A

- SOFTWARE ENGINEERING LABORATORY SERIES

National
.Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

N<A (Tt 199 -2086(S

5P SEL-95-003

SOFTWARE ENGINEERING LABORATORY SERIES SEL-95-003

COLLECTED SOFTWARE
ENGINEERING PAPERS:
VOLUME Xl

NOVEMBER 1995

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and created
to investigate the effectiveness of software engineering technologies when applied to the
development of application software. The SEL was created in 1976 and has three primary
organizational members:

NASA/GSFC, Software Engineering Branch
University of Maryland, Department of Computer Science
Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effect of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful development practices. The activities,
findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series, a continuing series of reports that includes this document.

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland, U.S.A. 20771

iil SEL-95-003

Page intentionally left blank

TABLE OF CONTENTS

~> Section 1—INtroduction.................ccoiiiiii e 1-1
--¢2 Section 2—The Software Engineering Laboratory..................cccooeniineinnnniennccneiecenns 2-1
/— "SEL's Software Process-Improvement Program," V. Basili, M. Zelkowitz, V

F. McGarry, G. Page, S. Waligora, and R. Pajerski...........cccocooiiniiinn R 2-3
oI —The Experience Factory Strategy and Practice, V. R. Basili and G. Caldiera............................ 2-9
2~ "The Experience Factory and Its Relationship to Other Quality Approaches,"

VR BASIH ..o et e 2-51
O~ Section 3—Software MOelSooooovieiiiiiieieeer et e 3-1

_ #/~ "Characterizing and Assessing a Large-Scale Software Maintenance Organization,"

L. Briand, W. Melo, C. Seaman, and V. Basili...........ccccccccooiniiin 3-3
&~ Section 4—Software MeaSUIeIMENtc...cccuoruriururirieimamiineisee e saessns 4-1
4~ Goal-Driven Definition of Product Metrics Based on Properties, L. Briand, S. Morasca,

ANd V. R BaSIl..coviiiiiiicee et s 4-3
&~ Property-based Software Engineering Measurement, L. Briand, , S. Morasca,

ANA V. R BaASIH. ...t s 4-27
27— An Analysis of Errors in a Reuse-Oriented Development Environment, W. M Thomas,

A.Delis, and V. R.Basili.......ccoooveiiiiiiiie e 4-55
</~ A Validation of Object-Oriented Design Metrics, V. R. Basili, L. Briand,

ANA W. L MELO....ooeieieeee e e e 4-77

Section 5—Technology Evaluations ... 5-1

& —"Generalized Support Software: Domain Analysis and Implementation," M. Stark

ANA E. SEIAEWILZcveiiiiiiiiieiee e 5-3

Standard Bibliography of SEL Literature........................ BI-1

v SEL-95-003

SECTION 1—INTRODUCTION

This ‘document is a collection of selected technical papers produced by participants in the
Software Engineering Laboratory (SEL) from September 1994 through November 1995. The
purpose of the document is to make available, in one reference, some results of SEL research that
originally appeared in a number of different forums. This is the 13t such volume of technical
papers produced by the SEL. Although these papers cover several topics related to software
engineering, they do not encompass the entire scope of SEL activities and interests. Additional
information about the SEL and its research efforts may be obtained from the sources listed in the
bibliography at the end of this document.

For the convenience of this presentation, the nine papers contained here are grouped into four
major sections:

e Software Engineering Laboratory (Section 2)
e Software Models (Section 3)

e Software Measurement (Section 4)

e Technology Evaluations (Section 5)

Section 2 includes several papers and articles that describe the SEL’s process improvement
program and the Experience Factory and it’s relationship to other improvement approaches.
Section 3 contains a case study that uses the Actor-Dependency Model to analyze and assess a
large software maintenance organization. Section 4 includes four papers. The first describes a
rigorous and disciplined approach to defining product metrics, and the second evaluates property-
based metrics defined using this approach. The third paper in Section 4 gives a study that uses
error data to better understand and evaluate an evolving reuse process, and the fourth paper
presents an experimental investigation of a suite of object-oriented design metrics. Finally,
Section 5 contains an experience report that describes using domain analysis to create a library of
highly reusable components that are able to be configured within a standard architecture to
produce low-cost systems.

The SEL is actively working to understand and improve the software development process at the

Goddard Space Flight Center (GSFC). Future efforts will be documented in additional volumes
of the Collected Software Engineering Papers and other SEL publications.

1-1 SEL-95-003

ovr 7

SECTION 2—THE SOFTWARE ENGINEERING LABORATORY

The technical papers included in this section were originally prepared as indicated below.

e "SEL's Software Process-Improvement Program," V. Basili, M. Zelkowitz, F. McGarry,

G. Page, S. Waligora, and R. Pajerski, JEEE Software, vol. 12, no. 6, November 1995,
pp. 8387

e The Experience Factory Strategy and Practice, V. R. Basili and G. Caldiera, University

of Maryland, Computer Science Technical Report, CS-TR-3483, UMIACS-TR-95-67,
May 1995

e "The Experience Factory and Its Relationship to Other Quality Approaches,” V. R.
Basili, Advances in Computers, vol. 41, Academic Press, Incorporated, 1995

2-1 SEL-95-003

Page intentionally left blank

lof

VICTOR BASIL!
and MARVIN ZELKOWITZ
University of Maryland

FRANK McGARRY,

JERRY PAGE,

and SHARON WALIGORA
Computer Sciences Corporation

ROSE PAJERSKI
NASA Goddard Space
Flight Center

SEL’'S SOFTWARE

PROCESS-IMPROVEMEN‘I'

PROGRAM

In 1993, the IEEE Computer Society and the Software Engineering Institute jointly estab-
lished the Software Process Achievement Award to recognize outstanding improvement accom-
plishments. This award is to be given annually if suitable nominations are recefved by the SEI
before November 1 each year. The nominations are reviewed by an award commitsee of Barry
Boebm, Manny Lebman, Bill Riddle, myself, and Vic Basili (who did not participate in this
award decision because.of bis involvernent in the Software Engineering Laboratory).

It is particularly fitting that the SEL was selected as the first winner for this award. They
started their pioneering work nearly @ decade before the Software Engineering Institute was
founded, and their work bas been both o guide and an inspiration to all of us who have attempt-

ed to follow in their footsteps.
— Watts Humphbrey

or nearly 20 years, the

Software Engineering
Laboratory has worked to
understand, assess, and
improve software and the
software-development
process within the produc-
tion environment of the
Flight Dynamics Division
of NASA’s Goddard Space
Flight Center. We have
conducted experiments on
about 125 FDD projects,
applying, measuring, and
analyzing numerous soft-
ware-process changes. As a
result, the SEL has adopt-
ed and tailored processes

. — based on FDD goals

and experience — to sig-
nificanty improve software
production.

The SEL is a coopera-
tive effort of NASA/
Goddard’s FDD, the Univ-
ersity of Maryland Depart-
ment of Computer Science,
and Computer Sciences
Corporaton’s Flight Dyna-
mics Technology Group. It
was established in 1976
with the goal of reducing

¢ the defect rate of
delivered software,

4 the cost of software to
support flight projects, and

¢ the average time to
produce mission-support |
software. :

Our work has yielded an |
extensive set of empirical i
studies that has guided the !
evolution of standards, man-~ |
agement practices, technolo- |
gies, and training within the |
organization. The result has
been a 75 percent reduction
in defects, a 50 percent reduc-
tion in cost, and a 25 percent
reduction in cycle tdme. Over
time, the goals of SEL have
matured. We now strive to:

¢ Understand baseline
processes and product
characteristics, such as cost,
reliability, software size,
reuse levels, and error
classes. By characterizing 2
production environment, |
we can gain better insight
into the software process
and its products.

* Assess improvements
that have been incorporat-
ed into development pro-
jects. By measuring the
impact of available tech-
nologies on the software |

! which technologies are

i tantly — how the technolo-

process, we can determine

beneficial to the environ-
ment and — most impor-

gies should be refined to
best match the process with
the environment.

¢ Package and infuse
improvements into the
standard SEL process and
update and refine stan-
dards, handbooks, training
materials, and develop-
ment-support tools.1-3 By
identifying process im-
provements, we can pack-
age the technology so it can
be applied in the produc-
tion environment.

As Figure 1 shows, these
goals are pursued in a
sequential, iterative process
that has been formalized by
Basili as the Quality Im-
provement Paradigm* and
its use within the SEL for-
malized as the Experience
Factory.’

IMPROVING THE PROCESS

We select candidates

2-3

SEL-95-003

: § Recommended upproo{hes

'3 Training moterial:

Software
thgemzm
% Enviror

?-§~Geonroom process model 3

ament ; §Adcusersmmuul

3)Mnnget s handbook -
§ Progmmmer s hnndbook

% I mul deunmom study !

 Initil Ado-Fortran shudy "

ékeuseum*ysis"f ’

g Btor nnd :hunge pwﬁles”

<+ Initiol 00 study

; iDesngnmnsuremen

4 Relotionship among developmem megsures

? Resource and effort profiles

’§ Subjective measures:

Figure 1. The SEL goal: are pursued in a sequential, iterative fasbum Tbe diagram mcludes

some of the many SEL studies that have been conducted over the years, including those of

Cleanroom, Ada, and Fortran.

for process change on the
basis of quantdfied SEL expe-
riences (such as the most sig-
nificant causes of errors) and
clearly defined goals for the
software (such as to decrease
error rates). After we select
the changes, we provide
training and formulate exper- !
iment plans. We then apply :
the new process to one or |
more production projects and
take detailed measurements.
We assess a process’s success
by comparing these measures
with the continually evolving
baseline. Based upon the
results of the analysis, we
adopt, discard, or revise the
process.

Process improvement
applies to individual projects,
experiments (the observaton
of two or three projects), as |
well as the overall organiza- '
tion (the observation of
trends over many years). In

the early years, the SEL
emphasized building a clear
understanding of the process
and products within the envi-
ronment. This led us to
develop models, relations,

and general characteristics of |
! the SEL environment. Most

of our process changes con-
sisted of studying specific,
focused techniques (such as

program-description lan- :

guage, structure charts, and
reading techniques), but the
major enhancement was the
infusion of measurement,
process-improvement con-
cepts, and the realizadon of
the significance of process in
the software culture.

SEL OPERATIONS

The SEL has collected
and archived data on more

than 125 of its software- |

development projects. We
use the data to build typical-
project profiles against
which we compare and eval-
uate ongoing projects. The
SEL provides its managers
with tools for monitoring
i and assessing project status.
The FDD typically runs six
to 10 projects simultaneous-
ly, each of which is consid-
ered an experiment within
the SEL.

For each project, we col-
lect a basic set of informa-
tion (such as effort and
error data). From there, the
data we collect may vary
according to the experiment
or be modified as changes
are made to specific
processes (such as the use of
i Ada). As the information is
collected, it is validated and
| placed in 2 central database.
- We then use this data with
other information — such

Vé

as the subjective lessons
learned — to analyze the
impact of a specific software
process and to measure and
feed back results to both
ongoing and follow-on pro-
jects.

We also use the data to
build predictive models and
to provide a rationale for
refining current software
processes. As we analyze the
data, we generate papers
and reports that reflect the
results of numerous studies.
We also package the results
as standards, policies, train-
ing materials, and manage-
ment tools.

PROCESS AND PRODUCT
ANALYSIS

The FDD is responsible
for the development and
maintenance of flight-
dynamics ground-support
software for all Goddard
flight projects. Typical
FDD projects range in size
from 100,000 to 300,000
lines of code. Several pro-
jects exceed a million lines
of code; others are as small
as 10,000 lines of code. (At
SEL, reused code is not
“free”; it is counted as 20
percent of new Fortran code
and 30 percent of new Ada
code.) The SEL improve-
ment goal is to demonstrate
continual improvement of
the software process within
the FDD environment by
carrying out analysis, mea-
surement, and feedback to
projects within this environ-
ment.

Understanding. Under-
standing what an organiza-
ton does and how it oper-
ates is fundamental to any

SEL-95-003

attempt to plan, manage, or
improve the software
process. This is especially
true for software-develop-
ment organizations. The
SEL supports this under-
standing in several ways,
including, for example, the
study of effort distribution
and error-detection rate.

+ Effort distribution
identifies which phases of
the life cycle consume which
portion of development
effort. Figure 2 presents the
effort distribution of 11
Fortran projects by life-cycle
phase and activity. Under-
standing these distributions
helps us plan new efforts,
evaluate new technologies,
and assess the similarities
and differences within an
ongoing project.

+ Error-detection rate
provides the absolute error
rate expected in each phase.
At SEL, we collected infor-
mation on software errors
and built a model of the
expected errors in each life-
cycle phase. For 1,000 lines
of code, we found about
four errors during imple-
mentation; two during sys-
tem test; one during accep-
tance test; and one-half dur-
ing operation and mainte-
nance. The trend we derive
from this model is that
error detection rates fall by
50 percent in each subse-
quent phase. This pattern
seems to be independent of
the actual error rates; it is
true even in recent projects,

in which the overall error-

rates are declining. We use
this model of error rates, as
well as other similar types
of models, to better predict,
manage, and assess change
on newly developed pro-
jects.

Assessing and refining. We
consider each SEL project
to be an experiment, in
which we study some soft-
ware method in detail.
Generally, the subject of the
study is a specific modifica-
tion to the standard process
— a process that obviously
comprises numerous soft-
ware methods.)

For example, the Clean-
room software methodo-
logy$ has been applied on
four projects within the
SEL, three of which have
been analyzed thus far.
Each project gave us addi~
tional insight into the
Cleanroom process and
helped us refine the method
for use in the FDD envi-
ronment. After training
teams in the Cleanroom
methodology, we defined a
modified set of Cleanroom-
specific data to be collected.
The teams studied the pro-
jects to assess the impact
that Cleanroom had on the
process, as well as on mea-
sures such as productivity
and reliability. Figure 3
shows the results of the
three analyzed projects.

The Cleanroom experi-
ments required significant
changes to the standard
SEL development method-
ology and thus extensive

- training, preparation, and

careful study execution. As
in all such experiments, we
generated detailed experi-
mentation plans that
described the goals, the
questions that had to be
addressed, and the metrics
that had to be collected to
answer the questions.
Because Cleanroom consists
of many specific methods —
such as box-structure de-
sign, statistical testing, and

Figure 2. Effort distribution

by (A) life-cycle phase and ®

activity. Phase data counts hours charged to a project during
each calendar phase. Activity data counts hours attributed to 2
particular activity (as veported by the programmer), regard-
less of when in the life cycle the activity occurred.

AR

Figure 3. Results of three completed Cleanroom projects,

compared against the SEL baseline.

rigorous inspections — each
particular method had to be
analyzed, along with the
Cleanroom methodology
itself. As a result of these
projects, a slightly modified

_Cleanroom approach was

deemed beneficial for small-
er SEL projects. Anecdotal
evidence from the recently
completed fourth Clean-
room project confirms the
effectivenéss of Cleanroom.
The revised Cleanroom-
process model was captured
in a process handbook for
future applications to SEL
projects. We have analyzed
and applied many other

methodologies in this way.

Packaging. Once we have
identified beneficial meth-
ods and technologies, we
provide feedback for future
projects by capturing the
process in standards, tools,
and training. The SEL has
produced a set of standards-
for its own use that reflect
the results of its studies.
Such standards must con-
tinually evolve to capture
modified characteristics of
the process (the SEL typi-
cally updates its basic stan-
dard every five years.)
Standards we have pro-

2-5

SEL-95-003

TABLE 1
EARLY SEL BASELINE

Project Reuse

{number & name) {percent)
LcroaGss 14

2. COI;EAGSS 12

. GOESAGSS "12

4. UARSAGSS 10
_s.GROSIM 18

6 COBSIM 11‘“
) 8. {JARSTELS

35

Mission Cost” Reliability
(staff months) (error/KSLOC)
T e
o 348 ‘5.22.
""" 261° 5.8
o5 281
e e
445

* Mission cost = cost of selemnetry simulator + cost of AGSS (GRO = projects 1 + 5,

COBE=2+6,GOES=3+7, UARS =4+ §).

TABLE 2
CURRENT SEL BASELINE

Project Reuse
(number & nnme) (pertem)
LE EUVFAGSS 18
2. SAMPEX Ms3
3. WII\IDBOLR 18
4EUVETELS 96

5.8 SAMPEXI‘S o
s POWITS e
7. TOMSTELS = 97 - -

8. FASTELS 92

Cost* Reliability

{staff months) (error/KSLOQ)
Lss 122
ﬁ 77 76
46 ol
36 41
21 48
T 23
n/at - 23
/et 69

* Mission cost = cost of telemetry simulator + cost of AGSS (GRO = projects 1 + 5,

COBE = 2+6, GOES =

3+7, UARS =4 + §).

1 Exdluded because it used the Cleanrroom development methodology, which counts errors

differently.

Total mission cost for TOMS and FAST cannor be calculated because AGSSs are

incomplete (they are not included in the

duced include:
* Manager’s Handbook for

Software Development,
* Recommended Approach

1o Software Development,? and

¢ The SEL Relations and
Models.3

In addition to the evolv-
ing development standards,
policies, and wraining mater-
ial, successful packaging
includes generating experi-

cost baseline).

ment results in the form of
post-development analysis,
formal papers, and guide-
books for applying specific
software techniques.

IMPACT OF SEL

Our studies have invol-
ved many technologies,
ranging from development

and management practices
to automation aids and
technologies that affect the
full life cycle. We have col-
lected and archived detailed
information so we can assess
the impact of technologies
on both the software
process and product.

Product impact. To deter-
mine the effect of sustained

. SEL efforts as measured

against our major goals, we
rouunely compare groups
of projects developed at dif-
ferent times. Projects are
grouped on the basis of
size, mission complexity,
mission characteristics, lan-
guage, and platform. On
these characteristic pro-
jects, we compared defect
rates, cost, schedule, and
levels of reuse. The reuse
levels were studied carefully
with the full expectation
that there would be a corre-
lation between higher reuse
and lower cost and defect
rates. These characteristic
projects become our “base-
lines.” Table 1 shows an
early baseline — eight pro-
jects completed between
1985 and 1989. These pro-
jects were all ground-based
attitude-determination and
-simulation systems ranging
in size from 50,000 to
150,000 lines of code that
were developed on large
IBM muainframes. Each was
also a success, meeting mis-
sion dates and requirements
within acceptable cost.
Table 2 shows the current
SEL baseline, which com-
prises seven similar projects
completed between 1990
and 1994.

As the tables show, the
early baseline projects had a
reliability rate that ranged

from 1.7 to 8.9 errors per
1,000 lines of code, with an
average rate of 4.5 errors.
The current baseline pro-
jects had a reliability rate
ranging from 0.2 to 2.4
errors per 1,000 lines of
code, with an average rate
of 1 error. This is about 2
75-percent reduction over
the eight-year period.

The dramatic increase in
our reuse levels — aided by
experimentation with tech-
niques such as object-ori-
ented development and
domain-engineering con-
cepts — have been a major
contributor to improved
project cost and quality.
Reuse, along with increased
productivity, also con-
tributed to 2 significant
decrease in project cost. We
examined selected missions
from the two baselines and
found that, although the
total lines of code per mis-
sion remained relatively
equal, the total mission cost
decreased significantly. The
average mission cost in the
early baseline ranged from
357 to 755 staff-months,
with an average of 490. The
current baseline projects
had costs ranging from 98
to 277 staff-months with an
average of 210. This is a
decrease in average cost per
mission of more than 50
percent over the eight-year
period. This reduction
occurred despite the
increased mission complexi-
ty, shown in Table 3.

Process impact. The most
significant changes in the
SEL environment are illus-
trated by the standards,
training programs, and
development approaches
incorporated into the FDD

2-6

SEL-95-003

process. Although specific
techniques and methods
have had a measurable
impact on a class of pro-
jects, significant improve-
ment to the software-devel-
opment process — and an
overall change in the envi-
ronment — has occurred
because we have continu-
ously incorporated detailed
techniques into higher level
organizational processes.

The most significant
process attributes that dis-
tinguish our current pro-
duction environment from
that of a decade earlier
include:

4 Process change and
improvement has been
infused as a standard business
practice. All standards and
training material now con-
tain elements of our continu-
ous-improvement approach
o experimentation.

4 Measurement is now
our way of doing business
rather than an add-on to
development. Measurement
is as much a part of our
software standards as docu-
mentation. It is expected,
applied, and effectve.

4 Change is driven by
process and product. As the
process-improvement pro-
gram matured over the
years, our concern for prod-
uct attributes grew to equal
our concern for process
attributes. Product goals are
always defined before
process change is infused.
Measures of product are
thus as important as those
of process (if not more so).

+ Change is bottom-up.
Although process-improve-
ment analysts originally
assumed they could work
independently of develop-

ers, we have realized over
the years that change must
be guided by development-
project experience. Direct
input from developers as
well as measures extracted
from development activities
are key factors in change.

4¢“People-oriented”
technologies are empha-
sized, rather than automa-
tion. The most effective
process changes are those
that leverage the thinking of
developers. These include
reviews, inspections, Clean-
room techniques, manage-
ment practices, and inde-
pendent-testing techniques
— all of which are driven by
disciplined programmers
and managers. Automation
techniques have sometimes
provided improvement, but
people-driven approaches
have had farther reaching
impacts.

he SEL has invested

approximately 11 per-
cent of its total software
budget into process-im-
provement. This expense
includes project overhead,
as well as overhead for data
archiving and processing
and process and product
analysis. We have main-
tained detailed records so
we can accurately record
and report process-improve-
ment Costs.

Our investment in
process-improvement has
brought many benefits. The
cost, defect rates, and cycle
time of flight-dynamics
software have decreased sig-
nificantly since we started
the program. Today, our
software developers are
building better software

TABLE 3

COMPARING INCREASE
IN BASELINE COMPLEXITY

Attribute Early SEL buseline Cuerent SEL baseline

“ éontroi Spin stabilized Thl:e;e~aiiis smblhzed i
Sensors 1 8w ll |
Torques_ 1 Zto 3
Onboard An;dog bigital
computer simple control control
Telemetry 5 4 12vto 15
Data rates 2.2 kbs 32 kbs
Acéuracy 1 degree 0.02 degree

more efficiently — using
many techniques and meth-
ods considered experimen-
tal only a few years ago.
Their progress has been
facilitated throughout by
the SEL focus on defining
organizational goals, ex-
panding domain under-
standing, and judiciously
applying new technology,
allowing the FDD to maxi-
mize the lessons from local
experience. *

REFERENCES

1. L.Landis et al., “Manager's
Handbook for Software Devel
opment,” Revision 1, Tech.
Report SEL-84-101, Software
Eng. Laboratory, Greenbel,
Md., 1989.

2. L.Landis et al., “Recommended
Approach to Software Develop
ment,” Revision 3, Tech. Report
SEL-81-303, Software Eng.
Laboratory, Greenbelt, Md. 1992.

3. W. Decker, R. Hendrick, and J.
Valetr, “Relationships, Models
and Measurement Rules,” Tech.
Report SEL-91-001, Software
Eng. Laboratory, Greenbelt,
Md., 1991.

4, V.R.Basili and D.M. Weiss, “A
Methodology for Coliecting
Valid Software Engineering
Data,” IEEE Trans. Software Eng.,
Nov. 1984, pp. 728-738.

5. V.R. Basili, “Sofctware Develop
ment: A Paradigm for the
Future,” Proc. Compsae, IEEE CS
Press, Los Alamitos, Calif., 1989,
pp. 471-485.

6. V.R. Basili and S. Green, “Soft
ware Process Evolution at the
SEL,” IEEE Sofrware, July 1994,
pp. 58-66. '

Victor Basili is a professor in the
Institute for Advanced Computer
Studies and the Computer Science
Department at the University of
Maryland. He is co-editor-in-chief of
the International Fournal on Empirical
Software Engineering.

Marvin Zelkowitz is a professor
in the Institute for Advanced
Computer Studies and the Computer
Science Department at the University
of Maryland and has been involved
with the SEL since its inception in
1976. His research interests include

lang design, envir and
formal methods.
Frank McGarry is a senior mem-

ber of the executive staff at Computer
Sciences Corporation. Previously at
NASA, he was a founding director of
the SEL in 1976.

Jerry Page is the vice president
of the System Science Division at
Computer Sciences Corporation.
Until last year, he managed SEL
activities within CSC.

Sharon Waligora has worked for
the Computer Science Corporation
since 1974 and directs the CSC
branch of the SEL, leading efforts in
software process improvement,
process definition, and measurement
activities.

Rose Pajerski has worked for the
Goddard Space Flight Center for
more than 20 years and directs the
GSFC branch of the SEL. Her
research interests include testing
processes, systems management
through measurement, and wiloring
approaches for process-improvement
programs.

Address questions about this arti-
cle to Basili at the Department of
Computer Science, University of
Maryland, 4121 AV, Williams,
College Park, MD 20742; basili@cs.
umd.edu.

SEL-95-003

Page intentionally left blank

S52-¢ S/

5777
THE EXPERIENCE FACTORY gpees
STRATEGY AND PRACTICE i “ i
Victor R. Basili | Gianluigi Caldiera o
basili@cs.umd.edu gcaldiera@cs.umd.edu

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, Maryland 20742

ABSTRACT

The quality movement, that has had in recent years a dramatic impact on all industrial sectors, has
recently reached the systems and software industry. Although some concepts of guality management,
originally developed for other product types, can be applied to software, its specificity as a product which
is developed and not produced requires a special approach. This paper introduces a quality paradigm
specifically tailored on the problems of the systems and software industry.

Reuse of products, processes and experience originating from the system life cycle is seen today as a
feasible solution to the problem of developing higher quality systems at a lower cost. In fact, quality
improvement is very often achieved by defining and developing an appropriate set of strategic capabilities
and core competencies to support them. A strategic capability is, in this context, a corporate goal defined -
by the business position of the organization and implemented by key business processes. Strategic
capabilities are supported by core competencies, which are aggregate technologies tailored to the specific
needs of the organization in performing the needed business processes. Core competencies are non-
transitional, have a consistent evolution, and are typically fueled by multiple technologies. Their selection
and development requires commitment, investment and leadership.

The paradigm introduced in this paper for developing core competencies is the Quality Improvement
Paradigm which consists of six steps:

1. Characterize the environment 4. Execute the process
2. Set the goals 5. Analyze the process data
3. Choose the process 6. Package experience

The process must be supported by a goal-oriented approach to measurement and control, and an -
organizational infrastructure, called Experience Factory. The Experience Factory is a logical and physical
organization distinct from the project organizations it supports. Its goal is development and support of
core competencies through capitalization and reuse of life cycle experience and products.

The paper introduces the major concepts of the proposed approach, discusses their relationship with other
approaches used in the industry, and presents a case in which those concepts have been successfully
applied.

This work was supported by NASA Grant NSG-5123 and by Hughes Applied
Information Systems, Inc.
2-9 SEL-95-003

1. INTRODUCTION

The presence of software in almost every activity and institution is a
characteristic of our society. Our dependence on software becomes evident when
software problems and related events make the headlines of newspapers.
However, this dependency on software, although highly visible, is not yet well
understood by the business community. Software is still too often perceived as
the easiest part of a system, the part that can be easily modified and adapted to
fit to the main business of the organization.

This idea that "software is easy” or, ultimately, "cheap" is hard to eradicate, even
when there is substantial evidence that it is not true anymore. In particular, there
is a certain difficulty in dealing with software quality, both it terms of definition
(What is quality software?) and implementation of quality programs (How can
we produce quality software?).

The starting point of every discussion on software quality is the recognition that
software is an industrial product whose quality can be managed in a similar way
to the quality of other products or services. A software system is the result of the
_concurrent effort of teams of people working according to a traditional
engineering paradigm (a conception phase followed by an implementation
phase, very often with several iterations). In fact, we call "software engineering"
the systematic approach to the development, operation and maintenance of
software systems (and associated documentation and data).

As with every industrial product, the quality of software is defined as "fitness
for use” over its lifetime. Therefore, the goal of a quality management program is
to incorporate quality into a software system in the most economically
convenient way, i.e., by designing a high quality system. The challenge of
software quality is to implement techniques and programs in order to fill the
existing gap between demand and our ability to produce high-quality software
in a cost-effective way.

The software product, however, presents the following critical combination of
characteristics:

. Software is a logical aggregate of invisible parts: The quality of such
aggregate depends on the appropriateness of the logical
structuring of the parts and on a precise and easy-to-understand
documentation of this structure;

. Software is designed for user applications which are expected to evolve
continuously: The quality of application software depends on the

2-10 SEL-95-003

precise conceptual understanding of user needs, and on the:
adaptability of designh to a changing environment; good
communication between designers and users, and user perception
are essential components of good software design;

. Software is developed and not produced: Each software product is like
a prototype, therefore many statistical concepts that help us in
measuring and controlling quality in industrial products do not
apply completely to software products;

. Software is a human based technology: The quality of the software
product is dependent on the individuals involved, therefore
appropriate use of individual skills, individual satisfaction and
motivation are key issues in achieving substantial improvements in
quality and productivity.

We believe that the quality of a software system should and can be managed in
two ways. First, the effectiveness of the software development process should be
improved by reducing the amount of rework and reusing software artifacts
across segments of a project or different projects. Second, plans for controlled,
sustained, and continuous improvement should be developed and implemented
based on facts and data.

But software engineering does not make extensive use of quantitative data.
Therefore software quality management is based on a very immature and
unstable paradigm. A major problem is that many data regarding the quality of
a system can only be observed, and measured when the system is implemented.
Unfortunately, at that stage the correction of a design defect requires the
redesign of some, sometimes large and complex, components and is very
expensive. In order to prevent the occurrence of expensive defects in the final
product, quality management must focus on the early stages of the engineering
process, in particular on the requirements analysis and design phases, and use
quantitative data in order to record and support inspection and decision making.
Those early stages are, however, the ones in which the process is less defined
and controllable with quantitative data. Therefore, software engineering projects
do not regularly collect data and build models based upon them.

There are many software project that can be considered successful from a quality
point of view; generally this means that the techniques and procedures applied
in the project have been effective, in particular those aimed at assuring quality.
The goal of quality management is to make this success repeatable in other
projects, by transferring the knowledge and the experience that are at the roots
of that success to the rest of the organization. Therefore, a software organization
that manages quality should have, besides the quality assurance infrastructure

2-11 SEL-95-003

associated with each project, a corporate infrastructure that links together and
transcends the single projects by capitalizing on successes and learning from
failures.

Quality management and infrastructure, however, do not just happen; they must
be planned and implemented by the organization through specific programs and
investments. This paper is about the need for a strategic approach to software
quality management, as a part of a corporate strategy for software, aimed at
pursuing and improving quality as an organization and not as a group of
individual projects.

We will motivate the need for such an approach, discuss it in the context of some
of the most relevant concepts developed by the management disciplines, and
provide a framework for a solution, which has been applied in practice with
convincing results.

We believe there is no solution that can be mechanically transferred and applied
to every organization (the famous "silver bullet"”), and this applies also to the
concepts presented in this paper. The proposed approach, however, can be used
by every organization, after appropriate customization, in order to improve
software quality in a controllable way.

2-12 SEL-95-003

2. THE PROBLEM OF SOFTWARE QUALITY

Quality is the totality of characteristics of a product or service "that bear on its
ability to satisfy stated or implied needs" [ISO1]. It is a multidimensional concept
that includes the entity of interest (the product or service), the viewpoint on that
entity (the user, the producer, a regulatory agency, etc.) and the quality
attributes of that entity (the characteristics that make it fit for use). A recent
international standards [ISO3] identifies the following characteristics:

« Functionality o Efficiency
« Reliability e Maintainability
 Usability e Portability

In some cases, such as regulated environments in which some safety critical
factors must be determined (aeronautics, nuclear power, etc.), these attributes
are specified by a standard or a contract; but in the majority of cases they are
identified and defined during the design process, and modified throughout the
life cycle of the system. The ability of an organization to identify and define the
quality attributes that are closer to the "stated or implied needs” of a user is the
critical success factor in the market of the 90's.

Quality as business
opportunity

Quality as a

management tool

Quality as a
controllable problem

2-13 SEL-95-003

Today the success of a software organization is measured by its.
cost/performance attributes: it delivers (or updates) the needed systems
generally on time and without budget overruns. In the longer run, though, if we
take into account today's market, characterized by shrinking budgets and
increased global competition, we can expect, for the second half of the '90s, that
the most successful organizations will probably be the ones that have been able
to converge to better levels of productivity and quality. The influence of
international standards such as the ISO 9000 Series [ISO2] is already evident.
Many organizations are now seeking registration and the ability to develop
quality systems in compliance with the requirements of the standard.
Registration, however, is a means and not an end: spending resources on
developing a quality system without a quality improvement program that uses it
to gain a competitive advantage would be a waste of money. This is why, along
with ISO 9000 registration programs, we see quality improvement programs
being started. We can expect that in a few years all this movement will lead to a
higher quality baseline for all the software that is being purchased and
developed around the world. On top of this baseline the organizations will be
able to build their own quality management programs and their continuous
improvement strategies. In this way quality will complete its transformation
from problem (search for defects) to tool (defined processes) to business
opportunity used to distinguish an organization from its competitors(Figure 1).

At that point, the real advantage will come from the ability of the software
organization to deliver solutions that not only satisfy, but also anticipate the
needs of the system users, enhancing their business and adding a substantial
amount of value to their products and services [Hamel and Prahalad, 1991].
Competition in the '90s is a more complex and dynamic playing field, in which
the basic factors for success are the understanding of trends and the response to
changing needs. The traditional rigidity of software organizations must to be
adapted to the new ground rules. New professional skills, beyond the traditional
programmer/analyst/manager triangle, are necessary in order to capitalize on
the experience of the organization and work on specific lines of business instead
of developing isolated products.

If we survey the approaches to software quality available to the industry, we see
a variety of paradigms, mostly coming from the manufacturing industry.

Some organizations apply to their software processes an improvement process
based on the Shewart-Deming Cycle [Deming, 1986]. This approach provides a
methodology for managing change throughout the steps of a production process
by analyzing the impact of those changes on the data derived from the process.
The methodology is articulated in four phases: .

2-14 SEL-95-003

. Plan: Define quality improveinent goals and targets and.
determine methods for reaching those goals; prepare
an implementation plan.

. Do: Execute the implementation plan and collect data.

. Check: Verify the improved performance using the data
collected from the process and take corrective actions
when needed.

e Act: Standardize the improvements and install them into
the process.

Some organizations use the Total Quality Management (TQM) approach, which
is a derivative of the PDCA method applied to all business processes in the
organization [Feigenbaum, 1991]. Actually, more than a specific method TQM is
a family of management philosophies based on the fact that quality is measured
by the user of a product, and that everyone in the organization has specific
responsibilities for the quality of the final outcome. Therefore, in TOM
programs, quality improvements, identified during a preliminary
characterization effort, are usually experimented by pilot groups and then
institutionalized across the whole organization. The TQM approach usually
results in the establishment of cross-functional quality improvement teams
chartered to addressing specific quality improvements within a strategic quality
plan developed by the top management.

A different approach is adopted by organizations that model their improvement
on an external scale that is meant to represent the best practices in quality. The
goals of the improvement program are, in this case, not internally generated but
suggested by those best practices. A model of this kind, which is today very
popular in both the USA and Europe, is the SEI Capability Maturity Model [SEL;
Bootstrap] which measures the maturity of a software organization on the basis
of its dependence on individual skills and on the presence of certain
technologies. In a low maturity organization, the success of a task depends on
the efforts of people involved in it, professionals and managers. Their ability to
control risk, to solve or even prevent problems is the major asset of the
organization. In a more mature organization, the success is based on the use of
sound managerial and engineering techniques coordinated by a pervasive, well-
defined set of processes for the execution of the needed tasks. At the highest
level of maturity, the organization effectively capitalizes on its experiences and
improves its processes. The improvement is achieved by bringing the
organization through these levels of maturity.

All these approaches, and variations on them, have been used by the software
industry, with mixed outcomes. Some outstanding successes have been reported,

2-15 SEL-95-003

such as the one shown in Figure 2 [Dion, 1993], by combining those approaches.
The major problem with all these approaches is that they either do not deal
specifically with the nature of the software product (Deming Cycle, TQM) or, if
they do, they assume that there is a consistent picture of what a good software
product or process is (SEI model).

We argue that this is not enough for two reasons: the first one is that in order to
be really effective a software quality program should deal with the nature of the
software business itself; the second is that there is really no such thing as an
explicit consistent picture of a good software product.

Figure 2

Raytheon ience
Costs
¢ $ 1 million: Investment on the improvement program for each year
(1987-1992)
Benefits
e $15.8 million: Rework costs eliminated
Return on investment
e 77:1in1990

Changes in % project time by cost type from 1988 to 1990

Performance: Cost of building it right the first time, from 34% to 55%;
Non conformance: Cost of rework, from 44% to 18%;

Appraisal: Cost of testing, from 15% to 15%;

Prevention: Cost of preventing non-conformance, from 7% to 12%.

On one hand, if we look at processes and technologies in isolation, like in the
Plan/Do/Check/Act and TQM approaches, we have very little chance to get to
the right level of abstraction that provides reusable units across different
processes. Those approaches do not really build "model abstractions" because
they manipulate the process explicitly. For instance: if we apply TQM to the
order entry process, we have well defined elementary actions performed to enter
an order. We can describe them with a flow chart and analyze the process, apply .
changes and assess their impact. We will have very soon many instances of that
process to build a control chart and bring it under control. Unfortunately, the
same approach cannot be used on a software process (e.g., structured de51gn),
which cannot be reduced to elementary units and is not replicated many times in
a short period.

On the other hand, if we base our judgment upon an external model, like in the
SEI and similar approaches, we might loose characteristics that make an
organization's environment "special.” Those characteristics are, in many cases, at

2-16 SEL-85-003

the roots of the competitive advantage of that organization, therefore their loss is
very damaging for the improvement program.

The approach that will be presented in the next sections of this paper is an
attempt to learn from the successes obtained through the different paradigms
sketched in this section, and to avoid the problems encountered in their
application to software environments. It rests on the lean enterprise concept
[Womack, 1989] by concentrating production and resources on value-added .
activities that represent the critical business processes of the organization. Such
processes, after having been recognized, are conceptually redesigned in a
modular way and associated with models, data, techniques and tools, in order to
reuse them according to the needs and characteristics of specific projects. Total
quality management [Feigenbaum, 1991] and Concurrent engineering [Dewan
and Riedl, 1993] can be used in order to keep the structure efficient, responsive
to the needs of any external entity (customer or supplier), and to make it rest
upon parinership and participation, with many feedbacks and measures of the
effectiveness of communication.

2-17 SEL-95-003

3. TOWARDS A MATURE SOFTWARE ORGANIZATION

If we analyze carefully some of the most successful and trend-setting business
stories of the last 10 years [Stalk, Evans and Shulman, 1992}, we can ascribe the
reported successes to the application of four basic principles:

1. Business processes are the building blocks of the corporate
strategy.

2. Competitive success depends on understanding and transforming
the key business processes into strategic capabilities.

3. Strategic capabilities are created by sustained long-term
investments in a support infrastructure that links together and
transcends the business units.

4. A capability-based strategy must be sponsored by the top
management of the corporation.

It is important to understand these four principles in the context of on a software
organization.

The first principle sets the focus on business processes: this is consistent with the
current tendency to emphasize the role of software processes in a successful
project. Software is a logical aggregation and an intellectual product, which is,
therefore, strongly dependent on the processes executed for developing or
maintaining it. The analysis of those processes and the ability to reuse them in
the appropriate context are a key competitive factor for every software
organization. The corporate strategy must focus on identification and
characterization of the key business processes used in developing and
maintaining software, so that the business units, relieved from process related
concerns, can focus more on the individual systems and services that are
developed and delivered to individual clients.

The second principle is about "strategic understanding” of business processes.
This means that the organization must understand its key business processes
sufficiently to transform them into reusable units available to all its business
units where needed. Not every process used in the organization has the
characteristics of criticality that make it worthy of being transformed into a
strategic capability: it is only from the analysis of the relationship between
software processes and the mission of the organization that we can obtain a
strategic level of understanding and a consolidated hypothesis of what should

2-18 SEL-95-003

become a strategic capability. A system developer or integrator, for instance,.
produces software in order to deliver services to a particular group of users (e.g.,
electronic messaging). In this case a good cost/benefit ratio for the system or
service is probably the most crucial issue. Therefore, the process of making
acceptable estimates and to develop a plan based on them has a criticality
definitely higher than the process of assuring the highest possible reliability. On
the other hand, for a manufacturer of systems dependent on software (e.g.,
cellular phones) the cost/benefit ratio for software is distributed over a large
number of products and therefore not extremely crucial for the single software
package. Therefore, the process of assuring reliability has a higher criticality in
comparison with the ability of making acceptable estimates of software costs.

The thitd and the fourth principles call for long-term investments and top
management sponsorship, which translates into a permanent structure that
develops and supports the reuse of the strategic capabilities. This is particularly
new for the software industry, which is, in its large majority, driven by its
business units and, therefore, has little ability to capitalize on experiences and
capabilities. The required permanent structure is designed to provide a double
support cycle:

. Control cycle: Support is provided to the everyday operation of
software projects by comparing their current performance with the
normal performance of similar projects;

. Capitalization cycle: Support is provided to future projects by
continually learning from past experience and packaging this
experience in a reusable way. _

The development of strategic capabilities and competencies to support them,
which is the key to all four of the presented principles, has, in the case of
software, some basic requirements:

1. The organization must understand the software process and
product.

2. The organization must define its business needs and its concept of
process and product quality.

3. The organization must evaluate every aspect of the business
process, including previous successes and failures.

4. The organization must collect and use information for project
control.

2-19 SEL-95-003

5. Each project should provide information that allows the
organization to have a formal quality improvement program in
place, i.e. the organization should be able to control its processes,
to tailor them to individual project needs and learn from its own

experiences.

6. Competencies must be built in critical areas of the business by
packaging and reusing clusters of experience relevant to the
organization's business.

Part of the problem with the software business is the lack of understanding of
the nature of software and software development. To some extent, software is
different from most products. First of all, software is developed in the creative,
intellectual sense, rather than produced in the manufacturing sense, i.e., each
software system is developed rather than manufactured. Second, there is a non-
visible nature to software. Unlike an automobile or a television set, it is hard to
see the structure or the function of software, or to reason about it in a
straightforward way. Therefore, the development of strategic capabilities in
software requires understanding, model building and continuous feedback from
the process.

This means that we must rethink the software business and expand our focus to
a new set of problems and the techniques needed to solve them. Unfortunately,
the traditional orientation of a software project is based on a case-by-case
problem solving attitude; the development of strategic capabilities is based,
instead, on an experience reuse and organizational sharing attitude. Figure 3
outlines the traditional focus of software development and problem solving,
along with the expanded focus, proposed here for experience reuse.

The obvious question to be asked now is: are there any practical models that can
be used in order to develop a strategy with the new focus? Such practical models
can be software organizations that have tried to implement a capability-based
strategy (or at least parts of it) and have carefully collected lessons learned and
data, empirical studies in-the-large based on the scientific method (observe,
formulate a hypothesis, measure and analyze, validate/refute the hypothesis)
that have published their findings in a workable form, controlled experiments
in-the-small.

2-20 SEL-95-003

Figure 3

Traditional Focus New Exfended Focus

« Delivering specific products « Developing capabilities

and services

« Decomposing a complex o Unifying different solutions into
problem into simpler ones more general ones ~

« Design/implementation » Analysis/Synthesis process
process

o Instantiation « Generalization and formalization

« Validation and verification o Experimentation

In Section 5 we will illustrate an experience that we, together with large part of
the software engineering community, consider a practical model. The reason for
choosing this one, besides the personal involvement of the authors of this paper
with it, which provides us with considerable insight, is its almost unique blend
of an organizational strategy aimed at continuous improvement, of a data-based
approach to decision making, of an experimental paradigm, along with many
years of continuous operation and data collection.

2-21 SEL-95-003

4 A STRATEGY FOR IMPROVEMENT

This section will present a strategy for improvement based on the development
of strategic capabilities.

The main concept of this strategy is the central role played by a methodological
framework addressing the development and improvement of strategic
capabilities in form of reusable experience. This framework will be presented
and discussed in the form of a process called "Quality Improvement Paradigm™
[Basili, 1985]. In order to manage this conceptual framework we will need two
tools -

. A control tool: The goal-oriented approach to measurement
addressing the issue of supporting the improvement process with
quantitative information [Basili and Weiss, 1984];

e An organizational tool: An infrastructure aimed at capitalization
and reuse of software experience and products [Basili, 1989].

In the next section we will see the methodological framework and the associated
tools at work in a specific and practical example.

41 THE QUALITY IMPROVEMENT PARADIGM

b

A strategic capability is for us a corporate goal defined by the business position of
the organization and implemented by key business processes. Strategic
capabilities of software organizations are identified by the analysis of the
categories of products/services that the organization intends to deliver in the
future, of the level of project control needed in order to deliver those
products/services at the appropriate level of quality, and of the strengths and
weaknesses of the organization. Examples of strategic capabilities are

2-22 SEL-95-003

"o Certify the reliability of the system that is being released for.
acceptance by the customer;

. Have a design-to-cost process, i.e., tailor the design of a software
system to the amount of available resources (money, people,
computers, etc.);

. Use flexible standards, i.e. standards that can, case by case, be
tailored to the needs and the characteristics of each project;

. Have a short cycle-time, i.e., reduce the elapsed time from the
identification of a solution to its deployment.

Strategic capabilities are always supported by core competencies, which are
aggregate technologies tailored to the specific needs of the organization in
performing the needed business processes. For instance: in order to certify the
reliability of a system, an organization needs to master the quality assurance
‘process owning competencies such as statistical testing and reliability modeling;
in order to design to cost the organization must use flexible processes owning
competencies such as process modeling and control, and concurrent engineering.

Core competencies have characteristics that distinguish them from simple
technologies or clusters of technologies:

o They are non-transitional: although sometimes they appear to be
fashionable concepts, they don't come and go;

o They have a consistent evolution: a paradigm for their interpretation
and application is built over time and some consensus is generated
throughout the user community;

o They require commitment, investment and leadership;

« They are typically fueled by and work with multiple technologies;

« They generally support multiple product/service lines.

The acquisition of core competencies that support the strategic capabilities is the
goal of the process we will present in this section. If a competency is a key factor
in a strategic capability, the organization must be sure to own, control and

properly maintain this competency at state-of-the-art level, and know how to
tailor it to the characteristics of specific projects and business units.

2-23 SEL-95-003

Strategic capabilities come into the improvement process as constituents of
characteristics and goals. On the basis of the characteristics of the environment
and of the transformation of those capabilities into specific goals for the software
organization, the improvement paradigm provides a disciplined way to build
the competencies necessary to support those capabilities.

The improvement process is articulated into the following six steps (Figure 4):

1. Characterize: Understand the environment based upon available
models, data, intuition, etc. Establish baselines with the existing
business processes in the organization and characterize their
criticality.

2. Set Goals: On the basis of the initial characterization and of the
capabilities that have a strategic relevance to the organization, set
quantifiable goals for successful project and organization
performance and improvement. The reasonable expectations are
defined based upon the baseline provided by the characterization

step.
Figure 4

Package Characterize

t Goals

Choose Process

Execute

3. Choose Process: On the basis of the characterization of the
environment and of the goals that have been set, choose the
appropriate processes for improvement, and supporting methods
and tools, making sure that they are consistent with the goals that
have been set. '

4. Execute: Perform the processes constructing the products and
providing project feedback based upon the data on goal
achievement that are being collected. The processes will be

2-24 SEL-95-003

executed according to the needs dictated by the problem and to the.
process chosen in the previous phase.

5. Analyze:” At the end of the execution, analyze the data and the
information gathered to evaluate the current practices, determine
problems, record findings, and make recommendations for future
project improvements.

6. Package: Consolidate the experience gained in the form of new, or
updated and refined, models and other forms of structured
knowledge gained from this and prior projects, and store it in an
experience base so it is available for future projects.

The Quality Improvement Paradigm implements the two major cycles, control
and capitalization, introduced in section 3:

. The project feedback cycle (control cycle) is the feedback that is
provided to the project during the execution phase: whatever the
goals of the organization, the project should use its resources in the
best possible way; therefore quantitative indicators at project and
task level are useful in order to prevent and solve problems,
monitor and support the project, realign the process with the goals;

. The corporate feedback cycle (capitalization cycle) is the feedback
that is provided to the organization and has the purpose of

. Providing analytical information about project
performance at project completion time by comparing
the project data with the nominal range in the
organization and analyzing concordance and
discrepancy;

. Understanding what happened, capturing experience
and devising ways to transfer that experience across
domains;

. Accumulating reusable experience in the form of
software artifacts that are applicable to other projects
and are, in general, improved based on the
performed analysis.

The execution of the quality improvement paradigm by an organization is
structured as an iterative process that repeatedly characterizes the environment,
sets appropriate goals and chooses the process in order to achieve those goals,

2-25 SEL-95-003

then proceeds with the execution and the analytical phéses. At each iteration
characteristics and goals are redefined and improved (Figure 5).

Figure 5

Package acterize

isting environment

Analyz t Goals First Iteration

Execu

Second Iteration

The reader has probably realized at this point that there is a deep similarity
between the QIP and the Total Quality Management (TQM) philosophy. Figure 6
outlines some other correspondences between the two models.

The relationship between the QIP and the Plan/Do/Check/Act cycle is even
closer. Both approaches are an offspring of the modern scientific method: first an
hypothesis is generated, then an experiment is planned in order to validate the
hypothesis, data are collected and analyzed, and the hypothesis is evaluated.
The concept of feedback is also critical to both approaches: during the execution
of the processes that have been planned and at the end of the execution data are
analyzed in order to understand the impact of the changes introduced into the
process. The real major difference between the two approaches appears at the
end of the cycle: the PDCA approach incorporates the changes into the normal
operation of the process, while the QIP develops a series of models that reflect
the changes. This is due, as we said before, to the relatively smaller number of
process instances that we have in the case of a software process, when compared
with a manufacturing process.

