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A Numerical Simulator for Three-Dimensional

Unsteady Flows through Vibrating Blade Rows

Summary

The three-dimensional, multi-stage, unsteady, turbomachinery analysis, TURBO, has'

been extended to predict the aeroelastic and aeroacoustic response behaviors of a single

blade row operating within a cylindrical annular duct. In particular, a blade vibration

capability has been incorporated so that the TURBO analysis can be applied over a solution

domain that deforms with a vibratory blade motion. Also, unsteady far-field conditions have

been implemented to render the computational boundaries at inlet and exit transparent to

outgoing unsteady disturbances. The modified TURBO analysis is applied herein to predict

unsteady subsonic and transonic flows. The intent is to partially validate this nonlinear

analysis for blade flutter applications via numerical results for benchmark unsteady flows,

and to demonstrate the analysis for a realistic fan rotor. For these purposes, we have

considered unsteady subsonic flows through a 3D version of the 10th Standard Cascade,

and unsteady transonic flows through the first stage rotor of the NASA Lewis, Rotor 67,

two-stage fan.
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1. Introduction

The development of analyses to predict unsteady flows through turbomachinery blade

rows has been motivated primarily by the need to predict the aeroelastic (flutter and forced

vibration) and aeroacoustic (sound generation and propagation) characteristics of the blad-

ing. Accurate and efficient aerodynamic analyses are needed to determine the unsteady

loads that act on the blades and the unsteady pressure responses that persist upstream and

downstream of the blade row, for various sources of unsteady excitation. The latter include

structural (blade) motions and aerodynamic disturbances at inlet and exit that carry energy

towards the blade row.

The computational resources required to simulate nonlinear unsteady flows continue to

prohibit the use of such simulations in detailed aeroelastic or aeroacoustic design studies.

Thus, for the most part, the unsteady aerodynamic analyses that are being used in tur-

bomachinery aeroelastic and aeroacoustic design prediction systems are based on linearized

inviscid flow theory [Ver93], which has evolved to the point that three-dimensional, lin-

earized, Euler analyses are being developed [HL93, HCL94, Sre96, MV97]. Linear analyses

meet the needs of turbomachinery designs for efficient unsteady aerodynamic response pre-

dictions. However, of necessity, such analyses ignore potentially important physical features

of unsteady flows, including the effects of moderate to large amplitude unsteady excitation

and the effects of viscous-layer displacement and separation.

Time-accurate, nonlinear, Euler and Reynolds-averaged Navier-Stokes analyses, are there-

fore needed to understand and predict the relative importance of nonlinear and viscous ef-

fects on the unsteady flows associated with blade vibration and blade-row noise generation.

Since the mid 1980's, a number of such analyses have been developed for turbomachin-

ery configurations. These have been applied to predict flows through single blade rows in

which the unsteadiness is caused by prescribed blade vibrations [HR89, Sid91, HD93, GV94,

PGW96, GC96, AV96, BSK97] or by prescribed aerodynamic disturbances at the inflow

or outflow boundaries [Gi188, DV94, CCA94], and flows through aerodynamically coupled

arrays in which the unsteadiness is caused by the relative motions of adjacent blade rows

[Rai87, R.a_89, JW89, JW90, JHW92, CW93].

These recent and important advances in the numerical simulation of unsteady flows

demonstrate the power and potential usefulness of nonlinear unsteady aerodynamic codes.

Most of the related activity to date has been focused on developing numerical strategies for

solving the Euler and Navier-Stokes equations and on implementing these strategies into use-

ful codes. Although there is still a need for improvements in algorithm speed and accuracy

and, more importantly, in the treatment of flow boundary conditions, a major focus of con-

tinuing work must be placed on validating the capabilities of modern Euler/Navier-Stokes

solution schemes for accurately predicting turbomachinery flow phenomena. Once validated,

Euler and Navier-Stokes analyses for turbomachinery unsteady flows can provide engineers

with useful insights into the impact of nonlinear and viscous effects on blade vibration and

discrete-tone noise generation. These analyses would also provide a test-bed for evaluating

and improving the linearized models that are being developed for use in aeroelastic and

aeroacoustic design prediction systems.

Under the present effort, we have modified and applied the nonlinear unsteady analysis,

TURBO, to predict unsteady flows through single vibrating blade rows. TURBO is a multi-



stage turbomachinery code that has been constructed, as part of a long range research effort

[Jan89, JW89, JW90, JHW92, CW93, CCA94] conducted at Mississippi State University

(MSU), to simulate the complex unsteady flow phenomena occurring in turbomachines.

The Euler, the thin-layer Reynolds-averaged Navier-Stokes equations or the full Reynolds-

averaged Navier-Stokes equations are solved using an implicit, cell-centered finite volume

scheme, in v_-hich inviscid or convective flux Jacobians are evaluated using flux vector splitting

and inviscid residual fluxes are evaluated using Roe's [RoeS1] flux difference splitting to

form a higher-order TVD scheme. Viscous or diffusive fluxes can be treated either explicitly

[CW93] or implicitly [CCA94]. Newton subiterations are used as part of the time-stepping

procedure to converge the unsteady solution at each time step. At each subiteration level, the

discrete equations are approximately factored and solved using a modified two-pass matrix

solver [Whig0], based on the Ganss-Seidel iteration procedure.

In the present study, we have extended and applied TURBO to predict unsteady flows

through single vibrating blade rows operating within cylindrical annular ducts. In particular,

we have implemented a blade vibration capability into TURBO so that unsteady solutions

can be determined over a domain that deforms with a vibratory blade rotation. In addition,

we have incorporated far-field conditions into TURBO co render computational inlet and

exit boundaries transparent to outgoing disturbances and to allow incoming aerodynamic

disturbances to be prescribed as approximate solutions to the governing equations.

The goals of the present effort have been to extend, demonstrate and validate the TURBO

analysis for blade flutter applications. In the present version of TURBO, the implicit, wave-

split, finite-volume analysis, developed at MSU, is applied to predict the unsteady flow in the

near field, and coupled at the computational inflow and outflow boundaries, to far-field eige-

nanalyses for the unsteady perturbations of fully-developed, axisymmetric, mean flows. The

resulting analysis is described in this report and applied to predict unsteady flows through

a three-dimensional version of the 10th Standard Cascade [FV93] and the NASA Rotor 67

fan. We have considered inviscid unsteady subsonic and tIansonic flows excited by prescribed

blade vibrations and, for validation purposes, we have compared the TURBO results for 10th

Standard Cascade with those based on the two-dimensional, potential-based linearization,

LINFLO [Ver93], and those based on the three-dimensional, linearized Euler analysis, LIN-

FLUX [MV97]. The predictions indicate that the current version of the 3D TURBO analysis

can provide useful and accurate unsteady aerodynamic r,_ponse information, provided that

meshes of sufficient density and clustering are employed.
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2. Unsteady Flow through a Vibrating Blade Row

We consider the flow, at high Reynolds number (Re) and with negligible body forces, of

a perfect gas with constant specific heats through a rotating and vibrating blade row that

operates within a stationary annular duct (see Figure 1). The duct is of infinite axial extent

and has hub and duct radii, r = r_ and r = rD, respectively, and the blade row consists

of Ns blades which rotate about the duct axis at constant angular velocity f/- g/e_. We

assume that the flows far upstream and far downstream from the blade row are at most

small perturbations of fully-developed, axisymmetric, steady background flows, and that in

the absence of a vibratory motion, the blades are identical in shape, equally spaced around

the rotor, and identical in orientation relative to the axisymmetric inlet flow.

We will examine this unsteady flow in both stationary and rotating frames of reference,

in terms of cylindrical (_, r, 6, t) and Cartesian (xl, x2, x3, t) = (_, r cos 0, r sin 0, t) co-

ordinates. Here _ and r measure distance along and radially outward from the duct axis,

respectively, and O measures angular distance in the direction opposite to the direction of

rotation, which is counterclockwise relative to an observer looking in the axial flow direction.

When necessary, we will use the superscripts abs or rel to indicate that a physical quantity

is measured relative to stationary or the rotating frame; e.g., 0 abs "- 0 rel -_- _'_t.

We intend to numerically resolve the unsteady flow, in terms of curvilinear spatial co-

ordinates, on a computational grid that rotates with the blade row and deforms with the

vibratory blade motion. The vector 7?_(-2, t) describes the displacement of a moving field

(grid) point, x, relative to its reference or mean position, _, in the rotating frame. The

displacement field, 7_, is prescribed so that the solution domain deforms with the vibratory

motions of the blades and is rigid far from the blade row.

For aeroelastic and aeroacoustic applications, we are usually interested in a restricted class

of unsteady flows; those in which the unsteady fluctuations can be regarded as disturbances

to a background flow that is steady in a blade-fixed, rotating reference frame. Moreover,

the steady background flows far upstream (say _ _< __) and far downstream (_ >_ _+)

from the blade row can be assumed to consist of at most a small steady perturbation from a

fully-developed, axisymmetric, steady flow. The time-dependent or unsteady fluctuations in

these flows arise from temporally and circumferentially periodic unsteady excitations, i.e.,

prescribed vibratory blade motions and prescribed aerodynamic disturbances at inlet and

exit that carry energy towards the blade row.

For example, if the blades vibrate at reduced frequency, w, as seen by an observer in the

rotating frame, and at constant interblade phase angle, a, we can write

_s_(f, _ + 27rn/Ns,_,t) -- TnRe{Rs(_,_,_)exp[i(wt + ha)]}, _ on B. (2.1)

Here, 7_B. is the displacement of a point on the nth moving blade surface from its mean

position in the rotating frame; Tn is a rotation matrix, which rotates vectors through n

passages; n = 0, 1, 2,..., NB - 1 is a blade index; Re{ } denotes the real part of { }; RB

is the complex amplitude of the reference (n - 0) blade displacement; and B refers to the

mean position of the reference blade. The interblade phase angle, a, is determined by the

nodal diameter pattern of the vibratory blade motion, i.e., a = 2rND/NB, where INDI,

the number of nodal diameters, is the integer count of the number of times a disturbance
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pattern repeats around the wheel. The sign of ND is determined by the direction of rotation

of the disturbance pattern. If the vibratory disturbance pattern moves in the direction of

blade rotation, i.e., the negative 0-direction, then ND > 0. We should note that for an

excitation of the form (2.1) the unsteady flow will be periodic over Np blade passages, where

up = UB/IUol, No # O.
The unsteady disturbances in the far upstream and far- downstream regions are, in part,

prescribed as a fluid dynamic excitation and, in part, depend upon the interaction between

the fluid and the blading. Typically, an unsteady aerodynamic excitation is represented by a

linear combination of fundamental disturbances that are harmonic in time at relative reduced

frequency w, and in the circumferential direction at angn]ar wave number _ = No + ruNs,

where m is an interger. The frequency of such an excitation in the stationary or absolute

frame is w abs = w - r_, where the term -r_ accounts for the Doppler shift. In the

present study, we will restrict our consideration to unsteady flows driven by prescribed blade

motions; therefore, all external aerodynamic excitations are set equal to zero.

6



3. Fluid Dynamic Equations

In the present discussion, all physical variables are dimensionless. Lengths are scaled

with respect to the reference length L*; time with respect to the ratio L*/V* where V* is the

reference flow speed; velocity with respect to V*; density with respect to a reference density

p*; stress, and therefore, pressure, with respect to p* (V*)2; and specific internal energy with

respect to (V*) 2. The superscript • refers to a dimensional reference value of a flow variable.

The scalings for the remaining variables can be determined from the equations given below,

which have the same general forms as their dimensional counterparts. The reference length,

L*, is typically taken to be the blade chord at the reference radial location r_t; the reference

fluid density and flow speed, to be the temporally- and circumferentially-averaged inlet

density and relative flow speed at r* = r_, respectively.

3.1 Governing Equations

The field equations that govern the unsteady flow are determined from the conservation

laws for mass, momentum and energy, the thermodynamic relations for a perfect gas, and

the constitutive relations for a Newtonian fluid. After ensemble averaging these equations

and applying an algebraic turbulence model, we arrive at the following form of the Reynolds-

averaged Navier-Stokes equations

-_- + + (_j) = S, (3.1)
X

in which a summation over repeated indices is implied.

