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PREFACE 

Aeroelasticity is a multidisciplinary technology area that integrates steady and unsteady aerodynamics and 
elastic structures. Its importance has been recognized and considered since the early days of flight. It is 
critical in that proper aeroelastic design reduces or eliminates the need for costly fixes later in the 
development process. As the performance of vehicles increased, the need for control systems to control the 
structural responses increased and, for very high-speed vehicles, the effects of structural heating on the 
structural dynamic response had to be modeled. The advent of the computer led to the development of 
computational unsteady aerodynamics methods that are used to predict aeroelastic response across the 
aircraft flight envelope. The effects of aerodynamics and elastic structures must be considered and modeled 
accurately to predict aeroelastic responses and to provide data for designing active control systems. In 
recent years, smart materials and adaptive structures have been introduced as a means to control the 
response of flexible structures. 

Even as prediction methods advanced, the role of testing maintained its importance in the design and 
certification processes. Models have improved, allowing for more realistic representation of aircraft. 
Facility capabilities have increased, measurement techniques have improved, and the prediction methods 
have been used to guide tests. This resulted in more efficient and effective use of test facilities. 

As we strive to improve the performance of aircraft during flight, we have made significant advances in 
understanding their behavior during ground operations. The dynamic response during taxi, takeoff, and 
landing have been shown to be critical to the performance of the flight crew, to the ride comfort of the 
passengers, and to the safe operations of aircraft. The design of landing gear, brakes, and tires is taking on 
more importance in the aircraft design process. 

With the importance of aeroelasticity and structual dynamics increasing in the design and operation of 
aircraft and spacecraft, it was with great pleasure that I accepted the responsibility of serving as Technical 
Chair of the International Forum on Aeroelasticity and Structural Dynamics 1999. I would like to thank the 
CEAS Specialists Committee on Structures and Materials for allowing me to take on this important and 
honorable task. This is the premier gathering of aeroelasticians and structural dynamicists anywhere. We 
have an outstanding program that will spark rewarding discussion and lead to many advances in the future. 
Because of the success of this forum, I feel honored to recognize those who worked so diligently to make 
this m a t  event happen 

I would like to acknowledge Irving Abel for his efforts in bringing this outstanding forum to the United 
States for the first time. The Program Committee members deserve special congratulations for their efforts 
in selecting an outstandiig series of papers to be presented. I thank the Organizing Committee members, 
especially Dr. Robert Moses, for their help with the organization of the forum. Mr. Lee Pollard deserves 
recognition for his efforts in designing the artwork that is featured on the forum program and on the 
website. I wish to acknowledge the outstanding support of Ms. Emily N. Todd of the Institute of 
Computer Applications in Science and Engineering for all of her help in addressing the administrative 
details necessary to make the conference a success and in preparing this document. 

Woodrow Whitlow, Jr. 
NASA John H. Glenn Research Center at Lewis Field 
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INTRODUCTION 

With the continuous progress in hardware and numerical schemes, Computational Unsteady 
Aerodynamics (CUA), that is, the application of Computational Fluid Dynamics (CFD) to unsteady 
flowfields, is slowly finding its way as a useful and reliable tool (turbulence and transition modeling 
permitting) in the aircraft, helicopter, engii~e and missile design and development process. Before a 
specific code may be used with confidence it is essential to validate its capability to describe the 
physics of the flow correctly, or at least to the level of approximation required, for which purpose a 
comparison with accurate experimental data is needed. Unsteady wind tunnel testing is difficult and 
expensive; two factors which dramatically limit the number of organizations with the capability andlor 
resources to perform it. Thus, unsteady experimental data is scarce, often classified and scattered in 
diverse documents. Additionally, access to the reports does not necessarily assure access to the data 
itself. The collaborative effort described in this paper was conceived with the aim of collecting into a 
single easily accessible document as much quality data as possible. 

The idea is not new. In the early 80's NATO's AGARD (Advisory Group for Aerospace Research & 
Development) Structures and Material Panel (SMP) produced AGARD Report No. 702 'Compendium 
of Unsteady Aerodynamic Measurements', which has found and continues to find extensive use within 



the CUA community. In 1995 AGARD's Fluid Dynamics Panel (FDP) decided to update and expand 
the former database with new geometries and physical phenomena, and launched Working Group WG- 
22 on 'Validation Data for Computational Unsteady Aerodynamic Codes'. Shortly afterwards AGARD 
was reorganized as the RTO (Research and Technology Organization) and the WG was renamed as 
AVT (Applied Vehicle Technology) WG-003. Contributions were received from AEDC. BAe. DLR, 
DERA. Glasgow University, IAR, NAL, NASA. NLR, and ONERA. The final publication with the 
results of the exercise is expected in the second part of 1999. 

The aim of the present paper is to announce and present the new database to the Aeroelasticity 
community. I t  is also intended to identify, together with one of the groups of end users it targets. 
deficiencies in the compendium that should be addressed by means of new wind tunnel tests or by 
obtaining access to additionally existing data. 

REQUIREMENTS FOR EXPERIMENTS 

The type of experiment included in the database falls under the general category of validation 
experiments, that is, those made on geometrically simple "generic shapes" designed to provide 
sufficiently detailed measured data for the verification of the physical representation provided by the 
CFD code. This requires that the data be taken and presented in a form and level of detail consistent 
with CFD requirements and that the accuracy of the experimental data be thoroughly documented and 
understood. The ideal test case should thus provide: 

a) Accurately measured model shape and surface finish. 
b) The actual position and motion of all points of the model, including both static and dynamic elastic 

deformations. 
c) Well defined state of the boundary layer on the model. 
d) Inflow and outflow conditions. 
e) Wall conditions and wall boundary layer. 
f) Specification of support interference 
g) Specification of the accuracy of the measured data. 

After a thorough screening of the candidate test cases available for general distribution, it was found 
that ideal test cases are rare indeed, so the acceptance criteria had to be dramatically modified to the 
minimum requirements of knowing the ,neometry, and the motion. as accurately as possible. 
Nevertheless the authors believe the test cases included in the database to be generally of very high 
quality. Wherever possible experiments have been selected which include test points with different 
levels of physical difficulty, so that the CFD researcher can use a staircase approach to the problem of 
validating the code. 

COMPUTATIONAL RESULTS 

In addition to the experimental data, the database includes computational results. Before a code can be 
validated. the developer must verify that i t  solves accurately the mathematical model of the real world 
that it uses. Given the lack of analytical solutions to the 3-D versions of the various sets of equations of 
interest to CUA. verification is best achieved by means of comparison with another computational 



solution of the same set of equations. 

To this aim a benchmark exercise was performed on the F-5 wing. Computational results covering the 
whole spectrum from Transonic Small Perturbations to Navier-Stokes codes were generated and are 
provided in the database, thus facilitating the verification of the new code against the same level of 
physical modeling. Some results of this exercise are presented in another paper of this meeting. 

Additionally, attempts have also been made to complement each experimental data set with an example 
of a numerical calculation of at least one of its test points. These results may also be useful in cases 
where the CFD developer finds intriguing differences with experimental data, which cannot be 
attributed in a straightforward way to deficiencies in the numerical model. or in the test. Comparison 
with another computational result may clarify whether code improvement is required. Unfortunately it 
has not been possible to obtain numerical results for all the test cases. but the door is left open for 
interested groups to submit their calculations to complete the picture. These 'late arrivals' could be 
compiled as an addendum to the database. 

No claim is made that these, or any of the other CFD solutions included, are free of discretization or 
solution errors. They should be treated as examples of what people with experience in the field have 
produced using mature codes, but not as absolute truth. 

ORGANIZATION OF THE DATA BASE 

The compendium includes 20 self-contained test cases, which are summarized in Table 1 .  They address 
different phenomena, namely: 

- Flutter 
- Buffet 
- Stability & Control 
- Dynamic Stall 
- Cavity Flows 
- Store Separation 

For each test case the following information is provided: 

- A brief o v e ~ i e w  of the purpose and salient features of the experiment. 
- A standard form (the same prepared in AGARD Report 702, which was considered to be still 

appropriate and difficult to improve) with the key information about the test conditions and 
equipment that a user may require. 

- An example of the layout of the data files provided. 
- Figures and pictures to illustrate the case. 
- The data itself is provided in machine-readable form in a CD-ROM that accompanies the 

publication. 

Whenever there are associated CFD results, they are contained in an accompanying chapter. 



OVERVIEW OF THE CASES 

Most of the test cases provided are well known ones. which have already been extensively reported in 
symposia andlor scientific journals. A brief description of those more relevant for aeroelastic 
applications is provided in the following. 

F-5 Wing + Tip Store 

The database starts with the well-known F-5 wing tested at the High Speed Wind Tunnel of NLR [I ] .  
The original purpose of the experiment was to determine the unsteady airloads characteristics on a 
representative fighter type wing oscillating in pitch. It constitutes a very comprehensive data set, which 
progressively builds up in geometric complexity from the clean wing to a wing with a tip launcher and 
an A-A missile (Fig. 1). From a computational point of view, the clean wing case can be considered as 
rather benign, as it involves only small static angles of attack, small amplitudes of oscillation and 
limited viscous effects. This fact together with its simple geometry and wide range of Mach numbers 
tested (from subcritical to low supersonic) make it an ideal 'first case' in the validation process of a new 
code. This was the main reason why it was selected for the benchmark exercise mentioned before. On 
the other hand, the wing plus launcher plus missile cases provide excellent opportunities to check the 
ability of the code to tackle rather complex geometries. 

Rectangular Supercritical Wing 

The Rectangular Supercritical Wing model RSW [2] was tested at the NASA Langley Transonic 
Dynamic Tunnel with the specific aim of obtaining data for CFD comparison. It has a simple low 
aspect ratio unswept rectangular planform with no twist, a constant 12% thick supercritical airfoil and a 
tip of revolution. The model undergoes pitching oscillations. Data is provided corresponding to a wide 
range of flow conditions from low subsonic to strong transonic well beyond the design Mach number, 
as would be required for flutter verification beyond cruise conditions. A broad range of reduced 
frequencies is also covered. Special care has been taken to select data points, which illustrate the trends 
with Mach number, reduced frequency, amplitude of oscillation and static angle of attack. Some cases 
for high angle of attack (at low speed) and others for the effect of transition have been also included. 
Despite its simple geometry, the case has proved to be a difficult one to calculate. Typically for low- 
aspect ratio rectangular wings, transonic shock waves tend to sweep forward from root to tip such that 
there are strong three-dimensional effects. Additionally it has been found to be very sensitive to viscous 
and transition effects. specially on the undersurface. 

Benchmark Model Program 

NASA's Benchmark Model Program (BMP) tested a series of models in the Langley Transonic 
Dynamics Tunnel with the primary objective of assisting in the evaluation of aeroelastic CUA cod:-s. 
The present database includes results from three of the models. all of which have an identical 
rectangular planform. The first model has a NACA0012 airfoil which develops strong shocks [;I; the 
second model has a supercritical SC(2)0414 airfoil which generates weaker hard to capture shocks [4]; 
and the last model, called the Benchmark Active Controls Technology BACT [ 5 ] ,  has again a 



NACAOO 12 airt'oil but with a trailing edge control surface. and a pair of independently actuated upper 
and lower surface spoilers. All the models were mounted on the PAPA (Pitch and Plunge Apparatus) 2 
Degrees of Freedom dynamic system. which allows rigid models to undergo tlutter. Cases 
corresponding to classical pitch-plunge tlutter. stall flutter and shock-induced plunge flutter are 
included. The actual wing motion together with the corresponding pressures are provided. thus 
allowing a staircase approach to validation. from forced oscillations (using the motion as input) to a 
'simple' aeroelastic simulations (using the known elastic characteristics of PAPA). Finally the transfer 
functions of control surface inputs measured with the BACT can be used to validate aeroservoelastic 
codes. 

Clipped Delta Wing 

The Clipped Delta Wing CDW model was also tested in the NASA Langley Transonic Dynamics 
Turnel [6]. The planform was derived by simplifying a proposed Boeing design for a supersonic 
transport, resulting in a trapezoid wing with an unswept trailing edge and without twist and camber 
(Fig. 2). The model undergoes pitching and trailing edge control surface oscillations. A rather thick (for 
a supersonic transport) 6% symmetrical circular arc section was used, which very much enhances 
transonic effects. Additionally the highly swept sharp leading edge separates the flow at relatively low 
angles of attack forming a leading edge vortex. Rapid changes in shock wave position over a small 
Mach range, sometimes in conjunction with the leading edge vortex makes this a challenging case for 
any numerical method. 

Supersonic 2D Wing with Control Surface 

This case was tested at ONERA S2 to obtain a database of the unsteady behavior of control surfaces in 
high supersonic conditions [7]. It consists of a 5.5 aspect ratio rectangular wing with a 7% symmetric 
bi-convex airfoil and an oscillating trailing edge flap (Fig. 3). The model had also a spoiler, but no data 
corresponding to it is provided in the present database. Pressures were measured at the mid semi-span 
section, which at the supersonic Mach numbers tested (1.65, 2.0 and 2.5) is effectively in 2D 
conditions. Test points are provided that illustrate the effect on the unsteady airloads of: Mach number. 
steady angle of attack, mean flap deflection, flap oscillation amplitude and oscillation frequency. 

SST Arrow Wing with Oscillating Flap 

This model of a double-swept-back arrow wing with a fuselage and an oscillating trailing edge flap 
(Fig.4) representing a SST was tested at NAL's 2mx2m transonic wind tunnel with the specific purpose 
to accumulate validation data for CUA and ACT (Active Control Technology) codes [S]. A 
NACA0003 airfoil was used, resulting in a very thin wing with non-negligible static and dynamic 
elastic deformations, which were carefully monitored tracing optical targets installed on the wing 
surface. Inforrnation on pressures and actual motion due to elastic deformation is provided. thus 
constituting a good test of the ability of the code to handle both rigid body and elastic motions. Results 
are included for different transonic Mach numbers, mean flap positions and frequencies of oscillation. 



BGK Airfoil Buffet 

This model of a BGK No. 1 supercritical airfoil was tested at the [AR 2D High Reynolds Test Facility 
to investigate its shock induced buffet characteristics [ 9 ] .  Very rich pressure informati011 at different 
MachIAoA combinations outside. near. and well inside the buffet onset boundary is provided. 
Additionally. skill friction measurements are available: allowing the CFD developer to monitor the 
merging of the shock induced separation bubble with the trailing edge separated region. 

M2391 Diamond Wing Buffet 

The M2391 model (Fig. 3) tested at DERA Bedford 13ftx9ft low speed wind tunnel [lo] is a low mass, 
high stiffness model designed to obtain data of the aerodynamic excitation arising from unsteady 
separated flow without the interferences due to model vibration and/or support natural frequencies. It is 
a 40" sweep diamond wing with a streamwise clipped tip. Two interchangeable fuselages were tested, 
respectively rectangular and chined, with the former providing a perpendicular wing-fuselage interface, 
and the later allowing the study of buffet due to mixed vortical flow. Very rich pressure information for 
angles of attack up to 30" is included, thus providing an excellent test case to validate the buffet part of 
any buffeting prediction code. 

Straked Delta Wings 

These two different straked delta wing models (Figs. 6 )  were tested respectively in NLR's LST [ l l ]  
and HST [12] wind tunnels with the aim to improve understanding of unsteady loading on straked 
fighter like wings during pitch oscillations and maneuvers. They present a wide range of flow 
topologies, fiom attached to vortex breakdown over the whole model. Additionally the transonic test 
includes cases with shock induced trailing edge separation and LCO. The data points selected cover all 
the different flow types, including the influence of Mach number, static incidence and sideslip, 
amplitude and frequency of oscillation. The resulting database constitutes a real challenge of any fluid 
dynamics code. 

CONCLUSIONS 

The work of RTO WG-003 aims at collecting into a single document, computational and experimental 
data that can be used to verify and validate Computational Unsteady Aerodynamic codes. It is 
recognized that the present database still has many gaps, which are due either to the lack of a suitable 
experiment, or the authors not being aware of its existence, or its results being classiiied. Additional 
contributions of experimental andlor numerical data are very welcomed 
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Fig. 1 F-5 Wing alone and Wing + Tip Missile 
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Fig. 3 Supersonic 2D Wing with Control Surface 
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A Combined Modal I Finite Element Analysis 
Technique for Nonlinear Beam Dynamic Response 

Under Harmonic Excitation 
by 

Matthew I. McEwan', Jan R. Wright2, Jonathan E. Coope?, and Andrew Y. T. Leungz. 

I Abstract. 

A method is proposed for modelling multi-mode large deflection beam response. Significant 
savings in computational time can be obtained compared with the direct integration nonlinear 
finite element method. The deflections from a number of static nonlinear finite element test 
cases are transformed into modal co-ordinates using the modes of the underlying linear 
system. Regression analysis is then used to find the unknown nonlinear modal stiffness 
coefficients. The governing nonlinear equations of motion are completed by including finite 
element derived modal mass, and an arbitrary damping model. The response of the beam to 
excitation of an arbitrary nature may then be found using time domain numerical integration. 
The work presented here extends upon the work of previous researchers to include non- 
coupled multi-modal response, and the effect of buckling due to axial loads. 

The proposed method is applied to the case of a homogeneous isotropic beam, which is simply 
supported and axially constrained at both ends. For the case of steady state harmonic 
excitation, results are compared with the direct integration nonlinear finite element method. 

2 Nomenclature 

[MI = Assembled finite element mass matrix. 

{w> = Vector of assembled finite element transverse displacements. 

a = Coefficient of linear mass proportional damping. 

[KL] = Assembled linear finite element stiffness matrix. 

[KN J = Assembled nonlinear finite element stiffness matrix. 

{F) = Assembled finite element force vector. 
n = Mode number. 
N = Total number of modes considered. 

($1" = Displacement mode shape vector for mode n. 

P n  = Displacement modal amplitude coefficient for mode n. 

[$I = Displacement mode shape matrix. 

{P) = Vector of displacement modal amplitudes. 

W L ~  = Linear natural frequency of mode n. 

[ml = Modal mass matrix. 
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* Professor of Mechanical Engineering. 
' Senior Lecturer in Aerospace Engineering. 
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[ k ~ l  = Linear modal stiffness matrix. 

k = Nonlinear modal stiffness matrix. 

{ f )  = Modal force vector. 

A,' = Quadratic modal nonlinearity coefficient, involving the coupling of 
arbitrary modes n and r 

B i s  = Cubic modal nonlinearity coefficient, involving the coupling of arbitrary 
modes n, rand s. 

3 Introduction. 

The surface panels of modem high-speed aircraft are subjected to high intensity acoustic 
loading from sources such as jet efflux and turbulent fluid flow. Frequently this high intensity 
noise environment is combined with elevated panel temperatures, caused by aerodynamic 
heating and jet exhaust impingement. Preliminary concept evaluations of aircraft such as the 
National Aerospace Space Plane (NASP) indicate that at some points on the structure, the 
sound pressure levels will be in the range 170-180 dB (relative to 20 pPa), with panel 
temperatures up to 1480°C [A]. The case of a beam that is simply supported at both ends can 
be regarded as a simplified case of the more complex structural models used in the design of 
high speed aircraft components. Because of this, considerable effort has been directed into 
developing models for the nonlinear beam 'test bed", which may eventually be applied to more 
general structures. 

There has been an enormous amount of work published in the study of nonlinear beam 
vibration. It should be noted that only a few of the many authors in this subject are mentioned 
here. The accepted benchmark for ideal nonlinear simply supported beam behaviour is the 
work of Woinowsky-Krieger 121, which uses the elliptic integral function to evaluate the 
equation of motion. Subsequent researchers have used a variety of methods. Raju et a1 [3], 
and later Lewandowski [4] have applied the Rayleigh-Ritz technique, the latter utilising an 
iterative approach to determine the natural frequencies and nonlinear modes. Sarma and 
Varadan [5] have used a Lagrangian finite element formulation. Singh et a1 [6j have also 
obtained excellent results by using an iterative process to exactly satisfy the axial and out of 
plane equations. 

Much of the work of Mei and his associates has utilised the finite element method. Earlier work 
[7,8,9] assumed simple harmonic response behaviour and neglected transverse displacement 
and inertia in the finite element formulation. The work of Mei and Decha-Umphai [lo] included 
the effect of transverse displacement and inertia, and simplified the strain displacement 
relationship by using a linearising function. The more up to date works of Shi and Mei [l l] ,  and 
Shi, Lee, and Mei [12] have considered the simply supported beam problem as part of the 
validation of a formulation developed for laminated composite plates. The finite element 
equations of motion are expanded in terms of linear modal co-ordinates, then numerically 
integrated in the time domain. The results show excellent agreement with [2] (see table 2). All 
of the finite element techniques mentioned here operate directly on the stiffness and mass 
matrices, rather than using an output only approach. 

The work presented here extends upon the work of Maymon [13], to include multi-mode 
vibration in a situation where the form of the nonlinear modal couplings is known a priori 
Maymon's original work described a fundamental mode expansion of an arbitrary nonlinear 
structure. A single unknown nonlinear stiffness coefficient was found by considering the 
nonlinear response to static loading. The stress response was found by treating the stress 
modes of the structure in a similar manner. The response to random temporal excitation was 
found using an equivalent linearisation scheme. 

In this work an alternative approach to that of a 'first principles' derivation and solution of the 
system equations of motion is proposed. The output from a series of static finite element 'test 



cases' is transformed into modal co-ordinates using the mode shapes of the underlying linear 
system. Regression analysis is then performed in order to extract the nonlinear stiffness 
coefficients in the modal co-ordinate system. Time domain numerical integration is then 
applied to the nonlinear modal equations of motion, thus finding the response of the beam to 
any excitation time history. The method is an approximation, and is 'simplified' from the point 
of view that considerations of finite element formulation and solution are handled by the 
proprietary finite element code, and are not dealt with explicitly by the method. 

The method differs from many existing 'first principles' formulations in the fact that proprietary 
finite element packages may be used without modification to the code or direct access to the 
stiffness and mass matrices. An autonomous program post-processes the output from these 
codes. Significant savings in computational time compared to standard direct integration 
routines can be obtained without sacrificing the flexibility of the large-scale packages. The 
derivation that follows is that for a simply supported beam, but it is envisaged that with 
refinement the method will be expandable to thermally postbuckled plates and built up 
structures such as stiffened panels. 

4 Formulation. 

Consider the case of an initially straight, geometrically nonlinear beam with mass proportional 
damping subject to forced vibration. The assembled finite element equation of motion in 
physical co-ordinates for forced vibration in the transverse direction is of the form: 

The overdots imply differentiation with respect to time. The spatial and temporal components 
of the beam motion can be separated by expressing the equations of motion in terms of modal 
amplitudes and mode shape vectors as: 

Here {p) is a time dependent vector of modal amplitudes, and [$I] is a time independent mode 
shape matrix of the N modes of the underlying linear system, which may be obtained by solving 
the standard eigenvalue problem for undamped free vibration: 

The number of degrees of freedom required to model the beam with reasonable accuracy can 
be reduced by considering only those modes with natural frequencies in the frequency range of 
interest. Upon completion of the modal transformation the new system equations of motion in 
modal space are: 

[mI{@t)l+ a[mI(&t)l+ Uk, I+  [k,, D{p(t)J = {f(t)l 

(4) 

Here the lower case terms are associated with the modal co-ordinates. The normal modes of 
the system are orthogonal, and hence the linear mass and stiffness matrices are diagonal. Let 
us consider the nonlinear stiffness term k,, as function of terms in {p). Consider some arbitrary 
mode n: 



i.e. the nonlinear stiffness is a quadratic function of the modal co-ordinates {p(t)). 

4.1 Re~ression analysis usina the static finite element method. 

If the beam system is considered in a static sense only, then equations (4) and (5) may be 
simplified as: 

(6) 
Due to the symmetry of the transverse deflections of the beam in tension and compression, the 
second-degree t e n s  (terms in A,') disappear. At this stage the coefficients k and I3 are 
unknowns. The linear modal stiffness coefficients may be calculated by utilising the modal 
mass and linear natural frequency data [14]. 

In the case of a simply supported beam, the form of the modal cross couplings is known a 
priori. It may be shown that the governing modal equations are of the Duffing type, with no 
cross couplings between modes. 

mn@(t) + amn&(') +knpn (t) + B ~ P :  (t) = f,(t), "=I . 2 . . . . . . ~  

(8) 
The nonlinear coefficient BnM in equation (8) can be determined by considering the results of a 
number of nonlinear static finite element test cases. Running static nonlinear finite element 
analyses of the beam in question allows the accumulation of a series of load 1 deflection data 
relationships for use in a regression analysis. 

In the case of a beam that is postbuckled due to axial loading or uniformly distributed thermal 
effects, there is a region of the response where the resultant stiffness of the beam is negative 
and the beam becomes unstable. It is in this region that snap-through motion occurs. A load- 
deflection analysis using the modified Riks algorithm [14,15] was used to generate the load 
cases for the postbuckled beam, as the conventional static finite element method cannot be 
used to provide test cases in regions of instability. The modified Riks algorithm is a standard 
procedure available in many finite element software packages. 

For each given nonlinear modal coefficient of interest, the spatial distribution of the test case 
load was chosen to be the same as the mode shape. Using this spatial distribution of the load 
ensured that the mode in question was 'excited' effectively. Tests for each coefficient with a 
number of different load magnitudes ensured that the beam was excited throughout the range 
of interest. 

Following static finite element analysis, the set of nodal force and displacement vectors is 
transformed into modal co-ordinates using the mode shape vectors. The unknown cubic 
coefficients may be determined by regression analysis of the modal load / displacement data. 
Increasing the number of test cases increases the accuracy of the result. The inertial and 



damping terms are now included to complete the governing modal equations of motion. The 
choice of damping model at this point is arbitrary and may be nonlinear, although linear mass 
proportional damping is used here for the purposes of verification. The nonlinear dynamic 
behaviour of the simply supported beam can now be found for any form of excitation. 

5 Numerical Examples. 

In order to illustrate the proposed method, a finite element model of a simply supported beam 
was created. The material and geometric properties of the beam were as follows: 

Length, L 1 m 
Thickness, a 0.01 m 
Width, b 0.03 m 

Mass Density, p 7800 kgm'3 
Tensile Elastic Modulus, E 200x1 OD Nm-2 
Poisson's Ratio, u 0.3 

The Finite Element code ABAQUSIStandard was used to model the beam. The beam was 
modelled using 16 quadratic interpolating shear deformable beam elements (B22). An 
important point to note in the proposed formulation is that the underlying assumptions in the 
analysis, such as the inclusion of axial deflection and inertia, are determined by the type of 
element used to model the beam rather than the method itself. In the elements used in the 
present study, the assumption is made that plane sections remain plane and that shear 
deformation, axial deflection and inertia are included in the formulation. The first three linear 
symmetric modes were used for the modal model. The linear natural frequencies of these 
modes were 22.9 Hz, 206.4 Hz and 572.8 Hz 

5.1 Res~onse to  Harmonic Excitation. 

As the proposed method is based on the results of a proprietary finite element code, a 
comparison was made between the response of the modal model and that of the direct 
integration routines of the proprietary finite element code. The fourth order Runge-Kutta 
algorithm was used for the time stepping integration of the modal model, while the implicit 
integration routine used in ABAQUSIStandard was a Hilber-Hughes-Taylor integration operator. 
In each case a steady state response was allowed to develop before a fast Fourier transform 
algorithm was applied to a whole number of cycles of response, in order to calculate the 
autopower spectral density without leakage effects. The fast Fourier transform was applied to 
500 cycles of response. 

5.2 Prebuckled Beam 

The first case considered was that of the beam without any axial pre-load. A uniformly 
distributed normal load, which varies sinusoidally in time, was applied to the beam. The 
maximum amplitude of the loading was 1000 Nm". Figure 1 shows the time history of the 
displacement response of the beam to excitation at 10 Hz. It may be seen that the response 
as calculated by the two methods is nearly identical. Figure 2 shows the autopower spectral 
density of the same two sets of results. At this excitation frequency the response is dominated 
by the fundamental and fifth harmonics. 

For excitation at near to the fundamental natural frequency (23 Hz), the response is strongly 
asymmetric with respect to the unperturbed position (figure 3). This can be seen in the plot of 



the frequency response (figure 4). where even harmonics and a spectral component at 0 Hz 
form a large proportion of the response. 

5.3 Postbuckled Beam. 

The second case considered was that of a beam in the postbuckled state. An axial load of 1.7 
times the linear critical buckling load was applied to the beam. If the material properties of the 
beam are assumed to be constant with temperature, this is equivalent to a uniform thermal 
loading of 1.7 times the critical buckling temperature. In order to produce a deterministic 
response that can be compared in the time domain, a harmonic excitation with a large steady 
state component was applied. The maximum amplitude of the loading was 1500 Nrn" while the 
minimum amplitude of the loading was 500 Nm-'. 

Figure 5 shows the time history of the displacement response of the postbuckled beam to 
excitation at 10 Hz. The beam is vibrating in a stable manner in the postbuckled region. Again 
the correlation between the proposed modal method and the direct integration finite element 
method is good. The plot of the frequency response (figure 6) shows that the even harmonic 
components form a considerable portion of the response. 

In this investigation no attempt has been made to quantitatively compare the computer solution 
times of the proposed modal method and the direct integration finite element method. On a 
qualitative level however, the timesavings gained by using the modal approach were 
considerable. The proposed method does require the solution of a number of static finite 
element test cases prior to the modal transformation, however once the modal model has been 
constructed, it can be used with any form of excitation. 

It should also be noted that the proposed method is an approximate method based upon the 
finite element method, which is itself an approximation of the 'true' nonlinear beam vibration. 
The overall quality of the results given by employing this method will be dependent upon the 
accuracy of the original static finite element model used to model the beam. 

6 Conclusion. 

In this work the Finite Element based modal approach of Maymon [13] is extended to consider 
multi-modal beam response and thermally induced buckling. A series of finite element load- 
deflection relationships is generated using the modified Riks algorithm. These 'test cases' are 
transformed into modal co-ordinates using the mode shapes of the underlying linear system. 
Regression analysis is then performed in order to extract the nonlinear stiffness coefficients in 
the modal co-ordinate system. The beam problem can then be solved for any excitation time- 
history in the reduced degree of freedom modal system. The proposed method is applied to 
the case of a homogeneous isotropic beam, which is simply supported and axially constrained 
at both ends. For the case of steady state harmonic excitation, the results compare well with 
the standard direct integration finite element routine, with a significant saving in computational 
expense. 
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A N  R, APPROACH TO CONTROL SYNTHESIS 
WITH LOAD MINIMIZATION 

FOR THE F/A-18 ACTIVE AEROELASTIC WING 

Rick Lindl 
NASA Dryden Flight Research Center 

Abstract 

The F/A-18 Active Aeroelastic Wing research aircraft 
will demonstrate technologies related to aeroservoelas- 
tic effects such as wing twist and load minimization. 
This program presents several challenges for control de- 
sign that are often not considered for traditional aircraft. 
This paper presents a control design based on Ztl, syn- 
thesis that simultaneously considers the multiple objec- 
tives associated with handling qualities, actuator limita- 
tions, and loads. A point design is presented to demon- 
strate a controller and the resulting closed-loop proper- 
ties. 

Nomenclature 

Acronyms 
AAW Active Aeroelastic Wing 
SRA , Systems Research Aircraft 
Svmbols 

A 
Subscripts 
ail 
lei 
leo 
rud 
tef 
stb 
in 
out 
701E 

actuator model for AAW 
loads model for AAW 
open-loop dynamics for AAW 
closed-loop dynamics for SRA 
controller 
weighting function 
control surface position (deg) 
control surface rate (deg/s)  
structured singular value 
induced norm on transfer functions 
uncertainty operator 

aileron 
leading-edge inboard flap 
leading-edge outboard flap 
rudder 
trailing-edge flap 
stabilator 
input 
output 
production FJA-18 controller 

'Structural Dynamics, MS 4840/D, Edwards CA 93523, 
rick.lind0dfrc.nasa.gov 

1. Introduction 

The F/A-18 Active Aeroelastic Wing (AAW) research 
testbed is being developed to demonstrate aeroservoe- 
lastic technology [7]. The main concept of this technol- 
ogy is the active use of aeroelasticity to maneuver the 
aircraft. Many aspects of the technology have been ini- 
tially studied in wind tunnel tests; however, the AAW 
aircraft is a full-scale system from which information for 
future designs can be derived [8]. 

One important aspect of the AAW program will be the 
use of wing twist to produce rolling moments. Con- 
trollers designed using rigidity assumptions move the 
ailerons to generate roll but the wing flexibility acts to 
oppose this roll. Roll reversal is defined a t  a dynamic 
pressure at which the flexibility actually causes a roll in 
the opposite direction than is desired [3]. Controllers for 
the AAW will generate roll by moving the leading-edge 
surfaces to create a wing twist and thus be able to effi- 
ciently operate past the roll reversal of the ailerons. 

The issue of load minimization is also an important as- 
pect of AAW technology that will be addressed by the 
flight program. Essentially, the wing should experience 
reduced loads because the control surfaces are not in- 
ducing a large load to  overcome wing twist; rather, the 
surfaces promote wing twist in an efficient manner. The 
reduction in loads may allow a reduction in structural 
weight and consequently reduce production and operat- 
ing costs of future aircraft. 

This paper presents an approach to design a flight con- 
troller for the F/A-18 AAW aircraft using an Z,- 
synthesis framework. This framework is particularly use- 
ful because several objectives and constraints can be di- 
rectly included in the synthesis. The resulting controllers 
can be efficiently computed and an approximation can be 
realized that conforms to a desired architecture. 

A closed-loop model of the AAW airplane is presented as 
a design example to demonstrate the design methodology 
and resulting properties. This example shows the 31, 
controller is able to constrain loads and achieve desired 
levels of handling qualities and roll performance without 
violating actuator limitations. 



This paper provides a limited presentation of the ac- 
tual U, controller to be flown on the aircraft. Firstly, 
only the lateral-directional dynamics will be discussed 
because the roll performance is of more interest than the 
pitch performance. Secondly, a gain-scheduled controller 
has been formulated but only a point design is presented 
for brevity. Thus, the purpose of this paper is to present 
the general design methodology whereas future papers 
will present the final design and flight test results. 

2. Closed-Loop Objectives 

The fundamental objective of the AAW program is 
to investigate technologies related to the utilization of 
aeroservoelasticity for modeling and control of flexible 
aircraft. These technologies include open-loop concepts 
such as modeling and closed-loop concepts such as com- 
manding wing twists and controlling loads. The con- 
troller for the aircraft must be designed to allow flight 
tests that can achieve the program objectives; however, 
these objectives are only indirectly considered for control 
synthesis. There are several related closed-loop objec- 
tives that are actually used to design controllers. 

Several of the closed-loop objectives are essentially ap- 
plicable to any aircraft and are required for flight safety. 
The most basic of these objectives is to stabilize the air- 
craft within a flight envelope. Another objective is to  
provide handling qualities that axe a t  or near Level 1 rat- 
ings for a variety of maneuvers. Finally, the controller 
must avoid saturating actuator positions and rates ex- 
cept for minor and brief saturation that may be allowed 
in response to full-stick commands from the pilot. 

Some of the controller objectives are specific to AAW 
technology. One of these objectives is to maximize the 
roll performance of the aircraft. Previous wind tunnel 
experiments have indicated that wing twist may provide 
large amounts of control authority so the AAW program 
seeks to demonstrate this on a full-scale vehicle (91. 

Another objective is to reduce the maneuvering loads 
throughout the structure. This objective requires more 
of a formal definition than the others because it may not 
be immediately obvious how to select a preferred set of 
loads. For example, some controllers may reduce bending 
but increase torsion whereas others may reduce torsion 
by sacrificing bending. Similarly, the relative amount of 
loads a t  the wing root and fold must be considered when 
defining the concept of reduced loads. 

An additional objective that is being enforced is that the 
controller must be realized with an acceptable architec- 
ture. This objective is not necessarily an AAW technol- 
ogy; however, it is important to facilitate the flight test. 
U ,  synthesis generally generates high-order controllers 

that are difficult to implement on a flight computer. Al- 
ternative controllers for the AAW have been proposed 
that use extensive scheduling over flight condition and 
also aircraft states such as roll rate and acceleration [ll] .  
The '?f, controller will be required to utilize a low-order 
filter with gain tables that are scheduled over standard 
flight condition variables. 

Furthermore, all these objectives must be achieved with- 
out using the stabilator to generate roll moments. This 
constraint is important because the production aircraft 
uses the stabilator to generate almost the entire roll mo- 
ment when flying a t  high dynamic pressures. Thus, 
the controller will have to compensate for the loss of 
this powerful control surface by commanding wing twist 
through the aeroservoelastic dynamics of the wing. 

The flight test program for the AAW will be limited to a 
flight envelope that allows the technology to be efficiently 
demonstrated. This envelope has a subsonic region that 
covers Mach number from .85 to  .95 and altitudes from 
5 kft to 15 kft. A supersonic region is also included that 
covers Mach number from 1.1 to  1.3 and altitudes from 
10 kft to 25 kft. A remaining objective is for the controller 
to operate at any flight condition within these regions. 

3. Controller Archi tecture 

The controller architecture for the 2, design is chosen 
to match that of the controller on the production F/A-18 
aircraft. This standard controller is denoted as K701E [5]. 
The architecture involves several first-order filters and a 
set of gains that are scheduled over Mach number and 
altitude. The filters are used for stick shaping, response 
determination, and notching of aeroelastic modes. 

The formulation of the gains and filters may require an 
indirect computation because standard tools for 31, syn- 
thesis do not compute a structured controller [2 ?he 
realization will be accomplished by synthesizing a full- 
order controller that minimizes the U, norm of the 
closed-loop system and then employing an approxima- 
tion to the dynamic compensator. Basically, the essential 
frequency-domain characteristics of the full-order con- 
troller will be captured and a first-order system that ap- 
proximates these characteristics will be used for control. 

The controller can be formulated in the U ,  framework 
using only information about the open-loop plant but the 
design of the AAW controller can be simplified by taking 
advantage of elements from the K701E controller. Specif- 
ically, directional control provided by the commands to 
the rudder is anticipated to be adequate for both the 
standard F/A-18 and the TAW airplane. Thus, KAAW 
will generate gains for the wing surfaces from an U, 
synthesis and use gains for the rudder from K ~ o ~ E .  



The measurements used to generate lateral control are 
stick command and roll rate. These measurements are 
chosen to match the signals that are used by K701E to 
generate commands for the wing control surfaces so that 
KAAW and K701~ have the same architecture and mea- 
surement paths. The outputs of the lateral controller 
are commands to the aileron, leading-edge inboard and 
outboard flaps, and trailing-edge flap. 