2-26 SEL-95-003

Figure 6

TOM QIP
Total Quality Management Quality Improvement Paradigm
o Implements a corporation-wide » Implements a program for reuse
quality improvement program | and improvement of software
experience, artifacts, and
processes

« Focuses on customer satisfaction | « Focuses on customer satisfaction
and partnership for quality and partnership for quality

 Customers are both external and | » Capitalizes on project
. internal to the organization achievements

¢ Customers are both external and

internal to the organization
« Develops a flexible corporate o Incorporates flexibility into the
culture software process and product
« Bases decision making on facts « Bases decision making on facts
and data collected across
different projects

4.2 THE GOAL-ORIENTED MEASUREMENT

The Goal/Question/Metric Approach [Basili and Weiss, 1984; Basili and
Rombach, 1988] provides a method to identify and control key business
processes in a measurable way. It is used to define metrics over the software
project, process and product in such a way that the resulting metrics are tailored
to the organization and to its goals, and reflect the quality values of the different
viewpoints (developers, users, operators, etc.).

The result of the application of the Goal/Question/Metric Approach is the
specification of a measurement system targeting a particular set of issues and a
set of rules for the interpretation of the measurement data. The resulting
measurement model has three levels:

1. Conceptual level (GOAL): A goal is defined for an object, for a
variety of reasons, with respect to various models of quality, from

2-27 SEL-95-003

various points of view, relative to a particular environment. Objects
of measurement include

. Products: Artifacts, deliverables and documents that
are produced during the system life cycle; E.g.,
specifications, designs, programs, test suites.

. Processes: Software related activiies normally
associated with time; E.g., specifying, designing,

testing, interviewing.

. Resources: Items used by processes in order to
produce their outputs; E.g., personnel hardware,
software, office space.

. Knowledge objects: Models of the behavior of other
items derived from past observations; E.g., resource
models, reliability models.

2. Operational level (QUESTION): A set of questions is used to define
in a quantitative way the goal and to characterize the way the
specific goal is going to be interpreted based on some
characterizing model. Questions try to characterize the object of
measurement (product, process, resource, knowledge object) with
respect to a selected quality issue and to determine its quality from
the selected viewpoint.

3. Quantitative level (METRIC): A set of data is associated with every
question in order to answer it in a quantitative way.

Figure 7

Question Question

[Metric | [Mettic | [Metric | { Metric |

A GOM model is a hierarchical structure (Figure 7) starting with a goal
(specifying purpose of measurement, object to be measured, issue to be

2-28 SEL-95-003

measured, and viewpoint from which the measure is taken). In order to give an
example of application of the Goal/Question/Metric approach, let's suppose we
want to improve the timeliness of change request processing during the
maintenance phase of the life-cycle of a system. The resulting goal will specify a
purpose (improve), a process (change request processing), a viewpoint (project
manager), and a quality issue (timeliness) (Figure 8). The goal is refined into
several questions that usually break down the issue into its major components.
The goal of the example can be refined to a series of questions, about, for
instance, turn-around time and resources used. Each question is then refined
into metrics. The questions of our example can, for instance, be answered by
metrics comparing specific turn-around times with the average ones. The same
metric can be used to answer different questions under the same goal. Several
GQM models can also have questions and metrics in common, making sure that,
when the measure is actually taken, the different viewpoints are taken into
account correctly (i.e., the metric might have different values when taken from
different viewpoints). The Goal/Question/Metric Model of our example is
shown in Figure 8.

Figure 8
Goal Purpose Improve
Issue the timeliness of
Object (process) change request processing
Viewpoint from the project manager's viewpoint
Question Is the performance of the process improving?
Metrics Current average turnaround time

Baseline average turnaround time

Subjective ra'a'ng'of manager's satisfaction

Question Is the distribution of resources changing?

Metrics 4 Percent effort spent on problem analysis
Percent effort spent on solution identification
Percent effort spent on solution implementation
Percent effort spent on solution testing

2-29 SEL-95-003

In conclusion, we can also use the Goal/Question/Metric Approach for long
range corporate goal setting and evaluation. The evaluation of a project can be
enhanced by analyzing it in the context of several other projects. We can expand
our level of feedback and understanding by defining the appropriate synthesis
procedure for transforming specific, valuable information into more general
packages of experience. As a part of the Quality Improvement Paradigm, we can
learn more about the definition and application of the Goal/Question/Metric
Approach in a formal way, just as we would learn about any other experiences.

4.3 EXPERIENCE FACTORY: THE CAPABILITY-BASED ORGANIZATION

The concept of the Experience Factory [Basili, 1989] has been introduced in order
to institutionalize the collective learning of the organization that is at the root of
continuous improvement and competitive advantage.

Reuse of experience and collective learning cannot be left to the imagination of
single, very talented, managers: in a capability-based organization they become
a corporate concern like the portfolio of businesses or the company assets. The
experience factory is the organization that supports reuse of experience and collective
learning by developing, updating and providing upon request clusters of competencies to
the project organizations . We call these clusters of competencies, experience
packages. The project organizations supply the experience factory with their
products, the plans, processes and models used in their development, and the
data gathered during development and operation; the experience factory
transforms them into reusable units and supplies them to the project
organizations, together with specific support made of monitoring and
consulting.

The experience factory organization can be a logical and/or physical
organization, but it is important that its activities are clearly identified and made
independent from those of the project organization.

As we have seen at the beginning of this paper, the packaging of experience is -
based on tenets and techniques that are different from the problem solving
activity used in project development. Therefore the projects and the factory will
have different process models: each project will choose its process model based
upon the characteristics of the software product that will be delivered, while the
experience factory will define (and change) its process model based upon the
nature of the work, and organizational and performance issues.

2-30 SEL-95-003

Figure 9 provides a high-level picture of the experience factory organization and.
highlights activities and information flows among the component sub-

organizations.

The project organization, whose goal is to produce and maintain software,
provides the experience factory with project and environment characteristics,
development data, resource usage information, quality records, and process
information. This provides feedback on the actual performance of the models
processed by the experience factory and utilized by the project.

The experience factory provides direct feedback to each project, together with
goals and models tailored from similar projects. It also produces and provides
upon request baselines, tools, lessons learned, and data, parametrized in some
form in order to be adapted to the specific characteristics of a project. The
support personnel sustain and facilitate the interaction between developers and
analysts, by saving and maintaining the information, making it efficiently
retrievable, and controlling and monitoring the access to it.

Figure 9

Characterize Characteristics Project
Set Goals

'« l I Support
Choose Process T

Goals, Processes, Tools,
Products, Resource Models, Pack age
Execution Defect Models, ...
Plans f -
I l EXPERIENCE Generalize
Data, Lessons]
[Leamed L BASE Tailor
" Project Analysis Y Formalize

2-31 SEL-95-003

The main product of the experience factory is a set of core competencies
packaged as aggregates of technologies. Figure 10 shows some examples of core
competencies and the corresponding aggregation of technologies:

Core competencies can be implemented in a variety of formats. We call these
formats "experience packages". Their content and structure vary based upon the
kind of experience clustered in it. There is, generally, a central element that
determines what the package is: a software life cycle product or process, a
mathematical relationship, an empirical or theoretical model, a data base, etc.
We can use this central element as identifier of the experience package and
produce a taxonomy of experience packages based upon the characteristics of
this central element; e.g.:

. Product packages: Programs, Architectures, Designs;

Figure 10

Core Competencies Aggregate Technologies

e« Use of an integrated software < Toolintegration
engineering environment tailored to < Domain analysis and architectures
one or more specific application < Data sharing and communication in
domains " heterogeneous environments

» Availability of reusable components < Reuse libraries, mechanisms and
(modules, algorithms, architectures) methods
and tools portable across different < Domain analysis and architectures
platforms < Object-oriented techniques

 Availability and use of a software < Measurement and data collection
management environment based on and analysis
"local” data for estimate, control and < Data and process modehng
prediction of projects < Defect counting, categorization and
analysis

. Tool packages: Constructive and Analytic Tools;
. Process packages: Process Models, Methods;

. Relationship packages: Cost and Defect Models, Resource Models,
etc.;

. Management packages: Guidelines, Decision Support Models;

2-32 SEL-95-003

. Data packages: Defined and validated data, Standardized data, etc.

The operation of the two components is based on the Quality Improvement
Paradigm introduced in the previous section. Each component performs
activities in all six steps, but for each step one component has a leadership role.

In the first three phases (Characterize, Set Goals, and Choose Process) the focus -
of the operation is on planning, therefore the project organization has a leading
role and is supported by the analysts of the experience factory. The outcome of
these three phases is, on the project organization side, a project plan associated
with a management control framework, and on the experience factory side a
support plan also associated with a management control framework. The project
plan describes the phases and the activities of the project, with their products,
mutual dependencies, milestones and resources. As far as the experience factory
side is concerned, the plan describes the support that the experience factory will
provide for each phase and activity, also with products, mutual dependencies,
milestones and resources. The two parts of the plan are obviously integrated
although executed by different components. The management control
frameworks are composed of data (metrics) and models for monitoring the
execution of the plan.

In the fourth phase (Execute) the focus of the operation is on delivering the
product or service assigned to the project organization, therefore the project
organization has again a leading role, and is supported by the experience
factory. The outcome of this phase is the product or service, which represent a
set of potentially reusable products, processes, and experiences.

In the fifth and the sixth phases (Analyze and Package) the focus of the operation
is on capturing project experience and making it available to future similar
projects, therefore the experience factory has a leading role and is supported by
the project organization that is the repository of that experience. The outcomes of
these phases are lessons learned with recommendations for future
improvements, and new or updated experience packages incorporating the
experience gained during the project execution.

Structuring a software development organization as an experience factory offers
the ability to learn from every project, constantly increase the maturity of the
organization and incorporate new technologies into the life cycle. In the long
term, it supports the overall evolution of the organization from a project-based
one, where all activities are aimed at the successful execution of current project
tasks, to a capability-based one, which executes those tasks and capitalizes on
their execution.

2-33 SEL-95-003

Some important benefits that an organization derives from structuring itself as
an experience factory are

. To establish an improvement process for software substantiated
and controlled by quantitative data;

. To produce a repository of software data and models which are
empirically based on the everyday practice of the organization;

. To develop an internal support organization that represents a
limited overhead and provides substantial cost and quality
performance benefits;

. To provide a mechanism for identifying, assessing and
incorporating into the process, new technologies that have proven
to be valuable in similar contexts;

e To incorporate reuse into the software development process and
support it;

. To approach in a more software specific way a Total Quality
Management program..

The concept of experience factory is an extension and a redefinition of the
concept of software factory, as it has evolved from the original meaning of
integrated environment to the one of flexible software manufacturing
environment [Cusumano, 1991]. The major difference is that, while the software
factory is thought of as an independent unit producing code by using an
integrated development environment, the experience factory handles all kind of
software-related experience. The software factory can be seen as a part of the
experience factory, recognizing in this way that its potential benefits can be fully
exploited only within this framework.

2-34 SEL-95-003

5. IMPROVEMENT IN PRACTICE: THE NASA SOFTWARE
ENGINEERING LABORATORY

In this section we will present and discuss a practical example of experience
factory organization. We will show how its operation is based on the Quality
Improvement Paradigm and we will use the case of a specific technology in
order to illustrate the execution of the steps of the paradigm.

The organization that provides the example is the Software Engineering
Laboratory (SEL) at NASA Goddard Space Flight Center. The laboratory was
established in 1976 as a cooperative effort among the Department of Computer
Science of the University of Maryland, The National Aeronautic and Space
Administration Goddard Space Flight Center (NASA/GSFC), and the Computer
Sciences Corporation (CSC). The goal of the SEL was to understand and improve
key software development processes and products within a specific
organization, the Flight Dynamics Division.

In general, the goals, the structure and the operation of the SEL have evolved
from an initial stage, a laboratory dedicated to experimentation and
measurement, to a full scale organization aimed at reusing experience and
developing strategic capabilities. At the same time, the awareness of the quality
improvement process used in the laboratory has generated the operational
paradigm described in this paper as Quality Improvement Paradigm. Today the
SEL represents a practical and operational example of experience factory [Basili
etal.,, 1992].

The current structure of the SEL is based on three components:

. Developers, who provide products, plans used in development, and
data gathered during development and operation (the Project
Organization);

. Analysts, who transform these objects provided by the developers
into reusable units and supply them back to the developers; they .
provide specific support to the projects on the use of the analyzed
and synthesized information, tailoring it to a format which is
usable by and useful to a current software effort (the Experience
Factory proper);

2-35 SEL-95-003

. Support infrastructure, which provides services to the developers, on
one hand, by supporting data collection and retrieval, and to the
analysts, on the other hand, by managing the library of stored
information and its catalogs (the Experience Base Support).

The activities of these three sub-organizations, although not separated and
independent from each other, have their own goal and process models and
plans. Figure 11 outlines the difference in focus among the three
organizations. ~

Figure 11
DEVELOPERS ANALYSTS SUPPORT
FOCUS FOCUS INFRASTRUCTURE
FOCUS
Software development | Experience Support developers
packaging and analysts
Single application Application domain | Organization
Decompose a problem | Generalize and Categorize and
into simpler ones formalize solutions | organize
and products
Tailor and apply the Analyze and Store and retrieve the
process synthesize the process information
process
Validation and Experimentation Efficient retrieval
verification

Figure 12 gives an idea of the overall size of the organization and of it
components.

We will now show the operation of the SEL following the development of a
particular core competence through the six steps of the improvement paradigm.

2-36 SEL-95-003

Figure 12

DEVELOPERS Data S/W ANALYSTS
STAFF 275-300FTE | ™ |STAFF 5-10 FTE
AVGPROJSIZE 150-200KLOC | gy, |FUNCTION - Set goals
ACTIVE PROJ 6-10 (same time) | Pack - Design experim.
PROJSTAFFSIZE 15-25people et - Analysis
FUNCTION Develop/Maint. - Tech Transfer
1976-1991 90 projects 1976-1991 250 Deliverables
DATA BASE SUPPORT
STAFF 25 FTE Libay |
FUNCTION - Process data (QA) Database
- Maintain Database
- Operate library
Fixed Overhead = 15/300 = 5%
Variable Overhead = 5%

In the late 80's the software engineering community, within and outside NASA,
was discussing, among other technologies, the Ada programming language
environment and technology [Ada, 1983]: the language had been developed
under a major effort of the US Department of Defense and its application was
being considered also in areas outside DoD. NASA was, at that time, considering
the use of the Ada technology in some major projects such as the Space Station.
More and more systems would have used Ada as development environment,
and many organizations would have to be involved with it. In consideration of
this fact Ada had to be transformed from simple technology to core competence
for the software development organizations within NASA.

Associated with Ada there was the issue of object-oriented technologies. It is not
very important for our discussion that our reader knows what is an object-
oriented design technique. Anyway, Figure 13 provides some basic characteristic
elements [Sommerville, 1992] of the object-oriented approach.

2-37 SEL-95-003

Figure 13

Characteristics of the Object-Oriented Approach

e A system is seen as a set of objects having at each
time a specific state and behavior

« Objects interact with each other by exchanging
messages

e Objects are organized into classes based on
common characteristics and behaviors

e All information about the state or the
implementation of an object is held within the
object itself and cannot be deliberately or
accidentally used by other objects

The Ada language environment implements several of those features and can be,
to a certain extent, considered object-oriented. The design of systems to be
implemented in Ada definitely takes advantage of the concepts of object-
oriented design. Therefore, from the beginning, there was the impression in the
SEL that the two technologies should be packaged together into a core
competence supporting the strategic capability of delivering systems with better
quality and lower delivery cost. After recognizing that this capability had a
strategic value for the organization, the SEL selected Ada and the object-oriented
design technology for supporting it, measured its benefits, and provided
supporting data to the decision of using the technology.

The process followed is illustrated in the following steps according to the QIP:

1. Characterize: In 1985, the SEL had achieved a good understanding of how
software was developed in the Flight Dynamics Division. The
development processes had been defined and models had been built in
order to improve the manageability of the process. The standard -
development methodology, based on the traditional design and build
approach, had been integrated with concepts aimed at continuously
evolving systems by successive enhancements.

2. Set Goals: Realizing that object-oriented techniques, implemented in the
design and programming environments that support new languages, like
C++ and Ada, offered potential for major improvements in the areas of
productivity, quality and reusability of software products and processes,
the SEL decided to develop a core competence around object-oriented

2-38 SEL-985-003

design and the use of the programming language Ada. The first step was
to set up expectations and goals against which results would be
measured. The SEL well-established baseline and set of measures
provided an excellent basis for comparison. Expectations included

e A change in the effort distribution of development activities: an
increase of the effort on early phases, e.g., design, and a decrease of
the effort on late phases, e.g., testing;

e Increased reuse of software modules, both verbatim and with
modification;

" e Decreased maintenance costs due to the better quality of reusable
components;

o Increased reliability as a result of lower global error rates, fewer
high-impact interface errors, and fewer design errors.

Choose process: The SEL decided to approach the development of the
desired core competence by experimenting with Ada and object-oriented
design in a "real” project. Two version of the same system would be
developed

System A: To be developed using FORTRAN and following the
standard methodology based on functional
decomposition. This system will become operational
and its development will follow the ordinary schedule
constraints.

System B: To be developed using Ada and following an object-
oriented methodology called OOD. This system will
not become operational.

The data derived from the development of System B would be compared
with those derived from the development of System A. Particular
attention would be dedicated to quality and productivity data. The data
collection and comparison would be based on the Goal Question Metric
Model shown in Figure 14.

2-39 SEL-95-003

Figure 14

Goal Purpose Evaluate the impact of
Object the object-oriented approach and Ada
Issue on the quality and productivity
Viewpoint within the Flight Dynamics Division :
Question 1 What is the impact on the cost to develop
software?
Metrics 1.1 Number of hours per statement developed
for System A
1.2 Number of hours per statement developed
for System B ,
Question 2 What is the impact on the cost to deliver
software?
Metrics 21 Number of hours per statement included in
System A
22 Number of hours per statement included in
' System B
Question 3 What is the impact on the quality of the
delivered software?
Metrics 31 Number of defects per 1000 lines of code in
System A
32 Number of defects per 1000 lines of code in
\ System B _
Question 4 What was the amount of reuse that
occurred?
Metrics 4.1 Percentage of reused code

Execute: System A and B were implemented and the desired metrics were
collected. During the development changes had to be applied to the
approach that was used for using Ada and also adaptations had to be
made in order to use OOD. For instance: some review procedures that
were particularly suited for a design based on functional decomposition
did not fit the approach used for System B. Therefore new review
procedures were drafted for that development.

Analyze: The data collected based on the previous GOM model showed
an increase of the cost to develop (Metrics 1.1 and 1.2) that was
- interpreted as due on one hand to the inexperience of the organization
with the new technology and on the other hand to the intrinsic
characteristics of the technology itself. The data also showed an increase
in the cost to deliver (Metrics 2.1 and 2.2) interpreted as due to the same

2-40 SEL-95-003

causes. The overall quality of System B showed an improvement over
System A (Metrics 3.2 and 3.1) in terms of a substantially lower error
density. Reuse data across systems (Metric 4.1) were obviously not
available for System B because of the new implementation technology.
The comparative data are shown in Figure 15.

Figure 15
Measure System A | System B
Cost to develop (Hrs per Stm) 0.70 1.00
Cost to deliver (Hrs per Stm) 0.65 1.00
Defect density (Def. per 1000 390 1.80
lines of code)
Reuse (%) 30% N/A

6. Package: The laboratory tailored and packaged an internal version of the
methodology which adjusted and extended OOD for use in a specific
environment and on a specific application domain. Commercial training
courses, supplemented with limited project-specific training, constituted
the early training in the techniques. The laboratory also produced
experience reports containing the lessons learned using the new
technology and recommending refinements to the methodology and the
standards.

The data collected from the first execution of the process were encouraging,
especially on the quality issue, but not conclusive. Therefore new executions
were decided and carried over in the following years. In conjunction with the
development methodology, a programming language style guide was
developed, that provided coding standards for the local Ada environment. At
least 10 projects have been completed by the SEL using an object-oriented
technology derived from the one used for System B, but constantly modified and
improved. The size of single projects, measured in thousand lines of source code
(KSLOC), ranges from small (38 KSLOC) to large (185 KSLOC). Some
characteristics of an object-oriented development, using Ada, emerged early and .
have remained rather constant no significant change has been observed, for
instance, in the effort distribution or in the error classification. Other
characteristics emerged later and took time to stabilize: reuse has increased
dramatically after the first projects, going from a traditionally constant figure of
. 30% reuse across different projects, to a current 96% (89% verbatim reuse).

Over the years the use of the object-oriented approach and the expertise with
Ada have matured. Source code analysis of the systems developed with the new
technology has revealed a maturing use of key features of Ada that have no

2-41 SEL-95-003

equivalent in the programming environments traditionally used at NASA. Such.
features were not only used more often in more recent systems, but they were
also used in more sophisticated ways, as revealed by specific metrics used to this
purpose. Moreover, the use of object-oriented design and Ada features has
stabilized over the last 3 years, creating an SEL baseline for object-oriented
developments.

The charts shown in Figure 16 represent the trend of some significant indicators.

The cost to develop code in the new environment has remained higher than the
cost to develop code in the old one. However, because of the high reuse rates
obtained through the object-oriented paradigm, the cost to deliver a system in
the new environment has significantly decreased and lies now well below the
old cost to deliver.

The reliability of the systems developed in the new environment has improved
over the years with the maturing of the technology. Although the error rates
were significantly lower than the traditional ones, they have continued to
decrease even further: again, the high level of reuse in the later systems is a
major contributor to this greatly improved reliability.

Because of the stabilization of the technology and apparent benefit to the
organization, the object-oriented development methodology has been packaged
and incorporated into the current technology baseline and is a core competence
of the organization. And this is where things stand today.

Although the technology of object-oriented design will continue to be refined
within the SEL, it has now progressed through all stages, moving from a
candidate trial methodology to a fully integrated and packaged part of the
standard methodology, ready for further incremental improvement.

The example we have just shown illustrates also the relationship between a
competence (object-oriented technology) and a target capability (deliver high
quality at low cost), and shows how innovative technologies can enter the
production cycle of mature organizations in a systematic way. Although the
topic of technology transfer is not within the scope of this paper, it is clear from
the SEL example that the model we derive from it outlines a solution to some
major technology transfer issues.

2-42 SEL-95-003

Figure 16

1.20+

1.00

[Cost to Develop (Hrs per Statement)

Cost to Deliver (Hrs per Statement)

070},

0.20+

0.00
Past 1985-86 1987-88 1988-239 1990-91

4.00}
3.504

3.004

Error Density (Defects per 1000 Lines of

2.00+
Code)

1.50+

1.004

Past 1985-86 1987-38 1988-89 1990-91

2-43 SEL-95-003

The purpose of an experience factory organization is larger than technology
transfer: it is capability transfer and reuse. If these capabilities are already
consolidated into a technology, available within the organization or outside it,
then the process is a process of technology transfer. If the capabilities are present
in the organization as informal experience, products prepared for other
purposes, and lessons learned, then the process is different from technology
transfer. :

2-44 SEL-95-003

6. CONCLUSIONS

Clearly the nineties will be the quality era for software and there is a growing
need to develop or adapt quality improvement approaches to the software
business. Our approach to software quality improvement, as it has been
presented in this paper, is based on the exploitation and reuse of the critical
capabilities of an organization across different projects based on business needs.

The relationship between core competencies and strategic capabilities is
established by the kind of products and services the organization wants to
deliver and is specified by the strategic planning process. A possible mapping is
shown as an example in Figure 17, in the case of an organization whose main
business is development of systems and software for user applications.

Figure 17
- Strategic Capabilities Core competencies
e Cycle time reduction and
acceptability

Use of an integrated software
engineering environment tailored to one
or more specific application domains

Availability of reusable components
(modules, algorithms, architectures) and
tools portable across different platforms

* Cost reduction and acceptability

¢ Quality improvement and

acceptability Availability and use of a software

management environment based on
“local” data for estimate, control and

* Software planning, estimating and prediction of projects

management predictability

In this paper we have shown, through the NASA example, that all these ideas
are practically feasible and have been successfully applied in a production
environment in order to create a continuously improving organization.

But what does "continuously improving organization” really mean? It is an
organization that can manipulate its processes to achieve various product
characteristics. This requires that the organization has a process and an
organizational structure to

2-45 SEL-95-003

. Understand its processes and products;
. Measure and model its business processes;

. Define process and product quality explicitly, and tailor the
definitions to the environment;

. Understand the relationship between process and product quality;
. Control project performance with respect to quality;
. Evaluate project success and failure with respect to quality;

. Learn from experience by repeating successes and avoiding
failures.

Using the Quality Improvement Paradigm/Experience Factory Organization
approach the organization has a good chance to achieve all these capabilities,
and to move up in the quality excellence scale faster, because it focuses on its
strategic capabiliies and value added activities. The Experience Factory
Organization is the lean enterprise model for the system and software business.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions given to this paper by
all those who participated in the experiences and discussions that originated the
concepts presented in this paper. The list of their names would be too long. A
particular acknowledgment goes to the personnel of the Software Engineering
Laboratory at NASA Goddard Space Flight Center and Frank McGarry who
made it possible. Other acknowledgments go to Jerry Page (CSC), Tony Jordano
(SAIC), Bob Yacobellis (Motorola), Paolo Sigillo (Italsiel).

2-46 SEL-95-003

REFERENCES

[Ada, 1983]
' ANSI/MIL-STD-1815A 1983: Reference Manual for the Ada Programming

Language.

[Basili and Weiss, 1984] ,
V. R Basili, D. M. Weiss, "A Methodology for Collecting Valid Software
Engineering Data", IEEE Transactions on Software® Engineering, November
1984, pp. 728-738.

[Basili, 1985]
V. R. Basili, "Quantitative Evaluation of a Software Engineering
Methodology"”, Proceedings of the First Pan Pacific Computer Conference,
Melbourne, Australia, September 1985.

[Basili and Rombach, 1988]
V. R. Basili, H. D. Rombach, "The TAME Project: Towards Improvement-
Oriented Software Environments”, IEEE Transactions on Software
Engineering, June 1988, pp. 758-773.

[Basili, 1989]
V. R. Basili, "Software Development: A Paradigm for the Future (Keynote
Address)", Proceedings COMPSAC 89, Orlando, FL, September 1989, pp
471-485.

[Basili, Caldiera, and Cantone, 1992]
V. R. Basili, G. Caldiera and G. Cantone, "A Reference Architecture for the
Component Factory”, ACM Transactions on Software Engineering and
Methodology, Vol. 1, No. 1, January 1992, pp. 53-80.

[Basili, Caldiera, McGarry, Pajersti, Page, and Waligora, 1992]
V. R. Basili, G. Caldier>, F. McGarry, R. Pajerski, J. Page, and S. Waligora,
"The Software Engineering Laboratory - An Operational Software
Experience Factory", Proceedings of the Fourteenth International Conference on
Software Engineering, V-elbourne, Australia, May 1992.

[Bootstrap]
21 Industrial Informatics, BOOTSTRAP Project Proposal and Mission
Statement, 21 GmbH, Haierweg 20e, D7800 Freiburg, Germany, 1990, 1991

[Cusumano, 1991]

2-47 SEL-95-003

M.A. Cusumano, Japan'’s Software Factories, Oxford University Press, New
York, 1991. ‘

[Deming, 1986]
W. Edwards Deming, Out of the Crisis, MIT Center for Advanced
Engineering Study, MIT Press, Cambridge, MA, 1986.

[Dewan and Riedl, 1993]
P. Dewan and J.Riedl, "Toward Computer-Supported Concurrent
Software Engineering", IEEE Computer, Special issue on Computer Support
for Concurrent Engineering, January 1993, pp. 17-27.

[Dion, 1993]
R. Dion, "Process Improvement and the Corporate Balance Sheet", IEEE
Software, July 1993, pp. 28-35.

[Feigenbaum, 1991}
A. V.. Feigenbaum, Total Quality Control, Fortieth Anniversary Edition,
Mc Graw Hill, New York, NY, 1991.

[Hamel and Prahalad, 1990]
G. Hamel, C. K. Prahalad, The Core Competence of the Corporation,
Harvard Business Review, Vol. 2, No. ?, July-August 1991, pp. 79-22.

[Hamel and Prahalad, 1991]
G. Hamel, C. K. Prahalad, Corporate Imagination and Expeditionary
Marketing, Harvard Business Review, Vol. 69, No. 4, July-August 1991, pp.
81-92.

[1501]
ISO 8402:1986 Quality - Vocabulary

[1502]

2-48 SEL-95-003

ISO 9000: 1987 Quality Management and Quality Assurance Standards -
Guidelines for Selection and Use

ISO 9001: 1987 Quality Systems - Model for Quality Assurance in
Design/Development, Production, Installation and
Servicing

1S09001-3:1991 Quality Management and Quality Assurance Standards -
Guidelines for the Application of ISO 9001 to the
Development, Supply and Maintenance of Software

[1503]
ISO 9126: 1991 Software Product Evaluation - Quality Characteristics and
Guidelines for their Use

[SEI]
W. S. Humphrey, W. L. Sweet, A Method for Assessing the Software
Engineering Capability of Contractors, Software Engineering Institute,
Technical Report, CMU/SEI-87-TR-23, September 1987.

M. C. Paulk, B. Curtis, M. B. Chrissis, Capability Maturity Model for
Software, Software Engineering Institute, Technical Report, CMU/SEI-91-
TR-24, August 1991.

[Stalk, Evans, and Shulman, 1992]
G. Stalk, P. Evans, and L. E. Shulman, "Competing on Capab1ht1es The
New Rules of Corporate Strategy", Harvard Business Review, Vol. 70, No. 2,
March-April 1992, pp. 57-69.

[Sommerville, 1992]
Ian Sommerville, Software Engineering, Fourth Edition, Addison-Wesley,
Wokingham, England, 1992.

[Womack, 1989]
J. P. Womack, D. T. Jones, D. Roos, D. S. Carpenter, The Machine that
Changed the World, Rawson Associates (MIT Study on Lean Production),
New York, NY, 1989.

2-49 SEL-95-003

Page intentionally left blank

The Experience Factory and L1577 2
Its Relationship to Other -
Quality Approaches a

VICTOR R. BASILI

Institute for Advanced Computer Studies
and

Department of Computer Science
University of Maryland

College Park, Maryland

Abstract

This chapter describes the principles behind a specific set of integrated software
quality improvement approaches which include the Quality Improvement Paradigm,
an evolutionary and experimental improvement framework based on the scientific
method and tailored for the software business, the Goal/Question/Metric Paradigm, a
paradigm for establishing project and corporate goals and a mechanism for measuring
against those goals, and the Experience Factory Organization, an organizational ap-
proach for building software competencies and supplying them to projects on demand.
It then compares these approaches to a set of approaches used in other businesses, such
as the Plan-Do~Check—Act, Total Quality Management, Lean Enterprise Systems, and

the Capability Maturity Model.
I Introduction . . .« . « v« vt b e 66
2. Experience Factory/Quality Improvement Paradigm 67
2.1 The Experence Factory Organization.« .o o . 71
2.2 Examples of Packaged Experienceinthe SEL 73
23 INSUMMAETY. o vt e e e e e e e e e e e e e e e e e e 74
3. A Comparison with Other Improvement Paradigms 75
3.1 Plan-Do-Check-ActCycle PDCA) o oo oo .. 75
3.2 Total Quality Management (TQM) 76
3.3 SEI Capability Maturity Model (CMM) 77
34 Lean Enterprise Management Lo 78
3.5 Comparing the Approaches L. 78
4, Conclusion. 0oL oo e e e e e e e e e e 81
COUREfEIENCES e 82

2-51 SEL-95-003

VICTOR R. BASILI

1. Introduction

The concepts of quality improvement have permeated many businesses. Itis clear
that the nineties will be the quality era for software and there is a growing need to
develop or adapt quality improvement approaches to the software business. Thus
we must understand software as an artifact and software development as a business.

Any successful business requires a combination of technical and managerial
solutions. It requires that we understand the processes and products of the busi-
ness, i.e., that we know the business. It requires that we define our business
needs and the means to achieve them, i.e., we must define our process and product
qualities. We need to define closed loop processes so that we can feed back
information for project control. We need to evaluate every aspect of the business,
so we must analyze our successes and failures. We must learn from our experi-
ences, i.e., each project should provide information that allows us to do business
better the next time. We must build competencies in our areas of business by
packaging our successful experiences for reuse and then we must reuse our
successful experiences or our competencies as the way we do business.

Since the business we are dealing with is software, we must understand the
nature of software and software development. Some of the most basxc premises
assumed in this work are that:

The software discipline is evolutionary and experimental; it is a laboratory
science. Thus we must experiment with techniques to see how and when they
really work, to understand their limits, and to understand how to improve them.

Software is development not production. We do not produce the same things
over and over but rather each product is different from the last. Thus, unlike in
production environments, we do not have lots of data points to provide us with
reasonably accurate models for statistical quality control.

The technologies of the discipline are human based. 1t does not matter how
high we raise the level of discourse or the virtual machine, the development of
solutions is still based on individual creativity and human ability will always
create variations in the studies.

There is a lack of models that allow us to reason about the process and the
product. This is an artifact of several of the above observations. Since we have
been unable to build reliable, mathematically tractable models, we have tended
not to build any. And those that we have, we do not always understand in context.

All software is not the same; process is a variable, goals are variable, content
varies, etc. We have often made the simplifying assumption that software is
software is software. But this is no more true that hardware is hardware is
hardware. Building a satellite and a toaster are not the same thing, any more
than building a microcode for a toaster and the flight dynamic software for the
satellite are the same thing.

Packaged, reusable, experiences require additional resources in the form of
organization, processes, people, etc. The requirement that we build packages of

2-52 SEL-95-03

THE EXPERIENCE FACTORY

reusable experiences implies that we must learn by analyzing and synthesizing
our experiences. These activities are not a byproduct of software development,
they require their own set of processes and resources.

2. Experience Factory/Quality Improvement Paradigm

The Experience Factory/Quality Improvement Paradigm (EF/QIP) (Basili,
1985, 1989; Basili and Rombach, 1987, 1988) aims at addressing the issues of
quality improvement in the software business by providing a mechanism for
continuous improvement through the experimentation, packaging, and reuse of
experiences based on a business’s needs. The approach has been evolving since
1976 based on lessons learned in the National Aeronautics and Space Administra-
tion/Goddard Space Flight Center (NASA/GSFC) Software Engineering Labora-
tory (SEL) (Basili ez al., 1992).

The basis for the approach is the QIP, which consists of six fundamental steps:

Characterize the current project and its environment with respect to models
and metrics.

Set the quantifiable goals for successful project performance and improvement.

Choose the appropriate process model and supporting methods and tools for
this project.

Execute the processes, construct the products, collect and validate the prescribed
data, and analyze it to provide real-time feedback for corrective action.

Analyze the data to evaluate the current practices, determine problems, record
findings, and make recommendations for future project improvements.

Package the experience in the form of updated and refined models and other
forms of structured knowledge gained from this and prior projects and save
it in an experience base to be reused on future projects.

Although it is difficult to describe the QIP in great detail here, we will provide
a little more insight into the preceding six steps here.

Characterizing the Project and Environment. Based on a set of
models of what we know about our business we need to classify the current
project with respect to a variety of characteristics, distinguish the relevant project
environment for the current project, and find the class of projects with similar
characteristics and goals. This provides a context for goal definition, reusable
experiences and objects, process selection, evaluation and comparison, and predic-
tion. There are a large variety of project characteristics and environmental factors
that need to be modeled and baselined. They include various people factors,
such as the number of people, level of expertise, group organization, problem
experience, process experience; problem factors, such as the application domain,
newness to state of the art, susceptibility to change, problem constraints, etc.;

2-53 - SEL-95-003

VICTOR R. BASIL

process factors, such as the life cycle model, methods, techniques, tools, program-
ming language, and other notations; product factors, such as deliverables, system
size, required qualities, e.g., reliability, portability, etc.; and resource factors, such
as target and development machines, calendar time, budget, existing software, etc.

Goal Setting and Measurement. We need to establish goals for the
processes and products. These goals should be measurable, driven by models of
the business. There are a variety of mechanisms for defining measurable goals:
Quality Function Deployment Approach (QFD) (Kogure and Akao, 1983), the
Goal/Question/Metric Paradigm (GQM) (Weiss and Basili, 1985), and Software
Quality Metrics Approach (SQM) (McCall et al., 1977).

We have used the GQM as the mechanism for defining, tracking, and evaluating
the set of operational goals, using measurement. These goals may be defined for
any object, for a variety of reasons, with respect to various models of quality,
from various points of view, relative to a particular environment. For example,
goals should be defined from a variety of points of view: user, customer, project
manager, corporation, etc.

A goal is defined by filling in a set of values for the various parameters in
the template. Template parameters included purpose (what object and why),
perspective (what aspect and who), and the environmental characteristics (where).

Purpose:
Analyze some
(objects: process, products, other experience models)
for the purpose of
(why: characterization, evaluation, prediction, motivation, improvement)

Perspective:

With respect to
(focus: cost, correctness, defect removal, changes, reliability, user friendli-
ness, . . .)

from the point of view of
(who: user, customer, manager, developer, corporation, . . .)

Environment:
In the following context
(problem factors, people factors, resource factors, process factors, . . .)

Example:

Analyze the (system testing method) for the purpose of (evaluation) with respect
to a model of (defect removal effectiveness) from the point of view of the
(developer) in the following context: the standard NASA/GSFC environment,

2-54 SEL-95-003

THE EXPERIENCE FACTORY

i.e., process model (SEL version of the waterfall model, . . .), application (ground
support software for satellites), machine (running on a DEC 780 under VMS), etc.

The goals are defined in an operational, tractable way by refining them into
a set of quantifiable questions that are used to extract the appropriate information
from the models of the object of interest and the focus. The questions and models
define the metrics and the metrics, in turn, specify the data that needs to be
collected. The models provide a framework for interpretation.

Thus, the GQM is used to (1) specify the goals for the organization and the
projects, (2) trace those goals to the data that are intended to define these goals
operationally, and (3) provide a framework for interpreting the data to understand
and evaluate the achievement of the goals, (4) and support the development of
data models based on experience.

Choosing the Execution Model. We need to be able to choose a generic
process model appropriate to the specific context, environment, project character-
istics, and goals established for the project at hand, as well as any goals established
for the organization, e.g., experimentation with various processes or other experi-
ence objects. This implies we need to understand under what conditions various
processes are effective. All processes must be defined to be measurable and
defined in terms of the goals they must satisfy. The concept of defining goals
for processes will be made clearer in later chapters.

Once we have chosen a particular process model, we must tailor it to the
project and choose the specific integrated set of sub-processes, such as methods
and techniques, appropriate for the project. In practice, the selection of processes
is iterative with the redefinition of goals and even some environmental and project
characteristics. It is important that the execution model resulting from these first
three steps be integrated in terms of its context, goals, and processes. The real
goal is to have a set of processes that will help the developer satisfy the goals
set for the project in the given environment. This may sometimes require that
we manipulate all three sets of variables to ensure this consistency.

Executing the Processes. The development process must support the
access and reuse packaged experience of all kinds. On the other hand, it needs
to be supported by various types of analyses, some done in close to real time
for feedback for corrective action. To support this analysis, data needs to be
collected from the project. But this data collection must be integrated into the
processes—it must not be an add on, e.g., defect classification forms part of
configuration control mechanism. Processes must be defined to be measurable
to begin with, e.g., design inspections can be defined so that we keep track of
the various activities, the effort expended in those activities, such as peer reading,
and the effects of those activities, such as the number and types of defects found.
This allows us to measure such things as domain understanding (how well the
process performer understands the object of study and the application domain)
and assures that the processes are well defined and can evolve.

2-55 SEL-95-003

VICTOR R. BASILI

Support activities, such as data validation, education and training in the models,
and metrics and data forms are also important. Automated support necessary to
support mechanical tasks and deal with the large amounts of data and information
needed for analysis. It should be noted, however, that most of the data cannot
be automatically collected. This is because the more interesting and insightful
data tends to require human response.

The kinds of data collected include: resource data such as, effort by activity,
phase, type of personnel, computer time, and calendar time; change and defect
data, such as changes and defects by various classification schemes, process data
such as process definition, process conformance, and domain understanding;
product data such as product characteristics, both logical, e.g., application domain,
function, and physical, e.g., size, structure, and use and context information, e.g.,
who will be using the product and how will they be using it so we can build
operational profiles.

Analyzing the Data. Based on the goals, we interpret the data that has been
collected. We can use this data to characterize and understand, so we can answer
questions like ‘ “What project characteristics effect the choice of processes, methods
and techniques?’’ and ‘“Which phase is typically the greatest source of errors?’’
We can use the data to evaluate and analyze to answer questions like ‘“What is the
statement coverage of the acceptance test plan?’’ and *‘Does the Cleanroom Process
reduce the rework effort?”’ We can use the data to predict and control to answer
questions like ‘‘Given a set of project characteristics, what is the expected cost and
reliability, based upon our history?’’ and ‘‘Given the specific characteristics of all
the modules in the system, which modules are most likely to have defects so I can
concentrate the reading or testing effort on them?’’ We can use the data to motivate
and improve so we can answer questions such as ‘‘For what classes of errors is
a particular technique most effective?’’ and ‘“What are the best combination of
approaches to use for a project with a continually evolving set of requirements based
on our organization’s experience?’’

Packaging the Models. We need to define and refine models of all forms
of experiences, e.g., resource models and baselines, change and defect baselines
and models, product models and baselines, process definitions and models, method
and technique evaluations, products and product parts, quality models, and lessons
learned. These can appear in a variety of forms, e.g., we can have mathematical
models, informal relationships, histograms, algorithms, and procedures, based
on our experience with their application in similar projects, so they may be
reused in future projects. Packaging also includes training, deployment, and
institutionalization.

The six steps of the QIP can be combined in various ways to provide different
views into the activities. First note that there are two feedback loops, a project
feedback loop that takes place in the execution phase and an organizational
feedback loop that takes place after a project is completed. The organizational

2-56 SEL-95-003

THE EXPERIENCE FACTORY

learning loop changes the organization’s understanding of the world by the
packaging of what was learned from the last project and as part of the characteriza-
tion and baselining of the environment for the new project. It should be noted
that there are numerous other loops visible at lower levels of instantiation, but
these high-level loops are the most important from an organizational structure
point of view.

One high-level organizational view of the paradigm is that we must understand
(characterize), assess (set goals, choose processes, execute processes, analyze
data), and package (package experience). Another view is to plan for a project
(characterize, set goals, choose processes), develop it (execute processes), and
then learn from the experience (execute processes, analyze data).

2.1 The Experience Factory Organization

To support the Improvement Paradigm, an organizational structure called the
Experience Factory Organization (EFO) was developed. It recognizes the fact
that improving the software process and product requires the continual accumula-
tion of evaluated experiences (learning), in a form that can be effectively under-
stood and modified (experience models), stored in a repository of integrated
experience models (experience base), that can be accessed or modified to meet
the needs of the current project (reuse).

Systematic learning requires support for recording, off-line generalizing, tailor-
ing, formalizing, and synthesizing of experience. The off-line requirement is
based on the fact that reuse requires separate resources to create reusable objects.
Packaging and modeling useful experience requires a variety of models and formal
notations that are tailorable, extendible, understandable, flexible, and accessible.

An effective experience base must contain accessible and integrated set of
models that capture the local experiences. Systematic reuse requires support for
using existing experience and on-line generalizing or tailoring or candidate expe-
rience.

This combination of ingredients requires an organizational structure that sup-
ports: a software evolution model that supports reuse, processes for learning,
packaging, and storing experience, and the integration of these two functions. It
requires separate logical or physical organizations with different focuses and
priorities, process models, expertise requirements.

We divide the functions into a Project Organization whose focus/priority is
product delivery, supported by packaged reusable experiences, and an Experience
Factory whose focus is to support project developments by analyzing and synthe-
sizing all kinds of experience, acting as a repository for such experience, and
supplying that experience to various projects on demand.

The Experience Factory packages experience by building informal, formal or
schematized, and productized models and measures of various software processes,
products, and other forms of knowledge via people, documents, and automated
support.

2-57 SEL-95-003

VICTOR R. BASILI

The Experience Factory deals with reuse of all kinds of knowledge and experi-
ence. But what makes us think we can be successful with reuse this time, when
we have not been so successful in the past. Part of the reason is that we are not
talking about reuse of only code in isolation but about reuse of all kinds of
experience and of the context for that experience. The Experience Factory recog-
nizes and provides support for the fact that experience requires the appropriate
context definition for to be reusable and it needs to be identified and analyzed
for its reuse potential. It recognizes that experience cannot always be reused as
is, that it needs to be tailored and packaged to make it easy to reuse. In the past,
reuse of experience has been too informal, and has not been supported by the
organization. It has to be fully incorporated into the development or maintenance
process models. Another major issue is that a project’s focus is delivery, not
reuse, i.e., reuse cannot be a by-product of software development. It requires a
separate organization to support the packaging and reuse of local experience.

The Experience Factory really represents a paradigm shift from current software
development thinking. It separates the types of activities that need to be performed
by assigning them to different organizations, recognizing that they truly represent
different processes and focuses. Project personnel are primarily responsible for
the planning and development activities—the Project Organization (Fig. 1) and
a separate organization, the Experience Factory (Fig. 2) is primarily responsible
for the learning and technology transfer activities. In the Project Organization,
we are problem solving. The processes we perform to solve a problem consist

EXPERIENCE
PROJECT ORGANIZATION FACTORY
Characterize project/environment characteristics >

Set Goals tailorable goals, processes, tools
products, resource models, defect
Chceose Process < models, ... from similar projects

J Execution Plans

data, lessons learned, ...

Y

Execute Process

project analysis, process modification,]...

Fic. 1. The Project Organization.

2-58 SEL-95-003

THE EXPERIENCE FACTORY

PROJECT

ORGANIZATION EXPERIENCE FACTORY
products{data,
ﬁisé’éii,'f amed Analyze Package

[
>

(Analysis)

direct project feedback |

Experience

Generalize
produts, lessons learned, models, ... Base —% Tailor l

project charpcteristics .
™ Project Formalize
models, iﬁclines, Support
tools, conjsulting, ... (Synthesis)

Fic. 2. The Experience Factory.

of the decomposition of a problem into simpler ones, instantiation of higher-
level solutions into lower-level detail, the design and implementation of various
solution processes, and activities such as validation and verification. In the Experi-
ence Factory, we are understanding solutions and packaging experience for reuse.
The processes we perform are the unification of different solutions and redefinition
of the problem, generalization and formalization of solutions in order to abstract
them and make them easy to access and modify, an analysis synthesis process
enabling us to understand and abstract, and various experimentation activities so
we can learn. These sets of activities are totally different.

2.2 Examples of Packaged Experience in the SEL

The SEL has been in existence since 1976 and is a consortium of three
organizations: NASA/GSFC, the University of Maryland, and Computer Sciences
Corporation (McGarry, 1985; Basili ez al., 1992). Its goals have been to (1)
understand the software process in a particular environment, (2) determine the
impact of available technologies, and (3) infuse identified/refined methods back
into the development process. The approach has been to identify technologies
with potential, apply and extract detailed data in a production environment (experi-
ments), and measure the impact (cost, reliability, quality, etc.).

Over the years we have learned a great deal and have packaged all kinds of
experience. We have built resource models and baselines, e.g., local cost models,
resource allocation models; change and defect models and baselines, e.g., defect
prediction models; types of defects expected for the application, product models,
and baselines, e.g., actual vs. expected product size, library access; over time, pro-

2-59 SEL-95-003

VICTOR R. BASILI

cess definitions and models, e.g., process models for Cleanroom, Ada waterfall
model; method and technique models and evaluations, e.g., best method for finding
interface faults; products and product models, e.g., Ada generics for simulation of
satellite orbits; a variety of quality models, e.g., reliability models, defect slippage
models, ease of change models; and a library of lessons learned, e.g., risks associ-
ated with an Ada development (Basili ef al., 1992; Basili and Green, 1994).

We have used a variety of forms for packaged experience. There are equations
defining the relationship between variables, e.g., effort = 1.48*KSLOC®, number
of runs = 108 + 150*KSLOCT; histograms or pie charts of raw or analyzed data,
e.g., classes of faults: 30% data, 24% interface, 16% control, 15% initialization,
15% computation; graphs defining ranges of ‘‘normal,”’ e.g., graphs of size
growth over time with confidence levels; specific lessons learned associated with
project types, phases, activities, e.g., reading by stepwise abstraction is most
effective for finding interface faults; or in the form of risks or recommendations,
e.g., definition of a unit for unit test in Ada needs to be carefully defined; and
models or algorithms specifying the processes, methods, or techniques, e.g., an
SADT diagram defining design inspections with the reading technique being a
variable on the focus and reader perspective.

Note that these packaged experiences are representative of software develop-
ment in the Flight Dynamics Division at NASA/GSFC. They take into account
the local characteristics and are tailored to that environment. Another organization
might have different models or even different variables for their models and
therefore could not simply use these models. This inability to just use someone
else’s models is a result of all software not being the same.

These models are used on new projects to help management control development
(Valett, 1987) and provide the organization with a basis for improvement based on
experimentation with new methods. It is an example of the EF/QIP in practice.

2.3 In Summary

How does the EF/QIP approach work in practice? You begin by getting a
commitment. You then define the organizational structure and the associated
processes. This means collecting data to establish baselines, e.g., defects and
resources, that are process and product independent, and then measuring your
strengths and weaknesses to provide a business focus and goals for improvement,
and establishing product quality baselines. Using this information about your
business, you select and experiment with methods and techniques to improve
your processes based on your product quality needs and you then evaluate your
improvement based on existing resource and defect baselines. You can define
and tailor better and more measurable processes, based on the experience and
knowledge gained within your own environment. You must measure for process
conformance and domain understanding to make sure that your results are valid.