The state, l_l, flux, F1 and (_i, J = 1, 2, 3, and source term, S, vectors in equation (3.1),

are given by

, Fj =

_9Xl

and

_Vxj

_%÷¢61,
+P 2j

PV_sV:%+ Phsj

p(ET + P/_)V_

(_.i --

0

--_zlzj

(3.2)

0

0

= _ a(2V,, + _x2) ,

-a(2yx=-
+

where _, V, F_T -- _7 + 17"2/2 and/5 = (.y_ 1)p(/_T- V2/2) are the fluid density, relative

velocity, relative specific total internal energy, and pressure, respectively, and 7 is the fluid

specific heat ratio of the fluid. The components of the viscous stress tensor, l=I, and, assuming

Fourier's law for the conduction of heat, those of the heat flux vector, (_, are given by

[I,,,, = ftdtRe -1 [-_-xj + _ _ ijj (3.3)
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and

Q,x, = -_ Pr-l Re-1 _-'_x . (3.4)

Here _" = 7(_r - V2/2) is the fluid temperature, and Re' and Pr are the Reynolds number

and Prandtl number, respectively, of the flow. The inviscid flux, _'j, and source term vectors

in equation (3.1) can also be written as explicit functions of the state variables; i.e.,

.Fj(O) -

_+I

0j-I-1[_'2/01 + P_lj

r..Tj+,&/r.71+ b,5,j
r_)j+,8.,/O,+ P,_j
O_+,(&+ P)IO,

, s(u,x) =

0

0

_2_rlx2 + 2GU4

_'_2_/'lX 3 -- 2_0 3

a2(D3x2+ 0,=3)

(3.5)

where ]5 _. (7 - 1)[f_r5 - _-1(_ + _3 + _)/2].

The matrix equation (3.1) describes the unsteady flow at a moving field point, x, as

seen by an observer fixed in a reference frame that rotates at constant velocity, f/. If

we set [2 = 0, we recover an equation that describes the flow in a stationary frame of

reference. Equation (3.1) describes the behavior of the ensemble- or Reynolds-averaged

values of the time-dependent flow variables. The effects of random turbulent fluctuations

have been accommodated by using the effective viscosity, _efr = /2 + _, and the effective

thermal conductivity, P¢_ = Ft + (Pr/PrT)_, where Pr_ is the turbulent Prandtl number,

in the definitions of the viscous stress tensor and the heat flux vector, respectively. The

molecular viscosity, /2, and thermal conductivity, _ - _, are related to the temperature

using Sutherland's Law, the eddy viscosity, _, is determined using the Baldwin Lomax [BL78]

algebraic turbulence model, and we set Pr = 0.72 and PrT -- 0.9.

Transformation to Curvilinear Coordinates

It is convenient to solve the foregoing field equations in terms of body-fitted curvilinear

spatial coordinates (or1, c_2, or3) and the time T = t, where the positive directions of C_l, c_2

and or3 coordinate curves generally point in the streamwise, the spanwise (hub-to-tip) and

the pitchwise directions. After introducing the transformation (x,t) --e [ct(x, t), T] into

equation (3.1), we find that

001 + o-_J°(fj + 6j) = _ (3.6)

Oxk ) _j=.l-'--Gk ,=
(3.7)

and J is the Jacobian of the transformation (x, t) --+ (a, _-). The Cartesian components of

l=I and (_ are determined from the relations

[oo,,,o#=, o_, oe+ o_ a_,, ,_,/3] (3.8)[I=,=_ =_,_Re -1 [ Oxj Oak + Oxi O0_k 20Xk Oa,n
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and

Qx, - -_e_Pr-l Re -10aj
Oxi oaj (3.9)

Boundary Conditions

For turbomachinery applications the field equations (3.1) or (3.6) must be supplemented

by boundary conditions at the blade surfaces and at the duct walls, periodicity conditions

over Np blade passages; e.g., V(r, O+2rNp/NB, _) - TNpt(r, 0, _), and far-field conditions

at the computational inflow (_ = __) and outflow (_ = _+) boundaries. Since transient

unsteady aerodynamic behavior is usually not of interest, a precise knowledge of the initial

state of the fluid is not required. No-slip conditions, i.e.,

_rabs __ _-_ X r -_- _Bn for x 6 B, and t abs = 0 for r = rH, rD , (3.10)

where t abs = t tel + n x r, apply at the blade moving surfaces, B,, and at the stationary

duct walls, respectively. In addition, either the heat flux Q • nB, or the temperature T

must be prescribed at such surfaces. Temporally- and circumferentially-averaged values

of the total temperature, the total pressure and the flow angle are specified as functions

of radius at the computational inflow boundary, i.e., at _ = __, and the temporally- and

circumferentially-averaged pressure is specified at the outflow boundary, _ - _+, consistent

with radial equilibrium. In general, the unsteady fluctuations at inlet and exit that carry

energy towards the blade row must also be specified; those that carry energy away from the

blade row must be determined as part of the nonlinear unsteady solution.

3.2 High Reynolds Number Approximations

Thin-Layer Equations

For most flows of practical interest, the Reynolds number (Re) is sufficiently high so

that the viscous effects are concentrated within thin layers that lie along the blade surfaces

and the duct walls (boundary layers), and extend downstream from the blade trailing edges

(wakes). Such flows can be described by approximate field equations, known as the thin-

layer, Reynolds-averaged, Navier-Stokes equations, leading to a substantial reduction in the

computational resources needed to determine viscous unsteady solutions. The thin-layer

equations are derived from (3.6) by assuming that streamwise gradients of the viscous flux

terms, i.e., 0G1/0al, are small, and hence, can be neglected. In addition, in the c_ and _3

directions, normal second derivatives of the velocity components and the temperature are

retained, but mixed second derivatives are regarded as negligible.

The field equations resulting from the foregoing approximations have the form

061 _to# o O
O_

(3.11)

: TL _.,TL

where the column vectors G 2 and G 3 are the thin-layer approximations to the viscous

flux vectors G2 and G3, respectively. The boundary conditions to be used in conjunction

with equation (3.11) are the same as those discussed above for the full viscous equations.

9



lnviscid Flow (Re -+ oo)

The field equations that govern the fluid motion in the inviscid limit (Re --_ oo), i.e., the

Euler equations,

I + cgaj J = S, (3.12)
O_

2

are obtained from equation (3.6) by setting Gj = 0, j = 1, 2, 3 or from equation (3.11) by
_.TL

setting Gj = 0, j = 2, 3. In principle, the inviscid field equations must be supplemented

by jump conditions that apply at vortex-sheet wakes, Win, and at shocks, Sh_. However,

the usual practice is to solve the inviscid field equations over the entire fluid domain, thereby

capturing discontinuous wake and shock phenomena. The inviscid flow is then determined

as a solution of the Euler equations subject to flow tangency conditions, i.e.,

(_abs _ _ X r -- "R._,_) • n = 0 for x • Bn and t abs. n = 0 for r = rg, rB (3.13)

at the blade surfaces and the duct walls, respectively. The periodic and far-field conditions,

used in the inviscid approximation, are the same as those indicated previously for Navier-

Stokes simulations.

3.3 Solution Strategy

We require numerical solutions to the foregoing nonlinear unsteady boundary-value prob-

lems over Np blade passages, where Np = NB/IND[ if I?,rDI ¢ 0 and Np = 1 if ND -- 0, to

predict the unsteady aerodynamic responses of a blade row to harmonic and circumferentially

periodic, unsteady excitations. In the present study, we will seek such solutions for inviscid

unsteady flows by matching a wave-split, finite-volume analysis for the unsteady flow in the

near field, i.e., in the region __ < _ < _+, to approximate solutions for the unsteady pertur-

bations of fully-developed, axisymmetric, mean flows in the regions far upstream (_ < __)

and far downstream (_ > _+) of the blade row. Thus, we will solve the nonlinear unsteady

equation (3.12) in the near field, a linearized form of this equation in the far-field, and match

the near- and far-field solutions at the computational inflow and outflow boundaries.

The displacement field "R. is assumed to vary harmonically with time, i.e., "R.(X,t) =

Re{it(_) exp(/wt)}. The complex-amplitude of this field, tt(_), must be prescribed over

the entire solution domain. In the present study, tt is defined so that the solution domain

deforms with the blade motion (i.e., It = I_.B, for X • B_), slides along the hub and duct

walls (it- n = 0 for f -- rH, rD), and remains rigid far frora the blade row (R - 0 for _ < _).

In addition, It(_) is prescribed along one blade-to-blade periodic boundary, such that it is

continuous at the blade leading and trailing edges and decays exponentially away from the

blade row. At the other periodic boundary, It is set so as to satisfy the periodicity condition

R(_,O + 27cNp/Ns, _) -- TNpR(f, _,_--) . (3.14)

In the near field, R(_) is first determined along the hub and duct walls as solutions of

Laplace's equation, V_it = 0, in two dimensions. It is then determined in the interior of
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the computational domain as a solution of Laplace's equation in three dimensions, subject

to Dirichlet boundary conditions given above. For the unsteady excitations being considered

herein, it is sufficient to solve for the foregoing linear boundary value problems over a single

extended blade-passage region, since l:t(_) can be specified in the remaining passages using

the phase-lagged periodicity condition

R(f, _ + 2_n/NB, _)--T.R(_, _, _) exp(ina) . (3.15)

Also, note, that for unsteady flows in which no blades vibrations occur, one would simply

set R-- 0.

The near-field,finite-volumeanalysis,which, at present, isperformed in the stationary

flame in terms of absolute flow variables,is described in §4 of this report. The far-field

eigenanalyses,which are performed in the rotating frame in terms of relativeflow variables

are described in §5. These have been coupled and implemented into the TURBO code,

which is demonstrated via the numerical resultsfor inviscidunsteady flows,presented in

§6. Although our numerical resultspertain only to inviscidflows,we have included viscous

equations in thisand the followingsectionsto provide a framework forfuture work.
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4. Near-Field, Finite-Volulne Analysis

A flux split, finite-volume analysis for nonlinear, inviscid, unsteady flows has been de-

veloped [Jan89, JW89, JW90, JHW92], and implemented into the turbomachinery unsteady

flow code, TURBO. This analysis was later extended for the prediction of viscous flows

[CW93, CCA94]. TURBO is an implicit, multi-block, cell-centered, finite-volume code, that

can be used to predict three-dimensional, nonlinear, inviscid and viscous, steady and un-

steady flows through and around blade rows. The fluid dynamic equations are solved in

a stationary reference frame over a solution domain that rotates with the blade row and

deforms with the vibratory blade motions. A brief description of the TURBO analysis is

given below. Additional information can be found in the references cited above.

The computational mesh used in TURBO is a sheared H-mesh. This structured mesh

defines a curvilinear coordinate system, in which the coordinate curves lie along the bound-

aries of the physical domain, such that there is a one-to-one correspondence between the

points, x, in the physical domain and the points, ¢_, in the computational domain. A time-

dependent coordinate transformation, (x,t) --+ (c_,T), where x = _ + 7_(_, t), from the

rotating physical domain, in which the grid deforms with the blade motion, to a computa-

tional domain, in which the grid is stationary, uniform, and orthogonal, is applied to simplify

the implementation of numerical differencing and flow boundary conditions. The al, c_2 and

a3 computational coordinates, or the I, J, K computational mesh indices, refer to the axial,

spanwise and pitchwise directions, respectively. Cell faces are surfaces of constant computa-

tional coordinate, so that each cell is bounded by the six surfaces: al = I - 1/2 and I + 1/2,

and c_2 - J - 1/2 and J ÷ 1/2, and c_3 - K - 1/2 and K + 1/2.

4.1 Finite-Volume Equations

For a finite-volume discretization of the governing field equations, the time-dependent

geometrical properties of the mesh cells in physical space are required. These include the

cell volume, _ = J-_, the volume swept out per unit time by the constant c_j face as the cell

interface moves, _.i = J-lO°_J/Or, and the area of the constant c_j cell face projected in the

xk direction, Ajk = J-lOc_j/Oxk. These geometric properties of a cell are determined from

the instantaneous locations of the cell vertices in physic_d space.