The complete lateral-directional controller, KAAW, is 
composed of the gain matrix, G, and first-order filter, 
F ( s ) ,  to generate commands for the wing control sur- 
faces and also K701E to generate commands for the rud- 
der as shown in Figure 1. Note the stabilator command 
is generated by a 0-gain element to ensure the horizontal 
tails are not used for rolling maneuvers. 

stick iq b-~ForTp 

K701 E pedal 

Figure 1: Architecture of KAAW 

4. Control  Design Approach 

The standard framework for Y, synthesis is to formulate 
a design model such that the objective is to minimize the 
Y, norm of the closed-loop system [4]. This objective is 
equivalent to minimizing the largest output that results 
from any bounded input signal. Thus, the design model 
must include a set of error signals that should be small 
if the closed-loop objectives are satisfied. 

One of the error signals in the design model is used to 
ensure the AAW aircraft has acceptable handling qual- 
ities. This error signal can be generated by considering 
traditional metrics for linear models; however, the design 
for the AAW controller can be simplified by taking ad- 
vantage of current F/A-18 controllers. Specifically, the 
Systems Research Aircraft (SRA) is an F/A-18 that op- 
erates with the K,OIE controller and represents a model 
with acceptable handling qualities [lo]. 

The error signal for handling qualities is defined by re- 
quiring the closed-loop response of the AAW airplane to 
be similar to the closed-loop response of the SRA air- 
plane. This design approach is often called model fol- 

lowing or model matching in reference to the objective of 
making the closed-loop characteristics of a model match 
the characteristics of another model [I]. The handling 
qualities of an aircraft are qualitative evaluations of re- 
sponse characteristics so matching the closed-loop AAW 
and SRA models should attempt to make their handling 
qualities similar also. 

Define a linear system, T, to  represent the closed-loop 
model of the SRA with K701~. The inputs to this model 
are pilot commands through the lateral stick and rudder 
pedal and the outputs are the measured values of roll 
rate, yaw rate, and lateral acceleration. An error signal, 
ep, is defined by weighting the subtracted output of T 
and the corresponding measurements of the AAW. 

The weighting function associated with ep  is used to 
indicate the acceptable levels of difference between the 
AAW and SRA responses. Essentially, this weighting is 
the inverse of the acceptable differences such that if llep 1 1  
is less than I then the error is acceptable. The weighting 
is frequency-varying to reflect a desire for good tracking 
performance at low frequencies but allow larger errors at 
high frequencies. 

Define Wp as  the performance weighting associated with 
the model-following error of ep. The diagonal elements 
of this weighting are the filters associated with errors in 
roll rate, yaw rate, and lateral acceleration. For example, 
the difference in roll rate for the low-frequency response 
of the AAW and SR.4 models is desired to be less than 
1.15 deg/s so the weighting function has & = .87 as 
the low-frequency magnitude. Also, the bandwidth of 
the filter is chosen by placing a pole a t  .1 rad/s to denote 
the frequency range over which performance is desired. 
Similar elements of W p  are using a 3.5 weight for yaw 
rate error and .02 weight for lateral acceleration error. 

The desire to  track only low-frequency responses is also 
reflected by filtering the stick command. This filter, W,, 
is chosen with a maximum magnitude of 3 to reflect that 
the largest stick command is 3 in. Also, the bandwidth 
of the filter is chosen to  reflect the types of stick motions 
that are often encountered during maneuvering. 

Another error signal, eK, is defined to penalize actuator 
commands such that a large error implies a large actu- 
ator command. Associated with this error is a penalty 
filter to indicate the acceptable magnitudes and rates of 
the actuator commands. The low-frequency magnitude 
of this penalty is chosen as the inverse of the position 
limit of the actuator and the high-frequency magnitude 



is chosen to be large to penalize any high-frequency com- 
mands. Also, the bandwidth of this filter is chosen to 
match the actuator bandwidth and ensure the controller 
does not cause rate saturation. 

Define WK as the weighting associated with the actuator 
penalty. The filters along the diagonal note frequency- 
varying upper bounds on the allowable commands to the 
control surfaces. For example, the leading-edge outboard 
flaps are limited to positions with magnitudes less than 
15 deg so the low-frequency magnitude of the penalty 
weighting on 61e, and 61e, is .066 as determined by the 
inverse of the allowable magnitude. The zero of the fil- 
ter at 4 m d / s  is chosen to shape the response near the 
actuator bandwidth of approximately 0.7 rad/s. Similar 
elements of WK are chosen to penalize the other actua- 
tors with .02 low-frequency weight on ailerons and .038 
low-frequency weight on trailing-edge flaps. 

The design model must also include an error signal that 
represents the objective of load reduction. The approach 
does not explicitly perform a load minimization; rather, 
desired loads are noted such that the synthesis computes 
a controller that restricts the induced loads to be less 
than these desired loads during a closed-loop maneuver. 

The desired loads are chosen based on analysis of the 
approximate loads encountered by the SRA in response 
to pilot commands. The bending moments at the wing 
root and fold are chosen to  be similar in magnitude to 
the SRA responses. The torsion moments at the wing 
root and fold are allowed to be Ctimes greater for the 
AAW than for the SRA airplane to allow for wing twist. 
Various values of desired loads were considered but the 
chosen loads lead to  a controller that is able to satisfy 
the load objective while also satisfying handling qualities 
and actuator objectives. 

An error signal, eL, is defined as the weighted loads of the 
AAW. The weighting, WL, is used to indicate the accept- 
able levels of loads and penalize loads that are above the 
desired levels. This error and weighting affect the mo- 
ments for root bending, root torsion, fold bending, and 
fold torsion of the wing. A similar error, e M ,  is defined 
by considering the hinge moments on the AAW control 
surfaces. This error is defined as the weighted values of 
the hinge moments for the aileron, leading-edge inboard 
flap, leading-edge outboard flap, and trailing-edge flap 
of the wing. The rudder could also be included in this 
error but it does not encounter large moments so it was 
omitted to reduce complexity of the design model. A 
weighting, W M ,  is used to  indicate the maximum mo- 
ments that can be encountered and ensure that if l l e ~ l l  

is less than 1 then the hinge moments do not violate any 
structural constraints 

The design model used for controller synthesis that in- 
cludes the error signals is shown in Figure 2. This model 
denotes P a s  the open-loop dynamics model of the AAW 
and L as the loads model of the AAW vehicle. 

dTkIFb pilot 

sensor feedback i L  

e p  + 

Figure 2: Synthesis Model for Control Design 
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The resulting controller, KAAW, is actually a structured 
system that contains elements of K , o l ~  as shown in 
Figure 1. Thus, the synthesis is actually intended to 
compute only the first-order filter and a set of gains; 
however, standard algorithms compute an unstructured 
state-space controller [2 ] .  The procedure to be used 
for control design is to initially compute a state-space 
controller that relates the stick command and roll rate 
measurement to the commands for the wing control sur- 
faces. This initial controller will then be approximated 
as a first-order filter and a set of gains by analyzing the 
Bode plot of the dynamical realization. The closed-loop 
properties are not guaranteed to be similar for the vehi- 
cle with the dynamic controller and the approximation; 
however, the design examge demonstrates that such an 
approximation can be formulated for this aircraft with- 
out severely degrading the closed-loop responses. 
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5. Point  Design 

5.1. Controller Synthesis 
A point design of a controller is computed for the model 
that represents the AAW in the center of the super- 
sonic envelope at Mach number 1.2 and an altitude of 
15 kft. This model was chosen because it is considered 
to be representative of the general dynamics of the mod- 
els throughout the supersonic regime. 

The controller is computed to minimize the Tifl, norm of 
the closed-loop design model. The resulting norm is 1.12 
and is slightly greater than the desired norm of 1; how- 
ever, the objectives are violated by a t  most 12 percent 
so this controller achieves reasonable performance levels 
for the design model. 

The objectives that are driving the control design are 
trying to achieve good handling qualities while avoiding 
actuator saturation. In particular, the closed-loop Tifl, 
norm reflects properties of the transfer function from the 
stick to the performance objective for roll rate and from 
the stick to the actuator constraint on the leading-edge 
inboard flap. This implies the control synthesis is in- 
herently limited by balancing the tradeoff between han- 
dling qualities and actuator constraints. Thus, attempt- 
ing to  minimize the loads, rather than simply reducing 
the loads, will cause a further tradeoff and result in larger 
violations of either the handling qualities or actuator ob- 
jectives. 

The initial realization of the controller is a state-space 
system with 60 states. Model reduction algorithms can 
reduce this dimension to 10 states without causing a no- 
ticeable degradation in performance; however, the de- 
sired architecture requires a first-order filter and gain 
implementation. An approximation of the controller that 
allows this implementation can be realized by consider- 
ing the Bode plots of the transfer function from stick to 
the leading-edge surface commands as shown in Figure 3. 

A notable feature of these frequency responses is their 
similarity to frequency responses of first-order filters. In 
particular, the magnitude and phase show little varia- 
tion with frequency until 10 rad/s and then the magni- 
tude shows a first-order rolloff. This behavior suggests 
a controller realization of a first-order filter that has a 
pole a t  10 rad/s and a magnitude that matches the low- 
frequency magnitude of Figure 3. 
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Figure 3: Bode Plot of the Dynamic Controller from Stick 
to Control Surface Command for Leading-Edge Inboard Flap 
(-) and Outboard Flap (- - -) 
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Figure 4: Bode Plot of the Dynamic Controller from Stick 
to Control Surface Command for Aileron (-) and Trailing- 
Edge Flap (- - -) 

The approximation procedure is applied to the entire 
controller for both stick and roll rate inputs using the 
same first-order filter. The only parameters that are al- 
lowed to vary are the magnitude of the gains for each 
channel. This type of approximation is necessary be- 
cause the implementation requires a single a t e r  to be 
used. The resulting elements of KAAW, labeled G and 
F ( s )  in Figure 1, can be realized as a filter and matrix 
combination. 

A similar approximation must be performed to generate -0.025 -7.0 x 
the gains that produce trailing-edge surface commands [::!I = . o l ~ ~ ~ ~ ~  [ 0.034 -5.0 x 

[ S- 1 from controller inputs. The Bode plots of the corre- 0.025 -1.1 x 
sponding transfer functions of the dynamic controller are J~~ 0.008 -1.2 x lo-' 
shown in Figure 4. These plots show that a first-order 
approximation can not accurately capture-the dynamics KAAW has several featuresaat  can be related to K 7 0 1 ~ .  
of the full-order controller; however, the approximation Firstly, the gains in different columns of the matrix have 
can still loosely represent the general features. predominately different signs. This indicates the surface 



commands are actually generated by a weighted differ- 
ence between stick command and measured roll rate in 
a similar fashion as KToIE. The aileron command ap- .- 

pears to differ from this structure but actually this flight CZ 
condition is beyond roll reversal so the aileron has the "ELF3  - 2 ~  1 2  3 4 5 
opposite behavior of the leading-edge surfaces. Time (s) 

Another feature is the magnitude difference between the Figure 5: Stick Command 

gains for the stick command and roll rate feedbacks. This 
difference matches the behavior of K 7 o i ~  and weights dling qualities should closely match the SRA perfor- 
the stick command larger than the roll rate. Essentially, mance without saturating the actuators. The response to 
the lateral-directional controller is like an open-loop gain this command should demonstrate half of the maximum 
that does not strongly depend on feedbacks. roll rate that can be achieved with KAAW. The second 

The closed-loop model of the AAW with KAAw is not 
guaranteed to have similar properties as the closed-loop 
model of the AAW with the full-order dynamic con- 
troller; however, the controller approximation is not 
anticipated to dramatically degrade closed-loop perfor- 
mance. Consider that the leading-edge surfaces are the 
main effectors for roll performance and handling quali- 
ties. The controller elements that generate commands 
for these surfaces are quite similar between the dynamic 
controller and KAAw so the performance should be sim- 
ilar. Conversely, the commands for the trailing-edge sur- 
faces are not generated by a high quality approxima- 
tion but these commands do not strongly affect roll per- 
formance. Thus, the approximation used to formulate 
KAAn~ should not drastically alter the closed-loop prop- 
erties as compared to the full-order 31, controller. 

5.2. Linear Simulation 
Time responses of the closed-loop system are simulated 
using a linear model of the lateral-directional dynamics 
and KA* W .  These simulations do not include all aspects 
of the aircraft and so are not intended to accurately pre- 
dict the responses of the full-order nonlinear system. De- 
spite this limitation, the simulated responses are valuable 
to  consider because they demonstrate if the methodology 
is able to compute a controller that achieves the desired 
closed-loop objectives for a general model. 

One of the main performance objectives of the control 
design is to match handling qualities for the AAW and 
SRA. There are several criteria used to evaluate handling 
qualities but a simple way to roughly compare handling 
qualities is to compare transient responses. Essentially, if 
the aircraft respond similarly then their handling qual- 
ities, which are based on response characteristics, are 
probably also similar. Responses from the AAW with 
KAAW and the SRA with K7oIE are simulated in re- 
sponse to a doublet command through the lateral stick 
as shown in Figure 5 .  

This stick command is chosen to  demonstrate several 
closed-loop properties. The initial command of 1.5 in 
is a half-stick command so the AAW response and han- 

command of 3 in will demonstrate the full-stick response 
and indicate if excessive saturation is commanded. 

The responses of the body-axis orientation angles to the 
lateral stick command are shown in Figure 6. The simi- 
larity of the AAW and SRA responses demonstrates the 
controller is able to achieve the desired model-following, 
and consequently handling qualities, characteristics. 

- 0 . 5 ~  I 
0  1 2 3 4 5 

Time (s) 

Figure 6: Sensor Measurements during Doublet Maneuver : 
AAW (-), SRA (- - -) 

There are several features in the roll rate responses of 
Figure 6 that can be used to  evaluate the performance 
of KAAW. One feature is the similarity in roll rate that 
is achieved for the half-stick command. Both aircraft 
show roll rates near 55 deg/s so the maximum roll rate 
for the AAW is 110 deg/s in response to  a full-stick com- 
mand. This roll rate satisfies the performance objective 
of matching the maximum roll rate for the AAW and 
SRA. There is a slight lag in the AAW response as com- 
pared to the SRA; however, the small delay should not 
overly affect handling qualities and can perhaps be al- 
tered by simply tweaking the controller gains. 

The remaining responses of Figure 6 also demonstrate in- 
teresting features. The angX of sideslip in the responses 
is similar in both magnitude and direction and this is 
an important factor in determining handling qualities. 



Also, the yaw rate shows some difference between AAW 
and SRA responses so the elements of K ~ o ~ E  that are 
used in .KAAW may have to be slightly altered because 
K701~ does not account for the altered roll dynamics. 

Figure 7 presents the control surface positions for each 
aircraft in response to  the stick doublet. These posi- 
tions demonstrate the actuator positions are not satu- 
rated during the transient maneuver despite the stick 
being moved to half of its maximum position. These 
linear results demonstrate that the leading-edge inboard 
flap would be slightly position saturated for a full 3 in 
stick command; however, the remaining surfaces would 
not be position saturated. 

The aileron and trailing-edge flaps are noticeably differ- 
ent during the AAW and SRA responses. In particular, 
the aileron moves in the opposite direction. These differ- 
ences result from the inclusion of loads minimization as 
a closed-loop objective. The design model restricted the 
bending moment to be similar for the AAW and SRA 
vehicles but allowed the torsion moment to  increase for 
the AANT. The controller for the AAW is positioning 
these trailing-edge surfaces mainly to  achieve the loads 
objectives because the leading-edge surfaces are already 
achieving the handling qualities objectives. 

The issue of rate saturation for actuators is often more 
constraining than position saturation so the surface rates 
during the maneuver are shown in Figure 8. The surface 
rates are not saturated during the initial stick movement 
of 1.5 in; however, the leading-edge inboard and out- 
board surfaces are rate saturated for the stick movement 
of 3 in. This saturation is tentatively considered accept- 
able because it occurs for a very short time, and nonlin- 
ear simulations not presented in this paper indicate only 
a slight lag in the response due to  rate limiting. 

, I,,--,' 
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Figure 7: Surface Positions in deg during Doublet Maneu- 
ver : A A W  (-), SRA (- - -) 

Figure 7 clearly demonstrates the difference in control 
allocation for the AAW and SRA aircraft. The stabila- 
tor is the main effector for generating roll at  this flight 
condition for the SR4 airplane and this surface moves 
more than any other. Conversely, the stabilator does not 
move at all during the maneuver for the AAW. The AAW 
controller accounts for the loss of the powerful stabila- 
tor by commanding larger positions for the leading-edge 
inboard and outboard flaps to generate roll. 

Figure 8: Surface Rates in deg/s during Doublet Maneuver : 
A A W  (-), SRA (- - -) 
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The hinge moments on the control surfaces are also of 
importance for this maneuver because the aircraft is op- 
erating at high dynamic pressures. The main concern 
is for the wing surfaces so the corresponding moments 
are shown in Figure 9. The hinge moments encountered 
during the maneuver are generally greater for the AAW 
than for the SRA but remain within the allowable limits. 

but the torsion moment is greater for the AAW than for 
the SRA. This increase in torsion is expected because 
the SRA avoids wing twist by using the stabilator to 
generate roll at this flight condition whereas the AAW 
commands a wing twist, and consequently torsion, to 
generate roll. The loads a t  the wing fold are not shown 
here but they are similar in nature to the loads a t  the 
wing root; namely, the bending moment is smaller for 
the AAW and the torsion moment is greater but both 
are within acceptable limits. 

5.3. Robustness Analysis 
The issue of robustness with respect to modeling un- 
certainty is an important consideration for predicting 
the closed-loop properties of the AAW. Some indica- 
tion of robustness can be obtained by performing exten- 
sive Monte Carlo simulations of the full-order nonlinear 
model; however, a more rigorous evaluation of robustness 
can be obtained for the linear model by analyzing the 
structured singular value. This value, p, reflects whether 
a model is robust with respect to a set of uncertainty op- 
erators [6]. 

I There are several areas of the open-loop model with 

program is to investigate the technologies associated with 
1 2 3 4 5 

Time (s) modeling of aeroelastic deformation and structural loads 
a t  high dynamic pressures. Essentially, full-scale aircraft 

Figure 9: Left-Wing Hinge Moments during Doublet Ma- have not flown with these configurations before so the 
neuver : AAW (-), SRA (- - -) fidelity of the dynamic models is unclear. 
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The loads on the structure must be analyzed to  demon- 
strate if the objective of load reduction is achieved and, 
more importantly, to ensure no loads on the structure ex- 
ceed the physical limitations. Figure 10 shows that the 
bending and torsion moment at the wing root is within 
acceptable levels. 

Uncertainty should be associated with the open-loop 
model to account for potential errors and unmodeled dy- 
namics in the effectiveness of the control surfaces. The 
model is formulated using static analysis that notes the 
amount of wing twist that results from placing the con- 
trol surfaces at any position. This type of model may be 
overly simplistic because the wing may twist dynamically 
with nonlinear and time-varying effects. 

I\-- 

O ' - * - W -  ,---- 

Introduce a norm-bounded operator, Ai,, to represent 
a multiplicative uncertainty on the plant input and ac- 
count for errors in control surface effectiveness. This un- 
certainty is weighted to  allow the error to increase from 
5% error near .1 rad/s up to 500% error a t  high frequen- 
cies. This weighting is represented by a diagonal matrix, 
W,,, and associates the same levels of uncertainty with 
the effectiveness of each control surface. 

which uncertainty should be associated. consider that 
one of the fundamental flight test objectives of the AAW 

Figure 10: Left-Wing ~ o o t  Moments during Doublet Ma- Uncertainty should also be associated with the output of 
neuver : AAW (-), SR.4 (- - -) the open-loop model to account for errors in the amount 

of roll that is predicted to  be generated by wing twist. 
The load magnitudes in Figure 10 agree with the loads These predictions are partially based on roll rates that 
objective that are in the design model. Specifically, the were measured during static testing of partial-scale mod- 
bending moment is similar between the AAW and SRA els in wind tunnels; therefore, errors may occur from is- 

30 



Figure 11: Model with Uncertainty Description 

sues related to transients, scaling factors, and structural 2 
complexities associated with the wing fold. 

Associate a norm-bounded operator, A,,t, only with the 1.5 
sensor measurements of the open-loop model that rep- 
resents errors in roll rate. A weighting function, Wout, 
scales this operator such that the robustness analy- 
sis considers errors in roll rate ranging from -10% near 
.1 ~ a d / ~  to 1000% at high frequencies. 

Figure 11 presents the closed-loop AAW model with un- 1 
certainty operators. Robustness is analyzed by comput- 1 0-? 1 o0 1 o2 
ing p with respect to A,, and Aout for the transfer func- Frequency (rad/s) 
tion from pilot commands to errors. 

Figure 12: p for Robust Performance of Error Signals : 

Figure 12 presents the upper bound for p that measures KAAW (-), Full-Order xm Controller (- - -1 
robust performance of the closed-loop system. The peak 
value shows p < 1.5 so the system does not quite meet namic controller so the approximation was able to reduce 
the desired robustness god of p < 1. The peak occurs Sensitivity near the roll mode. 
near the natural frequency associated with the roll mode 
and agrees with the synthesis that noted the driving con- 
straint for control design was achieving roll performance. 
Essentially, the controller is optimized to affect this roll 
mode and consequently is somewhat sensitive to model- 
ing errors. 

Also, the robustness of the AAW with the full-order dy- 
namic controller and the approximation used as KAAW 
is shown in Figure 12. This plot demonstrates that the 
robustness is quite similar for either closed-loop system. 
This indicates that the approximation was good and did 
not severely degrade performance or intrduce any sen- 
sitivity to modeling errors. Actually, the robustness at 
lower frequencies is greater for K A ~ W  than for the dy- 

6. Control Design as an AAW Technology 

The fundamental objective of the AAW program is 
to demonstrate several areas of technology including 
aeroservoelastic control; however, the methodology of 
designing the corresponding controller is generally not 
considered an AAW technology. This exclusion may be 
true for certain types of control design but an argument 
can be made that the R, approach can greatly facilitate 
the utilization of AAW tecFnology. Thus, the method of 
control synthesis may be considered as an indirect, but 
related, area of AAW technology. 



The synthesis objective is to  minimize the 31, norm of 
the closed-loop system or equivalently to  minimize the 
maximum size of the errors that result from a pilot com- 
mand. The nature of the 3t, norm directs the synthesis 
to reduce the size of the largest error and ensure the 
sizes of all the remaining errors are no greater than this 
largest error. For example, if the error related to  han- 
dling qualities or actuator constraints is larger than the 
error related to  loads then the controller does not mini- 
mize the loads error. 

The X, approach for control design does not directly 
perform a loads minimization; rather, the compensator 
achieves a level of loads control. Essentially, the weight- 
ing on the error signal is chosen a t  a level for which a 
controller exists that makes the closed-loop 3t, norm 
to be unity. The AAW will achieve the handling quali- 
ties and actuator objectives while reducing the loads to 
less than the values associated with the error weighting if 
this norm condition is satisfied. In this way, the synthesis 
performs a simultaneous optimization for loads, handling 
qualities, actuator, and performance objectives. 

This simultaneous optimization suggests that the 31, 
methodology may be a valuable asset in realizing AAW 
technology on future aircraft. The ability to simulta- 
neously consider several closed-loop objectives presents 
a method t o  easily determine the achievable properties 
of the aircraft. The designer simply iterates over val- 
ues of the weighting functions to  determine what levels 
of performance and loads reduction can be achieved for 
a particular set of actuator constraints. This approach 
allows a straightforward determination of the benefits 
that can be achieved by the remaining elements of AAW 
technology. 

7. Concluding Remarks 

The Active Aeroelastic Wing program has several ob- 
jectives that present challenges for control design. This 
paper presents an 31, approach that encompasses these 
objectives in the controller synthesis. The design model 
is formulated by generating errors that  relate to  handling 
qualities, performance, actuator, and loads objectives. 
The resulting controller is designed by simultaneously 
considering all these closed-loop objectives. A point de- 
sign is used to  demonstrate that the approach generates 
controllers that achieve these goals. 
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Abstract 

A Multidisciplinary Design Optimization (MDO) study for a transport configuration with 
emphasis on the integrated aerodynamic and structural design of the wing is presented. The 
novelty is in the use of aeroelastic constraints for flutter as well as gust response (both 
deterministic and stochastic). 

Introductory remarks on MDO 

Multidisciplinary Design Optimization (MDO) has recently recognized as a new and important 
field of study, dealing with analysis and optimal design of complex systems; these systems are 
typically assumed to be built by multi-disciplinary models. These disciplines may correspond 
either to fields of study (e.g., for an aircraft, aerodinamics, structures, performance, propulsion), 
or may correspond to physical parts of the system (wing, fuselage, engines). Because of the 
relevance of the discipline modeling, probably a more appropriate definition of this kind of design 
could be Multi-disciplinary Modeling and Design Optimization (MMDO). The essential objective 
of VlDO could be to enable the manufacturing companies to reduce the design time cycle and to 
produce reliable and efficient optimum designs in the preliminary design phase. 

In the past decade a growing interest in multi/inter-disciplinary engineering optimization has 
been revealed and several approaches to problem formulation have emerged in the aerospace field 
(see Refs. [I, 2, 31 for recent references on the subject). Balling and Sobieszczanski-Sobieski 
have developed interdisciplinary optimization approach (Refs. [4, 5 ] ) ,  which is adopted in this 
paper. According to the standard MDO classification, the algoritm employed in this paper may 
be classified as a single-NAND-NAND approach. Finite-State Aerodynamics (FSA, 16)) is an 
essential tool used to describe the Generalized Aerodynamic Force (GAF) matrix in terms of 
state-space variables in framework of the MDO (see Ref. [7]). In this paper we have developed an 
aeroelastic model (stability and response) in the framework of an MDO: the obtained results for a 
transport wing have revealed that these constraints can significantly drivethe aircraft preliminary 
design. 



design variables 
Root chord length 1 5.43 m 
Tip chord lenght 
Root thickness ratio 
Tip thickness ratio 
Half span 
Swept angle at 114 c 
Root skin-panels t hikness 
Tip skin-panels thikness 
Root spar thickness 
Tip spar thickness 
Root stringer cross-area 

I Tip stringer cross-area 1 0.00075 m2 1 

Aircraft reference configuration 
Fuel weight (WfUel) 1 24000 1bs 
Payload(Wpl) I Empty weight (We) 
Take off weight (Wt,) 
Aerodynamic efficiency (E) 
Range (R) 
Cruise altitude 
Cruise Mach number 
Flutter speed 
Bending stiffness distribution coefficient 
Torsional stiffness distribution coefficient 

21917 Ibs 
121000 lbs 
57190 Ibs 

19.2 
2480 mn 
18000 ft 

0.6 
240 m/s 

0.3 
0.3 

Table 1: Design variables and aircraft reference configuration 

Aircraft preliminary design as MDO problem 

Aircraft design is typically a very complex problem as it  involves several different fields. In the 
present work we have selected, as design disciplines, structural dynamics (modal description), 
stress analysis, aerodynamics (lift and drag evaluations), aeroelasticity (stability and gust re- 
sponse analysis), and flight performance (mission range estimate). The problem investigated is 
the integrated optimal design of a subsonic transport wing with focus on the influence of response 
and aeroelastic constraints (in addition to some performances and structural constraints). In the 
following, some aspects of the optimization problem for a fairly general objective function are 
briefly outlined. 
The design variables and reference aircraft configuration are shown in Tab. 1 (to which the reader 
is referred for the symbols used for each variable): this airplane belongs to the same class as 
MD80, DC9-80, A320, or B737-300. The objective function to be minimized is given by: 

(where the subscript r denote "reference", i.e., the initial value of the optimization procedure, as 
obtained from the initial guess of the design variables). The factors assumed in the problem are: 
71 = 0.7, % = -0.1, 773 = 0.1, and q d  = -0.1. The empty weight We is computed from the empty 
weight of the reference configuration, We,, assuming that the reduction in the structural wing 
weight is reflected on the aircraft gross weight amplified by a factor ,tl > 1, due to  corresponding 
savings in the weight of tail and fuselage as well as non-structural weight: We = We, - ,d (WW, - 
W,), where W,, and Ww denote the actual and the reference structural wing weight respectively. 
A value ,O = 2 is assumed in this study. 

The constraints assumed in this design problem are structural, aeroelastic, response, and perfor- 
mance constraints. The constraints imposed are: (1) minimum range allowed, R,; (2)rninimum 
wing volume available to contain fuel Vj required by the mission, VII;  (3) minimum aerodynamic 
efficiency allowed, E,; (4) maximum stress allowed in the spars, 7,; (5) maximum stress allowed 
in the stringers, a,; (6) minimum-flutter speed allowed UFa; (7) maxiWum load factor allowed 
in presence of gust input (e.g. ,  as prescribed by the international aviation requirements); (8) 



maximum covariance value of certain quantities of interest (such as load factor or wing root bend- 
ing moment) in presence of gust random input (specifically, white noise input). Regarding the 
limit values associated to these constraints, a minimum range value of R, = 2000nm (3706km) 
has been imposed, whereas a value E, = 16 has been for the aerodynamic efficiency constraint. 
Maximum values assumed for stress in spars and stringers were respectively r, = 206MPa and 
a, = 413iWPa. Moreover, a minimum flutter speed of UF, = 250ml.s is imposed. The upper value 
for the load factor constraint has been assigned equal to  3.5 according to  widely used estimate for 
transport aircraft; on the other hand, the covariance limit value for the state-space variables has 
been estimated by using a white noise with intensity equal to the maximum value in the Dryden 
spectrum (Ref. [9]). 

In order to solve the above problem the Sequential Unconstrained Minimization Tecnique (SUblT, 
see e.g., Ref. [lo]), with quadratic extended interior penalty function (see, e.g., Ref. [ l l ]) ,  has been 
used. The sequence of unconstrained minimizations generated by this method have been resolved 
by the BFGS (Broyden-Fletcher-Goldfarb-Shanno, Ref. [12]) algorithm. The one-dimensional 
minimization associated to each search direction defined by the BFGS algorithm has been carried 
out by quadratic interpolation of the objective function. The optimization code used in the 
present paper was obtained from FLOPS, Refs. [14, 151, by replacing several modules; specifically, 
the unsteady aerodynamics module (generalized aerodynamic matrix), the static and dynamic 
aeroelastic module (finite-state aerodynamics and stability), and the structural dynamics module 
(FE model for a beam-like wing) have been introduced in Ref. [16], whereas the gust-response 
module introduced in this work. 

3 Discipline modeling 

MDO complexity makes important to  assure the global efficiency of the discipline models. The 
models used to describe the disciplines (e-g., aeroelasticity, structures and gust response) should 
combine accurate descriptions of the physical phenomena and reduced computational require- 
ments. In the following the modeling for structure, aeroelastic, gust response, and performances 
modeling employed in the MDO process is presented. 

3.1 Structural modeling for the wing 

The structural analysis of the wing has been carried out by a bendingltorsion beam model with 
geometrical and structural parameters varying in the spanwise direction (i.e., spar and stringer 
cross section areas, skin panel thickness, bending and torsional moment of inertia etc.). Using 
standard Hermite function for FE beam description and linear function for FE torsion description, 
Galerkin method yields Mii + Ku = f ,  where u = (wl, ui, el, w2, w;, e2, ..., W N ,  w;, ONIT, where 
wi, w:, and Oi are the FE nodal unkowns (bending displacement, bending angle, and torsion 
angle) and f is the vector of the loads. The evaluation of the discrete natural angular frequency 
w, and eigenvector z(") is obtained from the associated eigenproblem -w;Mz(") + Kz(") = 0. 
The results of the structural dynamic analysis are presented in Tab. 2, which compares our 
results with those obtained with the MSCINASTRAN code. In Reference [16], suitable design 
variables were also introduced in order to take into account the span-wise variations of the wing 
characteristic due to the taper r a t i o  in particular, we prescribed, for bending moment of inertia 
I(y) = IR + (IT - IR)(y/L)T1 and for the torsional moment of inertia J (y )  = J R  + (JT - J R )  ( Y / L ) ~ ~  
(yl and 7 2  are the design variables defining the span-variation laws, the subscripts R and T 



Mode I MSCINASTRAN 1 MDO code 

I I I . A 
lo ( 0.79 1 0.79 1 Bending I 

Table 2: Half Wing Structural Dynamics 

3.23 
3.34 
7.05 
8.1 

1 1.16 

indicates the root and tip values respectively, and L is the half-span length): nevertheless, in the 
design process these variables did not change significantly from the values yl = 7 2  = 0.3. This 
value has been adopted here. 

- 

Torsional 
Bending 

Torsional 
Bending 
Torsional 

3.2 Aerodynamics modeling: FSA for GAF matrix 

The structure is represented in term of its natural modes of vibration, an(<") (obtained from 
the analysis of Section 3.1), as u(ta, t) = C, qn(t)an({"), where the <" are material curvilinear 
coordinates. In the absence of structural damping, the aeroelastic problem expressed in terms of 
Lagrangian variables q, (t) is governed by the equation: 

where q denotes the Lagrangian coordinate vector, O2 the diagonal matrix of the eigenvalues of the 
structure, e the vector of the generalized forces due to the elastic motion (ek := - q ~  &, c,,n.akdS), 
and f, the generalized gust input (see next Section). Next, consider the GAF matrix E(s) which 
relates the Laplace transform of the generalized aerodynamic forces 5 to  the Laplace transform of 
the Lagrangian variables ij: 6 = qDEtj, where q~ is the dynamic pressure. In order to perform the 
aeroeiastic analysis in the framework of the optimization procedure, a finite-state approximation 
for the aerodynamic matrix has been considered: it consists of approximating the aerodynamic 
matrix as (Ref. 163) 

E(p) N ~2~~ + Alp + A. + (pl - P)-' R (3) 

where p = sl/Uw is the dimensionless Laplace variable and all the matrices on the right hand side 
may be evaluated by a least square procedure on a set of aerodynamic data. Substituting Eq. 3 
into the Eq. 2, considering the definition for p, setting i := - q ~  [@I - P)-' R] tj, and introducing 
the matrices Me := I - qDA2Z2/U&, Ce := -qDAII/UW, and Ke := O2 - qDAo one obtains, in the 
time domain (for E = 1) 

with xl = q, x2 = q, and xs = r. Then, the system has been reduced to the standard form x = 
A,~,x, where the parametric dependence of the matrices upon the air speed has been emphasized. 
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Note that this approach allows one to reduce the aeroelastic stability analysis to a root locus 
for the matrix Au,, thereby avoiding classical methods (e.g., V-g and p k  method), which would 
unnecessarily complicate the optimization procedure. 
The Finite-State formulation for the forces due to gust is similar (see Ref. [17] for details). 

3.3 Performance model 

The mission profile considered in this study is described in the following: take-off, climbing, a 
cruise segment, descent and landing. The range is computed according to  the Breguet equation 
R = (v,L/cD) ln(Wi/Wf), where v, is the cruise speed, c the specific fuel consumption, LID 
the lift to drag ratio, and W, and Wf the initial and final weights of the cruise mission segment, 
respectively; expressing the fuel consumptions in the mission segments before and during the cruise 
segment as fractions of the usable mission fuel weight WUf (indicated as kl e k2 respectively), Wi 
e Wf can be written as: Wi = W - k1 W, and W j  = W - (kl + k2) WUj. 

4 Numerical results 

Considering the reference aircraft configuration, given in Tab. 1, the preliminary design problem 
of the wing of a transport jet aircraft in cruise-flight conditions have been investigated. Specif- 
ically, special emphasis has been given to the role of aeroelastic and response constraints. The 
following mission requirements were assumed: (2) payload: 100-130 passengers; (ii) cruise alti- 
tude: 18,000 f t; (iii) range: 2,000nm; (iv) cruise Mach number: M ,  = 0.6. These characteristics 
are relative to medium-range aircrafts like B737 - 300, DC9 - 80, A320: in particoular, the DC9 
configuration was assumed as the reference aircraft configuration in this optimization study (it 
has a relatively clean wing, without engine nacelles and kinks). Starting from the reference con- 
figuration, a preliminary analysis has been performed in order to obtain the reference parameters 
for the optimizer, see Eq. 1. Specifically, dynamic, aeroelastic, and performance analyses were 
carried out and the obtained results summarized in Tabs. 1 and 2. This preliminary analysis also 
required to define the constraint values as shown in the previous sections. 
First, we have compared the results obtained without the flutter constraint with those obtained 
with this constraint: the constraint on the performances and on maximum stresses are always 
present in both analyses. Figure 1 and the Table presented in Fig. 2 show how the flutter 
constraint reduces the sweep and wing planform variations and limit the possibility to reduce the 
aircraft weight. When the flutter constraint is not present, the normal-stress constraint yields the 
design result as shown in Fig. 3. As apparent from Fig. 4 (corresponding to the same case), 
the removal of flutter constraint yields a considerable improvement of the payload. However, this 
yields also an unacceptable increasing of the flutter speed, thereby demonstrating the importance 
of including in the optimization design the flutter constraint. 
Next, consider the results obtained in the presence of the gust-response constraints: using Lia- 
punov equation (see, e.g., Ref. [18]), the covariance matrix P, for the state-space vector has been 
explicitly obtained analytically as a function of the white noise input level and the system matrix. 
Then! system response to the white-noise gust response has been considered as a constrainti, as 
indicated in the fol1owing:the white-noise spectrum level (constant in the frequency domain) has 
been assigned equal to the maximun value of Dryden gust spectrum cwesponding to L = 2500 
and a = 1 (Ref. [9]): see Fig. 5, and 6 for the payload and covariance matrix constraint us 
iteration number. 



*Jes.. .'3fi + .  
Final design (without flutter &ktraint) e 

Final design (with flutter constraint) .o- .  

Figure 2: Influence of flutter-speed con- 
straint in the MDO process 

Figure 1: Wing planform: flutter constraint in- 
fluence 

Figure 3: Normal stress and fuel volume con- 
straints Figure 4: Payload (lb ) 
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Figure 6:  Covariance matrix constraint 
38 

2 4 e I 10 -- 12 14 



Figure 7: Payload 
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Figure 8: Dynamic bending moment and nor- 
mal stress constraints 

Figure 10: Influence of load-factor constraint in 
the MDO process 

Figure 9: Wing planform: load factor constraint 

Considering a random process with a = 1 as input, system response has been evaluated using 
Matched Filter Theory (MFT, Ref. [19, 211) results: so the response to  the worst input has been 
obtained. Specifically the dynamic moment a t  the wing tip has been calculated. These constraints 
do not have a great influence on the optimal design as apparent from the very small variations of 
the design variables as shown in Figs. 7 and 8. 
Next, consider the results obtained by taking into account of a constraint on the load factor: 
the load factor peak can be evaluated using Pratt  formula based on airplane characteristic as 
recommended by the FAR 25. Results on final us initial configuration are shown in Fig. 9 and 
in the Table shown in Fig. 10. Normal stress and fuel available volume in the wing constraints 
yields the final configuration as depicted in Fig. 11. Payload, fuel weight, and objective function 
are also shown in Figs. 12, 13, and 14. 

