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Dendrites are the primary component of solidification microstructures in metals. Their properties

have been a topic of intense study in the past 10-15 years. Experiments [1, 2] by Glicksman and

coworkers on succinonitrile (SCN) and other transparent analogues of metals have provided tests

of theories of dendritic growth, and have stimulated considerable theoretical progress [3-5]. The

experiments have clearly demonstrated that naturally growing dendrites possess a unique steady

state tip, characterized by its velocity, radius of curvature and shape, which leads the to a time-

dependent sidebranched dendrite as it propagates.

Insight into the steady state dendrite problem was first obtained from local models [6-9] describing

the evolution of the interface, and incorporating the features of the bulk phases into the governing

equation of motion for the interface. These models showed that a nonzero dendrite velocity is

obtained only if a source of anisotropy - for example, anisotropic interfacial energy - is present in

the description of dendritic evolution. It was then shown that the spectrum of allowed steady state

velocities is discrete, not continuous, and the role of anisotropy was understood theoretically, both

in the local models and the full moving boundary problem [5, 10, 11]. Moreover, only the fastest

of a spectrum of steady state velocities is stable, thus forming the operating state of the dendrite.

It is widely believed that sidebranching is generated by thermal or other statistical fluctuations on

a microscopic scale, which are amplified by advective diffusion. This body of theoretical work is

generally known as solvability theory.

Brute force solution of the time-dependent Stefan problem requires front tracking and lattice de-

formation to contain the interface at predefined locations on the grid [12]. The phase-field model

avoids this problem by introducing an auxiliary continuous order parameter ¢(r) that couples to

the evolution of the thermal field. The phase field interpolates between the solid and liquid phases,

attaining two different constant values in either phase, with a rapid transition region in the vicinity

of the solidification front. The level set of ¢(r) = 0 is identified with the solidification front, and

the dynamics of ¢ are designed to follow the evolving solidification front [13-23]. The phase-field

parameters can be derived from parameters of the Stefan problem [14, 24], however this mapping

is not very sensitive to the precise form of the phase-field model [25].

While the phase-field model finesses the problem of front tracking, it is still prohibitively expensive

for large systems, because the grid spacing must be small enough everywhere that the phase-field

model converges to the the sharp interface limit [14,24]. Caginalp and Chen [26] showed rigorously

that the phase field model converges to the sharp interface limit when the interface width (and hence

the grid spacing) is much smaller than the capillary length. This result is necessary for acceptance

of the phase field model, but is not sufficient for computational tractability in the experimentally

relevant regime.

However, more recently Karma and Rappel [24] presented a different asymptotic analysis in powers

of the ratio of the interface width to the diffusion length. Their procedure allows selection of

parameters such that the phase field model corresponds to the sharp interface limit when the

interface width (and hence the grid spacing) is of order the capillary length - a much more tractable
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regime. Furthermore, their improved analysis allows the kinetic coefficient to be tuned to zero,

which corresponds to the experimentally realized situation at low undercooling in succinonitrile

[2]. Karma and Rappel's numerical results are in excellent agreement with solvability theory at

dimensionless undercoolings as low as 0.30, but fail to access the range of experimentally-realizable

undercoolings near 0.1. What is needed is an effective adaptive technique [27] which dynamically

coarsens the grid spacing away from the front.

In this work we show how the phase field model can be solved in a computationally efficient manner

that opens a new large-scale simulational window on solidification physics. Our method uses a finite

element, m:laptive-grid formulation, and exploits the fact that the phase and temperature fields

vary significantly only near the interface. We illustrate how our method allows efficient simulation

of phase-field models in very large systems, and verify the predictions of solvability theory at

intermediate undercooling. We then present new results at low undercoolings that suggest that

solvability theory may not give the correct tip speed in that regime.

We model solidification using the phase-field model used by Karma and Rappel [24]. We rescale
temperature T by U = cp(T - TM)/L, where cp is the specific heat at constant pressure, L is the

latent heat of fusion and TM is the melting temperature. The order parameter is defined by ¢,

with ¢ = 1 in the solid, and ¢ -- -1 in the liquid. The interface is defined by ¢ = 0. We rescale

time by To, a time characterizing atomic movement in the interface, and length by Wo, a length

characterizing the liquid-solid interface. The model is given by

OU _ Dv2U + 10¢
d----_-- 2 0"-'t (1)

A2(_ ) 0__¢¢= V. (A2(_)V¢) + (¢ - AU(1 - ¢2))(1 - ¢2)
dt

0 vCl2A( _ +_yy V¢l (_ ,+ Ox

where D = aTo/W2o and a is the thermal diffusivity, and where A controls the coupling of U

and ¢. Anisotropy has been introduced in Eqs. (1) by defining the width of the interface to be

W(_) = WoA(_) and the characteristic time by T(_) = roA2(_) [24], with A(ff) E [0, 1], and

4_ (¢,x)4"_(¢ y)4 1 ^ 2A(ff) = (1 - 3e) 1 + 1-3e V¢ 4 j . The vector ff = (¢,_ + ¢,yY)/(¢,x + ¢2)1/2 is the normal

to the contours of ¢, and ¢,z and ¢,y represent partial derivatives with respect to x and y. The

constant e parameterizes the deviation of W(ff) from Wo. We expect the results to be similar for

other definitions of anisotropy [14].

