
52-91

616433

MARS HUMAN EXPLORATION REFERENCE MISSION

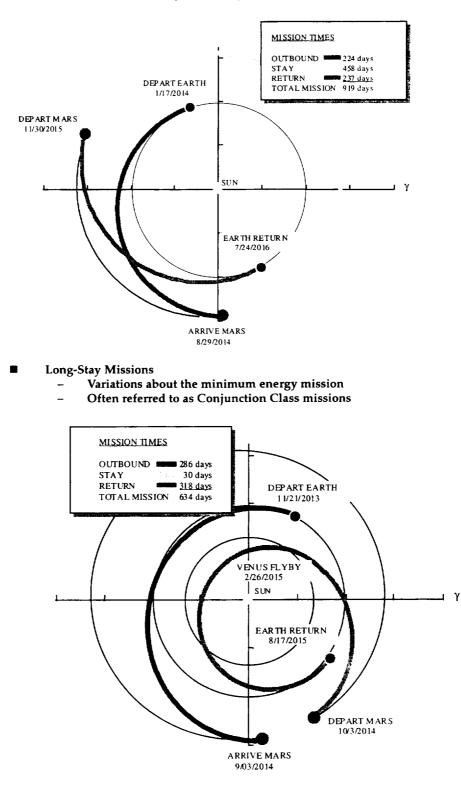
Bret Drake NASA Johnson Space Center Exploration Office

Human Space Exploration -- Next Steps

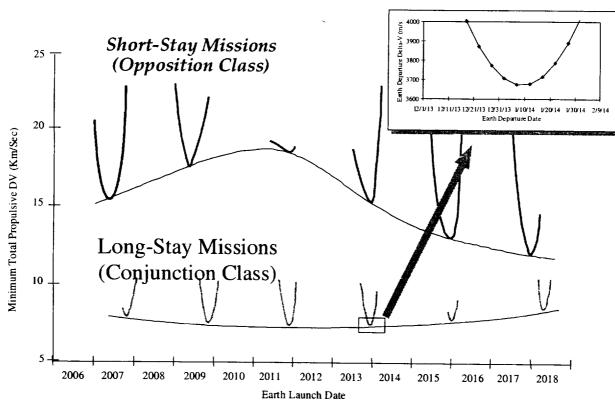
- ★ The Opportunity An explosion of recent discoveries
 - Allan Hills Meteorite
 - Pathfinder
 - Clementine
- ★ The Challenge Affordable human exploration
 - Significant reductions in cost
 - Efficient mission approaches
 - Development of leveraging technologies
 - Mars knowledge return
 - Enable a mission in early 2010's

Increase Knowledge

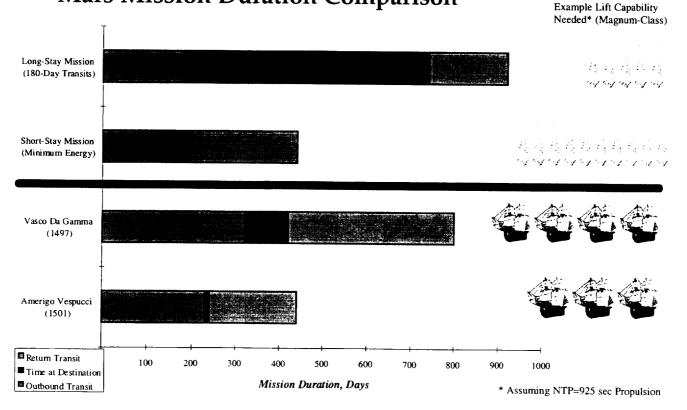
- Today's Exploration program focuses on understanding planetary and asteroid environments for what they can teach us about life on Earth
- Human capabilities will tremendously extend the scientific breadth and depth of the Exploration program
 - Sample selection, rapid analysis, and reselection
 - Operate sophisticated *in-situ* laboratories and observe, react to data, modify strategies, retest, verify and *think*
 - Repair, adjust, and control robotic science activities with no time delay
 - Access sites that are too challenging for robotic missions
 - In-situ sample screening, analysis, preservation and selection for return to Earth
 - Assessment of resources and technologies through experience


