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Introduction

Up until now, loads analyses of the X-33 RLV have been done at Marshall Space Flight
Center (MSFC) using aerodynamic loads derived from CFD and wind tunnel models of a rigid
vehicle. Control forces and moments are determined using a rigid vehicle trajectory analysis and

the detailed control load distributions for achieving the desired control forces and moments, again
on the rigid vehicle, are determined by Lockheed Martin Skunk Works. However, static
aeroelastic effects upon the load distributions are not known. The static aeroelastic effects will
generally redistribute external loads thereby affecting both the internal structural loads as well as
the forces and moments generated by aerodynamic control surfaces. Therefor, predicted structural
sizes as well as maneuvering requirements can be altered by consideration of static aeroelastic
effects.

Objective

The objective of the present work is the development of models and solutions for including
static aeroelasticity in the calculation of X-33 loads and in the determination of stability and control
derivatives. Since structural analysis of the X-33 vehicle is being done in NASTRAN, it was
decided that the models and analyses would be done using NASTRAN Aeroelastic Supplement's
Static Aeroelasticity solution sequence (SOL 144) (Ref. 1). Essentially, NASTRAN's trim
solutions are considered incremental changes to those represented by the rigid loads and control
force solutions. Load distributions determined by these rigid analyses are applied to the model as
"external" loads during the aeroelastic solution. Alone, the aeroelastic load redistributions would
bring the vehicle out of the desired flight condition. However, the aeroelastic trim solution can
determine changes in the trim variables (e.g. angle of attack, sideslip, control deflections) that will

maintain the desired trim condition. Values of stability and control derivatives for the rigid and
flexible vehicle are also produced by the SOL 144. A second result of the static aeroelastic solution

is intemal loads/stress recovery. This latter part of SOL 144 is essentially identical to the regular
static solution in NASTRAN (SOL 101).

Mathematical Foundation

Following is a mathematical description of the problem to be solved. While the form of the
equations presented herein is not identical to that presented in the NATRAN Aeroelastic
Supplement User's Guide, it is mathematically equivalent and more readily followed.

The case of an unrestrained vehicle is a good bit more complicated than that of the
restrained structure for several reasons. One is the fact that the load-deflection relation involves the
"free body flexibility" matrix. The deflection under load of an unrestrained structure can't be

found simply by inverting the stiffness matrix because the stiffness matrix is singular. A second
complication arises from the need to consider such details of the flight condition as trim conditions.

The unrestrained nature of the structure is handled by the so-called inertia relief
formulation, which will be discussed briefly. The structure is assumed restrained at a support
point against rigid body motion, and corresponding load-deflection relation of the restrained
structure is expressed in the usual way but with certain differences in detail,

P,,, = K_re s
(1)

P,et is the vector of net loads being the combination of externally applied loads (aerodynamic,
propulsive, etc.) and mass-intensive loads, such as gravity and inertial loads. These loads are self-
equilibrating for a free body. If we expand equation (1),

Ps po J-LKr, (2)
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K u is the restrained structure stiffness matrix. Ps,,vvo,, is the load vector at the "support" which,

for a free body should be zero, again because the net loads are self-equilibrating. The deflections
of the unrestrained points are related to the net loads by

-I
Sot = KttP0net (3)

The important steps are to relate the net loads to the externally applied loads, and the restrained
structure deflections to the unrestrained structure deflections.

The global deflections _i of the unrestrained vehicle are the sum of the eff ects of the actual

displacements of the support (including rotations), and the deflections _50t of the unrestrained

points relative to the support. This is expressed by

(4)

where _r is the rigid body modeshape matrix that distributes rigid body motions at the support to

all the nodes and 8 r is the vector of rigid body motions at the support points. The crucial step is to

stipulate that the body axes that the rigid body displacements describe are mean axes. The

condition that has to be met in this case is that the vector of total nodal displacements and the rigid
body modes are mass orthogonal. This "mean axis contraint" is enforced by

_rM_ 5 r r r-_- (I) r M_fir + (I) r M_r, = Mfir + _r M_Sr,s = 0 (5)

where M r is the rigid body mass matrix (generally a 6x6, positive definite matrix).
we obtain,

_r -1 T=-M r _r M_ir,

From eqn. (5)

When the above is substituted back into (4), we obtain,

=[I-*rMrl_TM]_res = R_re s (6)

The matrix R is the inertia relief matrix, although the reason for this name becomes clearer when
the relation of the net loads to the externally applied loads is determined as follows.