The finite-volume spatial discretization [Jan89, CW93] of equation (3.5), expressed in

the stationary frame (n = 0), can be written as

0u/0 = - =-R (4.1)

where U = _0, Fj = -_jO + AjkFk and Gj = Ajk(_j Here, 0 represents an average of
^ ,,

the physical state vector over a cell volume; Fj is the ii_viscid or convective flux and Gj is

the viscous or diffusive flux, across a constant c_j cell face; and R is the residual. The flux

vectors F and G depend on the physical state varibles :rod the cell surface properties, and

the residual 1_ is a nonlinear function of the physical sBate vector, lJ. The operator _j in

equation (4.1) denotes the difference in the o_j-direction across adjacent cell interfaces, and
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the repeated j index implies summation over all computational coordinate directions, so that

the terms 6jFj and 6jGj are the net inviscid and viscous fluxes, respectively, through a cell.

The time-derivative in (4.1) is approximated using a second-order, implicit, three-level,

backward, difference approximation. After applying this scheme and separating the time

dependence of the state vector and the cell volume, we find that

__ n+l

zgAl_ + R = _,+I = @,-IAOn-1/2AT -- I_(3@ "+z -- 4z9" + @n-1)/2AT, (4.2)

where @ = 3v_"+1/2A_ -, AI)" = lJ "+I - IJ", the vector _,+1 is determined by the terms on

the right-hand side of (4.2), and the superscript n refers to the nth time level. The nonlinear

equation (4.2) is solved at each time step using a Newton iteration procedure in which the

viscous flux terms are treated explicitly, i.e., we set

0AUP + aOp = - 0")- R +

where p = 1, 2,... , is the Newton iteration index, l_I° = U", Al_Ip = f.lp - 0 p-1 , and 0 p is

the Newton update to the state vector. Once the Newton iteration converges AU p -- 0, and
- On÷l•

4.2 Evaluation of Flux Terms

To simplify the description of the spatial discretizations that are used to evaluate the

flux terms that appear in (4.3), we consider a "one-dimensional inviscid flow" in which, for

example, Fj - F is the inviscid flux vector in the aj - c_ computational coordinate direction.

The subscript J will refer to the cell volume bounded by the cell surfaces at a = J + 1/2

and _ -- J - 1/2. Extensions of the equations that follow to multi-dimensional flows are

straightforward conceptually, but involve the use of tedious additional nomenclature.

A cell-centered finite-volume discretization requires that flux information at say the J + 1

cell interface be computed in terms of the values of the state variables, l_lj and l_lj+l, in the

neighboring cell volumes and the geometric properties of the grid, i.e., vgj+1/2 and Aj+I/2, at

the cell interface. In the TURBO analysis, a flux splitting technique is applied to evaluate

the interfacial inviscid fluxes. It is based on a similarity transformation and an eigenvalue

decomposition, of the flux Jacobian matrix, cgF/00, into matrices that account for right (+)

and left (-) traveling disturbances.

Thus, the matrix cgF/01_llOj,a_+l/2 , where the subscripts indicate that the flux Jacobian

matrix is evaluated in terms of the state vector in Jth cell and the surface metrics, indicated

by G j+1/2, at the (J + 1/2)th cell interface, is split according to

,G.]+112 U j, J+1/2

(4.4)

c-i

where the matrices T and T contain the right and left eigenvectors, respectively, of 0F/01:I,
=+ =-

and A and A are diagonal matrices containing the positive (+) and negative (-) eigenval-
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ues. The eigenvaluesof the flux Jacobian matrix are used to determine which characteristic

modes are taken into account, thus controlling the direction of spatial differencing.

Two different approximations are applied to evaluate interfacial, inviscid, flux informa-

tion. One is based on flux vector splitting [SW81], and is used to evaluate the left-hand

side flux terms in (4.3). This approximation is only first-order accurate, but allows for a

convenient approximate factorization of equation (4.3), which facilitates the time-marching

solution. The other is based on flux difference splitting [RoeS1], and is used to evaluate the

fight-hand side inviscid flux terms. In TURBO, Roe's first-order accurate, flux-difference

splitting approximation is modified, by adding corrective fluxes, to achieve higher order

spatial accuracy.

Left-Hand-Side Flux Terms

The flux-vector splitting approximation to the Newtor_ update to the inviscid flux vector

at the J + 1/2 cell interface is

i j+1/200--F_uIo,_,.AISIP) = 0_+ Al[l_+ _-pl .+, AI[I_+I ' (4.5)

where the subscripts on the right-hand-side, flux Jacobiaa matrices indicate that these ma-
trices are evaluated in terms of the state vector, 0 p-l, :in the indicated cell volume, J or

J + 1, and the swept volume and surface area at the n + 1 time level and the J + 1/2 cell

interface. The approximation (4.5) results in first order spatial accuracy, but it is only used

to construct an approximate factorization of the Newton iteration equation (4.3). Therefore,

any errors that are introduced, do not appear in the converged final solution.

The terms in (4.5) are spatially differenced in the a-direction to determine the Newton

update to the net inviscid flux through the Jth cell volume; i.e,

b"-V - p 1 -+1

J - v.,+,,e.+,.
(4.6)

to determine the net flux through the Jth cell volume.

Right-Hand Side Inviscid Flux Terms

The inviscid flux vectors that appear in the residual on the right-hand side of (4.3) are

evaluated using flux difference splitting [RoeS1]. In TUPd30, the flux, F j+1/2, at the J + 1/2

cell interface is evaluated in terms of the flux in the cell to the left (J) of the interface and

the flux due to waves approaching the interface from the right. Thus, we set

F_+I/_ = F(O_,G_+I,) + O_ - (Oj+, - Oj), (4.7)

Uj+I/2,GJ+II2
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whereF(Uj, G j+1�2) is a flux based on the state vector in the Jth cell and the cell metrics,

and A, at the J + 1/2 cell interface, and the flux Jacobian matrix OF/OOlO_+l/2,aj+,/2
~ Roe

is evaluated in terms of the intermediate state vector, Uj+I/2, and the cell metrics at the
~ Roe

J + 1/2 interface. The intermediate state vector, Uj+I/2, is defined using the relations:

__.Roe

PJ+I/2 ----_ ,
~ Roe

V j+l/2 =
_J'VJ ÷ _'VJ+l

and (4.8)

~ Roe
E_.,j+I/2 --

The discrete approximation (4.7) is first-order accurate, since the interracial fluxes are

based only upon information from adjacent cells. Higher order spatial accuracy can be

achieved by adding corrective fluxes to the right-hand side of (4.7), which bring in information

from additional neighboring cells. The corrective perturbation flux at the J + 1/2 interface

is comprised of right traveling waves at the upstream interface, J - 1/2, of the Jth cell and

left traveling waves at the downstream interface, J + 3/2, of the (J + 1)th cell. These waves

are approximated using the Roe-averaged, flux Jacobian matrix at the J + 1/2 interface.

Thus, the enhanced approximation to the perturbation flux is obtained by adding terms of
the form

1 0_-' 0_, ,J.j+,.2 Oj_ )
J+l/_ J

and

to the right-hand side of (4.7), which should result in second order spatial accuracy. Flux

limiters [VL74] axe used in conjunction with the corrective fluxes to control dispersive errors,

such as those that occur at shocks and at stagnation points. The limiters are activated by

changes in sign in the jumps in the characteristic variables at adjacent interfaces.

Once the interfacial fluxes have been computed, they axe spatially differenced, i.e.,

(4.9)

to compute the net inviscid flux through the Jth control volume. A second-order discrete

approximation is used to evaluate the interracial fluxes in (4.9). Note that in computing the

residual at the p- 1 Newton iteration level, the flux vectors in (4.9) axe evaluated in terms

of the state variables at the p - 1 iteration level and the grid properties at the n + 1 time
level.

Right-Hand Side Viscous Flux Terms

At each step of the Newton iteration procedure, the viscous flux vector, G, is evaluated

at the cell interfaces in terms of the values of the flow variables, at the p- 1 iteration level, in
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the cell volumes to the left and right of the interface and the area of the cell interface at the

n + 1 time level. The individual terms that make up this vector are considered separately.

Derivatives of the fluid properties at cell interfaces are evaluated in terms of the property

values in the cell volumes to the left and right of the interface, using central difference

approximations; the velocities at cell interfaces, by averaging their values in the adjacent

cell volumes. Once the viscous fluxes at the cell interfaces have been computed, they are

spatially differenced according to

5_ J - GJ+t/2 - _y-t/2

to compute the net viscous flux through the cell volume.

(4.10)

4.3 Solution Procedure

The spatial difference approximation (4.6) leads to an approximate factorization of the

Newton iteration equation (4.3) of the form

^ _ + -p _- -- ~ = ^ ~p--1 _p--1 _n+t (4.11)I)jATbT_ -- Mj_IAUj_ 1 ÷ Mj+IAU_+I -tgj(Uj - l_T_) - Rj ÷ =j ,

where the index J refers to the Jth computational cel: and the D and M matrices are

evaluated based on the state vector Op-1. The _ matrix: contains the diagonal elements of
=+ __-

the iteration matrix, and the M and M matrices contain the off-diagonal elements in the

negative and positive computational coordinate directions, respectively, i.e.,

Dj = tgjI + _ O_-',G_j_I/2 _ ]:)_-_,a_+_/2

(4.12)

+ ^
Mj_t = 0_ + and Mj+ t =

ouIo :,,o;tb o-v-,-, +,

To reduce the errors introduced by the approximate factorization, equation (4.11) is

solved for AI:IP using a symmetric Gauss-Seidel subiteration procedure. The first subit-

eration is over positive grid indices; the second, over negative grid indices. The subitera-

tion procedure is thus an LU decomposition of the Newton iteration matrix, with forward

and backward substitution. Once the Gauss-Seidel subiteration procedure converges, equa-

tion (4.3) is satisfied, and the calculation proceeds to the next Newton-iteration level. As the

solution at time _- = __n+t converges, any errors introduced by the Newton iteration or the

approximate factorization vanish. Only the errors in the calculation of the residual of equa-

tion (4.1) remain. The terms that make up this residual are calculated using second-order

accurate difference approximations.
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Boundary Conditions

The field equation (4.1) must be solved subject to conditions at the boundaries of the

near-field computational domain. The flow tangency conditions used in the inviscid version

of TURBO, cf. (3.13), are implemented by using phantom cells inside a solid surface. The

density and pressure in a phantom cell are defined by a first-order accurate reflection con-

dition, and the phantom cell velocity is defined such that the velocity at a solid surface,

which is the average of the velocities in the phantom and the interior cells, satisfies the flow

tangency condition, in a manner consistent with the finite volume discretization. Periodicity

conditions; e.g., Vv = TNpVL, where the subscripts U and L refer to the upper and lower

periodic boundaries of the computational domain, are imposed at the pitchwise boundaries.

Finally, as discussed in the next section, analytic/numeric far-field solutions, based on re-

duced forms of the governing equations, are matched to the numerical near-field solution at

the computational inflow and outflow boundaries (_ = _:).

The current TURBO implementation uses explicit boundary conditions, which are incor-

porated into the SGS iteration procedure, so that the boundary conditions are imposed in a

semi-implicit manner. This treatment has been found to yield better convergence properties

than a purely explicit implementation.
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5. Far-Field Eigenanalyses

Far-fieldsolutions,based on reduced setsof governing equations,can be applied to restrict

axialextent of the near-fieldcomputational domain. To develop such solutions,we require

an inviscidform of the fieldequation (3.1),that applies at fixed locations (x = _) in the

rotatingframe. Expressed in terms of fluiddynamic variables,V and/_T, measured relative

to a reference frame that rotates with the blade row and in terms of rotating cylindrical

coordinates,thisequation has the form

-_-cgl] I r-_ 0rFr_r _ 0'_--+ +r ' +:_-=S, (5.1)
X

where the state and source-term vectors in equation (5.1) are given by

(5.2)

The flux vectors F_(13), F0(13) and F_(I3) and the pressure P(13)have functional forms

similar to those indicated previously for the Fj(13), j = 1, 2, 3, and P(U) in §3.1.

