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Abstract

This paper presents a brief report on superstable semigroups -- abstract

theory and some applications thereof. The notion of super stability is a

strengthening of exponential stabihty and occurs in Timoshenko models

of structures with self-straining material using pure (idealized) rate feed-

back. It is also relevant to the problem of Riesz bases of eigenfunctions of

infinitesimal generators under perturbation.

1. Introduction

This paper presents a brief report on superstable semigroups and applications

thereof. The notion of super stability introduced in [1] is a strengthening of expo-

nential stability and occurs in Timoshenko models of structures with self-straining

material using pure (idealized) rate feedback. It is also relevant to the problem of

completeness of eigenfunctions of infinitesimal generators under perturbation. We

begin with definitions and the associated abstract theory in Section 2. A general

technique of constructing superstable semigroups is given in Sections 3. Section 4

deals with applications to "smart structure" theory. The relation to the preservation

of the Riesz basis property of eigenfunctions of infinitesimal generators of semigroups

under perturbation is outlined in Section 5.

2. Definition and Basic Properties

By a "semigroup," we shall mean a C0-semigroup over a Hilbert space with com-

pact resolvent, unless otherwise specified. Let S(t), t >_ 0 denote the semigroup and

7-/the Hilbert space. Such a semigroup is said to be exponentially stable if

IIS(t)ll _< M exp-at, t > 0



for some a, M > 0. The question: "Is there any stronger kind of stability?" has an

affirmative answer -- at least in infinite-dimensional theory. Thus the semigroup is

said to be "superstable" (a notion introduced in [1]) if for every a > 0, 3 Ma such

that

[[S(t)[[ _< M_exp-at, t>_0. (2.0)

The resolvent of a superstable semigroup is defined for every complex number A

by:

fo °
n( ,A)x = e- 'S(t)z dr, • e

and is thus an entire function -- equivalently, the spectrum of A is empty. In partic-

ular we see that 7"/cannot be finite-dimensional -- superstability is a truly infinite-

dimensional phenomenon -- at least for linear systems.

Superstability is equivalent to saying that the stability index w0:

logIIS(t)ll
w0 = lim = -c_.

t--,oo t

In particular this is equivalent to saying that S(t) must be quasi-nilpotent for every

t > 0 -- the term superstable is used to emphasize the relation to problems of stability

and stabilizability.

For the semigroup to be superstable it is necessary that the infinitesimal gener-

ator have an empty spectrum or, equivalently, the resolvent is an entire function.

However the converse is not true; indeed one has only to construct a Co group whose

generator has an empty spectrum -- already described in the 1957 Hille-Phillips trea-

tise [2, p. 667]; providing in fact a celebrated example for the failure of the spectral

mapping theorem:

a[S(t)] _ e _(A) plus possibly zero

where A denotes the infinitesimal generator. The point spectrum [2, p. 467] satisfies:

Pa[S(t)] = e tPa(A) plus possibly zero.

It follows that a compact (or eventually compact) semigroup whose generator has an

empty spectrum is superstable.

Since we are dealing only with a Hilbert space we should note that a complete

characterization is given by the Greiner-Nagelt theorem [3, p. 96]: a semigroup is

superstable if and only if

sup IIR(a A)II < (2.1)
-oo<w<oo

for every a real, where R(A, A) denotes the resolvent of A.



The resolvent of a superstable semigroup being an entire function, an immediate

question is whether it is of finite order or not. We have in this connection a crucial

result due to A. Sinclair [4].

Theorem (Sinclair).t Suppose the resolvent R(,_, A) is an entire function of expo-

nential type. Then the semigroup is superstable -- actually nilpotent. In fact if

then

IIR(a,A)II--% M elxlT,

S(t) = 0 for t>T.

(and conversely, the converse being trivial).

Proof. The proof relies on a celebrated Paley-Wiener theorem on Fourier transforms,

and an outline may be of interest to be included here.