T KSLOC is thousands of source lines of code.

2-60 SEL-95-003

THE EXPERIENCE FACTORY

In this way, you begin to understand the relationship between some process
characteristics and product qualities and are able to manipulate some processes
to achieve those product characteristics. As you change your processes you
will establish new baselines and learn where the next place for improvement
might be.

The SEL experience is that the cost of the Experience Factory activities amounts
to about 11% of the total software expenditures. The majority of this cost (approxi-
mately 7%) has gone into analysis rather than data collection and archiving.
However, the overall benefits have been measurable. Defect rates have decreased
from an average of about 4.5 per KLOC to about 1 per KLOC. Cost per system
has shrunk from an average of about 490 staff months to about 210 staff months
and the amount of reuse has jumped from an average of about 20% to about
79%. Thus, the cost of running an Experience Factory has more than paid for
itself in the lowering of the cost to develop new systems, meanwhile achieving
an improvement in the quality of those systems.

3. A Comparison with Other Improvement Paradigms

Aside from the Experience Factory/Quality Improvement Paradigm, there have
been a variety of organizational frameworks proposed to improve quality for
various businesses. The ones discussed here include:

Plan—Do—Check-Act is a QIP based on a feedback cycle for optimizing a
single process model or production line. Total Quality Management represents
a management approach to long-term success through customer satisfaction based
on the participation of all members of an organization. The SEI Capability
Maturity Model is a staged process improvement based on assessment with regard
to a set of key process areas until you reach level 5 which represents continuous
process improvement. Lean (software) Development represents a principle sup-
porting the concentration of the production on ‘‘value-added’’ activities and the
elimination or reduction of ‘‘not-value-added’’ activities. In what follows, we
will try to define these concepts in a little more detail to distinguish and compare
them. We will focus only on the major drivers of each approach.

3.1 Plan-Do-Check-Act Cycle (PDCA)

The approach is based on work by Shewart (1931) and was made popular by
Deming (1986). The goal of this approach is to optimize and improve a single
process model/production line. It uses such techniques as feedback loops and
statistical quality control to experiment with methods for improvement and build
predictive models of the product.

PLAN ., DO____ o CHECK — __p ACT —__»

2-61 SEL-95-003

VICTOR R. BASIL|

If a family of processes (P) produces a family of products (X) then the approach
yields a series of versions of product X (each meant to be an improvement of
X), produced by a series of modifications (improvements) to the processes P,

Po,P1,P2,. .. ,Pn—9Xo,X1,X2,. . . ,X,,

where P, represents an improvement over P;_; and X; has better quality than X;_,.
The basic procedure involves four basic steps:

Plan: Develop a plan for effective improvement, e.g., quality measurement
criteria are set up as targets and methods for achieving the quality criteria
are established.

Do: The plan is carried out, preferably on a small scale, i.e., the product is
produced by complying with development standards and quality guidelines.

Check: The effects of the plan are observed; at each stage of development,
the product is checked against the individual quality criteria set up in the
Plan phase.

Act: The results are studied to determine what was learned and what can be
predicted, e.g., corrective action is taken based upon problem reports.

3.2 Total Quality Management (TQM)

The term Total Quality Management (TQM) was coined by the Naval Air
Systems Command in 1985 to describe its Japanese-style management approach
to quality improvement (Feigenbaum, 1991). The goal of TQM is to generate
institutional commitment to success through customer satisfaction. The ap-
proaches to achieving TQM vary greatly in practice so to provide some basis
for comparison, we offer the approach being applied at Hughes. Hughes uses
such techniques as QFD, design of experiments (DOE), and statistical process
control (SPC), to improve the product through the process.

Identify —» Identify Important ~» Make —» Hold —» Provide
needs items Improvements Gains Satisfaction

Customer QFD DOE SPC Product

t f

The approach has similar characteristics to the PDCA approach. If Process
(P) — Product (X) then the approach yields

Po,P],Pz,.. .,P,,'—>X0,X1,X2,. . .,X,,

where P, represents an improvement over P;_; and X; provides better customer
satisfaction than X;_,.

In this approach, after identifying the needs of the customer, you use QFD to
identify important items in the development of the system. DOE is employed to

2-62 SEL-95-003

THE EXPERIENCE FACTORY

make improvements and SPC is used to control the process and hold whatever
gains have been made. This should then provide the specified satisfaction in the
product based upon the customer needs.

3.3 SEIl Capability Maturity Model (CMM)

The approach is based upon organizational and quality management maturity
models developed by Likert (1967) and Crosby (1980), respectively. A software
maturity model was developed by Radice ez al. (1985) while he was at IBM. It
was made popular by Humphrey (1989) at the SEI. The goal of the approach is
to achieve a level 5 maturity rating, i.e., continuous process improvement via
defect prevention, technology innovation, and process change management.

As part of the approach, a five-level process maturity model is defined (Fig.
3). A maturity level is defined based on repeated assessment of an organization’s
capability in key process areas (KPA). KPAs include such processes as Require-
ments Management, Software Project Planning, Project Tracking and Oversight,
Configuration Management, Quality Assurance, and Subcontractor Management.
Improvement is achieved by action plans for processes that had a poor assess-
ment result. .

Thus, if a Process (P) is level i then modify the process based upon the key
processes of the model until the process model is at level i + 1. Different KPSAs
play a role at different levels.

The SEI has developed a Process Improvement Cycle to support the movement
through process levels. Basically it consists of the following activities:

Initialize
Establish sponsorship
Create vision and strategy
Establish improvement structure
For each Maturity level:
Characterize current practice in terms of KPAs
Assessment recommendations

Level Focus

5§ Optimizing Continuous Process Improvement

4 Managed Product & Process Quality

3 Defined Engineering Process

2 Repeatable Project Management

RIKIRIE

1 Initial Heros

Fic. 3. CMM maturity levels.

2-63 SEL-95-003

VICTOR R. BASILI

Revise strategy (generate action plans and prioritize KPAs)
For each KPA:
Establish process action teams
Implement tactical plan, define processes, plan and execute pilot(s), plan
and execute
Institutionalize
Document and analyze lessons
Revise organizational approach

3.4 Lean Enterprise Management

The approach is based on a philosophy that has been used to improve factory
output. Womack ez al. (1990), have written a book on the application of lean enter-
prises in the automotive industry. The goal is to build software using the minimal
set of activities needed, eliminating nonessential steps, i.e., tailoring the process to
the product needs. The approach uses such concepts as technology management,
human-centered management, decentralized organization, quality management,
supplier and customer integration, and internationalization/regionalization.

Given the characteristics for product V, select the appropriate mix of sub-
processes pi, gj, rk . . . to satisfy the goals for V, yielding a minimal tailored
process PV which is composed of pi, gj, rk . . .

Process (PV) — Product (V)

3.5 Comparing the Approaches

As stated above, the Quality Improvement Paradigm has evolved over 17 years
based on lessons learned in the SEL (Basili, 1985, 1989; Basili and Rombach,
1987, 1988; Basili et al, 1992). Its goal is to build a continually improving
organization based upon its evolving goals and an assessment of its status relative
to those goals. The approach uses internal assessment against the organizations
own goals and status (rather than process areas) and such techniques as GQM,
model building, and qualitative/quantitative analysis to improve the product
through the process.

Characterize-Set Goals—Choose Process—-Execute—Analyze—Package

T {Project I

Corporate loop
loop

If Processes (Py, Qy, Rz, . . .)— Products (X, Y, Z, . . .) and we want to
build V, then based on an understanding of the relationship between Py, Qy, Ry,

2-64 SEL-95-003

THE EXPERIENCE FACTORY

.and X, Y, Z, . . . and goals for V we select the appropriate mix of processes
pi, qj, k. . . to satisfy the goals for V, yielding a tailored

Process (PV) — Product (V)

The EF/QIP is similar to the PDCA in that they are both based on the scientific
method. They are both evolutionary paradigms, based on feedback loops from
product to process. The process is improved via experiments; process modifica-
tions are tried and evaluated and that is how learning takes place.

The major differences are due to the fact that the PDCA paradigm is based
on production, i.e., it attempts to optimize a single process model/production
line, whereas the QIP is aimed at development. In development, we rarely replicate
the same thing twice. In production, we can collect a sufficient set of data based
upon continual repetition of the same process to develop quantitative models of
the process that will allow us to evaluate and predict quite accurately the effects
of the single process model. We can use statistical quality control approaches
with small tolerances. This is difficult for development, i.e., we must learn form
one process about another, so our models are less rigorous and more abstract.
Development processes are also more human based. This again effects the build-
ing, use, and accuracy of the types of models we can build. So although develop-
ment models may be based on experimentation, the building of baselines and
statistical sampling, the error estimates are typically high.

The EF/QIP approach is compatible with TQM in that it can cover goals that
are customer satisfaction driven and it is based on the philosophy that quality is
everyone’s job. That is, everyone is part of the technology infusion process. Some-
one can be on the project team on one project and on the experimenting team on
another. All the project personnel play the major role in the feedback mechanism.
If they are not using the technology right it can be because they don’t understand
it, e.g., it wasn’t taught right, it doesn’t fit or interface with other project activities,
it needs to be tailored, or it simply doesn’t work. You need the user to tell you how
to change it. The EF/QIP philosophy is that no method is ‘‘packaged’’ that hasn’t
been tried (applied, analyzed, tailored). The fact that it is based upon evolution,
measurement, and experimentation is consistent with TQM.

The differences between EF/QIP and TQM are based on the fact that the
QIP offers specific steps and model types and is defined specifically for the
software domain.

The EF/QIP approach is most similar to the concepts of Lean Enterprise
Management in that they are both based upon the scientific method/PDCA philos-
ophy. They both use feedback loops from product to process and learn from
experiments. More specifically, they are both based upon the ideas of tailoring
a set of processes to meet particular problem/product under development. The
goal is to generate an optimum set of processes, based upon models of the

2-65 SEL-95-003

VICTOR R. BASILI

business and our experience about the relationship between process characteristics
and product characteristics.

The major differences are once again based upon the fact that LEM was
developed for production rather than development and so model building is based
on continual repetition of the same process. Thus, one can gather sufficient data
to develop accurate models for statistical quality control. Since the EF/QIP is
based on development and the processes are human based, we must learn from
the application of one set of processes in a particular environment about another
set of processes in different environment. So the model building is more difficult,
the models are less accurate, and we have to be cautious in the application of
the models. This learning across projects or products also requires two major
feedback loops, rather than one. In production, one is sufficient because the
process being changed on the product line is the same one that is being packaged
for all other products. In the EF/QIP, the project feedback loop is used to help
fix the process for the particular project under development and it is with the
corporate feedback loop that we must learn by analysis and syntheses across
different product developments.

The EF/QIP organization is different from the SEI CMM approach, in that the
latter is really more an assessment approach rather than an improvement approach.

In the EF/QIP approach, you pull yourself up from the top rather than pushing
up from the bottom. At step 1 you start with a level 5 style organization even
though you do not yet have level 5 process capabilities. That is, you are driven
by an understanding of your business, your product and process problems, your
business goals, your experience with methods, etc. You learn from your business,
not from an external model of process. You make process improvements based
upon an understanding of the relationship between process and product in your
organization. Technology infusion is motivated by the local problems, so people
are more willing to try something new.

But what does a level 5 organization really mean? It is an organization that
can manipulate process to achieve various product characteristics. This requires
that we have a process and an organizational structure to help us: understand
our processes and products, measure and model the project and the organization,
define and tailor process and product qualities explicitly, understand the relation-
ship between process and product qualities, feed back information for project
control, experiment with methods and techniques, evaluate our successes and
failures, learn from our experiences, package successful experiences, and reuse
successful experiences. This is compatible with the EF/QIP organization.

QIP is not incompatible with the SEI CMM model in that you can still use
key process assessments to evaluate where you stand (along with your internal
goals, needs, etc.). However, using the EF/QIP, the chances are that you will
move up the maturity scale faster. You will have more experience early on

2-66 SEL-95-003

THE EXPERIENCE FACTORY

operating within an improvement organization structure, and you can demonstrate
product improvement benefits early.

4. Conclusion

Important characteristics of the EF/QIP process indicate the fact that it is
iterative; you should converge over time so don’t be overly concerned with
perfecting any step on the first pass. However, the better your initial guess at
the baselines the quicker you will converge. ;

No method is ‘‘packaged’’ that hasn’t been tried (applied, analyzed, tailored).
Everyone is part of the technology infusion process. Someone can be on the
project team on one project and on the experimenting team on another. Project
personnel play the major role in the feedback mechanism. We need to learn from
them about the effective use of technology. If they are not using the technology
right it can be because they don’t understand it or it wasn’t taught right, it doesn’t
fit/interface with other project activities, it needs to be tailored, or it doesn’t
work and you need the user to tell you how to change it. Technology infusion
is motivated by the local problems, so people are more willing to try something
new. In addition, it is important to evaluate process conformance and domain
understanding or you have very little basis for understanding and assessment.

The integration of the Improvement Paradigm, the Goal/Question/Metric Para-
digm, and the EFO provides a framework for software engineering development,
maintenance, and research. It takes advantage of the experimental nature of
software engineering. Based upon our experience in the SEL and other organiza-
tions, it helps us understand how software is built and where the problems are,
define and formalize effective models of process and product, evaluate the process
and the product in the right context, predict and control process and product
qualities, package and reuse successful experiences, and feed back experience
to current and future projects. It can be applied today and evolve with technology.

The approach provides a framework for defining quality operationally relative
to the project and the organization, justification for selecting and tailoring the
appropriate methods and tools for the project and the organization, a mechanism
for evaluating the quality of the process and the product relative to the specific
project goals, and a mechanism for improving the organization’s ability to develop
quality systems productively. The approach is being adopted by several organiza-
tions to varying degrees, such as Motorola and HP, but it is not a simple solution
and it requires long-term commitment by top-level management.

In summary, the QIP approach provides for a separation of .concerns and
focus in differentiating between problem solving and experience modeling and
packaging. It offers a support for learning and reuse and a means of formalizing
and integrating management and development technologies. It allows for the
generation of a tangible corporate asset: an experience base of software competen-

cies. It offers a Lean Enterprise Management approach compatible with TQM

2-67 SEL-95-003

VICTOR R. BASILI

while providing a level 5 CMM organizational structure. It links focused research
with development. Best of all you can start small, evolve and expand, e.g., focus
on a homogeneous set of projects or a particular set of packages and build from
there. So any company can begin new and evolve. ~

REFERENCES

Basili, V. R. (1985). Quantitative evaluation of software engineering methodology. In ‘‘Proceedings
of the 1st Pan Pacific Computer Conference, Melbourne, Australia’’ (also available as Technical
Report TR-1519, Department of Computer Science, University of Maryland, College Park, 1985).

Basili, V. R. (1989). Software development: A paradigm for the future. In *‘Proceedings of the 13th
Annual International Computer Software and Applications Conference (COMPSAC), Keynote
Address, Orlando, FL.”

Basili, V. R., and Green, S. (1994). Software process evolution at the SEL. JEEE Software Mag.,
July, pp. 58—66.

Basili, V. R., and Rombach, H. D. (1987). Tailoring the software process to project goals and
environments. In ‘‘Proceedings of the 9th International Conference on Software Engineering,
Monterey, CA,”” pp. 345-357.

Basili, V. R., and Rombach, H. D. (1988). The TAME Project: Towards improvement-oriented
software environments. IEEE Trans. Software Eng. SE-14(6), 758-773.

Basili, V. R., Caldiera, G., McGarry, F., Pajerski, R., Page, G., and Waligora, S. (1992). The software
engineering laboratory—an operational software experience factory. In *‘Proceedings of the Interna-
tional Conference on Software Engineering,”” pp. 370-381.

Crosby, P. B. (1980). Quality is Free: The art of making quality certain. New American Library, New York,

Deming, W. E. (1986). ‘“Out of the Crisis.”” MIT Center for Advanced Engineering Study, MIT
Press, Cambridge MA.

Feigenbaum, A. V. (1991). ““Total Quality Control,” 40th Anniv. Ed. McGraw-Hill, New York.

Humphrey, W. S. (1989). ‘“Managing the Software Process,”” SEI Ser. Software Eng. Addison-
Wesley, Reading, MA.

Kogure M., and Akao, Y. (1983). Quality function deployment and CWQC in Japan. Qual. Prog.,
October, pp. 25-29.

Likert, R. (1967). ‘“The Human Organization: Its Management and Value.”” McGraw-Hill, New York.

McCall, J. A., Richards, P. K., and Walters, G. F. (1977). “‘Factors in Software Quality,”” RADC TR-77-369.

McGarry, F. E. (1985). ‘‘Recent SEL Studies,”” Proc. 10th Annu. Software Eng. Workshop. NASA
Goddard Space Flight Center, Greenbelt, MD.

Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V. Capability Maturity Model for Software,
Version 1.1, Technical Report SEI-93-TR-024.

Radice, R., Harding, A. J., Munnis, P. E., and Phillips, R. W. (1985). A programming process study.
IBM Syst. J. 24(2).

Shewhart, W. A. (1931). “‘Economic Control of Quality of Manufactured Product.”” Van Nostrand,
New York. '

Software Engineering Institute (1933). “‘Capability Maturity Model,”” CMU/SEI-93-TR-25 Version
1.1. Camegie-Mellon University, Pittsburgh, PA.

Valett, J. D. (1987). The dynamic managementinformation tool (DYNAMITE): Analysis of the prototype,
requirements and operational scenarios. M.Sc. Thesis, University of Maryland, College Park.

Weiss, D. M., and Basili, V.R. (1985). Evaluating software development by analysis of changes: Some
data from the software engineering laboratory. IEEE Trans. Software Eng. SE-11(2), 157-168.

Womack, J. P., Jones, D. T., and Roos, D. (1990). ‘“The Machine that Changed the World: Based
on the Massachusetts Institue of Technology S5-Million Dollar 5-Year Study on the Future of the
Automobile.”” Rawson Associates, New York.

2-68 SEL-95-003

%}‘?’: s

- Ay &8
i/,”)/——

Vs &

SECTION 3—SOFTWARE MODELS

The technical paper included in this section was originally prepared as indicated below.

e "Characterizing and Assessing a Large-Scale Softiware Maintenance Organization,"
L. Briand, W. Melo, C. Seaman, and V. Basili, Proceedings of the 17th International
Conference on Software Engineering, Seattle, Washington, U.S.A., April 23-30, 1995

3-1 SEL-95-003

Page intentionally left blank

Characterizing and Assessing
a Large-Scale Software Maintenance Organization*

Lionel Briand
CRIM
1801 McGill College Av.
Montréal (Quebec)
H3A 2N4, Canada
Lionel.Briand@crim.ca

Abstract

Onre important component of a software process is the
organizational context in which the process is enacted.
This component is aoften missing or incomplete in current
process modeling approaches. One technique for modeling
this perspective is the Actor-Dependency (AD) Model.
This paper reports on a case study which used this
approach to analyze and assess a large software
maintenance organization. Our goal was to identify the
approach's strengths and weaknesses while providing
practical recommendations for improvement and research
directions. The AD model was found to be very useful in
capturing the important properties of the organizational
context of the maintenance process, and aided in the
understanding of the flaws found in this process. However,
a number of opportunities for extending and improving the
AD model were identified. Among others, there is a need
10 incorporate gquantitative information to complement the
qualitative model.

1. Introduction

It has now been recognized that, in order to improve the
quality of software products, it is necessary to enhance the

*During this work the authors were, in part, supported by
the following grants: Briand by NSF grant 01-5-24845 and
CRIM, Melo by UMIACS, Seaman by IBM-Toronto grant
91-1-20011, and Basili by NASA grant NSG-5123.

Permission to copy without fee ail or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ICSE 95, Seattle, Washington USA
© 1995 ACM 0-89791-708-1/95/0004...$3.50

3-3

S/
415777

Walcélio Melo, Carolyn Seaman and Victor Basili
Computer Science nt
Insttute for Advanced Computer Studies
University of Maryland
College Park, MD, 20742
{melo | carolyns | basili} @cs.umd.edu

quality of the software processes used to develop and
maintain them. This requires the understanding and
modeling of these processes in order to be able to analyze
and assess them. Following the exampie of other
engineering disciplines, where empirical approaches to
management have been successfully applied, several
methodologies have been defined for allowing the
characterization and incremental improvement of software
processes [Basili, 1989; Lanphar, 1990]). The modeling of
software development and maintenance processes is a
necessary component of these approaches. A number of
modeling techniques have been developed. e.g., [Lott and
Rombach, 1993; Finkelstein et al, 1994; Melo and
Belkhatir, 1994].

‘What has received less attention in the literature is the need
to model the organizational context in which a development
process executes. It is not possible to fully understand and
analyze such process issues as information flow, division of
work, and coordination without including the organizational
context in the analysis. Organizational context refers to
characteristics of relationships between process participants.
Such relationships include, among others, the management
hierarchy, the structure of ad hoc working groups, and
seating arrangements. Some process modeling approaches
attempt to include mechanisms in their formalisms to deal
with organizational structure [Curtis et. al., 1992}, but not
to any great level of detail. Some formalisms have
specifically focused on organizational modeling [Rein,
1992; Benus, 1994], but these lack the mechanisms and
flexibility necessary for quantitative analysis (discussed
later).

One approach to organization and process modeling appears
particularly promising [Yu and Myopoulos, 1994]. This
approach is very new (it was presented at last year's ICSE)
and thus lacks significant validation through use. One goal
of this paper is to report an early experience with this
promising new approach.

Consistent with the philosophy presented above, [Briand et.
al., 1994] have developed an auditing process specifically
aimed at software maintenance processes and organizations.

SEL-95-003

Such an approach requires, to a certain level of detail, the
modeling of processes and organizations. In this context,
the Actor-Dependency modeling technique [Yu and
Mylopoulos, 1994] mentioned above appeared to be
suitable because of its capability to capture numerous kinds
of constraints and dependencies frequently encountered in
complex organizations. In addition, this technique proved in
practice to be intuitive and to facilitate communication with
the maintenance staff of the studied crganization. This paper
reports one experience of using the Actor-Dependency
technique to help analyze 2 large software maintenance
organization. We evaluate the approach's strengths and
weaknesses while providing practical recommendations for
improvement. In Section 2, we briefly describe the Actor-
Dependency modeling approach and one of its extensions
that we have used in our study. Section 3 presents the case
study we conducted. In Section 4 we evaluate the
advantages and weaknesses of the AD approach. Finally, in
Section 5, we present a number of suggestions for future
work, both with the AD model and software organization

modeling in general.

2. The Actor-Dependency Modeling
Approach

The most important characteristic of the modeling approach
presented by Yu et al, for our purposes, is its capability to
fully represent the organizational context in which 2
development process is performed. This language provides
a basic organizational model with several enhancements,
only one of which we will describe here. The basic Actor-
Dependency model represents an organizational structure as
a network of dependencies among organizational entities, or
actors. The enhancement which we have used, called the
Agent-Role-Position (ARP) model, provides a useful
decomposition of the actors themselves. These two
representations are described briefly in the following

sections. For a more detailed description, see [Yu and

Mylopoulos, 1993].
2.1. The basic Actor-Dependency (AD) model

In this model, an organization is described as a network of
interdependencies among active organizational entities, i.e.,
actors. A node in such a network represents an
organizational actor, and a link indicates a dependency
between two actors. Examples of actors are: someone who
inspects units, a project manager, or the person who gives
authorization for final shipment. Documents to be
produced, goals to be achieved, and tasks to be performed
are examples of dependencies between actors. When an
actor, Al, depends on A2, through a dependency D1, it
means that A1 cannot achieve, or cannot efficiently achieve,
its goals if A2 is not able or willing to fulfill its
commitment to D1. The AD model provides four types of
dependencies between actors:

* Inagoal deperdency, an actor (the depender) depends on
another actor (the dependee) to achieve a certain goal or
state, or fulfill a certain condition (the dependum). The
depender does not specify how the dependee should do

3-4

this. A fully built configuration, a completed quality
assessment, or 90% test coverage of a software
component might be examples of goal dependencies if
no specific procedures are provided to the dependee(s).

* In aask dependency, the depender relies on the
*dependee to perform some task. This is very similar to
a goal dependency, except that the depender specifies
how the task is to be performed by the dependee,
without making the goal to be achieved by the task
explicit. Unit inspections are examples of task
dependencies if specific standard procedures are to be
followed.

* Inaresource dependency, the depender relies on the
dependee for the availability of an entity (physical or
informational). Software artifacts (e.g. designs, source
code, binary code), software tools, and any kind of
computational resources are examples of resource

es.
e A soft-goal dependency is similar to a goal
dependency, except that the goal to be achieved is not
sharply defined, but requires clarification between
depender and dependee. The criteria used to judge
whether or not the goal has been achieved is uncertain.
Soft-goals are used to capture informal concepts which
cannot be expressed as precisely defined conditions, as
are goal dependencies. High product guality, user-
friendiiness, and user satisfaction are common
examples of soft-goals because in most environments.,
they are not precisely defined.

Three different categories of dependencies can be established
based on degree of criticality:

e Open dependency: the depender’s goals should not be
significantly affected if the dependee does not fulfill his
or her commitment.

» Commirtted dependency: some planned course of action,
related to some goal(s) of the depender, will fail if the
dependee fails to provide what he or she has committed

to.

e Critical dependency: failure of the dependee to fulfill
his or her commitment would result in the failure of all
known courses of action towards the achievement of

some goal(s) of the depender.

The concepts of open, committed. and critical dependencies
can be used to help understand actors’ vulnerabilities and
associated risks. In addition, we can identify ways in which
actors alleviate this risk. A commitment is said to be:

* enforceable if the depender can cause some goal of the

dependee to fail.

* assured if there is evidence that the dependee has an
interest in delivering the dependum.

» insured if the depender can find alternative ways to have
his or her dependum delivered.

In summary, a dependency is characterized by three
attributes: type, level of criticality, and its associated risk-
management mechanisms. The type (resource, soft-goal,
goal, and task) represents the issue captured by the

SEL-95-003

dependency, while the level of criticality indicates how
important the dependency is to the depender. Risk-
management mechanisms allow the dependeér to reduce the
vulnerability associated with a dependency.

Figure 1 shows a simple example of an AD model. A
Manager oversees a Tester and a Developer. The Manager
depends on the Tester to test. This is a task dependency
because there is a defined set of procedures that the Tester
must follow. In contrast, the Manager also depends on the
Developer to develop, but the Developer has complete
freedom to follow whatever process he or she wishes, so
this is expressed as a goal dependency. Both the Tester and
the Developer depend on the Manager for positive
evaluations, where there are specific criteria to define
"positive”, thus these are goal dependencies. The Tester
depends on the Developer to provide the code to be tested (2
resource), while the Developer depends on the Tester to test
the code well (good coverage). Assuming that there are no
defined criteria for "good™ coverage, this is a soft-goal

dependency.

@pe 0!

Figure 1: A simple example of an AD model

2.2. The Agent-Role-Position (ARP)
decomposition

In the previous section, what we referred to as an actor Is in
fact a2 composite notion that can be refined in several ways
to provide different views of the organization. Agents,
roles, and positions are three possible specializations of the
notion of actor which are related as follows:

= an agent occupies one or more positions
an agent plays one or more roles.
« aposition can cover different roles in different contexts

Figure 2 shows an example of an actor decomposition.
These three types of specialization are useful in several
ways. They can be used to represent the organization at
different levels of detail. At a very high level, one might
use only unspecialized actors. Positions provide more
detail, but still provide a high-level view. Roles provide
yet more detail, and the use of agents allows the modeler to
specify even specific individuals. The ARP decomposition
could be especially useful when extending the use of AD

models to quantitative analysis. This is described in more
detail in Section 5.3.3. A Case Study using the AD Model

3.1. Background

Before describing our results, some background is necessary
in order for the reader to understand the analysis which
follows. We will first describe the development
environment which serves as our context. Second, the
auditing process used in the case study will be described.

Legend

Figure 2. Associated Agent, Position, and Role

3.1.1. The Studied Maintenance Organization

This study took place in the Flight Dynamics Division
(FDD) of the NASA Goddard Space Flight Center (GSFC).
Over one hundred software systems for the control and
prediction of satellite orbits, trajectories and attitude,
totalling about 3.5 million lines of code, are maintained.
Many of these systems are maintained over a very long
period of time, and regularly produce new releases. About
80 people are involved in the maintenance of these systems.
This study focused on three systems in particular, which
ranged from 156 to 260 thousand lines of FORTRAN code,
and from 7 to 26 years of age.

Numerous communication, schedule, budget and technical
problems arise with each release. This results in somewhat
unstable change requirements all along the release process, a
high turnover in some projects and difficulties in meeting
deadlines. There was a need to study these phenomena.

More precisely, our framework for this study is the
Software Engineering Laboratory (SEL). The SEL is a joint
venture between the University of Maryland, CSC and
NASA. The SEL is an organization aimed at improving
NASA-FDD software development processes based on
measurement and empirical analysis. Recently, responding
to the growing cost of software maintenance at NASA-
FDD, the SEL' has initiated a program aimed at
characterizing, evaluating and improving its maintenance
processes. The first step in this direction was a set of

SEL-95-003

studies conducted using the auditing technique described
below.

3.1.2. The Maintenance Process Auditing
Methodology

In [Briand et. al., 1994], a qualitative and inductive
methodology has been proposed in order to characterize and
audit software maintenance processes and organizations and
thereby identify their specific problems and needs. This
methodology encompasses a set of procedures which
antempts to determine causal links between maintenance
problems and flaws in the maintepance organization and
process. This ailows for a set of concrete steps to be taken
for maintenance quality and productivity improvement,
based on a tangible understanding of the relevant
maintenance issues in a particular maintenance
environment. The steps of this methodology can be
summarized as follows:

Step 1: Identify the organizational entities with which the
maintenance team interacts and the organizational
structure in which maintainers operate. In this step the
distinct teams and their roles in a change process are
identified. Information flows between actors should
also be determined.

Step 2: Identify the phases involved in the creation of a
new system release. Software artifacts produced and
consumed by each phase must be identified. Actors
responsible for producing and validating the output
artifacts of each phase have to be identified and located
in the organizational structure defined in Step 1.

Step 3: Identify the generic activities involved in each
phase, i.e. decompose life-cycle phases to a lower level
of granularity. Identify, for each low-level activity, its
inputs and outputs and the actors responsible for them.

Step 4: Select one or several past releases for analysis in
order to better understand process and organization
flaws. :

Step 5: Analyze the problems that occurred while
performing the software changes in the selected releases
in order to produced a causal analysis document. The
knowledge and understanding acquired through steps 1-3
are necessary in order to understand, interpret and
formalize the information described in the causal
apalysis document.

Step 6: Establish the frequency and consequences of
problems due to flaws in the organizational structure
and the maintenance process by analyzing the
information gathered in Step 5.

Modeling the organizational context of the maintenance
process was a very important step in the above analysis
process. A model of the organization was necessary for
communication with maintenance process participants.
Gathering organizational information and building the
model was critical to our understanding of the work
environment and differences across projects. The model was
also useful in checking the consistency and completeness of
the maintenance process model. For example, the

organizational mode] allowed us to determine whether or
not all organizational actors had defined roles in the process
model. During this preliminary study. the following
requirements were identified for an optimal organizational
modeling technique:

R1: The modeling methodology had to facilitate the
detection of conflicts between organizational structures
and goals. For example, inconsistencies between the
expectations and intentions of interfacing actors seemed
to be a promising area of investigation.

R2: We needed to capture many different types of
relationships between actors. These included
relationships that contributed to information flow,
work flow, and fulfillment of goals. The explicit and
comprehensive modeling of all types of relationships

" was necessary in this context.

R3: Different types of organizational entities had to be
captured: individuals. their official position in the
organizational structure, and their roles and activities in
the maintenance process. This was important not only
to be able to model at different levels of detail, but also
to provide different views of the organization. each
relaying different information.

R4: Links between the organization and the maintenance
process model had to be represented explicitly.

RS: The notation had to aid in communication through
intuitive concepts and graphical representation.

As a starting point, we decided to use the Actor-Dependency
model introduced by Yu et al in order to reach these
objectives. The AD model, as we shall see, meets many of
our requirements. ,

In the next section, we provide the extended AD model of
our maintenance organization where. for the sake of
simplification, we use only positions (one possible
specialization of actors) as vertices of the graph.

3.2. AD Organizational Model

The organizational model in Figure 3 is very complex
despite important simplifications (e.g., agents and roles are
not represented). This shows how intricate the network of
dependencies in a large software maintenance organization
can be. The lessons learned with respect to the maintenance
organization are presented below and the approach’s
advantages and drawbacks are the focus of the next section.

The organizational model presented in Figure 3 was built
using information from 2 variety of sources: we read
maintenance standards release documents, interviewed
people involved in the change and configuration
management process, analyzed release management reports,
and studied the official organization charts.

The model is by necessity incomplete. We have focused on
those positions and activities which contribute to the
maintenance process only. So there are many other actors
in the NASA-FDD organization which do not appear in the
AD graph. As well, we have aggregated some of the

SEL-95-003

positions where appropriate. For example, Maintenance
Management includes a large number of separate actors, but
for the purposes of our analysis, they can be treated as an
aggregate. Because only the primary dependencies are shown
at this level of detail, nearly all of them are shown as
critical. This issue will be discussed in more detail later.
Below are listed the positions shown in the figure, and 2
short explanation of their specific roles:

Testers present acceptance test plans, perform acceptance
test and provide change requests to the maintainers
when necessary.

Users suggest, control and approve performed changes.

QA Engineer controls maintainers' work (e.g., conformance
to standards). attends release meetings, and audits
delivery packages.

Configuration Manager integrates updates into the system,
coordinates the production and rejease of versions of the
system, and provides tracking of change reguests.

Maintenance management grants preliminary approvals of
maintenance change requests and release definitions.

Maintainers: analyze changes, make recommendations.
perform changes, perform unit and change validation
testing after linking the modified units to the existing
system, perform validation and regression testing after
the system is recompiled by the Cornfiguration
Manager.

Process Analyst collects and analyzes data from all projects
and packages data to be reused.

NASA Management is officially responsible for selecting
software changes, gives official authorizations, and
provides the budget.

The resulting organizational model was validated through
use, within the context of the auditing methodology
presented above. The modeling of the maintenance process.
the release documents, and the causal analysis of
maintenance problems allowed us to check the model for
consistency and completeness.

3.3 Lessons Learned

Below are the main flaws that were found in the
maintenance process and which we reported to the
maintenance organization. In all cases, the flaws were
uncovered, or at least better understood, by studying the AD
model.

Task Leader

From our analysis, it appears that the Task Leader is 2 very
central position. This is clearly illustrated in Figure 3.
The centrality of the Task Leader gives rise to two possible
problems: overloading of the person filling this position,
and over-dependence of the project on this one position.
Analysis of the Task Leader's role decomposition,
especially in conjunction with quantitative analysis, would
be helpful in determining the extent of these problems, and
possible solutions.

Quality Assurance

Standards conformance and quality inspections were not
perceived by the task leaders and maintainers as critical.
They considered these processes mainly bureaucratic. This
is reflected in the (non-)criticality symbols on the
corresponding dependencies in Figure 3. This pointed out a
weakness in the process and organization that could be
remedied through more suitable inspection procedures and
better definition and communication of quality needs.

Requirements

In Figure 3, Unambigunous requirements (a dependency
between the Task Leader and the User) is not an enforceable
soft-goal dependency since the users and maintainers
(including the Task Leader) belong to two different
management hierarchies. In other words, the Task Leader
and User are so far removed from each other in the network
of management dependencies that the Task Leader has no
practical recourse for ensuring that the User provides
unambiguous requirements. Note that the management
dependencies are included in the AD model, but have been
omitted from Figure 3 to simplify the diagram. Moreover,
the fact that this dependency is a soft-goal and not a goal
raises another issue: standards for defining unambiguous
requirements should be defined and applied. The lack of such
standards indicates that the organization is still immature in
this area.

Data Collection

Process analysts attempt to collect data in order to evaluate
and better predict the maintenance process. However, such a
procedure is inherently difficult to enforce when maintainers
do not clearly understand the benefits of such data
collection, in terms of useful feedback. In terms of the AD
model, the Process Analyst's dependency on the Maintainer
is a vulnerability, with no reciprocal dependency to serve as
arisk management mechanism available to reduce that
vuinerability.

4. Evaluation of the AD Model

4.1. Advantages

The notions of enforcement and assurance, as well as the
modeling of goal and soft-goal dependencies. helped us to
detect potential problem areas, such as critical dependencies
that are not enforceable and for which there were no clear
assurances of commitment. The Task Leader’s need for
unambiguous requirements is an example of such an
inconsistency. This seemed to fulfill, at least partially,
requirement R1.

The AD model captured all the information, work, and
resource flows through resource and task dependencies. This
allowed us to identify inconsistencies between what some
agents needed and the support that they were actually
getting. The problem of the Process Analyst's need for
development data from maintainers is an example of this.
We also found that the soft-goal dependency in particular

3.7 SEL-95-003

was useful in highlighting areas in which the environment
was immature. The unambiguous requirements dependency
exemplifies this situation. The various types of
dependencies in the AD model therefore fulfilled requirement
R2.

The actor decomposition extension to the AD model makes
a clear distinction between various organizational entities
by defining and differentiating roles, positions and agents as
different specializations of actors (requirement R3). This
allowed us to extract different information from different
versions of the AD model, using different specializations of
the actors. For exampie, we found that the model remained
fairly stable from project to project when nodes represented
positions (as in Figure 3). However, when we used the role
specialization, significant differences appeared between
projects. For example, roles of managers often varied
significantly, depending on their technical background.
This served to show that process participants found the
freedom to tailor their work to the situation, while the
official organizational structure could remain stable. Roles
also provide a way to create explicit links between the
organizational model and any process model composed of
consistently defined activities (requirement R4).

Many interactions with various members of the
maintenance organization were necessary in order to clarify
inconsistencies and insure completeness. The AD model
played an important role in this communication, because it
facilitated the exchange and comparison of perceptions
about the organizational structure. It served as a good
communication tool (requirement R5).

4.2. Issues

Despite the numerous advantages of the AD model
mentioned in the previous section, some problems have
been identified and should be the subject of further research.

Classification of dependencies

Once a dependency has been identified, it is not always
straightforward to classify it according to the defined
taxonomy (requirement R2). One example is the difficulty
in distinguishing between a task dependency and 2 goal
dependency. A task may be partially defined (e.g., through
standards) but some significant degree of freedom can exist
for the dependee whose understanding of the task objectives
may or may not be complete. It is for this reason that we
have included no task dependencies in our AD model (see
Figure 3). Also, the borderline between soft-goals and (hard-
Jgoals is not always clear. When is a goal sufficienty
defined to be classified as a (hard-)goal? More precise
guidelines are needed in order to classify dependencies in an

appropriate fashion.
Another inadequacy of the classification scheme is in the
case of information dependencies. As defined, information

dependencies are one type of resource dependency. However,
a need for information is different in nature from a need for
time, money, or personnel resources. From a data analysis
point of view, information dependencies are described by
different attributes than those that would be used to describe
other resource dependencies. For this reason, any kind of
information flow analysis necessitates the treatment of

information as a separate type of dependency.
Criticality of dependencies

- No precise and unambiguous definition exists to claésify a

dependency as critical, committed or open, which impedes
fulfillment of requirement R1. Because of this. most of the
dependencies in our context appeared critical since they were
certainly important from the dependee’s perspective. It was,
from a practical perspective, difficult to determine if they
were really indispensable.

Another difficulty with identifying committed and open
dependencies is that practitioners often do not mention them
in interviews and they are usually not included explicity in
process documents. We have found that direct observation
is the only effective way to capture such secondary
dependencies. This is time- and effort-consuming.
Furthermore, when modeling at the level of detail of our
model, it is sufficient to include only the primary
dependencies, which are usually critical .

Interactions between dependencies

The notions of enforcement, assurance and insurance are
extremely useful but they are difficult to represent explicitly
in the AD model representation (requirement RS5). These
notions need to be captured explicitly by the organizational
model. In the next section, we suggest a way to do this by
treating these three mechanisms as interactions between
dependencies.

S. Suggestions

Based on this case study and our evaluation of the AD
model, we provide some suggestions which may be useful
to those wishing to extend the AD concepts, and to those
who are engaged in organization modeling.

51. An Entity-Relationship Model

We believe two of the most important problems that arose
in our work with Actor-Dependency models have a common
solution. The first issue is the need to clearly define the
information that needs to be collected, particularly in a
quantitative analysis effort. The second issue is that of
separating organizational from process concerns since they
require different types of analyses and solutions. The Entity-
Relationship Model, shown in Figure 4 and discussed in the
next two sections, addresses both of these issues.

SEL-95-003

Process PROCESS
Activities § MODELING
ORGANIZATIONAL
performs MODELING
(" Interactions - requires
.| Role f—————d Qualification)
Dependencies i . covers has 1-
f *1 Position |e@—————— Agem
. | implements . occupies '
Mediom)
\. J

Figure 4: Modified ER model for AD graphs

5.1.1. ER Model

Defining precisely the entities and auributes of interest is
not only necessary for data analysis, but also heips clarify
the modeling approach itself. One entity that we have added
in Figure 4 is the Qualification entity. An agent "has” one
or more qualifications, e.g., maintaining ground satellite
software systems. Moreover, based on experience, it may
be determined that some role “"requires” specific
qualifications, e.g., experience with Ada. Comparison of
the required qualifications and the actual organizational set-
up appears useful for identifying high-risk organizational
patterns.

We have retained the agent/role/position decomposition of
an actor defined by Yu et al, which we found very useful.
The ER model also shows "depender” and “dependee” as
ternary relationships. This reflects the fact that a depender or
dependee of a dependency can be either a role or a position.
A role may be functionally dependent on another role in
order to perform a given process activity. Positions are
usually interdependent because of the need for authorization
or authority. However, we believe that dependencies are not
inherent to agents themselves, at least not in our context.

We have also added a new entity, Medium, which is the
communication medium used to implement 2 particular
dependency (especially information dependencies). This
entity is used in some types of quantitative analysis, which
is described in a later section. Finally, dependencies are
related to each other and this is captured through the
interaction relationship, also described in a later section.
However, this ER model requires further definition (e.g.,
attributes should be specified), validation, and refinement.

5.1.2. Linking an organization model with a
process model

The ER model also makes explicit the relationship, and the
separation, between process and organization. Analysis of
an organization is aided by the isolation of organizational
issues (e.g., information flow, distribution of work) from
purely process concerns (e.g., task scheduling,
concurrency). This is especially true when dealing with
quantitative data analysis. Process entities and organization
entities are described by different quantitative auributes.
Separation of these attributes clarifies the analysis.
Although organization and process raise separate issues,
their effects are related. Understanding the relationship
between organization and process is crucial to making
improvements to either aspect of the environment
(requirement R4). For example, the “performs”™ relationship
can link a role to a set of activities, which may be seen as
lower-level roles. The entity Process Activity is itself
related to other entities in the process model not specified
here.

5.2.

Interactions between dependencies need to be modeled. There
are several different types of these interactions which may
be seen as relationships from a source to a target

dependence:

1) Being committed to the source dependency makes the
commitment to the target dependency more difficult.
- This represents a negative assurance.
2) The source dependency is an additional motivation to
the target dependency. This represents a positive
assurance.

Dependency Interactions

SEL-95-003

3) The source dependency’s failure can provoke the failure
of the target dependency. One dependency’s depender is
the other dependency's dependee and vice-versa. This
represents a dependency enforcement.

4) Failure of one dependency is mitigated by the other
dependency. Both dependencies have the same depender
but different dependees. This is a dependency
insurance.

If a depender can count on many dependees to deliver a
dependum. we can say that the dependency is insured. In
this case, different dependees can be committed to the same
dependum. This can be graphically represented in 2 AD
graph In a fashion similar to OR branches in AND-OR
trees. For example, Figure 5 shows a case where a Task
Leader (depender) can count on a Maintainer or a Tester (two
different dependees) for delivering the "Test Plan & Results™

(a particular dependum).

We can also provide a representation for expressing
assurance interactions between dependencies, shown in
Figure 6. All nodes in the diagram are dependencies. and the
arrows between them represent either negative or positive
assurances.! In Figure 6, all the soft-goals contribute
positively (are positive assurances) to the goal "High-
quality release”, but all but one contribute negatively to
"Release on time". All of these dependencies have to be
previously defined in the AD model.

Task
Leader)

Figure 5: Insurance Representation.

Our suggestion for representing dependency enforcements is
a variation of the above. A dependency which enforces
another dependency can be seen as one which completely
assures it. So our representation uses the same arrows
between dependencies shown in Figure 6, with the infinity
symbol ("e=") in place of the plus ("+") or minus (*-").

1 Readers familiar with the work of Yu et al will find this
notation similar to their Issue Argumentation model, which
we did not make use of in our work. However, our
notation which we present here has different semantics than
the 1A model, and the two should not be confused.

3-10

5.3. Use of gquantitative data

The use of quantitative data is critical to the useful analysis
of development processes and organizations. Without
quantitative information, the analysis results are not
sufficient to effectively compare alternatives and to make
decisions. Qualitative analysis, while important for
intuitive understanding and insight, must be taken further to
provide a basis for action. For example, [Perry et. al..
1994] have recently attempted to characterize and quantify
the workload of software developers across software
development process activities. ‘

Figure 6: Representing Assurances

In fact, the AD model is particularly well suited to
incorporating data, although there is not an explicit facility
for this in the modeling methodology. One way 1o perform
such analysis is to associate attributes with the various AD
entities (positions, roles. dependencies, etc.). The attributes
could be used to hold the quantitative information. Then
analysis tools can be used to analyze the AD graph, by
making calculations, based on the data, according to the

stucture represented in the graph.

One type of quantitative analysis, which has already been
alluded to, is information flow analysis. Information
dependencies (one type of resource dependency) can have
attached to them attributes such as frequency and amount of
information. Each information dependency is also related to
the different communication media (the entity Medium in
Figure 4) that it uses to pass information, e.g. phone,
email, formal and informal documents, formal and informal
meetings. The many-to-many relationships between
dependencies and their media also have attributes (e.g.,
effort). Such attributes are captured by defining metrics and
collecting the appropriate data. An example of such an
attribute is the computation, for each information
dependency, of the product of the dependency frequency, the
amount of information, and the effort associated with the
medium related to the dependency. This product gives a
quantitative assessment of the effort expended to satisfy the
information dependency. Summing these values for each
pair of actors in the AD graph shows how much effort the

SEL-95-003

pair expends in passing information to each other. This
information can be used to support such management
decisions as how to fill different positions, how to locate
these people, and what communication media to make
available. Without quantitative analysis, these decisions are
subject to guesswork, trial and error, and the personal
expertise of the manager. For more on metrics for
organizational information flow. see [Seaman, 1994].

There are several possible applications of quantitative
analysis in relation to the actor/position/role
decomposition. For example, during the course of our
study, we noticed that many differences between projects
were reflected in variations in the breakdown of positions
into roles. In other words, the people filling the same
positions in different projects divided their effort differently
among their various roles. These variations were usually
symptomatic of differences in management strategy and
leadership style. Data needs to be collected to capture the
important variations in effort breakdown across
organizations and projects. This data must then be attached
to entities in the AD model so that it can be used to analyze
varjations in job structure. For example, suppose that we
wanted to find out which projects require 2 manager with
technical expertise. If we have quantitative data available on
the effort breakdown of the different managers, then we can
easily see which managers spend a high proportion of their
time on technical activities. This information can be used
in choosing people to fill different management positions.
Variations in effort breakdown can also be represented in an
AD graph by varying the thickness of the lines which join
a position with its various roles, as shown in Figure 7.

Effort breakdown is only one example of the many
possibilities for analysis of the role/position/agent structure
of actors. Qualification analysis, which would involve the
Qualifications entity in Figure 4, is another example.
Understanding the sharing of tasks and responsibilities is
another area in which quantitative analysis could be useful.
All of these involve the evaluation of quantitative attributes
attached to roles, positions, agents, and the links (occupies,
contains, performs) between them.

Figure 7. Representing effort breakdown per role

§.4. Acquisition process

Any modeling effort requires that a great deal of information
be collected from the environment being modeled. Building
an AD model requires collecting information about all the
people in the environment, the details of their jobs and
assignments, whom they depend on to complete their tasks

3-11

and reach their goals, etc. Our experience has shown that 1t
is useful to follow a defined process for gathering this
information, which we will call an acquisition process.
The acquisition process which we follow'ed. }wnh
modifications motivated by our experience, is briefly
presented in this section. The steps are as follows:

Step 1: First, we determined the official. (usually)
hierarchical structure of the organization. Normally this
information can be found in official organizalion
charts. This gives us the set of positions and the basic

rting hierarchy. .

Stepr;goWe determine the roles covered by the posiions
by interviewing the people in each position, and the‘:i
to check for consistency, their supervisors an
subordinates. Process descriptions. if available, often
contain some of this information. However, Whel‘:
using process descriptions, the modeler must chec
carefully for process conformance. g

Step 3: In this step, we focus on the goal, resource. an
task dependencies that exist along the vertical links In
the reporting hierarchy. To do this. we interview
members of different departments or teams. as well as
the supervisors of those teams. Also, direct observaton
of supervisors, called "shadowing”, can be useful in
determining exactly what is requested of, and provided
by supervisors for their subordinates. .

Step 4: Here we focus on resource (usually informational)
and goal dependencies between members of the same
team. Direct observation (through shadowing or
observation of meetings) is also useful here. Interviews
and process documents can also be used to identify

es.
Step 5: Finally, we determine the informational and goal
dependencies between different teams. These are often
harder to identify, as they are not always explicil.
Direct observation is especially important here. as
often actors do not recognize their own subtle
dependencies on other teams. It is also very important
in this step to carefully check for enforcement.
assurance, and insurance mechanisms, since dependers
and dependees work in different parts of the
management hierarchy.

