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Abstract

Magnetic levitation was used to stabilize cylindrical columns of a paramagnetic liquid in air

between two solid supports. The maximum achievable length to diameter ratio R_,× was - (3.10 ±

0.07), very close to the Rayleigh-Plateau limit of_. For smaller R, the stability of the column was

measured as a function of the Bond number, which could be continuously varied by adjusting the

strength of the magnetic field.

Liquid bridges supported by two solid surfaces have been attracting scientific attention since the

time of Rayleigh [1 ] and Plateau. For a cylindrical bridge of length L and diameter d, it was shown

theoretically that in zero gravity the maximum slenderness ratio R [-L/d] is _ [1]. The stability and

ultimate collapse of such bridges is of interest because of their importance in a number of industrial

processes and their potential for low gravity applications. In the presence of gravity, however, the

cylindrical shape of an axisymmetric bridge tends to deform, limiting its stability and decreasing the

maximum achievable value of R. Theoretical studies have discussed the stability and possible

shapes of axisymmetric bridges [2-6]. Experiments typically are performed in either a Plateau tank,

in which the bridge is surrounded by a density-matched immiscible fluid [7-9], or in a space-borne

microgravity environment [10]. It has been shown, for example, that the stability limit R can be

pushed beyond _zby using flow stabilization [6], by acoustic radiation pressure [7,9], or by forming

columns in the presence of an axial electric field [8]. In this work magnetic levitation was used to

simulate a low gravity environment and create quasi-cylindrical liquid columns in air. Use of a

magnetic field permits us to continuously vary the Bond number B - ggd2 , where g is the
4o

gravitational acceleration, P is the density of the liquid, and o is the surface tension of the liquid in

air. The dimensionless Bond number represents the relative importance of external forces acting on

the liquid column to those due to surface tension. Our central result is that in a large magnetic field

gradient we could create and stabilize columns of mixtures of water and paramagnetic manganese

chloride tetrahydrate (MnCI 2• 4H20), achieving a length to diameter ratio very close to _.

* Based on NASA project Determination of the Surface Energy of Smectic Liquid Crystals From

the Shape Anisotropy of Freely Suspended Droplets

t Part of this report is reprinted with permission from M. Mahajan, M. Tsige, C. Rosenblatt, and

P.L. Taylor, Paramagnetic Liquid Bridge in a Gravity-Compensating Magnetic Field, Physics of

Fluids (to be published, 1998). Copyright 1998 American Institute of Physics.
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The principle of magnetic compensation of gravity is straightforward. For a material of volumetric

magnetic susceptibility Z in a magnetic field H, the energy per unit volume is given by U = -V2xH 2,

and the force per unit volume is -VU. To compensate gravity it is required that½zVH_omp _ pg,

where Hcomp corresponds to the magnetic field whose gradient just compensates gravity. For VH 2

larger or smaller than 2pg/z, the liquid will rise or sag in the column, ultimately causing the column

to collapse if VH 2 deviates too significantly from

its gravity-compensating value. Thus the effective

force on the column may be controlled by varying

the current in the magnet.

An electromagnet fitted with special Faraday pole

pieces was used to produce VH 2 uniform to

approximately 6% over the length of a 1 cm-long

column. In order to determine the field profile, a

Bell model 9500 Gaussmeter utilizing a Hall effect

probe was used to measure Hx as a function of

vertical position z along the symmetry plane (x = 0)

of the magnet (Fig. 1). For all practical purposes,

the field profile is translationally invariant along the

y-axis, and therefore the y coordinate does not enter

into the problem. Experimental values of both Hx

and the product Hx C3zHx are shown as functions of

z in Fig. 2. Note that along the plane x = 0 the z-

component of field Hz vanishes, although a

Fig. 2 Magnetic field Hx (right axis) and

Hxc?zHx (left axis) vs. vertical position z at H =

Hcomp. z = 0 corresponds to the position of
closest approach of the pole pieces (see Fig. 1).
The quantity Hx0zH x is maximum at z = -0.8 cm.

3 x 107_ 1.2 x 10 _

r f _ ]

/\ t'0
\---- 7

\ t
\t

_05

05 O0 -05 -10 -1.5 -20

Z (cm)

Fig. 1 Schematic view of the

experimental setup. The fluid injection

system, involving a hypodermic needle
that injects material from the side, is not
shown.
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small component of Hz exists for x _e0. This small

component may give rise to a slight distortion of the

cylinder perpendicular to its symmetry axis, and will be

discussed below. Nevertheless, over the small diameter

of the columns Hz3zHz remains small, and VH 2 is

dominated by Hx 3_Hx ; we shall therefore consider the

z-component of force to be Z H× c3_H X.