Finally, the following results have been obtained for a wing-tail configuration: in this case we 
made a further step toward a more accurate aircraft model, which consists of incuding for the 
load factor evaluation the unsteady aerodynamics effects on flight mechanics of the horizontal 
tail. During the optimization process, we have frozen the tail geometrical characteristics; hence, 
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Figure 11: Range, Fuel volume, Normal stress 
constraints 

Figure 12: Payload (lb ) 

Figure 13: Fuel Weight (lb ) Figure 14: Objective function 

Figure 15: Load factor constraint Figure 16: Wing planform: wing-tail configura- 
tion 
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Table 3: Design considering a Wing-tail configuration 

the corresponding design variables are the same as in Tab. 1. The maximun load factor has been 
obtained thrugh numerical search in the time response. Table 3 and Figs. 15-16) show the results 
obtained. 
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Abstract 
A numerical methodology for the evaluation of aerodynamic loads acting on a complex lifting 
configuration is presented. The work is limited to the case of attached high-Reynolds number 
flows. A viscous/potential interaction technique is utilized to take into account the eflects of 
the viscosity. For the potential-flow analysis, a boundary element formulation is used; for 
simplicity, only incompressible flows are examined; the wake geometry is either prescribed a 
priori or is determined as part of the solution (free-wake analysis). The theoretical basis of 
the present methodology is briefly described. Comparisons of present numerical results with 
analytical, numerical, and ezperimental results available in the literature are included. 

Introduction 

The aim of this paper is to present an MDO methodology for the analysis of innovative config- 
urations (low-induced drag lifting configurations) with emphasis on the evaluation of aerody- 
namic load in viscous flows. This methodology is based on a boundary element formulation for 
the velocity potential introduced by Morino [9]; the effects of viscosity are taken into account 
by a classical viscous/inviscid coupling technique. 
In recent years, the increased request for low-cost air transportation has generated considerable 
interest for non-conventional configurations characterized by a low induced drag. Specifically, 
some aeronautical research groups and airplane manufacturers are considering biplanes with 
wing tips connected to each other directly (joined wing configuration) or through a vertical 
surface (box-wing configuration). 
Since the early work of Prandtl [15] on multiplanes, it is well known that such types of lifting 
configurations have certain aerodynamic advantages with respect to isolated wings. Specifically, 
by using an analytical model based on the lifting-line theory, Prandtl [15] has shown that the 
induced drag of a multiplane with elliptic distribution of circulation is lower than the induced 
drag of the equivalent monoplane (i.e., of the monoplane having the same span and generating 
the same lift as the multiplane considered). In addition, in [15] it is also shown that the ratio, 
K ,  between the induced drag of a multiplane and that of the equivalent monoplane, decreases 
as the number of wings of the multiplane increases (with global height and lift kept constant). 
In the limit as the number of wings tends to infinity ("infinity-plane", according to Prandtl 
[15] definition), K has the minimum value. Also, Prandtl shows that there exists a box-wing 
type configuration that has the same distribution of circulation (and hence the same A') as the 



"infinity-plane"; such configuration is therefore designated. still by Prandtl (1.51, at the 'Best 
Wing System' (BWS). 
After the work of Prandtl [lrj], valid only for the limited case of multiplanes with elliptic 
distribution of circulation, several numerical and experimental studies have been published, 
in particular, the early work of Nenadovitch [14] on the efficiency of bidimensional biplanes: 
also, an experimental analysis of joined wing aircraft is presented by Wolkovitch [21], whereas 
experimental as well as numerical/empirical studies on biplanes and box-wing configurations 
are proposed by Gall and Smith [3]. 
In this paper, the attention is focused on an innovative configuration for a new large dimension 
aircraft (usually indicated as New Large Airplanes or NLA) proposed by Frediani e t  al. [I]. 
[2]. This configuration is a biplane, with counter-swept wings (positive sweep for the front 
lower wing and negative sweep for the back upper wing, which acts as a horizontal tail as well) 
connected to  each other by aerodynamic surfaces (see Figures 13 and 14). Following Frediani 
et al. [I], [2] we will refer to this configuration as the Prandtl-plane. Preliminary numerical 
and experimental studies (see Frediani et al. [I], [2]) have shown that the induced drag of this 
configuration is lower than the induced drag of an equivalent monoplane. This fact allows one to 
reduce the wingspan of this configuration without drag penalties and introduces the possibility 
of respecting the maximum span-wise dimensions (critical for the NLA with classical wing 
configuration), which would allow compatibility with the existing airports. Morever, it allows 
one to  have an optimal design for the control surfaces and hence, a better manoeuvrability and 
stability control. These considerations yield the conclusion that the Prandtl-plane should be 
an optimal wing configuration for applications to NLA. 
Through an independent activity, the authors have been involved in the developement of an 
MDO code. The most recent developments in this effort are presented in Ref. [7] (in these 
Proceedings). The aerodynamic module in such a code is limited to potential flows around 
simply-connected domains. The configuration under consideration is multiply-connected; in 
addition, an item of much interest for this configurations is the drag, both induced and vis- 
cous. These issues are addressed in this paper, as a first step towards generating a suitable 
viscous aerodynamic module around multiply-connected configurations, to be incorporated in 
the above mentioned MDO code. Thus, here the emphasis is on the algorithm used in the 
recently developed aerodynamic module (indeed the present methodology yields accurate air- 
loads predictions, with relatively small computational efforts, and hence it is a good tool for 
the aerodynamic analysis in the optimizer code). Because of the complexity and the novelty 
of the configurations discussed above, it is necessary to  develop an aerodynamic methodology 
for multiply-connected configurations capable of yielding accurate predictions with a relatively 
small computational effort, which takes into account the effects of viscosity and of the wake 
roll-up. The aerodynamic formulation is based on the classical viscous-potential interaction. 
For potential flows, we extend to multiply-connected regions the a direct boundary element 
formulation for incompressible inviscid flows around lifting objects of arbitrary shape in uniform 
translation, introduced in Ref. [9]. The geometry of the rolled-up wake is evaluated through 
the free-wake analysis of Ref. [IS]. The viscous flow (in boundary layer and wake) is solved by 
using the strip-theory approach, with a two-dimensional boundary layer analysis of integral 
type. The viscous/inviscid coupling technique is based upon the Lighthill [6] equivalent-sources 
approach. Matching of the boundary-layer solution with the corrected potential-flow solution 
is obtained by direct iteration. The present numerical results are compared with the analyt- 



ical results by Prandtl theory and with numerical and experimental results available in the 
literature. 

Theoretical Formulation 

The theoretical formulation used in the present work for the analysis of complex lifting config- 
urations is briefly outlined in this section. First, the potential formulation for incompressible 
inviscid flows around lifting objects is outlined (for detailed discussion, see [12) and [lo), where 
reviews are also presented). Next, the methodology used for the analysis of the viscous vortical 
layer and the viscous/inviscid coupling technique are discussed. 

Potential-Flow Formulation: an inviscid, incompressible, initially-irrotational flow remains at 
all times quasi-potential (i. e . ,  potential everywhere except for the wake surface, i. e., the locus 
of the points emanating from the trailing-edge). In this case, the velocity field, v, may be 
expressed as v  = V y  (where y is the velocity potential). Combining with the continuity 
equation for incompressible flows, V - v = 0, yields 

The boundary conditions for this equation are as follows. The surface of the body, S,, is 
assumed to be impermeable. This yields (v  - v  ,) . n = 0, i.e., dyldn = v, . n for x E S,, 
where v, is the velocity of a point x E S,, whereas n is the outward unit normal to S,. At 
infinity, in a frame of reference fixed with the unperturbed fluid, we have 9 = 0. The boundary 
condition on the wake surface, S,, are obtained by using the principles of conservation of mass 
and momentum across S,, to yield:. (i) the wake surface is impermeable, and (ii) the pressure, 
p, is continuous across it. In terms of y ,  the first condition yields A(dy/dn)  = 0 (where A 
denotes discontinuity across S,), whereas the second one, using Bernoulli's theorem, yields 

where v ,  denotes the velocity of a wake point (the average of the fluid velocity on the two sides 
of the wake). This equation implies that the value of Acp remains constant in time following 
a wake point x, and equals the value it had when x, left the trailing edge. This value is 
obtained by imposing (trailing-edge condition) that, a t  the trailing edge, A y  on the wake equals 
y, - on the body (subscripts u and 1 denote, respectively, upper and lower sides of the body 
surface). For recent developments on the trailing-edge condition see Ref. [l 1] . 
In this paper, the above problem for the velocity potential is solved by a boundary integral 
formulation. Using the boundary integral representation for the Laplace equation, with a 
surface that surrounds and is infinitesimally close to body and wake, one obtains (using the 
above boundary conditions on body, wake, and at infinity) 

with x := v, . n, whereas G = - 1/4?r Ily - xll denotes the fundamental solution for the Laplace 
equation in three-dimensional space. Note that, in the absence of the wake, Eq. 3, in the limit 
as x tends to S,, represents a bbundary integral equation for y on S-,, with x on S, known 



from the boundary condition. Once y on the body is known, y (and hence v and, by using 
Bernoulli's theorem, p) may be evaluated everywhere in the field. The situation is similar in 
the presence of the wake, since by applying the wake and trailing-edge conditions, A y  on the 
wake may be expressed in terms of y over the body at preceding times. 
In the present work, the boundary integral equation for y based on Eq. 3 is solved numerically 
by boundary elements, i.e., by discretizing the body and wake surfaces in quadrilateral elements' 
assuming 9, x and 49 to be piecewise constant, and imposing that the equation be satisfied 
at the center of each body element (collocation method). 
It should be noted that the geometry of the wake is not known a priori. For the case of bodies 
in uniform translation, a flat wake with vortical lines parallel to the unperturbed streamlines 
is typically used (prescribed-wake analysis). In the configuration of interest here, such a priori 
assumptions are not justified by past experience. Therefore a free-wake analysis is paramount: 
the boundary integral equation may be used t o  compute, at each time step t ,  the flow velocity 
at nodes x, of the discretized wake surface (free-wake analysis), and hence, the locations of 
wake nodes are modified by integrating the equation x, = v,(x,). An explicit Euler method is 
used here. Any change in the wake geometry determines a different contribution of the integral 
over S, in Eq. 3; hence, in the case of free-wake analysis the shape of the wake and the 
flowfield solution are obtained step-by-step, as part of the solution. For steady-state cases, 
the steady solution is obtained as the solution for t + oo of a transient flow due to an impulsive 
start. This procedure resolves also the non-uniquess issue connected with steady-state flows 
around multiply-connected region. Indeed, in the case of unsteady flow the non-uniquess is 
not an issue because one may use Kelvin's theorem and obtain the circulation on the wing from 
the vorticity shed in the wake (see Ref. [ll]). 

Boundary Layer: the viscous flow analysis is limited to attached steady high-Reynolds number 
flows. Under these assumptions, a classical integral boundary-layer formulation may be used. 
Specifically, we use boundary-layer equations written in integral form (for attached flows, this 
approach yields results as accurate as those obtained by differential methods with considerably 
reduced computational effort). Also, we consider two-dimensional boundary-layer equations 
used as 'strip-theory': three-dimensional effects within the boundary layer are neglected with 
a minor loss of accuracy for applications to this specific configuration, because of the lack of tip 
effects. The laminar portion of the boundary layer is computed by using Thwaites' collocation 
method [19]. The transition from laminar to turbulent flow is detected by the classical Michel's 
method [8]. The turbulent portion of the boundary layer and the wake are studied by the 
'lag-entrainment7 method of Green et al. [5] :  in this method, the flow is modelled by coupling 
three differential equations (the von Kgrman equation, the 'entrainment7 equation taking into 
account the flow entering the boundary-layer, and the 'lag7 equation - a transport equation for 
the turbulent kinetic energy) with semi-empirical algebraic closure relationships. 

Viscous/Inviscid Coupling: once the boundary-layer equations are solved, the viscosity correc- 
tion to the potential flow is evaluated as a transpiration flow, across SB and Sw (equivalent 
source method by Lighthill 161); the transpiration velocity is given by 

where s denotes the arclength in the  2D boundary-layer and wake, anad '  is the displacement 



thickness. In addition, u and u, denote, respectively, the  velocity within the vortical layer 
and at its outer edge (in a frame of reference fixed with the body). Hence, the boundary 
condition for y over the body surface is modified as follows (for details, see Morino et. al. 
[131, where it is shown that the method has a much greater validity than usually believed): 
d v / d n  = v, . n + ,y ,, whereas, on the wake surface one has A ( d ~ l d n )  = ( X  , ), + ( X  ,)/, 
(subscripts u and 1 denote, respectively, upper and lower sides of the wake surface). Thus, 
the solution of the potential-flow equations containing the viscous correction above gives a 
prediction for u,, which is in turn the input for the boundary-layer solution and hence for the 
evaluation of x .. Matching of the boundary-layer solution with the corrected potential-flow 
solution is obtained through iteration (direct method, valid for attached flows). 

Numerica l  Resu l t s  

Consider first the potential flow case. For all the results, the airloads are determined by using 
the formulation of Ref. [4], which is an exact generalization of the Trefftz-plane theory [20] 
for the evaluation of aerodynamic loads around objects of arbitrary shapes. First, we present 
a comparison between our numerical results and the analytical results by Prandtl [15] for the 
evaluation of the efficiency of biplanes. As mentioned above, Prandtl [15] shows that, if the 
two wings have equal lift and elliptic distributions of the circulation, the ratio K between the 
induced drag of a biplane and that of the equivalent monoplane is optimal (for a biplane of 
prescribed ratio Glb, where G is the gap and b is the span). Even better values (better even 
than multiplanes) for K are obtained for a box-wing configuration, (i.e., the Prandtl [15] Best 
Wing System) described in the introduction. Figures 1 and 2 show, respectively, results for the 
case of a biplane with elliptic wings and for the case of Prandtl's BWS. These figures depict 
the parameter K (hereafter referred to as the 'Prandtl factor') as a function of G/b, and show 
an excellent agreement between the results (note that in [15] the geometry of the BWS is not 
specified, whereas our results have been obtained by considering a box-wing configuration with 
rectangular wings and a rectangular vertical surface at zero angles of attack). 
It should be observed that the above results have been obtained by using a prescribed-wake 
approach, in order to be consistent with the Prandtl model which is based on the lifting-line 
theory. However, the present methodology is able to capture the effects of the wake roll-up 
on the airloads by using a free-wake approach, as described above. Figures 3 and 4 depict the 
Prandtl factor K as a function of Glb, for free-wake and prescribed-wake analysis, (respectively, 
for a biplane with rectangular wings and for the corresponding box-wing body). The results 
obtained by a free-wake approach show that the wake roll-up effect is to  reduce the value of K. 
For the range of Glb  of practical interest in aeronautical applications (i .e. ,  0.1 < Glb < 0.2), 
we have that the reduction of A' is about 3% for the case of a biplane, and 6% for the case of a 
box-wing. This demonstrates the importance of including a rolled-up wake in the analysis. For 
the sake of completeness, Fig. 5 depicts the geometry of the wake as a result of the free-wake 
analysis for a box-wing in which the two wings are identical and have the same angle of attack, 
0 = 5O. 
In order to analyze the mechanism of induced-drag reduction for biplanes and box-wing con- 
figurations, it is interesting to study the efficiency 11' of a rectangular biplane with facing tip 
winglets on the two wings. Our calculations have confirmed that the Prandtl factor K de- 
creases, for a fixed G/b, as the lenght of the two winglets increases. In particular, if the gap 
d between the winglets tips goes to zero, Ii' tends to the value of the czrresponding box-wing 



configuration: Figure 6 depicts a comparison of the curves A' = K(G/b )  for a biplane without 
winglets, for the corresponding box-wing body, and for a biplane with winglets (winglet length 
0 . 4 ~ )  where c is the root chord). In addition, Fig. 7 shows the circulation as a function of the 
arclength along the trailing-edge line (oriented from the lower wing root to the upper wing 
root) of a box-wing configuration (with the gap d as a parameter). This Figure shows that in 
the limit, as the gap d tends to zero, the circulation of a biplane with winglets tends to the 
circulation of a box-wing configuration. 
Next, for both biplanes and box-wing configurations, examine the dependence of the Prandtl 
factor upon the spanwise circulation distribution. To this end, we have considered three different 
configurations: ( 1 )  rectangular and untwisted wings (angle of attack cr = ti0), ( 2 )  untwisted 
swept wings (sweep angle A = 30°), and (3) unswept and linearly twisted wings (+5" at root 
and -5" at tip). For simplicity a non-rolled-up wake has been used. Figures 8 and 9 (for the 
biplane and the box-wing configuration, respectively) show A' as a function of Glb for the three 
cases above. It may be noted that for straight and swept wings the parameter A' is lower than 
that of a biplane with elliptic distribution of circulation (these results appear to contraddict 
the fact that monoplanes with elliptic distribution of circulation produce an optimal efficiency; 
however, here the Prandtl factor K is evaluated by comparing a biplane with the monoplane 
having same sweep angle and twist). 
Next, consider some preliminary results for attached high-Reynolds viscous flows. In the present 
work, the evaluation of the viscous component of drag is obtained by using the expression of 
Squire and Young [17]. As an example, in Fig. 10 it is shown that, for the case of the polar 
of a rectangular wing at Re = 2.7 - lo6, our numerical results are in good agreement with the 
experimental results in [16]. Next,-consider the case of biplanes and box-wing bodies. As a 
comparison we have considered the work of Gall and Smith [3], who present both numerical 
and experimental results for the evaluation of lift and drag of those configurations (the nu- 
merical/empirical approach used in Ref. [3] is based on the evaluation of the inviscid loads by 
lifting-line theory, whereas the viscous drag is obtained from available experimental results for 
two-dimensional biplanes, given in Ref. [14]). Figure 11 depicts the polar a t  Re = 5.1 lo5 of a 
biplane, whereas Fig. 12 depicts the polar at Re = 5.1 . lo5 of a box-wing configuration. Our 
numerical results are in good agreement with the experimental and numerical results by Gall 
and Smith [3]. 
Finally, we present the polar of the box-wing body shown in Fig. 13. As stated in the 
introduction, this particular case of box-wing configuration has been recently proposed as the 
basic geometry for an optimization process for low-induced drag complex configurations (see 
[l] and [2] for details). Figure 15 depicts the polar at Re = 2.7 - lo6. Figure 16 shows the 
geometry of the rolled-up wake (angle of attack CY = 5"). No numerical or experimental results 
are available for the present configuration. 

References 

[l] Frediani, A., Chiarelli, M., Longhi, A., D'Alessandro, C.M., Lornbardi, G., "Structural De- 
sign and Optimization of the Lifting System of a Non-Conventional New Large Aircraft," 
poceedings of the CEAS International Forum on Aeroelasticity and Structural Dynamics, 
Rome 1997. 



[2] Frediani, A., Lombardi, G., Chiarelli, IvI., Longhi, .4., D'Alessandro, C.M., Bernardini, G., 
"Proposal for a Kew Large Airliner with a Non-Conventional Configuration," Proceedings 
of the XIV AIDAA Congress, Naples, 1997. 

[3] Gall, P.D. and Smith, H.C., "Aerodynamic Characteristics of Biplanes with Winglets," J. 
Aircraft, Vol. 24, No. 8, pp. 518-522, 1987. 

[4] Gennaretti, M., Salvatore, F., Morino, L., "Forces and Moments in Incompressible Quasi- 
Potential Flows," Journal of Fluids and Structures, Vol. 10, pp. 281-303, 1996. 

151 Green, J.E., Weeks, D. J., Brooman, J. W.F., "Prediction of Turbolent Boundary Layers 
and Wakes in Compressible Flow by a Lag-Entrainment Method," RAE RM 3791, 1973. 

[6] Lighthill, M.J., "On Displacement Thickness," J. Fluid Mech., Vol. 4, pp. 383-392, 1958. 

[7] Mastroddi, F., Ciancaleoni, E., and Morino, L., "Aeroelastic constraints in MDO," Pro- 
ceedings of the International Forum on Aeroelasticity and Structural Dynamics, Williams- 
burg 1999. 

[8] Michel, R., "Etude de la Transition sur les Profils d7Aile-Establissement d'un Point 
de Transition et Calcul de la Trainie de Profil en Incompressibile," ONERA Rep. No. 
1/1578A, 1952. 

[9] Morino, L., "A General Theory of Unsteady Compressible Potential Aerodynamics," NASA 
CR-2464, 1974. 

[lo] Morino, L., "Boundary Integral Equation in Aerodynamics," Appl. Mech. Rev., Vol. 46, 
August 1993. 

[ll] Morino, L., and Bernardini, G., "Singularities in Discretized BIE's for Laplace's Equation; 
Trailing-Edge Conditions in Aerodynamics," Wendland, W.L., (ed.): Mathematical Aspects 
of Boundary Element Methods, CRC Press, London, UK, (in print). 

[12] Morino, L. and Gennaretti, M., "Boundary Integral Equation Methods," in Atluri, S.N. 
(ed.), Computational Nonlinear Mechanics in Aerospace Engineering. Progress in Aero- 
nautics and Astronautics, 146, AIAA, Washington, DC, 1992. 

[13] Morino, L., Salvatore, F., Gennaretti, M., "A Velocity Decomposition for Viscous Flows: 
Lighthill Equivalent-Source Method Revisited," in: Morino, L., and Wendland, W.L., 
(eds.): Boundary Integral Methods for Nonlinear Problems, pp. 161-166. Kluwer Academic 
Publishers, Dordrecht, The Netherlands, 1997. 

[14] Nenadovitch, M., "Recherches sur les Cellules Biplanes Rigides d7Envergue Infinie," Pub- 
lications Scientifiques et Techniques du Ministere de L'Air, Institute Aerotechnique de 
Saint-Cry, Paris, 1936. 

[15] Prandtl, L., "Induced Drag of Multiplanes," NACA TN 182, 1924. 

116) Schlichting, H. and Truckenbrodt, E., "Aerodynamics of the Airplane, " McGraw-Hill, New 
York, 1979. 



[ l i ]  Squire, H.B. and Young, A.D., "The Calculation of the Profile Drag of Airfoils," ARC Rh.1 
No. 1838, 1938. 

[18j Suciu, E.O., and Morino, L., "Nonlinear Steady Incompressibile Lifting-Surface Analysis 
with Wake Roll-Up," AIAA Journal, Vol. 15, No. 1, pp. 54-58, 1976. 

[19] Thwaites, B., "Approximate Calculation of the Laminar Boundary Layer," Aeron. Quart. 
Vol. 1, pp. 245-280, 1949. 

[20] Trefftz, E., "Prandtlsche Tragflachen und Propeller Theorie," Zei tschrift fiir Angewand te 
Mathematik und Mechanik, 1, Berlin, 1921. 

[21] Wolkovitch, J., "The Joined Wing: An Overview," J. AircraJt, Vol. 23, pp. 161-178, 1986. 

Fig. 1. Prandtl factor of elliptic biplane (blc  = 10, Fig. 2. Prandtl factor of box-wing body (blc = 10, 
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rectangular biplane ( b l c  = 10, o = 5 O ,  unstaggered). box-wing body (b l c  = 10, o = 5 O ,  unstaggered). 



Fig. 5. Free-wake analysis of box-wing body (lift- 
ing): wake sections on planes normal to freestream. 

Fig. 7. Distribution of circulation on rectangular 
biplanes with winglets (blc = 10, cr = 5 O ,  unstag- 

gered) . 

Fig. 9. Effect of spanwise distribution of circulation 

on the Prandtl factor of box-wing bodies. 

Fig. 6. Effect of winglets on Prandtl factor: rect- 
angular biplane (blc = 10, a = 5O, unstaggered). 

Fig. 8. Effect of spanwise distribution of circulation 

on the Prandtl factor of biplanes. 

Fig. 10. Polar of isolated wing (aspect ratio 5, 

section: NACA 2412) a t - ~ e  = 2.7. lo6.  
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Fig. 11. Polar of rectangular biplane (aspect ratio Fig. 12. Polar of box-wing body (aspect ratio 5, 
5, G / c  = 1, stagger = c, section: NACA 0012) at G / c  = 1, stagger = c, section: NACA 0012) at 
Re = 5.1 . 10'. Re = 5.1 . 10'. 

Fig. 13. Isometric view of Prandtl-plane. Fig. 14. Front view of Prandtl-plane. 

Fig. 15. Polar of Prandtl-plane of Fig. 13 at Re = Fig. 16. Free-wake analysis of Prandtl-plane of Fig. 

2.7. lo6. 13: wake sections on plapes normal to freestream. 



S~MULAT~ON OF NONLINEAR AIRFOIL/CONTROL-SURFACE FLUTTER AT SUBSONIC 
SPEEDS USING CLASSICAL UNSTEADY AERODYNAMICS AND A N  EULER METHOD 

Silvio Schulze 4 < . ,  - c ~ $  

German Aerospace Center (DLR), Institute of Aeroeiasticity 
Bunsenstr. 10,37073 Gottingen, Germany 

email address: Silvio.Schulze@dlr.de 

Abstract - A flutter simulation method for aeroelastic systems with discrete structural nonlin- 
earities is presented and applied. The computational approach is based on the coupling of the 
discretized fluid and structural equations which are solved in the time domain. Embedded in 
an effective procedure to compute complete flutter boundaries (bifurcation diagrams), the 
method is employed to investigate the flutter stability of an airfoiVcontro1-surface system for 
hardening and softening stiffness characteristics in the control mechanism. The aerodynamic 
forces are predicted under the assumption of subsonic inviscid flow by the classical linear air- 
foil theory as a basis of comparison and by an Euler method. The typical flutter behavior of the 
system is described and explained by comparing it with the flutter properties of a predefined 
linear reference model. The results presented here demonstrate the practicability of the meth- 
od and provide a deeper insight into the nonlinear airfoiYcontrol-surface flutter mechanisms. 

1 INTRODUCTION 
The limited applicability of classical analysis meth- 
ods to predict the flutter stability of nonlinear ae- 
roelastic systems hinders the development process 
of modem airplanes. The nonlinearities are structur- 
al or aerodynamic in nature and can significantly al- 
ter the stability properties of a system. In structural 
dynamics several methods are available to solve the 
respective nonlinear equations which are usually set 
up by means of the Finite Element Method (FEM) 
in a Lagrangian system. Fluid equations are prefera- 
bly derived in an Eulerian system and finite differ- 
ence methods have proven to be a powerful tool for 
their solution within the research field of Computa- 
tional Fluid Dynamics (CFD). In order to take full 
advantage of developments in these single disci- 
plines, the coupling of fluid and structural models is 
desirable to solve nonlinear aeroelastic problems, 
typically referred to as Computational Aeroelastici- 
ty  [lo, 121. 

Advances in this field have been mostly in the appli- 
cation of CFD methods to predict aeroelastic phe- 
nomena related to nonlinear fluid flow, while the 
motion of the structure was assumed to be describ- 
able by linear mathematical models, primarily 

based on the generalized modal approach. Howev- 
er, beginning with the pioneer efforts of Breitbach 
[5] and Woolston et al. [28], investigations into the 
effects of structural nonlinearities on the aeroelastic 
stability behavior of control surfaces, wings, and 
aircraft also have a long tradition. The applied com- 
putational approaches range from analog time simu- 
lation [5, 281 and digital time simulation [4, 9, 14, 
16, 17, 18, 19, 23, 29, 301 to semi-analytical fre- 
quency domain, eigen analysis, and perturbation 
methods, i.e., approximation techniques based on a 
linearization approach [6, 15, 17, 20, 23, 25, 291. 
Experimental investigations were also undertaken 
to confirm the numerical methods [ Q ,  14,28,29]. 

With regard to the digital time simulation approach 
of this paper, it can be summarized that, with few ex- 
ceptions, only a single discrete nonlinearity in a sim- 
ple structural system was considered. Especially the 
typical airfoil section capable of plunging and pitch- 
ing motions was extensively studied using general- 
ized Theodorsen two-dimensional unsteady 
incompressible aerodynamics [26]. In order to ob- 
tain a continuous representation of the aerodynamic 
forces needed for transient analysis from discrete 
values of reduced ti-equgncy, Wagner's function and 



approximate transfer functions were employed. The 
latter approach required the introduction of addi- 
tional variables. Moreover, the flutter equations 
were frequently written in state-space form, where- 
by the number of equations was further increased. 
For the sake of simplicity, some investigators based 
their analysis on the quasi-steady representation of 
the aerodynamic forces which can produce unrealis- 
tic results [23], while others preferred a piecewise 
linear structural model, which did not always sim- 
plify the problem. Considering the advanced capa- 
bilities of modem computer hardware, today there 
is no obvious necessity for either approximation. 

In this paper, a straightforward time-marching algo- 
rithm is presented which, based on the coupling of 
the governing equations for the fluid and the struc- 
ture, enables the numerical simulation of the flutter 
behavior of nonlinear aeroelastic systems. The pro- 
posed method does not rely on a state-space model- 
ling, but directly tackles the governing equations. 
The procedure is similar to that commonly in use in 
Computational Aeroelasticity [l 1,21,22] and accu- 
rately solves the coupled field problem by properly 
linking the fluid and the structural time-marching al- 
gorithms using a simple predictor-corrector meth- 
od. It also has the advantage of being set up in 
single-step form, and therefore does not require a 
cumbersome starting procedure and is easily extend- 
able to varying time step sizes. 

Next, the flutter behavior of a nonlinear airfoil/con- 
trol-surface system is investigated in detail using 
the proposed time-marching algorithm which is in- 
corporated in the two-dimensional aeroelastic simu- 
lation code SNAP2d (Simulation of Nonlinear 
Aeroelastic Phenomena) 1241. The unsteady aerody- 
namic forces are predicted for inviscid flow by the 
classical linear airfoil theory of Theodorsen and an 
Euler method employing a uniform approach. In 
spite of the application of the Euler method, howev- 
er, the flutter investigations are confined to subsonic 
flow with the use of the classical linear airfoil theo- 
ry as a basis of comparison. Emphasis is placed on 
the study of the effects of discrete structural nonlin- 
earities in the control surface attachment on the flut- 
ter stability of a predefined linear reference model. 

Results of aeroelastic computations are presented 
and discussed for hardening and softening springs 
using both aerodynamic models. 

2 AEROELASTIC MODEL 
2.1 Structural Model 
The two-dimensional representative wing section 
with control surface is used as structural model as 
shown in Fig. 1 together with the usual geometric 
parameters, cf. reference [26]. The coordinates h ,  
a, and f3 donate the plunging, pitching, and flap 
motion of the rigid system, while the spring con- 
stants kh and k ,  represent the bending and torsion- 
al stiffness of the wing. The control-surface 
stiffness is allowed to be an arbitrary continuous 
function of f3, consisting of a linear part with the 
stiffness coefficient k g  and a nonlinear part: 

linear nonlinear 
The entire system of mass m is exposed to a subson- 
ic air flow of density p- and velocity Uoo , where 
the subscript = denotes the undisturbed quantities 
infinitely far upstream from the airfoil. The result- 
ing generalized aerodynamic forces Fh , Ma, and 
M g  are obtained through integration of the pressure 
over the respective part of the airfoiI surface and 
can be determined by either of the methods de- 
scribed below. 

Introducing the radii of gyration of the airfoil and 
the control surface about- the elastic axis and the 
hinge axis, ra = c I / (b2m)  and rg = I / ( b  
respectively, and the uncoupled natural frequencies 
ah = jkh/m, ma = d v i ,  and ma = Jkg/la, 
where I, and lg are the moments of Inertia of t e 
entire airfoil and the flap about the elastic axis and 
the hinge axis, the equations of motion for small am- 
plitudes of oscillation can be expressed as: 

M u  ( t )  + Ku ( t )  + fNL (U ( t ) )  = f ( u ,  ri, u ;  r )  , (2) 



where M and K are the constant mass and stiffness 
matrices, u the vector of coordinates, fNL the vec- 
tor of nonlinear terms, and f the aerodynamic load 
vector as a function of the motion of the system. 

2.2 Aerodynamic Models 
2.2.1 Classical LinearAi$oil Theory 
The theory of determining the aerodynamic forces 
on a thin airfoil with a control surface osciIlating 
harmonically with small amplitudes in incompress- 
ible subsonic potential flow is documented in great 
detail and can be found in many classical texts on 
aeroelasticity. Here, the theory of Theodorsen [26] 
is employed and its generalization for arbitrary un- 
steady motions is achieved via Laplace transforma- 
tion using Wagner's function and the principle of 
superposition through Duhamel's integral. The aero- 
dynamic load vector in Eq. 2 can then be written as: 

where MA, DA , and KA are the constant aerodynam- 
ic mass, damping, and stiffness matrices, and fc de- 
notes the circulatory part of the aerodynamic forces 
using Wagner's function and Duhamel's integral. 

2.2.2 Euler Equations 
The two-dimensional conservation form of the un- 
steady Euler equations for boundary-fitted moving 
coordinates 5 = 5 (x ,  z ;  t ) ,  = 6 ( x ,  z ;  t), 3 = t are 

with the transformed vectors $ , F ,  and & as linear 
combinations of their Cartesian counterparts Q , F, 
and H ,  where Q is the vector of conservative vari- 
ables, and F and H are the two flux vectors corre- 
sponding to the .r and I direction, respectively. The 
system is completed with the equations of state for a 
thermally and calorically perfect gas. 

points in the E, direction and 31 in the < direction 
with 105 points coinciding with the airfoil surface. 
The influence of the gap between the wing and the 
flap on the fluid flow is assumed to be negligible, 
thus not included in the descretization. The neces- 
sary mesh deformations are computed by an elliptic 
mesh generation method described in [7]. 

As far as the boundary conditions are concerned, 
non-reflecting boundary conditions are applied on 
the outer boundary, while tangent flow is enforced 
along the airfoil surface. The pressure on the sur- 
face is determined from the normal momentum 
equation and yields the required generalized aerody- 
namic forces F h ,  Ma, and Mg through evaluation 
of the respective surface integrals. 

3 NUMERICAL METHOD 
For the description of the numerical method, the 
general coupled field problem can be considered: 

Mi ( t )  + Du ( t )  + fE ( u  ( t ) )  = p ( t )  (a) 

p ( t )  = f (u, u, ii; t) (b) 
(5) 

where Eq. (a) represents the structural equations of 
motion (2) with an added viscous damping term 
Du ( t )  and the elastic forces, 

while Eq. (b) symbolically stands for the computa- 
tion of the aerodynamic forces as functions of the 
motion of the structure u, li, u, and time t by either 
of the aerodynamic models outlined above. For ex- 
ample, p ( t )  is simply equal f (u, u, u ;  t )  in Eq. (3), 
while when using the CFD method, the entire sys- 
tem of Euler equations (4) has to be solved first be- 
fore the pressure on the surface of the airfoil/ 
control-surface system and, thus, the generalized 
forces can be computed. 

3.1 Structural Analysis Procedure 
For the time integration of the structural equations 
of motion (5(a)), Newmark's method [2] is used, 
which is a single-step algorithm of second-order 
convergence in At and can be set up in explicit or 
implicit form by variation of two specific parame- 

In this study a C-mesh is used for the spajial discreti- ters. Since a simple three-degree-of-freedom struc- 
zation of the flow field. The mesh consists of 149 tural system is considered in this study, the explicit 
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variant of Newmark's method is employed, which 
avoids the iterative minimization of error terms due 
to nonlinear elastic behavior in each time step [ 2 ] .  It 
also possesses better accuracy properties than most 
implicit variants. The required finite difference ex- 
pressions for the displacements and the velocities 
for the explicit algorithm using the notations 

are: 

These equations, together with the equilibrium 
equations (5(a)) at time ti + At : 

where 

allow the three unknowns u i  + I ,  ui + iii + 

to be 
determined. 

The critical time step required for stability is recip- 
rocally proportional to the highest eigenfrequency 

of the structural system. Note that this fre- 
quency is generally not constant as in linear sys- 
tems, but varies with changes in stiffness. It can be 
estimated using the tangent stiffness matrix 

in an incremental formulation of the equilibrium 
equations if an upper bound for om, is not known 
in advance [3]. 

3.2 Aerodynamic Analysis Procedures 
3.2.1 Classical Linear Airfoil Theory 
By use of Eq. (3) for the determination of the aero- 
dynamic forces, we can distinguish between the 
non-circulatory part and the circulatory part of the 
forces. The non-circulatory forces, also called the 
apparent mass forces, depend only on the instanta- 
neous values of u, u ,  ii, so that the constant aerody- 

namic matrices MA, D,,, and K, can be added to the 
structural equations of motion. To account for the 
non-circulatory forces fc ( t )  , Duhamel's integral 
must be solved for every time t i .  This is accom- 
plished by replacing it by its time-discrete counter- 
pan. The required time-discrete values of Wagner's 
function are approximated using the representation 
of Garrick: 

During the simulation, Duhamel's integral has to be 
evaluated concurrently with the structural equations 
of motion (5(a)), as described in section 3.3. 

3.2.2 Euler Algorithm 
The Euler code was written by the author of [8], 
where it is described in detail and applied to transon- 
ic cascade flow. The reliability of the code for flutter 
prediction of airfoils in transonic flow was demon- 
strated in Refs. [24,27]. 

As in structural dynamics, an explicit or an implicit 
approach can be followed to obtain time-discrete so- 
lutions & of the flow equations (4) which, for this 
purpose, are rearranged in the convenient form: 

?g = - R  (Q) 
at 

with R ( Q )  = a f i /a<  + af l /a< representing the spa- 
tial flux balance as function of Q . The code applies 
the flux vector splitting technique of Anderson et al. 
[I] using a cell-centered finite volume formulation 
with a MUSCL-type extrapolation for the spatial 
discretization, which is second-order accurate. The 
subsequent discretization in time is first-order accu- 
rate for the explicit and implicit scheme. More pre- 
cisely, a simple explicit scheme solving the forward 
difference equation 

and the approximately factored Beadwarming im- 
plicit scheme solving the backward difference 

are applied, both of which are non-iterative single- 
step algorithms. 



The condition for the numerical stability of the fluid 
solver depends on the spatial and temporal discreti- 
zation of Eq. (4) and can be expressed by means of a 
linear stability analysis through the CFL number. 

