
J 1997

._ 4..,_, _ , NASNASEE SUMMER FACULTY FELLOWSHIP PROGRAM

JS/74

¢),6
MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

SPECTRUM PREPROCESSING IN THE OPAD SYSTEM

Prepared by:

Academic Rank:

Institution:

Department:

NASA/MSFC:

MSFC colleagues:

Dr. Constantine Katsinis, Ph.D.EE

Associate Professor

University of Alabama in Huntsville
Electrical and Computer Engineering

Astrionics Laboratory
Instrumentation Branch

W.T. Powers and Anita Cooper

XXIII

Introduction

To determine the readiness of a rocket engine, and facilitate decisions on continued

use of the engine before servicing is required, high-resolution optical spectrometers are

used to acquire spectra from the exhaust plume. Such instruments are in place at the

Technology Test Bed (TTB) stand at Marshall Space Flight Center (MSFC) and the A1
stand at Stennis Space Center (SSC). The optical spectrometers in place have a wide

wavelength range covering the visible and near-infrared regions, taking approximately 8000

measurements at about one Angstrom spacing every half second.

In the early stages of this work, data analysis was done manually. A simple spectral
model produced a theoretical spectrum for given amount of elements and an operator

visually matched the theoretical and real spectra. Currently, extensive software is being

developed to receive data from the spectrometer and automatically generate an estimate
of element amounts in the plume. It will result in fast and reliable analysis, with the

capability of real-time performance. This software is the result of efforts of several groups

but mainly it has been developed and used by scientists and combustion engineers, in their

effort of understanding the underlying physical processes and phenomena and creating
visualization and report generation facilities.

Most of the software has been developed using the IDL language and programming
environment which allows for extensive data visualization. Although this environment has

been very beneficial, the resulting programs execute very slowly and are not easily portable
to more popular, real-time environments. The need for portability and high speed of

execution is becoming more apparent as the software matures moving out of the

experimentation stage and into the production stage where ease of use and short response
time are the most desirable features.

The purpose of the work described here is to assist the scientists who developed

the original IDL-based version in the conversion of the software into the real-time,
production version. Specifically, a section of the software devoted to the preprocessing of

the spectra has been converted into the C language. In addition, parts of this software

which may be improved have been identified, and recommendations are given to improve
the functionality and ease of use of the new version.

Facilities

The Diagnostic Test Facility (DTF) at Stennis Space Center has a small rocket

engine with different characteristics to the SSMEs that has been seeded with known

amounts of alloys during firing. DTF data were produced with the OMA Spectrometer, and
will be used to confirm the spectral model and methods for handling the OH component.

The TTB (Technology Test Bed) data is gathered at MSFC using the OPAD instrument,

together with engine data on the tests. There is also data from High RAS, which is the new

resolution spectrometer with 3 banks.
Data from different instruments is stored in the directories dffdata (DTF data),

rawdata (TTB data), raw3data (TTB data from High RAS 3), omadata (TTB data from the

OMA), engdata (engine data for TTB). Tests are identified by two parameters. The first one
defines an integer indicating the instrument and engine from which the data taken. The

XXIII-I

available options are: l=ttb, 2=dtf, 2= high/ras, 3= oma from TTB. The second parameter
defines the test, an integer number for the TTB test or a string representing the DTF test.

The naming convention of data files is not always obvious since they were created

by different scientists at different locations and times. For example, in one case names
were used to indicate the level of "plume seeding" which took place during the test.

Preprocessing of spectra

Spectrum preprocessing is the first of a sequence of steps, the final purpose of

which is to determine the amounts of metals present in the plume. The input of the
preprocessing step is the data produced by the spectrometer. Its output is a refined version

(defined below) of the spectrum, which in following steps is further processed by the
neural-network code and the SPECTRA code.

Each spectrum of the engine plume has a component due to metal erosion, but it

also has components due to the emission of the OH and H20 molecules generated by the

burning of hydrogen in the engine. In addition, scattered background light produces
another spectrum component. The major purpose of the initial stages of the software, the

preprocessing stages, is to extract the first component (due to metal erosion) of the

spectrum. Subsequent stages of the software use the theoretical model to predict the metal

amounts in the plume. The OH component can vary from test to test, and is generally
indicative of the power level, the fuel mixture ratio, and of change in power level.

Unfortunately, the complex interaction of the OH and water vapor emissions are poorly
understood and little quantitative data are available that would permit development of an

accurate model. Currently a basic understanding of the process has resulted in the

development of a simple method to extract the OH component of a spectrum and leave an
estimate of the metallic component. This method is being improved since it is not

successful during the critical start-up and shut-down phases of an engine test.

As Figure 1 shows, the preprocessing step is implemented by the following major

routines (which in turn use numerous other routines for file handling and data processing):
1) GETTEST(test_number, wave_array, timearray, data_array)

Reads a wave array with wavelengths of the spectra, a time array with the time of each

spectrum and a data array with a sequence of spectra. Data is in files originating from
experiments at TTB (RAS or Highras or OMA) or DTF specified by test_number.

2) STAN DARD_SCAN(wave_array,sscan)

Reads a clean metal-free spectrum from disk for use by the CLEAN program. The supplied
wave array indicates the desired wavelengths at which the metal-free spectrum should be
returned.

3) START_CLEAN(dist,magn,grid,wavarray,sscan)

Routine CLEAN is called repeatedly to process a sequence of spectra. It needs a set of

data (interpolation parameters) which stays permanently in memory until the wavelength
array is changed. Routine START_CLEAN initializes the data set for the CLEAN routine.