6. Conclusions

This paper presents the experience of using the Actor-
Dependency modeling approach to model and analyze a large
scale maintenance organization. The AD model was founti_
to be very useful at capturing the important properties od
the organizational context of the maintenance process. an
aided in the understanding of the flaws found in this
process. There were, however, some inadequacies of 'h;
approach, which we have addressed through a set ©
proposed suggestions. However. those must be seen 25
research directions and need to be further investigated.

One major potential extension of the approach is to us®

quantitative data and analysis methods, within d::
framework of an AD model. Qualitative methods are I

SEL-95-003

sufficient to differentiate organizations and especially
variations across projects. Measurement is therefore

necessary for studying organizations.

The AD model also needs automated support for real-scale
organizations. This is required to allow the user to analyze a
real-time organization and define complementary views of
the studied organizations, at different levels of refinement,
at different levels of completeness. Automated support is
especially crucial for the use of quantitative analysis.We
need also to better define the relationship between the
organization and the development process. Separating
organizational concerns from process concerns, but
considering them in conjunction with each other, is a
crucial element in the comprehensive study of development
environments (see [Seaman, 1994]). Finally, collecting
information about an organization for building an accurate
AD model is a complex task. Therefore, based on
experience, we need to define an optimal data acquisition
process that can be tailored to various maintenance
environments.

Acknowledgements

‘We want to thank the referees and Khaled E] Eman for their
suggestions that helped improve both the content and the
form of this paper. We would also like to thank the people
at NASA and CSC who participated in this work.

References

Basili, V.R. (1989). "Software Development: A Paradigm
for the Future”. In Proceedings, COMPSAC ‘89, Orlando,
FL., September.

Benus, B. (1994). "Detailed Design Document;
Organisation Model Tool". Technical Report KADS-
1I/M6/UvA/057/1.0, University of Amsterdam, May.

Briand, L. C; Basili, V. R.; Kim, Y.M.; Squier, D. R.
(1994). "A Change Analysis Process to Characterize
Software Maintenance Projects”. In Proc. of the IEEE Int']
Conf. on Software Maintenance. Vicioria, Canada,

September.

Curtis, B.; Kellner, M.L; Over, J. (1992). "Process
Modeling". Communications of the ACM, 35(9):75-90
September.

Finkelstein, A.; Kramer, J.: Nuseibeh, B.. eds.(1994).
Software Process Modeling and Technology. Research
Studies Press (distributed by Wiley & Sons).

Lanphar, R. (1990). "Quantitative Process Management in
Software Engineering, a Reconciliation Between Process
and Product Views". Journal of Systems and Software,
12:243-248.

Lou, CM.; Rombach, H.D. (1993). "Measurement-based
Guidance of Software Projects Using Explicit Project

3-12

Plans". Information and Software Technology, 35(6/7):407-
19, June/July.

Melo, W. and Belkhatir, N. (1994). "Collaborating
Software Engineering Processes in Tempo". Journal of the
Brazilian Computer Society, 1(1):24-35.

Perry, D.; Staudenmayer, N.; Votta, L. (1994), "People,
Organizations, and Process Improvement”. JEEE Soﬁware,
11(4):36-45.

Rein, G.L. (1992), "Organization Design Viewed as a
Group Process Using Coordination Technology”. MCC
Technical Report No. CT-039-92, February.

Seaman, C.B. (1994), "Using the OPT Improvement
Approach in the SQL/DS Development Environment”. In
Proceedings of CASCON'94, (CD-ROM version), Toronto.
Canada, October.

Yu, E.; Mylopoulos, J. (1993). "An Actor Dependency
Model of Organizational Work - with Application to
Business Process Reengineering”. In Proc. Conference on
Organizational Computing Systems (COOCS 93),
Milpitas, CA, November.

Yu, E. S.; Mylopoulos, J. (1994). “Understanding "Why' in
Software Process Modeling, Analysis, and Design". In
Proc. of the 16th IEEE int'l Conf. on Software
Engineering. Sorrento, Italy. pp. 159-168.

SEL-95-003

Release
pre-approval
- b4 X
X sl & Resources,
Feact Staft
il X
confonance
© Cost
Estinates -
cw. Regoests
Fessidie
Reease
Proaty List «
Tasx Guze
Leater X
X X
X X
System
Task p ;
sssgaen. | “cpense || T o
e & msuts X
Unit fested. on Sme User
frtegration wested,
Aeiease Docs:|
Reviews X
X
» . -
Systee
L Support
X
Error
X
asaive | Corfigored
hiociifiec SooRe Reease
Data, Foems Componerts coe X
X
X X
Process
Cortiguration Tester

Figure 3: AD Model of a Maintenance Organization.

3-13

SEL-95-003

Y7 7
TS

-~ "

SECTION 4—SOFTWARE MEASUREMENT

The technical papers included in this section were originally prepared as indicated below.

e Goal-Driven Definition of Product Metrics Based on Properties, L. Briand,
S. Morasca, and V. R. Basili, University of Maryland, Computer Science Technical
Report, CS-TR-3346, UMIACS-TR-94-106, December 1994

e Property-based Software Engineering Measurement, L. Briand, S. Morasca, and V. R.
Basili.,, University of Maryland, Computer Science Technical Report, CS-TR-3368,
UMIACS-TR-94-119, November 1994

e An Analysis of Errors in a Reuse-Oriented Development Environment, W. M. Thomas,
A. Delis, and V. R. Basili, University of Maryland, Computer Science Technical Report,
CS-TR-3424, UMIACS-TR-95-24, February 1995

e A Validation of Object-Oriented Design Metrics, V. R. Basili, L. Briand, and W. L.
Melo, University of Maryland, Computer Science Technical Report, CS-TR-3443,
UMIACS-TR-95-40, April 1995

4-1 SEL-95-003

Page intentionally left blank

Goal-Driven Definition
of Product Metrics Based on Properties
Lionel Briand*, Sandro Morasca**, Victor R. Basili*
* Computer Science Department

University of Maryland, College Park, MD, 20742
{lionel, basili}@cs.umd.edu

** Dipartimento di Elettronica e Informazione
Politecnico di Milano
Piazza Leonardo da Vinei 82, I-20133 Milano, Italy
morasca@elet.polimi.it

Abstract

Defining product metrics requires a rigorous and disciplined approach,
because useful metrics depend, to a very large extent, on one's goals and
assumptions about the studied software process. Unlike in more mature
scientific fields, it appears difficult to devise a "universal” set of metrics in
software engineering, that can be used across application environments.

We propose an approach for the definition of product metrics which
is driven by the experimental goals of measurement, expressed via the
GQM paradigm, and is based on the mathematical properties of the
metrics. This approach integrates several research contributions from the
literature into a consistent , practical and rigorous approach.

The approach we outline should not be considered as a complete and
definitive solution, but as a starting point for discussion about a product
metric definition approach widely accepted in the software engineering
community. At this point, we intend to provide an intellectual process that
we think is necessary to define sound software producf metrics. A precise
and complete documentation of such.an approach will provide the
information needed to make the assessment and reuse of a new metric
possible. Thus, product metrics are supported by a solid theory which
facilitates their review and refinement. Moreover, their definition is made
less exploratory and, as a consequence, one is less likely to identify spurious
correlations between process and product metrics. :

1. Imtroduction

Metrics can help address some of the most critical issues in software
development and provide support for planning, monitoring, controlling and
evaluating the software process. However, past approaches for designing
new software metrics very seldom addressed a specific objective explicitly,

This work was supported in part by NASA grant NSG-5123, UMIACS, and NSF grant 01-
5-24845. Sandro Morasca was also supported by grants from MURST and CNR.

4-3 SEL-95-003

and were usually not based upon assumptions/information about the
characteristics of the development environment under study. These include
descriptions of organizational structure and work procedures, guidelines,
standards, etc. This frequently led to some degree of fuzziness in the metric
definitions, properties, and underlying concepts, making the use of the
metrics difficult, their interpretation hazardous, and the results of the
various validation studies somewhat contradictory [I1S88, K88].

As a consequence, the number of available metrics in the literature is
quite large, but the number of used and useful metrics in industry is small.
It is our position that, in order to make software measurement a viable part
of the solutions to software engineering issues, metrics must be defined
according to clear assumptions about the process under study and an
explicit definition of the specific goal(s) to be addressed. Based on these
goals and assumptions, desirable metric properties may be identified and
used to direct and constrain the search for metrics. Such an approach
appears particularly necessary for product metrics since these metrics are
often more complex than process metncs and address phenomena that are
poorly .understood. :

The goal of this paper is to specify (based on our experience [BMB93,
BBHS93, BMB94(a)]) a practical metric definition approach, specifically
aimed at product metrics, and usable as a practical guideline to design
technically sound and useful metrics. The focus will be the construction of .
prediction systems, which is a crucial application of measurement. Not all
activities in this approach can, at this point, be fully formalized, nor do we
believe that they will be completely formalized in the future. We think that
formal techniques can be very effective in providing support for better
understanding and analyzing software processes and products—indeed,
we advocate the need for a formal definition of metrics' mathematical
properties. However, the definition of a metric is a very human-intensive
activity, which cannot be described and analyzed in a fully formal way. We
believe that our metric definition approach may be better detailed, refined,-
and tailored to fit the needs of different application contexts. This will be
made possible through the experience gained by using this metric
definition approach across several environments. Thus, this work should
be considered as a contribution towards a satisfactory solution. We point out
what information ought to be provided when one proposes a new metric in
order to make its review and refinement possible. Furthermore, we
determine what intellectual process one should go through to ensure the
technical soundness and practical usefulness of the defined metrics. A
purely exploratory approach to metric definition would have for a
consequence the experimental evaluation of a large number of
relationships between product metrics (possibly not supported by any
theory) and development process characteristics (e.g., effort). A simple
probability calculation [F91] shows that this kind of approach is likely to
lead to the identification of spurious statistical relationships, e.g.,
correlations uniquely due to coincidence.

Several important research issues involved in the definition of such

an approach have already been investigated. Basili et al. [B92] [BR88] have
provided templates to define operational experimental goals for software

4-4 SEL-95-003

measurement. Melton et al. have studied product abstraction properties
[MGB90]. Weyuker [W88] and Tian and Zelkowitz [TZ92] have studied:
desirable properties for complexity metrics. In addition, the latter authors
provided a property-based classification scheme for such metrics. Fenton
and Melton [FM90], and Zuse [Z90] have investigated the use of
measurement theory to determine measurement scales. Finally,
Schneidewind has proposed a validation framework for metrics [S92]. All
this research needs to be integrated into a consistent and practical metric
definition approach.

The paper is organized as follows. In the next section, we provide an
overview of a practical metric design approach in part inspired by the work
referenced above. and augmented with some new ideas. Then, in the
subsequent sections, we separately show each step of our metric design
approach in detail (Sections 3-8). Section 9 outlines the directions for future
work.

2. Overview of Our Metric Definition Approach

We provide here an overview of the steps composing this approach, as
illustrated in Figure 1 by a Data Flow Diagram. The remaining sections
will go in detail through all the issues involved in each of the steps and will
provide examples. '

Step 1: Define Experimental Goal(s)

Define the experimental goal(s) of the data collection, based on the
general corporate objectives (e.g. reduce cycle time) and the available
information about the studied development environment (e.g.,
weaknesses, problems). This step requires goal definition techniques.
The Goal/Question/Metric paradigm (GQM) [B92] [BR88] is one of the
approaches that can be used to this end. It provides a set of templates to
define experimental goals and refines them into concrete and realistic
questions, which subsequently lead to the definition of metrics. For
instance, a GQM goal is:

Analyze software components for the purpose of prediction with respect
to the number of faults from the viewpoint of the project manager.

(We will use this very simple example to illustrate the steps of our
approach during this concise overview.) A GQM goal specifies the
" object(s) of study (software componerts), the purpose of measurement
(prediction), the quality focus of interest (the number of faults), and
viewpoint (project manager) from which measurement is performed.
The goal strongly impacts all other steps of the metric definition
approach and the information they need. For instance, the object of
study and the viewpoint are used to determine the product artifacts and
information to be taken into account. The GQM paradigm uses
descriptive models (e.g., definition of complexity metrics) and predictive
models (e.g., cost models) in order to achieve the experimental goals it

4-5 SEL-95-003

specifies. However, the GQM paradigm does not specify how to generate
these models. In this paper, we expand the GQM paradigm to address
this issue with respect to product descriptive models. As we will see in
Section 6, questions about product characteristics are no longer
necessary in our approach. However, GQM questions on the confidence
with which assumptions are stated and on the quality (e.g., accuracy of
collection procedures, granularity) of data to be collected [B92, BR88] still
need to be asked. We will not address this issue, which is beyond the
scope of this paper.

cL SIS LES PP IPIILY RIS TIPS P LI PRSI P RIIIP SIS END RSP IL LRSS IPL LIPS LIPS

2y
Ry

E\\\\\\\\\\\\\\\'\\'\\\\\\

ARHARRALANLL LA R AN AN

Abstracfions
-
; ’/’llf”’f”’
; 4 Measurement
A 7 Modds
PEOOOLS L PP OP ST OISO I TS PIIS S FIES IO PSS IELECI LS IO 0 0ot srsrrrrir]
Abstractions
-
Generic and
Context-dependent
Properties

Goal(s)

Figure 1. Goal-Driven and Property-Based
Definition Approach for Product Metrics

4-6 SEL-95-003

Step 2: State Assumptions

Based on the object of study and the quality focus (as defined by the
experimental goals, Step 1), a set of relevant assumiptions must be stated
to embody our intuitive knowledge about the development environment
and object(s) of study. Assumptions implicitely define an order on the set
of objects of study with respect to the quality focus [MGB90]. For
instance, components are ordered with respect to their error-proneness.
Furthermore, while stating these assumptions, relevant measurement
concepts are identified, e.g., size. For instance, based on developers'
interviews and a careful study of the development environment, we
might assume that the larger the number of sequential blocks of
statements and conditional statementsin a program, the higher the
number of faults. From this assumption, size appears to be a possibly
relevant measurement concept. As an input for this step, we need
information on the development environment (e.g., descriptive process
model), product information and expert opinion as an intuitive basis for
the assumptions. Besides assumptions, the outputs of this step also
include : x

- a set of relevant measurement concepts (e.g., size)
- a better definition of the relevant aspects of the object of study (e.g.,
statement blocks and control flow)

Step 3: Formalize Relevant Measurement Concepts

Relevant measurement concepts of interest are formally defined (e.g.,
size, complexity, coupling, cohesion) through their mathematical
properties. Thus, they are clearly characterized and the search for
metrics is guided and constrained by these generic properties. This
makes the search for metrics less exploratory and provides precise
mathematical criteria for assessing the soundness of the metrics to be
defined. The mathematical properties characterizing the concepts are
identified independently from the concept instantiation into a metric
[TZ92] [Z90] [W88] and are therefore referred to as generic concept
properties. With reference to our simple example, we can say that a
property of size is that it is non-negative. As opposed to other papers on
the subject, we believe that these properties are subjective even though
some of them might be widely accepted. However, it appears that, for a
matter of convenience, a universal set of properties should be defined for
the most important concepts used by the software engineering
community, as is the case for more mature engineering disciplines. It is
important, when defining metrics, that one precisely determines the
meaning of concepts like size or complexity. Existing definitions may,
however, be reused when available and, conversely, the newly created
concepts may be stored so that they may be eventually reused.

Step 4: Define Product Abstractions and Refine Properties
One needs to define abstractions of the object of study that capture all the
information (i.e., objects, attributes, relationships) needed to express the
assumptions and the relevant product aspects they refer to. Some
examples of product abstractions are data flow graphs, data dependency

4-7 SEL-95-003

graphs, and control flow graphs. These abstractions will be
representations of the object of study that will help us express useful
properties and define metrics. For our example, we may assume that
control flow graphs are suitable abstractions with respect to the set of
assumptions and the concepts defined.

Once useful abstractions are defined, a set of new properties is added
to the generic concept properties. The objective is to formalize the
assumptions stated in Step 3: The intuitive ordering of the objects of
study (e.g.,components) with respect to the quality focus (e.g.,
components' error-proneness) must be preserved by the ordering of
abstractions (e.g.,components’ control flow graphs) with respect to each
measurement concept (e.g., components’ size) [MGB90]. For instance,
under the assumption stated in Step 3, and given two control flow
graphs G1 and G2, we can preserve the intuitive ordering captured by
the assumption if we define the following size property: the size of G1 is
greater than the size of G2 if G1 has more nodes than G2. These
additional properties allow us to tailor the generic concepts to any
particular quality focus and set of assumptions. It should be noted that
the added properties must be consistent with the generic properties
defined in Step 2. These added properties are specific to a given context of
measurement (i.e., goal, concept, assumptions, abstractions) and are
referred to as context-dependent properties. At this point, if the defined
abstractions are not fully adequate to define the context-dependent
properties, this step can be reiterated.

Steps 2, 3, and 4, taken as a whole, can be seen as a macro-step in which
measurement models [F91] (i.e., abstractions and generic/context-
dependent properties, main outputs of Step 4) are defined based on the
experimental goals, environmental characteristics, and product
information (inputs of Step 2).

Step 5: Define Metrics

Metrics are defined based upon the defined product abstraction(s),
concepts and their associated properties. Existing metrics can also be
reused if they satisfy the defined properties. With respect to our
example, size can be simply measured as the number of nodes in a
control flow graph. We are not able, at this point, to select optimal
metrics from those metrics satisfying the generic and context-dependent
properties. Experimental validation (Step 6) will help us do so.

Step 6: Experimental Validation
After defining metrics in Step 5, the data collected on the actual products
must be used to validate the assumptions upon which the metrics are
built. The procedure to follow for experimental validation varies
significantly depending on the purpose of measurement. With respect to
prediction, which is our main focus here, one needs to validate the
product metrics with respect to their statistical relationship to the
quality focus of interest. For example, we might find a very strong
correlation between the defined size metric and a simple descriptive
model of error-proneness, e.g., the number of faults. If the assumptions

4-8 SEL-95-003

are not supported by the experimental results, we need to repeat from
Step 2, re-consider the assumptions and properties, then re-define new
metrics. The definition and wvalidation of metrics are performed
iteratively until the metric validation yields satisfactory results [S92].

It is important to mention that most of the outputs (e.g., product
abstractions, assumptions) of the steps defined above are reusable. They
should be packaged and stored so that they can be efficiently and effectively
reused [BR88]. In a mature development environment, inputs for most of
those steps should come from reused knowledge.

' Moreover, many refinement loops are not represented in Figure 1.
For example, as we said in the description of Step 6, poor experimental
results may trigger the need for refining assumptions. This is an
important issue that needs further investigation.

In the remainder of this paper, we will use this definition approach
to define data flow size and complexity metrics as simple examples. Each
step will be discussed in detail in a different section. Each section contains
three subsections: . .

- Definition of the step
- Examples
- Discussion of related issues.

3. Define Experimental Goal(s) (Step 1)
Definition

In this section, we apply the first step of the Goal/Question/Metric
paradigm [B92, BR88] to set the measurement goals. Here is a summary of
templates that can be used to define goals:

Object of study: products, processes, resources

Purpose: characterization, evaluation, prediction, improvement, ...
Quality focus: cost, correctness, defect removal, changes, reliability, ...
Viewpoint: user, customer, manager, developer, corporation, ...

A detailed description of the GQM. paradigm is beyond the scope of the
paper. A comprehensive description of the GQM paradigm can be found in
[B92, BR88].

It is important to note that the four goal dimensions mentioned above
have a direct impact on the remaining steps of the metric definition
approach and, from a more general perspective, the whole data collection
program. This can be summarized as follows:

The object of study helps determine the -

- software artifacts that are to be modeled by mathematical
abstractions in order to be analyzable (Step 4).

4-9 SEL-95-003

- assumptions (Step 2) that may be relevant because related to the
object of study. :

The purpose points out what is the intended use of the metrics to be defined
and therefore the

- type of data to be collected, e.g., process improvement requires
additional data over process prediction (e.g., with respect to
development effort), in order to allow for the determination of optimal
techniques and methods. For example, performance data are needed
in sufficient amount to ensure a minimal level of confidence in the
improvement decisions.

- amount of data to be collected, e.g., if prediction usually requires
more data than characterization so that the identified relationships
are statistically significant. Characterization only requires the data
to be representative of what is to be characterized. '

The quality focus helps determine the

- dependent variable against which the defined product metrics are
going to be experimentally validated (Step 6) [S92]. This dependent
variable will in fact be a descriptive model of the quality focus. For
instance, number of requirement changes per month per thousand of
lines of code is a descriptive model of requirement instability. Since
there may be alternative models, validation may require the use of
several dependent variables. In this case, if inconsistent
experimental results are obtained, the dependent variables are very
likely to actually capture different quality focuses.

- assumptions (Step 2) linking the object of study characteristics to the
quality focus of interest.

The viewpoint helps determine

- the point in time at which characterizations, predictions, or
evaluations should be carried out and therefore what product
information will be available to define product abstractions and
metrics (Steps 4, 5). v :

- what information is costly or difficult to acquire and consequently,
what information should be left out of the model if it does not show a
sufficiently strong impact on the quality focus (Steps 5, 6).

- the definition of descriptive models of the quality focus. For example,
from the user’s point of view, error-proneness may be defined as the
mean time to failure, whereas, from the tester point of view, it may be
defined as the number of errors occuring during the test phase.

In this framework, we will not derive questions from goéls as suggested by
the GQM paradigm. A justification will be provided in Section 6.

4-10 SEL-95-003

Example of a goal

Let us assume that one of the corporate objectives is to reduce development
time, and more particularly the time spent on testing activities. Assuming
that previous studies have shown that errors are usually concentrated in a
small number of "difficult" components (example of information about the
development environment), the following experimental goal seems
pertinent. By identifying error-prone components, we may concentrate
verification activities where needed and, thereby, reduce effort.

Goal G

Object of study: component
Purpose: prediction

Quality focus: error-proneness
Viewpoint: tester

Let us take an example to illustrate the impact of the defined experimental
goal on our metric definition approach. We know from the object of study
that we have to define relevant component mathematical abstractions so we
can derive component metrics. We know from the purpose of measurement
that we need to collect enough data about the quality focus to allow a
statistically significant validation of the relationships between the
component metrics to be defined and the quality focus. This requires that
we better define our quality focus: error-proneness. Very likely, we need to
determine precisely how to count defects, e.g., what testing and inspection
phases should be taken into account?, are all errors equal or should they be
weighted according to a predefined error taxonomy? Such questions are
also dependent on the particular viewpoint. In our example, testers want to
find out where errors are and more particularly critical errors (according
to their own definition of criticality). Therefore, errors will be weighted
according to the level of criticality of their consequences. Similarly, errors
could be weighted according to the correction effort they require. The
determination of suitable error counting procedures will depend on the _
particular application of the predictive model to be built and therefore on the
viewpoint of our experimental goal.

In the next sections, we will discuss more precisely about the impact
of experimental goals on the definition of software product metrics.

Discussion

The definition of the goals is a fundamental phase, since all other steps in
our approach are affected by the experimental goals. Therefore, extra care
must be used when setting the goals. Specific descriptive process models
and knowledge acquisition technigues can be used to better understand the
issues that are most relevant to software development in a software
organization. Careful application of the GQM paradigm provides two
important results:

4-11 SEL-95-003

- Data collection is ensured to respond to the specific needs of the
software organization;

- The derivation of metrics from explicit goals and the definition of
explicit measurement models (output of Step 4 of our approach) allow
the analyst to specify a priori the interpretation mechanisms
associated with the collected data. This prevents a posteriori search
for patterns which are not based on precise assumptions.

4. State Assumptions (Step 2)
Definition

We have to state assumptions (see examples below) about some aspects of
the software process under study that are relevant to the experimental
goals. These assumptions capture our intuitive understanding of the
studied phenomena and need to be explicit so they can be discussed,
questioned and refined. Various sources of information can be used to
devise pertinent assumptions. A thorough understanding of the working
procedures, methodologies and techniques used in the studied development
environment, combined with the interview of domain experts, is usually
very helpful [BBK94]. The set of assumptions defines an ordering on the set
of products [MGB90] with respect to the quality focus. This ordering will be
used to evaluate the adequacy of the metrics defined in the remainder of
this approach.

1An assumption is a statement believed to be true about the relationship
between the quality focus and the characteristics of the object of study.

Stating assumptions helps identify the measurement concepts (e.g., size,
complexity) that are characteristics of the object of study relevant to the
goal. In addition, assumptions allow us to identify artifacts, or parts of
artifacts (e.g., definitions, condition expressions), that must be taken into
account for the definition of suitable product abstractions.

Examples of assumptions

In order to capture our intuitive understanding about data flow size and
complexity, we define the following assumptions.

Assumption I1:
The larger the number of definitions and condition expressions, thelarger
the likelihood of error.

Assumption 2

The larger the number of definitions and condition expressmns
"depending” on a definition D, the larger the probability of ripple effects if D
is to be created or modified.

4-12 SEL-95-003

Assumption 3:
The larger the number of definitions on which a definition or a condition
expression D "depends", the more difficult it is to create and understand D.

Assumption 4:

The larger the "distance" between two definitions or condition expression
D1 and D2, where D2 depends on D1, the more difficult the control of ripple
effects on D2 if D1 is to be created or modified.

The concepts between quotes are not defined: they make sense on an
intuitive level. They will be formally defined later, either via the definition of
product abstractions (as is the case of "dependency"), or additional concept
properties in Step 4 (as is the case of "distance").

Discussion

At this point, several sets of consistent assumptions could be defined. This
would lead to multiple categories of metrics, reflecting the inherent
uncertainty associated with the assumptions. In Step 6, experimental
results will eventually help us select the best category of metrics for each
concept. For example, we could assume that when a condition expression
CE (as opposed to a definition) depends on a definition D, this increases the
probability of misunderstanding and ripple effect between D and CE. This
stems from the fact that condition expressions also have an implicit effect
on the definitions in the block they control. This additional assumption .
(referred to as Assumption 5) affects the metric definition approach, as we
show in the following steps.

5. Formalize Relevant Measurement Concepts (Step 3)
Definition

The relevant measurement concepts are defined by specifying the
mathematical properties that are believed to characterize them. In our
framework, these properties should be used.to constrain and guide the
search for new metrics. In addition, as shown in [BMB94(b)], intuition may
lead to properties showing awkward mathematical propertiest. One should
always make sure that a metric exhibits properties that are essential for its
technical soundness. These properties are independent from both any
specific product abstraction and any future instantiation of the concept into
any specific metric. Therefore, they are called generic.

1The authors of this paper were several times misled in the definition of software metrics
that were intuitively appealing, but, after a more thorough analysis, showed inconvenient
and unsubstantiated properties.

4-13 SEL-95-003

A measurement concept is a class of metrics characterized by a set of]
mathematical properties (i.e., generic concept properties) and associated
with an intuitive software product characteristic, e.g., size.

The generic properties associated with a measurement concept should not
be contradictory—there must be at least one metric that satisfy them.
Moreover, these properties should hold for the admissible transformations
[Z90] of the scale of measurement (i.e., nominal, ordinal, interval, ratio,
absolute) on which it is intended to define metries. In other words, there
should not be any contradiction between the scale of measurement which is
assumed while using and interpreting a defined metric and its generic
properties.

Examples of concepts and their generic properties

In this example, we provide properties that are, in our opinion, generic for
. metrics related to size and complexity. These concepts are believed to.be
relevant with respect to many experimental goals and applications, and in
particular with respect to the goal defined above. As, for complexity, the
properties we define are related to the properties several authors have
already provided in the literature (see [LJS92, TZ92, W88]). However, since
we may want to use these properties on artifacts other than software code
and on abstractions other than control-flow graphs, we formalized them in
a more general manner. A thorough discussion of these properties—which
is beyond the scope of this paper—can be found in [BMB94(b)]. These
properties are provided as an example. Nevertheless, in the metric
definition approach we outline in this paper, other sets of properties [TZ92]
[W88] may be used, since the selection of properties is, to some extent,
subjective. ,

Size and complexity are concepts related to systems, in general, i.e.,
one can speak about the size of a system and the complexity of a system. In
our general framework—recall that we want these properties to be as
independent as possible from any specific product abstraction—, 2 system
is characterized by its elements and the relationships between them.

Definition 1: Representation of Systems and Modules
A system S will be represented as a pair <E,R>, where E represents the set
of elements of S, and R is a binary relation on E (R ¢ E x E) representing the -
relationships between S's elements.

Given a system S = <E,R>, a system m = <Ep Rm> is 2 module of S if
and only if Epy ¢ E, Rm ¢ E x E, and Ry, ¢ R. This will be denoted by m ¢ S.

' ¢
As an example, E can be defined as the set of code statements and R as the
set of control flows from one statement to another. A module m may be a
code fragment or a subprogram.

4-14 SEL-95-003

Concept: Size

Intuitively, size is recognized as being an important measurement concept.
According to our framework, size cannot be negative (property Size.l), and
we expect it to be null when a system does not contain any elements
(property Size.2). When modules do not have elements in common, we
expect size to be additive (property Size.3).

2: Size
The size of a system S is a function Slze(S) that is characterized by the
following properties Size.l - Size.3.

¢
Property Size.l: Non-negativity
The size of a system S = <E,R> is non-negative
Size(S)>0 _ (Size.I) |
. .)
Property Size.2: Null Value
The size of a system S = <E,R> is null if E is empty
E=0=_Size(S)=0
(Size.Il)
4
Property Size.3: Module Addmvrty

The size of a system S = <E,R> is equal to the sum of the sizes of two of its
modules mi = <Ep1,Rmi> and mo = <Emo,Rmo> such that any element of S
is an element of either mj or m»

micSandmecSand E=Ep i UEnsand Eni nEpe =)
= Size(S) = Size(m1) + Size(ms) (Size.III)

0
The last property Size.3 provides the means to compute the size of a system
S = <E,R> from ‘the knowledge of the size of its—disjoint—modules

me = <{e},Re> whose set of elements is composed of a different element e of
E2.

Size(S) = Y Size(me) ' (Size.IV)
ecE . .

Therefore, adding elements to a system cannot decrease its size

2For each me, it is either Re=@ or R.={<e,e>}.
4-15 SEL-95-003

(8'=<E',R'>and S" = <E"R"> and E' ¢ E") = Size(S") < Size(8") (Size.V)

From the above properties Size.1 - Size.3, it also follows that the size of a
system S = <E,R> is not greater than the sum of the sizes of any pair of its
modules mj = <Ey1,Rm1> and mg = <Epo,Rmo>, such that any element of S
is an element of mj, or mg, or both, i.e.,

(m;cSandmgcSand E =Enpj u Epe) = Size(S) < Size(m;) + Size(ms)
(Size.VI)

The size of a system built by merging such modules cannot be greater than
the sum of the sizes of the modules, due to the presence of common
elements (e.g., lines of code, operators, class methods).

Properties Size.1-Size.3 hold when applying the admissible transformation
of the ratio scale [F91]. Therefore, there is no contradiction between our
concept of size and the definition of size metrics on a ratio scale.

Concept: Complexity

Intuitively, the complexity of a product is a measurement concept that is
considered extremely relevant to system properties. It has been studied by
several researchers [BMB94(b)l. In our framework, we expect product
complexity to be non-negative (property Complexity.1) and to be null
(property Complexity.2) when there are no relationships between the
elements of a system. However, it could be argued that the complexity of a
system whose elements are not connected to each other does not need to be
necessarily null, because each element of E may have some complexity of
its own. In our view, complexity is a system property that depends on the
relationships between elements, and is not an isolated element's property
[BMB94(b)].

Complexity should not be sensitive to representation conventions with
respect to the direction of arcs representing system relationships (property
Complexity.3). A relation can be represented in either an "active" (R) or
"passive” (R-1) form. The system and the relationships between its elements
are not affected by these two equivalent representation conventions, so a
complexity metric should be insensitive to this.

Also, the complexity of a system S should be at least as much as the
sum of the complexities of any collections of its modules, such that no two
modules share relationships, but may only share elements (property
Complexity.4). We believe that this property is the one that most strongly
differentiates complexity from the other system concepts. Intuitively, this
property may be explained by two phenomena. First, the transitive closure
of R is a larger graph than the graph obtained as the union of the transitive
closures of R' and R" (where R' and R" are contained in R). As a
consequence, if any kind of indirect (i.e., transitive) relationships between
elements is considered in the computation of complexity, then the
complexity of S may be larger than the sum of its modules' complexities,
when the modules do not share any relationship. Otherwise, they are equal.

4-16 SEL-95-003

Second, merging modules may implicitely generate relationships (note
R'UR"cR in formula Complexity.IV's premise) between the elements of
each module (e.g., definition-use relationships may be created when blocks
are merged into a common system). As a consequence of the above
properties, system complexity should not decrease when the set of system
relationships is increased (property Complexity.4).

Last, the complexity of a system made of disjoint modules is the sum
of the complexities of the single modules (property Complexity.5).
Consistent with property Complexity.4, this property is intuitively justified
by the fact that the transitive closure of a graph composed of several disjoint
subgraphs is equal to the union of the transitive closures of each subgraph
taken in isolation. Furthermore, if two modules are put together in the
same system, but they are not merged, i.e., they are still two disjoint
module in this system, then no additional relationships are generated from
the elements of one to the elements of the other.

Definition 3: Complexity
The complexity of a system S is a function Complexity(S) that is
characterized by the following properties Complexity.1 - Complexity.5.

0

Property Complexity.1: Non-negativity
The complexity of a system S = <E,R> is non-negative
Complexity(S) =0 (Complexity.I)

' 0
Property Complexity.2: Null Value
The complexity of a system S = <E,R> is null if R is empty
R = @ = Complexity(S)=0 (Complexity.II)
') 0
Property Complexity.3: Symmetry

The complexity of a system S = <E,R> does not depend on the convention
chosen to represent the relationships between its elements

(S =<E,R> and S'1 = <E,R-1>) = Complexity(S) = Complexity(S-1)
(Complexity.III)

Property Complexity.4: Module Monotomclty
The complexity of a system S =<E,R> is no less than the sum of the
complexities of any two of its modules with no relationships in common

4-17 SEL-95-003

S= <E,R> and mi= <Em1,Rm1> and mo = <Em2,Rm2>
and En; VEpe c Eand Ry U Rmec R and Ry » Ro =)
= Complexity(S) 2 Complexity(m3) + Complexity(ms)
(Complexity.IV)

Property Complexity.5: Disjoint Module Additivity ,

The complexity of a system S = <E,R> composed of two disjoint modules
mj] = <Epi,Rmi>, mo = <Eme,Rmo> is equal to the sum of the complexities of
the two modules

(8 = <Em1 v Em2,Rm1 v Rmo> and Epi N Eme = @ and Rm1 n Remo = D)
= Complexity(S) = Complexity(m;) + Complexity(ms)
(Complexity.V)

¢

As a consequence of the above properties Complexity.1 - Complexity.5, it can
be shown that the complexity of a system is no less than the complexity of
any of its modules, i.e., adding relationships between elements of a system
does not decrease its complexity

(8'=<ER>and S"=<ER">and R'cR") . .
. = Complexity(S") < Complexity(S")
' (Complexity.VI)

Properties Complexity.1 - Complexity.5 hold when applying the admissible
transformations of the ratio scale. Therefore, there is no contradiction
between our concept of Complexity and the definition of Complexity metrics
on a ratio scale.

Discussion

The paragraphs above, stating the motivations and justifications for size
and complexity concepts, illustrate the subjectivity of the metric definition
approach. However, it is important that all concept properties be explicitly
justified and motivated so that their limitations may be understood and the
discussion on their validity may be facilitated. :

6. Define Product Abstractions and Refine Concept Properties
(Step 4) .

Definition

We first need to define an abstraction that helps us precisely capture and
define all the concepts involved in the stated assumptions. Abstractions are
mathematical representations of the product(s) (usually graphs). Products
have to be mapped into abstractions so they become analyzable and some of

4-18 SEL-95-003

their attributes become quantifiable [MGBB90]. The choice should be
entirely guided by the experimental goals (i.e., the object of study and the
quality focus) and the set of assumptions, that is, the abstractions must
capture all the concepts involved in the set of assumptions related to the
object of study. The mapping from the product to the abstraction needs to be
checked for completeness, i.e., Does the abstraction contain all the
relationships between nodes that one wants to capture? Is the level of
granularity of the abstraction nodes sufficient to represent accurately the
product? One way of assessing the suitability of an abstraction is to study
the effect of relevant modifications in the product and assess its impact on
the abstraction, e.g., number of nodes and edges added or removed, change
of topology in a graph. Several abstractions capturing control flow, data
flow and data dependency information are available in the literature [M9O,
BBC(C88, 080]. However, an even larger variety of abstractions can be derived
from software products

The set of properties associated with each concept is expanded so as
to formalize the order existing on the set of abstractions with respect to each
concept as defined by the assumptions. Therefore, the order formalized by
the newly introduced properties is intended to preserve the order defined by
the assumptions so that concepts have a monotonic relationship with the
quality focus of interest. For example, given that the quality focus is error-
proneness and that a Definition-Use (D-U) graph DUGI1 is defined as more
complex than another graph DUG2 and assuming that there is a
monotonic relationship between error-proneness and complexity, we expect
the assumptions to state that the product corresponding to DUG1 is more
error-prone than that of DUG2.

These properties are specific to a given context of measurement (i.e.,
goal, concept, assumptions, abstractions) and are referred to as context-
dependent properties. They will, most of the time, capture effects on the
ordering of abstractions when modifications are performed on these
abstraction. These modifications will often be what is referenced as atomic
modifications in [Z90], adding / removing / moving / substituting an
edge/node. They will be useful in order to constrain and guide the search
for metrics (Step 5).

Examples

In our example, D-U graphs are a suitable abstraction since they capture
concepts such as definitions, condition expressions, uses. D-U graphs are
directed graphs where nodes are statements or conditions and arcs are
definition-use clear paths [RW82]. Moreover, concepts such as
"dependencies" or "distance" can be derived from such graphs. A definition
or a condition expression "depends" on a definition when the
variable/constant defined in the latter is used in the former. A suitable
definition of "distance" between two definitions will be provided in the next
section. :

4-19 SEL-95-003

Concept: Size

Property CD1: Count of definitions
If a graph DUG1] has at least as many definitions and condition expressions

as another graph DUG9, then Size(DUG1) = Size(DUG9).
Y

The above property CD1 is not implied by the generic properties Size.l-
Size.3, since DUG1 and DUG2 have nothing to do with each other, i.e., they
are not related by any inclusion relationship (DUG9 is not necessarily
included in DUG1y).

Concept: Complexity

Property CD2: Sum of distances
Let DUG1 and DUG2 be two Definition-Use graphs. If the sum of the
distances between all pairs of nodes in DUG] is greater than the sum of
distances ‘between all pairs of nodes in DUG9, then Complexity(DUG1) >
Complexity(DUG9).

0

The distance between two nodes is the number of arcs in the longest path
between the two nodes that contains no repetitions of elementary cycles
(cycles that do not traverse the same arc twice). As an example, the
distance between nodes b and ¢ in the D-U graph of Figure 2 is 4, i.e., the
number of arcs of the path {<b,c>,<c,e>,<e,b>,<b,c>}. In this path, the arc
<b,c> is traversed twice, but it is only traversed once in the cycles
{<b,c>,<c,e>,<e,b>} and {<c,e>,<e,b>,<b,c>} contained in the path. When
several paths exist between two nodes, we select the longest one because the
shortest or average path distance would not satisfy the monotonicity
property (Complexity.4). For instance, adding an arc in a graph may
decrease the length of the shortest path between two nodes. The distance
between two unrelated nodes is zero because the absence of relation does not
add any complexity, consistent with the generic property Complexity.2.
This shows how generic properties constrain the definition of metrics and
help make the right decisions. As an example of distance calculations,
consider the D-U graph in Figure 2.

If Assumption 5 is considered, a different abstraction is necessary:
Data-Dependency (D-D) graphs [BBC88]. This abstraction captures the links
between condition expressions and the definitions they can affect. In this
case, the following property holds:

Property CD3: Definitions versus condition expressions

Let DDG1 and DDG2 be two Data Dependency graphs. If DDG2 is identical
to DDG1 except for the fact that one of the condition expressions of DDG1]
has been substituted with a definition to form DDGg, then
Complexity(DDG1) > Complexity(DDG2). In other words, a condition
expression is the source of more complexity than a definition.

0

4-20 SEL-95-003

Figure 2. Example of D-U graph

The distances between the nodes in Figure 2 are computed in Table 1.

a b C d e
a 0 5 6 0 6
b 0 3 4 0 5
c 0 5 3 0 4
d 0 5 6 0 4
e 0 4 5 0 3

Table 1. Distances between the nodes of the D-U graph in Figure 2

Discussion

According to the GQM paradigm, questions must be derived from goals. In
our particular framework, questions about product characteristics (e.g.,
what is the complexity of a component?) are not necessary and the outputs
of Steps 2, 8, and 4 may be seen as a more rigorous substitute to questions.
Thus, metrics are not intended to answer questions but to validate
assumptions. However, as we have shown, there may be aspects of the
relevant environmental characteristics that cannot be explicitly modeled,
e.g., the quality of the data and the validity of the assumptions, so questions
may still be necessary to support the full interpretation of the metrics.

As pointed out in [FM90, F94], not all abstractions may be comparable
with respect to a particular measurement concept. In such cases, it
appears difficult to define a total order on the set of abstractions and only a
partial order can be obtained [MGB90]. Ultimately, statistical analysis can
only be conducted independently on comparable subsets of abstractions.

4-21 SEL-95-003

One of the main difficulties of this step is to ensure that the set of
context-dependent properties is complete. Completeness is reached when
the properties can fully describe the ordering of abstractions, i.e., when any
pair of comparable abstractions can be ordered by using the stated
properties or their combination.

It is also necessary to verify that the newly introduced context-
dependent properties define metrics whose scales are consistent with those
defined by the generic properties, i.e., ratio, interval, ordinal, nominal.

7. Define Metrics (Step 5)
Definition

For each concept, metrics are defined by using the abstractions’ elements
and relationships and are checked against the concepts' generic and
context-dependent properties. Management and resource constraints are
taken into account at this point for defining convenient metrics. This step
may require approximations which must be performed explicitly, based on
a solid theory, and in a controlled manner. At this stage, we are not able to
select the best among alternative metrics satisfying generic and context-
dependent properties. Experimental validation (Step 6) will help us perform
such a selection. As a necessary precondition to carrying out a meaningful
experimental validation, the measurement scale (i.e., nominal, ordinal,
interval, ratio, absolute [FM90], [Z90]) of the metrics must be clearly
identified. This prevents metrics from being misused (e.g., taking the
average value of an ordinal metric, which is meaningless).

Examples
Concept: Size

A simple size metric is given by the number of definitions and condition
expressions, i.e., the number of nodes in the Definition-Use graph. Other .
size metrics can be devised, by associating a weight with each node.
However, this would require that additional assumptions be made.

Concept: Complexity

The most straightforward metric that comes to mind is the number of arcs
in the graph. However, this does not take into account Assumption 4 since
distances between pairs of nodes may not have an impact on the metric. In
this context, a complexity metric that seems relevant and that satisfies the
generic and context-dependent properties is the sum of dlstances between
every pair of nodes in the DUG graph.

4-22 SEL-95-003

1E|
IE]

Cplx(DUG)= ZDistance(Nodei,Nodej) 1)
izl J=1

where Nodej, Nodej € E.

If Assumption 5 and Property CD3 are taken into account, then another
complexity metric can be defined as follows

{El
[E|
Cplx(DDG)= ZDistance(Nodei,Nodej))
i=1 =1

Note that the formula is identical but the abstraction used is different, i.e.,
Data-Dependency Graphs (DDG). This metric is therefore different from the
one in (1). The weight of condition expressions in formula (2) has increased
since path distances are made longer by the link between condition
expressions and the definitions that belong to the block they control.

Discussion

Once metrics have been defined, it must be proven that they are consistent
with the generic and context-dependent properties. With reference to our
examples, it can be easily shown that the metrics we define for size and
complexity satisfy their respective sets of generic and context-dependent
properties. Thus, they can be shown to preserve the intuitive order defined
on the abstractions with respect to the quality focus.

8. Experimental Validation of the Metrics (Step 6)

After defining metrics in Step 5, the data collected on actual software
products and processes must be used to validdte the metrics
experimentally. This is done differently according to the purpose of
measurement. With respect to prediction, it is required to validate the
assumptions on which the product metrics are based. In other words,
significant statistical relationships must be identified between the product
metrics and the quality focus (or rather a particular descriptive model of
the gquality focus) and, furthermore, these relationships must be consistent
with what is specified by the assumptions. Validation procedures for other
measurement purposes (e.g., characterization) will not be discussed here.

4-23 SEL-95-003

With respect to prediction, experimental validation may be seen as a search for statistica_ﬂ
relationships between metrics of the object of study and a descriptive models of the guality
 focus (e.g., # error for Error-proneness).

Numerous analysis techniques, both univariate and multivariate
[S92, BBH93, DG84], exist in the statistical and machine learning
literature. If such assumptions and properties are not validated, we need to
repeat from Step 2, re-consider the assumptions and properties, then re-
define new metrics. This metric definition/validation cycle is iterated until
the metric validation yields satisfactory results. Since extensive material is
available on the subject, we will not describe this step any further.

9. Conclusions and Future Work

Product metrics need to be defined in a rigourous and disciplined manner
based on a precisely stated experimental goal, assumptions, properties, and
a thorough experimental validation. In order to do so, we propose a
definition approach that is intended to help analysts develop product
metrics. This approach integrates many contributions from the literature
and is intended to be the starting point for a practical product metric
definition approach to be discussed by the software engineering
community, on both the academic and industrial sides. This approach is
the result of our past experience [BMB93, BBH93, BMBO94(a)] and is
validated through realistic examples.

Our future work encompasses a more detailed study and validation of
each of the steps involved in the metric definition approach. In this
framework, we proposed definitions for the measurement concepts usually
encountered in software engineering, such as complexity, size, coupling,
cohesion, etc [BMB94(b)]. Such a work aims at building a formal,
unambiguous, and comprehensive theory. Also, we need to better
understand how experimental results can be used to guide the refinement
of metric. The refinement process of metrics needs to be better understood
and defined so that metrics can evolve with the increase in understanding
and refinement of the studied development processes. Last, we need to
- better identify what can be reused across environments and projects, e.g.,
metrics, assumptions, measurement concepts, product abstractions.

Acknowledgments

We would like to thank William Agresti, Dieter Rombach, Yong-Mi Kim,
Bryan Hsueh, Wolfgang Heuser, Oliver Laitenberger, and Manoel
Mendonga for their help in reviewing the early drafts of this paper.

4-24 SEL-95-003

: Referénces

[B92] V. Basili, "Software Modeling and Measurement: The
Goal/Question/Metric Paradigm" University of Maryland,
Department of Computer Science, Tech. Rep. CS-TR-2956, 1992.

[BBC88] J. Bieman et al, "A Standard Representation of Imperative
Language Programs for Data Collection and Software Measures
Specification”, J. Syst. Software, vol. 8, pp. 18-37, 1988.

[BBHO3] L. Briand, V. Basili and C. Hetmanski, "Developing Interpretable
Models with Optimized Set Reduction for Identifying High Risk
Software Components," IEEE Trans. Soﬁware Eng., 19 (11),
November, 1993.

[BBK94] L. Briand, V. Basili, Y. M. Kim and D. Squier, "A Change
Analysis Process to Characterize Software Maintenance
Projects," IEEE Conference on Software Maintenance, September
1994, Victoria, British Columbia, Canada.

[BMB93] L. Briand, S. Morasca, V. Basili, "Assessing Software
Maintainability at the End of High-Level Design”, IEEE
Conference on Software Maintenance, September 1993, Montreal,
Quebec, Canada.

[BMB94(a)] L. Briand, S. Morasca, V. Basili, "Defining and Validating
High-Level Design Metrics", CS-TR 3301, UMIACS-TR 94-75,
University of Maryland, College Park

[BMB94(b)] L. Briand, S. Morasca, V. Basili, "Property-based Software
Engineering Measurement," CS-TR 3368, UMIACS-TR 94-119,
University of Maryland, College Park

[BR88] V. Basili and D. Rombach, "The Tame Project: Towards
Improvement-Oriented Software Environments," IEEE Trans.
Software Eng., vol. 14, no. 6, pp. 758-773, June 1988.

[DG84] W. Dillon and M. Goldstein, Multivaﬁ'ate Analysis: Methods and
Applications, Wiley and Sons, 1984.

[Fo1] N. Fenton, "Software Metrics, A Rigorous Approach,"
Chapman&Hall, 1991. '

[F94] N. Fenton, "Software Measurement: A Necessary Scientific
Basis", IEEE Trans. Software Eng., vol 20, no. 3, pp. 199-206,
March 1994.

[FM90] N. Fenton and A. Melton, "Deriving Structurally Based Software
Measures", J. Syst. Software, vol. 12, pp. 177-187, 1990.

4-25 SEL-95-003

[IS88] D. Ince, M. Shepperd, "System Design Metrics: 2 Review and
Perspective," Proc. Software Engineering 88, pages 23-27, 1988

[K88] B. Kitchenham, "An Evaluation of Software Structure Metrics,"
Proc. COMPSAC 88, 1988

[LJS91] XK B. Lakshmanan, S. Jayaprakash, and P. K. Sinha, "Properties
of Control-Flow Complex1ty Measures," IEEE Trans Soﬁware
Eng., vol. 17, no. 12, pp. 1289-1295, Dec. 1991.

[MO0O] L. Moser, "Data Dependency Graphs for Ada Programs", IEEE
Trans. Software Eng., vol. 16, no. 5, pp. 498-509, May 1990.