3.3 Coupled Analysis Procedure 
Irrespective of the chosen aerodynamic model, the 
general problem in solving the coupled equations 
(5) lies in the fact that the solution of the structural 
equations of motion (5(a)) at time t i , + ,  . i.e. Eq. 
(lo), requires the aerodynamic forces in Eq. (5(b)) 
at the same time, i.e. p i +  , which, without the 
knowledge of the actual state of motion of the struc- 
ture, characterized by u i  + u i  + ,, u i  + l ,  can not be 
computed, and vice versa. In this sense, an accor- 
dant algorithm needed to solve the coupled equa- 
tions (5) can therefore be classified as implicit. 

In the past, the above problem was frequently cir- 
cumvented by using pi  instead of pi + in Eq. (lo), 
which results in artificial phase errors. Avoiding 
such an approximation, the coupled equations have 
to be solved through the application of a pre-dictor- 
corrector method, typically used to treat implicit 
systems. There are several ways to set up such a pre- 
dictor-corrector algorithm. In the method presented 
here the structural state is predicted to compute the 
aerodynamic forces. For example, the structural 
variables at t i  + , can be calculated using a Taylor 
series for the displacements, i.e. Eq. (8), and the 
trapezoidal rule for the velocities and accelerations: 

2 
u i + ,  = zbi+ 1 - u i 1  - u i  7 (1 6 )  

- 2 .  
u i  + 

- -& ( u ,  + - u i )  - u i  . (1 7) 

It should be noted that these predictor equations 
have the same local truncation error as the New- 
mark method, and thus provide results within the 
full accuracy of the structural integration scheme. 
Accordingly, only a single correction step for the 
structural variables is needed, whereby the other- 
wise mandatory definition of an effective termina- 
tion criterion for the iteration process is superfluous. 

( A )  Inifializution: 

Obtain starting values from the actual state 
of the system, i.e., displacements u i ,  veloci- 
ties t i i ,  accelerations u i  , and aerodynamic 
loads pi  at time t i .  The system can already 
be in motion, e.g., when its aeroelastic behav- 
ior after a prescribed motion or the continua- 
tion of a foregoing computation is desired. 

(B) Each time step ti + = ti + At : 

1. Compute displacements u i  + , and nonlinear 
elastic forces f E l i  + via Eqs. (8) and (1 1), 

2. Predict velocities u i  + and accelerations 
t i .  1 +  I viaEqs.(16)and(17), 

3. Update solutions of Euler equations or Du- 
hamel's integral, respectively, and calculate 
aerodynamic load vector pi + 

4. Correct accelerations ii, + , via the equilibri- 
um equations (10) and velocities u i  + via 
Eq. (9). 

Subcycling of the fluid domain is allowed when the 
Euler method is employed as discussed in reference 
(241. Confirmed by experience, this coupled algo- 
rithm is numerically stable as long as stability of the 
single domain solvers is assured. However, due to 
accuracy requirements the actual time step size for 
each solver has to be chosen smaller than the critical 
time step necessary for stability. The mutual time 
step for the coupled field integration procedure is 
determined from the condition: 

At = min { A t s  (om,), AtF (CFL) 1 , (1 8) 

where AtF and AtS denote the admissible time steps 
for the fluid and the structural solver, which are re- 
stricted by the following relations: 

0.3 (explicit) 
0.L5 , C F L L  AtS I - 

15.0 (implicit) ' 

These conditions are also adequate if strong nonlin- 
earities are present. In addition, note that by the use 
of the classical linear airfoil theory the CFL num- 

Assuming the same time step At for the fluid and ber has no meaning, instead the apparent mass 
the structural domain, the coupled time integration terms mentioned above are included in the eigenval- 
procedure can be described as follows: ue analysis of the structural equations of motion. 



3.1 Analysis of Response Data and Finding of 4.1 Linear Systems 
~lutter ~ o u n d a i ~  

- 

The linear aeroelastic reference model is defined by 
To extract the frequency, damping, amplitude, and 
phase information from the simulation data, two ap- 
proaches were applied. First, the method of Bennett 
and Desmarais 131, in which the time series are fit- 
ted in a least square sense with complex exponential 
functions, and second, Ibrahim's time domain tech- 
nique in a modified version of Fullekrug [13]. 

The problem of finding the critical flutter solution, 
which - by definition - is an oscillation with steady 
amplitude, thus with zero damping, was iteratively 
solved by employing the Newton-Raphson method, 
which is quadratic in convergence. The iteration cy- 
cle: (1) prescribe (in- or decrease) flight speed, (2) 
compute aeroelastic time response, and (3) deter- 
mine vibration parameters, was continued until a 
predefined tolerance for the damping coefficients ljj 
was achieved. In this study, (&,I i Ih was re- 
quired to stop the iteration. 

This iterative cycle, of course, is only needed when 
amplitude-dependent solutions of the system are 
searched, e.g., a subcritical Hopf bifurcation. In this 
case, the iteration process can be applied to find the 
flutter solutions for an array of initial conditions. In 
case of a supercritical Hopf bifurcation, the above 
condition defines a convergence criteria for limit cy- 
cle oscillations. 

4 RESULTS OF AEROELASTIC COMPUTATIONS 
This section is divided into two main parts. The first 
deals with linear systems and the second with non- 
linear systems. The aim of the preliminary investi- 
gations for linear systems is to gain insight into the 
general aeroelastic stability behavior of a pre- 
defined linear reference model, and to contrast the 
solutions for both of the aerodynamic models de- 
scribed above. In this context, the U, g -method in 
combination with Theodorsen unsteady aerodynam- 
ics is used to provide an "exact" basis of compari- 
son for the time simulation results. 

the following non-dimensional parameters: 

xu = 0.1, xp = 0.005, w,/oh = 3.0, 

7 
ra = 0.25, ra = 0.0204, w g / o h  = 0.5 . 

With the scales 

the critical velocity of the system determined by the 
U, g - method using Theodorsen's unsteady aerody- 
namics is u:" = 100 m/s and the flutter frequency 
oku = 51.22 11s. Note that the system parameters 
were properly coordinated to obtain this easily 
memorized value of 100 m/s for the lowest velocity 
at which flutter occurs for the reference model. The 
solution belongs to the h, P - branch, i.e., plunge1 
control-surface flutter. This branch again has stable 
solutions at higher velocities. As the velocity in- 
creases, a second flutter case at uL2) = 247 mir 
(up) = 137.5 11s) occurs due to the coupling of the 
pitch and the control-surface degrees of freedom. 
This type of flutter is referred to as pitchlcontrol-sur- 
face flutter, in short: a, p - flutter. 

Since both flutter cases involve the control-surface 
motion, the flutter boundary for both branches, the 
h, p - branch and the a, P - branch, depends on the 
actual stiffness in the control-surface attachment. 
Thus, a first insight into the possible aeroelastic sta- 
bility behavior of the system with nonlinear stif! 
ness characteristic f (P) (Fig. 2) can be obtained bq 
investigating the effect of stiffness changes in the 
control-surface attachment on the flutter behavior 
of the linear system. The results of these investiga- 
tions are summarized in Fig. 3 where the flutter ve- 
locity U, is depicted as function of the frequency 
ratio o /uh ( W  varied). The frequency domain re- 

B B 
sults o the U, g -method using Theodorsen's classi- 
cal linear airfoil theory are compared to the 

In the second part. the effects of hardening and soft- solutions of the proposed time simulation method 
ening stiffness characteristics in the control mecha- for both unsteady aerodynamic models: Theodors- 
nism on the flutter stability of the reference model en's theory and the Euler method. All Euler calcula- 
are addressed. tions were performed for the NACA64A006 airfoil, 



the air density pm = 0.8 19 13 kg/m and the speed of 
sound am = 324.58 d s .  This corresponds to flight 
conditions at an altitude of 4000 rn in the standard 
atmosphere. 

As can be seen from Fig. 3, the agreement between 
the solutions obtained by the different computation- 
al approaches and aerodynamic models is extraordi- 
nary good for the h, P - branch and still satisfactory 
for the a, /3 - branch. Most importantly, this vali- 
dates the time simulation procedure forelinear sys- 
tems. 

4.2 Nonlinear Systems 
4.2.1 Nonlinear StifSness Characteristics 
Exemplary for the typical nonlinear dependence of 
the control-surface restoring moment from the de- 
flection p, the symmetric stiffness characteristic de- 
fined in Fig. 2 is considered. It is essentially a 
bilinear characteristic with the stiffness constants 
k and k P 2 ,  but the discontinuities at +pg are local- B 1 
ly smoothed out with cubic polynomials where the 
coefficients a, are determined for r 5 P, to obtain a 
continuous function f (P). Throughout t h ~ s  lnvesti- 
gation, k is fixed and corresponds to the stiffness B 1 
of the linear reference model represented by the fre- 
quency ratio og I /oh = 0.5. Only the stiffness coef- 
ficient k g , ,  also expressed by ogz/oh. is varied, 
yielding hardening and softening stiffness behavior 
for k , < k P l  and kg2  > k a l ,  respectively. The linear P -  
reference case is obtained for k g ,  = k g ,  i.e. 
o = oPl = 0.5 oh. In addition, Po = 0.05 and 

82  
r = 4 / 2  for all considered cases. 

1.2.2 Results for Hardening Stiffness 
Clzaracteristics 

A frequently encountered type of nonlinearity on 
aircraft is due to the freepiay in the linkage elements 
of the control system. This special case of a harden- 
ing stiffness characteristic is represented by the 
function f (p) defined in Fig. 2 if k g 2  = 0.0, which 
is synonymous with o,,/w, = 0.0 for small ampli- 

o / o  can therefore vary between 0.0 and 0.5. As S h 
can be seen in Fig. 3, the critical flutter boundary 
( h ,  p - branch) steadily drops for this range. More 
precisely, using Theodorsen aerodynamics, the flut- 
ter velocity is U P i  = 121.5 d s  for og2/oh = 0.0 
and uL'I = 100rnfr for oBl /oh = 0.5. The corre- 
sponding values obtained for Euler aerodynamics 
are U F 1  = 129.0 d s  and u;'] = 107.1 d r ,  respec- 
tively. Consequently, the flutter boundary of the 
nonlinear system is expected to vary between the 
critical velocities U P 1  and UL'I, depending on the 
actual oscillatory amplitude level. The spectrum of 
possible initial conditions to investigate this ampli- 
tude dependence of the flutter velocity is very rich. 
Yet, to limit the effort, only a variation of the initial 
displacement of the control surface po is consid- 
ered in this study. 

The critical flutter boundaries for the nonlinear sys- 
tem, as obtained by the described time simulation 
method using both aerodynamic models, are shown 
in Fig. 4. There, the flutter velocity U F  is depicted 
as a function of the ratio I pol/B with pa defining 
the freeplay region together witR r as specified in 
Fig. 2. As can be seen, the upper and the lower 
bound of the respective flutter boundary, UP' and 
u:l1, directly correlate with the results obtained for 
the linear system for o / o  = 0.0 and 

2 .  h 
w /oh = 0.5, respectively. T h ~ s  is because these B 1 
frequency ratios become operative for low and high 
amplitude levels. More specifically, the system actu- 
ally behaves linearly for oscillatory amplitudes 
I P I < ( Po - r ) with zero stiffness in the control 
mechancsm, thus yielding the same result as in the 
linear case. With increasing amplitude, the effective 
stiffness increases likewise and approaches that of 
the linear reference model k P l  as upper limit, which 
corresponds to cog /oh = 0.5 . Accordingly, for suf- 
ficiently high amplitude levels, the system again 
can be considered as quasi-linear with the aeroela- 
stic properties of the reference model. 

tudes I < ( FJ - r ) .  fib increasing amplitude lev- As can be seen from the course of the flutter veloci- 
el. the effective stiffness approaches that of the ty for each aerodynamic model in Fig. 4, beyond the 
linear reference model. k g ' ,  which corresponds to critical flutter speed of the reference model u;", 

l./o,, = 0.5. According to the equivalent linear- unstable behavior does only occur if a certain ampli- 
izatlon approach, real values of the frequency ratio tude level is exceeded. The required disturbance am- 



plitucle is smaller, the closer the flight speed 
approaches the upper bound UP'. above which the 
system is unstable for all initial disturbances. Refer- 
ring to the upper bound UL21. this subcritical unsta- 
ble periodic bifurcation, i.e., the branching of the 
unstable equilibrium points above UF1 to unstable 
limit cycles below U F 1  is known as subcritical 
Hopf bifurcation. This type of bifurcation is repre- 
sentative for the stability behavior of the considered 
system for hardening stiffness characteristics f (P), 
as becomes evident in Fig. 5. There, the results of 
further four examples using Theodorsen's unsteady 
aerodynamic theory are presented in addition to the 
case just considered. Please note that all solutions 
for small initial amplitude ratios /3 /4 with oscil- d O' latory amplitudes I fi I < ( Pb - r )  irectly correlate to 
the discrete solutions depicted in Fig. 3 for the re- 
spective ratios 0.0 1 op/wh 10.5 denoted by the 
symbol 'a'. For the linear reference case, of course, 
the flutter boundary is independent of the amplitude 
and, consequently, represented by a straight line 
(dashed line). 

4.2.3 Results for Sofiening Stzfiess Characteristics 
The aeroelastic stability properties of the examined 
system are richly varied for softening stiffness char- 
acteristics defined by kp2 > kP (Fig. 2). This can al- 
ready be inferred from the results obtained by linear 
analysis illustrated in Fig. 3. With regard to the sub- 
sequent nonlinear analysis for softening stiffness 
characteristics with og2 > oj l  = 0.5 oh, the first no- 
table point in the graph of i g  3 is that in the fre- 
quency range 0.5 < o / o  < 2.0, the h, 0 - branch 
abruptly ends at oP/kh =h y.0. This is due to the 
stiffening effect of the aerodynamic forces on the 
control-surface degree of freedom, which elirni- 
nates plunge/control-surface flutter for frequency 
ratios w /o > 1.0. Instead, the a, P - branch repre- P . h  
sents the cntical flutter boundary of the system from 
here on. The second point, which lets one expect a 
different and more versatile stability behavior of the 
system for softening stiffness characteristics, is that 
the slope of the flutter curve of the h, P - branch 
changes after passing a minimum at op/o,, = 0.94. 
With regard to this previous knowledge, the Hutter 
investigations for softening stiffness characteristics 

are grouped according to the value of o / w h  into 
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systems defined by: 

( I )  Systems with sojening stifiess characteristics 
defined by 0.5 < og2/w, 10.9 

To begin with, the nonlinear system given by 
og2/oh = 0.7 is considered. In this case, the fre- 
quency ratio og/wh can take real values of about 
0.5 up to 0.7 for large and small amplitudes P, re- 
spectively, depending on the actual amplitude level. 
As can be seen from Fig. 3, the critical flutter veloci- 
ty continues to decrease along the h, /3 - branch for 
0.5 < oS/oh 5 0.7 because plunge/control-surface 
flutter is promoted as oP approaches oh. In contrast 
to the cases with hardening stiffness characteristics 
addressed in the previous section where, for small 
amplitudes 1 ( /3, - r). the flutter velocity for 
real values w g / w h  < 0.5 IS higher than that of the lin- 
ear reference model (o  / o  = 0.5), the flutter ve- . 

B. h 
locity for wp/oh = 0.7 IS now smaller than that of 
the reference model. This fact is important to note 
since it is the very reason why the flutter boundary 
of the system considered here is now amplitude in- 
dependent. This is in sharp contrast to the aeroela- 
stic stability behavior of the system for hardening 
stiffness characteristics which was shown to be 
highly amplitude dependent. 

The flutter characteristics for the nonlinear system 
defined by oB2/oh = 0.7 as obtained for Theodors- 
en and Euler unsteady aerodynamics are shown in 
Fig. 6.  The lower and the upper bound of the critical 
flight speed. Uk21 and Ui'l, again are determined by 
the stiffness coefficients kg2 and X. which define 6' 
the nonlinear stiffness characteristic and directly 
correspond to the frequency ratios og2/oh = 0.7 
and og l / ~ h  = 0.5. This implies that flutter IS possi- 
ble beyond the critical flight speed of the linear ref- 
erence model for small amplitude oscillations. 
Referring to the lower bound u:". the run of the 
stability curve now agrees with a supercritical Hopf 
bifurcation. i.e., the branching of the stable equilib- 



rium points below u:" to stable limit c cles above 
u,!.']. Thus, the curves connecting Ujzr and (/!'I 
depict the limit cycle amplitude P of the control- 
surface oscillation (non-dimensionalized with f ig )  
as a function of flight speed Urn. This amplitude pre- 
cisely marks the boundary between the region of 
aerodynamically damped and aerodynamically ex- 
cited motions of the system. 

A precise explanation for this aeroelastic behavior 
can be given with the aid of the preliminary results 
obtained for the linear system. These results summa- 
rized in Fig. 3 reveal that, with respect to the linear 
reference case defined by o P / o h  = 0.5, any in- 
crease in the frequency ratio w g / w h  has a destabiliz- 
ing effect on the flutter boundary, or refemng to the 
flutter point for o ~ / o ~  = 0.7. any decrease of the 
ratio m B / w h  has a stabiliz~ng effect. Consequently, 
in the nonlinear case for a certain flight speed 
UF1 < 0- < u:'] leading to a limit cycle oscillation 
with a definite limit cycle amplitude P, all system 
motions with instantaneous control-surface ampli- 
tudes larger than this specific limit cycle amplitude 
are damped because these larger amplitude motions 
cause smaller effective values w  / a h  due to the i softening stiffness characteristic. ut, as mentioned 
above, the flutter velocity increases for smaller val- 
ues of a D / w h ,  thus larger amplitude motions are 
aerodynam~cally damped. Conversely, all system 
motions with instantaneous control-surface ampli- 
tudes smaller than this specific limit cycle ampli- 
tude are, of course, unstable and aerodynamically 
excited because they lead to larger values of w  / w  Br . h  
as a result of the softening stiffness charactenstic. 
Thus, all oscillations meet this limit cycle, which 
therefore is termed a stable limit cycle. The ob- 
served limit cycle amplitude becomes larger, the 
closer the flight speed approaches the upper bound 
u:'], above which the system is unstable for all ini- 
tial disturbances. 

The tendency of how the stability behavior of the 
system changes when the stiffness characteristic is 
varied can be seen in Fig. 7 where, next to the case 
just discussed, the flutter boundaries for three addi- 
tional cases defined by frequency ratios 
0.5 < w  ,/a,, 5 0.9 are depicted. P- 

Comment: 
The numerical results shown thus far for linear sys- 
tems as well as for nonlinear systems demonstrate 
that the aeroelastic stability behavior of the consid- 
ered systems as predicted by the proposed time sim- 
ulation method is practically independent of the 
chosen aerodynamic model. The application of the 
Euler method for the determination of the aerody- 
namic forces only leads to systematic differences in 
the solutions, yet the general results of the aeroela- 
stic stability analyses agree with each other in every 
essential detail. Therefore, all subsequently present- 
ed results are based on the linear airfoil theory of 
Theodorsen which requires less computational ef- 
fort than the Euler method. 

(2)  System with sojening stiffness characteristic 
defined by wB2/wh  = 1.0 

The nonlinear system defined by c0B2/wh = 1.0 
takes an exceptional position among the systems 
with softening stiffness characteristics. Its stability 
plot is shown in Fig. 8 using the same axis labelling 
as in Figs. 6 and 7. As can be seen, the stability 
curve below OF1 now consists of two branches, 
one of which represents unstable limit cycles and 
the other stable limit cycles. More precisely, the in- 
ner curve is related to unstable limit cycles while 
the outer curve represents stable limit cycles. Thus, 
the aeroelastic stability behavior of the system does 
not only depend on the flight speed but also on the . 

actual amplitude level of the motion. 

Again, the results for the linear system (Fig. 3) ob- 
tained for different values of o g / o h  provide valu- 
able information to explain this particular behavior. 
In these investigations for og/oh = 1.0, the flutter 
velocity UF = 49.06 m/s was determined along the 
h, p - branch. This result is identical with the criti- 
cal velocity u!'] of the nonlinear system for small 
amplitude motions, I 0 I c ( 6 - r ), where kp2 takes 
effect which corresponds to the frequency ratio 
w  / W  = 1.0. As the frequency ratio decreases, P ? .  h 
the h e a r  flutter boundary also declines, but rises af- 
ter passing the minimum at w g / w h  = 0.94 until it 
reaches the critical flight speed of the reference 
model at t o p / o ,  = 0.5. 



In  the nonlinear case, real values of w S / o h  become 
smaller as the control-surface amplitude P increas- 
es because of the softening stiffness characteristic. 
It  is therefore easy to understand that, starting from 
the flutter speed u;'' = 49.06 mJr for small ampli- 
tude levels, the flutter speed of the system decreases 
with increasing amplitude according to a subcritical 
Hopf bifurcation. This decrease in flutter speed is 
expected to continue to a minimum as observed in 
the preliminary studies for linear systems. Howev- 
er, as can be shown for the linear case using The- 
odorsen's unsteady airfoil theory, the influence of 
the aerodynamic forces near the minimum of the 
flutter curve at uB/oh = 0.94 is very weak. This im- 
plies that the system can be considered as quasi-con- 
servative for real values of o B / m h  of about 0.94, 
free from aerodynamic damping or excitation. As a 
result, any arbitrary initial disturbance of the system 
leads to periodic solutions using the time simulation 
approach, whereby the determination of the sought 
flutter solutions becomes very difficult and time 
consuming. Consequently, flight speeds 
Uoo < 25.0 m/s were not considered in this study. 

With a further increase in amplitude level, the ae- 
roelastic stability behavior of the system changes in 
that all motions with sufficiently large control-sur- 
face amplitudes are aerodynamically excited, and, 
for a certain flight speed, enter a specific stable limit 
cycle represented by the outer curve. With that, the 
stability behavior of the system changes to the one 
previously described in detail for softening stiffness 
characteristics with 0.5 < 0 /o  10.9,  cf. Fig. 7. 

$2 h 

As becomes evident from this particular example, 
the nonlinear flutter behavior of the system does not 
only depend on the considered type of nonlinearity, 
but also on the general aeroelastic stability proper- 
ties of the system. More precisely, the results pre- 
sented here clearly show the strong relation 
between the slope of the flutter boundary obtained 
for the corresponding linear system as function of 
wg/w, ,  (Fig. 3) and the flutter behavior of the non- 
linear system, which is characterized accordingly 
by unstable and stable limit cycle oscillations (Fig. 
S)  for the same type of nonlinear stiffness function 
f (PI .  

(3) Systems with sofirning sti&rrss churucteristics 
defined by 1.0 < oB2/oh 1 2.0 

Finally, systems with softening stiffness characteris- 
tics defined by 1.0 < o /oh 5 2.0 are considered. 

(32 
The computed stability curves are depicted in Figs. 
9 and 10. Fig. 9 shows the results for the case 
o /oh = 2.0 with the non-dimensionalized limit 82 
cycle amplitude of the control-surface oscillation 
I P I / P ,  as function of flight speed Urn. As can be 
seen in this plot, the system exhibits stable limit cy- 
cle oscillations both below and above the critical 
flight speed UF = 100.0 rnls of the linear reference 
model. Moreover, the respective stability curves 
represent different types of limit cycle flutter, i.e., 
plungelcontrol-surface flutter ( h ,  0 -  branch) and 
pitcMcontrol-surface flutter (a, P - branch). Which 
type of flutter occurs depends on the actual arnpli- 
tude level and the flight speed. While the amplitude 
level determines the effective value of the control- 
surface hinge stiffness, and with it the frequency ra- 
tio o p / a h ,  with increasing flight speed the aerody- 
namic forces gain more influence on the aeroelastic 
behavior of the system. Particularly the stiffening 
effect of the aerodynamic forces on the control-sur- 
face degree of freedom is the major reason that, for 
sufficiently high flight speeds, plungelcontrol-sur- 
face flutter no longer occurs even for large distur- 
bance amplitudes. In this sense, the dashed line in 
Fig. 9 divides the stability plane into two regions, 
one of which represents the domain of attraction of 
the plungelcontrol-surface flutter branch and the 
other, the domain of attraction of the pitch/control- 
surface flutter branch. The type of flutter changes at 
this demarcation line. 

Under the conditions which lead to h, P - flutter, the 
system then shows the same stability behavior like 
the previously discussed systems with softening 
stiffness characteristics. The most important of 
these prerequisites is, of course, that the frequency 
ratio takes real values og/oh r 1.0 as the prelimi- 
nary investigations have shown, cf. Fig. 3. For the 
nonlinear system with softening stiffness character- 
istic-considered here, however, frequency ratios of 
this magnitude become active only at sufficiently 
high amplitudes P. Consequently, the aeroelastic re- 



sponse of the system is dominated by pitch/control- should be noted that this mechanism, which causes 
surface oscillations for small initial amplitude mo- the system to settle in stable limit cycles along the 
tions with effective frequency ratios w g / w h  > 1.0. a, - branch. is precisely the same as was dis- 
These oscillations are stable and the system returns cussed above for the h, P -branch. 
to its equilibrium position as long as the critical val- 
ue of 127.7 m/s for the flight speed U- is not ex- 
ceeded. By achieving this critical velocity, which 
corresponds to the frequency ratio w g , / o h  = 2.0, 
cf. Fig. 3, the stability behavior of the system chang- 
es according to a supercritical Hopf bifurcation. Ac- 
cordingly, all motions within the domain of 
attraction of the a, 0 -branch meet a specific stable 
limit cycle of amplitude P depending on the actual 
flight speed UoO. As UoD increases, the limit cycle 
amplitude also rises until the system becomes unsta- 
ble for all disturbances beyond u:'] = 247.0 mir . 

A plausible explanation for this behavior is again 
provided by the results of the preliminary investiga- 
tions summarized in Fig. 3. There, the critical veloc- 
ity determined for the a, f! - branch continuously 
increases from 127.7 mls to 247.0 mls as the fre- 
quency ratio w B / o ,  decreases from 2.0 to 0.5. But 
these values for the frequency ratio directly corre- 
spond to the actual stiffness of the nonlinear system 
for small and large control-surface deflections, re- 
spectively. The lower and the upper bound of the 
a, p - branch in Fig. 9 therefore coincide with the 
solutions obtained for the linear system for the fre- 
quency ratios in question. Since the lowest effective 
control-surface hinge stiffness which can be 
reached within the limit for growing amplitudes is 
that of the linear reference model k g l ,  by which the 
operative frequency ratio w g / o h  approaches real 
values of 0.5, cf. Fig. 3, the system is unboundedly 
unstable beyond the critical flight speed 
Urn = 247.0 m/s. Below this upper bound within 
the domain of attraction of the a, p -branch, howev- 
er, an unstable motion with growing amplitude P de- 
creases the effective control-surface hinge stiffness 

The effect of a variation of the nonlinear stiffness 
function f (P) on the stability behavior of the sys- 
tem is shown i n  Fig. 10, where the stability charac- 
teristics for reduced stiffness coefficients k g ,  and 
thus reduced frequency ratios wB2/wh are plotted. 
Given the results of the preliminary investigations 
shown in Fig. 3, the bifurcation point of the 
a, f! -branch predictably moves to higher velocities 
as the stiffness coefficient k B ,  and, hence, the fre- 
quency ratio o B 2 / w h  decreases. In addition, the re- 
quired amplitude level at which the type of flutter 
switches from pitchlcontrol-surface flutter to 
plunge/control-surface flutter drops. This is because 
the stiffness coefficient kg* approaches kg!  where- 
by the stiffness characteristic becomes continuously 
smoother until stiffness characteristics are obtained 
for yet smaller constants k which were already 

P2. 
considered in the previous sections. 

5 SUMMARY 
A time simulation method for the accurate predic- 
tion of the flutter characteristics of aeroelastic sys- 
tems with concentrated structural nonlinearities has 
been developed and demonstrated. Its aIgorithrnic 
core consists of a simple prehctor-corrector scheme 
in which the respective finite difference operators, 
as applied to the fluid and the structural equations, 
are linked with each other in a time-accurate man- 
ner. The applied finite difference operators are all 
single-step formulas commonly in use in fluid and 
structural dynamics, thus this method is also appli- 
cable to varying time step sizes and does not need 
an additional starting procedure. This also facili- 
tates the uncomplicated and accurate continuation 
of a previously executed and aborted calculation. 

and, with that, the effective value of the frequency A typical airfoil section with discrete control-sur- 
ratio w  / a  due to the softening stiffness character- face nonlinearities was considered in order to dem- B h 
istic. But according to the results shown in Fig. 3 the onstrute the practicability of the method, where the 
critical fight speed is increased by this. Thus, the unsteady aerodynamic forces were predicted by the 
system stabilizes into a time-periodic equilibrium classical linear airfoil theory of Theodorsen and by 
solution. i.e., a stable limit cycle oscillation. It an Euler method assuming inviscid subsonic flow. 



Results for linear systems showed good agreement 
to solutions of classical linear frequency domain 
flutter calculations. These were provided for sys- 
tematically varied spring constants in the torsional 
degree of freedom of the control surface and proved 
to be very helpful in verifying the results obtained 
for nonlinear systems. With this knowledge, an ex- 
planation could be given for the typical bifurcation 
of the flutter boundary of the airfoil/control-surface 
system for hardening and softening control-surface 
stiffness characteristics with respect to a predefined 
linear reference model. In particular, it  was found 
that the branching of the flutter boundary according 
to a sub- or supercritical Hopf bifurcation does not 
only depend on the special type of nonlinearity but 
also on the general aeroelastic stability properties of 
the system. A strong relation between the slope of 
the flutter boundary obtained for the linear system 
as function of control-surface stiffness and the bifur- 
cation of the flutter boundary of the nonlinear sys- 
tem was shown. This was revealed by an example in 
which the flutter behavior of the airfoiUcontro1-sur- 
face system for a given nonlinear stiffness function 
was characterized by stable as well as unstable limit 
cycle oscillations according to the slope of the lin- 
ear flutter boundary. This implies that the flutter be- 
havior of such simple nonlinear systems can be 
qualitatively inferred from the knowledge of the ae- 
roelastic stability properties of the corresponding 
linear system. As was shown, the latter also gives an 
indication on the type of flutter to be expected, 
which can alter with changes in amplitude level and/ 
or flight speed in the nonlinear case. 

Although in this study the method was applied to in- 
vestigate nonlinear flutter at subsonic speeds, it was 
developed in view of its application to transonic 
flight conditions by the implementation of the Euler 
method, which can also be replaced by a Navier- 
Stokes code if necessary. According to the results 
obtained so far, it has been concluded that the meth- 
od is equally valid for transonic flow. It is also appli- 
cable to other types of nonlinearities than those 
considered here and to more than one nonlinear de- 
pree of freedom. It is, however, clear that the latter 
will complicate the interpretation of the results. 
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\ i--- c.g. of airfoil section I 

1 'w elastic axis 
I 

Fig. 1 Definition of parameters and coordinates for airfoil section with three degrees of freedom 

with wBj = JVf3 

for - m < j 3 <  

for - ( B , + r ) - < P <  

for - (4 - r )  < B < 

for ( B s - r ) < B S  

for ( 4 + r ) < P <  

Fig. 2 Nonlinear stiffness characteristic in control-surface degree of freedom 



U ,  g - method: 
- h, fi - branch 
- a, P - branch 

(Theodorsen) 

time simulation: 
Theodorsen 
Euler 

Fig. 3 Comparison of time domain solutions for flutter velocity UF as function of frequency ratio 
o B / u h  with frequency domain results using the 0, g -method 

Fig. 4 Fl-utter velocity UF as function of non-dimensionalized initial displacement I Pol /fig for 
hardening stiffness characteristic - case defined by wp,/oh =. 0.0 (freeplay) 



. . . b . . . l . . . I - . - I - - -  r . - . # . . . , - . . , . . . , . . .  

- Theodorsen 

t stable 1 

Hardening stiffness characteristic: 

P v  4 " t 

Fig. 5 Flutter velocity UF as function of non-dimensionalired initial displacement Ij301/PB for 
hardening stiffness characteristics - cases defined by 0.0 I oB2/mh < 0.5 

Softening stiffness characteristic: 

f;.4 
50 

Fig. 6 Non-dimensionalized limit cycle amplitude of control-surface oscillation I PI /Pg as function 
of flight speed U- for softening stiffness characteristic - case defined by o ,/oh = 0.7 P - 
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Abstract 

A static artificial neural network in the form of a multi-layer perceptron is investigated to deter- 
mine its ability to predict linear and nonlinear flutter response characteristics. The network is de- 
veloped and trained using linear flutter analysis and flight test results from a fighter test. Eleven 
external store carriage configurations are used as training data and three configurations are used as 
test cases. The network was successful in predicting the aeroelastic oscillation frequency and arn- 
plitude responses over a range of Mach numbers for two of the test cases. Predictions for the third 
test case were not as good. Several network sizes were investigated and it was found that small 
networks tended to over-generalize the training data and are not capable of accurate prediction be- 
yond the sample space. Conversely, networks that were too large, or trained to error levels that 
were extreme, tended to memorize the training data, and are also unable to produce adequate pre- 
dictions beyond the sample space. The results of this study indicate that relatively simple networks 
using small training sets can be used to predict both linear and nonlinear flutter response character- 
istics. 

Introduction rying external stores and its sensitivity to the 

Limit Cycle Oscillations (LCO) have been a 
persistent problem on several fighter aircraft and 
are generally encountered on external store con- 
figurations that are theoretically predicted to be 
flutter sensitive. These sensitivities are quite 
evident during flight and are often the subject of 
extensive examination during flutter flight tests 
of aircraft that exhibit this behavior. Ref. 1 pro- 
vides a detailed description of the LC0 phe- 
nomenon as well as a discussion of its evolution 
and its relationship to classical flutter. An ex- 
cellent overview of LC0 of fighter aircraft car- 

store carriage configuration and mass properties 
is given in Ref. 2. These articles describe LC0 
as a phenomenon characterized by sustained pe- 
riodic oscillations which neither increase nor de- 
crease in amplitude over time for a given flight 
condition. 

The particular variety of LC0 of interest here 
is the nonlinear flutter response of major aircraft 
components such as the wing. The large number 
of store carriage configurations possible due to 
external store downloading increases the likeli- 
hood of encountering LC0 in the flight envelope 
for a store carriage permutation. LC0 arises - 
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from the nonlinear interaction of the structural 
and aerodynamic forces acting on the affected 
aircraft component. Linear flutter analyses ade- 
quately identify the oscillation frequency and 
modal composition of the LC0 mechanism. 
However, because of the nonlinearities involved, 
the linear flutter analysis fails to predict the onset 
or severity of the LCO, which are of prime im- 
portance in the certification of external store con- 
figurations on fighter aircraft. Some success in 
theoretically predicting LC0 has been 
achieved39475 but these methods have not yet been 
shown practical for applications which require a 
large amount of analyses (such as weapon certi- 
fication efforts on fighter aircraft). 

The present work evaluates the feasibility of 
using an Artificial Neural Network (ANN) for 
predicting LC0 of a fighter aircraft with external 
stores. No attempt is made to explain the phys- 
ics of the LC0 phenomenon. The method pre- 
sented simply attempts to predict the occurrence 
of LC0 based on historical flight test results. 
The ultimate goal is to develop a practical non- 
linear LC0 prediction capability, which provides 
greater insight into expected test results, thus re- 
ducing the need for expensive flight-testing. 

Analysis Approach 

The concept of the Artificial Neural Network 
is an attempt to simulate one popular model of 
the memory structure of the human brain. The 
ANN is designed to reproduce the brain's be- 
havior in terms of learning and adaptation. The 
desirable characteristics of the ANN lie in its 
ability to identify and model highly non-linear 
systems. ANNs have been shown to exhibit a 
potential for highly effective interpolation within 
a problem space, and can be used as a tool for 
the prediction of non-linear states beyond the 
problem space bounds. It is the ability to predict 
system behavior that makes ANNs attractive for 
the prediction of LCO. 

A static neural network in the form of a Multi- 
Layer Perceptron (MLP) was chosen for this 
study because of its ease of design and evalua- 
tion, as well as its simplicity. A static iietwork is 

designed to simply feed forward input sets one at 
a time and provide a prediction. By its nature, 
there is no inherent knowledge of past inputs or 
outputs. The problem then is reduced to one of 
functional representation. It is from this per- 
spective that the ANN is employed for LC0 pre- 
diction. Since the prediction is not intended as a 
real-time system, training time and learning rate 
are not primary factors in the design and testing 
of the network. 

The ANN is trained using both flight test data 
and linear flutter analysis data. The flight test 
data from a wide variety of external store con- 
figurations is used and are presented in Table 1. 
These configurations exhibit characteristics 
which are representative of the broad spectrum 
of flutter and LC0 responses encountered by 
fighter aircraft with external stores. Ref. 6 cate- 
gorizes these characteristics and shows a corre- 
lation between the modes comprising the pre- 
dicted linear flutter mechanism and the flight re- 
sponse characteristics. Based on these results, 
the dynamic characteristics of the aircraft store . 

configuration are represented as inputs to the 
ANN by the quantized free vibration mode 
shapes and frequencies that comprise the linear 
flutter analysis predicted mechanism. This is 
done in an effort to ensure the applicability of the 
method to store configurations that have not 
been flight-tested. Finally, the aerodynamic 
characteristics are represented to the ANN by the 
linear analysis flutter speed and frequency and 
by a quantized representation of the wingtip store 
configuration. Known LC0 response level and 
response frequency are used for output training. 

After the ANN has been trained, it is tested 
using selected LC0 cases from Ref. 7. The 
ANN gives, as output, the LC0 response level 
and frequency as a function of Mach number and 
pressure altitude. The analysis results are dis- 
cussed and possiblefmprovements to the ap- 
proach methodology are presented. The correla- 
tion between the size of the training set and the 
convergence of the method is discussed. 



Table 1 External store confirmrations 
Station 1 Station 2 Station 2 Station 3 Station 3 Station 4 

Configuration launcher launcher missile launcher missile fuel tank 
1 A A 1 C 3 %-full 
2 A A none C 3 none 
3 A none none C 3 empty 
4 A A 1 C 1 %-full 
5 A A 1 C 1 empty 
6 A A 1 C none %-full 
7 A A none C 3 empty 
8" A none none C 3 none 
12 B A 1 C 3 %-full 
1 3a A A 2 C 3 empty 
15 A A 2 C 1 empty 
16 B A 1 C none %-full 
17" B A 2 C 1 empty 
18 B A 2 C 3 empty 

a Network test configuration 

LC0 Characteristics flexible modes are retained for the flutter solu- 

Ref. 7 describes three categories of response 
behavior seen on fighter aircraft. These catego- 
ries are described as flutter, typical LCO, and 
non-typical K O .  Classical flutter behavior is 
characterized by the sudden onset of high am- 
plitude wing oscillations. Typical LC0 is char- 
acterized by the gradual onset of sustained lim- 
ited amplitude wing oscillations where the os- 
cillation amplitude progressively increases with 
increasing Mach number and dynamic pressure. 
Non-typical LC0 is characterized by the gradual 
onset of sustained limited amplitude wing oscil- 
lations where the oscillation amplitude does not 
progressively increase with increasing Mach 
number and oscillations may be present only in a 
limited portion of the flight envelope. 