The best sensor is the human eye....the best computer is the human mind

© Paramount


Mars Mission Strategies -- Old Paradigm

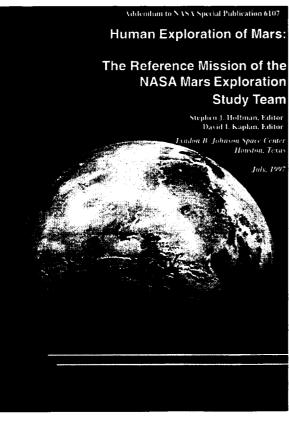
- Most past Mars studies employ "Starship Enterprise" approach
 - Large "mothership" constructed in Earth orbit, travels to and from Mars orbit
 - Crew takes "shuttlecraft" to surface and explores for a short time
 - If problems occur, abort to Earth
 - Basically incompatible with economical spaceflight and Mars mission objectives
 - "Mothership" requires huge propellant quantities or exotic propulsion technology
 - Complex and risky construction and integration in Earth orbit
 - Short surface stay limits mission objectives
 - "Abort to Earth" implies long duration interplanetary flight times


Mars Trajectory Classes

- Short-Stay Missions
 - Variations of missions with short Mars surface stays and may include Venus swing-by
 - Often referred to as Opposition Class missions

Delta-V Variations

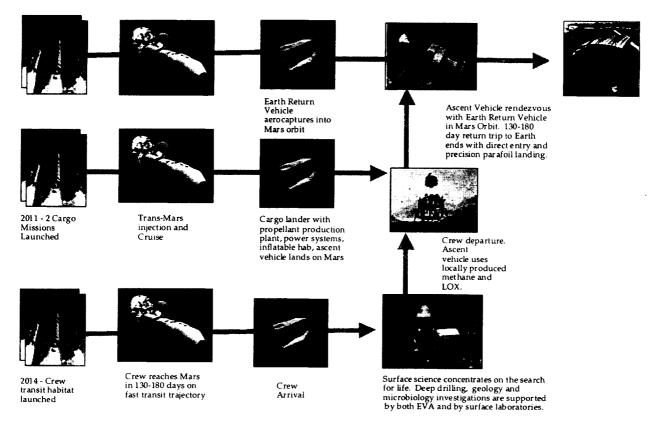
Mars Mission Duration Comparison


New Approach

- Key in new paradigm is shifting focus from interplanetary spaceflight to planetary surface
 - Make Mars the safest place in the solar system
 - Pre-deploy assets to Mars, ensure operational before crew departs
 - Planetary departure / return windows can allow critical operational advantages
 - Pre-deployed assets for "next" crew available as redundant elements for "current" crew
 - Redundancy through "forward deployment" rather than "abort to Earth"

Mass Reduction Strategies

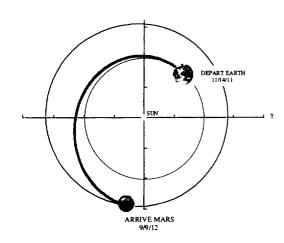
- Major component of economical human esploration of Mars is through the reduction of mass. Current mass reductions achieved by:
 - 1. Utilizing energy-efficient trajectories to pre-deploy mission assets
 - 2. Proper application of advanced technologies
 - 3. Achieving proper tradeoffs of mass and power
 - Advanced Space Propulsion
 - Utilizing locally produced propellants (In-Situ Resource Utilization)
 - Employing advanced (bioregenerative) life support systems to close air, water, and potentially food loops



www-sn.jsc.nasa.gov/marsref/

Mars Reference Mission

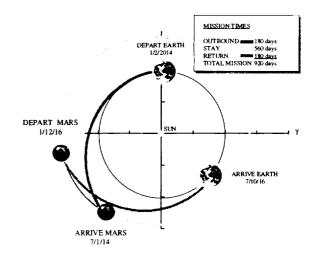
- Exploration mission planners maintain "Reference Mission"
- Represents current "best" strategy for human Mars missions
- Purpose is to serve as benchmark against which competing architectures can be measured
- Constantly updated as we learn
- Probably does not represent the way we will end up going to Mars