4) CLEAN(datarray,cleanarray)

Receives a sequence of spectra in data array and proCuces a cleaned sequence of spectra

in clean array by removing the OH portion of a spect;um to leave the metal region.

5) SMOOTHAWAY(cleanarray,newarray)

XXIII-2

Routine CLEAN may cause negative values to occur in the clean array. Routine
SMOOTHAWAY smoothes the clean array to remove the negative values.

File data formats

Data format of the TTB files

The TTB (Technology Test Bed) data appears over a broad wavelength range of

280 nm (2800 Angst) to 718 nm (7180 Angst) thus covering the short UV to Visible

wavelength range. The instrument has two detectors covering the 2800 to 5010 Angstrom,
and 5010 to 7180 Angstrom range. The representative pixel width of 24.4 pm. It is

possible, due to the efforts made to maximize sensitivity of each detector by various focus

enhancing optical elements, to observe distortions in line shape and position. If the input

optics do not fill the entrance slit with light, or if the divergence through the slit is insufficient
to fill the mirrors and the grating, the line may shift sideways or become distorted. Detector

2 (B), which covers the 5010 to 7080 Angstrom range, has a skewed instrument profile as

well as some non-linear behavior in wavelength shift. Each test firing is assigned a

three-digit number (xxx). The detectors are calibrated at the start of each test firing and the
resulting data files are stored at directory "rawdata/rascals/" with file names "inrespl.xxx"

and "inresp2.xxx". One source of error is that the calibration factors, which allow
conversion of data from Volts to Counts, are hard coded with the assumption that there is

no drift in such instrument dependent parameters.
Two data files, with sampled data and corresponding time, are stored in binary

format in the directory "rawdata/rasxxx" with names "ras.052" and "time.052".
Based on the detector to wavelength grid relation established by calibrations

performed in the lab, the wavelength array corresponding to sample points is deduced.
This conversion can be a source of error. The sampled data points for each scan are

recovered, and processed to account for background data. The data is also calibrated with
respect to the detectors which are re-calibrated at the start of the test firing.

Data format of the DTF files

The DTF (Diagnostic Test Facility) data files are supplied in binary format and

located in the directory "dtfdata". The spectral coverage range for DTF is 300 nm to 430
nm. The first record in the data file contains the test number, total number of scans, total

number of sample points, sample scan rate, time of engine start, and type. Files created
at later times contain a more extensive first record. After the first record, subsequent data

is organized into a record of four numbers indicating the wavelength at the sample point,
the response function point value, the measured background data, and the data with the

background subtracted.
Data format of the OMA data of the TTB

The OMA is the same kind instrument used to gather the DTF data, but the data

files have a different format. For each test (xxx), there are two files omaxxx.bin with the raw
data and caixxx.bin with the calibration data.

Conclusions and Recommendations

The major function of the preprocessing code is to remove the effect of the OH lines

XXIII-3

on the spectrum and extract the spectrum part due to metal erosion. It appears to have
grown within a relatively long period of time as scientist sought to experiment with different

ways of implementing various subfunctions. In addition, some programs have a large
number of options (keywords) which select one of many possible processing paths.

Although such software can be useful during experimentation, the resulting size and

complexity make maintenance and optimization difficult. It would be very useful to closely

examine the processing steps in this software and identify the ones that are absolutely
necessary for the real-time (production) version of the software. Activities should be

separated into "experimental" or "debugging" activities and "production" or "real-time"

activities and two programs should be developed, one for each set.

Since experiments have been performed over a long period of time at different
places and by different people, it is unavoidable that a multitude of file formats would be

present. This complicates processing and results in maintenance difficulties. It would be

very beneficial to create a generic file format, to play the role of the standard, and require

all newly developed software to adhere to this standard. To support the standard format,

a set of programs must be created to convert all old file formats. This entails no difficulty,
as the current file processing routine contains all the necessary code.

Suggestions for additional changes to the code

1) In gettest0, most of the code is performing the same task in a slightly different
way for each of the instruments. Having a consistent interface between the code and the

input files would make for much cleaner, easier to read, and easier to maintain code.

2) Gettest0 has three major parts: a) retrieval of the TESTSTUFF structure b)

retrieval of (and some processing on) the wavarray[], timarray[], and datarray[][] structures.
c) cleaning of timarray, adjusting of wavarray[] and (based on keywords) the ability to

perform the cleaning and smoothing operations within gettest. It would be better to make
gettest0 a smaller more specific function. The TESTSTUFF structure could be obtained

by a separate function. The TESTSTUFF structure would then be an input into the gettest

function. Gettest would then be limited to obtaining the timarray[], wavarray[] and

datarray[][] structures and a minimal amount of processing on these arrays.
3) The number of keywords to the routines should be limited.

Credits

Some information on instruments and file data formats is summarized from the

OPAD web page.

XXIII-4

datarray[NW][NS]

testnumber NW = number of wavelengths
NS = number of scans

gettestO

o wavarray[NVV]

standard_scan0

sscan[NW]

.... Y_ y_

4
start_clean0

CLEAN_PARAMS
structure

clean()

cleanarray[NW][NS]

dist

magn

grid

smoothawaY0

i

; cleanarray[NW][NS]
i

Figure 1 Preprocessing major routines.

XXIII-5