The linear flutter analyses results for each 
configuration are presented in Table 2. It should 
be noted that these analyses are not matched 
analyses but merely worst case "screening" 
analyses. In this manner, all analyses are per- 
formed using sea-level density and 0.95 Mach 
Doublet-Lattice method8 aerodynamic influence 
coefficients. The free vibration analyses are per- 
formed for a half-airplane model using a matrix 
iteration method and the first 16 anti-symmetric 

tion. The flutter equations are solved using the 
Laguerre iteration method, which is a variation 
of the classical k-method of flutter determinant 
solution. Details on the structural and aerody- 
namic models used for these analyses are pro- 
vided in Ref. 7. 

For these flutter analysis results, a critical 
point is considered to be the velocity at which a 
modal stability curve crosses from stable (nega- 
tive damping required to produce neutral stabil- 
ity) to unstable (positive) damping. The analyti- 
cal flutter speed is the critical point associated 
with the known aeroelastically sensitive mode 
for the particular configuration. For comparison 
purposes, the analytical flutter speed is consid- 
ered to be directly comparable to the lowest air- 
speed at which self-sustained oscillations are en- 
countered in flight. These oscillations could be 
either K O  or flutter. The slope of the modal 
damping curve indicates the velocity sensitivity 
of a mode. The velocities at the 0% and 1% 
damping levels determine this slope. Steep 
slopes indicate rapid decreases in stabilizing 
damping with increased velocity. 

The flight test results are presented-in Table 3 
where it is seen that each configuration exhibits 



Table 2 Linear flutter analysis, 0.95 Mach, sea-level aerodynamics 
Flutter speed, 

KCAS Flutter Flutter Natural Coupled Natural 
Configuration Damping frequency, mode frequency, mode frequency, 

lWBd 
1WB 
FWB 
1WB 
FWB 
IWB 
IWB 
FWB 
FWB 
AWB 
FWB 
1WT 

1 W'P 9.76 
1WT 9.89 
AWB 6.45 
1WT 6.93 
AWB 6.49 
1WT 9.69 
1WT 9.96 
AWE? 6.40 
AWB 7.89 
FWB 8.25 
AWB 6.55 
1WB 8.28 

18 291 538 8.19 FWB 8.23 AWB 7.98 
a Network test configuration 

Forward wing bending 
Aft wing bending 
First wing bending 
First wing torsion 

one of the three previously discussed categories ther exceeded a pre-determined termination crite- 
of response behavior. From the flutter analysis ria, or the response amplitude increased at such a 
results (Table 2) it is seen that for each of the rate as to rapidly approach the predetermined 
three response categories a particular set of termination criteria. Details on the flight test 
modes are present in the linear flutter mecha- procedures can be found in Ref. 7. 
nism. ~ e f . - 6  showed a distinct correlation be- 
tween flutter and LC0 behavior and the free vi- Preliminary Network Design 
bration wing modes composing the linear analy- 
sis flutter mechanism. Essentially, it was shown 
that different linear analysis flutter mechanisms 
correlated to different aeroelastic responses in 
flight. To this end, the mode shapes and the fre- 
quencies of the critical modes are used as pri- 
mary inputs to the ANN. The flight test results 
presented in Table 3 are for level flight at 5,000- 
ft. pressure altitude. The tests were generally 
conducted in 0.05 Mach increments beginning at 
the lower Mach number. Smaller increments 
were used when large response amplitudes were 
encountered or expected. A test point maneuver 
was terminated when the response amplitude ei- 

For the present work, an ANN is designed in the 
form of a multi-layer perceptron as shown in Fig. 
1. This consists of an input layer, two hidden 
layers, and an output layer. The multiple node 
layers are represented in the figure as a single 
summing node fed into a nonlinearity. It is un- 
derstood that each layer consists of multiples of 
such nodes. The inpnts are directed to summing 
nodes through the input weights, whose sum is 
fed into nonlinearities in the form of hyperbolic 
tangents (tanh). The outputs of the tanh nodes 
are then weighted again, summed and fed into 
another tanh layer. The process is repeated 
again, this time through saturated linear (satlin) 



Table 3 Flight test res~onse~ characteristics 
- - - - - - - 

~ a c h  number Frequency, 
Confimration 0.80 0.85 0.90 0.91 0.92 0.93 0.94 0.95 0.98 Hz Categorv 

1 0.0 0.5 1.5 - - - - 2.5 6.60 typical LC0 
2 0.0 0.0 0.0 - - 2.5 4.0 9.40 flutter 
3 0.0 0.0 0.0 - - - 4.5 9.40 flutter 
4 0.0 1.0 2.0 3.0 6.80 typical LC0 
5 0.0 0.0 1.5 - - - - 0.0 7.00 non-typical LC0 
6 0.0 0.0 0.5 - - - - 1.0 1.5 6.90 typical LC0 
7 0.0 0.0 0.0 - - - - 0.5 9.20 flutter 
8b 0.0 0.0 1.0 - 2.0 9.50 flutter 
12 0.0 1.0 2.0 - - - - 2.5 6.80 typical LC0 
1 3 ~  0.0 1.0 3.0 4.0 7.80 typical LC0 
15 0.0 0.5 1.0 - - 2.0 - 0.0 8.10 non-typical LC0 
16 0.0 0.0 0.0 - - - 0.5 7.00 typical LC0 
1 7b 0.0 0.0 0.5 0.0 8.20 non-typical LC0 
18 0.0 1.0 2.5 3.0 8.10 typical LC0 
a Amplitude in units of gravitational acceleration, g 

Network test configuration 
- No response data explicitly measured 
Blanks indicate no test data acquired 

Fig. 1 Network diagram. 
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Fig. 2 Network nonlinear functions. 

output nodes. Both the tanh and satlin functions 
have the property of limiting outputs to the range 
E[-1, 11. These functions are shown in Fig. 2. 

The size of the weight matrices and the num- 
ber of nodes necessary to successfully represent 
the underlying non-linear function are not easily 
determined. The network must be large enough 

- 
- - - 

to fully absorb all training data and allow rea- 
sonable interpolation and extrapolation, yet be 
small enough to be manageable. On the other 
hand, networks that are too large or trained to 
very high levels tend to memorize the training 
data are of little use for generalizing a function. 
Lacking firm design rules, many network sizes 
were considered. 

Supervised learnins, i-e., presenting the de- 
sired output to the network in order to generate 
an error signal, which is then fed back through 
the network by back propagation, is used to train 
the network. The networks were batch trained 
using the ~ e v e n b e r ~ - ~ a r ~ u a r d t ~  algorithm, 
which uses the Jacobian matrix, containing the 
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first derivatives of the network errors with re- 
spect to the weights and biases. The weights are 
updated using the equation 

where W are the weights, J is the Jacobian ma- 
trix, e is the error vector, and p is a weighting 
factor (less than 1) that is decreased proportion- 
ally to e as the solution approaches a minimum. 
Training continues until the error vector falls 
below a preset value. 

All networks considered used the data shown 
in Tables 1-3. Thirteen inputs were given for 
each output frequency and amplitude Mach 
combination. Inputs are quantized representa- 
tions of the aircraft configuration, flight Mach 
number, and linear flutter analysis results for the 
configuration. All input data was normalized to 
span the range E[-l,l], consequently the outputs 
fall within that range as well and have to be 
scaled back to workable values. Over all, there 
are 14 flight testninear model combinations 
available for training and testing the network. 
Three of these combinations were held aside for 
testing and evaluating the effectiveness of each 
network. These were flight test configurations 8, 
13, and 17 (Table 1) and represented a flutter 
case, a typical LC0 case, and a non-typical LC0 
case. 

The network is trained using the squared-error 
fed back as described earlier. Initially the mini- 
mum value used to indicate a successfully 
trained network was set at e = lo6. A large net- 
work (30 nodes in the first hidden layer, 12 
nodes in the second; i.e. 30x12) was initially 
trained. This network fit the training data very 
well but did not predict the test data set, indicat- 
ing that the network was too large and over- 
trained. In effect, it had memorized the training 
data Upon further consideration, the decision 
was made to set the minimum error-squared 
value at This more closely reflects the data 
characteristics, in that both the desired oscillation 
frequency and amplitude are accurate to one sig- 
nificant digit. Consequently, the squared-error is 

on the order of Subsequent trial networks 
were trained to this value. 

Several network sizes were investigated, the 
smallest having a single layer of five nodes. The 
largest was a 50 by 50 double hidden layer MLP. 
The small networks tended to over-generalize the 
data, while the large networks memorized the 
data and did not give reasonable extrapolation 
outside the solution space. Each network was 
trained several times in order to increase the 
probability of truly finding the global minimum 
in the error space. 

Different output node-types were evaluated as 
well. Three were considered: the tanh function; 
the saturated linear node; and a linear node (out- 
put range e[ -oo ,oo  ]). The tanh function per- 
formed similarly to the satlin. Since the output 
data in this study is assumed linear, the design 
tended toward the satlin function. This function 
gives true linear characteristics, while bounding 
the solution to the defined solution space. 

Final Network Design 

The final design scheme selected for the static 
MLP contains 12 tanh nodes in the first hidden 
layer and five in the second, with two satlin 
nodes as outputs (12x5). This configuration 
gave good generalization over the solution space, 
while learning the training data well. The out- 
puts are the combined oscillation frequency in 
Hertz, and oscillation amplitude measured in 
units of gravitational acceleration (g). All input 
data is normalized to E[-1, 11. The output is also 
contained in &[-l,l] due to the saturated linear 
output nodes. All output data is then processed 
back to usable values. 

Results 

Network inputs for the test cases consisted of 
the Mach number of the desired flight condition, 
the store carriage configuration, and the linear 
flutter analysis results (flutter speed, frequency, 
modal composition of the flutter mechanism, and 
the free vibration frequencies of the mechanism 
modes). The output fmm the network was in the 



form of an oscillation response amplitude and 
frequency. Several Mach numbers were exam- 
ined for each set of input conditions and re- 
sponses were noted. The classification of the 
predicted response is described as follows. The 
network indicated a flutter condition if the output 
oscillation amplitude increased dramatically as 
Mach number increased. The network indicated 
a typical LC0 condition if the amplitude in- 
creased progressively with no sudden high-level 
responses. The network indicated a non-typical 
LC0 condition if the amplitude rose to a level, 
then began to decrease. 

Outputs from three of the evaluated networks 
are shown in Figs. 3-5. The small 6x3 network 
yielded inadequate results for all three test cases. 
For the flutter case (Fig. 3), the amplitude com- 
puted by this network remained zero for all input 
Mach numbers. The network shows good am- 
plitude correlation between 0.80 and 0.85 Mach 
for the typical LC0 case (Fig. 4) but fails to 
track the subsequent amplitude increase. As 
Mach number is increased the network diverges 
from the measured response by showing the am- 
plitude to decrease. Finally, the amplitudes 
computed for the non-typical LC0 case (Fig. 5) 
were extremely high for all Mach numbers ex- 
cept 0.80 and clearly represent an unsuccessful 
extrapolation by the network. The small network 
showed good correlation to the measured oscil- 
lation frequency for the flutter case only. 
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Fig. 4 Typical LC0  test case. 

Fig. 5 Non-Typical LC0 test case. 

Logically, it was thought that a larger network 
would perform better than a smaller one in part 
because of its inherent ability to store more data 
and cover a larger portion of the solution space. 
Unfortunately, the observed results were contrary 
to this. In all three test cases the 30x12 network 
tracked the oscillation frequency well, but failed 
to adequately track the response amplitudes. For 
the flutter case (Fig. .3) it is seen that the com- 
puted amplitude has the desired characteristics, 
i-e., amplitude increases dramatically with Mach 
number. However, this network tended to yield 
significantly higher response amplitudes than 
were measured in flipht. The ability of this net- 
work to track the shape and trend of the ampli- 



tude response is also seen for the typical LC0 This is, of course, one of the benefits of using 
case (Fig. 4). However, for this case the ampli- ANNs but in this case, the network was evi- 
tude is again consistently higher than the meas- dently pushed beyond its capability. 
ured response. The computed amplitude for the 
non-typical LC0 case (Fig. 5) is excessively Conclusions 
high for all Mach numbers. 

The 12x5 network showed the best overall 
agreement with the test data for both oscillation 
frequency and amplitude. For the flutter test 
case (Fig. 3), the computed frequency and oscil- 
lation amplitude show very good correlation to 
the measured data. The network amplitude pre- 
diction showed a dramatic increase at 0.92 Mach 
consistent with the flight-measured response. 

For the typical LC0 test case (Fig. 4), the 
network amplitude tracks the measured response 
very well except for the last point at 0.91 Mach. 
There, the network output shows a trend of lev- 
eling off while the measured response amplitude 
continues to increase. As was observed in the 
flutter case, it is seen that the frequency of os- 
cillation was predicted nearly exactly. The typi- 
cal LC0 data available for training was more di- 
verse. This allowed the network's solution space 
to be larger, but increased the potential for errors 
in the interpolation between points. 

The non-typical LC0 case was the most re- 
vealing of the three test cases because it exposed 
several limitations of the static MLP. As shown 
in Fig. 5, frequency was not tracked as well as 
for the previous cases, indicating that there was 
not enough information about frequency avail- 
able to the network for it to form a functional 
representation. The network amplitude tracked 
the flight response well up to 0.91 Mach. There, 
the network indicated a slight increase in ampli- 
tude while the flight data showed a decrease. 
This can be explained by the fact that in the non- 
typical LC0 training cases the amplitude is zero, 
or near zero, and grows only slightly. Further, 
the non-typical LC0 test case falls outside the 
sample space of the training data (This is almost 
a trivial observation. With only two training data 
sets a sample space of more than two dimensions 
cannot be defined). This forces the network to 
attempt to extrapolate beyond its 'experience'. 

As a feasibility study, it is concluded that the 
static ANN was very successful considering the 
small data set used for training and the limita- 
tions of the static network itself. It was shown 
that both the flutter and typical LC0 cases were 
reasonably predicted with this network. The 
limitation of the network is shown in the non- 
typical LC0 case. The limited size of the data 
used for training was such that virtually any pre- 
diction outside those two cases constituted an 
extrapolation into unknown regions of the solu- 
tion space. As such, the network had little 'expe- 
rience' to draw from in forming reasonable out- 
puts. 

Evaluating the various networks that were 
considered for this work shows the strengths and 
weaknesses of their architectures. It was seen 
that small networks over-generalize the training 
data and cannot be used for accurate prediction 
beyond the sample space. This was demon- 
strated in the 6x3 network. Conversely, net- 
works that are too large, or trained to error levels 
that are extreme, tended to memorize the training 
data, and therefore are also inadequate for pre- 
diction beyond the sample space as well. This 
was shown to be the case in the 30x12 network 
trained to e=104. The most reasonable results 
were seen for the moderately sized 12x5 network 
trained to e= 1 o - ~ .  

Giving consideration to the limited data set 
used for network training, especially in the non- 
typical LC0 case, the results presented offer 
positive evidence of the feasibility of using an 
ANN for predicting LC0 of flexible wings. It is 
shown that, based on the available training data, 
flutter behavior was adequately predicted, both 
in amplitude and in frequency. Typical LC0 was 
also predicted adequately, again by observing 
amplitude levels. The network had difficulty 
predicting the (decreasing) change in oscillation 
amplitude that would-indicate non-typical LCO. 



The training data available for non-typical LC0 
was limited to two flight-testninear modeling 
output data sets and the test set inputs were out- 
side the training data space. Since prediction of 
that case constitutes an extrapolation outside the 
solution space, it is reasonable to expect the er- 
rors seen in this study. It should be possible to 
remedy this limitation to the methodology by 
using the network modifications proposed in the 
following section. 

Elaborating on the strengths of ANNs vs. lin- 
ear flutter analysis it is seen that the linear analy- 
ses adequately identify store configurations that 
are flutter and LC0 sensitive. These analyses 
give a good indication of the instability fre- 
quency but do not accurately identify the insta- 
bility onset speed. In addition, these analyses 
provide no indication of the response amplitude. 
By comparison, ANNs gives good response fre- 
quency and amplitude trends but rely on the lin- 
ear analyses as well as flight test results to ac- 
complish this. 

Recommendations 

The intent of this study was to evaluate the 
feasibility of using an ANN for predicting LCO. 
In doing so, a conscious effort was taken to keep 
the process as simple as possible. During the 
course of evaluation, several limitations to the 
approach were discovered, as well as several 
possible improvements that should be evaluated. 
Major areas that could provide improved results 
are briefly discussed below. 

The first modification that could dramatically 
increase the likelihood of successfully predicting 
each of the three types of aeroelastic instabilities 
would be to increase the amount of data avail- 
able for training. This is especially true for the 
non-typical LC0 case. Since data from linear 
prediction can easily be obtained, and there ex- 
ists a substantial flight test database, this is pro- 
posed as the first step in improving the predictive 
power of the network. 

One characteristic of the satlin function is that 
it effectively limits the output of the network to 
values that are contained in the trdning data. 

This is because the inputs and outputs are nor- 
malized with the training data. It would be inter- 
esting to evaluate the increase in interpolation 
capability if the satlin nodes were modified such 
that the output E[- 1,001. This would prevent 
negative outputs, but would allow larger positive 
numbers than those used in training. 

Based on careful observation of the input 
data, it is concluded that there exist some redun- 
dancies. The linear modeling data used as net- 
work input is in fact a function of the aircraft 
configuration. Using configuration data as em- 
pirical input to the network may be confusing the 
functional representation capability of the net- 
work. Too much emphasis may have inadver- 
tently been given to configuration allowing it 
more influence on the outcome than it realisti- 
cally deserves. A statistical evaluation of the in- 
puts used may be in order. 

Logically, an improvement to the network that 
should be evaluated is stepping up from a static 
network to a dynamic network. A form of the 
Tapped Delay Neural Network (TDNN) would 
give the network the capability to predict based 
on a series of past inputs, rather than only on the 
current. An extension of this may be to use a 
feedback from the output to the input, giving the 
network the capability to use current predictions 
for future use. 
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ABSTRACT 
An improvement to enhance both convergence and accuracy of iterative finite element model updating 

methods is proposed. The sensitivity of each individual correction parameter with respect to the eigenvectors 
and eigenvalues is modified in order to reduce the influence of mathematical constraints on the optimization 
process. This allows for a broader and more physically based selection of correction parameters and accord- 
ingly leads to more significant validation results. The performance of the method is demonstrated on a labo- 
ratory test structure using a simulated modal matrix and real experimental data from a ground vibration test. 

1. INTRODUCTION 
Iterative updating usually is associated with a major drawback. The correction parameter sensitivities 

affect convergence and parameters with lower sensitivities may cause iteration instabilities or lead to uncer- 
tain results. For successful updating, it is therefore most important that the analytical eigenvalues and eigen- 
vectors are sensitive with respect to all chosen correction parameters. Therefore, the parameter selection is 
constrained by mathematical considerations, which sometimes do not allow for the correction of the physical 
parameters corresponding to the modelization errors embodied in the numerical model. To bypass this prob- 
lem, it  is proposed to balance the individual parameter sensitivities by appropriate weighting factors and 
hence to eliminate any undesired sensitivity influences that may affect the optimization. 

2. UPDATING METHOD 
The iterative updating approach (Link, 1993) applied here, eqs. ( l ) ,  exploits a factorial correction of sub- 

structures superimposed to the initial analytical model: 

[kl = [kal + x a i  [kil i = 1, ..., l , 

and 

LmI = lm.1 +CP,[m,l  j = I ,  ..., J . 

Symbols [k] and [m] represent the system matrices of the improved model, subscript (1  denotes initial analyt- 
ical quantities, and ai and pi are the unknown correction factors for the submatrices [ki] and [m,], corre- 
sponding to areas with modeling uncertainties or errors. 

The model corrections are controlled through the minimization of the differences between measured and 
analytical data. A weighted least squares approach leads to a linear system of equations for the unknown cor- 
rection factors ( pk} = {ai,p,}: 

The solution usually is attained in aniterative process. In order to control the itwtion. the weighting matri- 
ces [W] and [W,,] need to be chosen ~ippropriately. 



Updating based on modal data frequently requires a simultaneous correction of cigenfrequencies and 
mode shapes. This is achieved by using both the differences between measured natural frequencies and 
modes and analytical eigenfrequencies and eigenvectors to define a residual vector: 

'm, I - 'a, I 

Consistent eigenvector scaling and mode assignment are essential to a correct comparison of experimental 
and analytical data. 

The appropriate sensitivity or gradient matrix [Go] is assembled from the derivatives of the analytical 
modal data with respect to the correction parameters. For a correction with N natural frequencies and modes 
and K correction parameters (substructures) the gradient matrix reads 

''a, 1 - "a, - 1 . . . ''a, - 1 

'PI apz apK 

"a, N N - . . . 3%. N 

'p2 

The eigenvector derivatives for stiffness and mass corrections are 

a {pa, r )  
= z: - 1 

aal = ' ('0. s - 'a, r )  Ma. r 
. {90.s}T[k,l {(P(I,r} . 

for r # .F, 



and 

for r = s with analytical mode numbers r, s E N and Mu,, the generalized mass of analytical mode r. The 
eigenvalues are computed from 

and (6) 

Eqs. (5) and (6), establish linear relations between the eigenvector and eigenvalue sensitivities and the 
correction submatrices [ki] and [mi] These relations will be used in the following section to modify the 
parameter sensitivities. 

3. WEIGHTED PARAMETER SENSITIVITIES 

The iterative computation of updating parameters pk in eq. (2) does not always converge to a stable solu- 
tion and the exact correction factors. Conditioning of the optimization problem is only one aspect here. Prob- 
lems also arise, when the sensitivities within the given set of updating parameters are widely scattered. This 
imposes an undesired side constraint on the selection of substructures, which, on the other hand, should be 
based entirely on physical considerations. In order to remove this mathematical restriction, the parameter 
sensitivities may be individually scaled by appropriate weighting factors to yield equally distributed values 
for the complete set of substructures. The weighting factors are computed from the inverse of the norm of 
each column vector (= correction parameter) k of [Go] 

Likewise, the gradient submatrices containing only the eigenvector sensitivities or the eigenvalue sensitivi- 
ties may be used to calculate the wk. The weighting factors are used to directly alter the stiffness and mass 
matrix elements of the updating substructures defined in eq. (1 ): 

and 
... . 

[m,] = w , .  [m,] . 

A weighting factor wk > I leads to an increase of the stiffness/mass elements in the corresponding submatrix, 
for wk < I ,  the values of the submatrix elements are scaled down. Since the initial correction factors oci and Pi 
in eq. ( 1) are equal to zero, the modal parameters of the initial model remain unchanged by these modifica- 
tions. The new eigenvector and eigenvalue sensitivity components a {cpfl, ,,} /apk and ahl,. , l /apk. eqs. (5) 
and (6). are now computed using the modified submatrices from eq. (8). 

Since the eigenvector and eigenvalue gradients depend on the analytical modal parameters and therefore 
may slightly change as the correction-proceeds, the weighting factors need to be recon~puted in every itera- 
tion step. 



4. TEST STRUCTURE 

A three-dimensional laboratory test structure, fig. I ,  representing a typical aircraft design with Fuselage, 
wings and tail is used for the investigations. The total mass is 44 kg and the dimensions are 1.5 m (length) by 
2.0 m (wing span). Realistic damping levels are obtained through the use of a viscoelastic tape, which is 
bonded to the upper wing surface and covered by a thin aluminium constraining layer. 

t accelerometers 

elastic suspension 

Figure 1 : The GARTEUR SM-AG 19 laboratory test structure 

For ground vibration testing the structure was equipped with 24 acceleration pickups and a low frequency 
bungee cord suspension ensured correct free-free boundary conditions. The experimental data base available 
for updating consists of 14 normal modes covering a frequency range from 6.38 to 15 1.32 Hz (Degener & 
Hermes, 1996). 

The finite element model, fig. 2, will be used for the initial simulation study in order to test the weighted 
sensitivities approach, and for a succeeding model validation using real test data. Special care was taken to 
accurately modelize the stiffening effects caused by the joints between fuselage & wing and tail & tailplane 
respectively. For the damping layer stiffness and mass distribution initial estimations are used. Due to the 
high deflection amplitudes and low mass in some structural regions, a detailed mass matrix taking into 
account all connecting bolts and the accelerometer masses has been set up. In order to correctly reflect the 
test boundary conditions, the measured rigid body modes are used to tune the model's elastic suspension. The 
actual accelerometer positions, e.g. at the wing leading and trailing edges, are realized through supplemen- 
tary offset nodes. 

- 
Figure 2: 636 degree-of-freedom finite element model 



5. SIMULATION STUDY 

This section describes the simulation study carried out to assess the performance of the weighted sensitiv- 
ities approach. The application to experimental modal data is described in Section 6. 

In the simulation study, a numerical model with known modelization errors is updated using analytical 
modal data. Eigenvectors and eigenvalues from the initial finite element model (without the modelization 
errors) are used as 'experimental' reference for the corrections. The inaccurate numerical model is obtained 
by means of introducing artificial modelization errors into the system matrices of the initial model. Then, the 
regions corresponding to the modelization errors are defined as updating substructures in eq. ( 1 ). With these 
initial conditions given, the updating procedure should, after some iterations, exactly counterbalance the 
modelization errors. This is usually the case for a well-conditioned updating problem with a sufficient 
amount of input data, but for largely scattered parameter sensitivities, deviations from the exact solution are 
observed. The parameter set defined for the simulation study precisely represents this situation. 

After computing the 'experimental' mode shapes and natural frequencies from the initial model, three 
modelization errors are introduced into the finite element model. The wing horizontal and lateral bending 
stiffnesses and the drum bending stiffness are reduced by 111.05, i.e., the exact correction factors are 0.05 or 
+5.0 9%. Table 1 lists the corresponding correction parameters and their eigenvector and eigenvalue sensitivi- 
ties for modes no. 1 to 14. Note that the parameter sensitivities are normalized to unity and that the absolute 
values of the eigenvector gradients are much smaller than for the eigenvalue gradients. 

Table 1 : Correction parameters and normalized parameter sensitivities 

In this set of updating parameters, the eigenvalue sensitivity for the drum lateral bending stiffness is two 
orders of magnitude lower than for the wing inplane bending stiffnesses; in other words, the drum stiffness 
only has a minor influence on the model's overall dynamic characteristics in the frequency range considered. 
Nevertheless, a consistent and physically exact correction of this parameter may be crucial, when a predic- 
tion of modal or frequency response data beyond the frequency range used for updating is required. 

The quality of the updated finite element model is assessed through the correlation between (simulated) 
measured mode shapes {Om},  and analytical eigenvectors {@, 1, 

i 

Eigenvalue 
Sensitivity 

1.00 
0.30 
0.0 1 

(Allemang & Brown, 1982), and the frequency deviations between measured natural frequencies j;,, and ana- 
lytical eigenfrequencies fa: 

Eigenvector 
Sensitivity 

0.30 
0.60 
1.00 

Fig. -7 comprises the results for the model corrections using unweighted (left) and weighted (right) parameter 
sensitivities. Here. the weighting is based on eigenvalue sensitivities alone. 

For regular updating without weighted sensitivities, the eigenfrequencies and mode shapes correctly 
match the 'rxperinlental' reference data after 4 to 5 iteration steps. The residual is sufficiently minimized. the 
correction factor for parameter no. 3 however. has not converged to the exact vdue. This is due to the fact, 
that the drum stiffness only causes marginal changes to the overall dynamics in the frequency range consid- 

Correction 
Parameter 

Imax 

Imin 

Imin 

Parameter 
no. 

1 
2 
3 

Location 

Wing 
Wing 
Drums 



- Parameter no. 1 

- - - -  Parameter no. 2 

- - -  Parameter no. 3 

exact value 
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iteration step 
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Fisure 3a): Correction factors for simulated modal data (unweightedlweighted parameter sensitivities) 
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Figure 3b): Frequency deviations 
+ - 

t .  

unweighted sensitivities weighted sensitivities 

9 7 0  2 3 4 5 6 j 8 9 1 0  g 7 0 , 2 3 i i 6 + i 6 1 0  
iteration step iteration step 

Figure 312): MAC values 



ered. Accordingly, the error of parameter no. 3 does not significantly disturb the frequency deviations and 
mode correlations. which are used to control the optimization process. Consequently. a further improvement 
of the model is not achieved. 

Updating using weighted sensitivities leads to exact results for all correction factors. Convergence with 
respect to the eigenfrequencies is not significantly affected in this case, but the residual deviations in the last 
iteration step are one order of magnitude smaller. Faster convergence is observed for the mode shape correla- 
tion, the improvements observed in this test example however, are of no practical use. 

6. APPLICATION TO EXPERIMENTAL TEST DATA 

Finally, an application of the weighted sensitivities approach to updating using real ground vibration test 
data is demonstrated. Here, the definition of correction parameters has to be focussed on the actually existing 
finite element modelization errors. 

The fundamental modelization uncertainties are assumed to be in the fuselage-wing joint, the tail-tail- 
plane joint and in the damping layer stiffness and mass distribution. Especially, the influence of the frequency 
dependent shear modulus of the viscoelastic tape on the upper wing surface and the asymmetrical deflection 
amplitudes observed during the test need to be considered in the model corrections. 

Preliminary parameter studies proved that changes in the joint stiffnesses do not significantly affect the 
modal parameters. It is believed that the joint stiffnesses are high compared to the distributed stiffness of the 
wing and tail structure, and that therefore the representation through rigid body elements is sufficiently accu- 
rate. The selection of updating parameters is therefore focused on the model's main components. 

Eight substructures have been selected for updating. The initial parameter sensitivities, before weighting 
was applied, are plotted in fig. 4a), figs. 4b) to 4d) show the correction factors, frequency deviations, and 
mode correlation as the iteration proceeds-. Convergence is attained after 4 iteration steps. A reference solu- 
tion obviously does not exist in case of real experimental data, but the various correction factors values 
appear quite reasonable, that is, they lie within the accuracy limits, which had been previously estimated for 
the analytical modelization. This emphasizes the assumption, that the substructures correctly match the 
regions where the finite element model differs from the test structure and that therefore the updating pararne- 
ters yield consistent and physically meaningful results. Moreover, some measured natural frequencies 
beyond the frequency range used for updating have been predicted successfully. 
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Wings (Imin) 

Wing right (Itor) 

Wing left (Itor) 
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Wing right (m) 

Wing left (m) 

Tailplane (m) 
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+ Wing left (m) 
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s Wings (Imin) .- 
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Figure 4a): Parameter sensiGvities Figure 4b): Correction parameters 



2 3 4  5 6 
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Figure 4c): Frequency deviations Figure 4d): MAC values 

The application to the laboratory test structure has shown that updating using sensitivity-modified sub- 
structures is capable of handling real experimental modal data including measurement errors and random 
noise. After this first simple application, the new method appears to provide a helpful tool for updating the 
analytical models of today's complex aerospace structures. 

7. CONCLUSIONS 

A method to improve iterative finite element model updating approaches is introduced. Higher accuracy 
and faster convergence is achleved in case of large deviations between the individual parameter sensitivities. 
The technique is based on weighting the individual correction parameter sensitivities by means of a modifica- 
tion of the submatrices defined for updating. Performance is assessed in a simulation study and an application 
to real test data from a laboratory test structure is described. The new technique allows for a less confined 
selection of updating parameters and more consistent correction results. 
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Abstract 

Normal mode testing is a long-standing test method of experimental modal analysis. Typically, 
the harmonic responses of a harmonically-excited structure are investigated during normal mode 
testing with regard to their phase relation to the excitation. While classical phase resonance methods 
are suitable for checking the linearity of the structural dynamic behaviour of aerospace structures, 
a significant amount of time is required to perform normal mode tuning, consequently resulting 
in considerable costs incurred during the prototype development period. However, improvements 
in computer technologies and measurement techniques enable improvements in the classical phase 
resonance procedure, especially with regard to  minimizing the test schedule without loss of accuracy 
of the results. This paper focuses on new methods for automated tuning and on-line data evaluation 
procedures for normal mode testing by investigating band-limited frequency responses for analytical 
and experimental vibration systems during the on-line tuning process. Three different approaches for 
accelerating the tuning process are investigated with respect to  their on-line capabilities. In general, 
these methods deliver estimations about eigenfrequency, modal damping, and generalized mass, 
but differ in the amount of modal information delivered and, consequently, in the computational 
effort required. The three different methods of computer-controlled normal mode testing were 
experimentally verified via ground testing using the Piezoelectric Aeroelastic Response Tailoring 
Investigation (PARTI) testbed at NASA Langley's Transonic Dynamic Tunnel, as well as the 20m 
spanwidth sailplane FS-33 located at DLR. Experimental results obtained from these applications 
are described and initial experiences are discussed. 

Nomenclature 

[C], [K] ,  [MI viscous damping matrix, stiffness matrix, mass matrix 

{f 1 force vector 
( 4 )  vector of modal coordinates 

deformation vector 

{ $ ) T  mode shape vector 
Q complex quotient 
a modal constant 



wr 
9 
92 
MIF 
SMIF 

force amplitude 
summation indices 
generalized mass 
number of measured degrees of freedom 
number of spectral lines 
generalized force 
eigenvalue 
modal damping 
dimensionless frequency 
excitation frequency 
eigenfrequency (= 27r f,) 
imaginary part of a complex amplitude 
real part of a complex amplitude 
modal indicator function 
signed modal indicator function 

1 Introduction 

Normal mode testing is a long-standing test method of experimental modal analysis. Although the 
application of phase separation techniques based on measured transfer functions increased during the 
past two decades, normal mode testing by' means o f  multiple input tuned sine excitation still remained 
as a standard procedure for large aerospace structures, especially in Europe. The quality of the results 
obtained using the phase resonance method was demonstrated in a recent European round robin exercise 
[4]. Normal mode testing is a method of experimental modal analysis performed on a high vibration energy 
level. In addition, the method is suitable to check the linearity of the structural dynamic behavior of the 
test object. However, a disadvantage of normal mode tuning is the significant time requirement of the 
method, which subsequently results in considerable costs during the prototype development of aerospace 
structures. Thus, it is worthwhile to  consider methods which accelerate the tuning process without loss 
of accuracy of the results and deliver as much on-line information as possible during the tuning process. 

Usually, normal mode testing consists of four steps. Pre-tests provide test data for a mode indication as 
well as for computing optimized exciter force configurations for each indicated mode. Numerous methods 
have been proposed and investigated for exciter force pattern optimization [6, 7, 10, 121. In the second 
step o f  normal mode tests each eigenmode of vibration is tuned. This means the exciter force pattern, 
as well as the excitation frequency, are varied around each resonance until the phase resonance criterion 
is fulfilled sufficiently. In the third step, the modal damping and generalized masses are evaluated from 
narrow-band frequency response measurements. Finally, the linearity of each mode can be checked by 
increasing the level of the excitation forces. 

This paper focuses on methods for automated tuning and on-line data evaluation during the tuning process. 
Three different approaches are investigated with regard to their accuracy and their on-line capabilities. 
The methods differ in the amount of modal information delivered. While the global parameter estimation 
method delivers all modal parameters, the method of finite differences delivers an eigenfrequency and 
damping estimation, and the Signed Mode Indicator Function is useful for automated frequency tuning 
only. Experimental applications of the methods are described and initial experiences are reported. 



2 Normal Mode Testing 

The fundamental equations of the phase resonance method are based on the assumption of structural 
linearity and passive, time-invariant physical properties. The equation of motion of a discretized viscously- 
damped structure is given by 

where [ M I ,  [C] and [K]  are the physical mass, damping and stiffness matrices, respectively. In the phase 
resonance test, a real force vector of harmonic excitation { j ) e w t  is applied which yields a stationary 
harmonic structural response { v ( t ) ) .  In this case eq.(l) can be separated into its real and imaginary part 

( - w 2 [ ~ ]  + [ K ] )  S ( 6 )  + w[C]%{6)  = (0) (2b) 

where R { 6 )  and S ( 6 )  are the real and imaginary part, respectively, of the structural responses related 
to the real excitation vector. In eq.(2b) the real part of the structural responses only vanishes if the 
eigenproblem 

( -w2[M] + [ K ] )  S ( 6 )  = (0) (3) 

is fulfilled. Then, the excitation frequency w  is the resonance frequency w, and the imaginary part of the 
structural responses becomes a multiple of the real normal mode ($1,. If the phase resonance criterion 
% { 6 )  = {0} is fulfilled, the external damping forces compensate for the internal damping forces. During 
the tuning process, the phase resonance criterion is observed by a weighted average of all measured 
structural responses given by the mode indicator function [2, 31 

The evaluation of the modal damping value and generalized mass during normal mode testing is based on 
the assumption o f  proportional damping which leads to the structural responses expressed by the modal 
Darameters 

where pT is the generalized excitation, 5, the modal damping value and m, the generalized mass. 

Due to  the adaptation of the excitation vector only one mode dominates the structural responses. Thus 
eq.(5) can be rewritten as . r 

{ v }  = { ( + a: ) z w - A ,  i w - A ;  

where X is the complex eigenvalue 

and a, is the r-th modal constant - 
a, = Pr 

2i mTw, J1-C 



while a: and A: are the complex conjugate values of a, and AT. Eq.(6) can be simplified by an approxi- 
mation considering the magnitude of both summands in the vicinity of a resonance. The relation of the 
summands in eq.(6) can be written by means of the dimensionless frequency parameter 7 = as 

which becomes for 7 = 1 
,- 

Thus, the first summand of eq.(6) dominates the structural responses in the vicinity of resonances and 
eq.(6) can be approximated by 

{ v ( w ) I z  { $ I T .  

a, 
2 w - - X r  

2.1 Global Parameter Estimation During Tuning Process 

The global parameter estimation method starts with eq.(l l) and is based on a similar formulation devel- 
oped for the investigation of transfer functions [Ill. Eq.( l l )  can be written in matrix notation,as 

which can be solved for nf frequencies w  i r i  a global least square sense 

which delivers an approximation for the eigenfrequency w,, the modal damping CT, and a multiple of the 
mode shape ($1,.  The generalized mass can be derived from 

if the maximum norm is used for the mode shape normalization. 