The resultant overall external loads at the support are given by

F r = _P

The vector F, is typically comprised of the three aerodynamic forces, the three aerodynamic
moments, and propulsive forces and moments. The accelerations produced by these loads are

found by premultiplying F r by the inverse of the rigid body mass matrix,

a r = MrtF_ = Mr_rp

Note that a_ includes the effect of gravity. This is true ty the equivalence principle that states that

LI - 2



wecannotdistinguishbetweentheinertialloadresultingfrom anaccelerationandthe loadresulting
from gravitation.Now therigid accelerationsat all of thenodepointscanbe foundfrom

= CYPra r ----q)rM;lq)rp

The inertial loads, or more correctly the "mass-intensive" or "body" loads (including gravity), at
each node point are then

Pinenial = -M_ = -Mq),Mrlq)rP

Finally the net loads are the combination of the externally applied loads and the body loads,

P.e, = P + Pi..,/a, = [I - Mq)rM:lOr r ]P = Rrp

We may find the restrained structure deflections resulting from the net loads as

0JLP,.ppo. , =
or 5_e, = aresP,e t

Substituting for the net load vector and premultiplying by R

= Ra,e, Rrp = ayP

(7)

(8)

(9)

The matrix ar is the so-called "free body flexibility" matrix which is singular.
Thusfar, there is nothing especially aeroelastic in the development for the unrestrained

vehicle. We will begin the aeroelastic formulation by first considering the various components of
the externally applied load vector, P. P is composed of initial aerodynamic and propulsive loads
as determined for the rigid vehicle, with incremental loads resulting from deformation of the
structure, incremental changes in control surfaces and vehicle attitude. The initial loads can also
account for initial vehicle camber, attitude, angular velocity, estimated control deflections, etc.
Preferably, these initial loads are determined through means more sophisticated and comprehensive
than the lifting surface theories used in aeroelastic modeling. We may then write the load vector as

P = P0 + App'ap + _Q_5 + _Q,Av, + _Qo, Ao3 (10)

P0 is the initial aerodynamic and propulsive load vector, _pprop is the incremental propulsive load

vector (if applicable), Av, is increments in the aerodynamic trim variables (angles of attack and

sideslip, and control deflections), Q, is a matrix of GAF's for these trim variables, A¢o is

increments in the vehicle's angular rates, and Qo, is the corresponding matrix of GAF's. _Q8 is

the vector of aerodynamic loads resulting from deformation.
Using equation (10) in equation (9), we may obtain the deformation vector,

{5=A-_a/Po + A-Ia/AP pr°p+ SA-_a/Q,Av, + _A-_a/Qo,Aco (11)

where A -I = [I- #a/Q]-' is the aeroelastic deflection amplification matrix.
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Substitutingequation(11)intoequation(10),

P = BP o + BAP p'°p + _'BQtAv, + SBQo, Ao_ (12)

where B = [I + qQA-laf ]'_-[I- qQaf ]-1 is the aeroelastic load amplification matrix. Equation (12)

gives the external loads acting on the vehicle including aeroelastic effects. Now we consider trim.

Six Degree-of-Freedom Equations of Motion
The six DOF EOM of the vehicle may be written,

F = MrgO + M_' + OM,v (13)

F is comprised of the three external force componets and three external moment. As such, it can
be expressed in terms of the external nodal forces of equation (12) as

F=_yP (14)

M r is the rigid body mass matrix, seen earlier, g is the magnitude of the acceleration of gravity,

and the vector (9 is defined, for the support point at (or at least near) the vehicle's c.g., by

o: LsinO -cosOsin 0 -cosOcosO? 0,x 3jr

which arises from the vector transformation of the gravity vector from the local vertical frame to the

body frame. Hence, 0 and _ are two of the Euler angles for this transformation. If the support
point were not at the c.g., then the zero vector in the lower partition would contain offset

components between the c.g. and the support point. Note that a traditional flight mechanics body
frame is assumed here: +x - axis forward; +y - axis right; +z - axis out the underside. The matrix

is defined by

[r J0 -r p

q 0

and p, q, and r are the body axis components of the angular velocity vector. The effect of ¢.b is to
accomplish the vector product of the angular velocity vector with another vector. Finally, v is
comprised of the body axis components of the translational and angular velocities of the vehicle,

v=Lu v w p q rdT=LVco, otcos Vsin_ Vsinotcos_ p q rJ T

For relatively mild maneuvers and small aerodynamic mtgles we may make the approximations,

fiM,v=mLo Vr-Vq 0,x3Jr=mac and v=Lv v_ VO_ p q r] r

recognizing the first three entries in a c as centripital acceleration components. Combining
equations (12), (13), and (14),
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