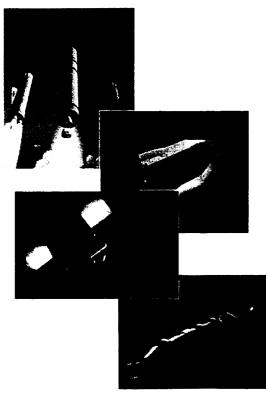

Reference Mission Scenario Overview

Forward Deployment Strategy

- Twenty-six months prior to crew departure for Mars, predeploy:
 - Mars-Earth transit vehicle to Mars orbit
 - Mars ascent vehicle and exploration gear to Martian surface
 - Mars science lab to Martian surface
- Crew travels to Mars on "fast" (six month) trajectory
 - Reduces risks associated with zero-g, radiation
 - Land in transit habitat which becomes part of Mars infrastructure
 - Sufficient habitation and exploration resources for 18 month stay

Cargo Missions

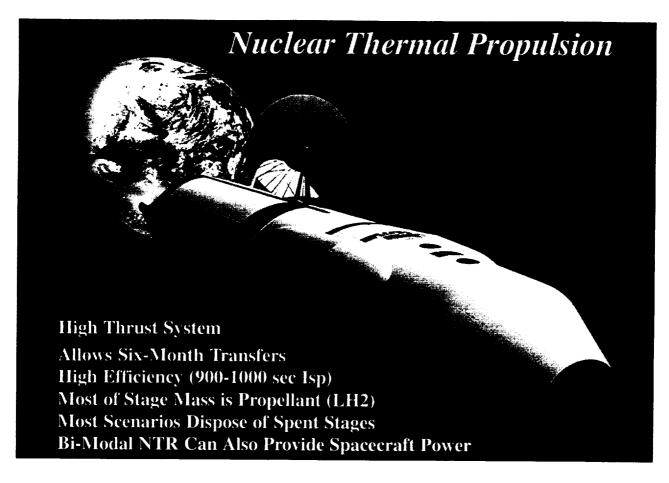

Two Cargo Missions (2011)

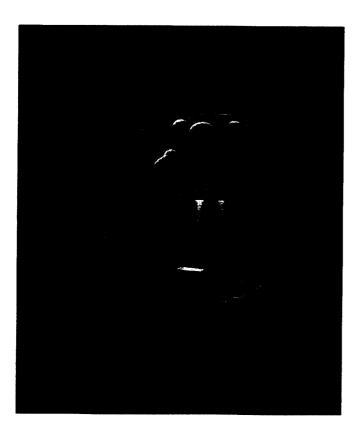

- Leave Earth November 4, 2011 TMI DV = 3590 m/s
- 310-day outbound trip
- Arrive at Mars September 9, 2012
- Aerocapture into 1-Sol orbit
- Descent vehicle descends to surface
- Return vehicle remains in orbit

Piloted Mission

Piloted Mission (2014)

- Leave Earth January 2, 2014 TMI DV = 3680 m/s
- 180-day outbound trip
- Arrive at Mars July 1, 2014
- Aerocapture into 1-Sol orbit
- 560-day stay on the Martian surface
- Leave Mars January 12, 2016
- TEI DV = 1080 m/s
- 180-day inbound trip
- Arrive at Earth July 10, 2016
- Direct entry to Earth's surface





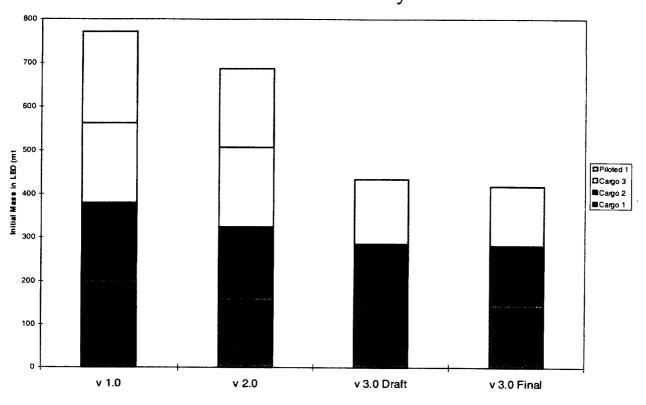
Space Transportation

Examining all mission phases for cost-effective transportation options and additional customers

- Earth-to-Orbit
 - Second generation Shuttle-derived launcher
 - Other potential customers DoD Payloads, Next Generation Space Telescope
- Earth Orbit to Mars Orbit
 - Electric Propulsion
 - Nuclear Thermal Propulsion
 - Other potential customers GEO pay-
 - loads, Solar Power Satellites ?
- Mars Orbit Injection
- Aerocapture
 Ascent from Martian Surface
 - In situ propellant production