[MGB90] A. C. Melton, D.A. Gustafson, J. M. Bieman, and A. A. Baker,
"Mathematical Perspective of Software Measures Research," IEE
Software Eng. J., vol. 5, no. 5, pp. 246-254, 1990.

[080] E. I Oviedo, "Control Flow, Data Flow and Program Complexity,"
Proc. COMPSAC, Nov. 1980, pp. 146-152.

[RW82] S. Rapps and E. Weyuker, "Data flow analysis test techniques for
program test data selection”, in Proc. 6th Int. Conf. on Software
Engineering, Sept. 1982, pp. 272-278

[S92] N. F. -Schneidewind, "Methodology for Validating Software
- Metrics," IEEE Trans. Software Eng., vol. 18, no. 5, pp. 410-422,
May 1992.

[TZ92] J. Tian and M. V. Zelkowitz, "A Formal Program Complexity
Model and Its Application," oJ. S’yst Software vol. 17, pp. 253-2686,
19902,

[(W88] - E. J. Weyuker, "Evaluating Software Complexity Measures,"
IEEE Trans. Software Eng., vol. 14, no. 9, pp. 1357-1365, Sept. 1988.

[Z90] H. Zuse, Software Complexzty Measures and Methods.
Amsterdam: de Gruyter 1990.

4-26 SEL-95-003

S/ 099
Se-6/
s 78
280

Property-based Software Engineering Measurement

Lionel Briand Sandro Morasca Victor R. Basili
CRIM Dip. di Eletironica ¢ Informmazione Computer Science Department
1801 McGill College Avenue Politecnico di Milano University of Maryland
Montréal (Quebec), H3A 2N4 Piazza 1 eonardo da Vinci 32 College Park, MD 20742
Canada 1-20133 Milano, Italy . basili@cs.umd.edn
Lionel Briand@crim.ca morasca@elet.polimi.it
Abstract

Little theory exists in the field of software system measurement. Concepts such as complexity,
coupling, cohesion or even size are very often subject to interpretation and appear to have
inconsistent definitions in the literature. As a consequence, there is little guidance provided to the
analyst attempting to define proper measures for specific problems. Many controversies in the
literature are simply misunderstandings and stem from the fact that some people talk about different
measurement concepts under the same label (complexity is the most common case).

There is a need to define unambiguously the most important measurement concepts used in
the measurement of software products. One way of doing so is to define precisely what
mathematical properties characterize these concepts, regardless of the specific software artifacts to
which these concepts are applied. Such a mathematical framework could generate a consensus in
the software engineering community and provide a means for better communication among
researchers, better guidelines for analysts, and better evaluation methods for commercial static
analyzers for practitioners.

In this paper, we propose a mathematical framework which is generic, because it is not
specific to any particular software artifact, and rigorous, because it is based on precise
mathematical concepts. This framework defines several important measurement concepts (size,
length, complexity, cohesion, coupling). It does not intend to be complete or fully objective; other
frameworks could have been proposed and different choices could have been made. However, we
believe that the formalisms and properties we introduce are convenient and intuitive. In addition,
we have reviewed the literature on this subject and compared it with our work. This framework
contributes constructively to a firmer theoretical ground of software measurement.

1. Introduction

Many concepts have been introduced through the years to define the characteristics of the artifacts
produced during the software process. For instance, one speaks of size and complexity of software
specification, design, and code, or cohesion and coupling of a software design or code. Several
techniques have been introduced, with the goal of producing software which is better with respect
to these concepts. As an example, Parnas [P72] design principles attempt to decrease coupling
between modules, and increase cohesion within modules. These concepts are used as a guide to
choose among alternative techniques or artifacts. For instance, a technique may be preferred over
another because it yields artifacts that are less complex; an artifact may be preferred over another
because it is less complex. In turn, lower complexity is believed to provide advantages such as
lower maintenance time and cost. This shows the importance of a clear and unambiguous
understanding of what these concepts actually mean, to make choices on more objective bases. The

This work was supported in part by NASA grant NSG-5123, UMIACS, NSF grant 01-5-24845, MURST, and
CNR. This Tecnical Report is also available as Internal Report 94.078, Politecnico di Milano, Dipartimento di
Elettronica e Informazione.

4-27 SEL-85-003

definition of relevant concepts (i.e., classes of software characterization measures) is the first step
towards quantitative assessment of software artifacts and techniques, which is needed to assess
risk and find optimal trade-offs between software quality, schedule and cost of development.

To capture these concepts in a quantitative fashion, hundreds of software measures have
been defined in the literature. However, the vast majority of these measures did not survive the
proposal phase, and did not manage to get accepted in the academic or industrial worlds. One
reason for this is the fact that they have not been built using a clearly defined process for defining
software measures. As we propose in [BMB94(b)], such a process should be driven by clearly
identified measurement goals and knowledge of the software process. One of its crucial activities is
the precise definition of relevant concepts, necessary to lay down a rigorous framework for
software engineering measures and to define meaningful and well-founded software measures.
The theoretical soundness of a measure, i.e., the fact that it really measures the software
characteristic it is supposed to measure, is an obvious prerequisite for its acceptability and use. The
exploratory process of looking for correlations is not an acceptable scientific validation process in
itself if it is not accompanied by a solid theory to support it Unfortunately, new software measures
are very often defined to capture elusive concepts such as complexity, cohesion, coupling,
connectivity, etc. (Only size can be thought to be reasonably well understood.) Thus, it is
impossible to assess the theoretical soundness of newly proposed measures, and the acceptance of
a new measure is mostly a matter of belief.

To this end, several proposals have appeared in the literature [LIS91, TZ92, W88] in
recent years to provide desirable properties for software measures. These works (especially
[W388]) have been used to "validate” existing and newly proposed software measures.
Surprisingly, whenever a new measure which was proposed as a software complexity measure did
not satisfy the set of properties against which it was checked, several authors failed to conclude
that their measure was not a software complexity measure, e.g., [CK94, H92]. Instead, they
concluded that their measure was a complexity measure that does not satisfy that set of properties
for complexity measures. What they actually did was provide an absolute definition of a software
complexity measure and check whether the properties were consistent with respect to the measure,
i.e., check the properties against their own measure.

This situation would be unacceptable in other engineering or mathematical fields. For
instance, suppose that one defines a new measure, claiming it is a distance measure. Suppose also
that that measure fails to satisfy the triangle inequality, which is the characterizing property of
distance measures. The natural conclusion would be to realize that that is not a distance measure,
rather than to say that it is a distance measure that does not satisfy the conditions for a distance
measure. However, it is true that none of the sets of properties proposed so far has reached so
wide an acceptance to be considered "the” right set of necessary properties for complexity. It is our
position that this odd situation is due to the fact that there are several different concepts that are still
covered by the same word: complexity.

Within the set of commonly mentioned software characteristics, size and complexity are the
ones that have received the widest attention. However, the majority of authors have been inclined
to believe that a measure captures either size or complexity, as if, besides size, all other concepts
related to software characteristics could be grouped under the unique name of complexity.
Sometimes, even size has been considered as a particular kind of complexity measure.

. Actually, these concepts capture different software characteristics, and, until they are
clearly separated and their similarities and differences clearly studied, it will be impossible to reach
any kind of consensus on the properties that characterize each concept relevant to the definition of
software measures. The goal of this paper is to lay down the basis for a discussion on this subject,
by providing properties for a—partial—set of measurement concepts that are relevant for the
definition of software measures. Many of the measure properties proposed in the literature are
generic in the sense that they do not characterize specific measurement concepts but are relevant to
all syntactically-based measures (see [S92, TZ92, W88]). In this paper, we want to focus on
properties that differentiate measurement concepts such as size, complexity, coupling, etc. Thus,
we want to identify and clarify the essential properties behind these concepts that are commonplace
in software engineering and form important classes of measures. Thus, researchers will be able to
validate their new measures by checking properties specifically relevant to the class (or concept)
they belong to (e.g., size should be additive). By no means should these properties be regarded as

4-28 SEL-95-003

the unique set of properties that can be possibly defined for a given concept. Rather, we want to
provide a theoretically sound and convenient solution for differentiating a set of well known
concepts and check their analogies and conflicts. Possible applications of such a framework are to
guide researchers in their search for new measures and help practitioners evaluate the adequacy of
measures provided by commercial tools.

We also believe that the investigation of measures should also address artifacts produced in
the software process other than code. It is commonly believed that the early software process
phases are the most important ones, since the rest of the development depends on the artifacts they
produce. Oftentimes, the concepts (e.g., size, complexity, cohesion, coupling) which are believed
relevant with respect to code are also relevant for other artifacts. To this end, the properties we
propose will be general enough to be applicable to a wide set of artifacts.

The paper is organized as follows. In Section 2, we introduce the basic definitions of our
framework. Section 3 provides a set of properties that characterize and formalize intuitively
relevant measurement concepts: size, length, complexity, cohesion, coupling. We also discuss the
relationships and differences between the different concepts. Some of the best-known measures are
used as examples to illustrate our points. Section 4 contains comparisons and discussions
regarding the set of properties for complexity measures defined in the paper and in the literature.
The conclusions and directions for future work come in Section 5.

2. Basic Definitions

Before introducing the necessary properties for the set of concepts we intend to study, we provide
basic definitions related to the objects of study (to which these concepts can be applied), e.g., size
and complexity of what?

Systems and modules

Two of the concepts we will investigate, namely, size (Section 3.1) and complexity (Section 3.3)
are related to systems, in general, i.e., one can speak about the size of a system and the complexity
of a system. We also introduce a new concept, length (Section 3.2), which is related to systems. In
our general framework—recall that we want these properties to be as independent as possible of
any product abstraction—, a system is characterized by its elements and the relationships between
them. Thus, we do not reduce the number of possible system representations, as elements and
relationships can be defined according to needs.

Definition 1: Representation of Systems and Modules
A system S will be represented as a pair <E,R>, where E represents the set of elements of S, and
R is a binary relation on E (R < E x E) representing the relationships between S's elements.
Given a system S = <E,R>, a system m = <Ep,Rm> is a module of S if and only if
Em cE, Rp c ExE, and Ry c R. As an example, E can be defined as the set of code
statements and R as the set of control flows from one statement to another. A module m may be a
code segment or a subprogram.
The elements of a module are connected to the elements of the rest of the system by
incoming and outgoing relationships. The set InputR(m) of relationships from elements outside
module m = <Epy,Rp> to those of module m is defined as

InputR(m) = {<e1,e2>e Rlez2e Epandeje E- En}

The set OutputR(m) of relationships from the elements of a module m = <Ep,Rm> to those of the
rest of the system is defined as .

OutputR(m) = {<ej,e2> € Rle1e Eyand ez € E- Ep}

4-29 SEL-95-003

We now introduce inclusion, union, intersection operations for modules and the definitions of
empty and disjoint modules, which will be used often in the remainder of the paper. For notational
convenience, they will be denoted by extending the usual set-theoretic notation. We will illustrate
these operations by means of the system S = <E,R> represented in Figure 1, where
E = {a,b,c,d,ef,g,hi,j.k,l,m} and R = {<b,a>,<b,f>,<c,b>,<c,d>,<c,g>,<d, f>,<e,g>,<f,1>,
<fk>,<g.m>,<h,a>,<h,i><ij>.<k j>,<k 1>}, We will consider the following modules

- m] = <Em1,Rm1> = <{a,b.f,i,j,k},{<b,a>,<b.><f,i>,<f k>,<i,j>,<k,j>} (area filled
with _ : :

- m2=<Em2.Rm2> =<{fjk},{<fk>,<k,j>} (area filled with BEEET)

- m3 = <En3.Rm3> = <{c,d.e.f,g,j.k.m},{<c,d>,<c,g>,<d,f>,<e,8>,<f k>, <g.m>,
<k.j>}> (area filled with [ZZZ73)

- m4 = <Em4,Rma> = <{d,e,g},{<e.g>}> (area filled with EEEEH)

Inclusion. Module mj = <Em1,Rmi1> is said to be included in module my = <%2,ng>
(notation: mj ¢ m2) if Em1 < Em2 and Rpp1 ¢ Rm2. In Figure 1, m4 c m3.

Union. The union of modules mi1 = <Epi,Rm1> and my = <Em2,Rp2> (notation: m; v myp)

is the module <Em1 U Em2,Rm1 v Rm2>. In Figure 1, the union of modules mj and mj3 is
module mi3 = <{a,b,c,d,e.f,g,i,j.k.m}, {<b,a>,<b,f>,<c,d>,<c,g>,<d f>,<e,g>,<f,i>,

< lo>,<gm>,<i,j>,<k,j>} (area filled with or BXXX or

Intersection. The intersection of modules m1 = <Em1,Rm1> and my = <Enp2, Rm2> (notation:
m1 n my) is the module <Emi N Em2,Rmi1 N Rm2>. In Figure 1, m2 = mj n m3.

Empty module. Module <@,2> (denoted by) is the empty module.

Disjoint .modules. Modules m1 and mj are said to be dxs_]omt if mj nmy = 9. In Figure 1,
minmyg=9.

Figure 1. Operations on modules.
Since in this framework modules are just subsystems, all systems can theoretically be decomposed

into modules. The definition of a module for a particular measure in a specific context is just a
matter of convenience and programming environment (e.g., language) constraints.

4-30 SEL-95-003

Modular systems

The other two concepts we will investigate, cohesion (Section 3.4) and coupling (Section 3.5), are
meaningful only with reference to systems that are provided with a modular decomposition, i.e.,
one can speak about cohesion and coupling of a whole system only if it is structured into modules.
One can also speak about cohesion and coupling of a single module within a whole system.

Definition 2: Representation of Modular Systems
The 3-tuple MS = <E,R M> represents a modular system if S = <E,R> is a system according to
Definition 1, and M is a collection of modules of S such that

veeE (Ime M (m =<Ep.,Rp>and ec Ep)) and

vV mi,m2 € M (m1 = <Em1,Rm1>and mp = <Em3,Rp2> and Epy n Emo =

i.e, the set of elements E of MS is partitioned into the sets of elements of the modules.
We denote the union of all the Rey's as IR. It is the set of intra-module relationships. Since
the modules are disjoint, the union of all OutputR(m)'s is equal to the union of all InputR(m)’s,

which is equal to R-IR. It is the set of inter-module relationships.
¢

As an example, E can be the set of all declarations of a set of Ada modules, R the set of
dependencies between them, and M the set of Ada modules.

Figure 2 shows a modular system MS = <E,R,M>, obtained by partitioning the set of
elements of the system in Figure 1 in a different way. In this modular system, E and R are the
same as in system S in Figure 1, and M = {mj,m2,m3}. Besides, IR = {<b,a>,<c,d>,<c,g>,
<e,g>,<f,i>,<f k>,<g,m>,<h,a>,<i,j>,<k,j>,<k,1>}.

o r s s A&

Figure 2. A modular system.

It should be noted that some measures do not take into account the modular structure of a system.
As already mentioned, our concepts of size and complexity (defined in Sections 3.1 and 3.3) are
such examples, i.e., in a modular system MS = <E,R,M>, one computes size and complexity of
the system S = <E,R>, and M is not considered.

We have defined concept properties using a graph-theoretic approach to allow us to be
general and precise. It is general because our properties are defined so that no restriction applies to
the definition of vertices and arcs. Many well known product abstractions fit this framework, e.g.,
data dependency graphs, definition-use graphs, control flow graphs, USES graphs,
Is_Component_of graphs, etc. It is precise because, based on a well defined formalism, all the
concepts used can be mathematically defined, e.g., system, module, modular system, and so can
the properties presented in the next section.

4-31 SEL-95-003

3. Concepts of Measurement and Properties

It should be noted that the concepts defined below are to some extent subjective. However, we
wish to assign them intuitive and convenient properties. We consider these properties necessary
but not sufficient because they do not guarantee that the measures for which they hold are useful or
even make sense. On the other hand, these properties will constrain the search for measures and
therefore make the measure definition process more rigorous and less exploratory [BMB94(b)].
Several relevant concepts are studied: size, length, complexity, cohesion, and coupling. They do
not represent an exhaustive list but a starting point for discussion that should eventually lead to a
standard definition set in the software engineering community.

3.1. Size

Motivation

Intuitively, size is recognized as being an important measurement concept. According to our
framework, size cannot be negative (property Size.1), and we expect it to be null when a system
does not contain any elements (property Size.2). When modules do not have elements in common,
we expect size to be additive (property Size.3).

Definition 3: Size
Tlée_: sizg‘e of a system S is a function Size(S) that is characterized by the following properties Size.1
- Size3.

0
Property Size.I: Non-negativity
The size of a system S = <E,R> is non-negative
Size(S) =20 (Size.))

¢
Property Size.2: Null Value
The size of a system S = <E,R> is null if E is empty
E=0 = Size(S) =0 (Size II)

¢

Property Size.3: Module Additivity

The size of a system S = <E,R> is equal to the sum of the sizes of two of its modules
mj = <Epn1,Rm1> and my = <Em2,Rmr> such that any element of S is an element of either mj
ormj

(micSandmagc Sand E=Epi v Em2 and En; n Ep2 = 9)
= Size(S) = Size(m1) + Size(m?) (Size III)
0

For instance, the size of the system in Figure 2 is the sum of the sizes of its three modules
mj,my,ms.

The last property Size.3 provides the means to compute the size of a system S = <E,R> from the
knowledge of the size of 1ts-—-dls_]o1nt——-modules me = <{e},Re> whose set of elements is

composed of a different element e of E.

'For each m,, it is either Re = @ or R, = {<e,e>}.

4-32 SEL-95-003

Size(S) = ZSize(me) (Size IV)
ecsE '

Therefore, adding elements to a system cannot decrease its size (size monotonicity property)
(8'=<E'R'>and S"=<E"R">and E' ¢ E") = Size(S") < Size(S") (Size.V)

From the above properties Size.l - Size.3, it follows that the size of a system S = <E,R> is not
greater than the sum of the sizes of any pair of its modules m; = <Epj,Rpi> and
m3 = ,Rm2>, such that any element of S is an element of mj, or m», or both, i.e.,

(mic Sand my < S and E = Epj v Eps) = Size(S) < Size(mj) + Size(my) (Size.VI)

The size of a system built by merging such modules cannot be greater than the sum of the sizes of
the modules, due to the presence of common elements (e.g., lines of code, operators, class
methods).

Properties Size.1 - Size.3 hold when applying the admissible transformation of the ratio scale
[F91]. Therefore, there is no contradiction between our concept of size and the definition of size
measures on a ratio scale.

Examples and counterexamples of size measures

Several measures introduced in the literature can be classified as size measures, according to our
properties Size.l - Size.3. With reference to code measures, we have: LOC, #Statements,
#Modules, #Procedures, Halstead's Length [H77], #Occurrences of Operators, #0Occurrences of
Operands, #Unique Operators, #Unique Operands. In each of the above cases, the representation
of a program as a system is quite straightforward. Each counted entity is an element, and the
relationship between elements is just the sequential relationship.

Some other measures that have been introduced as size measures do not satisfy the above
properties. Instances are the Estimator of length, and Volume [H77], which are not additive when
software modules are disjoint (property Size.3). Indeed, for both measures, the value obtained
when two disjoint software modules are concatenated may be less than the sum of the values
obtained for each module, since they may contain common operators or operands. Note that, in
this context, the graph is just the sequence of operand and operator occurrences. Disjoint code
segments are disjoint subgraphs.

On the other hand, other measures, that are meant to capture other concepts, are indeed size
measures. For instance, in the object-oriented suite of measures defined in [CK94], Weighted
Methods per Class (WMC) is defined as the sum of the complexities of methods in a class.
Implicitly, the program is seen as a directed acyclic graph (a hierarchy) whose terminal nodes are
methods, and whose nonterminal nodes are classes. When two classes without methods in
common are merged, the resulting class's WMC is equal to the sum of the two WMC's of the
original classes (property Size.3 is satisfied). When two classes with methods in common are
merged, then the WMC of the resulting class may be lower than the sum of the WMC's of the two
original classes (formula Size.VI). Therefore, since all size properties hold (it is straightforward to
show that properties Size.1 and Size.2 are true for WMC), this is a class size measure. However,
WMC does not satisfy our properties for complexity measures (see Section 3.3). Likewise, NOC
(Number Of Children of a class) and Response For a Class (RFC) [CK94] are other size
measures, according to our properties.

4-33 SEL-95-003

3.2. Length
Motivation

Properties Size.1 - Size.3 characterize the concept of size as is commonly intended in software
engineering. Actually, the concept of size may have different interpretations in everyday life,
depending on the measurement goal. For instance, suppose we want to park a car in a parallel
parking space. Then, the "size" we are interested in is the maximum distance between two points
of the car linked by a segment parallel to the car's motion direction. The above properties Size.1 -
Size.3 do not aim at defining such a measure of size. With respect to-physical objects, volume and
weight satisfy the above properties. In the particular case that the objects are unidimensional (or
that we are interested in carrying out measurements with respect to only one dimension), then these
concepts coincide.

In order to differentiate this measurement concept from size, we call it length. Length is
non-negative (property Length.1), and equal to 0 when there are no elements in the system
(property Length.2). In extreme situations where systems are composed of unrelated elements this
property allows length to be non-null. If a new relationship is introduced between two elements
belonging to the same connected component2 of the graph representing a system, the length of the
new system is not greater than the length of the original system (property Length.3). The idea is
that, in this case, a new relationship may make.the elements it connects "closer" than they were.
This new relationship may reduce the maximum distance between elements in the connected
component of the graph, but it may never increase it. On the other hand, if a new relationship is
introduced between two elements belonging to two different connected components, the length of
the new system is not smaller than the length of the original system. This stems from the fact that
the new relationship creates a new connected component, where the maximum distance between
two elements cannot be less than the maximum distance between any two elements of either
original connected component (property Length.4). Length is not additive for disjoint modules.
The length of a system containing several disjoint modules is the maximum length among them

(property Length.5).

Definition 4: Length
The length of a system S is a function Length(S) characterized by the following properties

Length.I - Length 4.
0

Property Length.1: Non-negativity
The length of a system S = <E,R> is non-negative

Length(S) 2 0 (Length.T)

Property Length.2: Null Value
The length of a system S = <E,R> is null if E is empty

(E = O) = (Length(S) = 0) (Length.ID)
0

Property Length.3: Non-increasing Monotonicity for Connected Components

Let S be a system and m be a module of S such that m is represented by a connected component of
the graph representing S. Adding relationships between elements of m does not increase the length
of S

*Here, two elements of a system S are said to belong to the same connected component if there is a path from one to
the other in the non-directed graph obtained from the graph representing S by removing directions in the arcs.

4-34 SEL-85-003

(S=<E,R>and m =<Ep,Rp>and m < S
and m "is a connected component of S" and
S'=<E,R>and R'=R u {<e1,e2>} and <ej.e2> ¢ R
and e; € Ejp1 and e2 € Ep1) = Length(S) 2 Length(S") (Length.IIT)
0

Property Length.4: Non-decreasing Monotonicity for Non-connected Components
Let S be a system and mj and my be two modules of S such that m; and mj are represented by two
separate connected components of the graph representing S. Adding relationships from elements of
mj to elements of my does not decrease the length of S

(S =<E,R> and mj = <Ep1,Rpni> and my = <Ep9,Rpmo>
and m; ¢ S and mj ¢ S "are separate connected components of S" and
S'=<E,R'>and R'=R u {<ej,e2>} and <ej,e2>¢ R
and e; € Epj and ez € Epo) = Length(S') = Length(S) (Length.IV)
¢

Property Length.5: Disjoint Modules
The length of a system S = <E,R> made of two disjoint modules m1, m3 is equal to the maximum
of the lengths of m; and mp

(S=mijumaandminmz2=9 and E =Epi v En2) =
Length(S) = max{Length(mj),Length(m2) } (Length.V)

Let us illustrate the last three properties with systems S, S', S", represented in Figure 3. We will
assume that mj; =m') =m"1, m3 =m'2 =m"2, and m3 = m'3 = m"3. The length of system
S, composed of the three connected components mj, m2, and ms3, is the maximum value among
the lengths of m3, mp, and m3 (property Length V). System S' differs from system S only because
of the added relationship <c,m> (represented by the thick dashed arrow), which connects two
elements already belonging to a connected component of S, m3. The length of system S’ is not
greater than the length of S (property Length IIT). System S" differs from system S only because
of the added relationship <b,f> (represented by the thick solid arrow), which connects two
elements belonging to two different connected components of S, mj and mp. The length of system
S" is not less than the length of S (property Length IV).

Properties Length.1 - Length.5 hold when applying the admissible transformation of the
ratio scale. Therefore, there is no contradiction between our concept of length and the definition of
length measures on a ratio scale.

Examples of length measures

Several measures can be defined at the system or module level based on the length concept. A
typical example is the depth of a hierarchy. Therefore, the nesting depth in a program [F91] and
DIT (Depth of Inheritance Tree—which is actually a hierarchy, in the general case) defined in
[CK94] are length measures.

3.3. Complexity
Motivation

Intuitively, complexity is a measurement concept that is considered extremely relevant to system
properties. It has been studied by several researchers (see Section 4 for a comparison between our
framework and the literature). In our framework, we expect complexity to be non-negative
(property Complexity.1) and to be null (property Complexity.2) when there are no relationships
between the elements of a system. However, it could be argued that the complexity of a system

4-35 SEL-85-003

whose elements are not connected to each other does not need to be necessarily null, because each
element of E may have some complexity of its own. In our view, complexity is a system property
that depends on the relationships between elements, and is not an isolated element's property. The
complexity that an element taken in isolation may—intuitively—bring can only originate from the
relationships between its "subelements.” For instance, in 2 modular system, each module can be
viewed as a "high-level element" encapsulating "subelements.” However, if we want to consider
the system as composed of such "high-level elements” (E), we should not "unpack” them, but only
consider them and their relationships, without considering their "subelements” (E'). Otherwise, if
we want to consider the contribution of the relationships between "subelements” (R"), we actually
have to represent the system as S = <E', RUR™>.

Figure 3. Properties of length.

4-36 SEL-95-003

Complexity should not be sensitive to representation conventions with respect to the direction of
arcs representing system relationships (property Complexity.3). A relation can be represented in
either an "active” (R) or "passive” (R-1) form. The system and the relationships between its
elements are not affected by these two equivalent representation conventions, so a complexity
measure should be insensitive to this.

Also, the complexity of a system S should be at least as much as the sum of the
complexities of any collections of its modules, such that no two modules share relationships, but
may only share elements (property Complexity.4). We believe that this property is the one that
most strongly differentiates complexity from the other system concepts. Intuitively, this property
may be explained by two phenomena. First, the transitive closure of R is a larger graph than the
graph. obtained as the union of the transitive closures of R' and R" (where R' and R" are
contained in R). As a consequence, if any kind of indirect (i.e., transitive) relationships between
elements is considered in the computation of complexity, then the complexity of S may be larger
than the sum of its modules' complexities, when the modules do not share any relationship.
Otherwise, they are equal. Second, merging modules may implicitely generate between the
elements of each modules. (e.g., definition-use relationships may be created when blocks are
merged into a common system). As a consequence of the above properties, system complexity
should not decrease when the set of system relauonsh:ps is increased (property Complexity.4).

However, it has been argued that it is not always the case that the more relationships
between the elements of a system, the more complex the system. For instance, it has been argued
that adding a relationship between two elements may make the understanding of the system easier,
since it clarifies the relationship between the two. This is certainly true, but we want to point out
that this assertion is related to understandability, rather than complexity, and that complexity is
only one of the factors that contribute to understandability. There are other factors that have a
strong influence on understandability, such as the amount of available context information and
knowledge about a system. In the literature [MGB90], it has been argued that the inner loop of the
ShellSort algorithm, taken in isolation, is less understandable than the whole algorithm, since the
role of the inner loop in the algorithm cannot be fully understood without the rest of the algorithm.
This shows that understandability improves because a larger amount of context information is
available, rather than because the complexity of the ShellSort algorithm is less than that of its inner
loop. As another example, a relationship between two elements of a system may be added to
explicitly state a relationship between them that was implicit or uncertain. This adds to our
knowledge of the system, while, at the same time, increases complexity (according to our
properties). In some cases (see above examples), the gain in context information/knowledge may
overcome the increase in complexity and, as a result, may improve understandability. This stems
from the fact that several phenomena concurrently affect understandability and does not mean in
any way that an increase in complexity increases understandability.

Last, the complexity of a system made of disjoint modules is the sum of the complexities of
the single modules (property Complexity.5). Consistent with property Complexity.4, this property
is intuitively justified by the fact that the transitive closure of a graph composed of several disjoint
subgraphs 1s equal to the union of the transitive closures of each subgraph taken in isolation.
Furthermore, if two modules are put together in the same system, but they are not merged, ie.,
they are still two disjoint module in this system, then no additional relationships are generated from
the elements of one to the elements of the other.

The properties we define for complexity are, to a limited extent, a generalization of the
properties several authors have already provided in the literature (see [LIS91, TZ92, W88]) for
software code complexity, usually for control flow graphs. We generalize them because we may
want to use them on artifacts other than software code and on abstractions other than control flow

graphs.

Definition 5: Complexity
The complexity of a system S is a function Complexity(S) that i is characterized by the following

properties Complexity.1 - Complexity.S.
Y

4-37 SEL-95-003

Property Compiexity.l: Non-negativity
The complexity of a system S = <E,R> is non-negative

Complexity(S) 20 (Complexity.I)

Property Complexity.2: Null Value
The complexity of a system S = <E,R> is null if R is empty

R = @ = Complexity(S) =0 . (Complexity.IT)

Property Complexity.3: Symmetry
The complexity of a system S = <E,R> does not depend on the convention chosen to represent
the relationships between its elements

(S=<E,R> and S-1=<E,R-1>) = Complexity(S) = Complexity(S-1) (Complexity.IIT)

Property Complexity.4: Module Monotonicity
The complexity of a system S = <E,R> is no less than the sum of the complexities of any two of
its modules with no relationships in common

(S =<E,R> and mj1 = <Ep1,Rpi> and my = <Epr,Rpo>

and mjumagc Sand Rpyi n Rp2=9)
= Complexity(S) = Complexity(mj)+Complexity(m2) (Complexity.IV)

For instance, the complexity of the system shown in Figure 4 is not smaller than the sum of the
complexities of mj and my.

2%
AN

G

5

WA

/ 1
AN ///,,»%/

Figure 4. Module monotonicity of complexity.

Property Complexity.5: Disjoint Module Additivity
The complexity of a system S = <E,R> composed of two disjoint modules mj, mj is equal to the
sum of the complexities of the two modules

(S=<E,R>and S =mjumz and mj; n m3 =9) |
= Complexity(S) = Complexity(mj) + Complexity(ms) (Complexity.V)

4-38 SEL-95-003

For instance, the complexity of system S in Figure 2 is the sum of the complexities of its modules
mi, my, and m3.

As a consequence of the above properties Complexity.1 - Complexity.5, it can be shown
that adding relationships between elements of a system does not decrease its complexity

(S'=<E,R'>and S"=<ER">and R'c R") o
= Complexity(S') < Complexity(S") (Complexity.VI)

Properties Complexity.1 - Complexity.5 hold when applying the admissible transformation of the
ratio scale. Therefore, there is no contradiction between our concept of complexity and the
definition of complexity measures on a ratio scale.

Comprehensive comparisons and discussions of previous work in the area of complexity
properties are provided in Section 4.

Examples and counterexamples of complexity measures

In [O80], Oviedo proposed a data flow complexity measure (DF). In this case, systems are
programs, modules are program blocks, elements are variable definitions or uses, and relationships
are defined between the definition of a given variable and its uses. The measure in [O80] is simply
defined as the number of definition-use pairs in a block or a program. Property Complexity.4
holds. Given two modules (i.e., program blocks) which may only have common elements (i.e., no
definition-use relationship is contained in both), the whole system (i.e., program) has a number of
relationships (i.e., definition-use relationships) which is at least equal to the sum of the numbers of
definition-use relationships of each module. Property Complexity.5 holds as well. The number of
definition-use relationships of a system composed of two disjoint modules (i.e., blocks between
which no definition-use relationship exists), is equal to the sum of the numbers of definition-use
reliaillt]ilonships of each module. As a conclusion, DF is a complexity measure according to our
definition.

In [McC76], McCabe proposed a control flow complexity measure. Given a control flow
graph G = <E,R> (which corresponds—unchanged—to a system for our framework),
Cyclomatic Complexity is defined as

v(G) =IRI - IEl + 2p

where p is the number of connected components of G. Let us now check whether v(G) is a
complexity measure according to our definition. It is straightforward to show that, except
Complexity.4, the other properties hold. In order to check property Complexity.4, let G = <E,R>
be a control flow graph and G; = <E1,R1> and G2 = <E3,R2> two non-disjoint control flow
subgraphs of G such that they have nodes in common but no relationships. We have to require that
G1 and G2 be control flow subgraphs, because cyclomatic complexity is defined only for control
flow graphs, i.e., graphs composed of connected components, each of which has a start node—a
node with no incoming arcs—and an end node—a node with no outgoing arcs. Property
Complexity.4 requires that the following inequality be true for all such G; and G2

[RI - IEl + 2p 2 IRl - IE1l + 2p1 + IR2l - [E2l + 2p2

i.e., 2(p1 + p2 - p) < |IE1l + IE3l - |[El, where p; and p2 are the number of connected
components in G1 and Gp, respectively. This is not always true. For instance, consider Figure 5.
G has 3 elements and 1 connected component; G and G2 have 2 nodes and 1 connected
component apiece. Therefore, the above inequality is not true in this case, and the cyclomatic
number is not a complexity measure according to our definition. However, it can be shown that
v(G)-p satisfies all the above complexity properties. From a practical perspective, especially in
large systems, this correction does not have a significant impact on the value of the measure.

4-39 SEL-95-003

O—O1+—0

Figure 5. Control flow graph.

Henry and Kafura [HK81] proposed an information flow complexity measure. In this context,
elements are subprogram variables or parameters, modules are subprograms, relationships are
either fan-in's or fan-out's. For a subprogram SP, the complexity is expressed as length.(fan-
in.fan-out)?, where fan-in and fan-out are, respectively, the local (as defined in [HK81])
information flows from other subprograms to SP, and from SP to other subprograms. Such local
information flows can be represented as relationships between parameters/variables of SP and
parameters/variables of the other subprograms. Subprograms’ parameters/variables are the system
elements and the subprograms' fan-in and fan-out links are the relationships. Any size measure can
be used for length (in [HK81] LOC was used). The justification for multiplying length and (fan-
in.fan-out)? was that "The complexity of a procedure depends on two factors: the complexity of the
procedure code and the complexity of the procedure's connections to its environment.” The
complexity of the procedure code is taken into account by length; the complexity of the
subprogram's connections to its environment is taken into account by (fan-in.fan-out)?. The
complexity of a system is defined as the sum of the complexities of the individual subprograms.
For the measure defined above, properties Complexity.1 - Complexity.4 hold. However, property
Complexity.5 does not hold since, given two disjoint modules S; and Sz with a measured
information flow of, respectively, length;.(fan-in}.fan-out;)? and lengtho.(fan-ina.fan-outz)?, the
following statement is true:

length.(fan-in.fan-out)? > length;.(fan-inj.fan-out;)2 + lengths.(fan-iny. fan-outy)2

where length = length; + lengthy, fan-in = fan-inj + fan-inj, and fan-out = fan-out; + fan-outs.

However, equality does not hold because of the exponent 2, which is not fully justified,
and multiplication of fan-in and fan-out. Therefore, Henry and Kafura [HK81] information flow
measure is not a complexity measure according to our definition. However, fan-in and fan-out
taken as separate measures, without exponent 2, are complexity measures according to our
definition since all the required properties hold.

Similar measures have been used in [C90] and referred to as structural complexity (SC) and
defined as:

) fan-out?(subroutine;)
SC - _ig [1.n] -

n
Once again, property Complexity.S does not hold because fan-out is squared in the formula.

A metric suite for object-oriented design is proposed in [CK94]. A system 1is an object
oriented design, modules are classes, elements are either methods or instance variables (depending
on the measure considered) and relationships are calls to methods or uses of instance variables by
other methods. These measures are validated against Weyuker's properties for complexity
measures, thereby implicitely implying that they were complexity measures. However, none of the
measures defined by [CK94] is a complexity measure according to our properties:

4-40 SEL-95-003

- Weighted Methods per Class (WMC) and Number Of Children of a class (NOC) are size
measures (see Section 3.1);

Depth of Inheritance Tree (DIT) is a length measure (see Section 3.2);

Coupling Between Object classes (CBO) is a coupling measure (see Section 3.4);

Response For a Class (RFC) is a size and coupling measure (see Sections 3.1 and 3.5);
Lack of COhesion in Methods (LCOM) cannot be classified in our framework. This is
consistent with what was said in the introduction: our framework does not cover all
possible measurement concepts.

This is not surprising. In [CK94], it is shown that all of the above measures do not satisfy
Weyuker's property 9, which is a weaker form of property Complexity.4 (see Section 4).

3.4. Cohesion
Motivation

The concept of cohesion has been used with reference to modules or modular systems. It assesses
the tightness with which "related” program features are "grouped together” in systems or modules.
It is assumed that the better the programmer is able to encapsulate related program features
together, the more reliable and maintainable the system [F91]. This assumption seems to be
supported by experimental results [BMB94(a)]. Intuitively, we expect cohesion to be non-negative
and, more importantly, to be normalized (property Cohesion.1) so that the measure is independent
of the size of the modular system or module. Moreover, if there are no internal relationships in a
module or in all the modules in a system, we expect cohesion to be null (property Cohesion.2) for
that module or for the system, since, as far as we know, there is no relationship between the
elements and there is no evidence they should be encapsulated together. Additional internal
relationships in modules cannot decrease cohesion since they are supposed to be additional
evidence to encapsulate system elements together (property Cohesion.3). When two (or more)
modules showing no relationships between them are merged, cohesion cannot increase because
seemingly unrelated elements are encapsulated together (property Cohesion.4).

Since the cohesion (and, as we will see in Section 3.5, the coupling) of moduies and entire
modular systems have similar sets of properties, both will be described at the same time by using
brackets and the alternation symbol 1. For instance, the notation [AIB], where A and B are
phrases, will denote the fact that phrase A applies to module cohesion, and phrase B apphes to
entire system cohesion.

Definition 6: Cohesion of a [Module | Modular System]
The cohesion of a2 [module m = <Em.Rp> of a modular system MS | modular system MS]isa
function [Cohesion(m)ICohesion(MS)] characterized by the followmg properties Cohesion.1-
Cohesion.4.

0

Property Cohesion.1: Non-negativity and Normalization
The cohesion of a [module m = <Ep,Rm> of a modular system MS = <E,R,M> | modular system
MS = <E,R,M>] belongs to a specified interval
[Cohesion(m) e [0,Max]] Cohesion(MS) e [0,Max]] (Cohesion.I)
¢

Normalization allows meaningful comparisons between the cohesions of different
[modulesimodular systems], since they all belong to the same interval.

4-41 SEL-95-003

Property Cohesion.2: Null Value,
The cohesion of a [module m = <Ep,Rp> of a modular system MS = <E,R,M> | modular system
MS = <E,RM>] is null if [Ry[IR] is empty

[Ry = & = Cohesion(m) = 0| IR = @ = Cohesion(MS) =0] ' (Cohesion.IT)

(Recall that IR is the set of intra-module relationships, defined in Definition 2.)
0

If there is no intra-modaule relationship among the elements of a (all) module(s), then the module
(system) cohesion is null.

Property Cohesion.3: Monotonicity.

Let MS' = <ER''M'> and MS" = <E,R"M"> be two modular systems (with the same set of
elements E) such that there exist two modules m' = <Ep Ry> and m" = <Epy Rp> (with the
same set of elements Ep) belonging to M' and M" respectively, such that R' - Ry =R" - Ry, and
Ry ¢ Ry (which implies IR' < IR"). Then,

[Cohesion(m")<Cohesion(m") | Cohesion(MS"<Cohesion(MS")] (Cohesion.III)
¢

Adding intra-module relationships does not decrease [modulelmodular system] cohesion. For
instance, suppose that systems S, S', and S" in Figure 3 are viewed as modular systems MS =
<E,R.M>, MS' = <E'R'M">, and MS" = <E° R*"M"> (with M = {mj,m3,m3}, M' =
{m'l,m’z,m's}, and M" = {m"1,m"2,m"3}). We have [Cohesion(m's) = Cohesion(m3) |
Cohesion(MS") = Cohesion(MS)].

Property Cohesion.4: Cohesive Modules.

Let MS' = <E,R,M*> and MS" = <E,R,M"> be two modular systems (with the same underlying
system <E,R>) such that M" = M' - {m'1,m2} u {m"}, withm'; e M, m2 ¢ M, m" ¢ M, and
m" =m"; um%. (The two modules m'y and m*; are replaced by the module m", union of m'1 and
m'2.) If no relationships exist between the elements belonging to m'; and m',, ie., InputR(m'1) N

OutputR(m'7) = & and InputR(m'y) ~ CutputR(m'1) = <, then

[max{Cohesion(m'y),Cohesion(m'z)} = Cohesion(m") |
Cohesion(MS") = Cohesion(MS")] (Cohesion.lV)
0

The cohesion of a [modulelmodular system] obtained by putting together two unrelated modules is
not greater than the [maximum cohesion of the two original modulesithe cohesion of the original
modular system].

Properties Cohesion.1 - Cohesion.4 hold when applying the admissible transformation of the ratio
scale. Therefore, there is no contradiction between our concept of cohesion and the definition of
cohesion measures on a ratio scale.

Examples of cohesion measures

In [BMB94(a)], cohesion measures for high-level design are defined and validated, at both the
abstract data type (module) and system (program) levels. For brevity's sake, the term software part
here denotes either a module or a program. A high-level design is seen as a collection of modaules,
each of which exports and imports constants, types, variables, and procedures/functions. A widely
accepted software engineering principle prescribes that each module be highly cohesive, i.e., its
elements be tightly related to each other. [BMB94(2)] focuses on investigating whether h1gh
cohesion values are related to lower error-proneness, due to the fact that the changes required by a
change in a module are confined in a well-encapsulated part of the overall program. To this end,

4-42 SEL-95-003

the exported feature A is said to interact with feature B if the change of one of A's definitions or
uses may require a change in one of B's definitions or uses.

In the approach of the present paper, each feature exported by a module is an element of the
system, and the interactions between them are the relationships between elements. A module
according to [BMB94(a)] is represented by a module according to the definition of the present
paper. At high-level design time, not all interactions between the features of a module are known,
since the features may interact in the body of a module, and not in its visible part. Given a software
part sp, three cohesion measures NRCI(sp), PRCI(sp), and ORCI(sp) (respectively, Neutral,
Pessimistic, and Optimistic Ratio of Cohesive Interactions) are defined for software as follows

_ #KnownInteractions(sp)
NRCI(sP) = #VaxInteractions(sp)-#UnknownInteractions(sp)

#KnownInteracti
PRCI(sp) = Tt .ogsn(ssgp)

_ #KnownInteractions(sp)+#Unknownlinteractions(sp)
ORCI(sp) = #MaxInteractions(sp)

where #MaxInteractions(sp) is the maximum number of possible intra-module interactions between
the features exported by each module of the software part sp. (Inter-module interactions are not
considered cohesive; they may contribute to coupling, instead.) All three measures satisfy the
above properties Cohesion.1 - Cohesion.4.

Other examples of cohesion measures can be found in [BO94], where new functional
cohesion measures are introduced. Given a procedure, function, or main program, only datza
tokens (i.e., the occurrence of a definition or use of a variable or a constant) are taken into account.
The data slice for a data token is the sequence of all those data tokens in the program that can
influence the statement in which the data token appears, or can be influenced by that statement.
Being a sequence, a data slice is ordered: it lists its data tokens in order of appearance in the
procedure, function or main program. If more than one data slice exists, some data tokens may
belong to more than one data slice: these are called glue tokens. A subset of the glue tokens may
belong to all data slices: these are called super-glue tokens. Functional cohesion measures are
defined based on data tokens, glue tokens, and super-glue tokens. This approach can be
represented in our framework as follows. A data token is an element of the system, and a data slice
is represented as a sequence of nodes and arcs. The resulting graph is a Directed Acyclic Graph,
which represents a2 module. ([BO94] introduces functional cohesion measures for single
procedures, functions, or main programs.) Given a procedure, function, or main program p, the
following measures SFC(p) (Strong Functional Cohesion), WFC(p) (Weak Functional Cohesion),
and A(p) (adhesiveness) are introduced

_ #SuperGlueTokens
SFC(P) = = #ANTokens

1
o -G

S #SlicesContainingGlueTokenGT
Ap)= GTE GlueTokens
#AlTokens #DataSlices

It can be shown that these measures satisfy the above properties Cohesion.1 - Cohesion 4.

4-43 SEL-95-003

3.5. Coupling
Motivati‘on

The concept of coupling has been used with reference to modules or modular systems. Intuitively,
it captures the amount of relationship between the elements belonging to different modules of a
system. Given a module m, two kinds of coupling can be defined: inbound coupling and outbound
coupling. The former captures the amount of relationships from elements outside m to elements
inside m; the latter the amount of relationships from elements inside m to elements outside m.

We expect coupling to be non-negative (property Coupling.1), and null when there are no
relationships among modules (property Coupling.2). When additional relationships are created
across modules, we expect coupling not to decrease since these modules become more
interdependent (property Coupling.3). Merging modules can only decrease coupling since there
may exist relationships among them and therefore, inter-module relationships may have
disappeared (property Coupling.4, property Coupling.5).

In what follows, when referring to module coupling, we will use the word coupling to
denote either inbound or outbound coupling, and OuterR(m) to denote either InputR(m) or
OutputR(m).

Definition 7: Coupling of a [Module | Modular System]
The coupling of a [module m = <Ep.Rp> of 2 modular system MSimodular system MS]isa
function [Coupling(m)!Coupling(MS)] characterized by the following properties Coupling.1 -
Coupling.5.

Y

Property Coupling.1: Non-negativity ’
The coupling of a [module m = <Ep,Rp> of a modular systemimodular system MS] is non-
negative
[Couplingm) =0 | Coupling(MS)=0] (Coupling.D)
0

Property Coupling.2: Null Value
The coupling of a [module m = <Ep,Rp> of a modular systemimodular system MS = <E,R,M>]
is null if {OuterR(m)IR-IR] is empty

[OuterR(m)=& = Coupling(m)=0 | R-R=0 = Coupling(MS)=0] (Coupling.II)
¢

Property Coupling.3: Monotonicity

Let MS' = <E,R''M'> and MS" = <ER"M"> be two modular systems (with the same set of
elements E) such that there exist two modules m' e M', m" € M" such that R' - OuterR(m") =R" -
OuterR(m"), and OuterR(m") < OuterR(m"). Then,

[Coupling(m")<Coupling(m") | Coupling(MS")<Coupling(MS")] (Coupling IIT)
0

Adding inter-module relationships does not decrease coupling. For instance, if systeins S,and S"
in Figure 3 are viewed as modular systems (see Section 3.4), we have [Coupling(m";) 2
Coupling(mj) | Cohesion(MS") = Cohesion(MS)].

Property Coupling.4: Merging of Modules

Let MS' = <E'R'M'> and MS" = <E" R",M"> be two modular systems such that E'=E",R'=
R", and M" =M'- {m';,m"2} v {m"}, where m'; = <Ey'1,Rmn'1>, m'2 = <Em2.Rm2>, and m"
= <Ep",Rp™>, withm'1 € M, m» e M',m" ¢ M, and Ep» = Epy'1 v Epyw and Ry =Ry v

4-44 SEL-95-003

Rpm2. (The two modules m'y and m's are replaced by the module m", whose elements and
relationships are the union of those of m'y and m's.) Then

[Coupling(m') + Coupling(m'z) = Coupling(m") | .
Coupling(MS") 2 Coupling(MS™)] (Coupling.IV)
] ¢

The coupling of a [modulelmodular system] obtained by merging two modules is not greater than
the [sum of the couplings of the two original modulesicoupling of the original modular system],
since the two modules may have common inter-module relationships. For instance, suppose that
the modular system MS;2 in Figure 6 is obtained from the modular system MS in Figure 2 by
merging modules mj and m» into module my5. Then, we have [Coupling(mj) + Coupling(mp) =
Coupling(m12) | Coupling(MS) = Coupling(MS12)].

MS12

Figure 6. The effect of merging modules on coupling.

Property Coupling.5: Disjoint Module Additivity

Let MS' = <ER,M'> and MS" = <E,R,M > be two modular systems (w1th the same underlymg
system <E,R>) such that M" =M' - {m'y,m'2} U {m"}, withm'; € M', m2e M', m" ¢ M, and
m" =m'y um%. (The two modules m') and m'; are replaced by the module m", union of m'; and
m'.) If no relationships exist between the elements belonging to m'; and m', i.e., InputR(m'y) n

OutputR(m'2) = & and InputR(m'2) n OutputR(m'1) = G, then
[Coupling(m';) + Coupling(m'z) = Coupling(m”) | .
Coupling(MS") = Coupling(MS")] (Couphng.V)<>
The coupling of a2 fmodulelmodular system] obtained by merging two unrelated modules is equal to
the [sum of the couplings of the two original modulesicoupling of the original modular system].
Properties Coupling.1 - Coupling.5 hold when applying the admissible transformations of the ratio
scale. Therefore, there is no contradiction between our concept of coupling and the definition of
coupling measures on a ratio scale.