5.1 Unsteady Perturbations in the Far Field

To determine approximate solutions to equation (5._), that describe the flows far up-

stream (_ < _=_) and far downstream (_ > _+) of a blade row, we first expand the unsteady

state vector, U, into an asymptotic series of the form

13Ix, t] = U(x) + fi(x,t) +...= U(x) + Re{u(x)exp(iwt)} + ... , (5.3)

where the column vectors U(x) and fi(x, t) contain the conservation variables for the zeroth-

order background flow, which is steady in the rotating frame, and the first-order unsteady

perturbation, respectively, and the dots refer to higher order terms. The components of the

vector u are the complex amplitudes of the first-order uzLsteady conservation variables, i.e.,

u T = [p, _vr+pYr, fyvo+pYo, _v_+pY_, f)eT+pET] where _, V and ET and p, v, and eT are

the steady and the complex amplitudes of the first-order unsteady, primitive, flow variables,

respectively. The unsteady flux, say F_, and source term_ S, vectors are approximated using

Taylor series expansions about the mean flow state, U, i e.,

OF_ _ - - OS _

Fr(O) = F_(U) + -0-_-u + ... and S(U):= S(U) + _-_u+ .... (5.4)

Field equations, that describe the steady and the fi_t-order unsteady flows in the far

upstream and far downstream regions, are determined by substituting the foregoing series
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expansionsinto the nonlinear, time-dependent equation (5.1), and equating terms of like

order. The resulting equations for the zeroth- and first-order flows are

r_ 10rFr -10F0 0F_.____- S (5.5)
Or + r +

and

/wu + r -z 0(rAu) r- 10Bu 0Cu
Or ÷ 0--"0-÷ O_ Du - 0, (5.6)

respectively, where A = 0Fr /0U, B = 0F0 /0U and C = 0F_ /0U are flux Jacobian

matrices and D = 0S/0U is the source-term Jacobian.

We assume that, far from the blade row, the mean or steady flow quantities are dependent

only on radial position; i.e., p = p(r), P = P(r), etc., and that the radial component of the

steady velocity is negligible; i.e., V = Vo(r)eo + V_(r)e_. Under these conditions, the steady

field equation (5.5) reduces to

fi--z __dP _ r-lV_ ÷ 212Vs + _2r -- r-l(y0abs) 2 (5.7)
dr

where V0abs - V0 + _ x r is the absolute circumferential velocity. We also assume that the

kinematic and thermodynamic data needed, in conjunction with (5.7), to completely specify

the steady background flow in the far field are available.

For the mean flow conditions just described, the linearized unsteady equation (5.6) re-
duces to

iwu + r-l OkrA2 u)"" + -z-
au Ou

Or r B2_-_ + C2_- - Du = 0, (5.8)

where the subscript 2 on the Jacobian matrices in (5.8) indicates that they are evaluated at

U2 = fiV_ = 0; e.g., A2 - OF_/OU[v_=o.

Uniform Mean Flow

For the special case of a uniform mean flow, in the absolute frame, i.e., V0abs = 0 and V_

is a constant, an exact solution can be determined for the first-order unsteady perturbation.

This solution indicates that an arbitrary unsteady disturbance can be represented as the

sum of independent entropic, vortical and irrotational acoustic disturbances. A state vector,

uc, representing a linear combination of entropic and vortical disturbances is a solution

of (5.8) that satisfies the convection equation Due/Dr = (iw + V. V)uc = 0. Thus, such

disturbances are convected by the mean flow, and, for an unsteady flow occurring at temporal

frequency w in the rotating frame, Uc has a general solution of the form

OO

Uc -- _ urn(r) exp[i(a_,m_ +rhO)] . (5.9)
fl'l.=-- O0

Here, the u_ are arbitrary functions of radius, rh = ND+mNB and _,m = -(w-rh_x)V( 1 =
i. ,abs_]'- 1

--,, ,_ , are the circumferential angular and axial linear wave numbers of the ruth distur-
bance, and" absw m -- w -- rhl2x is the temporal frequency of the ruth disturbance as seen by an
observer fixed in the absolute frame.
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The acoustic disturbancesare governedby a convected wave equation for the unsteady

pressure, which can be solved analytically [TS62]. The resulting solution for the complex-

amplitude of the unsteady pressure in a subsonic axial mean flow is

oo OO

P = _ e"_° _ [P_u exp(x_) + P+u exp(x+u_)] Emu(r)" (5.10)

Here P_u are the amplitudes of the downstream and upstream traveling pressure waves, and

Em_(r) - J,_(kmur) + Qm_,Yrn(kmur) are the "characteristic E-functions" of [TS62]. The
E-functions are combinations of Bessel functions, of order rh, of the first and second kinds.

The constants kmu and Q,_ in (5.10) are determined by the duct-wall boundary conditions,

and the index # = 0, 1, 2, ... indicates the number of zero crossings or nodes in the #th

radial mode.

The axial exponential coefficients, X_mu = fl_u + z,_,,_,,"=F are given by

(win } > --= M_)A kmt,, thenwhere M_ VJA < 1 is the mean axial Mach number. [f . abs\2 (1 2 2 2

the X_u are purely imaginary, and the rn# th pressure patterns propagate. If the X_mu are

complex, then one pattern attenuates, and the other grows exponentially, with axial distance.

The perturbation state vector for acoustic disturbanc_ is given by

oo oc

un -- _ e i'n° _ [u_ exp (X_u_) + '¢u exp (X+u_)] , (5.12)

where the modal state vectors, u_(r), are determined, in terms of the pressure, from the

linearized unsteady field equations. Note that, in addition to different axial behaviors, the

acoustic disturbances in (5.12) and the convected disturbances in (5.9) have different radial

behaviors. The former occur in radial modes, the shapes of which are determined by the

unsteady field equations, whereas the latter have arbitrary radial dependence.

Nonuniform Mean Flow

Guided by the exact solutions for uniform mean flows, approximate solutions to the

linearized unsteady equation (5.8) can be constructed Jbr nonuniform steady background

flows [MV97]. For this purpose, we set u = ue + Uw, where Uc describes the convected

disturbance field, and

0o oo

Uw -- _ exp(i_O) _ amnuRm,_(r)exp(x,nn_) , (5.13)
rr_-_-- oo n ---O

describes a series of modal type disturbances. The summation over n in (5.13) includes

different possible types of modes, such as upstream or downstream traveling modes as well

as modes with different numbers of radial zero crossings.

The convected disturbance is a solution to equation (5.8) of the form (5.9), but, for

nonuniform mean flows, the axial wave numbers, ,¢_,rn(r) - -[w + rhr-lVo(r)]/V_(r), are
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functions of radius. The convected field may contain entropic and/or vortical disturbances,

depending on the properties of the mean flow. However, for a general nonisentropic, rota-

tional mean flow, no convected field will exist.

The modal disturbances are determined by substituting the assumed form of the solution,

(5.13), into the field equation (5.8), yielding the system

- R
/wI u_,R + r 1_rrO(rA2 u_,) + i_r-lB2 umn + xmnC2 u_ - D2 tl_n = 0 , (5.14)

which must be solved numerically. After discretizing (5.14), and applying the hub- and

duct-wall boundary conditions, vr = 0 for r = rH, rD, we obtain the matrix equation

(P- x_.C_) 4. = 0 (5.15)

where P = -iwI- L(r, A2) - i_hr -1 B2 + D2 and L(r, A2) is a finite difference approximation

to r-lO(rA2u_,)/Or. The column vector u_, in equation (5.15) contains an entry for each

of the five conservation variables at each radial discretization point.

Equation (5.15) can be solved [MV97] using a standard linear algebra routine, to de-

termine the axial eigenvalues, X,_,, and the fight eigenvectors, u_,(r), of the modal far-

field unsteady perturbations. The left eigenvectors are determined by solving the equation

(P - x_,C)Xu_ = 0, where the superscript H denotes the conjugate transpose. An or-

thonormal set of left eigenvectors is obtained by setting (v_,) _ - (uL,)HC/[(ttL,)gCuR,].

By invoking the orthogonality of left and right eigenvectors, the complex amplitudes of the

modal disturbances, a,,,, are determined by taking inner products involving v,_nL and Uw,

i.e.,

L NB f+2_/N_
am, = (vrn,, _- se uw exp[-(X,,,_ ÷ i£nO)]dO). (5.16)

5.2 Classification of Unsteady Disturbances

Unsteady perturbations of uniform mean flows can be represented as superpositions of

convected entropic and vortical disturbances and upstream- and downstream traveling irro-

tational pressure disturbances. For nonuniform mean flows, the situation is more compli-

cated [Kou95]. In particular, for rotational, but isentropic, mean flows, the unsteady entropy

is an independent convected disturbance. However, because of the coupling between vortical

and acoustic disturbances, due to mean-flow vorticity, neither convected vortical nor irrota-

tional acoustic disturbances exist. Instead, nearly-convected or vorticity-dominated modal

disturbances, that contain pressure, and acoustic or pressure-dominated disturbances, that

contain vorticity, occur [GA96]. These types of disturbances emerge as solutions of the

eigenvalue problem (5.14).

The group velocity,

= (0P/O )Vg,rnn -- O_d / OXrnn L

i.e., the axial velocity at which an mnth modal disturbance carries energy, is used to classify

modal disturbances. Nearly-convected disturbances travel downstream, without attenuation,

at axial speeds slightly less than and slightly greater than the mean flow speed. If the mean

axial Mach number is subsonic, acoustic disturbances travel both upstream and downstream.
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For nonuniform mean flows, we can further decompose the unsteady state vector to

account for the two types of modal disturbances. Thus, we set Uw = UA + UN, where UA and

ug are the complex amplitudes the acoustic and the nearly-convected unsteady disturbances,

respectively. The state vector for the acoustic disturbances has the form

oo OO

+ R,+exp(x+ )]UA(r,O,_) -- _ exp(irhO) _ [a_,,,AU_'_,A(r) exp(x_,,A_ ) ÷ am_,AUm,,A
m=--oo #=0

(5.18)
where # indicates the number of radial nodes, and the - and ÷ superscripts refer to down-

stream and upstream traveling disturbances. The nearly-convected disturbances, i.e.,

0o Oo

- R.- + R,+ exp (i_;_,_.,N_)] "uN(r, 0,_) -- _ exp(irh0) _ [am_,,Num,,N(r)exp(ia_,,,,_,,N_) ÷ am,,gU_,,A
rn:-_ I._=i

(5.19)
are also ordered by the number of radial nodes, but in this case starting with # - 1, and

the - and + superscripts in (5.19) refer to disturbances that travel downstream at speeds

slightly slower and slightly faster than the convection sp_md.

In numerical calculations, the series in equations, (5.18) and (5.19) must be truncated,

since only finite number of circumferential and radial modes can be accommodated. Also,

the numerical solutions to (5.15) will yield spurious modes; i.e., modes that satisfy the

difference equation (5.15) but not the differential equation (5.14). The spurious modes must

be eliminated or filtered out, to yield a valid solution set. The filtering is based on the

number of radial zero crossings or nodes and the point-to-point oscillations of a computed

radial mode. Such criteria have been usually found to :yield only genuine modes, but the

filtering algorithm is still under development. As another caveat, since only a finite number

of modes are retained after the truncation and filtering processes, the numerical far-field

modal description may be incomplete. Based on previous work [MV97], the inclusion of

spurious modes, or the exclusion of genuine modes, can be detrimental to both the accuracy

and convergence of numerical solutions.

5.3 Near-Field/Far-Field Matching Procedure

The far field solutions must be applied in conjunction with a numerical near-field so-

lution to determine the unsteady flow. Incoming disturbances (excitations) are prescribed,

and outgoing disturbances are determined by matching the near- and far-field solutions.

The amplitudes of the outgoing modal disturbances are determined by taking inner prod-

ucts, cf. (5.16), using the near-field state vector, u, in lieu of Uw. This requires invoking

(vmn, u ) _ (Vm,n, Uw), i.e., that the left eigenmodes of the modalthe assumption that L L

disturbances are orthogonal to the convected disturbances. Once the amplitudes of the out-

going modes are determined, the wave-type modes are slperposed to provide a solution for

Uw -- UA ÷ UN for a finite number of modes.

At the upstream far-field boundary, the convected disturbance is set to describe any

incident convected gust. At the downstream boundary, the wave-type modes are subtracted

from the total unsteady disturbance and the remainder, uc = u - Uw, is treated as a

convected disturbance. The convected disturbance in the region _ > _+ is computed, by the
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method of characteristics,as a solution of [gue/Dt -- O. Since the mean radial velocity has

been assumed to be negligible, uc(r, O, _) -- uc(r, O, _+) exp[-iw(_ - _+)/V_] along constant-

radius characteristics.