Mars In Situ Resources

- Traditional exploration architectures advocate investigation of Martian resources during "early" human missions
 - Idea is to reduce cost of subsequent missions
 - Relying upon in situ resources from the outset presents some advantages
 - Producing ascent propellant greatly reduces required Earth launch mass
 - Producing caches of water and oxygen provides backup to life support systems
 - Can reduce level of closure (and expense) of systems
- Technical risk can be mitigated by robotic tests of Martian resource extraction
 - Could also make sense as a sample return strategy


Power Needs for Exploration Electric Propulsion • High Power (500 kWe - 4 MWe) • Specific Mass (7-10 kg/kWe) Solar and Nuclear Power Generation Options • Radiation Degradation < 35% · Some Scenarios Include Vehicle Reusability Stationary Power Sources (100+ kWe) • Multi-year life (7 years) Solar and Nuclear Power Generation Options • 30 kWe Habitats • 30-60 kWe Regenerative Life Support 305 • 50 kWe In Situ Resource Utilization ి~ Mobile Power Sources • Power Sources Include: Dynamic Isotope, Photovoltaic with Regenerative Fuel Cells, Advanced Batteries, and Internal Combustion • 10 kWe for pressurized rovers • 10 kWe for universal power cart • 4 kWe for unpressurized rovers

• 50-100 W for EVA suit

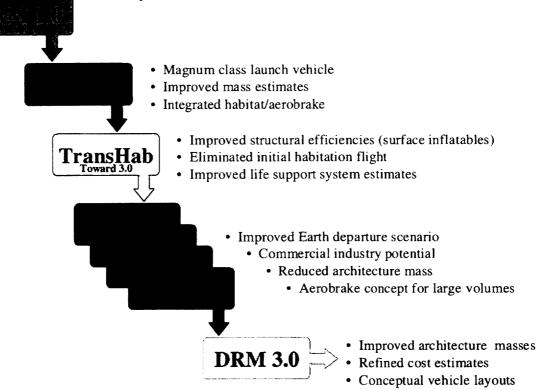
Launch Packaging for Version 3.0

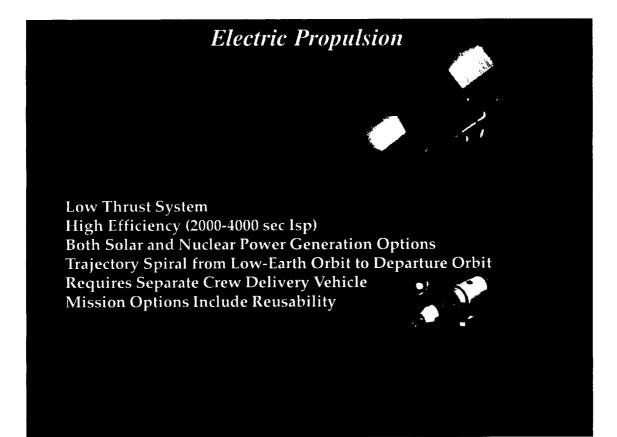
•	— 8.6 m 🔶 <u>— 67 days /. TMI:</u>	<u>-97 days / TML</u>	-67.days / TM1:
↑	$m_{\rm bb} = 10.2$ mt	$m_{ab} = 9.9 \text{ mt}$ $m_{cerv} = 4.8 \text{ mt}$	$m_{ab} = 13.6 \text{ mt}$ $m_{acc} = 0.5 \text{ mt}$
28 m	m _{retHab} = 29.1 mt	A scent Stage (60klb ₁ total $m_{tr_1} = 4.1 \text{ mt}$ $m_p = 38.4 \text{ mt}$): Surface Payload: m _{treadiab} = 28.9 mt
(max)	TEl Stage (30klb, total (boil-off: 0.3%/mo av	$m_{targe} = 31.3 \text{ mt}$	$m_{musc} \approx 1.5 \text{ mt}$ $m_{musc} \approx 1.5 \text{ mt}$ Descent Stage (60klb ₁ total)
	$m_{try} = 5.9 \text{ mt}$ $m_p = 28.9 \text{ mt}$ 24 RCS thrusters	(incl $m_{LH2} = 5.4$ mt) Descent Stage (60klb _f tota	$m_{diy} = 4.9 \text{ mt}$ $m_p = 11.4 \text{ mt}$ 24 RCS thrusters
Ť 1	m _{pytd} = 74.1 mt	$m_{dr,s} = 4.9 \text{ mt}$ $m_p = 11.0 \text{ mt}$ 24 RCS thrusters	m _{pytd} = 60.8 mt
	<u> – 37 days / 1141:</u>	m _{pγ16} = 66.0 mt	<u>-37 days / 1741:</u>
28 m	L _{tank} = 20 m (typ)	<u>~7 days / TML:</u>	TMI Stage:
(max)	TMI Stage: (boil-off: 1.8%/mo LE m _{try} = 23.4 mt	EO) TMI Stage: $m_{dr_3} = 23.4 \text{ mt}$ $m_{b} = 45.3 \text{ mt}$	$m_{div} = 26.6 \text{ mt}$ $m_p = 50.0 \text{ mt}$
	$m_p = 50.0 \text{ mt}$ $m_{rage} = 73.4 \text{ mt}$	m _{terr} = 68.6 mt	m _{eta gr} = 76.6 ml
+ +	7.6 m - 3 15 klb, NTP engines	3 15 klb, NTP engines	A II A 3 15 klb ₁ NTP engines 12 RCS thrusters
2011 TMI S	12 RCS thrusters	12 RCS thrusters 2011 TM1 Stack 2: 134.7 mt	2014 TMI Stack (5): 137.5 mt
2011 1011 3			Larry Kus / MSE