Examples and counterexamples of coupling measures

Fenton has defined an ordinal coupling measure between pairs of subroutines [F91] as follows:

n s n
CS,S)=i+)

4-45 SEL-95-003

where i is the number corresponding to the worst coupling type (according to Myers' ordinal scale
[F91]) and n the number of interconnections between S and S', i.e., global variables and formal
parameters. In this case, systems are programs, modules are snbroutmes, elements are formal
parameters and global variables. If coupling for the whole system is defined as the sum of coupling
values between all subroutine pairs, properties Coupling.1 - Coupling.5 hold for this measures and
we label it as a coupling measure. However, Fenton proposes to calculate the median of all the pair
values as a system coupling measure. In this case, property Coupling.3 does not hold since the
median may decrease when inter-module relationships are added. Similarly for Coupling.4, when
subroutines are merged and inter-module relationships are lost, the median may increase.
Therefgereﬁ,ntlhe system coupling measure proposed by Fenton is not a coupling measure according
to our tions.

In [BMB94(a)], coupling measures for high-level design are defined and validated, at both
the module (abstract data type) and system (program) levels. They are based on the notion of
interaction introduced in the examples of Section 3.4. Import Coupling of a module m is defined as
the extent to which m depends on imported external data declarations. Similarly, export coupling of
m is defined as the extent to which m's data declarations affect the other data declarations in the
system. At the system level, coupling is the extent to which the modules are related to each other.
Given a module m, Import Coupling of m (denoted by IC(m)) is the number of interactions
between data declarations external to m and the data declarations within m. Given a module m,
Export Coupling of m (denoted by EC(m)) is the number of interactions between the data
declarations within m and the data declarations external to m. As shown in [BMB94(a)], our
coupling properties hold for these measures.

Coupling Between Object classes (CBO) of a class is defined in [CK94] as the number of
other classes to which it is coupled. It is a coupling measure. Properties Coupling.1 and
Coupling.2 are obviously satisfied. Property Coupling.3 is satisfied, since CBO cannot decrease
by adding one more relationship between features belonging to different classes (i.e., one class
uses one more method or instance variable belonging to another class). Property Coupling.4 is
satisfied: CBO can only remain constant or decrease when two classes are grouped into one.
Property Coupling.4 is also satisfied.

nse For a Class (RFC) [CK94] is a size and a coupling measure at the same time (see
Section 3.1). Methods are elements, calls are relationships, classes are modules. Coupling.3
holds, since adding outside method calls to a class can only increase RFC and Coupling.4 holds
because merging classes does not change RFC's value since RFC does not distinguish between
inside and outside method calls. Similarly, when there are no calls between the classes’ methods,
Coupling.5 holds. This result is to be expected since RFC is the result of the addition of two terms:
the number of methods in the class, a size measure, and the number of methods called, a coupling
measure.

3.6. Comparison of Concept Properties

We want to summarize the important differences and similarities between the system concepts
introduced in this paper. Table 1 uses only criteria that can be compared across the concepts of
size, length, complexity, cohesion, and coupling. First, it is important to recall that coupling and
cohesion are only defined in the context of modular systems, whereas size, length and complexity
are defined for all systems.

Second, the concepts appear to have the null value (second column) and monotonicity
(third column) properties based on different sets. The behavior of a measure with respect to
variations in such sets characterizes the nature of the measure itself, ie., the concept(s) it captures.
As RFC, defined in [CK94], shows (sec Sections 3.1 and 3.5), the same measure may satisfy the
sets of properties associated with different concepts. As a matter of fact, similar sets of properties
associated with different concepts are not contradictory.

Third, when systems are made of disjoint modules, size, complexity and coupling are
additive (properties Size.3, Complexity.S, and Coupling.5). Cohesion and length are not additive.

4-46 SEL-95-003

Concepts\Properties Null Value Monotonicity Additivity
Size E=Q E Yes
Length E=0 R No
Complexity R=0 R Yes
System Cohesion IR=0 IR No
System Coupling R-IR=0D R-IR Yes

Table 1: Comparison of concept properties

This summary shows that these concepts are really different with respect to basic properties.
Thegfore, it appears that desirable properties are likely to vary from one measurement concept to
another.

4. Comparison with Related Work

We mainly compare our approach with the other approaches for defining sets of properties for
software complexity measures, because they have been studied more extensively and thoroughly
than other kinds of measures. Besides, we compare our approach with the axioms introduced by
Fenton and Melton [FM90] for software coupling measures. As already mentioned, our approach
generalizes previous work on properties for defining complexity measures. Unlike previous
approaches, it is not constrained to deal with software code only, but, because of its generality,
can be applied to other artifacts produced during the software lifecycle, namely, software
specifications and designs. Moreover, it is not defined based on some control flow operations, like
sequencing or nesting, but on a general representation, i.e., a graph. ’ :

Weyuker3

Weyuker's work [W88] is one of the first attempts to formalize the fuzzy concept of program
complexity. This work has been discussed by many authors [CK94, F91, LIS91, TZ92, Z91] and
is still a point of reference and comparison for anyone investigating the topic of software
complexity.

To make Weyuker's properties comparable with ours, we will assume that a program
according to Weyuker is a system according to our definition; a program body is a module of a
system. A whole program is built by combining program bodies, by means of sequential,
conditional, and iterative constructs (plus the program and output statements, which can be seen as
"special” program bodies), and, correspondingly, a system can be built from its constituent
modules. Since some of Weyuker's properties are based on the sequencing between pairs of
program bodies P and Q, we provide more details about the representation of sequencing in our
framework. Sequencing of program bodies P and Q is obtained via the composition operation
(P;Q). Correspondingly, if Sp = <Ep,Rp> and Sq = <EQ,Rq> are the modules representing the
two program bodies P and Q°, then, we will denote the representation of P;Q as Sp;q =
<Ep,q,Rp;Q>- In what follows, we will assume that Ep;,Q =Epu Eq and Rp;,q RpuU R, e,
the representation of the composition of two program bodies contains the elements of the
representation of each program body, and at least contains all the relationships belonging to each of
the representations of program bodies. In other words, Sp and SQ are modules of Sp;q.

*We will list properties/axioms by the initial of the proponents. So, Weyuker’s properties will be referred to as W1,
W2, ..., W9, Tian and Zelkowitz's as TZ1 to TZ5, and Lakshmanian et alii’s as L1 to LS.
* In what follows, we will use the notation Sp = <Ep,Rp> to denote the representation of program body P.

4-47 SEL-95-003

W1: A complexity measure must not be "too coarse” (1).
3 Sp, SQ Complexity(Sp) # Complexity(SQ)

W2: A complexity measure must not be "too coarse” (2). Given the nonnegative number c, there
are only finitely many systems of complexity c.

W3: A complexity measure must not be "too fine.” There are distinct systems Sp and Sq such that
Complexity(Sp) = Complexity(Sg).

W4: Functionality. There is no one-to-one correspondence between functionality and complexity
3 Sp,SQ P and Q are functionally equivalent and Complexity(Sp) # Complexity(SQ)

Wg: }gonotanicity with respect to composition.
V Sp,5Q
Complexity(Sp) < Complexity(Sp,Q) and Complexity(Sq) < Complexity(Sp,Q)

W6: The contribution of a module in terms of the overall system complexity may depend on the
rest of the system.
(@) 3 Sp, SQ, ST Complexity(Sp) = Complexity(Sq) and Complexity(Sp.T) # Complexity(Sq.T)

(b) 3 Sp, SQ, ST Complexity(Sp) = Complexity(Sq) and Complexity(St:p) # Complexity(ST;Q)

W7: A complexity measure is sensitive to the permutation of statements.
3 Sp, SQ Q is formed by permuting the order of statements of P and Complexity(Sp) #

Complexity(Sq)
W8: Renaming. If P is a renaming of Q, then Complexity(Sp)=Complexity(Sq).

W9: Module monotonicity.
3 Sp, Sq Complexity(Sp) + Complexity(Sq) < Complexity(Sp,q)

Analysis of Weyuker's properties

W1, W2, W3, W4, W8: These are not implied by our properties, but they do not contradict
any of them, so they can be added to our set, if desired. However, we think that these properties
are general to all syntactically-based product measures and do not appear useful in our framework
to differentiate concepts.

WS5: This is implied by our propérﬁes, as shown by inequality (Complexity.VI), since Sp and
Sq are modules of Sp;Q,

W6, W7: These properties are not implied by the above properties Complexity.1 -
Complexity.5. However, they show a very important and delicate point in the context of
complexity measure definition.

By assuming properties W6(a) and W6(b) to be false, one forces all complexity measures
to be strongly related to control flow, since this would exclude that the composition of two
program bodies may yield additional relationships between elements (e.g., data declarations) of the
two program bodies. If properties W6(a) and W6(b) are assumed true, one forces all complexity
measures to be sensitive to at least one other kind of additional relationship.

Similarly, W7 states that the order of the statements, and therefore the control flow, should
have an impact on all complexity measures. By assuming property W7 to be false, one forces all
complexity measures to be insensitive to the ordering of statements. If property W7 is assumed
true, one forces all complexity measures to be somehow sensitive to the ordering of statements,
which may not always be useful.

4-48 SEL-95-003

W8: We analyze this property again, to better explain the relationship between complexity and
understandability. According to this property, renaming does not affect complexity. However, it is
a fact that renaming program variables by absurd or misleading names greatly impairs
understandability. This shows that other factors, besides complexity, affect understandability and
the other external qualities of software that are affected by complexity.

As for properties W1-W8, our approach is somewhat more liberal than Weyuker's. For
instance, the constant null function is an acceptable complexity measure according to our
properties, while it is not acceptable according to Weyuker's properties. It is evident that the
usefulness of such a complexity measure is questionable. We think that properties should be used
to check whether a measure actually addresses a given concept (e.g., complexity). However, given
any set of properties, it is almost always possible to build a measure that satisfies them, but is of
no practical interest (see [CS91]). At any rate, this is not a sensible reason to reject a set of
properties associated with a concept (how many sensless measures could be defined that satisfy the
three properties that characterize distance!). Rather, measures that satisfy a set of properties must
be later assessed with regard to their usefulness.

W9: This is probably the most controversial property. The above properties Complexity.1 -
Complexity.S imply it. Actually, our properties imply the stronger form of W9, the unnumbered
property following W9 in Weyuker's paper [W88] (see also [P84])

Vv Sp, SQ Complexity(Sp) + Complexity(Sq) £ Complexity(Sp;Q)

Weyuker rejects it on the basis that it might lead to contradictions: she argues that the effort needed
to implement or understand the composition of a program body P with itself, is probably not twice
as much as the effort needed for P alone. Our point is that complexity is not the only factor to be
taken into account when evaluating the effort needed to implement or understand a program, nor is
it proven that this effort is in any way "proportional” to product complexity.

o

Fenton

In addition to Weyuker's work, Fenton [F94] shows that, based on measurement-theoretic
mathematical grounds, there is no chance that a general measure for software complexity will ever
be found, nor even for control flow complexity, i.e., a more specific kind of complexity. We
totally agree with that. By no means do we aim at defining a single complexity measure, which
captures all kinds of complexity in a software artifact. Instead, our set of properties define
constraints for any specific complexity measure, whatever facet of complexity it addresses.

Fenton and Melton [FM90] introduced two axioms that they believe should hold for
coupling measures. Both axioms assume that coupling is a measure of connectivity of a system
represented by its module design chart (or structure chart). The first axiom is similar to our
monotonicity property (Coupling.3). It states that if the only difference between two module
design charts D and D' is an extra interconnection in D', then the coupling of D' is higher than the
coupling of D. The second axiom basically states that system coupling should be independent from
the number of modules in the system. If a module is added and shows the same level of pairwise
coupling as the already existing modules, then the coupling of the system remains constant.
According to our properties, coupling is seen as a2 measure which is to a certain extent dependent
on the number of modules in the system and we therefore do not have any equivalent axiom. This
shows that the sets of properties that can be defined above are, to some extent, subjective.

Zuse

‘In his article in the Encyclopaedia of Software Engineering [ESE94 pp. 131-165], Zuse applies a
measurement-theoretic approach to complexity measures. The focus is on the conditions that
should be satisfied by empirical relational systems in order to provide them with additive ratio scale
measures. This class of measures is a subset of ratio scale measures, characterized by the additivity
property (Theorems 2 and 3 of [ESE94]). Given the set P of flowgraphs and a binary operation *

4-49 SEL-95-003

between flowgraphs (e.g., concatenation), additive ratio scale complexity measures are such that,
for each pair of flowgraphs P1, P2,

Complexity(P1*¥P2) = Complexity(P1) + Complexity(P2)

This property shows that a different concept of complexity is defined by Zuse, with respect to that
defined by Weyuker's (W9) and our properties (Complexity.4). It is our belief that, by requiring
that complexity measures be additive, important aspects of complexity may not be fully captured,
and complexity measures actually become quite similar to size measures. Considering complexity
as additive means that, when two modules are put together to form a new system, no additional
dependencies between the elements of the modules should be taken into account in the computation
of the system complexity. We believe this is a very questionable assumption for product
complexity.

Tian and Zelkowitz

Tian and Zelkowitz [TZ92] have provided axioms (necessary properties) for complexity measures
and a classification scheme based on additional program characteristics that identify important
measure categories. In the approach, programs are represented by means of their abstract syntax
trees (e.g., parse trees). To translate this representation into our framework, we will assume that
the whole program, represented by the entire tree, is a system, and that any part of a program
represented by a subtree is a module.

TZ1: Systems with identical functionality are comparable, ie., there is an order relation between
them with respect to complexity.

TZ2: A system is comparable with its module(s).

TZ3: leen a system SQ and any module Sp whose root, in the abstract tree representauon, is “far
enough” from the root of SQ, then Sp is not more complex than Sq. In other words, "small"
modules of a system are no more complex than the system.

TZ4: I an intuitive complexity order relation exists between two systems, it must be preserved by
the complexity measure (it is a weakened form of the representation condition of Measurement
Theory [FO1]). ,

TZ5: Measures must not be too coarse and must show sufficient variability.

TZ1, TZ2, TZ5 do not differentiate software characteristics (concepts) and can be used for all
syntactic product measures. TZ3 can be derived from our set of properties. TZ4 captures the basic
purpose behind the definition of all measures: preserving an intuitive order on a set of software
artifacts [MGB90].

The additional set of properties which is presented in [TZ92] is used to define a measure
classification system. It determines whether or not a measure is based exclusively on the abstract
syntax tree of the program, whether it is sensitive to renaming, whether it is sensitive to the context
of definition or use of the measured program, whether it is determined entirely by the performed
program operations regardless of their order and organization, and whether concatenation of
programs always contribute positively toward the composite program complexity (i.e., system
monotonicity).

Some of these properties are related to the properties defined in this paper and we believe
they are characteristic properties of distinct system concepts (e.g., System monotonicity). Others
do not differentiate the various concepts associated with syntacucally-based measures (e.g.,
renaming).

Lakshmanian et al.

Lakshmanian et al. [L.JS91] have attempted to define necessary properties for software complexity
measures based on control flow graphs. In order to make these properties comparable to ours, we
will use a notation similar to the one used to introduce Weyuker's properties. A program according

4-50 SEL-95-003

to Lakshmanian et al. (represented by a control flow graph) is a system according to our definition,
and a program segment is a module. In addition to sequencing, these properties use the nesting
program construct denoted as @. "A program segment Z is said to be obtained by nesting
[program segment] Y at the control location i in {program segment] X (denoted by Y @Xj) if the
program segment X has at least one conditional branch, and if Y is embedded at location i in X in
such a way that there exists at least one control flow path in the combined code Z that completely
skips Y." "The notation Y @X refers to any nesting of Y in X if the specific location in X at which
Y is embedded is immaterial.”

In what follows, X, Y, Z will denote programs or program segments; Sx, Sy, Sz will
denote the corresponding systems or modules according to our definition. Lakshmanian et al.
[LIS91] introduce nine properties. However, only five out of them can be considered basic, since
the remaining four can be derived from them. Therefore, below we will only discuss the
compatibility of the basic properties with respect to our properties.

L1: Non-negativity.

L1(a): Null value.
If the program only contains sequential code (referred to as a basic block B) then

Complexity(Sg) =0

L1(b): Positivity.
If the program X is not a basic block, then
Complexity(Sx) >0
0

Iz’ropetty L1 does not contradict any of our properties (in particular, Complexity 1 and Complexity
).

LS: Additivity under sequencing.
Complexity(Sx:y) = Complexity(Sy) + Complexity(Sx)
0

This property does not contradict properties Complexity.4 and Complexity.5, where the equality
sign is allowed. By requiring that complexity be additive under sequencing, Lakshmanian et al take
a viewpoint which is very similar to that of Zuse.

L6: Functional independence under nesting.
Adding a basic block B to a system X through nesting does not increase its complexity

Complexity(Sp@x) = Complexity(Sx)

0
L7: Monotonicity under nesting.
Complexity(Syex;) < Complexity(Szex;) if Complexity(Sy) < Complexity(Sz)

¢
These properties are compatible with our properties.
L9: Sensitivity to nesting.
Complexity(Sx:;y) < Complexity(Syex) if Complexity(Sy) >0

0

4-51 SEL-95-003

This property does not contradict our properties.

In conclusion, none of the above properties contradicts our properties. However, the scope of
these properties is limited to the sequencing and nesting of control flow graphs, and therefore to
the study of control flow complexity.

As for the other properties, we now show how they can be derived from L1, LS, L6, L7, and L9.

L2: Functional independence under sequencing.
Complexity(Sx.p) = Complexity(Sx)

This property follows from L5 (first equality below) and L1 (second equality below):
Complexity(Sx:p) = Co'mplexity(SX) + Complexity(Sg) = Complexity(Sx)

L3: Symmetry under séquencing.
Comp]exity(sx;y) = Complexity(Sy;x)

This property follows from L5 (both equalities)
Complexity(Sx:;y) = Complexity(Sx) + Complexity(Sy) = Complexity(Sy:x)

L4: Monotonicity under sequencing.
Complexity(Sx.y) < Complexity(Sx.z) if Complexity(Sy) < Complexity(Sz)
Complexity(Sx.y) = Complexity(Sx.z) if Complexity(Sy) = Complexity(Sz)

This property follows from L5:

if Complexity(Sy) < Complexity(Sz), then
Complexity(Sx.y) = Complexity(Sx) + Complexity(Sy)
< Complexity(Sx) + Complexity(Sz) = Complexity(Sx;7)
if Complexity(Sy) = Complexity(Sz), then
Complexity(Sx.y) = Complexity(Sx) + Complexity(Sy)
= Complexity(Sx) + Complexity(Sz) = Complexity(Sx:7)

L8: Monotonicity under nesting.
Complexity(Sy) < Complexity(Syex)

This property follows from L1 (first inequality below, since Complexity(Sx)>0—X cannot be a
basic block), L5 (equality below) and L9 (second inequality below)

Complexity(Sy) < Complexity(Sx) + Complexity(Sy)
= Complexity(Sx.y) < Complexity(Syex)

4-52 SEL-95-003

5. Conclusion and Directions for Future Work

In order to provide some guidelines for the analyst in charge of defining product measures, we
propose a framework for software measurement where various software measurement concepts are
distinguished and their specific properties defined in a generic manner. Such a framework is, by its
very nature, somewhat subjective and there are possible alternatives to it. However, it is a practical
framework since the properties we capture are, we believe, interesting and all the concepts can be
distinguished by different sets of properties.

For example, these properties can be used to guide the search for new product measures as
shown in [BMB94(b)]. Moreover, we hope this framework will help avoid future confusion, often
encountered in the literature, about what properties product measures should or should not have.
Studying measure properties is important in order to provide discipline and rigor to the search for
new product measures. However, the relevancy of a property to a given measure must be assessed
in the context of a well defined measurement concept, e.g., one should not attempt to verify if a
length measure is additive.

This framework does not prevent uscless measures from being defined. The usefulness of a
measure can only be assessed in a given context (i.e., with respect to a given experimental goal and
environment) and after a thorough experimental validation [BMB94(b)]. This framework is not a
global answer to the problems of software engineering measurement; it is just of the necessary
components of a measure validation process as presented in [BMB94(b)].

Future research will include the definition of more specific measurement frameworks for
particular product abstractions, e.g., control flow graphs, data dependency graphs. Also, new
concepts could be defined, such as information content (in the information theory sense).

Acknowledgments

We would like to thank Wolfgang Heuser, Yong-Mi Kim, Bryan Hsueh, Oliver Laitenberger,
Carolyn Seaman, and Marvin Zelkowitz for reviewing the drafts of this paper.

References

[BMB94(a)] L. Briand, S. Morasca, V. Basili, "Defining and Validating High-Level Design
Metrics,” CS-TR 3301, University of Maryland, College Park

[BMB94(b)] L. Briand, S. Morasca, and V. R. Basili, "A Goal-Driven Definition Process for
Product Metrics Based on Properties,” University of Maryland, Department of
Computer Science, Tech. Rep. CS-TR-3346, UMIACS-TR-94-106, 1994. Submitted

for publication.

[BO94] J. Bieman and L. M. Ott, "Measuring Functional Cohesion,” IEEE Trans. Software
Eng., vol. 20, no. 8, pp. 644-657, August 1994.

[C90] D. Card, "Measuring Software Design Quality,” Prentice-Hall Inc., Englewood Cliffs,
New Jersey, 1990.

[CK94] S.R.Chidamber and C. Kemerer, "A Metrics Suite for Object Oriented Design,” IEEE
Trans. Software Eng., vol. 20, no. 6, pp. 476-493, June 1994.

[CS91] J. C. Cherniavsky and C. H. Smith, "On Weyuker's Axioms for Software Complexity
Measures,” IEEE Trans. Software Eng., vol. 17, no. 6, pp. 636-638, June 1991.

[ESES4] Encyclopaedia of Software Engineering, Wiley&Sons Inc., 1994

4-53 SEL-95-003

[F91]
[F94]

[FMS0]

[(H77]
[H92]

[HKS81]

[LIS91]

[McC76]

[MGB90]

[O80]

[P72]

[P34]

[S92]

[TZ92]

[wes]

[Z291]

N. Fenton, "Software Metrics, A Rigorous Approach,” Chapman&Hall, 1991.

N. Fenton, "Software Measurement: A Necessary Scientific Basis,” JEEE Trans.
Software Eng., vol. 20, no. 3, pp. 199-206, March 1994.

N. Fenton and A. Melton, "Deriving Structurally Based Software Measures,” J. Syst.
Software, vol. 12, pp. 177-187, 1990.

M. H. Halstead, "Elements of Software Science,” Elsevier North-Holland, 1977.

W. Harrison, "An Entropy-Based Measure of Software Complexity," IEEE Trans.
Software Eng., vol. 18, no. 11, pp. 1025-1029, November 1992.

S. Henry and D. Kafura, "Software Structure Metrics Based on Information Flow,”
IEEE Trans. Software Eng., vol. 7, no. 5, pp. 510-518, September 1981.

K. B. Lakshmanan, S. Jayaprakash, and P. K. Sinha, "Properties of Control-Flow
Compl;gity Measures,” IEEE Trans. Software Eng., vol. 17, no. 12, pp. 1289-1295,
Dec. 1991. '

T. J. McCabe, "A Complexity Measure,” IEEE Trans. Software Eng., vol. 2, no. 5,
pp- 308-320, Apr. 1976.

A. C. Melton, D.A. Gustafson, J. M. Bieman, and A. A. Baker, "Mathematical
Pzgpeczﬁve 931(') Software Measures Research,” IEE Software Eng. J., vol. §, no. 5, pp.
246-254, 1990.

E. L Oviedo, "Control Flow, Data Flow and Program Complexity," Proc. IEEE
COMPSAC, Nov. 1980, pp. 146-152.

D. L. Pamnas, "On the Criteria to Be Used in Decomposing Systems into Modules,"
Communications of the ACM, vol. 15, pp. 1053-1058, May 1972.

R. E. Prather, "An Axiomatic Theory of Software Complexity Measure," The
Computer Journal, vol 27, n. 4, pp. 340-346, 1984.

M. Shepperd, "Algebraic Models and Metric Validation,” in Formal Aspects of
Measurement (T. Denvir, R. Herman, and R. W. Whitty eds.), pp. 157-173, Lecture
Notes in Computer Science, Springer Verlag, 1992.

J. Tian and M. V. Zelkowitz, "A Formal Program Complexity Model and Its
Application,” J. Syst. Software, vol. 17, pp. 253-266, 1992.

E. J. Weyuker, "Evaluating Software Complexity Measures,” JEEE Trans. Software
Eng., vol. 14, no. 9, pp. 1357-1365, Sept. 1988.

H. Zuse, Software Complexity: Measures and Methods. Amsterdam: de Gruyter,
1991.

4-54 SEL-95-003

So-¢/
) — B2
Se//00

AN ANALYSIS OF ERRORS IN A REUSE-ORIENTED
DEVELOPMENT ENVIRONMENT*

William M. Thomas Alex Delis ~ Victor R. Basili
Dept. of Computer Science School of Information Systems Dept. of Computer Science
University of Maryland Queensland Univ. of Technology University of Maryland
College Park, MD 20742 Brisbane, QLD 4001, Australia College Park, MD 20742
Abstract

Component reuse is widely considered vital for obtaining significant improvement
in development productivity. However, as an organization adopts a reuse-oriented
development process,the nature of the problems in development is likely to change. In
this paper, we use a measurement-based approach to better understand and evaluate
an evolving reuse process. More specifically, we study the effects of reuse across seven
projects in narrow domain from a single development organization. An analysis of the
errors that occur in new and reused components across all phases of system development
provides insight into the factors influencing the reuse process. We found significant
differences between errors associated with new and various types of reused components
in terms of the types of errors committed, when errors are introduced, and the effect
that the errors have on the development process.

1 Introduction

Reuse has been advocated as a technique with great potential to increase software
development productivity, reduce development cycle time, and improve product quality
[AMB87, Bro87, BP88]. However, reuse will not just happen-rather, components must be
designed for reuse, and organizational elements must be in place to enable projects to take
advantage of the reusable artifacts.

Basili and Rombach present a framework of comprehensive support for reuse, including
organizational and methodological properties necessary to maximize the benefit of reuse
[BR91]. For reuse to attain a significant role in an environment, organizational changes
must be made to facilitate the change in development style. Maintaining a library of reusable
parts may require resources including personnel, hardware, and software. While increasing

*This was supported in part by the National Aeronautics and Space Administration grant NSG-5123.

4-55 SEL-95-003

the amount of reuse in an environment may reduce certain development activities.(e.g.,
code creation), it will also require additional effort in other activities (e.g., searching for
components). With respect to product quality, it is also clear that “reused” does not imply
“defect-free.” An investigation into the benefits of reuse in the NASA Goddard Space Flight
Center (NASA /GSFC) showed that even among components that were intended to be reused
verbatim, while their error rate was an order of magnitude lower than newly created code,
the error rate is still significant [TDB92]. By analyzing the nature of the defects in the reuse
process, one can tailor the process appropriately to best achieve the organization’s goals.

There have been several studies into techniques to stock an initial reuse library [CB91,
DK93]. One factor to be considered is the structure of the candidate reusable component.
Selby investigated various characteristics of new versus reused code in a large collection
of FORTRAN projects [Sel88]. Basili and Perricone analyzed tradeoffs between creating a
component from scratch versus modifying an existing component [BP84]. This work extends
these studies by investigating the nature of errors occurring in a reuse oriented develop-
ment environment, and drawing conclusions as to their impact in such an environment. In
particular, we analyzed a collection of eight medium scale Ada projects developed over a
five year period in the NASA/GSFC with respect to the defects found in newly developed
and reused components. The goal of the study was to learn about the nature of problems
associated with reuse-oriented software development, thereby allowing for improvement of
the reuse process. We found significant differences between errors associated with new and
with various types of reused components in terms of when errors are being introduced, the
effect that they have on the development process, and the type of error being committed.
We also found some similarites and some differences with the findings of other investigations
into component reuse.

This paper is organized as follows. Section 2 provides a brief overview of reuse-oriented
software development, while section 3 gives background about using error analysis for process
improvement. Section 4 describes the goals of the study and the data analyzed. The findings
from our analysis are presented in section 5, and section 6 summarizes and identifies the
major conclusions.

2 Reuse-Oriented Software Development

Reuse has been cited as a technology with the potential to provide a significant increase
in software development productivity and quality. For example, Jones estimates that only
15 percent of the developed software is unique to the applications for which it was developed
[Jon84]. Reduced development cost is not the only benefit of reuse-in fact, the greatest
benefit from reuse may be its impact on maintenance [L.G84, Rom91]. The potential for
substantial savings from reuse clearly exists. Unfortunately, achieving high levels of reuse
still remains an difficult task. A number of issues must be addressed to effectively increase
the level of reuse in an organization, including the forms of reuse, and language and organi-
zational support to encourage reuse.

4-56 SEL-985-003

2.1 Types of Reuse

In this study we examined three modes of reuse:

e verbatim reuse, in which the component is unchanged,

e reuse with slight modification, in which the original component is slightly tailored for
the new application,

e reuse with extensive modification, in which the original component is extensively al-
tered for the new application.

While differentiating verbatim reuse and reuse via modification is trivial, distinguishing
between slight modification and extensive modification is more difficult. Our intent is to
distinguish between cases where a component is left essentially intact, but needs some small
change for the new application, and cases where a component is significantly altered for its
new use. The three types of reuse, and a their expected impact on development are described
in the following paragraphs.

Intuitively, verbatim reuse appears to hold the greatest benefit to software development.
Development effort is minimized and verification effort is reduced, since the component has
previously been developed, tested, and used. There may be an increased cost in integration
effort, as the reused component may not squarely fit in the new system, and the develop-
ers may not be as familiar with the reused component as they would be with a custom
component.

Another means of reuse is achieved by slight modification of an existing component.
Here a component remains for the most part unchanged, but is adapted slightly for the new
application. For example, a sort routine may be modified to sort a different type of objects.
An improvement in terms of reduced development effort and increased quality is expected,
although perhaps not to the same degree as in the reused verbatim components. Again,
the integration of modified components may be more difficult than that of newly created
components; but, because the modified components may be adapted to better match the
application, the integration is perhaps not as difficult as with the verbatim reused com-
ponents. As with verbatim reuse, there may be new errors introduced in the component
selection process. However, since the developer does have a greater understanding of the
implementation of the modified component, one is more likely to detect that error earlier
than if the component was reused verbatim.

Our third category of reuse occurs through extensive modification of an existing com-
ponent. For example, one may want to change the underlying representation of a particular
type while maintaining the operations on the type. If the component was not designed with
the representation isolated in the implementation, this may require changes throughout the
component. Reuse in this manner is likely to be beneficial only if the component is of a
sufficient size and complexity to justify modification as opposed to simply creating a new
component from scratch. Since much of the component is new, in many ways this type of
reuse may appear similar to new development. However, there are some important distinc-
tions. The number of coded lines is likely to be reduced relative to newly developed code, so

4-57 SEL-95-003

one might expect a decrease in error density. However, the extensive modification activity
may be more error prone than standard component creation, since the original abstraction is
being significantly altered. This mode of component creation may result in more of a “hack”
than a well-conceived component. New types of errors may arise, such as removing too much
or not enough of the old component.

2.2 Language Issues in Software Reuse

The Ada programming language contains a number of constructs that encourage effective
reuse, including packages and generics [Ich85, WCW85, GP87, EG90]. A package is used to
group a collection of declarations, such as types, variables, procedures and functions. The
package construct allows for the encapsulation of related entities, encouraging the creation
of well-defined abstractions such as encapsulated data types. For example, a stack package
of a particular type can be created, containing the element type and operations such as push
and pop. Through a simple modification of the element type, the package can be adapted
to support operation on a different type. This would enable one to move toward the second
type of reuse, tailoring the component slightly to suit the new application.

Ada’s generic construct provides more support for verbatim reuse, as it enables the
creation of more abstract entities. A generic program unit is a template for a module.
Instantiation of the generic program unit yields a module. The generic units may be param-
eterized, i.e., they may require the user to supply types or operations to create a module.
This provides a great deal of flexibility in their use. For example, one may parameterize the
stack package such that the user must supply the element type to create an instance of the
stack. The generic stack can then be used without modification in support of a number of

different types.

High levels of reuse may be achieved in languages without such features, however, the
approach taken to achieve such reuse will be different. Such differences were reported in a
study comparing FORTRAN and Ada reuse in the NASA/SEL [BWS93]. The Ada approach
was to develop a set of generics that can be instantiated to support a variety of application
types. In contrast, the FORTRAN approach was to develop a collection of libraries specific to
each application type. On projects within a very narrow domain, both approaches achieved
similar high levels of reuse. However, when there was a significant change in the domain,
the Ada approach achieved a sizable amount of reuse (50 percent verbatim reuse), while
the FORTRAN approach showed less than 10 percent verbatim reuse [BWS93]. Thus it
would appear that the parameterized, generic approach is better suited to development in a
dynamic, evolving domain.

While improved language features may help to enable reuse, they alone have not resulted
in large-scale reuse in software development. There are other important factors involved—
applications must be structured to allow and encourage reuse, and software organizations
must be tailored to support a reuse-oriented development paradigm.

4-58 SEL-95-003

i
. Search Select
Analyze Specify Specifications
=
’ A
A Components Reuse

' < Test or Create

Test Integrate
-
Project Organization Factory Organization

Figure 1: Interaction of a Project Organization with the Component Factory

2.3 Organizational Support for Reuse

One model that integrates reuse into a development is the “component factory” organi-
zation, which is a dual-organization structure consisting of two parts: a factory organization
and a project organization. The factory organization provides software components in re-
sponse to requests from the various projects being developed in the project organization
[BCC92]. Figure 1 illustrates the component factory concept in support of a project orga-
nization. In this setting, the development organization makes requests to the component
factory to provide components to be integrated into the desired product. If the component
factory is effective, the activity of component creation can be significantly reduced, and
the quality of the components that are delivered to the integration team can be increased,
- reducing the costs of development and of rework. The key features of the component fac-
tory are the repository of the components for future reuse, and the focus on flexibility and
continuous improvement. Thus a measurement-oriented approach must be utilized, such
as that proposed in the TAME project [BR88], which provides an experimental view of
software development, allowing for analysis and learning about the effectiveness of the new
technologies.

Reuse-oriented development will require some effort to be expended in activities that
are not a part of traditional software development. For example, although the component
factory will allow the effort spent in component creation to be reduced, it will also require
additional activity in searching for and selecting the appropriate component for the particular
application. These new activities may also be a potential source of errors in the system, and
thus a source of rework effort. Introducing an activity of selecting a component from a
repository may introduce new types of errors, for example, selecting a component that does
not provide the intended function.

4-59 SEL-95-003

3 Using Error Analysis to Optimize the Development
Process

The Quality Improvement Paradigm provides a framework to build a continually im-
proving organization relative to its evolving set of goals [Bas85, BR88]. The QIP consists of
six steps: ’

1. Characterize the current project and environment.
Set Goals for project performance and improvement.

. Choose processes, as well as models and metrics, appropriate for the project.

oW

Execute the processes, and collect the prescribed data, and provide real-time feedback
for corrective action.

5. Analyze the data to evaluate current practices and make recommendations for future
improvement.

6. Package the experience in a form suitable for reuse on future projects.

The first two steps deal with determining the nature of the project, including goals for
performance and improvement. Based on the characterization and goals, the third step se-
lects the most suitable processes for the project; establishes the measurement plan, including
choosing appropriate models and metrics, and sets up the mechanism for real-time feedback
as the project progresses. The fourth step starts the selected processes, collects and the data
as prescribed by the measurement plan, and uses the selected models and metrics to provide
feedback to the development organization. The fifth and sixth steps occur off-line, as the
data is analyzed and packaged into the experience base for use in other projects.

Examining the various dimensions of errors in an organization can yield important
lessons learned that may be used to improve software development. The goal of error anal-
ysis is to learn about the nature of errors in the current environment so that improvement
can be made (e.g., process tailoring) in subsequent projects, and feedback can be provided
to the current project. Thus error analysis can be associated with either of the two feedback
loops in the model, the project loop, occurring in step 4, in which the results are in real-time
provided back to the project, or the corporate loop, in steps 5 and 6, in which results are
made available for subsequent projects in the organization. Our focus in this paper is on the
corporate loop; i.e., the analysis and packaging steps for subsequent development, from the
perspective of reuse-oriented software development.

A number of recent studies have shown that product metrics can be used to determine
the areas in a program that are at a greater risk of containing a fault [AE92, SP88, BBH93,
BTH93, MK92]. These studies indicate that models can be developed to isolate faulty
components in a system based on characteristics of the components and their environment.
Our goal is to develop an understanding of the differences between traditional development
methods and reuse-oriented methods in terms of the characteristics of their errors. Increased

4-60 SEL-95-003

knowledge about the types of errors in an environment can be used to optimize the process.
for that environment.

Basili and Selby found that the effectiveness of error detection techniques varies with
the type of fault encountered [BS87]. For example, code reading was found to be the most
effective technique for isolating interface errors, while functional testing was found to be
more effective at finding logic errors. As such, a-priori knowledge of the distribution of
the type of errors allows one to select verification techniques most appropriate for the that
distribution. Suppose two thirds of the errors are interface errors, and one third logic errors.
In this case, we would want to be sure to use techniques that are effective in finding interface
errors. Given a limited budget for verification and validation, we may choose to expend more
resources in code reading and fewer in functional testing. On the other hand, if a different
project is much more likely to have logic errors than interface errors, it may be more effective
to focus the verification activities on structural testing.

Knowledge of when the errors are being introduced enables one to apply verification
techniques at the most suitable time. If a large number of errors are being introduced in the
design phase, adding design inspections to the development process may reduce the number
of errors impacting later phases. On the other hand, if most errors are being introduced
during coding, design inspections may not be as cost-effective. In this case, one may choose
not to inspect design, but choose to have additional verification effort in the coding phase.

The QIP can be used to take advantage of such knowledge. To incorporate this reuse
information into the development process, we can develop a mapping to the QIP. The first
step of the QIP, characterize the project, can be tailored to include determining the amount
and type of reuse expected on the project. The second step, select appropriate models, can
include selecting models of expected error profiles based on the characterization of reuse.
The third step is to select the appropriate processes. Here, one can choose the processes
expected to be most effective for the expected error distribution. The fourth and fifth steps
are to execute the processes, collect data, and feedback the results. This can be seen as
measuring the actual reuse profile, and measuring the effectiveness of the error mitigation
strategies, and making a determination of whether to modify the selected processes based on
the new information. For example, if the actual reuse profile is very different from original
expectations, one should attempt to understand the factors that led to the difference, and,
if appropriate, develop a new projection of the expected error profile.

4 Description of the Analysis

Since its origin, The NASA /GSFC SEL has collected a wealth of data from their software
development [SEL94]. Selby performed a study on the characteristics of reused components
on a collection of FORTRAN projects from this environment [Sel88], in which the level of
reuse averaged 32 percent. Because of the support for reuse provided by the Ada language, as
discussed in section 2.2, we chose to analyze the Ada projects in this environment. A much
higher level of reuse than what was reported in [Sel88] has been achieved more recently in
this environment [Kes90]. The high levels of reuse have been attributed in part to the Ada
language constructs and object-oriented methods [Kes90, Sta93, BWS93]. More recently,

4-61 SEL-95-003

Project Pct. Total | Pct. Verbatim | Effort
D KSTMT Reuse Reuse (SM)

A 27.1 31 4 175

B 144 31 13 85

C 13.7 38 19 72

D 24.8 85 27| 117

E 13.8 97 88 30

F 12.8 78 44 73 |
G 13.7 100 89 16

Table 1: Overview of the Examined Projects

however, even the FORTRAN systems have been showing high levels of reuse, although the
nature of the reuse is different than reuse in the Ada development environment.

We analyzed a collection of seven medium-scale Ada projects from a narrow domain, as
all are simulators which were developed at the NASA/GSFC Flight Dynamics Division. An
overview of the projects examined is provided in Table 1. The projects ranged in size from
61 to 184 thousand source lines, or 12.8 to 27.1 thousand Ada statements (KSTMT). They
required development effort of 16 to 175 technical staff months. Reuse ranged from 4 to 89
percent (verbatim), and from 31 to 100 percent (verbatim and with modification).

While this environment is not organized along the lines of the Component Factory dis-
cussed in section 2, it does have some characteristics in common with that organization. In
the SEL, generalized architectures were developed explicitly to facilitate large scale reuse
from project to project [Sta93], so it is clear that significant effort has been applied towards
the goal of reuse in the organization. As such, new systems have been developed in accor-
dance with the packaged experience of reusable architectures, designs and code. One aspect
of the Component Factory organization is the separate organization that produces or re-
leases all reusable software products [BCC92]. While this feature is not present in the SEL,
it is apparent that less effort is being spent on project-specific development activities. The
percentage of effort spent in the Coding/Unit Test phase has dropped from 44 percent on an '
early simulator, to only 18 percent on one of the more recent simulators [Sta93]. This sug-
gests that there is a significant leveraging of the stored experience, and as such, the observed
effort on the SEL projects is becoming more in line with the profile one would expect in the
Component Factory’s project organization, i.e., dominated by design and testing activities.

We developed a set of questions with which to compare newly created, modified, and
reused verbatim components:

1. What is the impact of reuse on error density?
2. Are errors in reused units easier to isclate or correct?
3. Are the errors typically being introduced at different phases?

4. Are errors associated with reused units detected earlier in the lifecycle?
4-62 SEL-95-003

Component No. Pct.
Origin Comp. | KSTMT | KSTMT
New 1095 44.2 36.5
Extensively Modified | 152 8.8 79
Slightly Modified 517 21.6 17.8
Reused Verbatim 1495 46.6 38.5

All Components 3259 121.2 100.0

Table 2: Profile of each class of component origin

5. Are there different kinds of errors associated with reused units?

6. Are there structural differences between new and reused units?

Several types of data were used in our analyses. The first type of data has to do
with the origin of a component—whether it was newly created or reused. At the time
of component creation a form was filled out by the developer indicating the origin of the
component—whether it was to be created new, reused from another component with extensive
modification (more than 25 percent changed), reused with slight modification (less than 25
percent changed), or reused verbatim (without change). Table 2 provides a summary of the
number of components and source statements in each category of component origin. A larger
amount of source code was created in the new and reused verbatim categories than in either
of the categories of reuse with modification.

The SEL uses “Change Report Forms” to collect data on changes to components for
various reasons, such as error corrections, requirements changes, and planned enhancements.
In this analysis, we examined the changes made to correct errors. For each reported error, the
form identifies the modules that needed to be changed, the source of the error, (requirements,
functional specification, design, code, or previous change), the type of the error (initialization,
computational, data value, logic, internal interface, or external interface), and whether or
not the error was one of omission (something was not done) or commission (something was
done incorrectly). '

~ Finally, we analyzed the systems with a source code static analysis tool, ASAP [Dou87],
which provided us with a static profile of each compilation unit, including, for example, basic
complexity measures such as McCabe’s Cyclomatic Complexity and Halstead’s Software
Science, as well as counts of various types of declarations and statement usage. ASAP
also identifies all with statements, so we were able to develop measures of the external
declarations visible to each unit.

5 Results of the Analysis

This section presents the major findings from our analysis. We used non-parametric
statistical methods to test the hypotheses there were significant differences among the classes

4-63 SEL-95-003

Component Ave. No. Ave. No. | Ave. No.
Origin Statements | Parameters | Withs

New 45.8 2.1 3.5

" Extensively Modified 59.9 2.1 7.5

Slightly Modified 41.6 1.9 4.0

Reused Verbatim 24.5 2.8 1.1

All Components 36.8 2.3 2.7

Table 3: Structural Characteristics of Subprogram Bodies

of component origin in terms of the the nature and impact of the errors in each class.
Structural characteristics of the components are discussed in 5.1, and the remaining sections
describe findings associated with with the various dimensions of errors.

5.1 Structural Characteristics

Table 3 shows a collection of measures that characterize the structure of compilation
units by class of reuse. Only compilation units that are subprogram bodies were considered,
so as not to bias the results with characteristics of instantiations or package specifications.
The average number of Ada statements provides an indication of the typical size of a compo-
nent. The number of parameters is a rough measure of the generality of a component. The
number of context couples (i.e., the number of “with” statements) provides an indication of
the external dependencies of a particular unit.

What we see is that the reused verbatim components are simpler in terms of their size and
external dependencies, as evidenced by the number of source statements and with statements.
The reused verbatim units average 24.5 statements and 1.1 withs per unit, while the new units
average 45.8 statements and 3.4 withs per unit. The extensively modified units tend to be the
most complex, as they average 59.9 statements and 7.5 withs per unit. The slightly modified
units tend to be slightly smaller than the new units, but with roughly the same number of
external dependencies. It is interesting to note that the extensively modified components
are the most complex, both in terms of their size and external complexity. These results are
similar to what was reported by Selby in his analysis of reuse in a collection of FORTRAN
systems-the reused components tend to be simpler than newly created components in terms
of size and interaction with other modules [Sel88]. This additional complexity may result
in an increase in difficulty associated with these components in terms or their error density
and error correction effort.

We did note one result that is in contrast to Selby’s study. He reported that the verbatim
reused modules tend to have a smaller interface than newly created units. We observed the
opposite-that the verbatim reused modules tend to have more parameters than either the
modified or new components. The verbatim reused components averaged 2.8 parameters per
unit, versus 1.9 to 2.1 in the new and modified components. This difference is significant at
the 0.01 level (i.e., there is less than a one percent chance that there actually is no difference

4-64 SEL-95-003

- Ave. No. | Ave. No. | Ave. No.
Project | Statements | Withs | Params.
A 15 0.3 1.9

B 14 0.2 1.8

C 14 0.2 1.8

D 18 0.9 2.7

E 31 1.1 3.0

F 26 1.2 2.1

G 26 1.5 3.1

Table 4: Structural Characteristics in Verbatim Reused Components as Reuse Increases

between the classes). Units that are more highly parameterized have an increased generality
that may allow them to be more readily integrated into new applications. As such, we should
expect to see a greater number of parameters in the unchanged modules. This difference
may be indicative of the approach being taken to reuse in the environment. As previously
noted, the Ada approach in this environment was based on the use of well-parameterized
generics, while the FORTRAN approach was based on Iibraries of more specialized functions
- [BWS93].- As such, we might expect a lower level of parameterization in reused FORTRAN
modules. Another reason for the difference from Selby’s study may be that his measure of a
module’s interface is a sum of counts of the parameters and global references in the module.
In the FORTRAN modules that he examined, this sum is likely to be dominated by the
count of global references; as such, the variation in the count of subprogram parameters
among the classes of reuse can not be observed.

Table 4 shows the profile of the reused components over time, as s the projects are listed
in chronological order of their development start date. We see an increasing complexity (ex-
pressed both in terms of module size and external dependencies) in the reused components.
Also, we see a rise in the number of parameters per subprogram in the verbatim units, sug-
- gesting an increasing generality among them. Low level utility functions were the first to
be reused, but as the organization gained reuse experience, more and more complex units
were reused as well. Thus while utility functions may be among the best components to
initially stock a repository, a reuse process is not limited to them. As an organization gains
experience, more and more complex units, at higher levels of the application hierarchy may
be reused.

5.2 Error Density

Table 5 shows the error and defect densities (errors/defect per thousand source state-
ments) observed in each of the four classes of component origin. We use error to refer to
a change report in which the reason for the change was attributed to an error correction.
A change report can list several components as requiring correction due to a single error.
We refer each instance of a component requiring modification due to an error as a defect.

4-65 SEL-95-003

Component No. Defect | Error | S/A Err.
Origin Comp. | KSTMT | Density | Density | Density

New 1095 442 24.8 13.0 8.4
Extensively Modified 152 8.8 19.5 14.0 8.9
Slightly Modified 517 21.6 10.5 74 2.5

| Reused Verbatim 1495 46.6 2.1 1.2 0.7
All Components 3259 121.2 13.1 7.6 44

Table 5: Error densities in each class of component origin

As such, there can be several defects associated with a single error. Two measures of error
density are shown—the first includes all errors from unit test through acceptance test, while
the second only includes those detected in system and acceptance test. The first measure
can provide an indication of the total amount of rework, while the second shows the amount
that is occurring late in the development life-cycle. The measure of defect density shown in
the table includes defects from unit through acceptance test.

We used a non-parametric test to obtain a statistical comparison of component error
density by class of component origin. This comparison shows a significantly lower error den-
sity among the reused verbatim components compared to each of the other classes. Similarly,
there is a significant difference between the slightly modified components, and the new and
extensively modified components. No significant difference was observed between new and
extensively modified components. :

In terms of error density, reuse via extensive modification appears to yield no advan-
tage over new code development. There is a benefit from reuse in terms of reduced error
density when the reuse is verbatim or via slight modification. However, reuse through slight
modification only shows about a 50 percent reduction in total error density, while verbatim
reuse results in more than a 90 percent reduction. When we only look at the errors that
~ are encountered during the system and acceptance test phases, we still see a greater than

90 percent reduction in defect density in the reused verbatim class (0.7 errors per KSLOC,
compared to 8.4 errors per KSLOC in the new components). The slightly modified com-
ponents, with 2.5 errors per KSLOC, show a reduction of nearly 70 percent compared to
the new components, with 8.4 errors per KSLOC. Verbatim reuse clearly provides the most
significant benefit to the development process in terms of reducing error density, but reuse
via slight modification also provides a substantial improvement, one which is even more
noticeable in the test phases.

A number of studies have found higher defect/error densities in smaller components than
in larger components [BP84, SYTP85, LV89, MP93]. As shown in table 6, our data supports
their findings. Small components (25 or less statements) have defect density more than
twice that of the larger components (more than 25 statements), and this difference is highly
significant. The only class of reuse where we saw no significant difference was the reused
verbatim components, as they have the same defect density regardless of size. The defect
density in the small components was more than twice that of the larger components in the
new and extensively modified classes, and nearly four times greater in the slightly modified

4-66 SEL-95-003

Component Small Large
Origi No. Comp. [Def. Dens. | No. Comp. | Def. Dens. |
- New 638 49.8 457 19.8
Extensively Modified | 67 35.7 85 17.7
Slightly Modified 283 26.5 234 74
Reused Verbatim 952 2.3 543 2.0
All Components 1940 22.6 1319 10.9

Table 6: Relationship of defect density and component size

class. One explanation for higher error density in the small components is that a system
composed of small components will have more interfaces than a system composed of large
components; and interfaces are frequently noted as a major source of error in development.

