in this event, the fourth largest number of deaths attributed to the largest volcanic 
eruptions of the 19th and 20th centuries (the top three are Tambora-1815,92,000; Krakatau -1883, >36,000; 
and Santa Maria-1902, >5,000). 

Although mention of this event is lacking in the chronology of Cole-Dai et a1.,64 it is interesting to 
note that their Figure 6 (p. 16, 768) seems to show the presence (i.e., a spike) of an elevated ~ 0 ~ ~ -  
concentration of nearly the size of the inferred unknown event of 1809 at about the appropriate place for 
the Galunggung event of 1822. Perhaps, researchers can reexamine their data in the vicinity of this eruption 
to yield more information about its inferred stratospheric loading. Certainly, the behavior of the residual 
for this event is most striking and, when coupled with the apparent plunge in equivalent mean temperature 
at Armagh Observatory (see Figure 2), strongly suggests that this event induced a real, short-term, globally 
effective, climatic perturbation. 

2.3.3. Cosiguina (1835): The Interval of 1834-1843 (Dip Number 4) 

Figure 10 shows Wolf's residual for the years of 1834-1 840, corresponding to the bulk of the interval 
associated with Dip number 4 (being the longest-at least 7 yr in duration and being one of the two 
deepest, the other being Dip number 2-at least, 40-50 percent reduction in number of observing days per 
year-of the dips that are known from start to finish; see figs. 1 or 2). The residual is drawn in relation to 
the eruption of Cosiguina (VEI = 5), located in Nicaragua (12.9g0N, 87.57"W), in January 1835. Following 
the eruption, the residual is observed to precipitously decline from an excess of more than 4 observing days 
per month (above average) in January 1835 to a loss exceeding 22 observing days per month (below 
average) in August 1835, with recovery extending beyond 1840. The 4-mo moving average is found to 
slowly decline through 1836 and into 1837 before trending upward. 
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Figure 8. The residual (associated with Dip number I), based on Wolf's reconstructed data, in relation to 
the occurrence of the Tambora blast in April 18 15. Negative residual means fewer observing 
days than usual, while positive residual means more observing days than usual. The shaded 
portions refer to the winter season (December-February). Other, possibly, contributory eruptions 
are identified. This same format will be followed in all succeeding charts (for Dip 
numbers 2-7). 
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Figure 9. The residual (associated with Dip number 2)' based on Wolf's reconstructed data in relation 
to the Galunggung blast of October 1822. 



As previously noted, this particular eruption has been associated with elevated sulfuric acid depositions 
found both at   re en land^^, 58 and~ntarc t ica .~~> 60-64 In particular, Cole-Dai et a1.64 note that the deposition 
in Antarctica from the Cosiguina eruption lasted about 3 yr as determined from the S042-flux calculation at 
Dyer Plateau and about 2 yr at Siple Station. 

Supporting evidence for the global effectiveness of this event is the short-term climatic fluctuation 
that is seen in the equivalent mean temperature record at Armagh Observatory in Northern Ireland (see 
Fig. 2; also, see the decrease in June mean temperature for New Haven, Connecticut, in 1836 as described 
by Stommel and ~ t o m m e l ~ ~ ) ,  and the findings of Briffa et al.68 that the summers over Europe in the 1830's 
were cooler than usual, especially in the north (Scandinavia), based upon the reconstruction of temperature 
from maximum latewood densities of conifers. In another study, Briffa et al.69 note that the summers in the 
Mackenzie Valley of Canada in the 1830's were also cool, with the summer of 1836 being notably cold 
(true also for the regions of Quebec and Labrador), likewise, based upon the reconstruction of temperature 
from maximum latewood densities of conifers, and they suggested that the eruption of Cosiguina in 1835 
was the causal agent for the inferred cooler clime in central North America (see also Jones et ale70). 

2.3.4. Hekla (1845): The Interval of 1845-1850 (Dip Number 5) 

Figure 11 displays the monthly residual using Schwabe's data (i.e., Ns - S(Ns), where Ns is the 
number of observing days per month, according to Schwabe, and S(Ns) is the appropriate interval monthly 
average; i.e., the seasonal adjustment term), plotted in relation to the eruption of Hekla (VEI = 4), located 
in Iceland (63.98"N, 19.70°W), in September 1845. While the largest eruption occurred in September 
1845, Simkin and siebertl* have noted that Hekla continued to be active well into 1846. From figure 11, 
one finds that the residual clearly was positive in value, indicating an excess of observing days above 
normal, from late 1845 through about September 1846, when the residual precipitously decreased to negative 
values, having the lowest values in the winter of 1846-1847, indicating a loss of about 11 days below 
normal. In terms of the 4-mo moving average, one finds that it stayed negative in value until about mid to 
late 1849, when recovery appears to be over. Because of its high northern latitude (64"N), one expects that 
the Hekla eruption should not have a discernible signature in the ice core record of Antarctica and, indeed, 
none has been found; however, it probably should appear in the ice core record of Greenland, especially if 
the eruption truly is considered large and cataclysmic in nature (thereby, causing the inferred short-term 
climatic fluctuation). Unfortunately, it is not found in the recent listing of Zielinski et 
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3. SUMMARY AND CONCLUSIONS