The on-line capability of the global parameter estimation method is determined by the calculation effort 
solving the system of equations of the order n p  + 1, where np is the number of measured degrees of 
freedom. Since the structure of the matrix to  be inverted in eq.(14) is simple, this calculation etiort is 
modest. The eigenvalue AT can easily be calculated by 



A multiple o f  the mode shape can be derived from 

The accuracy of the global parameter estima- 
tion method will be demonstrated by means of 
an analytical vibration system which consists of 
11 masses coupled by springs and dampers. The 
system is depicted in Figure 1, and its modal 
parameters are listed in Table 1. For the follow- 
ing investigation, a symmetric excitation at the 
outer masses of the analytical vibration system 
is applied which is the optimal excitation for its 
fundamental eigenmode of vibration. First, the 
effect of the frequency bandwidth around the 
resonance is investigated. The effect on the ac- 

Figure 1: Analytical Vibration System curacy of the modal parameter estimation for 
the fundamental mode is shown in Figure 2. The abscissa gives the number of frequency lines applied 
in the modal parameter estimation based on a frequency resolution of 0.01 Hz. The ordinate relates the 
estimations of the modal parameters to the exact values. Whereas the eigenfrequency differs in the given 
frequency range by a maximum of 2.8 % from the exact value, the damping value and generalized mass 
are more strongly effected for a larger bandwidth. The application of a small bandwidth yields accurate 
modal parameter estimations. 

Next, the position of a small bandwidth related to  the resonance is investigated in Figure 3. In this 
simulation the position of a 0.5 Hz bandwidth is varied. The abscissa relates the center frequency of the 
investigated frequency band to the exact eigenfrequency. Again, the ordinate relates the estimations of 
the modal parameters to the exact values. Additionally, the mode indicator function (eq.(4)) is plotted. 

Table 1: Modal Parameters of the Analytical Vibration System 
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Figure 2: Effect of the bandwidth on the accuracy Figure 3: Effect of the position of the 
investigated frequency band 

The figure reveals that accurate parameter estimations are possible far beyond the indication given by 
the mode indicator function. All estimations within the peak of the mode indicator function are nearly 
perfect. 

2.2 Pole Estimation by Means of Finite Differences 

The pole estimation by means of finite differences [I, 111 starts with the approximation of eq.(ll). The 
method estimates the eigenfrequency from the differences of structural responses at two frequencies in 
the vicinity of a structural resonance 

Relating this difference to the difference of the derivative of the structural responses at these two frequen- 
cies 

yields for n p  measurements and nf frequencies, a pole estimation in a least squares sense 

Since the solution of eq.(19) requires only a summation of several products it is suitable as an on-line 
tool for pole estimation during the tuning process of the phase resonance methods. Additionally, the 
generalized mass can be estimated from the input energy pr and the damping estimation delivered from 

eq.(19) 
m, = Pr 

22 <rcur w; (20) 



where a, is introduced in this equation as a mode shape normalization factor, e.g., the vector maximum 
norm. 

Again, the analytical vibration system is utilized to  investigate two effects on the accuracy of the pole 
estimation by means of finite differences. First the influence of the position of the finite difference related 

Figure 4: Effect of the position of the Figure 5: Effect of the bandwidth of the 
investigated finite difference finite difference 

to the resonance is investigated. Then the effect of the bandwidth of the finite difference on the pole 
estimation is shown. Figure 4 shows the effect of the position of a 0.06 Hz finite difference which is a 
typical frequency step in a final tuning process of the phase resonance method on the accuracy of the 
pole estimation. The abscissa relates the center frequency of the investigated finite difference to  the exact 
eigenfrequency, Again, the ordinate relates the estimations of the modal parameters to the exact values. 
Additionally, the mode indicator function (eq.(4)) is plotted. The figure reveals that even at frequencies 
&15% below or above the resonance the eigenfrequency is estimated with an error of only 3%. However, 
the damping estimation at these frequencies contains considerable error. In the vicinity of the resonance 
the pole estimation is nearly exact. 

Figure 5 demonstrates the effect of the bandwidth of the finite difference investigated. For this investiga- 
tion, one frequency (wq) remains constant while the other (wl) varies. Two curves are shown in Figure 5; 
one depicts the fixed frequency at 85 % of the resonance frequency while the roving frequency increases, 
and the dotted curve shows the fixed frequency at 115 % while the roving frequency decreases. The pole 
estimation is exact whenever wl meets the exact resonance frequency. However, the damping estimation 
is  faulty. The estimation can be improved by a narrower frequency difference as is indicated by Figure 4. 
Both figures confirm that an improved pole estimation is achieved while tuning the resonance frequency 
in the phase resonance method because the resonance frequency is approached in an iterative manner. 

2.3 Automatic Tuning via Signed Mode Indicator Function 

The automatic tuning of the resonance frequency by means of the mode indicator function eq.(4) requires 
differentiating an approximation of the function, which contributes to measurement errors. This may lead 
to a tuning of the structure on local minima or maxima of the mode indicator function. A way to avoid 
this is the use o f  a variation of the mode indicator function which allows a simple search for zeroes. 

S M I F  = {~ign(9(*))%(*)}~{ IcI} 
{ l * l lT { l~ l }  





Figure 7 depicts the test setup. In addition to the phase resonance test combined with computer-controlled 
tuning, frequency response functions were measured as well as free decays of the wing, The FRF's were 
modally analyzed by means of the phase separation technique FDPl [8] operating in the frequency domain, 
while the free decays were analyzed by a modified lbrahim Time Domain method [ITD] 151. Table 2 com- 
pares the modal parameters of the three different methods of experimental modal analysis. Additionally, 
the results of the global parameter estimation method [GLS] performed during the tuning process of the 
phase resonance test [PRM] are given. 

Table 2: Modal parameters of the PARTI wing 

Sher-e-are no major differences except for the damping value of the fundamental bending mode. This 
damping divergence for the FRF analysis may be traced back to the fact that FRF's from roving ac- 
celerometers are used in the analysis. The resulting mass loading effect may have caused the higher 
damping value. 

3.2 GVT of the Sailplane FS-33 

The methods of computer-controlled tuning 
during phase resonance testing were applied 
during the ground vibration test of the sail- 
plane FS-33 (Gavilan). The sailplane was 
developed and entirely built by the AkaFlieg 
Stuttgart (Academic Flight Group of the Uni- 
versity of Stuttgart, Germany). The sailplane 
with two seats is made of carbon fibre mate- 
rial and has wings with a plain flaps profile. 
The wings partly contain water ballast tanks. 
The plane has a spanwidth of 20 m, a fuse- 
lage length of 9 m, and an empty weight of 
375 kg. The GVT was performed in October Figure 8: Test setup of GVT on FS-33 

1998. The test setup is depicted in Figure 
8. Frequency Response Function (FRF) measurements by means of random excitation were performed 
as well as normal mode tuning. The FRF's were modally analyzed by means of the phase separation 
technique FDPl [%I. During the tuning process the response data were analysed on-line by means of the 
Finite Difference method. 



Table 3 summarizes the deviation of the phase separation results as well as the on-line data evaluation 
results obtained during the tuning process from the phase resonance testing (PRM) results. 

In the table, the mean values of the relative deviation 5 of 
the modal parameters taken from 17 modes and the stan- 
dard deviation a,, are given. The results obtained from the 
phase separation analyses FDPl differ from the PRM results 
because the excitation level was significantly lower during 
the FRF acquisition. The results obtained during the tun- 
ing process by means of the Finite Difference method cor- 
respond with the final tuning results, which indicates that 
the on-line investigation of the vibration responses during 
the tuning process is a valuable support of normal mode testing. 

Table 3: Mean deviation of results 

4 Conclusion 

frequency 
damping 
gen. mass 

A lot of information about the structural dynamics of the aerospace structure undergoing test are measured 
during the tuning process of the normal mode testing procedure. This paper investigates different methods 
used to  evaluate nearly on-line these vibration response data. The proposed methods differ in the amount 
of modal parameters delivered and, consequently, in the required computational effort. While the global 
parameter estimation method delivers all the modal parameters (eigenfrequency, damping, mode shape, 
and generalized mass), the finite differences delivers eigenfrequency and darnpinng estimates, and the 
Signed Mode Indicator Function is useful for automated frequency tuning only. The effect of frequency 
bandwidth and positioning on the accuracy of the results is investigated using the different methods. 
Initial experimental applications on structures of different complexity are discussed. The next step in the 
development of the on-line data evaluation during normal mode tuning will be the inclusion of robust 
phase separation techniques in order to  utilize the benefits of both the phase separation and the phase 
resonance tests. 
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ABSTRACT 

This paper summarizes on-going modal testing activities at the NASA Langley Research Center for 
two aircraft fuselage structures: a generic "aluminum testbed cylinder" (ATC) and a Beechcraft 
Starship fuselage (BSF). Subsequent acoustic tests will measure the interior noise field created by 
exterior mechanical and acoustic sources. These test results will provide validation databases for 
interior noise prediction codes on realistic aircraft fuselage structures. The ATC is a 12-ft-long, all- 
aluminum, scale model assembly. The BSF is a 40-ft-long, all-composite, complete aircraft fuselage. 
To date, two of seven test configurations of the ATC and all three test configurations of the BSF have 
been completed. The paper briefly describes the various test configurations, testing procedure, and 
typical results for frequencies up to 250 Hz. 

INTRODUCTION 

Aircraft interior noise reduction is a multidisciplinary problem involving both structural and acoustic 
aspects (Ref. 1). Current research focuses on developing validated analytical models of sound 
transmission through complex structures and within vehicle interiors, forming the basis of design tools 
for interior noise prediction and control. The work discussed in this paper is one aspect of a 
collaborative effort in this area between the Structural Dynamics Branch (Ref. 2) and the Structural 
Acoustics Branch (Ref. 3) at NASA Langley Research Center. 

Two fuselage structures are being used for validation of various interior noise prediction codes (such as 
NASTRAN, COMET/Acoustics, and Boeing's Matrix Difference Equation technique). The first 
structure is an in-house-designed, generic "aluminum testbed cylinder" (ATC). The ATC is an all- 
aluminum, ring-and-stringer stiffened cylinder 12 ft in length and 4 ft in diameter that uses 
representative aircraft construction. It consists of a cylindrical shell, floor, and end cap components, 
allowing testing to occur at various stages of assembly. Final phases in the program will use a 
pressurized interior of up to 7 psi to simulate flight conditions. 

The second structure is a complete Beechcraft Starship fuselage (BSF), manufactured about 10 years 
ago during the development phase of the commercial vehicle. The BSF is an all-composite, reinforced 
shell 40 ft in length and 6 ft in diameter (in the cabin section) constructed using honeycomb core and 
graphite-epoxy face sheets. Figure 1 shows the Beechcraft Starship in operation. The Starship is a 
10-passenger business aircraft with aft-mounted pusher turboprops, variable-sweep canards, and large 
winglets that serve as vertical stabilizers. It was the first all-composite pliine certified by the FAA. 
Approximately 50 Starships are currently in service. 



This paper summarizes on-going modal tests of the ATC and BSF being conducted for validation of 
structural finite-element models. Subsequent acoustic tests will measure the interior noise field created 
by exterior mechanical and acoustic sources. The test objective is to identify the modal parameters 
(natural vibration frequencies, damping, and mode shapes) of each testbed configuration to as high a 
frequency as possible. References 4 and 5 contain supplemental information on the structural modeling 
and model updating aspects of the project. This paper covers only the modal testing activities. 

TEST CONFIGURATIONS 

Table 1 lists the seven test configurations of the ATC and the three test configurations of the BSF. To 
date, the first two tests in the ATC program and all three tests in the BSF program have been 
completed. Figure 2 shows both structures in their initial modal test configurations. The first ATC test 
article consisted of the bare ring-and-stringer frame. The first BSF test article consisted of the bare 
fuselage without side windows or door. Each structure was mounted on soft supports to simulate free- 
free boundary conditions. The ATC used bungee cord at each end, and the heavier Starship fuselage 
used four air bags. Figure 3 shows a close-up view of the two rear airbags supporting the BSF. Two 
additional units supported the front of the vehicle. Test configurations 4 through 7 of the ATC will 
switch over to a similar airbag support system because of the increased weight of these assemblies. 

Figure 4 shows ATC configurations 2 and 3. Configuration 2 adds two 100-lb particleboard end plates 
to the framework. The end plates provide stiff, terminating reflective surfaces for the enclosed acoustic 
cavity. They contain several %-in-diameter holes designed to allow the pressure on both sides of the 
end plates to equalize during pressurized tests. Configuration 3 adds a 0.040-in-thick aluminum skin. 
The skin is attached along each of the 11 equally spaced ring frames and the 24 equally spaced 
stringers with a double line of rivets and epoxy. This attachment assures airtight operation at internal 
pressures up to 7 psi. Figure 5(a) shows the end domes for the ATC. They are %-inch-thick fiberglass 
composite structure weighing approximately 80 Ib each. The end domes are designed to safely carry 
the interior pressure loads without applying a bending load to the cylinder. The ATC floor, shown in 
Fig. 5(b), uses dense-core aluminum honeycomb construction. It is supported by a row of stiff 
aluminum cross members spanning each ring frame. The floor lies 9 inches below the centerline of the 
cylinder. Fully assembled, the aluminum testbed cylinder weighs approximately 600 Ib. 

Figure 6 shows interior views of the Starship fuselage. The interior space is essentially empty except 
for the seat rails and a few miscellaneous items on or near the firewall and in the nose of the aircraft. 
All of the side window openings are identical in size except for the second-last one on the right side of 
the plane, visible in the upper-left comer of Fig. 6(b). This larger window is an emergency exit for 
passengers. Fully assembled (with side windows and door), the BSF weighs approximately 1600 lb. 

TESTING PROCEDURE 

The intent of this testing is to provide a validated structural acoustic model to as high a frequency as 
finite-element modeling technology permits. The important motion of the structure for interior noise 
prediction is the normal motion of the fuselage wall, which is the only structural component that 
couples to the interior acoustics. 



Figure 7 shows the distribution of accelerometers used in the modal tests conducted to date. These 
measurement positions were selected based on pre-test predictions of the first 100 modes of each 
structure. The 207 locations in Fig. 7(a) apply to ATC test configurations 1 through 5. ATC test 
configurations 6 and 7 will use approximately 50 additional accelerometers on the floor and floor 
supports. The 245 locations in Fig. 7(b) apply to all 3 of the BSF test configurations. Both test articles 
used a similar sensor distribution. Several rings around each structure were heavily instrumented with 
radial accelerometers primarily to characterize the "breathing" shell modes (also known as "radial- 
axial" modes). Several longitudinal lines were heavily instrumented with radial and biaxial 
accelerometers primarily to characterize the bending and torsional modes. A few triaxial 
accelerometers captured the secondary axial motion. The ATC sensor distribution had 5 instrumented 
rings and 3 instrumented longitudinal lines, and the BSF sensor distribution had 8 instrumented rings 
and 4 instrumented longitudinal lines. The Starship fuselage required more measurements than the 
aluminum cylinder because of its larger size, and also because of the structural nonuniformity caused 
by the holes for the side windows and door, and by the tapering of the nose and tail sections. 

Figure 8 shows the shaker locations used in the modal tests. These excitation positions were also 
selected based on pre-test predictions of the first 100 modes of each structure. Figure 8(a) shows the 
four ATC shaker locations. Shaker 1 applies a tangential side force at a 45-degree angle below the 
horizontal direction, which primarily excites the torsional and axial modes of the structure. Shakers 2 
through 4 apply radial forces at various locations, which primarily excite the bending and breathing 
modes of the structure. Figure 8(b) shows the seven BSF shaker locations. Shakers 1-2 and 3-4 apply 
lateral forces at slightly different orientation angles to the passenger cabin on its left and right sides, 
respectively. Shaker 5 applies a radial force to the top of the fuselage near the door position. Shakers 6 
and 7 apply forces at the front wingbox attachment bolts on the left and right sides of the vehicle, 
respectively. All seven BSF shakers excite both the bending and breathing modes of the structure to 
some degree. In most ATC and BSF tests, all shakers operated simultaneously using uncorrelated, 
burst random or pure random excitation forces. A mechanical impedance sensor measured the input 
force and corresponding drive-point acceleration at each shaker location. 

Figures 9 and 10 are flowcharts of the principal data-acquisition and data-analysis steps, respectively. 
In each modal test, all of the excitation forces and corresponding response accelerations were recorded 
simultaneously on a large 432-channel data acquisition system. This system has matched anti-aliasing 
filters, 16-bit analog-to-digital converters (ADCs), and auto-ranging capability to assure high quality 
measurements. Prior to digitization, the measurement chain used computer-controlled signal 
conditioning to optimize voltage amplitudes and low-pass (LP) noise filters on every channel to reject 
out-of-band instrumentation noise. The force and acceleration time histories were recorded onto several 
ADC throughput disks located within the data acquisition system, After each test, the time histories 
were transcribed (i.e., sorted by channel number) onto the system disk of the host workstation. All time 
histories measured in every test were also written on CD-ROMs for permanent archival data storage, 
allowing future reanalysis if necessary. 

Next (see Fig. lo), the system disk of the host workstation was cross-mounted to a faster computer 
containing a suite of Fortran data analysis software. Cross-mounting the disk simply means that this 
software could directly read the data files located on the host workstation. The first data analysis step 
created high-resolution frequency response functions (FRFs) and multiple coherence functions (MCFs) 
using traditional multiple-input calculation techniques (Ref. 6). MCFs are commonly computed 



functions that measure the reliability of the corresponding FRFs at each frequency line. Because of the 
large number of modes excited in each test and the relatively low damping levels of the structures, 
particularly the ATC, Fourier transform blocksizes as high as 64K (65,536) were used. Mode indicator 
functions (MIFs) were then calculated from the FRF data (Ref. 7). MIFs provide excellent estimates of 
the natural vibration frequencies of the structure, particularly at lower frequencies. These natural 
frequency estimates should correlate closely with those obtained in the rigorous modal identification 
step, performed next using the Eigensystem Realization Algorithm (ERA). 

ERA is a multiple-input, multiple-output, time-domain technique that uses all available frequency 
response functions simultaneously to identify structural modal parameters. The method was developed 
at NASA Langley in 1984, and an accompanying Fortran software package has been continuously 
improved since then in conjunction with many applications. A large bibliography of ERA-related 
technical publications is available on the Internet (Ref. 8). The reader should consult this on-line listing 
for additional information on the technique. 

The final data analysis step is a mode-condensation procedure that sifts through large amounts of ERA 
results and extracts the best, unique set of modal parameters. This recently developed technique uses an 
autonomous supervisor to condense multiple estimates of modal parameters using the Consistent-Mode 
Indicator (CMI), the principal accuracy indicator of ERA, and correlation of mode shapes (Refs. 9,lO). 

TYPICAL RESULTS 

Experimental results are presented for the initial test configuration of each structure. Figures 11 and 12 
show FRFs and MIFs in the frequency range of 0 to 250 Hz. Other data (not shown) extend to a 
maximum frequency of 1000 Hz. These frequency-response and mode-indicator functions show the 
quality and complexity of the measurements and reveal an appreciable difference between the two test 
articles. Specifically, the ATC frame is a lightly damped structure with corresponding lightly coupled 
modes, whereas the BSF is a more heavily damped structure with corresponding higher modal 
coupling. Higher damping and modal coupling complicate experimental modal identification. Linearity 
test data (not shown) also disclose a higher nonlinearity for the BSF than for the ATC frame. 
Nonlinearity also complicates experimental modal identification, which assumes that the structural 
dynamic characteristics are approximately linear (i.e., the vibration response varies linearly with the 
excitation force level). 

Figure 11 shows only one FRF from each test, while the MIF data in Fig. 12 incorporate all of the 
FRFs measured in each test. Multiplying the number of accelerometers by the number of shakers, a 
total of 828 FRFs were obtained in the ATC modal test and a total of 1715 FRFs were obtained in the 
BSF modal test. The MIFs are derived from the complete set of FRFs by solving an Nth-order 
eigenvalue problem at each frequency line, where N is the number of shakers. To a significant degree, 
the dips in the MIF plots (particularly the dips that extend down to approximately zero) indicate 
reliably and precisely the natural frequencies of the modes of vibration. However, they provide no 
corresponding damping or mode shape information. Also, there is a fair amount of uncertainty 
concerning the number of modes in those frequency intervals with overlapping and/or shallow dips. 
The estimated natural frequencies from the M I .  plots are not used directly in the ERA modal 
identification process. They are only used to correlate with and corroborate the ERA results. ERA 



calculates all modal parameters (natural frequencies, damping, and mode shapes) using all FRFs 
simultaneously. 

Approximately 100 modes of the ATC and 40 modes of the BSF have been identified below 250 Hz 
for each initial test configuration. Figures 13 and 14 show four typical results for each structure, 
arranged in order of increasing frequency. For interior noise prediction, the radial-axial modes 
("breathing" modes) tend to be the most important type of modes. However, the other modes also 
provide valuable additional information for validating and refining the physical properties of the finite- 
element models, resulting in improved prediction accuracy for the acoustically important modes as 
well. 

The radial-axial modes (Figs. 13d, 14b, and 14d) are described by parameters i and j, where i is the 
number of circumferential waves in the mode shape and j is the number of axial (longitudinal) half- 
waves in the mode shape. These modes occur in pairs at approximately the same frequency because of 
the circular cross-sectional shape of the fuselages. The bending modes (Figs. 13a and 14c) also occur 
in pairs, whereas the torsional modes (Fig. 13c) occur individually. The 1st shear mode of the ATC 
(Fig. 13b) has longitudinal shearing of the top of the cylinder relative to its bottom, indicated by the 
two end rings moving in this manner. Recall from Fig. 7 that axial accelerometers are located only on 
the end rings of the cylinder, so that the measured shape of the shearing modes must be carefully 
interpreted considering the locations and directions of the sensors. The pitch mode of the BSF 
(Fig. 14a) is one of six rigid-body modes of each test article. Experimentally obtained rigid-body 
modes are useful for validating the proper placement and functioning of the instrumentation. For 
example, it is not uncommon in modal tests to accidentally switch the polarity of one or more 
accelerometers. This error is quickly disclosed in the rigid-body modes because of their familiar 
shapes. 

CONCLUSIONS 

This paper gave a brief overview of a series of modal tests underway at NASA Langley Research 
Center for validation of finite-element models of two structures: 1) a generic, scale-model fuselage 
section known as the "aluminum testbed cylinder" (ATC) and 2) a complete Beechcraft Starship 
fuselage (BSF). Both test articles will be used for evaluating interior noise prediction codes. The ATC 
has seven distinct test configurations and the BSF has three distinct test configurations. The modal test 
objective for each configuration is to identify the natural vibration frequencies, damping, and mode 
shapes to as high a frequency as possible. To date, approximately 100 modes of the ATC and 40 modes 
of the BSF have been obtained below 250 Hz using the Eigensystem Realization Algorithm. The 
modes of the BSF are generally more difficult to identify at higher frequencies than those of the ATC 
due to its higher damping and modal coupling. Most of the mode shapes of both fuselage structures 
have a complex, three-dimensional nature, requiring many accelerometers and shakers to characterize 
properly. 
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Table 1 - Modal Test Configurations 

Fig. 1 - Siarship in Flight 
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(a) Config. 2: Bare Frame + End Plates (b) Config. 3: Bare Frame -t Skin 

Fig. 4 - Second and Third Test Configurations of the ATC 

(a) End Domes (b) Floor 

Fig. 5 - Additional ATC Components 

(a) Looking Forward (b) Looking Aft 

Fig. 6 - Interior of the BSF 



Radial measurements 

O Biaxial ( x  & y )  measurements 

(a) 207 Accelerometers on ATC 

Radial measurements 

(b) 245 Accelerometers on BSF 

Fig. 7 - Accelerometer Locations 
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(b) 7 shakers on BSF 

Fig. 8 - Shaker Locations 
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Fig. 9 - Data Acquisition Flowchart 

Fig. 10 - Data Analysis Flowchart 
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Fig. 1 1 - Typical Frequency Response Functions 
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(a) 1st Vertical Bending Mode (16.7 Hz) (b) 1 st Shear Mode (22.5 Hz) 

(c) 3rd Torsion Mode (38.5 Hz) (d) i=2, j=4 Radial-Axial Mode (48.4 Hz) 

Fig. 13 - Typical ATC Mode Shapes (Config. 1 : Bare Frame) 

(a) Rigid-Body Pitch Mode (3.7 Hz) (b) i=2, j=l Radial-Axial Mode (30.9 Hz) 

(c) 1st Vertical Bending Mode (36.4 Hz) (d) i=3, j=l Radial-Axial Mode (45.5 Hz) 

Fig. 14 -Typical BSF Mode Shapes (Config. 1: Bare Fuselage Without side Windows or Door) 
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Abstract 

A project of experimental reentry winged space vehicle "HOPE-X" is proceehng in Japan. An 

elastically supported pitching mode may be involved in the dynamic characteristics of this 

vehicle since it is attached to the H-I1 rocket in the launching configuration. It is of importance 

to take this kind of modes into consideration for flutter analysis because the flutter affected 

with this mode can be critical a t  the launching phase. A sting support system with controllable 

pitching rigidity was innovated and tested in a transonic wind tunnel. As the results, the 

flutter related to the pitching mode was observed. T h s  type of flutter was also c ~ ~ r m e d  in 

the analysis using DPM (Doublet Point Method). Further, it was found that a different type of 

flutter occurred in anti-symmetric mode a t  relatively low dynamic pressure. 

1. Introduction 

A project of experimental reentry winged space vehicle "HOPE-X is proceeding in Japan. 

This vehicle will be mounted atop of H-I1 rocket in its launching configuration. I t  is 

anticipated to have pitchng mode in  this configuration since the vehcle follows the bending 

mode of the rocket and/or the deformation of an  adapter between HOPE-X and the rocket. It 
should be considered that this pitching mode may affect flutter characteristics of the HOPE-X. 

A sting support system containing a device to control the pitchng rigidity was innovated. A 

vehicle model with the plate wing w h c h  is designed just for confirming the effectiveness of the 

support system was installed. The flutter experiments were carried out on this model in the 

transonic wind tunnel of NAL (National Aerospace Laboratory). The results showed that the 

symmetric flutter mode in which the pitting mode was involved could lower the flutter 

dynamic pressure below that for the typical bending-torsion flutter. An anti-symmetric mode 

flutter was also observed at much lower dynamic pressure. As the results, it was 

demonstrated that  these flutter characteristics could become critical depending on the 

vibration characteristics of the actual launching configuration. 



2. Supporting system and model 

2.1. Supporting system 

A schematic of the sting support system is shown in Figure 1. The sting is cylindrical with 

the length of 927mm (the mounting part is not included). The diameter of the tip is 120mm 
and the mass is 58kg. Inside the cylinder, this support system has a plate spring to provide 

pitching mode and its control mechanism. The supporting part of the plate spring can be 
shifted without changing its axis of pitching motion by the ball screw which is connected to the 
servomotor following the commands from the outside host computer. The spring rigidity K is 
changeable in the range from 20000 to 60000Nmlrad within 7.4 seconds. It can suppress 
flutter if you utilize the difference of flutter dynamic pressure that comes from the difference 
of pitching mode characteristics. 
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Figure 1 Supporting System 
2.2. Vehicle model 

The model is designed for confirming the function of the support system. It consists of 
fuselage made of GFRP and aluminum plate wing with 2mm thickness. Strain gauges for 
bending and torsion of the flutter vibration were embedded a t  both wing roots. The fuselage is 
2.79kg and the limb is 0.54kg in mass. The wing has a 27.6" sweepback angle a t  the 114  wing 

chord with an aspect ratio of 2.75, and the taper ratio is 0.56. The contour and dimensions are 
shown in  Figure 2. The model installed in the wind tunnel is shown in Figure 3. 
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Model Supporting Section 

Figure 2 Vehicle Model Figure 3 hIodel in TKT 



3. Vibration characteristics 
3.1. Vibration tests 

The fuselage was excited from underneath by a magnetic shaker (B&K 4814), and the 

transfer functions were measured in an automatic way by using an output of a non-contacting 
laser velocity transducer (B&K 3544). The 84 measurement points (37 points on each wing 
and 10 points on the fuselage) were selected. Since the exciting point is almost on the axis of 
the model, only the symmetrical modes are excited. The result with the spring rigidity 
K=20000Nmlrad is shown in Table 1. The dotted line shows the undeformed base Line of the 
model, and the solid line depicts Jts mode shapes. The mode numbers are not continuous, 
corresponding to the analytical results shown later. The 4th mode was measured separately 
with the accelerometer by the hamner impact method because it could not be excited in the 
test setup discribed above. 

Table 1 Analytical Mode Shape (at K=20000) 

I 2nd mode 3rd mode 1 4th mode 6th mode ! 8th mode 

I I I I 

32 [Hz] 47 [Hz] 64[Hz] 97 [Hz] 179 [Hz] 

3.2. Vibration analysis 
The vibration analysis of the vehicle model a t  spring constants 

K=20000,35000, 50000 was carried out by using PATRANlFEA 
(PDA Engneering). The analytical model consists of wings, a 
plate spring and a fuselage. Wings are divided into plate 
elements. The plate spring has a beam and a spring element. 
The fuselage includes dummy elements to adjust mass . s 

properties to those of the wind tunnel model. First 8 modes 
were selected for the flutter analysis. The model constructed in Figure 4 FEM Model 

the computer is shown in Figure 4. The results are shown in 
Table 2. It can be seen that the mode shape and the frequencies obtained with the FEM model 
agree well with the experimental results. 



Table 2 Natural Frequencies 

4. Flutter characteristics 
4.1. Flutter experiments 

The flutter experiments were carried out in  the transonic wind tunnel (test section is 

2mx2m) of NAL. The outline of experiments is shown in Figure 5. The test setup of the model 

is shown in Figure 6. In the experiments, the total pressure Po is increased while the Mach 

number M is kept constant. 

As the results, the supporting system functioned quite well and many flutter points could be 

obtained. The representative results are listed in Table 3. The flutter points near 50Hz are of 

symmetric mode which involves the pitching mode and flutter points near 90Hz are of anti- 

symmetric mode. We call t h s  symmetric mode flutter a s  "pitching mode flutter7'. On the other 

hand, the anti-symmetric mode flutter appearing in the list had not been anticipated because 

of the symmetric support system. However, we may consider that this supporting system 

allows the anti-symmetric modes in the low frequency range if it has an  imperfection on the 

plate spring. 

-- . 
-. - S l g ~ f  

VCR 8 -- Cwd~t~oner 
Htabmed VCR 

--. 
Data Aocm 

Controller - 

Figure 5 Outline 

- Data Logger 
-- 

- - Penrecorder 

. F F T  - 
- - - - 

of Experiment Figure 6 Model and Supporting System 

118 



4.2. Flutter analysis 

The flutter points were calculated by DPM (Doublet-Point 

Method) and p-k Method. An analytical model has only a right 

half and consists of 200 elements with 286 nodes (See Figure 7). 
As the generalized forces, unsteady aerodynamic forces of the 3 1 

cases were calculated by every 0.1 of non-dimensional frequency 

in k=0.0--3.0 for the 1st-8th modes by FEM. The flutter is 
Figure 7 Aerodynamic Model 

analyzed for M=0.4, 0.6, 0.8, 1.1, 1.3, 1.5 with the spring 

constants, K=20000, 35000, 50000Nmlrad in  the range of total pressure Po, 0- l7OkPa. The 

flow condition assumes ideal, inviscid and isentropic because they are thought to be 

acceptable assumptions for this test in the transonic wind tunnel of NAL. The results of the 

flutter analysis are shown in Table 4. The experimental and analytical results of the pitching 

mode flutter and the anti-symmetric flutter are compared in Figure 8 and Figure 9, 

respectively. The abscissa is Mach number M, and the ordinate is dynamic pressure Q in these 

figures. In addition, isobars for total pressure are also depicted in the figures with dotted lines. 

Table 3 Experimental Flutter Points 

Table 4 Analytical Flutter Points 
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5. Conclusions 

As the results of flutter analysis and experiments for the test model with controllable 

pitching rigihty, the followings were clarified. 
It was confirmed that the dynamic pressure of the flutter which involves a pitching 

mode coupling with a bending mode is lower than that of the bending-torsion flutter. 
The supporting system developed was effective also as  a suppressing device for the 

pitching mode flutter. 

An anti-symmetric mode flutter occurred a t  relatively low dynamic pressure. We 

consider that  it may be attributed to the imperfection of the plate springs. The mechanism 

of this flutter has  not be clarified in the analysis yet. . 
The experimental results agree well with the analysis using DPM in both subsonic and 

supersonic speeds. 
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ABSTRACT helicopters because of the limitations imposed by aero- 
dynamic physics, there is hope that tiltrotor topend and 

The requirements for increased speed and productiv- cruise speeds may increase further with improved engi- 
ity for tiltrotors has spawned several investigations asso- i n  current limitations on speed for the V-22 tiltro- 
ciated with proprotor aeroelastic stability augmentation tor are associated with control loads, control margins, and 
and aerodynamic performance enhancements. Included power, while the tiltrotor is power limited. The 
among these investigations is a focus on passive aeroe- aeroelastic stability of tiltrotor systems is also an impor- 
lastic tailoring concepts which exploit the anisotropic ca- tant concern, as the stability margins associated with cur- 
pabilities of fiber composite materials. Researchers at rent tiltrotors are not far beyond the speed limitations set 
Langley Research Center and Helicopte~ have de- by loads and power today. It is anticipated that the u p  
voted considerable effort to assess the potential for using per velocity limit for future high-speed tiltrotors may be 
these materials to obtain aeroelastic responses which are set by both loads and aeroelastic stability considerations. 
beneficial to the important stability and performance con- To achieve higher speeds for tiltrotors, structural tailoring 
siderations of tiltrotors. Both experimental and analyt- of blades and wings using advanced composite 
ical studies have been completed to examine aeroelastic has been considered in several past investigations. 
tailoring concepts for the tiltrotor, applied either to the 
wing or to the rotor blades. This paper reviews some of 
the results obtained in these aeroelastic tailoring investi- 
gations and discusses the relative merits associated with Researchers at Lagley Research Center and Bell Heli- 

these approaches. copter have devoted considerable effort to  assess the po- 
tential for using composite materials to obtain aeroelastic 
responses which are beneficial to the important stability 

INTRODUCTION 
and performance considerations of tiltrotors. Both ex- 
perimental and analytical studies have been completed 

qytrotor aircraft have advantages over conventional he- which examine aeroelastic tailoring concepts for the tiltro- 
licopters with respect to speed and range. While a heli- tor, applied either to the wing or to  the rotor blades. 
copter is limited a t  high speeds by compressibility This paper reviews some of the results obtained in these 
on the rotor advancing side and stall on the rotor retreat- aer0elaStic tailoring investigations and discusses the rel- 
ing side, a tiltrotor converts from a helicopter mode to ative merits associated with these approaches. While 

an airplane mode for high speed flight is less re- the material presented in this report focuses on activi- 
strictive in terms of adverse aerodynamic effects. For ties at NASA Langley Research (h~ter  (LaRC) and Bell 

these a typical tiltrotor can travel nearly twice as Helicopter, the research efforts of other organizations are 

fast as a typical helicopter. Furthermore, while signifi- included in the discussions when appropriate. The report 

cant increases in are unlikely to be provided for is organized into four major sections: tiltrotor aeroelastic 
design considerations, wing aeroelastic tailoring studies, 

presented at the CEAS / AIAA / ICASE / NASA LaRC Inter- rotor blade aeroelastic tailacing studies, and a summary 
national Forum on Aeroelasticity and StructuralDynamics, June 
22-25, 1999,  hi^ DaDer is declared a work of the U.S. Government which includes a discussion on the relative merits of wing . . 
and is not subject to  copyright protection in the United States. versus blade tailoring. 



TILTROTOR AEROELASTIC 

DESIGN CONSIDERATIONS 

To help explain the aeroelastic tailoring investigations 
to be discussed in this paper and the reasons these studies 
have been conducted, this section of the paper addresses 
the aeroelastic challenges which have driven current de- 
signs associated with tiltrotor blades, hubs, and wings. 

Rotor  System Aeroelasticity Considerations 

Rotor  System Type. The significant changes in con- 
figuration, aerodynamics, and system frequencies asso- 
ciated with the tiltrotor flight envelope make rotor sys- 
tem design an even more challenging prospect for tiltro- 
tors than for conventional helicopters. The most critical 
achievement for successful implementation of the tiltrotor 
to date has been the development of the gimballed rotor 
system, used in conjunction with the constant velocity 
joint. This combination of hub and joint solves three 
fundamental problems which are associated with tiltro- 
tor design: 1) the gimbal joint can accommodate large 
flapping as is required to produce adequate control power 
for maneuvers in helicopter mode, 2) the constant velocity 
joint eliminates the 2P (P = rotor rotational frequency) 
drive system torsional loading due to the Hookes-joint 
effect, and 3) for a gimballed hub the blade rotational 
velocity vector tilts when flapping occurs to remain a p  
proximately perpendicular to the blade tip path plane, 
greatly reducing the Coriolis forces normally encountered 
with blade flapping. 

While the use of bearingless, hingeless, or articulated 
rotors may eventually prove fruitful for application to 
tiltrotors, there are several characteristics of these sys- 
tems which have made them an undesirable option for 
tiltrotor application to date. The use of hingeless and 
bearingless rotor systems is not currently feasible because 
of the large flapping requirements associated with tiltro- 
tor control in the helicopter mode. Adequate control 
power requires about 8" degrees of flapping on current 
systems while these types of hubs are limited to about 
4'. A bearingless system would have the additional prob- 
lems associated with addressing the large pitch changes 
required of the tiltrotor control system. The articulated 
rotor hubs tend to be larger and heavier than other types 
of hubs. Weight is an issue that is driving many modern 
hubs away from articulated design even for conventional 
rotorcraft, and the profile drag associated with these hubs 
is an even more significant problem for tiltrotors because 
of the high-speed airplane mode configuration. Bear- 
ingless, hlngeless, and articulated rotor systems are also 
susceptible to several fundamental design problems as- 
sociated with frequency placement, air resonance, and 

current 

Inplane Natural FrequencyIQ 

Figure 1: Load factor associated with inplane natural 
frequency of rotor systems. 

Coriolis-based instabilities as is addressed in references 1 
and 2. Lastly, and perhaps most significantly, these three 
rotor systems are generally soft-inplane (fundamental lag 
frequency below the design rotor speed 0) where the is- 
sues of ground and air resonance can create significant 
problems with tiltrotors for which an acceptable solution 
has not yet been determined. 