Manganese chloride tetrahydrate was obtained from

Aldrich Chemicals and used as received. A high-

concentration mixture of 62.5 wt.% MnC12 • 4HzO in

distilled water was prepared. By weighing a known

volume of the mixture, its density was determined to be

p = (1.45 + 0.01) gm cm 3. The surface tension c_ in air

was measured to be (116 4- 6) ergs cm -2by the pendant

drop method [ 11,12] To establish a confidence level for

this technique, the measurements were repeated with

both pure water and glycerol, where the measured values

of _ were found to scatter within +5% of accepted

values in the literature.

Fig. 1 shows a sketch of the apparatus. Two ½-
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inch diameter aluminum rods were machined to have cylindrical tips at their ends that are d = 0.32

cm diameter and 1.27 cm long. The pair was placed vertically in the magnet at x =0, such that the

small tips faced each other. The upper rod was attached to a precision micrometer to facilitate

adjustment of its position along the z-axis relative to the lower tip, and the tip of the lower rod was

placed at approximately 0.4 cm below z = -0.8 cm. [z = 0 corresponds to the point where the pole

pieces reach their closest approach, and z = -0.8 cm is the position of maximum Hx C3zHx ]. The

lower tip was placed at this position so that the center of the liquid column would be at the

approximate maximum in H× c3zH X. A boroscope attached to a CCD camera was positioned along

the y-axis to view the liquid bridge, and the images were recorded with a video cassette recorder.

_7 2 ,The magnetic field was adjusted so that VH 2 approximately corresponded to Hco,, p and liquid

was injected into the gap (typically starting at 0.1 cm) between the tips using a 25 gauge butterfly

hypodermic needle and syringe. The upper tip was then translated upward using the micrometer,

thereby creating a liquid cylinder between the two tips. As the upper tip was further translated, a

waist formed in the column and more liquid had to be added to maintain a uniform cylinder. During

this procedure the magnetic field also had to be fine-tuned to prevent sagging. This procedure was

continued until a uniform cylinder of a desired length L (and thus a given slenderness ratio R = L/d)

was achieved. For the longest cylinders (0.8 < L < 1.0 cm), the shape of the cylinder was found to

be extremely sensitive to magnetic field: We found that ifHx 0zH x were to deviate from 2.57 x 107

G 2 cm" [defined as (Hx c3zH x )comp] by more than 1%, a noticeable bulge in the cylinder would appear

near the top (for too large a field) or the bottom (for too small a field). Thus, knowing the density p

and (H_ c3zH _ )co,,p, we were able to extract the volumetric magnetic susceptibility (per cm 3) X =

Pg -- (5.54 + 0.05) x 10 5. We note that during the course of the experiment the relative

humidity was kept near 100% to minimize evaporation of the water. Had we not done so, water

evaporation would have increased the concentration of the paramagnetic salt in the column, and

therefore changed the susceptibility.

Let us now turn to the stability of the column as a function of the Bond number. For our experiment

the Bond number B must be redefined to include the effects of the magnetic field, viz.,

pg - zH×OzH_ )d 2
B=-- (1)

4_
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As described above, columns of a given slenderness ratio R were created and stabilized in a

magnetic field gradient, such that (HxOzH _)como= 2.57 × 107 G 2 cm-t; this corresponds to B = 0.

Then B was varied either positively or negatively by decreasing or increasing the magnetic field

from its value Hco,,v. For a given R there was some maximum and minimum field, corresponding to

Fig. 3 Photograph ofd = 0.32 cm liquid bridge with R = 2.39.

a) Stable bridge with HxSzH x adjusted to approximately

(Hxc3zHx)comp, so that B is close to zero. b) Stable bridge with

Hx_zH x reduced, so that B = 0.09 (cf Eq. 1 ). Note that when

HxSzH x is further reduced, so that B - 0.093, the bridge

collapses.