Larry Kos / MSFC / PD32 Ena Nishimuta / MSFC / PD23 v3.5, 1/21/98

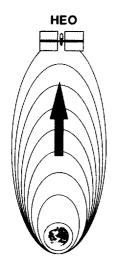
Version 3.0 Mass Summary

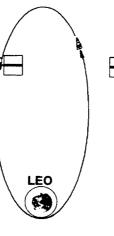
Flight 1: ERV	Reference	Version 1.0	Final	Version 3.0			
Earth Return Vehicle	56	mt	29	mt			
TEI Stage	5	mt	6	mt			
TEI Propellant	52	mt	29	mt			
Aerobrake	17	mt	10	mt			
TMI Stage	29	mt	23	mt			
TMI Propeilant	86	mt	50	mt			
TOTAL MLEO	245	mt	147	mt			
Flight 2: MAV							
Ascent Capsule	6	mt	5	mt			
Ascent Stage	3	mt	4	mt			
Payload	48	mt	31	mt			
Descent Stage	5	mt	4	mt			
Descent Propellant	12	mt	11	mt			
Aerobrake	17	mt	10	rnt			
TMI Stage	29	mt	23	mt			
TMI Propellant	86	mt	45	mt			
TOTAL MLEO	205	mt	134	mt			
Flight 3: Piloted							
Habitat	53	mt	29	mt			
Payload & Crew	2	mt	2	mt			
Descent Stage	5	mt	5	mt			
Descent Propellant	12	mt	11	mt			
Aerobrake	17	mt	14	mt			
TMI Stage & Shielding	32	mt	27	mt			
TMI Propellant	86	mt	50	mt			
TOTAL MILEO	208	mt	137	mt			

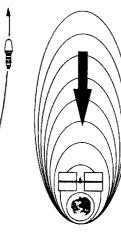

-


...

-

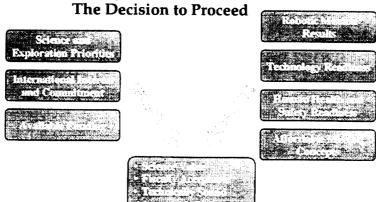

DRM Mass History


Major Mission Variations to DRM 1.0


Electric Propulsion Earth Departure

Electric Propulsion (EP) space tug performs low-thrust transfer for Mars-bound cargo to High Earth Orbit (many months transfer)

Crew delivered in "small" chemically-propelled transfer vehicle - X-38 derived (few days rendezvous time)



Remainder of trans-Mars injection performed by chemically-propelled system

Space tug returns for refueling and next assignment (faster or more efficient return since no payload present)

Mars TransHab

- **JSC Engineering** Directorate investigated the use of inflatable structures for human Mars missions
- Significant improvement in:
 - Structural
 - efficiencies
 - Advanced life support system design
- Advancements incorporated into Mars mission definition (surface)

Enable an affordable Mission to Mars

TransHab at ISS