In the near-field, the nonlinear unsteady equations are solved using the time-marching

technique described in §4. After a pre-determined number of time steps, say NT, of the

near-field solution, the amplitudes of the wave-type modes, i.e., am_,A_: and amu,N_ , and the

complex amplitude of the far-downstream convected disturbance, uc(r, 0, _+), are updated.

The far-field solutions, which are the sums of wave-type and convected disturbances, are

then updated, and used to supply the far-field boundary information needed for the next set

of NT near-field time-steps.
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6. Numerical Results

Unsteady aerodynamic response predictions will be presented to demonstrate the current

capabilities of the TURBO code. First, we will conside.r subsonic unsteady flows through

a rotor, based on the Tenth Standard Cascade Conflguiation [FV93], which is referred to

in [MV97] as the 3D 10th Standard Cascade. Second, we will analyze the NASA Rotor

67 [SWHS89], which is a research transonic fan consisting of 22 blades.

We consider unsteady flows that are excited by prescribed single-degree-of-freedom, har-

monic, blade motions (e.g., see Figure 2). The motions to be considered are pure translations

normal to the sectional blade chords (RB = hn), and pure rotations about axes at the blade

midchords (R.B(_B) = a x (_B -- XP)). The complex anlplitudes, h and a, of the bending

and torsional vibrations are assumed to be constant along the span; n(r) - noeo -t- nee_ is

the unit normal to the blade chord at radius r, which is tangent to the cylinder r - constant;

and £B -_P is the distance, at constant radius, to the point, _B(r), on the mean or reference

blade surface from the point, _p(r), at the mean position of the torsional axis.

The blade motions are termed subresonant if all fundamental acoustic response distur-

bances attenuate with increasing axial distance from the blade row; superresonant (m, #)

if m and _ such disturbances persist in the far upstream and far downstream flow regions,

respectively, and carry energy away from the blade row; and resonant if at least one acoustic

response disturbance persists in either the far upstream or far downstream regions of the

flow and carries energy along the blade row [Ver89b].

The TURBO analysis has been applied to predict unsteady surface pressure and the local

(We) and global (We) work per cycle responses to the prescribed blade vibrations. The local

and global works per cycle are determined from the relations

- PB_.nBd(wt) and Wc=_wc(xB)dAB. (6.1)
.1¢

In equation (6.1), PB is the pressure acting at the point xB on the moving reference blade

surface B, 7_B is the displacement of this point relative to its mean position in the rotating

frame, nB is a unit vector normal to B and pointing into the fluid, and dAB is a differential

element of surface area.

In addition to the nonlinear TURBO results, for purposes of comparison, we will also

present response predictions for the 3D 10th Standard cm_cade based on the two-dimensional

linearized analysis, LINFLO [Ver93] and three-dimensional linearized analysis, LINFLUX

[MV97]. In LINFLO, the unsteady flow is regarded as a .,mall perturbation of a nonuniform,

potential, steady background flow. The full-potential analysis CASPOF [Cas83] has been

used to provide the steady background flows for the LINI?LO calculations. In LINFLUX, the

unsteady flow is regarded as a small perturbation of a nonuniform, Euler, steady background

flow. The TURBO analysis has been used to provide the steady background flows for the

LINFLUX calculations.

The TURBO nonlinear steady-state solutions axe determined, over a single extended

blade passage, on an H-type grid. Because of our assumptions regarding the flows far from the

blade row, the axial extent of the mesh must be chosen such that the mean flows at inlet and

exit are at most small perturbations from steady background flows that are fully-developed
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and axisymmetric. We have retained first-order steady quantities in our far-field expansions

of the meanflow quantities to accommodate small axial and circumferential variations in

the steady flow. This allows some flexibility in restricting the axial extent of the near-field

computational domain. For the numerical examples presented in this report, we have found

that an extent of one axial chord both upstream and downstream of the blade row to be

conservatively sufficient.

Since the TURBO code is written in terms of absolute-frame variables, the steady-state

solutions for both numerical examples are obtained by marching the calculations in a time-

accurate manner. These steady-state solutions are then used as inputs for both the unsteady

TURBO computations as well as the linearized LINFLUX computations. The unsteady

TURBO solutions are computed over single or multiple blade passages, depending on the

interblade phase angle. The H-grids used for the present TURBO and LINFLUX calculations

have been generated using either the IGB [BH92] or the TIGER [SS91] grid generation

packages.

For the 3D 10th Standard Cascade, the steady background flow at inlet is axial and

uniform relative to a space-fixed or inertial reference frame. Thus, the absolute inlet Mach

number, M abs - M abs is a constant. For the Rotor 67 fan, the relative inlet Mach number
--OO _--OO

is supersonic near the tip and subsonic near the hub. Thus, the steady background flow at

inlet is only approximately axial and uniform relative to a spaced-fixed reference frame.

6.1 3D 10th Standard Configuration

The 3D Tenth Standard Cascade consists of 24 blades, which are twisted to reduce the

variation in mean incidence due to blade rotation. The blades rotate within a cylindri-

cal annular duct of inner radius r_ = 3.395 and outer radius rD -- 4.244. At midspan

(r = rmid), the blades are staggered at e(rmid) = 45deg with a circumferential spacing,

G(rmid) = 21rr_d/NB, of unity, and the midspan blade section is a NACA 5506 airfoil, al-

tered slightly [Ver89a] to have wedge-shaped trailing edges. The blade mean chord lines are

located at

re = _tanO +nG(r), 0 < _ <_ cosO, n = 0,...,NB -- 1 , (6.2)

where
tan e(r) r

- (6.3)
tan e(rmid) rmid

The axial chord is constant, hence, the leading and trailing edge _ and e coordinates are

constant along the entire span. The airfoil chord varies from 0.946 at the hub to 1.057 at

the tip, because of twist, and the local thickness to chord ratio varies to maintain constant

thickness. The cascade operates in a uniform axial inlet flow, which occurs at M_a_ = 0.4015,

and rotates at an angular speed of If_ I = 0.2145. This 3D configuration was chosen to match

the subsonic Tenth Standard Configuration [FV93] at midspan, where the relative inlet Mach

number, M-oo, is 0.7 and the relative inlet flow angle, _-oo, is 55 deg.

The H-grid for the 3D Tenth Standard Cascade consists of 141 axial, 41 tangential and

11 radial surfaces (56,000 cells), and extends one axial chord upstream and downstream from

the blade row. This is identical to the grid used in the 3D LINFLUX studies of [MV97].

Axial grid points are clustered near blade leading and trailing edges; circumferential grid
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points, near blade surfaces; and radial points are distributed uniformly. In particular, the

normal and chordwise grid spacings at a blade leading edge are 0.02% and 0.10% of chord,

respectively, see Figure 3.
The axial extent of the grid was found to be sufficient for the mean flow field to reach

axisymmetric steady states at the computational inflow and outflow boundaries. There are

81 axial points on the upper and lower blade surfaces, and 30 axial points on the upstream

and downstream periodic boundaries. This distribution was found to be sufficient for most

of the calculations reported herein, with approximately 20 points per wave being applied to

resolve the dominant acoustic waves. However, for some of the 3D Tenth Standard Cascade

calculations, the near-sonic conditions on blade suction s_rfaces resulted in short wavelength

acoustic response phenomena that could not be resolved on the prescribed 141 x 41 x 11

H-mesh.

The TURBO near-field, finite-volume solutions have been coupled to far-field acoustic

eigensolutions, which have been determined on a radial grid consisting of 24 points clustered

near the hub and duct walls. For the present calculations, any nearly convected distur-

bances that occur downstream of the blade row are simply convected numerically through

the computational outflow boundary and into the far downstream region of the flow.

The full potential steady and the LINFLO linearized unsteady solutions were determined

on composite meshes consisting of local C-meshes embedded in global H-meshes, which

extended one axial chord upstream and downstream from the blade row. The H- and C-

meshes used with LINFLO consisted of 155 axial and 41 tangential lines and 101 radial and

21 circumferential lines, respectively. Coarser H- and C- meshes were used for the CASPOF

calculations.

The numerical solutions, reported herein, were determined on an IBM-3CT Workstation.

TURBO, "time-accurate," steady, subsonic, inviscid solutions required 780 CPU minutes

per 1,000 time steps and a minimum of 1,500 to 2,000 time steps to converge. The TURBO

unsteady calculations were started from the steady solution, and performed using 500 time-

steps per cycle of blade motion and four Newton iterations per time step. For single-passage

solutions, six to eight cycles of motion were needed to converge the nonlinear inviscid so-

lutions to a periodic state. The subsonic inviscid calculations required 350 CPU minutes

per blade passage per cycle of blade motion. The number of blade passages included in a

nonlinear unsteady calculation depends upon the interblade phase angle. For example, if

a = 60 deg, six passages are needed.

TURBO nonlinear steady and unsteady calculations require approximately 1350 _usec./time-

step/cell with four sub-iterations. The memory requirement, using 32-bit arithmetic, is ap-

proximately 1.8 kilobytes/cell. This requirement is based on the option of using two blocks

per blade passage and in-core storage for all variables.

Steady Flow

Predicted distributions of relative, steady, isentropi% surface, Mach number based on

local static pressure [P(r, 0, _)] and the local inlet relatb_'e total pressure [PT,-oo(r)], i.e.,

!

1)" -. 1 , (6.4)
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for the 3D and 2D, 10th Standard Cascades, are shown in Figure 4. The inlet and exit, mean-

flow quantities for the 3D calculation are given in Figure 5. For the CASPOF, full potential

calculation, the relative inlet Mach number, M__ = 0.7, and inlet flow angle, 12__ -- 55 deg,

are prescribed and a Kutta condition is imposed at the blade trailing edges. For the TURBO

calculation, the total temperature (T_ bs = 5.766) and total pressure (p_bs = 2.237) of the

uniform mean inlet flow (V0abs) = 0 are specified at the computational inlet boundary (i.e.,

at _ - ___ - -c_), and the mean-flow static pressure at the hub is specified at the

computational exit boundary (_ = 2Cax), so that the relative inlet flow at midspan matches

the 2D conditions.

The TURBO steady-flow predictions at the hub, r/rD = 0.8, midspan, r/rD -- 0.9, and

tip, r/rD -----1.0, given in Figure 4, indicate that the Mach numbers on the blade suction and

pressure surfaces show moderate variations with radius. Also, the 3D TURBO predictions

at midspan are in close agreement with the 2D CASPOF predictions. The TURBO results

indicate that the maximum Mach numbers on the suction surface of a blade are 0.849 at

the hub, 0.906 at midspan, and 0.961 at the tip. These values occur at _/ca_ - 0.053, 0.073

and 0.085, respectively. Thus, the flow is very close to sonic in the tip region, along a blade

suction surface just aft of the leading edge. The CASPOF predictions for the 2D cascade

indicate a maximum Mach number of 0.916 at _ = 0.065.

For the three-dimensional flow, the steady static pressure (P = 1.4577), density (fi -- 1.0),

and axial velocity (V_ = 0.5736) have constant values at inlet and the relative circumferential

velocity, V0 = -12r varies linearly from 0.7283 at the hub to 0.9103 at the tip. At the

computational exit boundary, the steady pressure, density, and axial velocity vary with

radius (mean shear), and the circumferential velocity varies nonlinearly with radius (mean

swirl). As indicated in Figure 5, the steady blade loading causes increases in the pressure

and density and decreases in the axial and circumferential velocities, especially the latter.

Blade Vibration

The 3D TURBO and LINFLUX analyses and the 2D LINFLO analysis have been applied

to predict the unsteady aerodynamic responses of the 3D and 2D 10th Standard Cascades to

pure bending and pure torsional blade vibrations at unit frequency, as described below. In

a linearized analysis, such as LINFLUX or LINFLO, the far-field conditions are determined

based on the input mean flow before the unsteady computation begins. In the nonlinear

TURBO analysis, a converged solution, which is steady in the rotating frame of reference, is

used as the initial solution for an unsteady computation. Temporal Fourier decompositions

of the flow quantities at inlet and exit are performed as the solution is marched in time. The

temporal Fourier coefficients are updated N times per cycle, where N is a user input.

All of the results presented in this report have been determined using five updates per

cycle. Thus, the far-field conditions are determined based on the most current temporal

Fourier coefficients. Ideally, the zero-frequency, temporal Fourier coefficients should cor-

respond to the initial mean flow. However, the back pressures used for all the unsteady

TURBO calculations are the same as the back pressure used in the mean-flow calculation.