We use the asymptotic relationships given in [24] to select the parameters in Eqs. (1) such that it

operates in the sharp interface limit, defined by U at the interface satisfying Uint = -d(_)_-j3(_)Vn.

The variable d(_) is the capillary length, n is the local curvature, fi(_) is the interface attachment

kinetic coefficient and Vn the normal speed of the interface, all in dimensionless form. In terms

of A(_), d(_) = do [A(_) + 02A(_)], where do -- 0.8839/_ and 9 is the angle between _ and the

x-axis. In this formulation, the constants Wo, To and ,k may be chosen so as to simulate arbitrary

values of ft. In particular, X = 1.5957D makes _ = 0 [24], a limit which is appropriate for SCN.

We compute four-fold symmetric dendrites in a quarter-infinite space, initiated by a small quarter

disk of radius Ro centered at the origin. The order parameter is initially set to its equilibrium value

¢o(_) -- - tanh((J:_j - Ro)/v_) along the interface. The initial temperature decays exponentially
from U -- 0 at the interface to -A as _ _ cx_.

We simulate Eqs. (1) on an adaptive grid of linear isoparametric quadrilateral and triangular finite

elements, formulated using Galerkin's method. Following Ref. [28], elements are arranged on a
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two dimensional quadtree data structure, which makes our code scalable when implemented using

dynamic memory allocation. The largest system sizes we have considered thus far correspond to

2D uniform lattices having 217 × 217 grid points. The grid is locally refined to have a higher density

of elements in the vicinity of the interface, identified by large fluxes in a composite field based on

both ¢ and U. Typically, the grid is adapted about every 100 time steps, which permits ¢ and U

to remain within the refined range between regriddings. We allow a difference of at most one level

of refinement between neighboring quadrilateral elements. In such a case the quadrilateral element
of lower level of refinement has an extra side node. The extra nodes are resolved with triangular

elements.

On an adaptive grid, the concept of a grid spacing is replaced by that of a minimum grid spacing

AXmin, representing the finest level of spatial resolution. We found that for solutions to converge

properly, the grid must be layered such that the highest density of elements appears around the ¢

interface, while the U-field, whose width is of order D/Vn can be encompassed by a mesh of larger

grid spacing. Convergence of our solutions is relatively insensitive to Axmi n. For a test case of

dendrites grown at A = 0.55, D = 2, e = 0.05, and integration time step dt = 0.016, our solutions

for the steady state velocity converge to that given by solvability theory to within a few percent

for 0.3 _< nXmin ____1.6.

Fig. 1 shows a dendrite 105 time steps into its evolution computed using our adaptive grid method,

using the parameters just mentioned above. The system size is 800 x 800, with Axmi n ---- 0.78,

and about half of the computational domain is shown. Sidebranching is evident, and arises due

to numerical noise. This calculation took approximately 10 cpu-hours on a Sun UltraSPARC 2200

workstation.

We examined the cpu-scalability of our algorithm with system size by growing dendrites in systems
of various linear dimension LB and measuring the cpu time R_ for the dendrite branches to traverse

the entire system. We once again use the same parameters as above, except Axmi n -_- 0.4. The

relationship between R_ and LB is shown in Fig. 2, where we see that T/_ ,-_ L 2. The number of

calculations performed, per time step, is proportional to the number of elements in our grid, which

is set by the arclength of the interface being simulated multiplied by the diffusion length D/Vn. For

a parabolic shape the arclength --_ LB. Thus, since the dendrite tip moves at a constant velocity Vn,

then R_ = [RoDVna _/AXm]LB,2 2 where R oais a constant that depends on the implementation. The

cpu time R_' needed to compute the same case on a uniform grid scales as R_' = [R_/(VnAx2m)]L 3.

For large system sizes, R_ / R v _ LB.

We tested the effective anisotropy of our dynamically adapting lattice in two ways. Following the

method outlined by Karma [24], we find an equilibrium shape for the interface when the background

field is adjusted dynamically so as to maintain the velocity of the interface at zero. The effective

anisotropy is inferred by fitting an equation to the computed interface. We found Qff to be within
5% of the intended value for input e = 0.02 - 0.04. We also tested for grid anisotropy by rotating

the grid by 45 degrees, which should represent the lowest accuracy for square elements. In this

case, the steady state tip-velocity was within 1% of its value in the original orientation.