A soft-inplane rotor is desirable from a loads perspec- 
tive, as is illustrated in the diagram of figure 1. This dia- 
gram indicates the approximate load amplification factor 
associated with current stiff-inplane tiltrotor systems and 
shows the loads advantage associated with developing a 
soft-inplane rotor, which becomes significant when the lag 
frequency is below about 0.7 per rev. These loads reduc- 
tions can also lead to significant reductions in structural 
weight of the blades, hub, and pylon. The shaded region 
of the diagram shows the potential for ground resonance 
conditions which occur below lP,  and the darker shaded 
region indicates the approximate lag frequency range in 
which the elastic wing modes are likely to participate in 
the ground resonance. The potential involvement of elas- 
tic wing modes makes design of soft-inplane rotor systems 
a particularly difficult problem for tiltrotors. 

Ground resonance is a mechanical instability in which 
the inertial coupling between the inplane blade lag mode 
and a fixed-system mode (which contains significant hub 
inplane participation) produce an increasing response as 
the frequencies of these cornled modes coalesce during 
rotor wind-up. This instability can only occur when 
the blade lag mode frequency is below 1P (soft-inplane) 



Flapping Natural FrequencylS 

Figure 2: Effect of flapping natural frequency and 6 3  on 
transient flapping response. 

and occurs when the coupled fixed-system frequency a p  
proaches the regressive low frequency lag mode (fl - w L ) .  
The conventional solution to this instability is to pro- 
vide damping to both the rotor lag mode and the as- 
sociated fixed system modes that contain hub inplane 
motion. For example, helicopters with articulated ro- 
tor systems generally have dampers in the rotor hub at- 
tached across the lead-lag hinge and either dampers or 
highly-damped structural components in the ground s u p  
port structure. For a tiltrotor, in addition to the rigid 
body modes, the wing elastic modes can couple with the 
rotor lag motion to cause ground resonance, and because 
these modes are elastic the addition of damping is a more 
difficult prospect. Because soft-inplane rotors are sub- 
ject to ground and air resonance, and to a lesser extent 
because these systems tend to have lower whirlflutter sta- 
bility margins, the stiff-inplane rotor system has been the 
preferred choice to date for tiltrotors. 

Pitch-Flap Coupling. The natural flapping mode 
of a gimbal rotor system in-vacuum is at  the rotation fre- 
quency (lP), and the addition of gimbal hub springs does 
not significantly change this frequency. This resonant 
condition creates large flapping and high blade loads in 
flight, and therefore requires the use of pitch-flap coupling 
to create an aerodynamic spring force to move the rotor 
system flap frequency away from lP, as may be approxi- 
mated by the fundamental flapping equation as 

where y is the Lock number, b3 is the pitch-flap skew an- 
gle, and d+ is the inflow angle at the blade 75% station. 
The landmark paper of reference 3 discusses the advan- 
tages and disadvantages of using either positive or nega- 
tive pitch-flap coupling to accomplish the task of moving 
the fundamental flap frequency away from 1P for a va- 
riety of rotor systems. This study also shows that use 
of the more conventional positive 6 3  (flapup produces 
pitch-down blade motion) on a stiff-inplane proprotor re- 
sults in a flaplag blade instability for high inflow con- 
ditions (airplane mode). This instability occurs because 
positive b3 creates an aerodynamic-based increase in the 
flapping stiffness, leading to an eventual coalescence of 
the flapping and inplane blade frequencies as the collec- 
tive is increased with airspeed. A negative 6 3  (flapup 
produces pitch-up blade motion) eliminates the flaplag 
instability by separating the flapping and inplane blade 
frequencies experienced during these conditions, and is 
just as effective as  positive 6 3  in reducing the maximum 
transient flapping response associated with mast motion, 
as is illustrated in figure 2. 

Rotor system design must also consider an important 
series of trade-offs between stability margin and blade 
loads (leading to higher structural weight) which are as- 
sociated with the magnitude of pitch-flap coupling, rotor 
precone, and blade frequency placements. As indicated 
in the previous paragraph, there is a minimum magnitude 
of pitch-flap coupling which is acceptable to control flap 
ping response and associated inplane blade loads. How- 
ever, the addition of pitch-flap coupling is destabilizing 
for whirlflutter, and a compromise in the magnitude of 6 3  

must be obtained. For gimballed rotor systems, the blade 
spacing places constraints on the range of 6 3  which can 
in practice be used. The 6 3  used on both the XV-15 and 
V-22 tiltrotors is -15'. 

Pitch-Lag Coupling. Rotor precone serves to lessen 
the blade root bending moments during high disk loading 
operations such as helicopter hover. For airplane cruise 
the disk loading is an order of magnitude lower, and this 
serves to create a large centrifugal-force induced coupling 
between blade pitch and lag motions, as is illustrated in 
figure 3. In this figure P, is the precone angle, dL is 
the local aerodynamic lift distribution, dm is the local 
distributed mass of the blade, r is the spanwise position 
along the blade, and q is the lag angle deformation. The 
pitch-lag coupling defined by these parameters is gener- 
ally very destabilizing for whirlflutter as will be shown in 
later sections of this paperJhe invention of the coning- 
hinge and flexured gimbal hubs by Bell Helicopter (initial 
tests of this hub type are discussed in reference 4) have 



twist and high pitch angles associated with proprotors). 
While these loads are alleviated in the out-of-plane di- 
rection due to presence of the gimbal, the in-plane loads 
are not alleviated and can significantly influence struc- 
tural design for the rotor. As the blade and hub design 
is strengthened to account for these inplane loads, there 
is generally an associated increase in overall weight. Al- 

hub plane ternative approaches to solving the rotor loads issues are 
(a) Equilibrium of lift and centrifugal forces. to 1) develop a soft-invlane rotor system whereby the in- 

(b) Torsion about inboard sections due to lag motion. on the hub yoke which were found to exceed limit loads 
for the 5.7g maximum aerodynamic capability of the air- 

plane loads are alleviated through lag motion about a 
outboard section virtual hinge, or 2) limit the inplane loads by controlling 

craft. Structural-load-limiting has been designed into 

~i~~~~ 3: ~ f i ~ ~ ~  of precone on pitch-lag coupling, the V-22 digital fly-by-wire control system to reduce the 
maximum load factor of the aircraft to  4g during pull-up 

4 
r d r l l  

maneuvers and reduce the rotor chordwise loads by lim- 
lessened the effect of precone-related pitch-lag coupling by . 
allowing the rotor system to flatten out (lower effective 

lting the rotor disk angle of attack through control of the 

precone) in low disk loadine conditions. This reduces the 
longitudinal pitch motion of the aircraft. 

the pitching of the rotor system. The inplane loads ass* 
4 hub  lane ciated with both the XV-15 and V-22 have been reduced 

>h =is, inboard using the latter. The study of reference 6 discusses the 
development of flight control systems for the V-22 which 

pitch-lag coupling effects on whirlflutter stability, leading 
to higher stability boundaries. Wing Aeroelasticity Considerations 

Blade Dynamics. Blade structural design for tiltro- There are several significant aeroelastic design consid- 
tors presents a very significant engineering The erations for a tiltrotor wing it more compli- 
high number of constraints placed On the derign and cated than a conventional fued-wing One im- 
the importance of the frequency placement over a wide portant ineuence on wing design is the stability margins 
range creates a number imposed by whirMutter. WhirHutter is generated by the 
of structural tailoring opportunities. The aerodynamic large oscillatory aerodynamic and dynamic forces of the 
design, which is its'' a complex com~romise among de- rotor system which couple with the wing motion to mod- 
sign conditions, defines the shell into which the structural ify wing flutter aeroelastic behavior. Whirlflut- 
material must fit, creating upper and lower limits on as- ter considerations lead to much stiffer and thicker wing 
pirations for stiffness and mass tuning. The fundamental designs than those azsociated with conventional 
rotor flap, lag, and torsion frequencies must have ade- Wing Dynamics. Whirlflutter stability are 
quate separations from harmonics of the two design rotor greatly influenced by the dynamics of the wing and asso- 
speeds to avoid high loads and vibration. Additionally, ciated components which can affect hub motion such as 
the movement of the frequencies between the two stiffnesses of the transmission adapter, mast and pylon, 
main design conditions must be considered so that sig- downstop, and wing The down- 
niflcant resonances and destabilizing frequency crossings stop has a particularly significant influence on aeroelastic 
will not occur. stability because this mechanism effectively locks the py- 

Blade Loads. An important driver for blade and lon to the wing in airplane mode, resulting in a sharp 
hub design on stiff-inplane rotor systems is the oscilla- change in wing frequencies. When the pylon is not en- 
tory chord bending moments produced during maneuvers gaged with the downstop then the stiffness of the pylon 
that are associated with large aircraft pitch rates, such attachment to the wing is governed by stiffness of the 
as a symmetric dive and pull-up. These loads have been conversion actuator. Typically, with the downstop en- 
a concern for both the XV-15 and the V-22 tiltrotors as gaged, the wing torsion and beam frequencies have much 
discussed in references 5 and 6, respectively. High rotor greater separation and the associated whirlflutter stabil- 
pitch rates can create blade stall which intwify the blade ity boundaries are significantly higher as is shown in fig- 
aerodynamic loads in both the flapwise and chordwise di- ure 4. 
rections (chord loads are significant due to the high blade As in classical fixed-wing design, and as suggested by 

reduce the steady and oscillatory chord bending moments 
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Figure 5: Effect of change in wing beam bending stiffness 
on tiltrotor stability. 

Figure 4: Comparison of predicted damping for the off- 
downstop and on-downstop configurations of the WRATS 
tiltrotor model. analytical studies and model tests to expand aeroelastic 

stability boundaries, the current limits on tiltrotor t o p  

the discussion in the previous paragraph, the separation end speeds are associated with control loads and power 

of the fundamental beam and torsion frequencies plays available. Many efforts to improve tiltrotor topend speed 

an important role in the aeroelastic stability of a tiltrotor have focused on reduction of profile drag so that higher 

wing. This effect has been studied both anal-ytically as be obtained using current Power available. 

in reference 7 and experimentally using reduced stiffness While a thin wing is desirable for high-speed performance, 

wings as discussed in reference 8. The plot of figure 5 stiffness and fuel capacity considerations often require a 

shows how changes in wing beam staness infuences sta- thick wing design. Current wing thickness for tiltrotors is 

bility boundaries associated with the fundamental wing about 23% t/c while an 18% t / c  ratio is desirable for high- 
modes. The dominant effect is a drastic lowering of the speed and long-range designs as is discussed in reference 9. 

wing beam mode stability boundary with an increase in Wing Sweep. Tiltrotor wings have a small forward 
the wing beam stiffness, and this occurs because there Sweep to increase flap clearance between the rotor blades 
is no corresponding increase in the wing torsion and wing in airplane mode. While forward sweep creates 
such that the beam and torsion wing frequencies move divergence concerns for conventional aircraft, this con- 
closer together. The plot of figure 6 shows that an in- cern is not influential in tiltrotor wing design due to high 
crease in torsion stiffness is more beneficial than an in- bending and torsion stiffness requirements for aeroelastic 
crease in beam stiffness in terms of increased stability stability. Divergence speeds of current tiltrotor aircraft 
boundaries, but there are other flutter modes that can are predicted to be well above Mach 1. The wing sweep 
become dominant. In the example of figure 6, the sta- also creates separation between the blade and wing which 
bility boundary associated with the wing chord mode is helps reduce the NP harmonic loads created by the pas- 
only slightly higher than that associated with the wing sage of the blades near the wing as is discussed in refer- 
beam mode, such that improvements to the beam-torsion ence 10. The flow field near the wing is affected by lift 
aeroelasticity only raises the flutter boundaries to that produced by the wing, and blockage of the freestream flow 
associated with the wing chord mode. This is a typic- by both the wing and fuselage. AS each blade is subjected 
problem in tiltrotor wing aeroelastic design. The chord to this flow field for only a short period of azimuthal sweep 
mode instability is generally in the same vicinity as that there is a localized change in angle of attack resulting in 
associated with the beam mode, but it is common that significant 1P and higher harmonic loads on each blade. 
improvements to one of the stability modes, either beam These blade loads sum to produce si@cant NP fixed- 
or chord, will have a negligible influence on the other, re- system loads which can be a concern for wing design as 
suiting in a smaller total improvement in stability margin these loads are translated from the rotor into the pylon, 

than might otherwise be expected. along the wing, and into t k  airframe. Because of stiff- 
ness requirements for aeroelastic stability, much of the 

Wing Thickness. While there have been numerous wing design is not influenced by these harmonic loads, 
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Figure 6: Effect of change in wing torsional stiffness on Figure 7: Final 18% t/c three-stringer design. 

tiltrotor stability. 
decreases the airframe drag by 10% and provides a sub- 

but some wing components are fatigue critical and are stantial improvement in aircraft productivity. For a con- 
thus adversely affected by the N P  loads. Specifically, the ventional tiltrotor wing design, reducing the wing thick- 
3~ loading on the threebladed XV-15 V-22 tiltro- ness ratio also decreases the stability boundary due to the 
tors have created some design challenges with respect to ~OSS in stiffness. The stability boundary can be recovered 
engine loads and downstop loads. by adding structure to increase the stiffness and restore 

the mode shapes and frequency placement; however, the 
additional weight reduces aircraft productivity. Com- 
posite tailoring provides an opportunity to increase the 

AEROELASTIC TAILORING O F  stability of tiltrotors with thin wings, without incurring 

TILTROTOR W I N G S  a large weight penalty by favorably modifying the mode 
shapes and frequency placement of the fundamental wing 

Tailored Wing Feasibility S tudy modes. 
The study of reference 11 considered the feasibility of 

When considering only airframe contributions, the two a composite tailored wing for a 40-passenger civil tiltro- 
most important factors affecting proprotor stability are tor. This study was c~nducted by Bell Helicopter un- 
the frequencies and mode-shapes of the wing bending and der a 1993 NASA LaRC contract, and the objective was 
torsion modes. The wing stiffnesses requirements associ- to apply composite tailoring to the design of a tiltrotor 
ated with whirlflutter are typically as demanding as the wing to achieve the aeroelastic stability requirements at  
wing requirements, as is discussed in a previous reduced wing thickness for improved performance and air- 
section of this paper. The whirMutter stability is semi- craft productivity. The baseline configuration used in the 
tive to the pitchlbending coupling (referring to the rotor study was the V-22 tiltrotor wing because the math mod- 
hub pitch motion relative to its vertical translation) =- els representative of an actual design in which the rotor, 
sociated with the wing mode shapes, and this coupling fuselage, wing, and pylon structural parameters are fully 
can be controlled by several factors including: relative developed and accurately lmown provide the most realis- 
frequency placement of the wing modes, offset of the py- tic assessment of the benefits of composite tailoring. De- 
lon center of gravity relative to the wing elastic axis, and sign variables included wing skin and spar web laminate 
structural bending/torsion coupling of the wing torque composition, stringer and spar cap area distribution, and 
box. wing thickness ratio. Parametric studies were conducted 

To meet stability requirements, conventional tiltrotor of each design variable to provide a basis for the design 
wing designs use thick wings (23% tic) that efficiently of a composite tailored 18% t/c wing which satisfied the 
provide high torsional stiffness at minimum weight. To Proprotor stability goals with minimum weight- 
improve tiltrotor high-speed performance and productiv- Realistic constraints on the design were provided by 
ity, it is desirable to reduce the wing ihickness ratio using the codes used in theactual design process of the 
(t/c) without increasing the weight. Performance anal- V-22. The structural model was developed using NAS- 
yses show that reducing the wing thickness to 18% t ic  TRAN along with specialized pre and post processors for 



margins of safety in the skin panels required addition of 
460 two additional skin plies. 

450 
Con"igwation The h a 1  design configuration developed based on the 

parametric study is dehed in figure 7. It used a balanced 
440 laminate in the forward and aft spars to maintain chord- 

stability wise stiffnw while using ,a blend ratio of 70130 in the up- 
boundary 430 
tmm per and lower skiins to achieve the optimum pi;tch/bending 

420 
coupling to improve stability of the wing beam bendfng 
mode with respect to whirHutter. Strews malpis de- 

410 termined that a three-stringer eodiguratiofl. *i%h, two ad- 
ditional skin plies were required to mtisfy strength con- 

400 
Bmline , Case 1 Cam2 Case3 straints, Tke resulting weight is nearly equivalent to that 
23% t/c 18% Q~ 18% r/o 1 8 % ~ ~  of the 23% &,&c baseli~e, increasiag by only 1.2%. The 

50156. 501~0 7060 most significant results of the  stud^ are iIlustrated irr fig- 
b f d  'alend Hennl- ure 8 which show that the stability boundaries associated 

unalored ' s.PwcflP skin spar with the high-performance 18% t/r: wings can actually be 
MOringgn'y improved over that of the 23% baseline. 

Tailored Wing Wind-Tunnel Study 
Figure 8: Tailored wing stability summary. 

Encouraged by the results a f  the full-scab composite 
la-ate rna1pk, stluCeurd loads st&s & tailored wing study of reference 11 as discussed above, 
;y;~js, and wei&t alcdatjom. The fl~btmal frequencFes a model-scale test program WEIS hitiated to wfidate the 
and aode shapes associated with the N A S T W  model c o m ~ o s i ~ a i l a r e d w r i n g ~ ~ e l  test program 
provided input into Bell's proprietary aeroelastic analysis *as &joint effort b&we6a NASA Lmdey ELesmch Center 
code, A%@ (AeroelWtic Stability ,AndP* of propro- ( L m )  and to evaluate the stab'llity characteristics 
tors], which also included input mrameters -&bed by of a tiltrotor with a cbmpdte tailored wing. ~ u r i n ~  the 
the rotor system, drive wstem, and flight control system. program, wind tunne1 wre conduet& at 

the NASA Law Trandnic Dynamics Themel (TDT) in 
Elastic couplings were developed in the parametric Hampton, Virginia. Far the wind tuqnel tests, the Wing 

study by adjusting the ratio of +45O plies relative to the and Rotor Aeroelastic T&t System [WRATS) wap, ued 
number of -45' pliy while maintaining the existing num- ap, the test bed. This model orighted from the 115-size 
ber of 0° md 9OU plies of the baqeline laminates. A A-oudescaled amelastic model of the V-22, which was 
blend ratio was defined to indicate the m u n t  of cau- designed by Bell duting the hll-scale development and 
pling in the lamimte: a 50150 blend of $459 and -45" m d  for flutte'r clear~nce t a t s  of the aircrafe, The &st 
wouId be balanoed wwe a lOO/O b led  would provide the test of the WRATS model occurred durink August 1995 
maximum elwtic coupling for the lamiaate construction and established baseline aeroelaatic stability boundaria 
considered. Results of adjuaing blend ratiw uniformly for a tiltrotor with s conventional mt.zlil&ed wing design. 
fiy all the wing components showed Chat stability bound- The wind-tunnel model represented a tiltrotor with a 23% 
aries of the wing beam bendmg mode (SWB) reached a thick comntional wing, ~ylon, and rotor system and was 
peak between ratioiit of 7Q/36 and 80120. However, sta- configured in airplane mode so that high speed skabilie 
bility boundaries of the wing Ghard mode were decrewed could be evaluated. Figure 9 shows the aeroelastic model 
as the blend ratid moved away from 50150 bwhuse of a mounted to the tunnel support ~trucCma ' 

redudion in efTective chord bending stiines associated For the secand TDT entry, a composite tdored Tnting 
with the elastic coupling. To compensate for the 10s was designed and fabricated by Be11 to dynamicaI1y repre 
in chordwise stiffness, the parametric studies con~idered sent a full-scale composite h*lored wing with a tfc ratio 
moving up to 50% of the stringer cap cross-section area of 18%. The compo~ite tailored wing and the baseline 
into the forward and rear spar caps where the blend ra- wing are interchangeable on the model, thus maintiaining 
tios were held at 50150 to maintain chordwise bending the same pylon, rotor, control system, and drive system 
stiffness. The blend ratios of the upper and lower wing characteristics in each test. The second TDT entry oc- 
skins were held at $0120 for this part of the study, and the curred in December 1995 and measured the aeroelsstic 
results showed that adequate stability margins could be stability of the composite tailored wing. 
maintained usingthis approach. Strengthanalyses led to The 115-size bmeline semi-span wing was designed 
islcreasing the number of stringers in the wing from 2 to 3 around a central spar which provided the stiffness re- 
so as to prevent buckling of the skin panels, and negative quirements necessary to dynamically represent the scaled 
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Figure 8: WRATS $-size aeroehtic wind-tunnel model 
mounted in the NASA LARC TDT. 

stiffness properties of the full scale V-22 with a 23% i/c 
ratio. The $11-scale design used a fivestringer carbon 

~~irrg"osx-WitIrWanceh~nates~Forthe-mode 

Unid@ctional graphite 
tape sMfeners 7 

T~Iored Wing 

90%~- 4SQ plies 
10% 4-45' plies 

~uminum-J 
flanges 

''''on epmty 'wing Was wund at M5 deg '0 form a Figure 10: ~~~~~~i~~~ beween baseline and tailored 
graphite torsion box with constant rectangular cross sec- wing mctiom. 
tion. Additional beamwise and chosdwise stiffness m 
obtained by bonding ugidirectionstl carbon epoxy stiffen- 
ers to the sides of the torque bw. Alumhum T-section mM degree of Ereedom. Discrete o o n i ~  and 14-1% 
fianm provided support for the nOmtructur- wing pan- hinges model the elastic bending of the blade to form the 
eb and increw& the cbo+Ge to the: &air& tar- aUective coning and cyclic i n ~ l m e  mod-, ms~ectively. 

get va;lues, The general construction of the wing torque Blade feathering motions are computed tbrmgh kine- 
box cross secticm is shown in wmparisoa to the base- matic relationships which include pitch/'Aap, pitch/cone, 
line design in figure 10. The modd wing and full-sc~le and pitch/lag mufiling. These coupling parameters are 
wing provide no structural bending-torsion coupling at- calculated external to ASAP using fully coupled elastic 
tributabk t; the use .of bdmcd laminates. G~~~~ rotor blade analyses to enhance the simple bladd model- 
details of the cowtruction process, t u b g  pf the model, ing approach used in ASAP. The rotor aerodynamics are 
and N A S T M  finjte element of the structure calculsted using 4uasi-stead~ strip m ~ d ~ m i c s ,  
are reported in refmence 9. with constant chord and constant airfoil, and ~l~summ 

uniform axial fim so that the equations have constant 
Analytioal Modeling and Stability Predictions. coieftiCients. 

The Bell Aeroelmtie Stability Analysis of Proprotors 
(ASAP) code was med to predict the wing/pgrlon/rotor The airframe dWamics model ~ ~ n s i s t s  of e~lmtic modes 
stability speed for tiltrotor aircraft in airplane mode dmived from a I'W3TRAN finit*elqent-model @'EM) 
flight. ASAP h~ sh- good melation with wind tun- ~f the structure. For stability analysis, mode shapes at 
nel t& as described in reEerence 12 and full-scale V-22 the rotor hub and control plane, are required and input 
flight test data as described in reference 13. ASAP per- to ASAP. ~ ~ ~ t u r a l  a d  ~ r o d ~ ~ c  dampkg of 
forms a linear eigenvalm analysis based on the dynamic the airframe are measured from ground vibration tests 
coupling of the rotor, airframe, drive system, and control "rotors-off" And tmnel tests. The drive system was 
system. The math model representation for each element disc-%& during the wind tunnel k & ~   hid dowed 
used in the ASAP analysis is bri&y described in the fo1- the rotor to rotate f r d y  in a windmill state. Previous 
lowing paragraphs. tests as described in reference 4 have shown that an un- 

~h~ rotor is modeled in ASAP by using a b p e d  pa- powered model can be used to accurately represent the 
rameter rigid-blade analysis, with hinges and springs for powered flight condition when measuring stability bound- 

representing the flag, lag, and coning degrees of free- aries in &plane 
dom. Rotor cyclic fiapping motion is modeled as a hub The ASAP program generates plots of frequency and 
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damping verses airspeed which are used as pretest predic- 
tions for the wind tunnel tests. Stability speed predictions 
were calculated for the baseline and tailored wings at  four 
critical design conditions, (1) pylon on the downstop at 
84% RPM, (2) pylon on the downstop at  100% RPM, (3) 
pylon off the downstop at 84% RPM, and (4) pylon off 
the downstop at 100% RPM; where 84% RPM represents 
the airplane cruise rotor speed and 100% RPM represent 
the normal helicopter mode rotor speed. 

Test Results and Correlation wi th  Analysis. 
During the wind tunnel tests of the baseline and tailored 
wings, frequency and damping data were recorded for the 
fundamental wing bending modes. The frequency was 
determined using an on-line spectral analyzer. The wing 
beam, chord, or torsion mode was excited at  the natu- 
ral frequency using a heavy-gas pulse-jet excitation sys- 
tem mounted on the tip of the wing. The wing bending 
gage output was recorded on strip chart recorders and 
the TDT data system. The fixed system damping was 
determined from the time history decay of the bending 
gage output following the excitation. The damping was 
computed using two different methods: hand calculations 
were performed on the strip chart decay traces using a 
log decrement calculation, and analysis was performed on 
the digitized time history using an on-line Moving Block 
analvsis (reference 141. 

Typical correlation plots between measured and pre- 
dicted frequencies and damping are shown in the plots of 
figure 11 for the TDT entry of the tailored wing. These 
plots represent the correlation for the tailored wing in 
the off-downstop configuration with a rotor speed of 84% 
RPM. Figure 11 shows the damping verses airspeed for 
the beam and chord modes, respectively. The d a m p  
ing predictions for the fundamental wing beam modes 
track well with increasing airspeed. An instability was 
recorded in the beam mode at 155 Knots Equivalent Air- 
speed (KEAS) which corresponds to about 347 KEAS 
full-scale. The ASAP analysis agrees well with the mea- 
sured subcritical damping values and stability boundary. 

To quantify the effects of composite tailoring on stabil- 
ity, the stability boundaries for the baseline and tailored 
wing were measured at  several airspeed and rotor speed 
combinations. With the wind tunnel and model stabilized 
at a certain airspeed, the rotor speed was gradually in- 
creased in 510 RPM increments until a neutral damping 
condition was reached. This procedure was repeated un- 
til the stability boundaries were defined throughout the 
operating range of the rotor as shown in figure 12. A di- 
rect comparison between the baseline and tailored wing 
stability boundaries shows an increase of approximately 
30 KEAS (58 KEAS full-scale). For a full-scale design, 
the 58-kt increase in stability boundary represents a sig- 
nificant stability improvement. 

Damping, 
% critical 

- SWB predicted 
0 SWC measured 

- 

- 

- Stable 

.p '\ Unstable 

Tunnel airspeed (KEAS) 

Figure 11: Comparison of analysis and test results for the 
off-downstop configuration. 

Tailored Wing / Soft-Inplane Rotor  S tudy 

An analytical investigation of aeroelastic tailoring for 
stability augmentation of soft-inplane tiltrotors is being 
conducted at Penn State through a NASA LaRC Grad- 
uate Student Researcher Program (GSRP) grant. Some 
preliminary results of this study, as reported in refer- 
ence 15, show that aeroelastic tailoring of the tiltrotor 
wing may be used to stabilize an air resonance instability 
associated with the Boeing Model 222 soft-inplane hin- 
geless tiltrotor system. This particular system was free 
from any ground resonance instability, as discussed in ref- 
erence 2, because the low frequency cyclic lag mode did 
not couple with the wing chord mode until a rotor speed 
of 1060 RPM was reached, which is well above the de- 
sign rotor speed for this model. The wind-tunnel model 
could, however, experience an air resonance in low-speed 
airplane mode when subjected to a rotor speed sweep. 
The resonance would occur due to coupling of the wing 
beam bending mode (the wing mode of interest in air- 
plane mode since it couples with the rotor inplane m e  
tion) with the low-frequency lag mode around 500 RPM. 
The Penn State investigation showed that the addition 
of beamwise-bending-twist coupling in the wing could be 
either stabilizing or destabilizing to the resonance, de- 
pending on the sign of the coupling used, as shown in 
figure 13. The positive bending-twist-coupling (bending 
up pitches hub up) in the amount considered shows that 
the air resonance may be completely stabilized. Positive 
beam-bending-twist couplingis, however, destabilizing to 
whirlflutter. Further analyses are to be performed under 
this grant to determine if a suitable compromise may be 
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Figure 12: Comparison of measured stability boundaries 
for the baseline and tailored wings in the off-downstop 
configuration. 
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achieved between the stabilizing and destabilizing influ- 
ences associated with wing aeroelastic tailoring. 

AEROELASTIC TAILORING OF 
TILTROTOR BLADES 

General Anisotropic Rotor Blade Modeling 

There is a potential for improving the performance and 
aeroelastic stability of tiltrotor aircraft through the use of 
elastically-coupled composite rotor blades. An important 
aspect of achieving these potential improvements is the 
development of analyses which properly model the com- 
plex effects associated with elastic couplings. Currently, 
comprehensive aeroelastic rotorcraft codes, because of 
their complexity and size, are limited to modeling the 
elastic rotor blade using a one-dimensional (beam) the- 
ory. Thus, there has been an emphasis on deriving one- 
dimensional generally anisotropic beam theories which 
can capture the important characteristics of anisotropic 
composite rotor blades, structures that are more readily 
defined using two and three-dimensional theories. With 
improved cross-section analyses and beam theories that 
include effects associated with warping, shear deforma- 
tion, large pretwist, and anisotropy (such as those pre- 
sented in references 16-18) there are few rotor blade struc- 
tures, including the flexbeam, that cannot be accurately 
modeled using beam theory, at least in terms of predicting 
the global response, dynamic characteristics, and aeroe- 
lastic stability of rotor systems. 

- Baseline 

-1.0 L C  I I I I 
0 300 400 500 600 

Rotor Speed, RPM 

Figure 13: Influence of wing beamwise-bending- twist 
coupling on tiltrotor air resonance. 

In developing a rotor blade design with elastic couplings 
it is desirable to maintain favorable elastic and dynamic 
characteristics of the blades, especially if a baseline sys- 
tem is used as a template for the elastically tailored de- 
sign. The study of reference 19 provides a valuable re- 
source for estimating the limits to which elastic couplings 
may be introduced into a baseline rotor blade, consider- 
ing simultaneously the important constraints on changes 
to blade stiffness characteristics. A cross-section analy- 
sis such as that described in reference 18 can provide the 
coupled stiffness matrix of a general anisotropic beam as 

where [k] is the symmetric coupled stiffness matrix; e, k,, 
kc, and 0 are the displacements in the extensional, chord- 
bending, flapbending, and twist directions, respectively; 
and P, M,, MC, and M, axe the forces in the same re- 
spective directions. Many cross-section analyses will pro- 
vide two additional degrees of freedom relating the shear 
strains and shear forces for the beam, but these may be 
statically condensed to the 4x4 representation above as 
is described in reference 20. For an isotropic, untwisted 
beam the elastic twist is independent of extension and 
bending (kl4 = kg4 = k34 = O),and the diagonal terms 
represent the extension stiffness (kll = EA),bending stiff- 
nesses with shear deformation effects already included 
(k22 = E l f ,  k~ = EI,),and torsion stiffness (k44 = GJ). 
The remaining coupled stiffness terms, klz, k13, and k23 
are used to define the centroid and principle axes of the 
cross section at which p o i u h e y  become zero. 

By considering the appropriate subsets of equation 2, 
the study of reference 19 defines three nondimensional 



coupling parameters that may be used to define the mag- 
nitude and type of coupling in a given structure as: 

kT4 s;, = - (3) 
EAGJ 

kg4 \k12FT = - (4) 
El f  GJ 

kL Q&. = - 
EI, GJ (5) 

where the subscripts ET, FT ,  and CT refer to extension- 
twist, flapwise-bending-twist, and chordwise-bending- 0 10 20 30 40 50 
twist, respectively; and because of the requirement that Linear twist, deg 

strain energy be positive the three coupling parameters 
are bounded between 0 and 1. These parameters are 

Figure 14: Power required in hover and forward flight as useful because they can be used to define realistic cou- 
a function of blade linear twist. pled stiffness terms for comprehensive aeroelastic anal- 

yses without performing a full anisotropic cross section 
analysis. While the coupling parameters are physically 
limited to values less than 1, the parametric studies 'of 
reference 19 show that in practice \k1 will be below 0.5, 
and the iduence of the coupling on effective blade bend- 
ing stiffnesses is generally small for values of * below 0.2. 
The study also defined a set of nondimensional variables 
related to laminate thickness, ply angle, chord length, 
and spar width, and developed an associated set of plots 
which may be used to estimate realistic values of elastic 
coupling parameters for any rotor blade of typical con- 
struction based only on knowledge of the uncoupled clas- 
sical stiffnesses. An example of the use of these plots is 
developed later in the bending-twist-coupled studies sec- 
tion of this paper. 

Extension-Twist-Coupled Blade Studies 

Passive Twis t  Control Studies. There have been a 
number of investigations which have focused on improv- 
ing tiltrotor performance by using elastic tailoring to pas- 
sively change rotor blade twist distribution between the 
helicopter and airplane flight modes. The concept of 
changing blade twist between flight modes can be real- 
ized with the use of composite rotor blades, designed to 
exhibit extension-twist coupling (ETC) through an ar- 
rangement of off-axis ply angles and stacking sequences. 
In forward flight, the rotor speed of a tiltrotor is typically 
15% less than it is in hover. Thus, there is a net change in 
centrifugal forces which can be used to passively improve 
the twist distribution for each flight mode. The aerody- 
namic performance efficiency associated with a range of 
linear blade twist distributions for a tiltrotor in hover and 
forward flight modes is illustrated in figure 14. This plot 
is developed using momentum theory and_ a nonuniform 
inflow model, but does not consider wake recirculation 
and other three dimensional aerodynamic effects which 

may lessen the influence of twist on performance. While 
the plot suggests that about a 6% improvement to both 
the hover and cruise efficiencies is possible as compared 
to a compromised twist for both flight regimes, the extent 
of the improvement in aerodynamic performance depends 
on how closely the actual twist developed in hover and for- 
ward flight approaches the optimum twist in each of the 
two modes. This, in turn, depends on the magnitude of . 

twist deformation which can be produced within the ma- 
terial strength limit of the blade structure. As the allow- 
able twist deformation increases, so does the ability to ob- 
tain desirable twist distributions in both modes of flight. 
Although the desired twist change occurs between hover 
and cruise flight, it is the twist change caused by increas- 
inn rotation velocity from 0 to its maximum (hover) value - 
which produces the maximum blade stresses. For struc- 
tural substantiation of a design, the centrifugally gen- 
erated stresses must be considered simultaneously with 
bending stresses resulting from air and inertia loads. 

In reference 21, passive twist control concepts are ap- 
plied to the extension-twist-coupled design of a rotor 
blade for the XV-15 tilt rotor assuming a 15% change in 
operation rotor speed between hover and cruise. This 
particular design was restricted to match the baseline 
XV-15 blade properties (mass distribution, bending and 
torsion stiffnesses, and c.g. locations), and with these re- 
quirements only about 0.5" of twist change was developed. 
A second study was performed which allowed deviations 
from the baseline XV-15 blade with respect to bending 
and torsion stiffnesses, but retained the baseline mass dis- 
tribution and c.g. locations. This design resulted in a 2' 
twist change over the same 15% rotor speed range. 

Experimental Studies of Extension-Twist- 
Coupled Structures. _The experimental studies of 
reference 22 showed that composite tubes constructed to 
optimize twist deformation as a function of axial force 
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Ellipse . 

Figure 13: Four cross section shapes tested to determine 
effects of warping on ETC. 

eould produce extremeIy large twist rates within the 
material allowable stresses associated with the axial loads 
alone, Twist rates of nearly 0.5 deg/in were produced ' 

These experimentd studies were extended in refer- 
ence 23 to include Cross secti0nS of n0nci~ular shape, as Fiere  16: EQmimAntal setup for ETC tube tests. 
shown in figure 15, such that the effects assodated with 

and she% deformation on the extension-twist be blades. Design 2 had 60 ,lba. of tip weight which is 
havior could be examinad. This experiment, with setup mare than that used in wnvrntional desigm. I3Gign- 
illustrated in figure 16, demoytrated that the noncircu- ,, nd Limited in tip wekht which resulted in the 
lar shapes were less effective at producing twist defor- twist defamation possible under the design 
mation for a given amount of &a1 load, but significant asumptions of the study, but eght increase made 
twist could still be produced within the material strength the design impractical. three tvere obtained 
considerations. In particular, the important influence by optimizing for m&mum twist deformatioasu 
of restraint near a was shown to strength comtr&ts. The tPjist &ange 
have an important effect on the prediction of the torsional av~hble for each desi&n wss used to determine its haver 
stiffiess and thus G o  the twist deformation produced un- twist diswibution based on using the optimum linear twist 
der aa axial load, distribution for cruise. The plot of figure 17 shows the 

With the demonstration of large twist deformations resultingtwist distributions associabd with the nonrotat- 
produced by extension-twist-coupled test specimens, %he ing, cruise, and hover anditions of Design-1. The per- 
analytical study of reference 24 was performed to d&er- formance in cruise mode ww optimum for all the cases 
mine the benefits of such structures to tiltrotor blade de- due to use of this twist distribution as a startlng point 
sign. This study considered an extension-twist-coupled for the designs. The hover performanee associated with 
blade design subject to no restrictions an the structural eaeh design is illustrated in- figure 18. This plot shows 
blade properties 0 t h  than to aeet material allowable that if the optimum linear twist for cruise was used also 
stress requirements for typical blade loadings. fun l i e  for hover that about 8% more power would be required 
the study of reference 21, the study of reference 24 also in the hover condition. The twist change associated with 
considered the mass distribution as a design variable so the extension-twist-coupled design is predicted to impro~e 
that the centrifugal forces required to impart the elas- the power requirements in hover by 4% to 8%. 
tic twist changes could be maximwed. Three extension- A hover study of passive edension-twist-coupled rotor 
twist-coupled rotpr blade designs were developed with the bladets ww performed as described in reference 25 to de- 
most characterizing feature of each being_the amount of termine if the twist deformtiom of ETC blades could 
tip weight used. Design-1 had 15 lbs. of tip weight which be predicted accurately in a rotating environment, and 
could be accomodated by conventional helicopter rotor to examine the influence on twist deformation that may 
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Figure 17: Twist distributions for the ETC blades in non- 
rotating undeformed state. 

occur due to the propeller-moment and aerodynamic mo- 
ment effects. For this test, a set of composite model 
rotor blades was manufactured from existing blade molds 
for a low-twist helicopter rotor blade, but the ETC de- 
sign incorporated 20' off-axis plys in the Gr/E spar to 
obtain the desired coupling, the cross section of which 
is illustrated in figure 19. The figure shows that weight 
tubes were present, allowing additional mass to be added 
to the blade. Data were obtained for both a ballasted 
(increase in effective tip weight) and unballasted blade 
configuration in sea level atmospheric conditions over a 
large range in collective settings. The influence of col- 
lective on the twist deformation showed the influence of 
the propeller moment on the twist. The unique capabil- 

Figure 18: Power requirements in hover as a function of 
twist deformation produced. 

r [ +20°], Graphite / Epoxy spar 

I \ Nomex honeycomb core 

Lead 1 \ B ~ S ~  core \ rFibergla~~ skin 

Forward w 

L 4 . 2 4  in- 

ities-of the  NASA LaRC TDT were used to repeat-some 
of the tests in near-vacuum conditions as a means of de- ~i~~~~ 19: cross section composition of the ETC blade 
termining the effect of aerodynamic contributions to the hover tested in the TDT. 
twist. Maximum twists of 2.54" and 5.24' were obtained 
at 800 RPM for the ballasted and unballasted cases, re- also did not contain an axial degree of freedom with 
spectively. These results compared well with predictions which analytical models could be modified for ETC 
from a NASTRAN finite element model as illustrated in 
figure 20. The influence of the propeller moment and 

In the study of reference 26, the performance, response, aerodynamic moment were found to be minimal, with 
changes in twist less than 0.2' contributed from these and stability of a tiltrotor with elastically-coupled com- 

posite rotor blades was examined. This study included effects. 
a development of the analytical tools required to per- 

Aeroelastic Stability of Extension-Twist- form these tasks by adding required capabilities associ- 
Coupled Rotor Blades. Despite the extensive ated with tiltrotor configuration modeling and general 
analytical and experimental studies of ETC structures anisotropic beam modeling to the University of Maryland 
as described in the previous paragraphs, the capability Advanced Rotor Code (UMARC). The modified analysis 
to examine the dynamic effects of ETC rotor blades provided the capability to examine the influence of ETC 
were limited during the time of these studies because on blade loads and aeroelastic stability in addition to the 
the comprehensive aeroelastic analyses- available did performance predictions asareviously discussed. Using a 
not provide modeling for such generally anisotropic similar procedure as that of reference 24, the performance 
elastically-coupled rotor blades. Most of these analyses of a tiltrotor in hover and cruise was predicted using ETC 
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F~~~~~ 20: T~~~~ deformations measured and predicted Figure 21: Undeformed (nonrotating) twist distributions 

for the ballasted and unballasted ETC rotor blade set. the ETC designs. 

rotor blades with varying amounts of tipweight added to cant in the airplane mode of tiltrotors and is destabiliz- 
develop twist distributions that were optimum for cruise ing to whiriflutter, as is discussed in previous sections of 
and near-optimum for hover. The hover results as illus- this Paper. A more thorough explanation of the factors 
trated in figure 22 show that the ETC designs were pre- iduencing rotor pitch-lag coupling is presented in refer- 
dieted to improve the hover performance over the baseline ences 26 and 27, and some of this discussion is offered in 
twist distribution by as much as 7%. The performance the following paragraph to help explain how the elastic 
for the cruise mode was predicted to improve by about coupling is beneficial. 
2% which is valid for all cases. 