Pick a > w0 and define

r(z) = R(iz +a, A)

so that

For x, y in 7-I and t real:

IIr(z)ll _<celz[T.

= oF e-"_e-"_[s(,')x,y] d,'[r(t)_,y]

and [r(z)x, y] is an entire function such that

I[,'(z)z,u]l < Ilxllllulleel'lT,

[,o I[r(t)z'yll 2dt < o¢.

We can therefore apply the Paley-Wiener theorem (see [5, p. 375]) and obtain

Hence

[r(z)x,y] = r

=f0 _

F(_)e -_''- d_

e -iz_ e-a_[S(()x, y] d_.

[S(()x,y] = 0 for (>T

tI am indebted to J. Martinez for bringing this result to my attention.
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and hence, x, y being arbitrary:

S(t) = 0 for t>T. Q.E.D.

3. Construction of Superstable Semigroups

The simplest example of a superstable (actually nilpotent) semigroup is the shift

semigroup on L2[0, L] for finite L. In [2, p. 663, et seq.] Phillips uses Riemann-

Liouville fractional integration to construct a class of analytic superstable semigroups.

We can generalize this construction considerably. Thus let S(.) denote a dissipative

superstable semigroup. Define

1 ff z_z-1

This is an analytic semigroup of class H(:_, _) and is superstable along rays,

?r

z = r__, 1el<

since for any a > 0

and consequently:

IIS(,')ll _<Maexp-_a, _ >0

IIr(=)ll _< Maff e-'e' r(=) I d_ < M,Ta -'°°'e.

T(z) = R(O,A) z,

Since

(3.11

and S(.) is dissipative, so that -R(0, A) is dissipative, we can invoke the theory of

fractional powers of operators [6] for alternate expressions for (3.1) for 0 < Re z < 1.
Thus we have:

T(z)x - sinTrz t +R(o,A))_,(_R(o,A))xdA (3.2)

_ - sin_r7rz ff )_-zR(_' A)x d,_

1 (e_R(0,A) ¢ d_ (3.3/- F(_z) f0 °° -I) x_ -z-1

1 f0°° ( n-l(-R(O'A))k)(-Z-ld( '- r(-_) _-R(o,A)___ k!
0

for n-1 < Rez<n
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from which we see in particular that T(.) is compact if R(0, A) is. (The compactness

of the resolvent of A is irrelevant for the superstability property.)

Using Kato's formula (see [7, p. 260]) we have

E [ rZ ] dr, O<Rez< 1(M+T(z))_ 1 = __sinnz (rI+R(O,A)) -1 )_2 2ArcosTrz +r 2z
7r

(3.4)

which is of course defined for every A _ O. Contrast this with the representation using

the Mittag-Lei_er function in [2, p. 668].

Let .A denote the generator of T(.). Then .A has the representation for x • T_(A):

Ax = 7x - A [°°S(_)xlog_ d_ (3.5)
JO

where 7 is Euler's constant; and

A)x = E S(() x E(A, _) d_ (3.6)

where
1

E(A, _) : e-At_ t-1 dt

from which, as already noted in [2, p. 667], we see that T_(,_, ,4) is an entire function

of infinite order (still satisfying (2.1)) so that in particular T(z) is not nilpotent, for

Rez >0.

Remark. Phillips shows, based on some hard analysis results of Kober (see [2, p. 665]),

that for the special case where S(.) is the left shift on L2[0, 1], the "boundary values"

J(_l)x = limT(a +i_?)x, -c_ < y < c_ (3.7)
_---*0

= -AT(1 +in)x

determine a Co group whose generator (i-A) has an empty spectrum.

course not superstable.

But J(.) is of

Since

R(_,i-A) = -iR(-_,-A)

we see that R(_, i.A) is also an entire function of A of infinite order. In particular

we see that the resolvent may be an entire function of infinite order and yet the

semigroup need not be superstable.