As a result, the mean mass flow for different unsteady cases can differ by as much as 1% of

the steady mass flow. One could maintain the same mean mass flow by adjusting the back

pressure for each unsteady run, but this would be laborious and computationally expensive.
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In the current 3D TURBO analysis, two to three temporal harmonics are kept in the

far-field analysis. These higher harmonic terms, as will be shown later, are usually small

compared to the first harmonic term. Thus, the classific_tion of sub- or superresonant un-

steady motion is based on the propagation properties of the fundamental (i.e., first-harmonic)

acoustic disturbances. For example, the unsteady excitation at _ = 1 and e = 90 deg is clas-

sifted as superresonant, because propagating acoustic response disturbances at the excitation

frequency exist in the upstream region. If this excitation is a prescribed blade vibration, only

acoustic response disturbances will occur in the far-field.

Local (wc) and global (Wc) work-per-cycle predictiom for the 3D 10th Standard Cascade

undergoing pure torsional and pure bending vibrations at _ = 1 and ¢ = ±90 deg (ND = ±6)

are shown in Figure 6, where the TURBO local response predictions are given at eleven span-

wise stations from hub (r/rD = 0.8) to tip (r/rD = 1.0). These results indicate that the

local work per cycle responses to the blade torsional and bending blade vibrations do not

vary significantly with radius, but, the results for the bending vibrations show greater radial

variations than those for the torsional motions. Note that the multi-passage TURBO solu-

tions show slight blade-to-blade variations. Hence, local work-per-cycle predictions shown

in Figure 6 are those on the reference blade; and the global work-per-cycle predictions are

the averaged values, taken over all blades operating within the numerical solution domain.

We will discuss the blade-to-blade variation later in this section.

The averaged local work per cycle predictions at midspan, as determined from the 3D

TURBO, LINFLUX and the 2D LINFLO predictions, for the 10th Standard Cascade vi-

brating in torsion and bending are shown in Figures 7 and 9, respectively, for blade mo-

tions at unit frequency and at interblade phase angles, a, of -90deg, 0deg, +90deg and

+180 deg. The motions at a = 0deg and 90deg are superresonant. For the in-phase mo-

tions at a = 0 deg, propagating acoustic response disturbances, at (m, #) = (0, 0), occur

both upstream and downstream of the blade row. For the motions at ¢ = 90 deg, such a

disturbance occurs only in the upstream region. For the (subresonant) motions at -90 dog

and or = 180 deg all acoustic response disturbances attenuate.

Figure 7 shows that the torsional response predictions determined using the TURBO code

are in good agreement with the corresponding 3D LINFLUX and 2D LINFLO predictions.

The TURBO calculations were run with radial-mode far-field boundary conditions. To

demonstrate the need for such conditions, the same torsional vibration cases were run, with

TURBO, using quasi-unsteady, local, one-dimensional, fro--field boundary conditions [Jan89].

Figure 8 shows that the predictions based on the 1D far-fi_ ld conditions do not agree very well

with the 2D LINFLO results, except for the subresonant vibration at e = -90 deg. When the

blades undergo a subresonant motion, all acoustic response disturbances attenuate. Thus,

1D boundary conditions are often adequate. However, for the vibration at cr = 180 deg,

which is also subresonant, the local work per cycle predictions show appreciable differences

on the suction surface. Similar discrepancies are also noted for the ¢ = 0 deg case. Although

the unsteady motion at a = 0 dog is superresonant, I D boundary conditions should be

capable of handling the planar propagating waves. Of the four cases shown in Figure 8, the

unsteady predictions for the superresonant vibration at c = 90 deg clearly show the poorest

agreement.

Predictions for bending vibrations, as determined using the three aforementioned codes,

are shown in Figure 9. Those for the bending vibrations at e = 0 and 180 deg show small
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differences over the entire blade. The reasons for these differences are not understood at

present, but similar discrepancies have been reported in earlier work in which the predictions

of 2D nonlinear [AV94, AV96], 2D linearized (LINFLUX) [VMK95, MV95], and 3D linearized

(LINFLUX) [MV97] analyses were compared with LINFLO results. Similar to the results

of the 3D LINFLUX analysis, the local work per cycle predictions for the bending vibration

at a - 90 deg show small differences along the pressure surface, but large differences on the

suction surface. The reasons for the large discrepancies have not been established at this time.

However, we suspect that local, high-wave-number, acoustic responses, occurring in regions

of high-subsonic steady Mach number, are not adequately resolved on the 141 x 41 x 11 H-

mesh used for the TURBO calculations. The local work per cycle predictions for the bending

vibration at a - -90 deg also show important differences, in this case, on both the suction

and pressure surfaces. This is the only TURBO run that is significantly different from the

3D LINFLUX results given in [MV97]. Again, it is not understood why the discrepancies

occur.

Global work-per-cycle predictions for the 2D and 3D 10th Standard Cascade cascades

undergoing prescribed blade vibrations are shown in Figure 10, where results for the global

work per cycle versus interblade phase angle are given for pure torsional vibrations about

midchord and pure bending vibrations at unit frequency. The 3D TURBO results, indicated

by the circular symbols in Figure 10, have been determined for ND -- --6, --4, 0, 4, 6, 8, 16,

and 18; the 3D LINFLUX results, by the square symbols, for No = --6, --5,..., 18, and the

2D LINFLO results, for -90 deg <_ a _< 270 deg in increments of one degree. The 2D work

per cycle predictions are multiplied by the blade span, i.e., rD -- rn = 0.2 rD = 0.849, to

allow a convenient comparison with the 3D predictions.

The resonance or cut-off conditions for the two-dimensional configuration are a-oo =

-26.93deg and a+-oo -- ll7.12deg in the far upstream region and a+oo = -31.80deg and

a+oo -- 59.79 deg in the far downstream region. The superTesonant blade motions at w =

1 occur at interblade phase angles between these cut-off values and send a propagating

wave into the upstream and/or downstream regions of the flow. The blade motions at

-90deg < a < -31.80deg and ll7.12deg < a < 270deg are subresonant. The results in

Figure 10 indicate a very good agreement between the 3D TURBO, the 3D LINFLUX and

the 2D LINFLO global response predictions over the entire nodal diameter or interblade

phase angle range of blade vibrations. We should reiterate, however, that for superresonant

bending vibrations at _r - 90 deg, and the subresonant bending motions at a - -90 deg,

the TURBO and LINFLO local responses show large differences, cf. Figure 9.

Next, we consider the acoustic properties far from the blade row. Predicted steady,

as well as first- and second-harmonic axial eigenvalues and first-harmonic radial pressure

modes, pn_,(r), for m - -1,0,1 and # - 0,1 are shown in Figures 11 through 13. Here,

the unsteady excitation occurs at w - 1 and ND "- 6 (a = 90 deg). Because of mean blade

loading, the steady inlet and exit conditions for the 3D 10th Standard Cascade differ. As

a result, the acoustic properties, Xrn_ and p_,, in the far-upstream region of the flow, differ

from those in the far-downstream region. In particular, for an unsteady excitation at w -- 1

and a -- 90 deg, the fundamental acoustic disturbances in the (0,0) mode are of propagating

type far upstream, but, of attenuating type far downstream. Note that the second-harmonic

acoustic disturbances in the (0,0) mode are of propagating type in both the upstream and

downstream regions.
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In the far-upstream region of an unsteady flow at w = 1 and a = 90 deg through the 3D

10th Standard Cascade, the propagating acoustic response disturbance has an axial wave

number, _, of 1.584 and the least damped or (0,1) response disturbance has an attenuation

constant, _, of 3.964. In the far-downstream region, _ = -1.077 for the least-damped or

(0,0) response disturbance. These numbers agree favorably with those predicted by the

3D LINFLUX run, namely, 1.583, 3.990, and -1.084. Since the absolute far-downstream

mean flow is nonuniform, the axial wave numbers of the attenuating disturbances in a given

circumferential mode vary with radial mode number, #, as indicated in Figure 12, particularly

those for m - 1.

The radial eigenmodes for the pressures associated with the far upstream acoustic exci-

tations or responses and the far downstream acoustic responses for an unsteady excitation

at w = 1 and a = 90 deg are shown in Figure 13. Although the inlet and exit mean-flow

conditions differ, the upstream and downstream radial pressure modes are very similar, with

the downstream modes showing a somewhat greater radial variations than their upstream

counterparts. Note that the phase of a modal pressure disturbance is independent of ra-

dius for the uniform absolute mean flow at inlet, but the phase varies with radius for the

mean flow with swirl and axial shear that exists in the far downstream region. Thus, the

far-upstream, pressure modes, pR(r), are purely real, but the far-downstream modes have

some imaginary or out-of phase content.
The TURBO calculations for the subresonant a -- -90 deg and the superresonant a =

90 deg blade motions reveal that, for the most part, the far-field acoustic responses are of

small amplitude at the computational inflow and outflo_ ' boundaries. However, the super-

resonant torsional and bending vibrations at a - 90 deg produce upstream propagating

acoustic response disturbances which have amplitudes, aA, of 1.352 and 1.540, respectively,

and occur at an axial wave number, t¢_, of 1.583. The corresponding LINFLO predictions

are aA -- 1.529 and 2.822 and _ - 1.603. Thus, there is a substantial difference between

the TURBO and LINFLO predictions for the upstream propagating, (0,0), acoustic response

waves caused by the bending vibration.

In Table 6.1, the TURBO-predicted eigenvalues and amplitudes of the upstream prop-

agating, (0,0), acoustic response wave caused by the bending and torsion vibrations are

compared against the corresponding LINFLUX and LI1WFLO values. Note that TURBO

updates the far-field eigenmodes several times per cycle. Certain eigenmodes, usually higher

order ones, may be missing from one update but reappear in the next update because the

current eigenmode filtering scheme sometimes filters out modes that should be retained. In

Table 6.1 the eigenvalue for the bending vibration is slightly different from the one for the

torsional vibration, because the meanflow evolves differently in the two unsteady compu-

tations. Also, the eigenvalues and amplitudes for the (ft,0) acoustic response mode of the

second temporal harmonic are listed in the table. The second-harmonic content is significant

in the initial cycle, but becomes negligible after eight cycles.

Next, we examine the results for a bending vibration at w = 1 and a = -90 deg in some

detail. This case is chosen because the nonlinear response predictions are in poor agreement

with the results of both 2D and 3D linearized analyses. In addition, the response predictions

show the most blade-to-blade variation. Furthermore, this is the only case that we were

not able to get a converged work-per-cycle prediction even after more than forty cycles of

unsteady computations.
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/¢_ aA

LINFLO

LINFLUX

TURBO (!st harmonic, 8th cycle)

TURBO (2nd harmonic, 1st cycle)

TURBO (2nd harmonic, 8th cycle

torsion bending

1.603

1.583

torsion

1.529

1.352

1.3751.587 1.584

3.216 3.218"

3.223 3.219

0.103

5.99 x i0-a

bending

2.822

1.540

1.610

0.103

4.96 x 10 -4

Table 6.1: Comparison between the axial wave numbers (k¢) and acoustic disturbance ampli-

tudes (aA) predicted by the 2D linear analysis (LINFLO), the 3D linear analysis (LINFLUX),

and 3D nonlinear analysis (TURBO).

In Figure 14, the calculated time histories of the mass flow, dn = J pV. dA, and total

pressure ratio, PT,+_/PT,-_ for the first twenty cycles are shown. It can be observed that

the mass flow reached a periodic state in approximately six cycles. The normalized mean

mass flow of 8.125 is approximately 0.7% lower than the normalized steady mass flow of 8.18.

The time history of the mass flow shows significant higher harmonic content, even after the

mass flow reaches a periodic state. We have not been able to determine the cause of the high

non-harmonic variation in mass flow that occurs during the initial cycles. The inlet/exit mass

flow fluctuation is observed immediately after the start of the unsteady computation, thus,

this fluctuation must be generated in the far field, not in the interior of the solution domain

due to the blade motion. One possible source of numerical error might be a deforming grid

formulation, in which the "geometric conservation law" is violated. However, to the best

of our knowledge, the TURBO deforming grid formulation and implementation are correct

and do not violate the geometric conservation law. Moreover, a similar implementation was

successfully used in the 2D nonlinear NPHASE analysis [AV94, AV96].