The June 1991 eruption of Pinatubo (VEI = 6) in the Philippines (15°N) produced the largest sulfur

dioxide cloud detected by the Total Ozone Mapping Spectrometer aboard the Nimbus-7 satellite during its

operational life. 71 The SO2 cloud (and other byproducts of the explosion) was observed to encircle the

Earth within about 3 wk, straddling the equator +20-30 ° in latitude, and, over time, to migrate poleward

(towards both poles), thereby, essentially blanketing the entire Earth. 72 McCormick et al. 73 have noted that

the volcanic plume associated with the eruption of Pinatubo exceeded 30 km in height and injected into the

stratosphere an aerosol mass loading of about 30 Tg, the largest aerosol perturbation believed to have

occurred this century, although smaller than that estimated from the eruptions of Tambora in 1815 (>100

Tg) and Krakatau in 1883 (-50 Tg). The aerosol loading has been associated with an induced global

cooling of the Earth's surface temperature, which only recently has returned to the pre-Pinatubo level, 13, 74

inferring that the Pinatubo blast was globally effective for about 4 yr.

While the Pinatubo blast is a remarkable event, affecting the entire Earth, historically, it is by no

means unique. Another keen example of a large, cataclysmic volcanic eruption that affected world climate

is the August 1883 blast of Krakatau (VEI = 6). 75 One August 27, 1883, the island of Krakatau, Indonesia

(6.10°S, 105.42°E) blew up, injecting a considerable amount of volcanic gases and debris to more than

30 km into the atmosphere, which quickly spread over the face of the Earth, causing colorful displays at

twilight (including a blue, purple, and green Sun and moon). In late November 1883, the drifting pall

arrived over Europe, and researchers at Montpellier Observatory in the south of France noticed a most

peculiar and unexpected happening. They observed the amount of solar energy received from the Sun (i.e.,

the insolation) to dramatically decrease from 30 percent above normal to 20 percent below normal, and to

remain 10 percent below normal for the next 3 yr. Obviously, the eruption on Krakatau was globally

effective for at least 3 yr.

Robock and Mao 12 have examined the 15 largest stratospheric-aerosol-producing volcanoes since

1866 and have concluded that the volcanic timescale is about 2 yr. Also, they have noted that surface

cooling of about 0.1-0.2 °C generally follows an eruption, with the timing of the cooling being dependent

upon the location (high latitude versus low latitude) of the blast and the season when it occurred. Furthermore,

Delmas et al. 61 and Cole-Dai et al. 64 have listed a number of large, cataclysmic volcanic eruptions whose

signatures are found in the ice core records of Antarctica, and Zielinski et al. 57 have listed those whose

signatures appear in the ice core records of Greenland. Additionally, Delmas et al. 61 have noted that the

deposition in the ice cores in Antarctica suggest durations of, typically, 1-4 yr (averaging about 2-3 yr in

length) and Stuiver et al. 76 have found that volcanic aerosols depress central Greenland annual temperature

and annual 180/160 for about 4 yr after each major eruptive event. From this, one can infer that a large,

cataclysmic volcanic eruption is capable of producing a globally distributed aerosol (presuming the eruption

to occur in the tropics), having a residence time of up to several years, that can induce a short-term climatic

fluctuation (especially, as related to insolation or surface air temperature).
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In this investigation,evidencehasbeenpresentedthatsuggeststhat large,cataclysmic(VEI >4)

volcanic eruptions in the tropics and extra-tropical northern hemisphere induced short-term climatic changes

in Europe during the early premodern era years of sunspot observations (1818-1858). The effect is clearly

seen in the annual mean temperature record of the Armagh Observatory (Northern Ireland), as a temporary

cooling, and in the actual observing record of Samuel Heinrich Schwabe (in Dessau, Germany) and the

blended (reconstructed) record of Rudolf Wolf, as a temporary reduction in the number of observing days

available for viewing the Sun. In particular, the eruptions of Tambora (VEI = 7; Indonesia) in 1815,

Galunggung (VEI = 5; Indonesia) in 1822, Cosiguina (VEI = 5; Nicaragua) in 1835, and, perhaps, Hekla

(VEI = 4; Iceland) in 1845 show the effect most dramatically--a decline in temperature of up to several

tenths of a degree Celsius or more, with a corresponding reduction in the number of observing days, in

some cases, extremely large reductions. Additionally, this novel finding, linking volcanic eruption,

temperature change, and paucity in number of observing days, suggests that during "the lost record years"

of the Armagh Observatory (1825-1833), a brief cooling occurred in Europe that might be related to the

eruption of Kliuchevskoi (VEI = 4; Kamchatka, Russia) in 1829. Wolf's attempt to generate a continuous

(no gaps) record of relative sunspot numbers from an international cadre of observers, while very useful

from the sunspot cycle perspective, is seen to have unwittingly undermined the potential gains of using

number of observing days as an instrument for monitoring short-term climatic change at a particular locale.
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