5.3 Error Isolation/Completion Difficulty

Basili and Perricone, in their study of a FORTRAN development project, reported
that modified components typically required more correction effort than new components
[BP84]. We see a similar result in the two classes of modified components, and also see the
same pattern occurring in the reused verbatim components. Table 7 shows the percentage
of errors in each class of reuse that were categorized as difficult to isolate or difficult to
complete (defined as more than one day to isolate or complete, resp.), and the relative
rework effort, a crude approximation of relative effort (staff-hours per KSTMT) in isolating
and correcting these errors. In terms of effort to isolate, we see little difference among
the classes of component origin. Newly created components had the smallest percentage
of difficult-to-isolate errors, but it was not significantly different from any of the classes of
reused components. This result is not surprising, as the isolation activity is associated more
with understanding the intended functions rather than with their implementation. As such,
the origin of the components may not have as great an impact on isolation effort as it will
have on completion effort.

We do see an increase in the effort to complete an error in reused components relative
to new components. The new components had the lowest percentage of errors requiring
more than 1 day to complete a change and the reused verbatim components had the highest
percentage, while the modified components fell in between. The difference between the new
and the reused verbatim components is significant at the 0.05 level. One explanation for
this effect is that the developers have a greater familiarity with the newly created compo-
nents, so less time is needed to understand the components that must be changed. Another
explanation is that the majority of the “easy” errors had previously been removed from the
reused component, leaving only the more difficult ones.

To determine whether the increased error correction cost in the reused components
outweighs benefit of their having fewer errors, we computed a rough measure of the amount
of error rework expended in each class. Unfortunately, our data for effort spent in error

4-67 SEL-95-003

Component No. | Pct. Diff. | Pct. Diff. | Rel. Rework
Origin KSTMT | Errors. | Isolation | Completion Effort

New 442 574 124 10.1 118.3

Extensively Modified 8.8 124 14.5 17.7 157.4

Slightly Modified 21.6 160 13.8 13.1 76.8

| Reused Verbatim 46.6 58 14.3 22.4 14.7

All Components 121.2 916 . 13.2 12.6 73.9

Table 7: Difficulty in error isolation/correction

correction and isolation is categorical, so we approximated the true effort simply by the
midpoint of the category (#). Rework was then computed as the sum of this approximation
over all errors. Our relative rework measure (RR) was computed by dividing rework by the
number of statements (S), i.e.:

n

- =1 [t(&,)
RR = =

Again, we used a non-parametric test to determine whether there is a significant dif-
ference in the relative rework effort among the four classes of component origin. The tests
found a significant difference among the classes with one exception. When comparing the
extensively modified components and the new components we found the level of significance
to be only 0.18. There may be an increase in the rework cost of extensively modified com-
ponents, however, our data does not confirm this. In any event, it is not clear whether such
an increase in rework cost would be offset by the expected benefit of reduced component
creation cost.

For all other pairs, the result was significant at the 0.01 level. Reuse via slight modi-
fication shows a 35 percent reduction in rework cost over newly created components, while
~ verbatim reuse provides an 88 percent reduction. For these modes of reuse, the benefit of
fewer errors clearly outweighs the cost of more difficult error correction. This measure of
benefit is somewhat conservative, as it does not account for the expected reduction in com-
ponent creation cost, or for the impact of errors as “obstacles” in the development process
(e.g., the cost of delays due to effort spent correcting errors). As such, we expect these modes
of reuse to yield an even greater improvement over new development. This shows that there
is a shift in costs of reuse compared to traditional development, with the reuse-oriented
development showing less development effort and fewer, but more costly, errors.

5.4 Source of Errors

Understanding the activity in which the error is introduced allows for corrective action
to be applied at the appropriate time. Table 8 shows, for each class of component origin,
the percentage of errors from each error source (when the error was introduced). Across all

4-68 SEL-95-003

Component Rgmts. or ’ Previous | Any
Origin Fun. Spec. | Design | Code | Change | Error

New 7.3 16.8 | 68.1 7.8 | 100
Extensively Modified 5.6 20.2 | 59.7 14.5] 100
Slightly Modified 44 26.9 | 60.1 10.6 | 100
Reused Verbatim 34 34| 741 19.0 100

[All Components | 57| 18.2] 66.1 | 10.0 | 100

Table 8: Percentage of errors in each class of error source by class of reuse

classes, coding errors are the most common error; however, errors associated with require-
ments, functional specification and design occur at a slightly higher rate in new components
than in reused components. The Basili-Perricone study reported the opposite effect of reuse
on the specification errors [BP84]. They found that modified modules had a higher propor-
tion of specification errors than did the new modules, and explained the result by suggesting
that the specification was not well-enough or appropriately defined to be used in different
contexts. A similar result was reported by Endres [End75]. A difference from the environ-
ments examined in those studies is that reuse has been well planned for in this environment.
The organization is not structured as a pure “component factory” as described in section 3,
but it is moving in that direction. As such, the architecture, design and specifications have
improved in this environment to better allow and encourage reuse. This result suggests that
the reused functionality is more likely to be well specified. This is not surprising, since the
reused components have been specified previously, with the expectation that they would be
reused. As such, any specification errors are more likely to affect new components rather
than reused components. The result also indicates that reuse, whether formal or informal,
is occurring in this environment at a higher level than simply code.

A second item of interest is the increased percentage of design errors in the modified
components. This suggests that there is increased difficulty in designing an adaptation of
an existing component to a new role. This is more difficult because the reuser must be
concerned with two pieces of information: the intended function and the existing function.
In creating a new component, one only needs to be concerned with the intended function.
A misunderstanding of the existing function can result in an error, and that error is likely
to be attributed to the design.

5.5 Time of Error Detection

Errors detected late in the development life-cycle can have a much greater cost than
those detected early. Table 9 shows, by class of component origin, the percentage of all errors
and the more difficult errors that escape unit test. Across all errors, we see little difference
between the classes of new, extensively modified, and reused verbatim components, as nearly
two thirds of the errors in these classes escaped unit test. This is significantly higher than
what we observed in the slightly modified components, where only 43 percent escaped unit

4-69 SEL-95-003

Component Pct. All [Pct. Diff. | Pct. Diff. |
Origin Errors. | Isolation | Completion
New 69 86 80
| Extensively Modified 66 81 87
Slightly Modified 43 74 58
| Reused Verbatim 62| 100 100
All Components 64 84 78

Table 9: Percentage of errors that escape unit test

Component Error of Error of
Origin Omission | Both | Comission | Any
New 35.4 | 28.6 36.0 | 100
Extensively Modified 40.3 | 294 30.3 | 100
Slightly Modified 39.6 | 20.8 39.6 | 100
Reused Verbatim 26.3 | 26.3 - 473 100
All Components 36.2 | 27.2 | 36.6 | 100

Table 10: Percentage of errors of omission and commission

test.

Of the difficult isolation errors (those taking more than one day to isolate), there is not
much difference among the classes-a relative high percentage of these errors escape in all
classes. However, again, the slightly modified components do show the lowest percentage.
There is a significant reduction in the slightly modified class in the percentage of difficult-
to-complete errors that escape unit test, as only 58 percent of these errors escape unit test,
compa.red to 80 to 100 percent in the other classes. This suggests that the verification process
is more effective in eliminating the difficult errors for the slightly modified components than
for other modes of component creation.

5.6 Nature of the Errors

Table 10 shows the percentage of errors that were classified as one of omission, com-
mission, or both. An error associated with a component that was reused verbatim is more
likely to be error of commission, and less likely to be one of omission. This suggests that the
reused component was typically complete, i.e., it contained the necessary functionality, but
at times was in error.

Extensively modified components are more likely to have errors of omission than errors
of commission. This may be an indication of the greater complexity of these components.
'Another possible explanation is that in the development of these components, the intended

4-70 SEL-85-003

Component
Origin Procedural | Interface | Data | All
New 41.2 14.1 | 44.6 | 100
 Extensively Modified 47.6 17.7 | 34.7 | 100
Slightly Modified 31.8 31.2 | 36.9 | 100
| Reused Verbatim 48.2 12.1] 39.7] 100
All Components 40.9 17.5 | 41.6 | 100

Table 11: Percent of errors of each type by class of component origin

function was not so clear, resulting in necessary parts being omitted. Additional review
of the completeness of the design of these components may be a means for removing these
errors at an earlier stage.

New and extensively modified components have a higher rate of errors that are classified
as both omission and commission than do the slightly modified or reused verbatim compo-
nents. This may be due to the nature of new development-it is more likely to result in a
complex error.

5.7 Type of Errors

Table 11 shows the percentage of errors that were classified in each of the three classes:
procedural, interface, and data. Procedural errors are those that were classified as either
a computational or a logic error, interface errors are those that were classified as either an
internal or external interface error, and data errors are those that were classified as either
an initialization or a data value error.

We see a significant difference in the distribution of error types in the slightly modified
components, as they have a much higher frequency of interface errors than any other class.
This suggests that the nature of the modifications is likely to be associated with the interface.
We also see that the new components are more likely to have data errors than the reused
components. Basili and Perricone found the opposite effect, namely, that the modified
components had a greater percentage of data errors than did the new components. These
results suggest that a different approach has been taken toward reuse. In the FORTRAN
project studied by Basili and Perricone, the approach may have been to tailor data values
and initialization to adapt the component to the new application. The approach taken in
the Ada environment is to create generalized modules that can be parameterized to create
instances suitable for the new application. As such, one might expect fewer data errors in
reused components in the Ada environment.

4-1 SEL-95-003

6 Conclusions

In this analysis we observed clear benefits from reuse-for example, reduced error density.
We found that verbatim reuse provides a substantial improvement in error density (more
than a 90 percent reduction) compared to new development. The other modes of reuse did
not approach this level of improvement. Reuse via slight modification offered a 50 percent
reduction in error density compared to new development, but the improvement with this
mode of reuse was greater in errors detected late in development (a 70 percent reduction).

We observed a shift in costs of reuse-oriented development, with the reuse offering fewer,
but more difficult errors. The effect of increased difficulty in error correction was apparent
across the three modes of reuse, although it was less evident in the slightly modified com-
ponents. In both the verbatim and slightly modified classes of reuse, the relative amount
of rework was less than in new code. This suggests that while there is a cost of increased
correction effort per error associated with such reuse, the cost is outweighed by the benefit
of the reduced number of errors. Coupled with the reduction in development effort, these
modes of reuse appear to offer a substantial benefit to development.

Reuse via extensive modification does not provide the reduction in error density that
the other modes of reuse yield, and it also results in errors that typically were more difficult
to isolate and correct than the errors in newly developed code. In terms of the rework due
to the errors in these components, it appears that this mode of development is more costly
than new development. However, extensive modification may offer savings in development
effort that outweigh the increased cost of rework. This remains an issue for further study.

A different profile of errors was observed for different modes of reuse. For example, a
greater percentage of design errors were observed in the modified components. The observed
increase in design errors may be due to errors in the additional activities of understanding the
function and implementation of the component to be modified, as well as due to the fact that
less code was being written. Such information can be used to help in selecting appropriate
verification methods for projects where there is significant reuse via modification. One may
want to increase the effort in design reviews on such projects, while on projects dominated
by new development, code reviews may receive more emphasis. This finding also suggests
that one might want to investigate techniques to better describe the components stored
in the experience base so that the likelihood of a Imsundersta.ndmg of the function and
implementation is lessened.

The experience with reuse in an organization and the approach taken toward reuse are
likely to influence the nature of errors observed in the organization. In this study of an
organization well experienced with reuse, we observe a number of effects that differed with
findings from other studies of environments where reuse was not planned for to such an
extent. The reused components appear to be simpler, have fewer dependencies, and be more
parameterized than new components. However, as this organization gained reuse experience,
the distinction became less apparent-more and more complex components, at higher levels
in the application hierarchy were reused. As an organization moves toward a reuse-oriented
development approach, it must evolve its practices to accommodate the new effects of reuse.
In the context of the QIP, error analysis can be a useful mechanism to provide insight into
the benefits and difficulties of reuse in software development.

4-72 SEL-95-003

References

[AE92]

[AMS7]

[Bas85]

[BBH93]

[BCC92]

[BP84]

[BP8g]

[BRSS]

[BRO1]

[Bro87]

[BS87]

[BTHO3]

[BWS93]

[CBo1]

W. W. Agresti and W. M. Evanco. Projecting software defects from analyzing
Ada designs. IEEE Transactions on Software Engineering, 18(11), November
1992.

W. Agresti and F. McGarry. The Minnowbrook workshop on software reuse: A
summary report. In W. Tracz, editor, Sofitware Reuse: Emerging Technology.
IEEE Computer Society Press, 1987.

V. R. Basili. Quantitative Evaluation of Software Methodology. In Proceedings
of the First Pan Pacific Computer Conference, Australia, July 1985.

L. C. Briand, V.R. Basili, and C. J. Hetmanski. Developing interpretable models
with optimized set reduction for identifying high-risk software components. IEEE
Transaction on Software Engineering, 19(11), November 1993.

V.R. Basi]i, G. Caldiera, and G. Cantone. A Reference Architecture for the Com-
ponent Factory. ACM Transactions on Software Engineering and Methodology,
1(1), January 1992.

V. R. Basili and B. T. Perricone. Software errors and complexity: An empirical
investigation. Communications of the ACM, 27(1), January 1984.

B. W. Boehm and P. N. Papaccio. Understanding and Controlling Software Costs.
IEEF Transactions on Software Engineering, 14(10), October 1988.

V. Basili and D. Rombach. The TAME Project: Towards Improvement-Oriented
Software Environments. IEEE Transactions on Software Engineering, 14(6), June
1988.

V. R. Basili and H. D. Rombach. Support for Comprehensive Reuse. Software
Engineering Journal, 6(5), September 1991.

F. P. Brooks. No Silver Bullet: Essence and Accidents of Software Engineering.
IEEE Computer, 20(4), April 1987.

V. R. Basili and R. W. Selby. Comparing the effectiveness of software testing
strategies. IEEE Transactions on Software Engineering, 13(12), December 1987.

L. C. Briand, W. M. Thomas, and C. J. Hetmanski. Modeling and managing
risk early in software development. In Proceedings of the Fifteenth International
Conference on Software Engineering, May 1993.

J. Bailey, S. Waligora, and M. Stark. Impact of Ada in the flight dynamics
division: Excitement and frustration. In Proceedings of the 18th Annual Software
Engineering Workshop. NASA /GSFC, December 1993.

G. Caldiera and V. R. Basili. Identifying and Qualifying Reusable Software Com-
ponents. IEEE Computer, 24(2), February 1991.

4-73 SEL-95-003

[DK93]

[Dou8T]

[EG90]

[End75)
[GP87]
[Ich85]

[Jon84]

[Kes90]

[LG84]

[LV89)

[MK92]

[MP93]

[Rom91]

[Sel88]

[SEL94]

M. Dunn and J. Knight. Automating the detection of reusable parts in exist-
ing software. In Proceedings of the 15th International Conference on Software
FEngineering, Baltimore, Maryland, May 1993.

D. Doubleday. ASAP: Ada Static Analyzer Program. Technical Report CS-TR-
1897, University of Maryland, May 1987.

N. Ebel and C. Genillard. The reusability of Ada software components. In
R. Gautier and P. Wallis, editors, Software Reuse with Ada. Peter Peregrinus
Ltd., 1990.

A. Endres. An analysis of errors and their causes in system programs. In Pro-
ceedings of the International Conference on Software Engineering, April 1975.

A. Gargaro and T. Pappas. Reusability issues and Ada. IEEFE Software, July
1987.

J. Ichbiah. The Rationale for the Ada Programming Language. Cambridge Uni-
versity Press, 1985.

T. C. Jones. Reusability in programming: A survey of the state of the art. IJEEF
Transactions on Software Engineering, SE-10(5), September 1984.

R. Kester. SEL Ada Reuse Analysis and Representations. In Proceedings of the
15th Annual GSFC Software Engineering Workshop. NASA/GSFC, November
1990.

R. Lanergan and C. Grasso. Software Engineering with Reusable Designs and
Code. IEEE Transactions on Software Engineering, SE-10(5), September 1984.

R. Lind and K. Vairavan. An experimental investigation of software metrics and
their relationship to software development effort. IEEE Transactions on Software
Engineering, 15(5), May 1989.

J. Munson and T. Khoshgoftaar. The detection of fault-prone programs. IEEFE
Transactions on Software Engineering, 18(5), May 1992.

K. Moller and D. Paulish. An empirical investigation of software fault distribution.
In Proceedings of the First International Software Metrics Symposium, Baltimore,
Maryland, May 1993.

H. D. Rombach. Software Reuse: A Key to the Maintenance Problem. Informa-
tion and Software Technology, 33(1), January/February 1991.

R. Selby. Empirically analyzing software reuse in a production environment. In
W. Tracz, editor, Software Reuse: Emerging Technology. IEEE Computer Society
Press, 1988.

An Overview of the Software Enginnering Laboratory. Technical Report SEL-
94-005, Software Engineering Laboratory, NASA Goddard Space Flight Center,
December 1994.

4-74 SEL-95-003

[SPsg]

[Sta93]

[SYTP85]

[TDB92]

[WCW85]

R.W. Selby and A.A. Porter. Learning from Examples: Generation and Evalu-
ation of Decision Trees for Software Resource Analysis. IEEE Transactions on
Software Engineering, 14(11), November 1988.

M. Stark. Impacts of object-oriented technologies: Seven years of SEL stud-
ies. In Proceedings of Eigth Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, October 1993.

V: Shen, T. Yu, S. Thebaut, and L. Paulsen. Identifying error-prone software-an
empirical study. IEEE Transactions on Software Engineering, SE-11(4), April
1985.

W. M. Thomas, A. Delis, and V. R. Basili. An evaluation of Ada source code
reuse. In J. van Katwijk, editor, Ada: Moving Towards 2000 (Proceedings of the
Ada—~Europe International Conference), Zandvoort, The Netherlands, June 1992.
Springer-Verlag.

A. Woli, L. Clarke, and J. Wileden. Ada-based support for programmming in the
large. IEEE Software, March 1985.

4-75 SEL-95-003

Page intentionally left blank

A VALIDATION OF OBJECT-ORIENTED DESIGN METRICS

Victor R. Basili", Lionel Briand and Walcélio L. Melo™
- &3 2
*University of Maryland **CRIM /7//‘5 7R
Dep. of Computer Sciences 1801 McGill College Av. “g?f.«. Y,
Institute for Advanced Computer Studies Montréal (Quebec) it and &
Coliege Park, MD, 20770 USA H3A 2N4, Canada Z
{basililmelo}@cs.umd.edu Ibriand @crim.ca 2. /?ﬁ
Abstract

This paper presents the results of a study conducted at the University of Maryland in which we
experimentally investigated the suite of Object-Oriented (OO) design metrics introduced by
[Chidamber&Kemerer, 1994]. In order to do this, we assessed these metrics as predictors of
fault-prone classes. This study is complementary to [Lie&Henry, 1993] where the same suite of
metrics had been used to assess frequencies of maintenance changes to classes. To perform our
validation accurately, we collected data on the development of eight medium-sized information
management systems based on identical requirements. All eight projects were developed using a
sequential life cycle model, a well-known OO analysis/design method and the C++ programming
language. Based on experimental results, the advantages and drawbacks of these OO metrics are
discussed and suggestions for improvement are provided. Several of Chidamber&Kemerer’s OO
metrics appear to be adequate to predict class fault-proneness during the early phases of the life-
cycle. We also showed that they are, on our data set, better predictors than “traditional” code
metrics, which can only be collected at a later phase of the software development processes.

Key-words: Object-Oriented Design Metrics; Error Prediction Model; Object-Oriented Software
Development; C++ Programming Language.

During this work the authors were, in part, supported by the following grants: Basili by NASA grant NSG-5123,
Briand by the IGLOO project and NFS grant 01-5-24845. and Melo by a2 Westinghouse grant and UMIACS.

Published as a Technical Report, Univ. of Maryland. Dep. of Computer Science, College Park, MD, 20742. April
1995. CS-TR-3443.

4-77 SEL-95-003

1. Introduction
1.1 Motivation

The development of a large software system is a time- and resource-consuming activity. Even with
the increasing automation of software development activities, resources are still scarce. Therefore,
we need to be able to provide accurate information and guidelines to managers to helb them make
decisions, plan and schedule activities, and allocate resources for the different software activities
that take place during software evolution. Software metrics are thus necessary to identify where the

resource issues are; they are a crucial source of information for decision-making [Harrison, 1994].

Testing of large systems is an example of a resource- and time-consuming activity. Applying equal -
testing and verification effort to all parts of a software system has become cost-prohibitive.
Therefore, one needs to be able to identify fault-prone classes so that testing/verification effort can
be concentrated on these classes [Harrison, 1988]. The availability of adequate product design

metrics for characterizing error-prone classes is thus vital.

Dozens of product metrics have been proposed [Fenton, 1991], used, and, sometimes,
experimentally validated in academia [Basili&Hutchens, 1982] and industry, e.g., number of lines
of code, MacCabe complexity metric, etc. In fact, many companies have built their own cost,
quality and resource prediction models based on product metrics. TRW [Boehm, 1981], the
Software Engineering Laboratory (SEL) [McGarry er. al., 1994] and Hewlett Packard [Grady,
1994] are examples of software organizations that have been using product metrics to build their

cost, resource, defect, and productivity models.
1.2 Issues

In the last decade, many companies have started to introduce Object-Oriented (OO) technology into
their software development environments. OO analysis/design methods, OO languages, and OO

development environments are currently popular worldwide in both small and large software

4-78 SEL-95-003

organizations. The insertion of OO technology in the software industry, however, has created new
challenges for companies which use product metrics as a tool for monitoring, controlling and
improving the way they develop and maintain software. Therefore, metrics which reflect the
specificities of the OO paradigm must be defined and validated in order to be used in industry.
Some studies have concluded that “traditional” product metﬁcs are not sufficient for characterizing,
assessing and predicting the quality of OO software systems. For example, based on a study at
Texas Instruments, [Brooks, 1993] has reported that McCabe cyclomatic complexity appeared to

be an inadequate metric for use in software development based on OO technology.

To address this issue, OO metrics have recently been proposed in the literature [Abreu&Carapuga,
1994; Chidamber&Kemerer,_ 1994]. However, most of them have not undergone a thorough and
comprehensive experimental validation. [Briand et.al., 1994] and [Lie&Henry, 1993] are rare
exceptions in this respect. The work described in this paper is an additional step toward a thorough
experimental validation of the OO metric suite defined in [Chidamber&Kemerer, 1994]. This paper
presents the results of a study conducted at the University of Maryland in which we performed an
experimental validation of that suite of OO metrics with regard to their ability to identify fault-
prone classes. Data were collected during the development of eight medium-sized management
information systems based on identical requirements. All eight projects were developed using a
sequential life cycle model, a well-known Object-Oriented analysis/design method [Rumbaugh et
al, 1991], and the C++ program:hing language [Stroustrup, 1991]. In fact, we used an experiment
framework that should be representative of currently used technology in industrial settings. This
study discusses the strengths and weaknesses of the validated OO metrics with respect to

predicting faults across classes.
1.3. Outline

This paper is organized as follows. Section 2 presents the suite of OO metrics proposed by
Chidamber&Kemerer (1994), and the methodology we used for experimental validation. Section 3

presents the data collected together with the statistical analysis of the data. Section 4 compares our

4-79 SEL-95-003

study with other works on the subject. Finally, section 5 concludes the paper by presenting lessons

learned and future work.
2. Description of the Study
2.1. Experiment goal

The goal of this study was to analyze experimentally the OO design metrics pfoposed in
[Chidamber&Kemerer, 1994] for the purpose of evaluating whether or not these metrics are
suitable for predicting the probability of detecting faulty classes. From [Chidamber&Kemerer,
1994], [Chidamber&Kemerer, 1995] and [Churcher&Shepperd, 1995], it is clear that the
definitions of these metrics are not language independent. As a consequence, we had to slightly -
adjust some of Chidamber&Kemerer’s metrics in order to reflect the specificities of C++. These

metrics are as follows:

+ Weighted Methods per Class (WMC). WMC measures the complexity of an individual class.
Based on [Chidamber&Kemerer, 1994], if we consider all methods of a class to be equally
complex, then WMC is simply the number of methods defined in each class. In this study, we
adopted this approach for the sake of simplicity and because the choice of a complexity metric
would be somewhat arbitrary since it is not fully specified in the metric suite. Thus, WMC is
defined as being the number of all member functions and operators defined in each class.
However, "friend” operators (C++ specific construct) are not counted. Member functions and
operators inherited from the ancestors of a class are also not counted. This definition is
identical the one described in [Chidamber&Kemerer, 1995]. The assumption behind this metric
is that a class with significantly more member functions than its peers is more complex, and by

consequence tends to be more fault-prone.

Churcher&Shepperd (1995) have argued that WMC can be measured in different ways
depending on how member functions and operations defined in a C++ class are counted. We

believe that the different counting rules proposed by [Churcher&Shepperd, 1995] correspond

4-30 SEL-95-003

to different metrics, similar to the WMC metric, and which must be experimentally validated as
well. A validation of Churcher&Shepperd’s WMC-like metrics is, however, beyond the scope

of this paper.

Depth of Inheritance Tree of a class (DIT) — DIT is defined as the maximum depth of the
inheritance graph of each class. C++ allows multiple inheritance and therefore classes can be
organized into a directed acyclic graph instead of trees. DIT, in our case, measures the number
of ancestors of a class. The assumption behind this metric is that well-designed OO systems are
those structured as forests of classes, rather than as one very large inheritance lattice. In other
words, a class located deeper in a class inheritance lattice is supposed to be more fault-prone

because the class inherits a large number of definitions from its ancestors.

Number Of Children of a Class (NOC) — This is the number of direct descendants for each
class. Classes with large number of children arevdifﬁcult to modify and usually require more
testing because the class potentially affects all of its children. Thus, a class with numerous
children has to provide services in a larger number of contexts and must be more flexible. We

expect this to introduce more complexity into the class design.

Coupling Between Object classes (CBO) — A class is coupled to another one if it uses its
member functions and/or instance variables. CBO provides the number of classes to which a
given class is coupled. The assumption behind this metric is that highly coupled classes are
more fault-prone than weakly coupled classes. So coupling between classes should be

identified in order to concentrate testing and/or inspections on such classes.

Response For a Class (RFC) — This is the number of methbds that can potentially be executed
in response to a message received by an object of that class. In our study, RFC is the number
of functions directly invoked by member functions or operators of a class. The assumption
here is that the larger the response set of a class, the higher fhe complexity of the class, and the

more fault-prone and difficult to modify.

4-81 SEL-95-003

e Lack of Cohesion on Methods (LCOM) — This is the number of pairs of member functions
without shared instance variables, minus the number of pairs of member functions with shared
instance variables. However, the metric is set to O whenever the above subtraction is negative.
A class with low cohesion among its methods suggests an inappropriate design, (i.e., the
encapsulation of unrelated program objects and member functions that should not be together),

which is likely to be fault-prone.

Readers acquainted with C++ can see that many particularities of C++ are not taken into account by
Chidamber&Kemerer’s metrics, e.g., C++ templates, friend classes, etc. In fact, additional work
is necessary in order to extend the proposed OO metric set with metrics specifically tailored to

C++.
2.2 Experimental framework

In order to experimentally validate the OO metrics proposed in [Chidamber&Kemerer, .1 994] with
regard to their capabilities o predict fault probability, we ran a controlled study over four months
(from September to December, 1994). The population under study was a graduate level class
offered by the Department of Computer Science at the University of Maryland. The students were
not required to have previous experience or training in the application domain or OO methods. All
students had some experience with C or C++ programming and relational databases and therefore

had the basic skills necessary for such an experiment.

The students were randomly grouped into 8 teams. Each team developed a medium-sized
management information system that supports the rental/return process of a hypothetical video

rental business, and maintains customer and video databases.

The development process was performed according to a sequential software engineering life-cycle
model derived from the Waterfall model. This model includes the following phases: Analysis,
Design, Implementation, Testing, and Repair. At the end of each phase, a document was delivered:

Analysis document, design document, code, error report, and finally, modified code, respectively.

4-32 SEL-95-003

Requirement specifications and design documents w'ere checked in order to verify that they
matched the system requirements. Errors found in these first two phases were reported to the
students. This maximized the chances that the implementation began with a correct OO
analysis/design. The testing phase was accomplished by an independent group composed of
experienced software professionals. This group tested all systems according to similar test plans
and using functional testing techniques. During the repair phase, the students were asked to correct

their system based on the errors found by the independent test gfoup.

OMT, an OO Analysis/Design method, was used during the analysis and design phases
[Rumbaugh et. al, 1991). The C++ programming language, the GNU software development
environment, and OSF/MOTIF were used during the implementation. Sparc Sun stations were
used as the implementation platform. Therefore, the development environment and technology we

used are representative of what is currently used in industry and academia.
The following libraries were provided to the students:

a) MotifApp. This public domain library provides a set of C++ classes on top of OSF/MOTIF for
manipulation of windows, dialogs, menus, etc. [Young, 1992]. The MotifApp library provides

a way to use the OSF/Motif widgets in an OO programming/design style.

b) GNU library. This public domain library is provided in the GNU C++ programming

environment. It contains functions for manipulation of string, files, lists, etc.
¢) C++ darabase library. This library provides a C++ implementation of multi-indexed B-Trees.

No special training was provided for the students in order to teach them how to use these libraries.
However, a tutorial describing how to implement OSF/Motif applications was given to the
students. In addition, a C++ programmer, familiar with OSF/Motif applications, was available to -
answer questions about the use of OSF/Motif widgets and the libraries. A hundred small programs
exemplifying how to use OSF/Motif widgets were also provided. Finally. the code sources and the

complete documentation of the libraries were made available. It is important to note that the

4-83 SEL-95-003

students were not required to use the libraries and, depending on the particular design they

adopted, different reuse choices were expected.

We also provided a specific domain application library in order to make our experiment more
representative of the "real world”. This library implemented the graphical user interface for
insertion/removal of customers and was implemented in such a way that the main resources of the
OSF/Motif widgets and MotifApp library were used. Therefore, this library contained a small part

of the implementation required for the development of the rental system.
2.3. Data Collection

We collected: (1) the source code of the C++ programs delivered at the end of the implementation .
phase, (2) data about these programs, (3) data about errors found during the testing phase and
fixes during the repair phase, and (4) the repaired source code of the C++ programs delivered at
the end of the life cycle. GEN++ [Devanbu, 1992] was used to extract Chidamber&Kemerer’s OO
design metrics directly from the source code of the programs delivered at the end of the
implementation phase. To collect items (2) and (3) , we used the following forms, which have

been tailored from those used by the Software Engineering Laboratory [Heller et. al, 1992]:
» Defect Report Form.
* Component Ornigination Form.

In the following sections, we comment on the purpose of the Component Origination and Defect

Report forms used in our experiment and the data they helped collect.
2.3.1 Defect Report Form

This form was used to gather data about (1) the defects found during the testing phase, (2) classes

changed to correct such defects, and (3) the effort in correcting them. The latter includes:

4-84 SEL-95-003

* how long it took to determine precisely what change was needed. This includes the effort
required for understanding the change or finding the cause of the error, locating where the

change was to be made, and determining that all effects of the change were accounted for.

* how much time it took to implement the correction. This includes design changes, code

modification, regression testing, and updates to documentation.
2.3.2 Component Origination Form

This form is used to record information that characterizes each class under development in the
project at the time it goes into configuration management. Firstly, this form is used to capture
whether the class has been developed from scratch or has been developed from a reused class. In
the latter case, we collected the amount of modification (none, small or large) that was needed to
meet the system requirements and design as well as the name of the reused class. By small/large,
we mean that less/more than 25% of the original code had been modified, respectively. However,
this kind of data was difficult to obtain because we do not have appropriate tools to collect this data
automatically. As a simplification, we asked the developers to tell us if more or less than 25% of a
class had been changed. In the former case, the class was labeled: Extensively modified and in the

latter case: Slightly modified. Classes reused without modification were labeled: verbatim reused.

In addition, the name of the sub-system to which the class belonged was also collected. In our
study, we had three types of sub-systems: graphical user interface (GUI), textual user interface

(TUI), and database processing (DB).
3. Analysis of Experimental Results

In this section, we will attempt to assess experirnen-tally whether the OO design metrics defined in
[Chidamber&Kemerer, 1994] are suitable predictors of fault-prone classes. This will help us
assess these metrics as quality indicators and how they comparé to common code metrics. Thus,
we intend to provide the type of empirical validation that we think is necessary before any attempt
to use such metrics as objective and early indicators of quality. Section 3.1 shows the descriptive

4-85 SEL-95-003

distributions of the OO metrics in the studied sample whereas Section 3.2 provides the results of

univariate and multivariate analyses of the relationships between OO metrics and fault-proneness.
3.1. Analysis of Distributions

Figure 1 shows the distributions of the analyzed OO metrics based on 180 classes present in the
studied systems. Table 1 provides common descriptive statistics of the metric distributions. These
results indicate that inheritance hierarchies are somewhat flat (DIT) and that classes have, in
general, few children (NOC). In addition, most classes show a lack of cohesion (LCOM) near 0.
This latter metric does not seem to differentiate classes well and this stems from its definition

which prevents any negative measure. This issue will be discussed further in Section 3.2.

1007 WMC . - DIT
90 8-
80 -
707 6—
60 5—
507 ’

NOC LCOM J CBO

Figure 1: Distribution of the analyzed OO metrics

4-86 SEL-95-003

WMC DIT RFC NOC LCOM CBO

maximum 99.000 9.0000 105.00 13.000 426.00 30.00
minimum 1.0000 0.0000 0.0000 0.0000 0.0000 0.000
median 9.5000 0.0000 19.5000 0.0000 0.0000 5.000
Mean 13.3897 1.3179 33.9141 0.2308 9.7077 6.7962

Std Dev 14.9052 1.9896 33.3703 1.5377 63.7766 7.5614

Table 1: Descriptive statistics of the analyzed OO metrics.

Descriptive statistics will be useful to help us interpret the results of the analysis in the remainder of

this section. In addition, they will facilitate comparisons of results from future similar studies.
3.2 The Relationships between Fault Probability and OO Metrics
3.2.1 Analysis Methodology

The response variable we use to validate the OO design metrics is binary, i.e., was a fault detected
in a class during testing phases? We used logistic regression to analyze the relationship between
metrics and the fault-proneness of classes. Logistic regression is a classification technique
[Hosmer&Lemeshow, 1989] used in many experimental sciences based on maximum likelihood
estimation. In this case, a careful outlier analysis must be performed in order to make sure that the
observed trend is not the result of a few observations [Dillon&Goldstein, 1984], even though

logistic regression is deemed to be more robust for outliers than least-square regression.

In particular, we first used univariate logistic regression, to evaluate the relationship of each of the
metrics in isolation and fault-proneness. Then, we performed multivariate logistic regression, to
evaluate the predictive capability of those metrics that had been assessed sufficiently significant in
~ the univariate analysis (e.g., & < 0.10 is a reasonable heuristic). This modeling process is further

described in [Hosmer&Lemeshow, 1989].

A multivariate logistic regression model is based on the following relationship equation (the

univariate logistic regression model is a special case of this, where only one variable appears):

4-87 SEL-95-003

log(—l_?—p)=Co+ C1X1 +CoXg + -+ CpXp (1)

where p is the probability that a fault will be found in a class during the validation phase, and the

Xj's are the OO metrics included as predictors in the model (called covariates of the logistic

regression equation). In the two extreme cases, i.e., when a variable is either non-significant or

entirely differentiates fault-prone classes, the curve (between p and any single X;, i.e., assuming
that all other X j's are constant) approximates a horizontal line and a vertical line respectively. In

between, the curve takes a flexible S shape. However, since p is unknown, the coefficients C; will

be estimated through a likelihood function optimization [Hosmer&Lemeshow, 1989]. This
procedure assumes that all observations are statistically independent. When building the regressiori V
equations, each observation was weighted according to the number of faults detected in each class.
The rationale is that each detection of a fault is considered as an independent event: Classes where

no faults were detected were weighted 1.

Tables 2 and 3 contain the results we obtained through, respectively, univariate and multivariate
logistic regression on all of the 180 classes. We report those related to the metrics that turned out to
be the most significant across all eight development projects. For each metric, we provide the

following statistics:

* Coefficient (appearing in Tables 2 and 3), the estimated regression coefficient. The larger the
coefficient in absolute value, the stronger the impact of the explanatory variable on the

probability p of a fault to be detected in a class.

* Avy (appearing in Table 2 only), which is based on the notion of odd ratio

[Hosmer&Lemeshow, 1989], and provides an evaluation of the impact of the metric on the

response variable. More specifically, the odds ratio' y(X) represents the ratio between the

probability of having a fault and the probability of not having a fault when the value of the

metric is X. As an example, if, for a given value X, w(X) is 2, then it is twice as likely that the

4-88 SEL-95-003

class does contain a fault than that it does not contain a fault. The value of Ay is computed by

means of the following formula:

Ay y(X+1)
Y(X)

(2)

Therefore, Ay represents the reduction/increase in the odd ratio when the value X increases by
1 unit. This provides a more intuitive insight than regression coefficients into the impact of

explanatory variables.

* The level of significance (c, appearing in Tables 2 and 3) provides an insight into the accuracy
of the coefficient estimates. It tells the reader about the probability of the coefficient being
different from zero by chance. Usually, a level of significance of ax= 0.05 (i.e., 5%
probability) is used as a threéhold to determine whether an explanatory variable is a significant
predictor. However, the choice of a particular level of significance is ultimately a subjective
decision and other levels such as o = 0.01 or 0.1 are common. Also, the larger the level of
significance, the larger the standard deviation of the estimated coefficients, and the less
believable the calculated impact of the explanatory variables. The significance test is based on a
likelihood ratio test [Hosmer&Lemeshow, 1989] commonly used in the framework of logistic

regression.

Based on equation (1), the likelihood function of a data set of size D is:

D
L=]]rxp 3)

i=1

where:

e(Co +C1eXj1 + ... + CpeXin)eYj
n(xq) = 1+e(Co #C1°Xi1 + .. + Cp*Xin) S

4-89° SEL-95-003

where Y; is assigned the value 1 if the class does not contain any fault, O otherwise. The n-
dimensional vectors X; contain the OO design metrics characterizing each of the D observations.
Also, 7(X;) represents the estimated probability for a class to contain (or not, depending on which
is the case) a fault. The coefficients that will maximize the likelihood function will be the regression
coefficient estimates. For mathematical convenience, [= Ln[L], the log-likelihood, is usually

maximized.

One of the global measure of goodness of fit we will use for logistic regression models is R2, a

statistic defined as:
Io - 1)
R2= (0~ in
(o - Ls)

where
» lois the log-likelihood function without using any covariate (just the intercept),
» Inis the log-likelihood of the model including the n selected design metrics as covariates,

» Isis the log-likelihood of the saturated model, i.e., where Y;, (0 or 1) is substituted for each

probability 7{X;) in I The log-likelihood Is is the maximum value that can be assigned to ..

The higher the R2, the more accurate the model. However, as opposed to the RZ of least-square
regression, high R?'s are rare for logistic regression because In rarely approaches the value of Is
since the computed 7(X;)’s in In rarely approach 1. The interested reader may refer to
[Hosmer&Lemeshow, 1989] for a detailed introduction to logistic regression. Finally, R2 may be

described as a measure of the proportion of toral uncerrainry that is attributed to the model fit.
3.2.2 Univariate Analysis

In this section, we analyze the six OO metrics introduced in [Chidamber&Kemerer, 1994] (though

slightly adapted to our context) with regard to the probability of fault detection in a class during test

4-90 SEL-95-003

phases. In our case, it is equivalent for the logistic model to calculate the probability of a single

fault to be detected in a class.

Weighted Methods per Class (WMC) was shown to be somewhat significant (o = 0.06)
overall. For new and extensively modified classes and for UI (Graphical and Textual User
Interface) classes, the results are much better: a = 0.0003 and o = 0.001, respectively. As
expected, the larger the WMC, the larger the probability of fault detection. These results can be
explained by the fact that the internal complexity does not have a strong impact if the class is
reused verbatim or with very slight modifications. In that case, the class interface properties

will have the most significant impact.

Depth of Inheritance Tree of a class (DIT) was shown to be very significant (o = 0.0000)
overall. As expected, the larger the DIT, the larger the probability of defect detection. Again,
results improve (Logistic RZ goes from 0.06 to 0.13) when only new and extensively modified

classes are considered.

Response For a Class (RFC) was shown to be very significant overall (o = 0.0000).
Predictably, the larger the RFC, the larger the probability of defect detection. However, the
logistic R? improved significantly for new and extensively modified classes and UI classes
(from 0.06 to 0.24 and 0.36, respectively). Reasons are believed to be the same as for WMC
for extensively modified classes. In addition, Ul classes show a distribution which is
significantly different from that of DB classes: the mean and median are significantly higher.

This, as a result, may strengthen the impact of RFC when performing the analysis.

Number Of Children of a Class (NOC) appeared to be very significant (except in the case of Ul
classes) but the observed trend is contrary to what was expected. The larger the NOC, the
lower the probability of defect detection. This surprising trend can be explained by the
combined facts that most classes do not have more than éne child and that verbatim reused

classes are somewhat associated with a large NOC. Since we have observed that reuse was a

4-91 SEL-85-003

significant factor in fault density [Melo er. al., 1995], this explains why large NOC classes are
less fault-prone. Moreover, there is some instability across class subsets with respect to the
impact of NOC on the probability of detecting a fault in a class (see Ay's in Table 2). This may
be explained in part by the lack of variability on this measurement scale (see distributions in

Figure 1).

» Lack of Cohesion on Methods (LCOM) was shown to be insignificant in all cases (this is why
the results are not shown in Table 2) and this should be expected since the distribution of
LCOM shows a lack of variability and a few very large outliers. This stems in part from the
definition of LCOM where the metric is set to 0 when the number of class pairs sharing
variable instances is larger than that of the ones not sharing any instances. This definition 1s
definitely not appropriate in our case since it sets cohesion to 0 for classes with very different

cohesions and keeps us from analyzing the actual impact of cobesion based on our data sample.

 Coupling Between Object classes (CBO) is significant and more particularly so for Ul classes

(. = 0.0000 and R2? = 0.17). No satisfactory explanation could be found for differences in

pattern between Ul and DB classes.

It is important to remember, when looking at the results in Table 2, that the various metrics have
different units. Some of these units represent "big steps” on each respective measurement scale
while others represent "smaller steps”. As a consequence, some coefficients show a very small

impact (i.e., Ay's) when compared to others. This is not, however, a valid criterion to evaluate the

predictive usefulness of such metrics.

Most importantly, besides NOC, all metrics appear to have a very stable impact across various
categories of classes (i.e., DB, Ul, New-Ext, etc.). This is somewhat encouraging since it tells us
that, in that respect, the various types of components are comparable. If we were considering
different types of faults separately, results might be different. Such a refinement is, however, part

of our future research plans.

4-92 SEL-95-003

Metrics Coefficient Ay o R2 Classes

WMC (1) 20.022 98% 0.0607 0.007 ALL
WMC (2) -0.086 92% 0.00035 0.024 New-Ext
WMC (3) -0.027 103% 0.0656 0.0154 DB
WMC (4) -0.0944 91% 0.0019 0.0467 Ul
DIT (1) -0.485 62% 0.0000 0.0648 ALL
DIT (2) -0.868 42% 0.0000 0.1314 New-Ext
DIT (3) -0.475 62% 0.043 0.0187 DB
DIT (4) -0.29 75% 0.024 0.017 Ul
RFC (1) -0.085 92% 0.0000 0.0648 ALL
RFC (2) -0.087 92% 0.0000 02477 New-Ext
RFC (3) -0.077 93% 0.0000 0.188 DB
RFC (4) -0.108 90% 0.0000 0.3624 Ul
NOC (1) 3.3848 3000% 0.0000 0.1426 ALL
NOC (2) 3.62 3734% 0.0011 3.6235 New-Ext
NOC (3) 2.05 777% 0.0000 0.0826 DB
CBO (1) -0.142 87% 0.0000 0.068 ALL
CBO (2) -0.079 92% 0.017 0.02 New-Ext
CBO (3) -0.086 92% 0.006 0034 DB
_CBO (4) -0.284 75% 10.0000 0.17 Ul

Table 2: Univariate Analysis - Summary of experimental results.
3.2.3 Multivariate Analysis

The OO design metrics presented in the previous section can be used early in the life cycle to build
a predictive mode] of fault-prone classes. In order to obtain an optimal model, we included these
metrics into a multivariate logistic regression model. However, only the metrics that significantly
improve the predictive power of the multivariate model were included through a stepwise selection
process. Another signiﬁéamt predictor of fault-proneness is the level of reuse of the class (called
“origin” in Table 3). This information is available at the end of the design phase when reuse
candidates have been identified in available libraries and the required amount of change can be
estimated. Table 3 describes the computed multivariate model. Using such a model for
classification, the results shown in Table 4 are obtained by using a classification threshold of
p(Fault detection) = 0.5 for the probability of detecting a single defect in a given class, 1.e., when
p > 0.5, the class is classified as faulty and otherwise as non-faulty. As expected, classes
predicted as faulty contain a large number of faults (250 faults on 48 classes) because those classes
tend to show a better classification accuracy.

4-93 SEL-95-003

We now assess the impact of using such a prediction model by assuming, in order to §implify
computations, that inspections of classes are 100% effective in finding faults. In that case, 80
classes (predicted as faulty) out of 180 would be inspected and 48 faulty classes out of 58 would
be identified before testing. If we now take into account individual faults, 250 faults out of 258
would be detected during inspection. As mentioned above, such a good result stems from the fact

that the prediction model is more accurate for multiple-faults classes.

Coefficient o
Intercept 3.13 0.0000
DIT -0.50 0.0004
RFC -0.11 0.0000
NOC 2.01 0.0178
RFC -0.13 0.0072
CBO -0.238 0.0001
Origin -1.84 0.0000

Table 3: Multivariate Analysis with OO design metrics

Predicted No fault Fault
Actual

No Fault 90 32
Fault 10 (18) 48 (250)

Table 4: Classification Results with OO Design Metrics. The figures before parentheses in the right
column are the number of classes classified as faulty. The figures between the parentheses are the
faults contained in those classes.

In order 1o evaluate the predictive accuracy of these OO design metrics, it would be interesting to
compare their predictive capability with the one of the usual code metrics, that can only be obtained
later in the development life cycle. Three code metrics, among the ones provided by the Amadeus
tool [Amadeus, 1994], were selected through a st€pwise regression procedure. Table 5 shows the
resulting parameter estimations of the multivariate logistic‘regression model where: MaxStatNext is
the maximum level of statement nesting in a class, FunctDef 1s the number of function declarations,
and FunctCall is the number of function calls. However, based on the whole set of metrics

provided by Amadeus, other multivariate models yield resuits of similar accuracy. This model

4-94 SEL-95-003

happens to be, however, the model resulting from the use of a standard, stepwise logistic

regression analysis procedure.

Coefficient o
Intercept 0.39 0.0384
MaxStatNest -0.286 0.0252
FunctDef 0.166 0.0010
FunctCall -0.0277 0.0000

Table 5: Multivariate Analysis with Code Metrics

In addition to being collectable only later in the process, code metrics appear to be somewhat
poorer as predictors of class fault-proneness (see Table 6). In this case, 112 classes (predicted as
faulty) out of 180 would be inspected and 51 faulty classes out of 58 would be detected. If we now
take into account individual faults, 231 faults out of 268 would be detected during inspection.
Thre(_e more faulty classes would be corrected (51 versus 48) but 32 more classes would have to be
inspected (112 .versus 80). Moreover, the OO design metrics are better predictors of classes
containing large numbers of faults since 19 more faults (250 versus 231) would be detected in that
case. Therefore, predictions based on code metrics appear to be poorer. Table 7 confirms that
result by showing the values of correctness (percentage of classes correctly predicted as faulty) and
completeness (percentage of faulty classes detected). Values between parentheses present
predictions' correctness and completeness values when classes are weighted according to the

number of faults they contain (classes with no fault are weighted 1).

“Predicted No fault Fault Model 00 Code
Actual Accuracy metrics metrics
No Fault 61 61 Completeness 88% (93%) 83% (86%)
Fault 737 51 23D Correctness 60% (92%) 45.5% (86%)
Table 6: Classification Results based on code Table 7: Classification Accuracies based on
metrics shown in Table 5 ‘ OO and code metrics shown in Table 3 and

Table 5 ’

4-95 SEL-95-003

4. Related Work

As far as we know, the only studies attempting to experimentally validate OO metrics are
[Lie&Henry. 1993] and [Briand et. al., 1994]. In [Briand et. al. ,1994], metrics for measuring
abstract data type (ADT) cohesion and coupling are proposed and are experimentally validated as
predictors of faulty ADT's. Further work will consist of verifying that the metrics proposed by

[Briand et. al. ,1994] are also applicable to C++ programs, in a context of inheritance.

To the knowledge of the authors, [Lie&Henry, 1993] is the only' study which can really be
compared to the work we describe in this paper. Li and Henry have proposed a suite of OO design
metrics. They validated this suite of metrics by studying the number of changes performed in two-
commercial systems implemented with an OO dialect of Ada. The suite of OO design metrics used

by Li and Henry extends Chidamber&Kemerer’s OO metrics with two additional metrics:

» Message Passing Coupling (MPC) which is calculated as the number of send statements

defined in a class.

« Dara Abstraction Coupling (DAC) which is calculated as the number of abstract data types used

in the measured class and defined in another class of the system.