In the current TURBO unsteady analysis, we have included two to three temporal har-

monic terms in the far-field analysis to minimize the reflection of outgoing transient higher

harmonic waves back into the solution domain. Unfortunately, in addition to the afore-

mentioned non-harmonic terms appearing in the far-field, the initial impulsive blade motion

appears to have generated anharmonic and higher harmonic waves. Some of these waves are

reflected, and the reflections ultimately result in blade-to-blade variations in the work-per-

cycle response. This effect seems to be most noticeable for cases in which blades undergo

bending vibrations.

Detailed response results for the 3D 10th Standard Cascade undergoing a bending vi-

bration at w - 1 and a -- -90 deg are shown in Figures 15-17. An examination of the

time-mean static pressure shows that the time-mean loadings on all four blades are the

same. The real and imaginary parts of the first-harmonic unsteady pressure at mid-span

are shown in Figure 15. The unsteady pressures on the neighboring blades do appear to be

90 deg out of phase. For example, the in-phase unsteady pressure on blade 0 (solid line) is

similar to the out-of-phase unsteady pressure on blade 1 (long dashes). However, the local

work-per-cycle predictions in Figure 16 show noticeable variations from blade to blade. The

midpsan, local work-per-cycle predictions on all the four blades are shown in Figure 17. For

comparison with the results of the 2D linearized analysis, we have averaged the TURBO,
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midspan, local work-per-cycle predictions over all blades, cf. Figures 7 and 9.

6.2 NASA Rotor 67

The NASA Rotor 67 is a research transonic fan consisting of 22 blades. The tip diameter

of the fan rotor varies from 51.4 cm at the leading edge to 48.5 cm at the trailing edge, and

the hub-to-tip radius ratio varies from 0.375 to 0.478 from the inlet to exit. At the design

point, the rotational speed of the rotor is at 16,043 rpm. With an inlet axial Mach number

of approximately 0.49, the tip speed at the design condition is 429 m/sec, which corresponds

to a tip relative Mach number of 1.38. Also, the mass flow rate at the design point is 33.25

kg/sec and the total pressure ratio is 1.63.

The purpose of the present numerical study is to demonstrate the capabilities of the

TURBO analysis for analyzing the flutter characteristics of realistic transonic fans. Our

goal is to obtain steady inviscid solutions at two throttle positions on the design speed line,

one near peak efficiency and the other near stall. At each point, we will perform flutter

analyses for a bending and a torsional vibration at two d_fferent nodal diameters.

The grid for the Rotor 67 calculations, see Figure 18, consists of 121 axial, 33 tangential

and 17 radial surfaces (61,440 cells), and extends one axial chord, at mid-span, upstream and

downstream from the blade row. For the calculations, we assume that there is no clearance

between the rotor blades and the outer duct wall. We have also idealized the endwalls such

that near the computational inlet and exit boundaries, the inner and outer duct radii are

constant. This is necessary because the 3D far-field eigensolver assumes that the inlet and

exit flows are fully developed and, therefore, that they do not vary with axial distance. The

computational grid consists of 65 axial points on the upper and lower blade surfaces, and

28 axial points on the upstream and downstream periodic: boundaries. The grid is clustered

near blade leading and trailing edges, and near blade surfaces. The current version of the

TIGER grid generation package [SS91] used for generating the Rotor 67 grid, does not have

an elliptic grid smoother. Thus, the grid quality near the leading- and trailing-edge planes is

relatively poor. Furthermore, we have not examined whelher the selected grid has adequate

resolution for the Rotor 67 flows being considered, especi_dly in the axial direction. The size

of the grid was chosen so that the present unsteady calculations could be performed on a

128MB workstation.

TURBO time-accurate steady subsonic inviscid solutions for the Rotor 67 study required

680 CPU minutes per 1,000 time steps on an IBM-3CT Bbrkstation. It is unclear to us why

this case with slightly more grid cells (61,440) than that of the 3D 10th Standard Cascade case

(56,000) require less CPU time per 1,000 time steps. However, for the Rotor 67 analysis,

the first converged steady-state solution took more than 8,000 time steps. The TURBO

unsteady calculations were started from the appropriate steady solution, and performed

using 500 time-steps per cycle of blade motion, four Ne_on iterations per time step. For

each cycle of blade motion, the unsteady inviscid calculations required 375 CPU minutes per

blade passage.
As for the calculations for the 3D 10th Standard Cascade, the TURBO near-field, finite-

volume solutions are coupled to far-field acoustic eigensolutions, which are determined on

a radial grid consisting of 24 points clustered near the hub and duct walls. Any nearly

convected disturbances that occur downstream of the blade row are simply convected nu-
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merically through the computational outflow boundary.

Steady Flow

Numerous researchers; e.g., Chima [Chi91], Jennions, et al. [JT92], Arnone [Am93], Rhie,

et al. [RZH+93], have performed numerical simulations of viscous flows through the NASA

Rotor 67. Most showed the flow field to be very complicated and characterized by effects

such as shock-boundary layer interaction, tip-leakage flow, unsteady vortex shedding, and

flow separation with vortex roll up. Under the present effort, we have performed inviscid

simulations of steady and unsteady flows.

Initially, we experienced difficulties in getting converged steady-state inviscid solutions.

Consequently, we had to use very small time steps for the first quarter of the rotor rotation

before the time step or the CFL number could be increased. Also, because of the relatively

coarse grid used for our calculations, we did not expect the resulting solutions to agree well

with data. As a result, we did not run the whole speed line. Instead, we ran two different back

pressures to steady state to approximate the peak efficiency and near stall points reported

in [SWHS89]. The mass flow for the first point (near peak efficiency) is 34.8 kg/sec and the

total pressure ratio is 1.67. The mass flow for the second point (near stall) is 31.0 kg/sec

and the total pressure ratio is 1.75. As expected, the inviscid "speedline" is higher than the

experimental speedline due to lower losses, see Figure 19. Surprisingly, the TURBO inviscid

solutions show good qualitative agreement with the experimental data.

In Figures 20 and 21, the numerical and experimental relative Mach number contours

at three different spanwise locations are shown for the two different operating conditions

mentioned above. Note, the constant J surfaces on which the contours plots of the numerical

solution are shown are not constant-radius surfaces. Also, the contour plots of the numerical

solutions are plotted in the (,0-plane instead of the _,r0-plane because the plotting package

used in generating the contour curves could not properly handle periodic boundaries that

have varying radial locations. This explains why the airfoil geometries in the contours plots

for the experimental data are not the same as those in the contour plots for the numerical

results.

The Mach number contours near the peak efficiency point are shown in Figure 20. Those

at 10 percent of span from the tip show an inlet Mach number of 1.35. There is a bow shock

at the leading edge, and a normal in-passage shock near the trailing edge on the suction

surface. At 30 percent of span, the flow pattern is similar, except that the inlet Mach

number is lower, i.e., approximately 1.2. At 70 percent of span, the inlet Mach number is

0.95 and a supersonic bubble appears on the suction surface near the leading edge.

In Figure 21, we consider the near stall condition. The Mach contours at 10 and 30

percent of span show that the location of the in-passage shock is near midchord on the

suction surface, and the strength of the shock is much stronger than the normal shock that

occurs at near peak efficiency. Thus, the exit Mach number is lower in the near stall case.

At 70 percent span, the size of the supersonic bubble has increased significantly. In general,

the qualitative agreement between experiment and the computations for both operating

conditions is good. However, because of grid clustering near blade edges and near blade

surfaces, the grid is relatively coarse in the mid-chord and mid-passage regions. Hence, the

inviscid solutions show highly smeared shocks.

33



Figure 22 showsa carpet plot of the chordwise steady pressure distributions at 17 span-

wise stations. Here, the axial distance is normalized by the axial chord length at the hub.

Due to blade twist, the normalized axial locations of the leading and trailing edges at the

blade tip are approximately 0.25 and 0.75, respectively. The curves in Figure 22 clearly

depict the differences between in-passage shock locations i_)r the two steady solutions. These

curves have pressure spikes at the blade trailing edge that are due to flow overspeeds over

blunt trailing edges.

The radial distributions of the inlet and exit mean-flow quantities for Rotor 67 operating

near peak efficiency are shown in Figure 23. At inlet, the relative circumferential velocity,

V0 - -mr varies linearly from 0.436 at the hub to 1.263 at the tip, and the steady static

pressure (P), density (/5), and axial velocity (V_) are nearly constant. At the computational

exit boundary, the steady pressure, density, and axial velocity vary with radius (mean shear),

and the circumferential velocity varies nonlinearly with radius (mean swirl). As indicated in

Figure 23, the steady blade loading causes increases in the pressure and density and decreases

in the circumferential velocity. There is only a slight decrease in the axial velocity because

the steady-flow operating point is not too far from the choke point.

Blade Vibration

For the flutter analysis, we have arbitrarily chosen a blade vibratory frequency of 1.19

times the rotation speed, giving a reduced frequency of 0p54 (based on the midspan relative

inlet velocity and blade chord), because we do not have any structural information for the

blade. This frequency is probably representative of, or slightly higher than, the first bending

mode frequency of a typical low aspect ratio fan. Presently, a torsional and bending mode of

the same frequency have been studied in our flutter analysis of Rotor 67. As stated earlier,

simple 2D analytical mode shapes have been used, because there is no readily available

structural information for the Rotor 67 configuration. We should note that the TURBO code

is capable of handling finite-element mode shapes, such as NASTRAN-generated modes.

The TURBO analysis was run for vibrations at two nodal diameters, ND = 0 and ND ----

11, for each of the meanflow conditions discussed above. At the near peak efficiency point,

the predicted mean-flow, first-harmonic, and second-harmonic axial eigenvalues, at the inlet

and exit, are shown in Figures 24 and 25, respectively, for the acoustic modes at m =

-1,0,1, # = 0,1,2,3,4 and an unsteady excitation at a = 0.54 and ND = 0 (Or -- 0deg).

The first-harmonic radial pressure modes, pRm_,(r), are shovrn in Figure 26. As for the subsonic

3D 10th Standard Cascade, the steady inlet and exit conditions differ due to mean blade

loading. Thus, the acoustic properties X,n_ and pRm_,, in the far-upstream region of the flow

differ from those in the far-downstream region. However, unlike the results for the subsonic

3D 10th Standard cascade, there are many propagating acoustic modes in the far-upstream

region because the meanflow at inlet is supersonic in the blade-tip region.

In the far-upstream region of an unsteady flow, at ,z = 0.54 and a = 0 deg, through

Rotor 67 operating near peak efficiency, the far-field eigenanalyses of both the first and

second temporal harmonics show that the first three radial modes for m = -1, the first two

modes for m = 1, and the (0,0) mode are all propagating. For the first temporal harmonic,

the axial wave number, _, for modes (-1,0), (0,0), and (1,0) are 111.8, 6.766, and -94.4,

respectively. As a result, the computational grid used in the near-field calculation does not
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havethe resolution needed to accurately resolve the (-1,0) and (1,0) modes. For the torsional

vibration, The least-damped or (0,1) response disturbance has an attenuation constant, _,

of 10.86. The (0,0) upstream propagating acoustic response disturbance has an amplitude,

aA, of 1.35 which is linearly scaled to correspond a blade pitching amplitude of one radian

about the midchord locations. All the other modes are at least two orders of magnitude

smaller than the (0,0) acoustic response disturbance. However, near stall, the amplitudes

of the (-1,2) and (1,1) acoustic disturbances are approximately 20% and 10% of that of the

(0,0) acoustic disturbance.

Far fewer modes are determined in the far-downstream region than in the far-upstream

region. This is probably an artifact of the numerical filtering scheme currently used in the

far-field eigenanalysis. For this particular case, the filtering scheme did not eliminate all the

superfluous modes. For example, there is one superfluous mode for the first temporal har-

monic. We do not know whether these nonphysical modes will degrade the solutions or not.

Only the (0,0) acoustic response disturbances are propagating. For the torsional motion, the

first-harmonic axial wave number of the (0,0) mode is 5.88, and the amplitude of the distur-

bance is 0.123. The least-damped or (0,1) response disturbance has an attenuation constant

of -15.82, and a non-negligible amplitude of 0.058. For the second temporal harmonic, the

axial wave number of the (0,0) mode is 11.73, and the amplitude of the disturbance is 0.103.

Also, the attenuation constant of the (0,1) mode is -14.48, and the amplitude of this mode

is 0.032.