We further verified our algorithm by comparing measured tip-velocities and shapes for dendrites

grown using the same undercoolings, parameter sets and systems sizes reported in [24]. We found

very good agreement for A ----0.65, 0.55, 0.45, 0.30. We next investigated the effect of system size.

Fig. 3 shows the time evolution of tip-velocity for several undercoolings and system dimensions.
The two cases for A = 0.65 are typical of results at intermediate A, showing a relatively rapid

leveling to an asymptotic speed within a few percent of that predicted by solvability theory.

At lower A, however, we found that the tip-velocity deviates from that predicted by solvability
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theory. Fig. 3 also shows the evolution of the tip-velocity for A = 0.25 in two different sized boxes.

Whereas the computed tip-velocity falls a few percent below the solvability value in the 6400 x 400

box, it exceeds by 8% the solvability value in the 6400 × 3200 box. This effect is even larger at

A _--0.1, also shown in Fig. 3, where the tip speed is about 3 times larger than that predicted by
solvability theory.

The explanation for this behavior is that at low A, the thermal fields of the two dendrite branches

overlap, violating the assumptions of solvability theory, which models an isolated single dendrite.

At large undercooling, each dendrite arm quickly outruns the other's thermal boundary layer, and

solvability theory should apply. (See Fig. 1, A = 0.65.) The conditions of solvability theory can
also be approximated at lower undercooling if simulations are performed in a domain which is

small in one direction. For the simulation performed with A _--0.25 in the small box (6400 × 400),

the branch in the y-direction is extinguished by its interaction with the wall and agreement with

solvability theory is obtained. However, when both branches are present, as in the simulation with

A = 0.25 in the larger box (6400 × 3200), their interaction leads to an increased tip-velocity because

the dendrites are embedded in a circular rather than parabolic diffusion field. This is clearly seen

in Fig. 4, where the dendrite shape and its associated field are shown for A = 0.10 (D = 13,
do -- 0.043, e ----0.05, Ax ----0.78, dt = 0.08). The dendrite arms never became free of each other in

this simulation, causing the observed deviation from solvability theory shown in Fig. 3. This latter

simulation was performed in a 102400 × 51200 domain, chosen to contain about IOD/Vn. We note

that the ratio of the largest to smallest element size in this simulation is 217. A fixed mesh having

the same resolution would contain 9 × 10 9 grid points, clearly beyond current computing capability.

We can estimate the time t* when the growth of the dendrite tip crosses over from the transient

regime where the branches interact to that where they become independent by equating the length
of the full diffusion field, 3(Dt*)U2, to the length of a dendrite arm, Vnt*. This gives the crossover

time as t* = 9D/V_. The values for t* corresponding to the cases A _--0.65, 0.25 and 0.10 in Fig. 3

are 2.5 x 103, 1.6 × 104 and 5.9 x l0 T, respectively. Inspection of Fig. 3 confirms this scaling.

These results have important implications when comparing theory to experimental observations at

low undercooling. We find that in this regime, the appropriate theory to use is one which explicitly

takes into account the long range effects of other branches [29]. In particular, study of real dendrites

with sidebranches, growing at low undercooling, will require such treatment. An investigation of
this effect, as well as results in 3D, applications to directional solidification and other solidification

processes, and a more detailed description of our algorithm will appear in future publications.

We thank Wouter-Jan Rappel for providing the Green's function steady-state code used to test some

of our simulations, and Alain Karma for generously providing us with his unpublished results.

We also thank Robert Almgren and Alain Karma for helpful discussions of our results at low

undercooling. This work has been supported by the NASA Microgravity Research Program, under
Grant NAG8-1249.
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Figure 1: A dendrite grown using the adaptive-

grid method for A = 0.55, D = 2, e = 0.05.

Clockwise, beginning at the upper right the fig-

ures show contours of the U-field, the contour

¢ = 0, contours of the C-field and the current
mesh.
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Figure 3: The time evolution of the tip-velocity
for undercooling A = 0.65, 0.25 and 0.10.
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Figure 2: CPU time vs. the system size, illustrat-

ing the computing time for a dendrite to move

through the system of linear dimension LB using

our adaptive mesh method.
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Figure 4: Dendrite silhouette and isotherms from

-0.01 to -0.9 for undercooling AT = 0.1. Full

domain dimensions are 102,400 x 51,200. The

dendrite tip is approximately 1,300 units from

the origin, while the temperature field spreads
to about 5,000 units.
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