Generalization: Hille-Phillips Calculus

We can generalize the construction (3.1) using the Hille-Phillips operational cal-

culus [2, Chapter 15]. For example let for each t > 0, a(t, .) denote a set function on

[0, co) and such that (in the notation of [2]):

IIS(,')ll dla(t,,')l

for which it is enough if

F e dla(t,,')l < oo

Let us assume this. Let

_o e_ da(t, _) = et_(x),

< O0

for some a0 > 0.

ReA _< a0, t>0.

Then under suitable conditions on a(t, .) (equivalently ¢(.)):

_o S(()x da(t,() (3.8)T(t)x

defines a C0-semigroup, whose generator has an empty spectrum. The condition that

Foe et_(a+ir)l dT < 00, t > O

is sufficient for the semigroup to be superstable. This follows essentially from Lemma

16.3.1 of [2] which in turn is a consequence of the representation:

T(t)x - 1 F _4Oee_(x)R(A ,A)xdA, ReA<-a0.
27ri J-r-ioe

For example we may consider fractional powers of (-A). Define

T(t)x = S(()xF(t,() d(, t > 0

where F(t, .) is nonnegative and is defined by the Levy "stable" density:

_oeX_F(t,() cl_ = e -t(-x)¢', ReA < 0 < e < 1._ _O _

(3.9)



The semigroupis superstable with generator

-(-A) a.

The superstability can be proved directly from (3.9), since

IIY(t)ll < Mac -t'°.

Superstability holds in fact generally for F(t, .) nonnegative.

Let us also note that (-.4 2) generates a C0-semigroup, when (iA) generates a Co

group. Moreover using:

2iv_

we can readily verify that (2.1) is satisfied and thence superstability. The semigroup

generated has the representation

T(t)x = f__

where J(.) denotes the group and

G(_,t) -

and is actually an analytic semigroup.

J(_)xG(_,t) d_, t > 0

4. Applications

An early example in applications of superstability arising in the solution of a

boundary value problem for partial dfferential equations -- a "disappearing solution,"

the semigroup being actually nilpotent -- is given by Majda [8]. More generally the

phenomenon occurs in Timoshenko models:_ of structures using self-straining material

-- "smart structures" -- for feedback control [9,10]. The simplest such example is

the "smart string" described by:

pO(t,s) - cO"(t,s) = O, O< s < g

-cO'(t,O) + gO(t,O) -- 0; o(t,e)=o; c,p> o

Sit is curious that the phenomenon does not occur in Euler models.



where the superdots indicate time derivatives and the primes the space derivatives,

and g > 0 is the variable gain parameter. The semigroup solution (see [9]; the

semigroup is dissipative) as a function of g becomes superstable at a critical value of

g given by

g = Vf_.

The energy decays to zero in finite time and of course there are no modes. The

solution vanishes ("disappears") for t > 2tV/_ as can be directly verified (see [9]).

A more realistic version [10] where we consider both displacement and torsion is given

by:
m_)(t,s) - c4(v"(t,s)-¢'(t,s)) = O, O< s< _; O< t

ms¢(t,s) - c2¢"(t,s) - c4(v'(t,s)-¢(t,s)) = 0

¢(t,0) = v(t,0) = 0

c,(v'(t,e)-¢(t,e)) + g6(t,e) = o

c2¢'(t,e) + g¢(t,e) = o

and g is again the variable gain parameter. We have superstability for

g=_= _-_.

The resolvent can be shown to be of exponential type (details will appear elsewhere)

and we have thus actually again a "disappearing solution."

5. Relation to Bases

We refer to a subspace as a superstable invariant subspace if it is an invariant

subspace for the semigroup which is superstable thereon -- in particular such a sub-

space cannot contain any eigenfunctions of the generator. The latter is the case if we

consider the subspace orthogonal to the subspace spanned by the eigenfunctions of

the adjoint of the generator. This relationship has already been noted by Majda [8],

and can provide a technique for verifying whether Riesz bases are retained under a

perturbation [1].
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