The radial eigenmodes for the pressures associated with the far upstream acoustic exci-

tations or responses and the far downstream acoustic responses for an unsteady excitation

at w - 0.54 and a -- 0 deg are shown in Figure 26. In addition to the differences between the

inlet and exit mean-flow fluid properties, the hub-to-tip ratios are different at inlet and exit.

Yet, the lowest order upstream and downstream radial pressure modes are very similar.

Local (we) and global (Wc) work per cycle predictions for Rotor 67 undergoing pure

torsional motions at w = 0.54, and a = 0 and 180 deg (ND = 0 and 11) at the two aforemen-

tioned meanflow conditions are shown in Figure 27. The TURBO analysis indicates that the

blade motions are stable. Moreover, as indicated by the global work per cycle predictions,

the blade motions at ND "-- 11 are more stable than those at ND = 0. Also, the results

show the blade to be more stable when operating at the near stall point than at the near

peak efficiency point. The last observation seems to contradict previous experience. A close

examination of the local work per cycle distributions shows the unsteady forces around the

in-passage shock play an important role in determining stability of the blade motion. Near

the peak efficiency point, the location of the in-passage shock in the outer span region of the

blade is near the trailing edge on the suction surface and near mid-chord on the pressure

surface. At ND = O, the unsteady forces ahead of the shock on both the pressure and suc-

tion surfaces extract energy from the torsional blade motion. For an out-of-phase torsional

motion, the unsteady forces on the pressure surface ahead of the shock are significantly more

stabilizing than are those for the ND = 0 case, whereas forces ahead of the shock on the

suction surface are destabilizing. Near stall, the in-passage shock moves forward towards

the leading edge on the pressure surface, and towards mid-chord on the suction surface.

The unsteady forces on the pressure surface near the leading edge, where the shock sits, are

extracting work from the blade; whereas the unsteady forces on the suction surface in the

vicinity of the shock, are stabilizing for ND = 0 and destabilizing for ND = 11.
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Local and global work per cycle predictions for Rotor 67 undergoing pure bending motions

at w = 0.54, a - 0 and 180 deg and for the two meanflcw conditions being considered are

shown in Figure 28. Once again, the TURBO predictions show the blade motion to be stable

at the four points analyzed. As for the torsional vibrations, the blade motions are more stable

at No -- 11 than at No = 0. However, as the back pressure increases, the bending vibrations

at _ - 0 deg become less stable. Again, as for the torsional vibrations, the unsteady forces

near the shock dominate the work-per-cycle predictions for the peak efficiency point. At

this meanflow condition, the unsteady forces on the pressure surface ahead of the shock are

stabilizing, while the unsteady forces on the suction surface are destabilizing, if No = 0 and

stabilizing, if No = 11. At the near stall meanflow condition, the contributions to the local

work per cycle from the unsteady loads away from the shock are significant, especially for

the bending vibration at No - 0, in which the unsteady forces over the latter half of the

blade on the suction surface, contribute energy to the blade motion.

6.3 Discussion

We have presented numerical results for unsteady flows through a three-dimensional ver-

sion of the 10th Standard Cascade. These results pertain to flows in which the unsteady

fluctuations are caused by prescribed blade vibrations. They were determined using the 3D

TURBO and LINFLUX analyses and the 2D LINFLO :malysis. TURBO employs an im-

plicit, flux-split, finite-volume scheme for solving the unsteady Euler equations in the near

field, which typically extends from one axial chord upstream to one axial chord downstream

of the blade row, and numerical eigenanalyses for determining unsteady perturbations of

fully-developed, axisymmetric, swirling mean flows in the far upstream and far downstream

regions. For the unsteady flows considered herein, the eigenanalyses have been used to

determine the first two or three modal acoustic disturbances, additional higher-order distur-

bances are assumed to be of negligible amplitude at the computational inflow and outflow

boundaries, and the remaining part of the unsteady perturbation, consisting of convected

and nearly convected disturbances, is simply convected out of the near-field domain through

the computational outflow boundary.

The numerical results indicate that the far-field eigenanalysis is capable of providing

reasonable solutions for the axial eigenvalues and the radial pressure modes (e.g.,see Fig-

ures 11, 12, and 13) of the acoustic excitations and responses that can exist far upstream

and far downstream of a blade row. At this point, we i_ave not applied the eigenanalysis

to predict the axial eigenvalues and radial eigenmodes associated with nearly convected dis-

turbances. The behavior of such disturbances is not well understood at present, as far-field

eigenanalyses for non-uniform mean flows have become available only recently. However,

it will be necessary to provide accurate numerical representations of nearly-convected, pre-

dominantly .vortical, disturbances to predict the unsteady aerodynamic responses associated

with wake/blade-row interactions.

The TURBO predictions for the zeroth-order or steady relative flow at _sM_aoo = M¢,-oo =

0.4015 through the 3D 10th Standard Cascade shows moderate variations in the blade-surface

Mach numbers with radius, (Figure 4), and small variations in blade loading. In addition, the

3D Euler predictions for the surface Mach numbers at blade midspan are in close agreement

with 2D full-potential predictions. The 3D 10th Standard Cascade operates in a uniform,
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axial, absolute, mean inlet flow, but, because of steady blade loading, the mean flow far

downstream of the blade row (Figure 5) has swirl and axial shear.

The TURBO local unsteady response predictions, i.e., we vs _, (Figures 6, 7 and 9) for

the 3D 10th Standard Cascade, undergoing pure torsional and pure bending vibrations at

w = 1, show small variations with radius and, for the most part, the results at midspan,

are in good agreement with the 3D LINFLUX and 2D LINFLO predictions. However, the

TURBO and LINFLUX local work-per-cycle results for a superresonant bending vibration at

a = 90 deg are significantly different from the 2D LINFLO predictions. We suspect that these

differences are due to an inadequate resolution, of the local, high wave number, upstream

traveling, acoustic response disturbances that occur at high-subsonic Mach numbers. For the

subresonant bending vibration at a - -90 deg, the 3D LINFLUX and 2D LINFLO results

show good agreement, but the TURBO predictions do not agree with those of the two linear

analyses. Furthermore, the convergence of the work-per-cycle for this subresonant bending

vibration case using TURBO is very slow. We do not have an explanation for the slow

convergence of the work-per-cycle calculations, and the discrepancies between the TURBO

and LINFLUX solutions along the blade surfaces.

The TURBO, LINFLUX and LINFLO global work per cycle, We vs a, predictions for

torsional and bending vibrations (Figure 10) are in very good agreement. However, the

global results for the bending vibrations must be interpreted with some caution, as the local

responses differ along surfaces at several interblade phase angles.

We have presented some numerical results for unsteady flows through a realistic tran-

sonic fan, i.e., the NASA Rotor 67. Our ultimate goal is to use the 3D TURBO analysis

for aeromechanical stability assessment of turbomachinery blades. For the unsteady flows

considered herein, the eigenanalyses have been used to determine the first two or three modal

acoustic disturbances. Although, we have a reasonable understanding of the eigenanlysis for

subsonic mean flows, such as those associated with the 3D 10th Standard Cascade, we do

not know how reliable this analysis is for supersonic flows. As discussed previously, some-

times, there are missing or superfluous modes. We do not know whether or not these modes

seriously deteriorate the solutions.

Nevertheless, some interesting trends have been observed from the results of the TURBO

unsteady analysis of Rotor 67 undergoing bending and torsional vibrations. The analysis

shows the bending vibrations at ND "-- 0 and ND "- 11 to be quite stable, much more so than

for the blades undergoing corresponding torsional vibrations. Also, for both torsional and

bending vibrations, the blades are less stable at ND -'- 0 than at ND ----11. In addition, the

torsional mode of vibration becomes slightly more stable as back pressure increases, while

the bending mode of vibration becomes less stable as back pressure increases. In general,

all these trends seem to agree with those observed for classical supersonic unstalled flutter,

which is usually associated with a torsional mode, and subsonic/transonic high-incidence

flutter, which is usually associated with a bending mode.

37



7. Concluding Remarks

The TURBO[JHW92], nonlinear, unsteady, aerodynamic analysis has been extended

for turbomachinery aeroelastic applications. This analysis is based on the Euler/Navier-

Stokes equations of fluid motion; a near-field, implicit, flux-split, finite-volume, analysis;

and far-field eigenanalyses for the unsteady perturbations of fully-developed, axisymmetric,

swirling mean flows. The far-field eigenanalyses, which are coupled to the near-field finite-

volume analysis at computational inflow and outflow boundaries, allow incoming external

aerodynamic excitations to be prescribed, and acoustic response disturbances to pass through

these computational boundaries without spurious reflections. Under the current effort, no

external aerodynamic excitations have been considered.

We have applied the TURBO analysis to predict unsteady subsonic flows through a

simple turbomachinery configuration, i.e., a three-dimensional version of the 10th Standard

Cascade Configuration. We have also applied this analysis to predict unsteady flows through

a realistic transonic fan, i.e., the NASA Rotor 67. We have considered unsteady flows excited

by prescribed blade vibrations that are highly two dimensional. For the 3D 10th Standard

Cascade, this allows us to compare and validate TURBO results against predictions based

on previous two-dimensional analyses.
The numerical results indicate that the current version of the TURBO code is capable of

providing accurate aerodynamic response information for unsteady subsonic flows, provided

that the grids employed have a sufficient overall density and local clusterings in regions of

high flow gradients. In particular, the numerical results indicate that the axial eigenvalues

and radial eigenmodes of far-field acoustic disturbances can be accurately represented, and

that the 3D blade-surface, response predictions show reasonable radial trends. The TURBO

results at blade midspan and the 2D LINFLO results for the 3D 10th Standard Cascade are

in good qualitative agreement, but in some cases significant quantitative differences occur.

The differences occur along the suction surfaces of the b]ades, where steady Mach numbers

are close to one, and upstream of the blade row. Some evidence [MV97] suggests that

the quantitative differences between the TURBO and LINFLO results can be eliminated if

the meshes used in the TURBO calculations are of sufficient density and the grid lines are

properly distributed.

Based on the numerical results presented in this report, it appears that the far-field eigen-

solver, developed for the TURBO code, is working properly and that it has been successfully

coupled with the near-field numerical algorithm. Also, the TURBO analysis can yield useful

response information for unsteady flows excited by blade vibrations. However, the proper

treatment of superharrnonic and anharmonic waves needs further investigation. In addition,

the mesh requirements for accurately resolving such flo_s must be better understood. The

requirements for flutter applications, for which reduced frequencies are typically of order

one, can be readily met, but those for forced response studies, in which reduced frequencies

on the order of 5 to 50 must be considered, will impose serious constraints on available

computational resources.

To improve the efficiency of TURBO steady and uasteady calculations, a number of

computational strategies should be investigated. For example, a rotating-frame version of

the TURBO analysis could be constructed to allow more efficient predictions of nonlinear,

steady flows via the use of convergence accelerating schemes. Also, second-order accurate,
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surfaceboundary conditions could be incorporated into TURBO to reduce the time required

to achieve converged low-loss, steady and unsteady solutions. In addition, a single-passage

version of the TURBO analysis with time-lagged periodic boundary conditions should be

considered. This will greatly reduce the computational requirements for unsteady flows in

which the structural vibratory pattern has a non-zero nodal diameter. Finally, a parallel ver-

sion of TURBO should be considered, particularly for viscous and high-frequency unsteady

flows.

To date, we have focused on demonstrating and validating inviscid version of the TURBO

code for flutter applications. In addtion, we have applied the code to predict flutter in

transonic inviscid flows. However, the code needs further validation for transonic flows. Also,

viscous effects are expected to play an important role in the analysis of high-incidence flutter.

Thus, a validation the viscous capabilities of the TURBO code for unsteady applications

should be carried out.
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Figurel: Rotating axial compressor blade row opeiating within an annular duct.
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Figure 2: 3D Tenth Standard Configuration undergoing an exaggerated torsional motion

(O_h,,b = 0 deg, aup = 45 deg). The rotor consists of 24 airfoils. The nodal diameter of the

blade motion is 6, which results in an interblade phase angle of 90 deg. The outer casing

has been eliminated from the figure for clarity.
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Figure 3: TURBO computational grid at midspan for the 3D 10th Standard Cascade.
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Figure 18: TURBO computational grid for the NASA Rotor 67 and leading edgedetail at
blade tip.
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