Fig. 4 Slenderness ratio R vs Bond

number B at the stability limits for d =

0.32 cm bridges. The region below the

inverted "V" corresponds to the region

of stability; outside this region the

column collapses. Vertical error bars

correspond to experimental uncertainty

in determining R and horizontal error

bars to uncertainty in reproducing

collapse of the column at a given Bond

number. The solid line represents the

theoretical stability limits according to

Ref. 2.
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a negative and positive Bond number, beyond

which the column could no longer be

sustained and catastrophically collapsed. In

Fig. 3 we show two images of the stable

bridge: One is at Bond number B

approximately equal to zero. The second is at

a lower field where the Bond number is just

within the stability limit. [If the field is

further reduced, the bridge collapses]. The

Bond numbers corresponding to the limits of

stability of the bridge were measured as a

function of R, and are shown in Fig. 4. In a

similar manner we also examined cylinders of smaller diameter

d = 0.16 cm, finding comparable results for R vs. B; these are

shown in Fig. 5. [Note that for d = 0.16 cm, the lower tip was

placed - 0.2 cm below the position of maximum Hx 0,H x , i.e..

below z = -0.8 cm] In both figures we also show theoretical

numerical results for the stability limits calculated by Coriell et

al. [2].

Although our experimental results for the stability limits are

apparently symmetric about B = 0 and are in reasonable

agreement with theory, there are clearly deviations from the

theoretical curves. One problem is the uniformity of the

magnetic force (see Fig. 2). Over very small length scales

H_ 0zH _ is quite uniform,
Fig. 5 Same as Fig. 4, except for d =

0.16 cm.
although as the cylinder

length approaches 1 cm

there are significant

variations in the magnetic

force along the z-axis. For

this reason it is likely that

the stability of the longer

columns may be
-03 -02 -Ol O0 01 02 03

Bond Number B compromised. It should

also be remembered that

although the magnetic fields corresponding to the stability

limits are determined directly, the Bond number is derived

from these fields, as well as from experimental measurements

of p and or. The surface tension, in particular, has a not-

insignificant uncertainty. Thus, in addition to the
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experimental error bars that appear in Figs. 4 and 5, there may be an additional systematic error of

up to 7% in B (the abscissa). Such an error could be partially responsible for the small

disagreement between experiment and theory. Additionally, we note that for the d = 0.16 cm

columns the stability limits are reduced from theory at smaller R. We do not yet understand this

phenomenon. We note, however, that as the liquid sags (rises) near the field stability limit, a thin

film of liquid would often wet the sides of the lower (upper) rod, especially for shorter, smaller R,

columns. Thus liquid would be drawn off from the column, reducing its apparent stability. This

observation, in conjunction with possible inhomogeneities in the rod itself, may be partially

responsible for the observed deviations. Yet another issue is the liquid volume V, where deviations

from V = nLd2/4 could affect the apparent stability [13,14] of the column. In our experiments we

did not measure the volume of the bridge directly, but rather adjusted the volume to obtain an

apparently right circular cylinder at B = 0. Finally, we need to consider two effects which can alter

the cross section of the cylinder in the xy-plane from a circle to an ellipse. The dominant

component of magnetic field is along the x-axis. We have performed a magnetic boundary value

calculation, including the surface tension, to determine the distortion on an infinitely long

paramagnetic column arising from a transverse magnetic field. We found that for our values of Z

and H X, the eccentricity is -0.004 at Hcomp,compared to zero at H× = 0. This represents a tiny

deviation from a circular cross-section, and would be nearly impossible to detect with our imaging

scheme. An additional issue is that because H Xvaries with x -- we have also mapped out this

variation with our Gaussmeter -- there is a weak transverse force on the liquid cylinder in the x-

direction. This force vanishes at the symmetry plane (x = 0), but grows linearly with x away from

the midpoint between the pole pieces. We have calculated the distortion on the circular cross

section arising from this nonuniform magnetic force, and again found that the eccentricity is of

order 0.02. The effects on the stability are therefore likely to be small. Both calculations will be

published elsewhere [ 15].

To summarize, we have demonstrated that magnetic levitation may simulate a low gravity

environment to enable the formation of stable liquid bridges. Such a technique permits the

continuous variation of the Bond number and obviates the need for using density-matched liquids.

Despite these advantages, the inhomogeneities of the magnetic forces tend to reduce slightly the

limits of stability. On the basis of these results we intend to examine the effects of a modulated

magnetic field on the stability. Additionally, we may also consider the stability of diamagnetic

fluids in much higher fields, as we have already demonstrated the principle of levitation in these

systems [ 16].
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