They combined the six Chidamber&Kemerer’s OO metrics with these last two metrics in a single
least-square regression model. According to the authors, their model was adequate in predicting the
size of changes in classes during the maintenance phase. They did not, however, look at the time
spent changing a class nor the cause of changes (e.g., corrections, enhancement, etc.). In addition,
they assumed that the number of modifications in a class is proportional to the effort spent to
change it, which is not necessarily true. Also, we do not believe that the number of changes can be
considered as a measure of maintainability since it is not dependent on the modifiability of a class

but on the correctness and functional stability of the class.

4-96 SEL-95-003

In this study, we did not consider DAC and MPC because they could not be directly applied in our
experimental context (C++ does not provide send statements). Based on the way DAC was
defined by Lie&Henry, it cannot be directly used for C++. DAC could, however, be
redefined/tailored to our needs, providing another way to calculate coupling across C++ classes.

This is, however, beyond of the scope of this paper.

An important difference in our work is that we have used the occurrence of faults in a class to
verify whether Chidamber&Kemerer's OO metrics were adequate quality predictors. Of course,
many other quality measures of interest could be used in this context, e.g., change productivity.
Last, the modeling technique we used (i.e., logistic regression) to predict fault-prone classes is
different because of the nature of the dependent variable which is binary in our case. This has led

us to use a classification technique.
5. Conclusions and further work

In this experiment, we collected data about defects found in Object-Oriented classes. Based on
these data we verified experimentally how much fault-proneness is influenced by internal (e.g.,
size, cohesion) and external (e.g., coupling) design characteristics of OO classes. From the results
presented above, several of Chidamber&Kemerer’s OO metrics appear to be adequate to predict
class fault-proneness during the early phases of the life-cycle. We also showed that
Chidamber&Kemerer’s OO metrics are better predictors than “traditional” code metrics on our data
set, which, in addition, can only be collected at a later phase of the software development

processes.
Our future work includes:

» replicating this study in an industrial setting: a sample of large-scale projects developed in C++
and Ada95 in the framework of the NASA Goddard Flight Dynamics Division (Software
Engineering Laboratory). This work should help us better understand the prediction capabilities

of the suite of OO metrics described 1n this paper. By doing that, we intend to:

4-97 SEL-95-003

build models and provide guidance to improve the allocation of resources with

respect to test and verification efforts,

° gain a better understanding of the impact of OO design strategies (e.g., simple
versus multiple inheritance) on defect density and rework. In this study, because of
an inadequate data collection process, we were unable to analyze the capability of
OO design metrics to predict rework. We believe that this drawback could be
overcome by refining our data collection process in order to capture how much

effort was spent on each class individually.

* analyzing OO libraries in order to identify “good” and “bad” OO design patterns. Design
patterns have been claimed to be a way to improve reuse and quality of OO software systems
{Gamma et. al, 1995]. We intend to use the approach described in this paper to assess
organization-specific design patterns, thus providing guidelines about what OO design patterns
should be encouraged and which ones should be avoided due to their fault-proneness or their

lack of maintainability.

» studying the variations, in terms of metric definitions and experimental results, between
different OO programming languages. The fault-proneness prediction capabilities of the suite of
OO metrics discussed in this paper can be different depending on the used programming
language. Work must be undertaken to validate this suite of OO design metrics across different

OO languages, e.g., Ada93, Smalltalk, Eifeil, C++, etc.

- extending the experimental investigation to other OO metrics proposed in the literature (e.g.,

[Abreu&Carapuca, 1994]) and develop new metrics, e.g., more language specific.
Acknowledgements

This work would not have been possible without the help of Dr. Prem Devanbu from AT&T Labs.

We also want to thank Dr. Gianluigi Caldiera for co-teaching the OMT method to the students who

4-98 SEL-95-003

participated in this study, and Carolyn Seaman, Barbara Swain and Roseanne Tesoriero for their

suggestions that helped improve both the content and the form of this paper.

References

F. B. Abreu and R. Carapuca (1994). "Candidate metrics for object-oriented software within a
taxonomy framework". Journal of System and Software, 26(1):87-96.

Amadeus

"

Amadeus Software Research, Inc. (1994). “Getting Started with Amadeus
Measurement System.

V. Basili; G. Caldiera; F. McGarry; R. Pajerski; G. Page (1992). “The Software Engineering
Laboratory: An Operational Software Experience Factory”. In Proc. of the 14th Int’l Conf. on
Software Engineering.

V. Basili and D. Hutchens (1982). “Analyzing a syntacnc family of complex1ty metrics”. [EEE
Trans. on Software Engineering, SE-9(6):664-673.

L. Briand; S. Morasca; V. Basili (1994). "Goal-Driven Definition on Product Metrics Based on
Properties". CS-TR-3346, University of Maryland, Dep. of CS, College Park, MD, 20742.

1. Brooks (1993). “Object-oriented metrics collection and evaluation with a software process”.
Presented at OOPSLA’93 Workshop on Processes and Metrics for Object-Oriented Software
Development, Washington, DC.

S. R. Chidamber and C. F. Kemerer (1994). “A metrics suite for object-oriented design”. IEEE
Trans. on Software Engineering, 20(6):476—493.

S. R. Chidamber and C. F. Kemerer (1995). “Authors Reply”. IEEE Trans. on Software
Engineering, IEEE Trans. on Software Engineering, 21(3):265.

N. I. Churcher and M. J. Shepperd (1995). “Comments on ‘A Metrics Suite for Object-Oriented
Design’ ”. IEEE Trans. on Software Engineering, 21(3):263-265.

P. Devanbu (1992). “GENOA/GENII — a customizable language and front-end independent code
analyzer”. In Proc. of the 14th Int’l Conf. on Software Engineering, Melbourne, Australia.

J. Devore (1991). “Probability and Statistics for Engineering and Sciences.” Brooks/Cole
Publishing Company.

W. Dillon and M. Goldstein (1984). “Multivariate Analysis: Methods and Applications.” Wiley.

W. Harrison (1988). “Using software metrics to allocate testing resources.” Journal of
Management Information Systems 4(4):93-105.

W. Harrison (1994). “Software measurement: a decision-process approach”. Advances in
Computers, vol 39, pp. 51-105.

G. Heller; J. Valett; M. Wild (1992). Data Collection Procedure for the Software Engineering
Laboratory (SEL) Database. SEL Series, SEL-92-002.

D. Hosmer and S. Lemeshow (1989). “Applied Logistic Regression.” Wiley-Interscience.
N. E. Fenton (1991). “Software Metrics: A Rigorous Approach”. Chapman&Hall.

4-99 SEL-95-003

E. Gamma; R. Helm: R. Johnson; J. Vlissides (1995). “Design Patterns: Elements of Reusable
Object-Oriented Software”. Addison-Wesley. -

W. Lie and S. Henry (1993). “Object-oriented metrics that predict maintainability”. Journal of
Systems and Software. 23(2):111-122.

F. McGarry; R. Pajersk; G. Page; S. Waligora; V. Basili; M. Zelkowitz (1994). “Software
Process Improvement in the NASA Software Engineering Laboratory”. Carnegie Mellon
University, Software Engineering Institute, Technical Report, Dec. 1994. CMU/SEI-95-TR-22.

W. Melo; L. Briand; V. Basili (1995). "Measuring the Impact of Reuse on Quality and
Productivity in Object-Oriented Systems." Technical Report, University of Maryland, Dep. of
Computer Science, Jan. 1995, CS-TR-3395.

J. Rumbaugh; M. Blaha; W. Premerlani; F. Eddy; W. Lorensen (1991). “Object-Oriented
Modeling and Design.” Prentice-Hall.

B. Stroustrup. “The C++ Programming Language”. Addison-Wesley Series in Computer Science,
1991. 2nd edition.

D. A. Young (1992). “Object-Oriented Programming with C++ and OSF/MOTIF.” Prentice-Hall.

4-100 SEL-95-003

SECTION 5—TECHNOLOGY EVALUATIONS

The technical paper included in this section was originally prepared as indicated below.

e "Generalized Support Software: Domain Analysis and Implementation,", M. Stark and
E. Seidewitz, Addendum to the Proceedings OOPSLA '94, Ninth Annual Conference,
Portland, Oregon, U.S.A., October 1994, pp. 8-13

5-1 SEL-95-003

Page intentionally left blank

GENERALIZED SUPPORT SOFTWARE:
DOMAIN ANALYSIS AND IMPLEMENTATION
EXPERIENCE REPORT SUBMITTED TO OOPSLA’94

Mike Stark
Ed Seidewitz

NASA Goddard Space Flight Center

So-¢/
Lys 7E S

Ty
& /{i Py £

Code 552.3

Greenbelt MD 20771
michael.e.stark@gsfc.nasa.gov / (301)286-5048
ed.seidewitz@gsfc.nasa.gov / (301)286-7631

For the past five years, the Flight Dynamics Division
(FDD) at NASA’s Goddard Space Flight Center has
been carrying out a detailed domain analysis effort and
is now beginning to implement Generalized Support
Software (GSS) based on this analysis. GSS is part of
the larger Flight Dynamics Distributed System
(FDDS), and is designed to run under the FDDS User
Interface / Executive (UIX). The FDD is transitioning
from a mainframe based environment to FDDS based
systems running on engineering workstations The
GSS will be a library of highly reusable components
that may be configured within the standard FDDS
architecture to quickly produce low-cost satellite
ground support systems. The estimates for the first
release is that this library will contain approximately
200,000 lines of code.

The main driver for developing generalized
software is development cost and schedule
improvement. The goal is to ultimately have at least
80 percent of all software required for a spacecraft
mission (within the domain supported by the GSS) to
be configured from the generalized components.

LA sy
2 A F ke e

lo P

Domain Analysis

The GSS domain analysis effort originally grew out of
a study of the feasibility of generalizing the attitude
ground support systems (AGSSs) produced by the
FDD for various spacecraft missions. FDD software
tends to be similar from mission to mission. An AGSS
is used to determine the orientation of a spacecraft
from on-board sensor data and to compute maneuvers
to change that orientation. It typically has several
executable programs that are used for specialized areas
such as attitude estimation and sensor calibration.
These programs share models to varying degrees. For
example, just about every FDD system has an orbit
propagator in it. Part of the domain analysis effort is
intended to reduce overlap and redundancy between
systems.

As part of an ambitious project to re-engineer a
majority of the FDD software systems, the domain
covered by the analysis was later expanded to also
include a number of mission analysis and planning
functions. Indeed, at one point plans called for this
project to eventually encompass al/ FDD
functionality, adding orbit models to the attitude and
mission planning functionality.

5-3 SEL-95-003

Project History

The domain analysis effort began by studying the
functional specifications of existing AGSSs. These
specifications used data flow diagrams, so it was
natural to adopt this technique for the generalized
domain model. However, the limitations of this
approach soon became apparent, especially in the lack
of classification techniques crucial to capturing
generalizations. Despite the fact that most of the
people working on the effort were not particularly
familiar with object-oriented approaches, a consensus
developed that object-oriented analysis would be a
better technique than data-flow diagrams for our
purposes. Following this decision, we developed a
Specification Concepts document [Seidewitz 91] that
captured the object-oriented analysis approach used in
subsequent analysis.

Unfortunately, budgetary pressures prevented the ’

ambitions re-engineering plans from becoming reality.
Further, the expanding scope of the analysis effort
became increasingly difficult to handle. Thus, the
domain analysis effort was refocused generally to
concentrate once again on the attitude support domain.
The end effect was that the domain analysis team did
not increase as planned, leaving a small team to do the
analysis over several years. The effort has specifically
proceeded to focus in detail on the analysis of the first
two GSS releases: telemetry simulation and real-time
attitude determination. We have now completed two
versions of the generalized specifications for the first
release [Klitsch 93] and work is proceeding on the
specifications for the second release [Klitsch 94).

Specification Concepts

The specification products of the domain analysis
effort are all based on our standard specification
concepts. Actually, these specification concepts have
continued to evolve based on our analysis experiences
[Seidewitz 93]. Throughout this process there has been
a continual tension between keeping the concepts as
simple as possible and assuring that they are powerful
enough to allow specification of domain functionality
without undue complication. The core concepts of the

model include the basic object-oriented principles of
classes, objects and messages. Additional concepts
have been added to this core only when not including
the new concept would make it difficult or impossible
to clearly specify some specific domain functionality
under consideration.

For example, we have used only two levels of
classification of objects. Each specific object class
belongs to exactly one superclass that represents a
general domain category (e.g., a Sun Sensor would be
in the Sensor category). Further, superclasses only
specify common interfaces, not common functionality,
so there is no inheritance of functionality by
subclasses. This restricted approach has allowed us to
cleanly and simply introduce the required
generalization concepts while maintaining the locality
of specification of the functionality of any class. The
approach worked well through the first versions of our
specifications. However, current work is indicating an
increasing number of opportunities where deeper
classification hierarchies would be useful, and we may
add this to our concepts.

Another restriction in our concepts is that objects
are not dynamically created or destroyed. Instead,
objects and their interdependencies are specified as
part of the configuration of an application. Once these
objects are created, they exist for the duration of the
execution of the application. Data passed between
objects is not itself object-oriented, but is instead
drawn from a set of standard data types (Integer, Real,
Vector, Matrix, etc.). This approach provides us with a
clear definition of configuration, which was a topic of
many long discussions. The resolution of these
discussions was that the generalized specifications deal
exclusively with the definition of classes, while the
configuration specifications deal exclusively with the
definition of the objects in an application. This
philosophy also provides a fundamental connection to
our implementation approach.

Besides restrictions in using object-oriented
concepts, the specification concepts evolved to
eliminate unnecessary and sometimes complex
concepts. For example, the original concepts called
for modeling separate subsystems that only
communicate via data objects. These subsystems were
intended to be configured as separate executable

5-4 SEL-95-003

programs. This made it hard to specify models (such as
estimation algorithms) that are usable in more than one
subsystem (such as attitude determination and sensor
calibration). The solution was to create a single
domain map, and replace the subsystem driver with
application categories that provide the same set of
actions to the UIX. These application categories also
map to separately configured programs, but can draw
on classes throughout the domain map, instead of
classes contained in a single subsystem.

Lessons Learned

The current specifications are defined with more detail
and less ambiguity than the typical FDD specification
documents. This has had a positive impact on the
development process, since class specifications are
generally detailed enough to serve as PDL. However,
these specifications are harder for the analyst to
understand when specifying the configuration of an
application program for a given satellite. The
generalized specification document is currently weak
at showing how an entire application would behave.
One reason is that the specification effort has focused
the limited resources on producing class specifications
to implement, at the expense of producing information
that the analysts would use when defining a
configuration.

A more important reason is that FDD attitude and
orbit analysts don't think in terms of objects, but in
terms of algorithms such as a Kalman Filter estimation
algorithm. The concept of this algorithm can be
expressed to the mathematician in 5 or 6 equations. To
understand the GSS specification, the analyst needs to
understand how several classes contribute to the
processing needed to implement these equations. The
specification concepts need to be updated to improve
the description of how classes interact to support
algorithm. Part of the answer is to complete the
intended documentation for each subdomain (major
group of categories) to explain these interactions. The
concept of "scenarios” or "use cases” (as discussed by
¢.g. [Jacobson 92]) may be appropriate for describing
the overall behavior of an application.

Another key lesson for domain analysis is that
developers need to be involved in the process. This is

5-5

primarily because the class specifications are written at
a level of detail that often raises implementation issues
such as performance. The GSS project has always had
developer involvement in the domain analysis process.
This process may be improved by increasing this
involvement, perhaps even evolving towards a joint
analysis / development team. This is because as more
classes are implemented the developers have a greater
stake in making sure that new analysis work won't
have any negative effects on the existing class library.

Development

The creation of a generalized design is made possible
by the standardization of class specifications in the
Specification Concept document, and by the
standardization of the interaction between the UIX and
the GSS application [Booth 93]. The UIX drives
application processing by calls to three operations
provided by the application. These operations allow
the user to access and modify operations, or to execute
the next action in the application. The application may
also send messages to the UIX.

The key feature of a GSS application is that it is
built from a library of classes, and can then be
configured at run time. The run time configuration
process includes allocating the objects for each class,
setting the specific dependencies between objects (the
generalized specifications define dependencies
between classes, which are implemented at compile
time using the Ada generic parameters), and setting
defauit parameter values.

Implementation

The classes in our generalized specifications are
implemented as a set of two Ada packages. A class
package implements an abstract data type representing
the class, and an object manager package contains all
the objects for a given class. These classes are
arranged in a hierarchy with category packages
implementing the interface for a specified category,
and the Application Interface package implementing a
root object that dispatches to categories the operations
to allocate objects, set dependencies and interact with
parameters (instance variables). The bodies of the

SEL-95-003

category packages and the Application Interface
package implement only dispatching code. All the
functionality resides in class and object manager
packages.

Ada was chosen as a development language for
two reasons. The organizational reason at the
beginning of the GSS project the division had
experience with several Ada simulators, C++ was not
considered mature technology by division
management, and no other language met the need for
object orientation, support on a wide variety of
platforms, and a core of experienced developers in the
FDD. The technical reason was the use of generics to
add flexibility to the configuration process.

The GSS generic packages use both types
(defining the class or category depended on) and
subprograms (defining messages sent to the class or
category depended on). The configuration process
consists of instantiating the generics to set the
dependencies between classésvand categories and
calling dependency operations to set the actual
connections between objects. The use of generics
allows categories dependencies to be satisfied by
classes, bypassing the dispatching code when it is not
needed. This fact was important in addressing user
concems that the overhead of dispatching code would
hurt run time performance. A class can actually be
instantiated using any class that provides the

operations that are needed to match the generic

parameters.
Code Generation (Classgen)

The code for the allocation, dependency and parameter
operations is similar in structure from class to class,
but each of these operations depends on the
specification of the particular class. This means that
the implementation code can not be written at the root
of the classification tree, but that there is still a lot of
tedious repetition to the coding of classes. The
development team's solution was to write a code
generator (named Classgen) that reads in a concise
notation describing class functions, dependencies and
parameters. The output of the code generator is the
implementation of all the functions specified at the
Application Interface level, plus subprogram interfaces

and stubs for the constructors and selectors defined in
the specification document. This was made possible
by the existence of a generalized design that mapped
standard specification features into the Ada
implementation.

The input language for Classgen also has features
corresponding to those defined in the specification
concepts, and adds design features such as the error
handling. The tool generates a type definition for a
class that contains all the parameters, internal data, and
dependencies defined for the class, implementation of
stubs for the functions in the specification, and
implementation of the subprograms needed for
allocating objects, setting dependencies, and accessing
or modifying parameter values. This code is about
75% of the code needed to implement a class, with one
line of Classgen input generating about 10 lines of Ada
code. Classgen generates all the code that can be
generated based on the standardized specifications and
design. The remaining code is the implementation of
the functions specified for the class.

Classgen Lessons

Having a code generator has saved time and effort on
the GSS project, but it has taken time for the tool to
mature. The main reason for this is that the initial
concept was for Classgen to be run once per class to
generate the code, and editing the created files after
that. In practice it was necessary to edit the
regenerated code, both because the generalized design
evolved and required changes and because the
developers used the tool to regenerate files if there
were substantial modifications to a class. The problem
was that the original version of Classgen required the
developer to edit most of the files generated for a class.
A notation was defined to mark these changes, but
regenerating the class meant having to merge these
changes into the new file. Classgen has been modified
in stages so that in most cases the only file a developer
edits is a separately compiled "subunit" file in which
the specified functions are implemented. Changes to
the other files still occur, but they are rare enough and
small enough that they don't have a major impact.
These changes were generally made by extending
the Classgen grammar, but in some cases the

SEL-95-003

generalized design was modified to facilitate code
generation. A simple example of this was to move all
"with" clauses (which define dependencies between
Ada packages) into package specifications, and having
all utility packages imported into a class be "with"ed
into the Classgen input as well. This sometimes makes
packages visible in a larger amount of code than
strictly necessary, but it captures the design
information in the Classgen input and removes the
need to edit files to add the importing of packages.

Process Lessons

The use of standardized, object-oriented specification
concepts has had several effects on development. We
have already noted that the specifications are complete
enough to serve as PDL. The specification of
dependencies between classes, together with the
generalized design for dependencies, completely
captures the system structure typically defined in
preliminary design. The development of a build
typically starts with detailed design of classes, which is
expressed in terms of changes to the specification.
Given this shift of "design" work to the domain
analysis team, a joint "domain analysis and design”
team may be justified. This is particularly true once
the class library is populated and changes to the
domain may have major effects on the existing code.
Using object-oriented specifications will enable
incremental development. However, the flight
dynamics domain is one where a substantial number of
core classes (integrators, dynamic models,
environmental models,...) are needed before anything
useful can be done. The builds are still being done
incrementally, but a system that is testable by the end
user won't be available until the third build is
complete. The good news is that once the first
application is complete, added capabilities can be
created in single builds. For example, the first two
releases of GSS will be delivering components to
support simulation and real-time attitude estimation in
a total of 5 builds. Adding the generalized
components for non-real time estimation and for
sensor calibration will take one or two additional
builds. Similar scale builds can be used to add new
models to the existing categories, or to expand into the

5-7

orbit or maneuver planning areas. Thus "design a
little, code a little, test a little" will work for GSS, but
only after a base of core classes has been implemented.

The integration of these generalized classes has
been easier than for typical projects. This is another
benefit of having standard object-oriented
specifications that clearly define internal and external
interfaces, and a generalized design that standardizes
the implementation of dependencies between classes.
Together these factors assure that if a class depends on
a given operation from another class that class will
provide the operation and the two classes will interface
correctly.

Summary

The lessons described above have been leaned
during the specification and the early development of
the GSS project. These lessons will be applied 1o
further specification and development work. The
initial releases will be complete by the end of 1995, at
which point the FDD will start seeing return on the
investment in this project.

References

[Booth 93] E. Booth et. al., Flight Dynamics
Distributed System (FDDS) Generalized Support
Software (GSS) Release 1 (GSSR1) Implementation
Description , 552-FDD-93/068R0UDO (draft), October
1993

[Jacobson 92] I. Jacobson et. al., Object-Oriented
Software Engineering, Addison-Wesley 1992

[Klitsch 93] G Klitsch et. al., Flight Dynamics
Distributed System (FDDS) Generalized Support
Software (GSS) Functional Specifications (Revision
1), 553-FDD-93/046R1UDO, June 1993

[Klitsch 94] G Klitsch et. al., Flight Dynamics
Distributed System (FDDS) Generalized Support
Software (GSS) Functional Specifications (Revision 1,
Update 1), 553-FDD-93/046R1UD1, December 1994

SEL-95-003

[Seidewitz 91] E. Sedewitz et. al., Combined
Operational Mission Planning and Attitude Support
System (COMPASS) Specification Concepts, 550-
COMPASS-103, May 1991

[Seidewitz 93] E. Seidewitz et. al., Flight Dynamics
Distributed System (FDDS) Generalized Support
Software (GSS) Specification Concepts (Revision 1),
553-FDD-93/057R1UDO (draft), August 1993

SEL-95-003

Oroaar 7 IO
LT

S

v

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The teclinical papers, memorandums, and documents listed in this bibliography are organized into
two groups. The first group is composed of documents issued by the Software Engineering
Laboratory (SEL) during its research and development activities. The second group includes
materials that were published elsewhere but pertain to SEL activities. 4

SEL-ORIGINATED DOCUMENTS
SEL-76-001, Proceedings From the First Summer Software Engineering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,
September 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop, September
1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer
and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User’s Guide (Revision
3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations, K. Freburger and
V. R. Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in
the Goddard Space Flight Center (GSFC) Code 580 Software Design Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop, November
1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R) System
Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop, November
1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software Systems,
J. F. Cook and F. E. McGarry, December 1980 ' '

BI-1 SEL-95-003

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

SEL-81-011, Evaluating Software Development by Analysis of Change Data, D. M. Weiss,
November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of Medium
Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engineering
Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., August
1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Methodology for
Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora,
F. E.1McGarry, et al., June 1992

SEL-81-305SP1, Ada Developers’ Supplement to the Recommended Approach, R. Kester and
L. Landis, November 1993

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,
D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop, December
1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From the
Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description
(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, M. G. Rohleder,
and F. E. McGarry, October 1983

SEL-82-1306, Annotated Bibliography of Software Engineering Laboratory Literature, D.
Kistler, J. Bristow, and D. Smith, November 1994

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, et
al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D. N. Card, F. E. McGarry,
G. Page, et al., March 1984

BI-2 SEL-95-003

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop, November
1983

SEL-83-106, Monitoring Software Development Ihrough Dynamic Variables (Revision 1),
C. W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Laboratory
(SEL), W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop, November 1984

SEL-84-101, Manager’s Handbook for Software Development (Revision 1), L. Landis,
F. E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, 4 Comparison of Software Verification Techniques, D. N. Card, R. W. Selby, Jr.,
F. E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray
Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics,
R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F. McGarry, and
C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop, December 1985

SEL-86-001, Programmer’s Handbook for Flight Dynamics Software Development, R. Wood
and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M. Stark,
August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE) Tutorial,
J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986
SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop, December
1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software
Development, S. Perry et al., March 1987

SEL-87-002, Ada® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

BI-3 SEL-95-003

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM), W. W. Agresti,
June 1987

SEL-87-004, Assessing the Ada® Design Process and Its Implications: A Case Study,
S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop, December
1987 .

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle, L.
Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase
Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proéeedings of the Thirteenth Annual Software Engineering Workshop, November
1988

SEL-88-005, Proceedings of the First NASA Ada User’s Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study, S. Godfrey and
C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area:
Implementation/Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F.
McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/Goddard,
C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop, November
1989

SEL-89-008, Proceedings of the Second NASA Ada Users’ Symposium, November 1989

SEL-89-103, Software Management Environment (SME) Concepts and Architecture (Revision
1), R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-301, Software Engineering Laborary (SEL) Database Organization and User’s Guide
(Revision 3), L. Morusiewicz, February 1995

SEL-90-001, Database Access Manager for the Software Engineering Laboratory (DAMSEL)
User’s Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project
Description and Early Analysis, S. Green et al., March 1990

BI-4 SEL-95-003

SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering
Laboratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experiment
Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop, November
1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Management
Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,
E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model, S. Green,
November 1991

SEL-91-005, Collected Software Engineering Papers: Volume LX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop, December
1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revision 1),
F. McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler and
K. Jeletic, January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)
Database, G. Heller, J. Valett, and M. Wild, March 1992

SEL-92-003, Collected Software Engineering Papers: Volume X, November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop, December
1992

SEL-93-001, Collected Software Engineering Papers: Volume XI, November 1993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie, M. Stark, et
al., November 1993

SEL-93-003, Proceedings of the Eighteenth Annual Software Engineering Workshop, December
1993

SEL-94-001, Software Management Environment (SME) Components and Algorithms,
R. Hendrick, D. Kistler, and J. Valett, February 1994

SEL-94-003, C Style Guide, J. Doland and J. Valett, August 1994
SEL-94-004, Collected Software Engineering Papers: Volume XII, November 1994

BI-5 SEL-95-003

SEL-94-005, An Overview of the Software Engineering Laboratory, F. McGarry, G. Page,
V. Basili, et al., December 1994

SEL-94-006, Proceedings of the Nineteenth Annual Software Engineering Workshop, December
1994

SEL-94-102, Software Measurement Guidebook (Revision 1), M. Bassman, F. McGarry,
R. Pajerski, June 1995 ‘

SEL-95-001, Impact of Ada in the Flight Dynamics Division at Goddard Space Flight Center,
S. Waligora, J. Bailey, M. Stark, March 1995

SEL-95-003, Collected Software Engineering Papers: Volume XIII, November 1995

SEL-RELATED LITERATURE

10Abd-El-Hafiz, S. K., V. R. Basili and G. Caldiera, “Towards Automated Support for
Extraction of Reusable Components,” Proceedings of the IEEE Conference on Software
Maintenance-1991 (CSM 91), October 1991

4Agresti, W. W, V. E. Church, D. N. Card, and P. L. Lo, “Designing With Ada for Satellite
Simulation: A Case Study,” Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., “Measuring Software Technology,” Program
Transformation and Programming Environments. New York: Springer-Verlag, 1984

1Bailey, J. W., and V. R. Basili, “A Meta-Model for Software Development Resource
Expenditures,” Proceedings of the Fifth International Conference on Software Engineering.
New York: IEEE Computer Society Press, 1981

8Bailey, J. W, and V. R. Basili “Software Reclamation: Improving Post-Development
Reusability,” Proceedings of the Eighth Annual National Conference on Ada Technology, March
1990

10Bailey, J. W., and V. R. Basili, “The Software-Cycle Model for Re-Engineering and Reuse,”
Proceedings of the ACM Tri-Ada 91 Conference, October 1991

1Basili, V. R., “Models and Metrics for Software Management and Engineering,” ASME
Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering. New
York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., “Quantitative Evaluation of Software Methodology,” Proceedings of the First
Pan-Pacific Computer Conference, September 1985

Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of Maryland,
Technical Report TR-2244, May 1989

BI-6 SEL-85-003

TBasili, V. R., Software Development: A Paradigm for the Future, University of Maryland,
Technical Report TR-2263, June 1989

8Basili, V. R., “Viewing Maintenance of Reuse-Oriented Software Development,” IEEE
Software, January 1990

13Basili, V. R., "The Experience Factory and Its Relationship to Other Quality Approaches "
Advances in Computers vol. 41, Academic Press, Incorporated, 1995

1Basili, V. R., and J. Beane, “Can the Parr Curve Help With Manpower Distribution and
Resource Estimation Problems?,” Journal of Systems and Software, February 1981, vol. 2, no. 1

13Basili, V. R., L. Briand, and W. L. Melo, 4 Validation of Object-Oriented Design Metrics,
University of Maryland, Computer Science Technical Report, CS-TR-3443, UMIACS-TR-95-40,
April 1995

13Basili, V. R., and G. Caldiera, The Experience Factory Strategy and Practice, University of
Maryland, Computer Science Technical Report, CS-TR-3483, UMIACS-TR-95-67, May 1995

9Basili, V. R., G. Caldiera, and G. Cantone, “A Reference Architecture for the Component
Factory,”ACM Transactions on Software Engineering and Methodology, January 1992

10Basili, V., G. Caldiera, F. McGarry, et al, “The Software Engineering Laboratory—An
Operational Software Experience Factory,” Proceedings of the Fourteenth International
Conference on Software Engineering (ICSE 92), May 1992

1Basili, V. R., and K. Freburger, “Programming Measurement and Estimation in the Software
Engineering Laboratory,” Journal of Systems and Software, February 1981, vol. 2, no. 1

I2Basili, V. R, and S. Green, "Software Process Evolution at the SEL," IEEE Software, July
1994, pp. 58-66

3Basili, V. R., and N. M. Panlilio-Yap, “Finding Relationships Between Effort and Other
Variables in the SEL,” Proceedings of the International Computer Software and Applications
Conference, October 1985

4Basili, V. R., and D. Patnaik, 4 Study on Fault Prediction and Reliability Assessment in the SEL
Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R, and B. T. Perricone, “Software Errors and Complexity: An Empirical
Investigation,” Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R, and T. Phillips, “Evaluating and Comparing Software Metrics in the Software
Engineering Laboratory,” Proceedings of the ACM SIGMETRICS Symposium/Workshop:
Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, “ARROWSMITH-P—A Prototype Expert System for Software
Engineering Management,” Proceedings of the IEEE/MITRE Expert Systems in Government
Symposium, October 1985

BI-7 SEL-95-003

Basili, V. R,, and J. Ramsey, Structural Coverage of Functional Testing, University of Maryland,
Technical Report TR-1442, September 1984

Basili, V. R, and R. Reiter, “Evaluating Automatable Measures for Software Development,”
Proceedings of the Workshop on Quantitative Software Models for Reliability, Complexity, and
Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, “Tailoring the Software Process to Project Goals and
Environments,” Proceedings of the 9th International Conference on Software Engineering,
March 1987

SBasili, V. R., and H. D. Rombach, “TAME: Tailoring an Ada Measurement Environment,”
Proceedings of the Joint Ada Conference, March 1987

5Basili, V. R, and H D. Rombach, “TAME: Integrating Measurement Into Software
Environments,” University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R.,, and H. D. Rombach, “The TAME Project: Towards Improvement-Oriented
Software Environments,” IEEE Transactions on Software Engineering, June 1988

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A Reuse-
Enabling Software Evolution Environment, University of Maryland, Technical Report TR-2158,
December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: Model-
Based Reuse Characterization Schemes, University of Maryland, Technical Report TR-2446,
April 1990

9Basili, V. R., and H. D. Rombach, “Support for Comprehensive Reuse,” Software Engineering
Journal, September 1991

3Basili, V. R., and R. W. Selby, Jr., “Calculation and Use of an Environment’s Characteristic
Software Metric Set,” Proceedings of the Eighth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R, and R. W. Selby, “Comparing the Effectiveness of Software Testing Strategies,”
IEEE Transactions on Software Engineering, December 1987

3Basili, V. R, and R. W. Selby, Jr., “Four Applications of a Software Data Collection and
Analysis Methodology,” Proceedings of the NATO Advanced Study Institute, August 1985

5Basili, V. R., and R. Selby, “Comparing the Effectiveness of Software Testing Strategies,” IEEE
Transactions on Software Engineering, December 1987

SBasili, V. R, and R. W. Selby, “Paradigms for Experimentation and Empirical Studies in
Software Engineering,” Reliability Engineering and System Safety, January 1991

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, “Experimentation in Software Engineering,”
IEEE Transactions on Software Engineering, July 1986

BI-8 SEL-95-003

2Basili, V. R., R. W. Selby, and T. Phillips, “Metric Analysis and Data Validation Across
FORTRAN Projects,” IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Software Engineering Data,
University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R,, and D. M. Weiss, “A Methodology for Collecting Valid Software Engmeenng
Data,” IEEE T ransactions on Software Engineering, November 1984

IBasili, V. R.,, and M. V. Zelkowitz, “The Software Engmeermg Laboratory: Objectives,”
Proceedings of the Fifteenth Annual Conference on Computer Personnel Research, August 1977

Basili, V. R, and M. V. Zelkowitz, “Designing a Software Measurement Experiment,”
Proceedings of the Software Life Cycle Management Workshop, September 1977

1Basili, V. R, and M. V. Zelkowitz, “Operation of the Software Engineering Laboratory,”
Proceedings of the Second Sofitware Life Cycle Management Workshop, August 1978

1Basili, V. R, and M. V. Zelkowitz, “Measuring Software Development Characteristics in the
Local Environment,” Computers and Structures, August 1978, vol. 10

Basili, V. R, and M. V. Zelkowitz, “Analyzing Medium Scale Software Development,”
Proceedings of the Third International Conference on Software Engineering. New York: IEEE
Computer Society Press, 1978

13Basili, V., M. Zelkowitz, F. McGarry, G. Page, S. Waligora, and R. Pajerski, "SEL's Software
Process-Improvement Program," JEEE Software, vol. 12, no. 6, November 1995, pp. 83—87

Bassman, M. J., F. McGarry, and R. Pajerski, Software Measurement Guidebook, NASA-GB-
001-94, Software Engineering Program, July 1994

9Booth, E. W., and M. E. Stark, “Designing Configurable Software: COMPASS Implementation
Concepts,” Proceedings of Tri-Ada 1991, October 1991

10Booth, E. W., and M. E. Stark, “Software Engineering Laboratory Ada Performance
Study—Results and Implications,” Proceedings of the Fourth Annual NASA Ada User’s
Symposium, April 1992

10Briand, L. C., and V. R. Basili, “A Classification Procedure for the Effective Management of

Changes During the Maintenance Process,” Proceedings of the 1992 IEEE (Conference on
Software Maintenance (CSM 92), November 1992

10Briand, L. C., V. R. Basili, and C. J. Hetmanski, “Providing an Empirical Basis for Optimizing
the Verification and Testing Phases of Software Development,” Proceedings of the Third ILEE
International Symposium on Software Reliability Engineering (ISSRE 92), October 1992

1UBriand, L. C,, V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with
Optimized Set Reduction for Identifying High Risk Software Components, University of
Maryland, Technical Report TR-3048, March 1993

BI-9 SEL-95-003

2Briand, L. C, V. R. Basili, Y. Kim, and D. R. Squier, "A Change Analysis Process to
Characterize Software Maintenance Projects,”" Proceedings of the International Conference on
Software Maintenance, Victoria, British Columbia, Canada, September 19-23, 1994, pp. 38—49

9Briand, L. C., V. R. Basili, and W. M. Thomas, 4 Pattern Recognition Approach for Software
Engineering Data Analysis, University of Maryland, Technical Report TR-2672, May 1991

I3Briand, L., W. Melo, C. Seaman, and V. Basili, "Characterizing and Assessing a Large-Scale
Software Maintenance Organization," Proceedings of the 17th International Conference on
Software Engineering, Seattle, Washington, U.S.A., April 23-30, 1995

11Briand, L. C., S. Morasca, and V. R. Basili, “Measuring and Assessing Maintainability at the
End of High Level Design,” Proceedings of the 1993 IEEE Conference on Software Maintenance
(CSM 93), November 1993

12Briand, L., S. Morasca, and V. R. Basili, Defining and Validating High-Level Design Metrics,
University of Maryland, Computer Science Technical Report, CS-TR-3301, UMIACS-TR-94-75,
June 1994 ‘

13Briand, L., S. Morasca, and V. R. Basili, Property-based Software Engineering Measurement,
University of Maryland, Computer Science Technical Report, CS-TR-3368, UMIACS-TR-94-
119, November 1994

I3Briand, L., S. Morasca, and V. R. Basili, Goal-Driven Definition of Product Metrics Based on
Properties, University of Maryland, Computer Science Technical Report, CS-TR-3346,
UMIACS-TR-94-106, December 1994

11Briand, L. C., W. M. Thomas, and C. J. Hetmanski, “Modeling and Managing Risk Early in
Software Development,” Proceedings of the Fifteenth International Conference on Software
Engineering (ICSE 93), May 1993

5Brophy, C. E., W. W. Agresti, and V. R. Basili, “Lessons Learned in Use of Ada-Oriented
Design Methods,” Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, “Lessons Learned in the
Implementation Phase of a Large Ada Project,” Proceedings of the Washington Ada Technical
Conference, March 1988 '

2Card, D. N., “Early Estimation of Resource Expenditures and Program Size,” Computer
Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., “Comparison of Regression Modeling Techniques for Resource Estimation,”
Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D. N, “A Software Technology Evaluation Program,” Annais do XVIII Congresso
Nacional de Informatica, October 1985 '

BI-10 SEL-95-003

5Card, D. N., and W. W. Agresti, “Resolving the Software Science Anomaly,” Journal of Systems
and Software, 1987

6Card, D. N., and W. W. Agresti, “Measuring Software Design Complexity,” Journal of Systems
and Software, June 1988

4Card, D. N, V. E. Church, and W. W. Agresti, “An Empirical Study of Software Design
Practices,” IEEE Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, “A Software Engineering View of
Flight Dynamics Analysis System,” Parts I and II, Computer Sciences Corporation, Technical
Memorandum, February 1984

Card, D. N, Q. L. Jordan, and V. E. Church, “Characteristics of FORTRAN Modules,”
Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D. N, F. E. McGarry, and G. T. Page, “Evaluating Software Engineering Technologies,”
IEEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, “Criteria for Software Modularization,”
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

IChen, E., and M. V. Zelkowitz, “Use of Cluster Analysis To Evaluate Software Engineering
Methodologies,” Proceedings of the Fifth International Conference on Software Engineering.
New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, “An Approach for Assessing
Software Prototypes,” ACM Software Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, “Monitoring Software Development Through Dynamic
Variables,” Proceedings of the Seventh International Computer Software and Applications
Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of Maryland,
Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, “Experiences in the Implementation of a Large Ada Project,”
Proceedings of the 1988 Washington Ada Symposium, June 1988

5Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical Association
of Software Data, University of Maryland, Technical Report TR-1848, May 1987

6Jeffery, D. R., and V. R. Basili, “Validating the TAME Resource Data Model,” Proceedings of
the Tenth International Conference on Software Engineering, April 1988

HLi N. R, and M. V. Zelkowitz, “An Information Model for Use in Software Management
Estimation and Prediction,” Proceedings of the Second International Conference on Information
Knowledge Management, November 1993

BI-11 SEL-95-003

5SMark, L., and H. D. Rombach, 4 Meta Information Base for Software Engineering, University
of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, “Generating Customized Software Engineering Information
Bases From Software Process and Product Specifications,” Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, January 1989

5SMcGarry, F. E., and W. W. Agresti, “Measuring Ada for Software Development in the Software
Engineering Laboratory (SEL),” Proceedings of the 2Ist Annual Hawaii International
Conference on System Sciences, January 1988

TMcGarry, F., L. Esker, and K. Quimby, “Evolution of Ada Technology in a Production Software
Environment,” Proceedings of the Sixth Washington Ada Symposium (WADAS), June 1989

McGarry, F., R. Pajerski, G. Page, et al., Software Process Improvement in the NASA Software
Engineering Laboratory, Carnegie-Mellon University, Software Engineering Insitute, Technical
Report CMU/SEI-94-TR-22, ESC-TR-94-022, December 1994

3McGarry, F. E., J. Valett, and D. Hall, “Measuring the Impact of Computer Resource Quality on
the Software Development Process and Product,” Proceedings of the Hawaiian International
Conference on System Sciences, January 1985

3Page, G, F. E. McGarry, and D. N. Card, “A Practical Experience With Independent
Verification and Validation,” Proceedings of the Eighth International Computer Software and
Applications Conference, November 1984

2Porter, A. A., L. G. Votta, Jr, and V. R. Basili, Comparing Detection Methods for Software
Requirements Inspections: A Replicated Experiment, University of Maryland, Technical Report
TR-3327, July 1994

SRamsey, C. L., and V. R. Basili, “An Evaluation of Expert Systems for Software Engineering
Management,” JEEE Transactions on Software Engineering, June 1989

3Ramsey, J., and V. R. Basili, “Analyzing the Test Process Using Structural Coverage,”
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

SRombach, H. D., “A Controlled Experiment on the Impact of Sofiware Structure on
Maintainability,” JEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., “Design Measurement: Some Lessons Learned,” JEEE Software, March 1990

SRombach, H. D., “Software Reuse: A Key to the Maintenance Problem,” Butterworth Journal
of Information and Software Technology, January/February 1991

6Rombach, H. D, and V. R. Basili, “Quantitative Assessment of Maintenance: An Industrial
Case Study,” Proceedings From the Conference on Software Maintenance, September 1987

BI-12 SEL-95-003

6Rombach, H. D., and L. Mark, “Software Process and Product Specifications: A Basis for
Generating Customized SE Information Bases,” Proceedings of the 22nd Annual Hawaii
International Conference on System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance
Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical Report
TR-2252, May 1989

10Rombach, H. D., B. T. Ulery, and J. D. Valett, “Toward Full Life Cycle Control: Adding
Maintenance Measurement to the SEL,” Journal of Systems and Software, May 1992

6Seidewitz, E., “Object-Oriented Programming in Smalltalk and Ada,” Proceedings of the 1987
Conference on QObject-Oriented Programming Systems, Languages, and Applications, October
1987

3Seidewitz, E., “General Object-Oriented Software Development: Background and Experience,”
Proceedings of the 21st Hawaii International Conference on System Sciences, January 1988

6Seidewitz, E., “General Object-Oriented Software Development with Ada: A Life Cycle
Approach,” Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., “Object-Oriented Programming Through Type Extension in Ada 9X,” Ada
Letters, March/April 1991

10Seidewitz, E., “Object-Oriented Programming With Mixins in Ada,” Ada Letters, March/April
1992

128eidewitz, E., “Genericity versus Inheritance Reconsidered: Self-Reference Using Generics,”
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1994

4Seidewitz, E., and M. Stark, “Towards a General Object-Oriented Sofiware Development
Methodology,” Proceedings of the First International Symposium on Ada for the NASA Space
Station, June 1986

9Seidewitz, E., and M. Stark, “An Object-Oriented Approach to Parameterized Software in Ada,”
Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., “On Designing Parametrized Systems Using Ada,” Proceedings of the Seventh
Washington Ada Symposium, June 1990

lgtark, M., “Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,”
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, September 1993

7Stark, M. E. and E. W. Booth, “Using Ada to Maxnmze Verbatim Software Reuse,”
Proceedings of TRI-Ada 1989, October 1989

BI-13 SEL-95-003

SStark, M., and E. Seidewitz, “Towards a General Object-Oriented Ada Lifecycle,” Proceedings
of the Joint Ada Conference, March 1987

13Stark, M., and E. Seidewitz, "Generalized Support Software: Domain Analysis and Implemen-
tation," Addendum to the Proceedings OOPSLA '94, Ninth Annual Conference, Portland, Oregon,
U.S.A,, October 1994, pp. 8-13

10Straub, P. A., and M. V. Zelkowitz, “On the Nature of Bias and Defects in the Software
Specification Process,” Proceedings of the Sixteenth International Computer Software and
Applications Conference (COMPSAC 92), September 1992

8Straub, P. A., and M. V. Zelkowitz, “PUC: A Functional Specification Language for Ada,”
Proceedings of the Tenth International Conference of the Chilean Computer Science Society,
July 1990

7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Software Management
Cycle Into the TAME System, University of Maryland, Technical Report TR-2289, July 1989

13Thomas, W. M., A. Delis, and V. R. Basili, An Analysis of Errors in a Reuse-Oriented
Development Environment, University of Maryland, Computer Science Technical Report,
CS-TR-3424, UMIACS-TR-95-24, February 1995

10Tjan, J., A. Porter, and M. V. Zelkowitz, “An Improved Classification Tree Analysis of High

Cost Modules Based Upon an Axiomatic Definition of Complexity,” Proceedings of the Third
IEEE International Symposium on Software Reliability Engineering (ISSRE 92), October 1992

Tumner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Development Data,
Data and Analysis Center for Software, Special Publication, May 1981

10Valett, J. D., “Automated Support for Experience-Based Software Management,” Proceedings
of the Second Irvine Software Symposium (ISS _92), March 1992

SvValett, J. D., and F. E. McGarry, “A Summary of Software Measurement Experiences in the
Software Engineering Laboratory,” Proceedings of the 21st Annual Hawaii International
Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, “Evaluating Software Development by Analysis of Changes:
Some Data From the Software Engineering Laboratory,” IEEE Transactions on Software
Engineering, February 1985

5Wu, L., V. R. Basili, and K. Reed, “A Structure Coverage Tool for Ada Software Systems,”
Proceedings of the Joint Ada Conference, March 1987

1Zelkowitz, M. V., “Resource Estimation for Medium-Scale Software Projects,” Proceedings of
the Twelfth Conference on the Interface of Statistics and Computer Science. New York: IEEE
Computer Society Press, 1979

BI-14 SEL-95-003

2Zelkowitz, M. V., “Data Collection and Evaluation for Experimental Computer Science
Research,” Empirical Foundations for Computer and Information Science (Proceedings),
November 1982

6Zelkowitz, M. V., “The Effectiveness of Software Prototyping: A Case Study,” Proceedings of
the 26th Annual Technical Symposium of the Washington, D.C., Chapter of the ACM, June 1987

6Zelkowitz, M. V., “Resource Utilization During Software Development,” Journal of Systems
and Software, 1988

8Zelkowitz, M. V., “Evolution Towards Specifications Environment: Experiences With Syntax
Editors,” Information and Software Technology, April 1990

BI-15 SEL-95-003

NOTES:

IThis article also appears in SEL-82-004, Collected Software Engineering Papers: Volume I,
July 1982.

2This article also appears in SEL-83-003, Collected Software Engineering Papers: Volume II,
November 1983. ‘

3This article also appears in SEL-85-003, Collected Software Engineering Papers: Volume 111,
November 1985.

4This article also appears in SEL-86-004, Collected Software Engineering Papers: Volume IV,
November 1986.

S5This article also appears in SEL-87-009, Collected Software Engineering Papers: Volume V,
November 1987.

6This article also appears in SEL-88-002, Collected Software Engineering Papers: Volume VI,
November 1988.

TThis article also appears in SEL-89-006, Collected Software Engineering Papers: Volume VII,
November 1989.

8This article also appears in SEL-90-005, Collected Software Engineering Papers: Volume VIII,
November 1990.

9This article also appears in SEL-91-005, Collected Software Engineering Papers: Volume IX,
November 1991.

10This article also appears in SEL-92-003, Collected Software Engineering Papers: Volume X,
November 1992.

11This article also appears in SEL-93-001, Collected Software Engineering Papers: Volume XI,
November 1993.

12This article also appears in SEL-94-004, Collected Software Engineering Papers: Volume XII,
November 1994.

13This article also appears in SEL-95-003, Collected Software Engineering Papers:
Volume XIII, November 1995.

BI-16 SEL-95-003

REPORT DOCUMENTATION PAGE

" Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budgst, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
November 1995

3. REPORT TYPE AND DATES COVERED
Technical Memorandum

4. TITLE AND SUBTITLE

Software Engineering Laboratory Series

Collected Software Engineering Papers: Volume XIII

6. AUTHOR(S)

Flight Dynamics Systems Branch

5. FUNDING NUMBERS

Code 551

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)
Goddard Space Flight Center

8. PEFORMING ORGANIZATION
REPORT NUMBER

Greenbelt, Maryland 20771

SEL-95-003

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS (ES)

10. SPONSORING / MONITORING

National Aeronautics and Space Administration
Washington, DC 20546-0001

AGENCY REPORT NUMBER

TM—1998-208615

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified—-Unlimited
Subject Category: 82

Report available from the NASA Center for AeroSpace Information,
7121 Standard Drive, Hanover, MD 21076-1320. (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to
investigate the effectiveness of software engineering technologies when applied to the development of applica-

tion software.

The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series, a continuing series of reports that includes this document.

14. SUBJECT TERMS

Software Engineering Laboratory,
Application software, Documentation

15. NUMBER OF PAGES
276
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500

Standard Form 298 (-F'Xev. 2-89)