The study of reference 26 also examined the effect of 
the ETC rotor blades on aeroelastic stability. The ad- Consider the rotor system in hover. Here the rotor 

dition of tip-weights as required to obtain the twist de- disc loading is high, so to offset large blade bending mo- 

formations desired to optimize performance were found ments, rotor precone is introduced. As shown in figure 6, 

to have a highly destabilizing iduence on the precone gives a component of centrifugal force which 

The dominant effect is associated with the pitch-lag cou- opposes the lift force. With ideal precone these forces 
pling in the rotor system that is created by the tipweight balance, and there is net bending moment imposed 
in with precone and a reduction in the on the rotor blade (at least for some desired spanwise 

tor thrust between hover and cruise. This effect, as is location On the Now,cOnsider the rotor system 

illustrated in figure 3, results in a large negative spring in airplane cruise. The disc loading decreases by an or- 

relating torsion moment about the pitch axis to blade der of magnitude compared to the hover value because 

lag deformation. The damping in airplane mode for a lift is generated by the wing and the thrust now only is 

baseline XV-15 semispan wing and rotor blade model is required to overcome drag. The centrifugal force compo- 

compared with ETC blade version of the model in fig- nent perpendicular to the blade also decreases because of 

ure 23. These results show that the destabilizing influ- the lowered rotor 'peed, but not as much as the 

ence of ETC blade designs can be quite with reduction in blade lift forces. Thus, in cruise there is a 

flutter velocities predicted to drop by a t  least 50% for the significant imbalance of centrifugal force tending to bend 

designs considered. the rotor blade back (flap down). This imbalance creates 
a torsion moment about the blade inboard sections pr* 

Bending-Twist-Coupled Blade  Studies portional to the lag bending deflection as illustrated in 
figure 6 .  Now consider a simplified static torsion balance 

Whirlf lut ter  Stability Augmentation. The study of the rotor blade where only the lag deflection, torsion 
of reference 26 considered the use of bending-twist- deflection and flapping moment are included. The net flap 
coupling in rotor blades for augmenting tiltrotor whirlflut- moment due to aerodynamic_and centrifugal forces has a 
ter stability. This coupling may be used to counteract torsional component proportional to lag which must be 
the inherent negative pitch-lag coupling which is signifi- balanced by the blade torsional stiffness: 
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Figure 22: Hover performance for ETC blades as a func- 
tion of tipweight. 

where Mp is the net bending moment, 71 is the lag de- 
flection, le is the torsional inertia, wg is the torsionaI fre- 
quency, and 6 is the local torsional deflection. If the blade 
is considered to be semi-rigid such that the lag and tor- 
sional deflections occur at  the root of the blade, then an 
effective kinematic pitch-lag coupling term can be defined 
as 

where Kp, > 0 gives lag-backlpitch-down coupling. The 
flap moment at  the blade root is given by 

where L is the blade lift a t  a given spanwise position, 
,B, is the precone angle, and PtTi, is the elastic coning 
angle. In hover, the precone is selected to balance the lift 
so Mp is small and Kpq is small. In cruise, the precone 
term dominates so the kinematic pitch-lag coupling can 
be estimated by: 

Therefore, the precone and torsional stiffness determine 
the pitch-lag coupling, and this coupling happens to have 
a significant effect on tiltrotor stability in high-speed 
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Figure 23: Destabilizing influence of extension-twist- 
coupling on tiltrotor stability. 

flight. The effective kinematic coupling of an XV-15 
model is estimated in reference 27 to be -0.3 which is 
considered a high value. 

From the discussion of the previous section, it appears 
that if positive pitch-lag coupling were introduced into 
the rotor system to offset the negative pitch-lag coupling 
introduced by rotor precone, then the stability charac- 
teristics should improve. There are two methods which 
may readily be used to introduce positive pitch-lag cou- 
pling (lag-backlpitch-down): kinematic coupling in the 
control system and elastic bending-twist coupling in the 
rotor blade. There are several reasons why the use of 
kinematic coupling to develop positive pitch-lag coupling 
may present difficulties, as are discussed in reference 26. 
The current paper focuses on explaining the potential for 
using elastic tailoring to produce the desired coupling ef- 
fects. 

A basic concept for a bending-twist-coupled rotor blade 
used in tiltrotor cruise mode is illustrated in figure 24. 
An untwisted blade is used in the diagram to clarify the 
deformation directions. The collective in tiltrotor cruise 
mode is on the order of 40" to  50' at the 75% spanwise 
station. As tiltrotor blades are also highly twisted, the 
inboard portion of the blade is at pitch angles on the order 
of 60" to 70°,which places the flapwise-bending direction 
of the local blade cross section more in line with the in- 
plane direction (defined by the plane of rotation) than 
the chordwise-bending direction. For a stiff-inplane sys- 
tem, where the virtual lag hinge is going to be outboard of 
the blade pitch axis, the rotor system pitch-lag coupling is 
influenced most effectively by flapwise-bending-twist cou- 
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Figure 24: A Bending-Twist-Coupled Blade in Cruise 
Mode. 

pling in the rotor blade. 
Using the elastic coupling parameters definitions de- 

fined in reference 19, the aeroelastic analysis of refer- 
ence 26 was used to determine the aeroelastic stability 
of a semi-span tiltrotor model with wing and rotor sys- 
tem characteristics similar to that of the XV-15, but with 
increasing amounts of flapwise-bending-twist coupling in 
the rotor blades. The influence on whirlflutter stability 
associated with the addition of elastic coupling is illus- 
trated in figure 25 for three values of the flapwise-bending- 
twist elastic coupling parameter, QFT.  The baseline case 
( \ k F ~  = 0) is predicted to become unstable at about 280 
knots. The velocity at which the system becomes unsta- 
ble is shown to increase with the magnitude of flapwise- 
bending-twist coupling, Q F ~ ,  to near 400 knots with the 
maximum amount of qFT considered. Using the charts 
of reference 19, example of which are illustrated in fig- 
ures 26 and 27, the elastic coupling used in this study may 
be achieved by rotating the principle axis of the laminate 
by less than 5", and the corresponding reduction of the 
effective flapwise-bending stiffness is shown in figure 27 to 
be less than 2%. Similarly, the plots in reference 19 may 
be used to determine that the torsional stiffness would 
increase by about 2% and the chordwise stiffness would 
decrease by about 5% for ~ F T  = 0.1. These results indi- 
cate that the use of flapwise-bending-twist-coupled blades 
may provide a very favorable influence on stability with- 
out creating adverse effects on performance, blade loads, 
or rotor system dynamics. 

SUMMARY 

The studies reported in this paper f o c u s ~ n  four unique 
aeroelastic tailoring concepts: 1) bending-twist (pitch- 
bending) coupling in the wing to augment aeroelastic 
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Figure 25: Effect of flapwise-bending-twist coupling on 
whirlflutter stability. 

stability associated with whirlflutter in high-speed air- 
plane mode, 2) bending-twist coupling in the wing to aug- 
ment aeromechanical stabihty of soft-inplane rotor sys- 
tems subject to ground and air resonance, 3) bending- 
twist coupling in the rotor blades to reduce rotor pitch-lag 
coupling and thereby augment aeroelastic stability asso- 
ciated with whirlflutter in high-speed airplane mode, and 
4) extension-twist coupling in the rotor blades to opti- 
mize blade twist distribution between hover and cruise 
and thereby gain an aerodynamic performance improve- 
ment. The studies associated with augmenting whirlflut- 
ter stability show that both wing and blade tailoring are 
effective, with increases in stability boundaries of at least 
50 knots predicted based on existing systems. The wing- 
tailoring study for soft-inplane rotor systems shows that 
bending-twist coupling in the wing can be used to avoid 
ground and air resonance, but these results are prelim- 
inary, and further analysis must be conducted to deter- 
mine feasibility of the beneficial couplings on tiltrotor in 
other flight modes. Finally, the several studies devoted 
to extension-twist coupling indicate that, while there is 
a performance payoff for optimizing blade twist, the re- 
quired stiffness and mass changes are shown to be ex- 
tremely destabilizing to tiltrotors in whirlflutter, indicat- 
ing that the passive twist control concept may not be 
feasible for the current tiltrotors systems. 

Relative Merits of Blade and Wing Tailoring 

The aeroelastic studies pcesented in this paper show 
that either wing or blade tailoring may be used to sig- 
nificantly increase the aeroelastic stability boundaries for 
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Figure 27: Flapwise-bending stiffness ratio as a function 
of the flapwise-bending-twist coupling parameter. 

Figure 26: Flapwise-bending-twist coupling parameter as 
a function of ply angle. ity and Flapping,", J. American Helicopter Society, 

April 1969.. 

tiltrotors in high-speed flight. Considering the complex- 
ities and greater risks associated with modifying struc- 
tures designed for the rotating environment; it is gen- 
erally accepted that &xed system modifications are pre- 
ferred. This favors wing tailoring over blade tailoring 
and explains why the investigations associated with com- 
posite tailored wings have already been tested in the wind 
tunnel and considered in full-scale design studies. One 
drawback of wing tailoring, however, is that the stability 
augmentation of the wing may be limited by instabilities 
associated with the wing chord mode which is not neces- 
sarily improved by the elastic couplings used to augment 
aeroelastic stability of the wing beam mode. To ob- 
tain the stability margins necessary for even greater cruise 
speeds, such as the anticipated 400-knot class of tiltrotors 
predicted for future designs, the blade and wing tailoring 
concepts presented may need to be considered together. 
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ABSTRACT 

The aim of the present paper is the analysis of the aerodynamically induced fuselage vibrations for 
proprotor-fuselage configurations which are of interest in tiltrotor aircraft. As widely known, the 
development of technology concerning tiltrotor aircraft is of primary interest in modern aeronautical 
research. This type of vehicle combines advantageous takeoff and landing procedures (similar to  
those needed by helicopters), with cruise performances that are analogous t o  those of currently 
used propeller-driven airplanes. Noting such flexibility in flight operations, it may be anticipated a 
large impact of this kind of aircraft on the aeronatical transport field in the nest future. Here, we 
consider different proprotor-fuselage configurations which include those related to vertical takeoff 
and landing (horizontal proprotor disk), and cruise conditions (vertical proprotor disk). In the 
fuselage vibration analysis, the elastic displacements are expressed in terms of series expansions on 
a complete set of orthogonal functions. The forcing terms in the structural dynamics equations, 
which depend on the exterior pressure field, are obtained from the analysis of the interactional 
aerodynamics of the fuselage-proprotor system. This will be accomplished by a boundary element 
method for compressible potential flows, based on a boundary integral equation for the velocity 
potential. The application of the Bernoulli theorem yields the pressure distribution and hence 
the aerodynamic loads acting on the fuselage. The formulation presented has been applied to  a 
simple, but realistic, fuselage configuration. Numerical results are presented for esternal pressure 
fields generated by a proprotor in three different flight conditions, corresponding to  the takeoff and 
landing phase (horizontal rotor disk), cruise (vertical rotor disk). and the conversion phase (45 
degrees angle between the rotor axis and the fuselage axis). In order to validate the methodology 
on a simple test case. the results obtained for an external pulsating point source are also included. 

INTRODUCTION 

I n  the present paper we present an integrated modal-integral formulation for the aeroelastic analysis 
of the fuselage vibrations induced by the proprotor in a tiltrotor aircraft. This type of vehicle com- 
bines advantegeous takeoff and landing procedures, similar to those needed by helicopters, with 
cruise performances alligned to those of the modern propeller-driven general aviation airplanes. 
Noting these characteristics, a large impact of this kind of aircraft in the short-midrange aero- 
r~nutical transportation is to be espected i n  the nest future. Consequently, the development of 
tools devoted to the analysis and design of tiltrotor aircraft is of primary interest in the modern 
aeronautical research. Here. we address the problem of the aerodinamically-driven fuselage vibra- 
tioils induced by the proprotor during three typical flight conditions, corresponding to the vertical 
takeoff and landing configuration, the cruise, and the intermediate conversion phase. The fuselage 
is tr~odeled as a thin cylindrical elastic shell closed a t  the upwind and downwhd e s t r e ~ l ~ e s  by two 
rigid hemispherical domes. These enclosures are introduced in order to ensure the smoothness of 



tllcb st.rea~nli~tcs aroul~d the fuselage-like body (eliminating t l~c  sharp edges introduced by a simple 
cy1itldri~;~I geometry). without affecting the structural dynarrlics (note that the domes are assumed 
to remain i n  the position they have i n  the undeformed fuselage configuration h a s  it would be ob- 
taineblc i n  a wind t,unnel test keeping them fixed by proper supports). The displacements of the 
eli~stic shell are expresseed in  terms of series expansions on a complete set of orthogonal functions. 
T l ~ e  application of the Galerkin method yields a set of ordinary differential equations for the modal 
amplitudes of the elastic deflections. To evaluate the generalized aerodynamic forces acting on the 
fuselage we use a boundary integral equation formulation for the velocity potential, based on that 
presented in  hlorino.4 This is solved by means of a boundary element method: the pressure is evalu- 
ated from the potential through the Bernoulli's theorem, and the generalized forces are determined 
by projection over the modes of the shell. The formulation above is closely related to that first 
presented in Iemma, Trainelli, and Morinol and Iemma et a1.,2, where preliminary applications to 
a spherical shell at rest were included, and extended in Iemma and Gennaretti 8 to the analysis 
of a cylindrical shell in uniform translation. In those papers, the aeroelastic formulation used here 
is coupled to the acoustics of the cavity enclosed within the elastic shell, in order to predict the 
cabin noise induced by external sound sources. Here, the emphasys is on the analysis of the elastic 
behaviour of the fuselage; thus, the influence of the internal acoustics is not taken into account (this 
is justified by the fact that the feedback due to the interior acoustics on the elastic displacement 
is negligible for this kind of problems), and the external field is obtained by the solution of the 
complete interactional aerodynamics of the fuselage-proprotor system. 

In order to validate the methodology on a simple test case first, we present the results obtained 
for a translating fuselage-like shaped structure, forced by an external pressure field generated by 
a pulsating point source, rigidly connected to the shell. Then, we present applications of this 
formulation to the analysis of more realistic fuselage-proprotor configurations, corresponding to 
different flight conditions. In particular, we consider the takeoff and landing phase, where the 
proprotor disk is in a horizontal plane, the cruise condition, where the rotor disk is on a vertical 
plane, and the conversion phase, for which we assume an angle of 45 degrees between the rotor axis 
and the fuselage axis. 

In  the next section, the approach used for the structural dynamics of the fuselage is described. 
Then, the boundary element approach used for the solution of the exterior aerodynamic field and 
the aeroelastic operator are examined. Finally, preliminary numerical results for the configurations 
described above will be presented. 

FUSELAGE STRUCTURAL DYNAMICS 

.As mentioned above, except for the nose and the tail-end that are assumed to be rigid, the fuselage 
is modeled as an elastic thin cylindrical shell with circular section. Here, we present the equations 
governing the dynamics of the fuselage, forced by the exterior unsteady pressure that is induced 
by the aerodynamic field generated by both the proprotor rotation and the structural vibrations. 

Following the linear theory developed in Ref. [ 5 ] ,  the dynamics of this shell is described i n  terms 
of the elastic displacements u(x. 0. t ) ,  v(x, 9, t)  and w(x. 8, t )  that represent, respectively. the axial 
deformation, the azimuthal deformation and the radial deformation of its middle surface (with 
(x. 8) representing a system of cylindrical coordinates defined over the shell surface). Specifically, 
the shell dynamics is governed by a set of three coupled differential equations of the following type 
(see Ref. [5]), 



where the L's are linear differential operators describing the effect,s of elastic displace~nents on 
t,he eqi~ilibri~~rn ec111;~tious ( e . g . .  C,, is the linear operator describing the effects of the azimuthal 
clisplacernent, L*, o n  the axial equilibrium equation), and p, denotes the mass per unit area of 
the shell. Furternlore, p denotes the esterior normal presst~re acting on the shell surface, given 
by the the aerodyrtamic field generated by the fuselage and proprotor motions. I n  this work, we 
assume hinged edge conditions for the shell model of equations (1) - (3 ) .  These conditions (and 
thc condition of periodic solution along the azimuthal coordinate) are satisfied if one expresses the 
elastic displacement in terms of the following series 

M .V 

u(x. 9. t )  = E[a&, ( t )  @&,(x, 8) + aftn(t) @Ln(x. B ) ] .  

where 

@kn(x,8)  =sin ( m ~  - ') cos(n 81, @S,, (x, 0) = sin (m;x) - sin(n8), 

are a complete set of orthogonal functions (with L denoting the length of the shell under consider- 
ation). whereas the time dependent coefficients of the combinations, ahn (t) ,  aLn(t) ,  bh, ( t )  , bLn(t), 
qkn (t) and q&, ( t ) ,  represent the structural Lagrangean coordinates of the aeroelastic system under 
examination. 

Then, combining equations (1) - (3) with equations (4) - (6), and applying the Galerkin approach, 
the shell dynamics is described by a set of P = 3 x M x (2lV + 1) ordinary differential equations 
for the unknown Lagrangean coordinates of the shell, which in matrix form is expressed as 

where x is the column matrix containing the Lagrangean coordinates, M is the P x P diagonal 
mass matrix, K is the P x P stiffness matrix, whereas f is a P-element column matrix having the 
first (2/3)P elements equal to zero, with the rest containing the following generalized aerodynamic 
forces 

i.e., projections of the aerodynamic pressure in the direction of the functions in equation (7). 

AERODYNAMIC OPERATOR 

Observing equations (4) - ( 6 ) ,  we note that the fuselage vibrations are induced by unsteadiness 
of aerodynamic pressure acting on its surface. Specifically, the pressure term forcing the shell 
dynamics appears in the equilibrium equation along the radial direction (equation (3)) and the 
coupling terms are responsible for extension of its effects in the axial and azimuthal equilibrium 
equations. From the application of the Galerkin approach, this forcing term yields the generalized 
aerodynamic forces mentioned above (see equation (9)). In our problem, the fuselage unsteady 
pressure distribution is influenced by the perturbation induced by the proprotor rotation and shell 
vibrations. Hence, the aerodynamic pressure field is decomposed as 



~vhert? p,,,, is the i~tcident pressure due to the external source of perturbatiori (the proprotor), 
wlrcrens p,, is the pressure scattered by the fuselage surface. .Assuming that  the esternal flow is - 
potential (i.e., such that 3 = Vd, with 3denoting the How velocity and o the potential function), 
and that p,,, (and the incident potential, 4,,,) is a known field, the scattered pressure field is here 
analysed by first using a boundary element approach for the solution of the scattered potential 
field, d,,. and then applying the Bernoulli theorem. Specifically, starting from the following wave 
equation for the scattered potential field in  compressible subsonic flows, espressed in a frame of - 
reference connected with the undeformed fuselage, and having velocity v', = - uo i, 

and applying a boundary integral equation approach, one obtains (see Ref. [6]) 

IIn the integral equation (12), G(Z, fi = -l/(41rrp) is the unit source solution of equation (11) with 

= ( [ G R - ( 7  - Z)I2 + P2(Ii  - where fi, = (-uO/c) ?is the Mach vector of the reference 
frame velocity and P = (1 - whereas SF denotes the fuselage surface having n' a s  a unit 
normal. and 

In addition, [...Is denotes evaluation a t  the retarded time i = t - 13, where the delay has the 
expression 0 = [ra - G R  . ( i  - Z)]/cP2 with * = [rp + 6, - (7 - Z)]/c,02. Furthermore, from the 
impermeability conditions on the fuselage surface, 3- n'= 3, -6, we have 

from which it is apparent that  the scattered potential depends upon both the fuselage motion (3, 
denotes the velocity of the fuselage surface) and the incident potential field. 

Next, observing that v', = 3, + v',!, with Gel denoting the fuselage surface velocity induced by 
the elastic deformation and such that  v',! . i~ = f(q$,, qk,), taking the Laplace transformation 
of equation (12), writing its approximate discretized version by dividing the fuselage surface into 
panels (boundary element method - BEM), and applying the Bernoulli theorem, for the generalized 
forces acting on the fuselage structure, we finally have 

(see Ref. [i] for details on the determination of the matrices appearing in the equation above). 
I n  equation (14) f, is a [ M  x (2N + l)]-element column matrix containing the generalized forces 
acting on the elastic portion of S F ,  q is a [ M  x ( 2 N  + l)]-element column matrix containing the 
structural Lagrangean variables q&,, q;,, and din,  is a column matrix containing the values of the 
incident potential a t  the center of the fuselage panels, whereas E(s) is the aerodynamic transfer 
function matrix describing the aeroelastic effects in the present analysis, and D(.s) is the matrix 
that describes the influence of the incident potential ( i . e . ,  the one generated by the proprotor). 
Note that, the matrix D ( s )  takes into account both the direct influence of the incident potential 
( i . ~ . ,  the forces due to the incident pressure), and the indirect one ( i . e . .  the influence of the incident 
potential on the boundary cortditions of the scattered potential, and hence on the forces due to tlte 
scattered pressure). 



AEROELASTIC OPERATOR 

From the models described in the preceding sections for the fuselage structural d y naniics and 
esterior aerodynamics, it is possible to determine the aeroelastic operator, i .e. .  the transfer function 
matrix connecting the external disturbance ( the incident potential due to the proprotor in our 
analysis) to the Lagrangean variables describing the fuselage elastic deformation. Observing that 

f =  {g}, and that  x = {$} , 

with a and b denoting the [ikf x (2% + l)]-element column matrices containing, respectively. the 
structural Lagrangean variables ah,, a;, and b",, b;,, Laplace-transforming equation (8), and 
combining it with equation (14), we have 

where 

[s2 M + K - ~ ( s ) ]  2 = D (s)  $inc, 

, and D(s) = 

Finally, from equation (15) one obtains the following aeroelastic response model 

where the [3 x iM x (21V + I)] x [3 x M x (21V + l)] transfer function matrix (aeroelastic operator), 
H, is given by 

NUMERICAL RESULTS 

In this section we present some preliminary numerical results. The formulation outlined above 
has been applied to  the aeroelastic response analysis of a fuselage-like shaped shell. The fuselage 
length, including the rigid emispherical enclosures, is Lf = l-lm. The length of the elastic portion 
of the fuselage is L = lorn, and the radius of its section is R = 2m. All the results presented in the 
following, are given in terms of the elastic energy distribution on the shell surface computed using 
iLI = N = 6 in equations (4) - (6) (qualitatively similar results have been obtained for greater 
numbers of azimuthal and axial decomposition modes). Specifically, the harmonic content of the 
energy intensity is represented in the form of isolines plots on the developed shell surface, as a 
function of the axial abscissa x, and the azimuthal angle 8. 

In  order to validate the n~ethodology on a relatively simple test case, first we present the results 
obtained considering the perturbation pressure field induced by a pulsating point source located in 
the horizontal plane of symmetry of the fuselage (corresponding to 0 = 0') a t  5.3 meters from the 
fuselage axis. Figure 1 depicts the isoenergy lines on the surface of the shell, correspotiding to the 
elastic response for an excittltioil Frequency of :1OHz, with no advancing velocity. .As to be espected, 
tlie solutio~i is syrnnietrici~l with respect to the azimuthal locatior~ of the external source, and the 
energy distribution is corlc:eritrated on the upwind and downwilid region of the shell, due to the 
presence of the constraints. The efrects of the motion of the fuselage-source system is presented i n  



Vigure 'L where tlie sarne geonietrical configuration is movir~g with a velocity v, = l.lOna/.s i n  the 
negative x direction. The intensity of the elastic energy (not indicated in  the figures, for the sake of 
ill~~stration clarity) 11;~s been found to be much higher than i r ~  the preceding case (due to the higher 
tl y narn ic pressure), and appears to be more distributed along the fuselage length. Furtiler more, 
in  Figure :3 the response to a perturbation having the same intensity and a frequency of 6 0 H z .  is 
depicted. In this case, the response energy levels are higher than i n  Figure 2. and this is due to a 
combination of both aerodynamic and structural effects. 

Now, we move our attention to a more realistic tiltrotor configuration. The same fuselage-like 
shaped shell used in  the preceding cases is coupled to a three-bladed proprotor, with radius R, = 
:3m, and chord c = O.1.5m. The blade is twisted i n  order to give an effective angle of attack variable 
from 0 degrees a t  the rotor hub, to 4 degrees a t  the blade tip. In all the following cases, the 
angular velocity is set to 600 RPM, for a fundamental blade passing frequency of fo = 3 0 H z .  The 
velocity potential induced on the surface of the fuselage by the proprotor has been evaluated using 
a boundary element method based on a boundary integral equation formulation for propellers, 
closely related to the one used here for the aerodynamics of the fuselage (see e.g., Gennaretti et 
a1.9). In Figures 4 to 6 we present the solution obtained for a fuselage-proprotor configuration 
corresponding to cruise conditions with velocity v, = 140mls. In this flight phase, the proprotor 
acts as a propeller, with the revolution axis parallel to the fuselage axis. The results presented 
in the three figures correspond, respectively, to the structural response at frequencies fo, 2fo, and 
3 fo. The rotor hub is located at  the same position of the point source in the first test case. Figure 
4 (corresponding to fo) shows how the solution due to the input pressure signal generated by the 
proprotor is not symmetrical with respect to the hub azimuthal position. On the other hand, the 
comparison with Figures 5 and 6  reveals that this lack of symmetry gradually reduces for frequency 
corresponding to the second and third revolution harmonics. Note that, in this case the response 
energy levels slightly decrease as the frequency increases: the increasi?"of the transfer function 
harmonic content is balanced by the fact that the harmonic content of the perturbation signal 
generated by the proprotor is much higher at f = fo then at f = 2 fo and f = 3 fo. 

Next, we have examined the aircraft in the conversion phase configuration and in the takeoffllanding 
condition. Specifically, for the solutions depicted in Figures 7 to 9 we assumed an angle between the 
fuselage axis and the rotor revolution axis of 45 degrees, whereas in Figures 10 to 12, dealing with the 
vertical flight phase, the proprotor disk is horizontal. Note that, in order to perform a comparison 
between the solution corresponding to different flight conditions, the advancing velocity is set a t  
v, = 140mls (although this implies unrealistic flight conditions). Again, the energy distributions 
appear to be concentrated a t  the fuselage extremes, but their values are much higher than those 
observed in the cruising case, mainly due to  the difference in the relative orientation between the 
fuselage axis and the flight directions. Furthermore, in the takeoff/landing case, the energy levels 
decreases as the frequency increases, whereas, in the conversion phase, the energy levels computed 
for the frequency 2 fo are higher than those observed for the frequencies fo and 3fo. 

A more realistic value for the translational velocity is used for the conversion and takeoff/landing 
test cases presented in Figures 13 to 18. It should be noted that, for both the conversion and 
takeoff/landing phases, the overall distribution of the elastic energy at  the frequency of interest is 
similar to that obtained for the corresponding configuration at higher advancing velocity, whereas 
the energy levels have been computed to be much lower. 

CONCLUDING REMARKS 

An aeroelastic formulation for the prediction of the fuselage vibrations induced by the proprotor 
iu  a tiltrotor aircraft has been presented. The dynamics of the structure is described in terms of 
a lit~ear combination of orthogonal functions, and is forced by the aerodynamic generalized forces 
tl~lc to the pressure acting on the exterior of thc fuselage. The aerodynamic loads are obtained by 
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iL bou~l(lary elenlent method based on a boundary integral equation formulation valid for bodies in 
arbitrary motZion. The niethodology has been applied to the prediction of the aeroelastic response of 
a simple fuselage-like structure, when forced both by an esternai pulsating poit source and by the 
pressure field induced by a close proprotor. The influence on the fuselage aeroelastic respose of the 
aircraft velocity, and of the relative positions between fuselage and proprotor. has been examined. 
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Figure I :  Isoenergy lines a t  30 H i  for an external Figure 4: Isoenergy lines at 30 H i  for cruising 
point source at  rest. tiltrotor. v, = 140m/s. 

Figure 2: Isoenergy lines a t  30 H i  for an external Figure 5: Isoenergy lines at 60 H i  for cruising 
point source. v, = 140mls. tiltrotor. v, = 140mls. 

Figure 3: [soenergy lines a t  60 H z  for an external Figure 6: Isoenergy lines at 90 H i  for cruising 
point source. v, = 1-lOml.s. tiltrotor. v, = 14Omls. 



Figure 7: Isoenergy lines a t  30 Hz during the Figure 10: Isoenergy lines a t  30 H z  in take- 
conversion phase. v, = 140mls. offllanding conditions. v, = 140mls. 

Figure 8: Isoenergy lines a t  60 Hz during the Figure 11: Isoenergy lines a t  60 H z  in take- 
conversion phase. v, = 140mls. offllanding conditions. v, = 140ml.s. 

Figure 9: Isoerlergy lines a t  90 H z  during the Figure 1:': Isoenergy lines a t  90 H z  in take- 
corlversion phase. v, = l-lOm/s. off/landirlg conditions. v, = 130rr~/.s. 



Figure 13: Isoenergy lines a t  30 Hz during the Figure 16: Isoenergy lines a t  30 H z  in take- 
conversion phase. v, = 14m/s. off/landing conditions. v, = 14m/s. 

X X 

Figure 14: Isoenergy lines a t  60 Hz during the Figure 17: Isoenergy lines a t  60 Hz in take- 
conversion phase. v, = 14m/s. off/landing conditions. v, = 14mls. 

Figure 13: Isoenergy lines a t  90 H i  during the Figure 18: Isoenergy lines a t  90 H z  i n  take- 
conversioll phase. v, = l-lrnls. off/landing conclitions. v, = 1-irn/s. 
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Abstract aircraft, currently tested in the Transonic Dy- 
namic Tunnel (TDT) a t  NASA Langley. The 

The design of advanced rotorcrafts requires the control strategy is based on the Generalized Pre- 
ability to analyse sophisticated, interdisci~linar dictive Control (GPC) technique, with a ~ e c u r -  
systems to a degree of refinement that only re- sive Least Mean Squares (RLMS) on-line identi- 

cently has become achievable at a low price, fication of an equivalent discrete linear System, 
thanks to the improvements in computer power. that is used to design the adaptive controller. 

bIulti-body analysis allows the detailed model- The rotor pitch controls are used as actuators. 
ing of the kinematics as well as of the strut- Different combinations of strain gages and ac- 

tural properties of rather sophisticated mechan- celerometers are used as sensor devices. 
ical systems, such as helicopter rotors. When 
integrated with aeroservoelastic analysis, it rep- Keywords: MULTI-BODY -ANALYSIS, PREDIC-  

resents a powerful tool for both the analysis and TIVE CONTROL? TILTROTOR 

the design of aircrafts, with particular regard to 
rotorcrafts. An original multi-body formulation 
is presented, based on the direct writing of a 

Introduction 
system of differential-algebraic equations (DAE) A~~~~~~~~ vehicles must satisfy many require- 
that describe the equilibrium and the kinematic ments on performances, but also on handling 
constraints of a structural system. The finite qualities, environmental impact. Air- 
rotations, during the time-step integration of craft and rotorcraft designers are required a 
the initial value problem, are handled in an ef- great effort to allow operations close to, or even 
ficient manner by means of a technique "led inside, highly populated are=, and to provide 
"Updated-Updated Rotations" 7 an Updated La- the crew and the passengers a confortable cock- 
grangian that =reference the Pre- pit or seat, subject to = little vibrations and 
dicted configuration of the system. This allows noise as possible. -4 viable answer to the lat- 
'0 the rotation perturbations in the 'Om- ter requirements is represented by active control, 
putation of the Jacobian matrix, with consider- The active control of rotorcraft has been inves- 
able computational savings, while preserving the tigated for a long time, I~~~~~~~ began early in 
accuracy by consistently computing the residual. the seventies, and grew continuous~y until to- 

and the unknowns are day [16], [14]. Different techniques have been 
added, to model the control system to the de- proposed to achieve the main goal of vibration 
sired level of refinement, from idealised control and/or noise reduction. exaustive resumP of 
input/output signals, to each servosystem corn- - .  - - 
ponent. The numerical arldysis of a tiltrotor ' C ~ r r ~ ~ ~ ~ n d i n g  Author ,  

via La Masa 3.1, 20158. blilatto corlfiguratior~ is proposed, based 0x1 an analyt- Tel,: ++39(02)3933-23'3:1 
ical niodel of the WRATS wirld tunnel model. r;.,,: ++39(02)3933-233.1 
This is a 115 scale model of tile V-22 t.iltrotor E-mail: nrastrral:Oaero.poflrrrz.~ 



the state of the art and of the most promising 
dcveloprnents can be found in Ref. [ 5 ] .  Vibra- 
tions in the airframe can be reduced both by 
cancelling their effects or by eliminating their 
source, namely periodical blade airloads. In this 
paper the second approach is investigated. Ba- 
sically, rotorcraft vibrations originate from the 
discrete nature of the rotor, that is made of a 
finite number of blades. This results in time- 
dependent aerodynamic loads in forward flight, 
related to the different airstream speed expe- 
rienced by the blade when it is advancing and 
retreating, that results in dynamic stall and in 
reverse flow at the inner part, even for com- 
paratively low advancing ratios. Noise and vi- 
brations are also originated by the vortex sheet 
shed by a blade, when impacting on the follow- 
ing one (Blade-Vortex Interaction, or BVI). The 
loads generated by a rotor blade can be modi- 
fied by acting on the blade pitch, both directly 
(i.e. by changing the pitch of the whole blade by 
means of the swashplate or other pitch control 
device) or indirectly (i.e. by actuating a trail- 
ing edge flap, that induces a blade twisting mo- 
ment). Rotorcraft active control has been tradi- 
tionally and naturally oriented towards Higher 
Harmonic Control-like (HHC) approaches ([lo], 
[3], [13] among the others) because the blade 
pitch actuation mechanism represents an easy 
and cheap way to apply the required control 
power directly to the blade and requires limited 
additional power. Moreover, the periodic nature 
of the blade vibratory loads allow an easy design 
of harmonic control laws. Both open- and close- 
loop control have been investigated, the latter 
often being used in conjunction with the adap- 
tive, in-line identification of a linearised, fre- 
quency domain transfer function of the rotor- 
craft. It suffers from some disadvantages, mainly 
related to the periodic nature of the control in- 
put and to the comparatively low maximum ac- 
tuation frequency, resulting in limited flexibil- 
ity. The Independent Blade Control (IBC) is 
complementary to the HHC. Each blade is con- 
sidered as an independent system, and is con- 
trolled by an independent controller [9]. This 
technology is not as mature as HHC; the main 
problem that has to be faced is a viable and effi- 
cient means to deliver the control power into the 
rotating system [ 5 ] ,  [a]. .A different approach is 
used in the present work, based on the Gener- 
alised Predictive Control technique [2], (41, [ll]. 
There is no exploitation of the periodic nature 
of the rotor dynamics as a means to generate 

periotlic control forces. On the contrary, the ro- 
tor, and the whole rotorcraft, are considerc:d as a 
black-box that is identified on-line as a discrete- 
time, locally constant-coefficient linear system. 
The slow, lorkg term variation of the system co- 
efficients is accounted for by the recursive im- 
plementation of the identification. Based on the 
identified system, the response is predicted, and 
the control signal is designed by enforcing the 
desired behaviour of the controlled system. The 
paper first presents the predictive control theory 
that is used in the design of the control. .A brief 
description of the multi-body formulation that is 
used for the analytical model of the tiltrotor is 
given, followed by a comparison with numerical 
and experimental results of the WRATS tiltro- 
tor wind tunnel model [7]. This model, con- 
trolled by a proprietary implementation of the 
HHC called M.4VVS1 has been tested by Bell 
Helicopter at NASA Langley Research Center 
(LaRC) [15]. Finally the numerical results of the 
proposed control technique are illustrated and 
discussed. 

Discrete Control 

Discrete Time Equation. A discrete time, 
Auto-Regressive, Moving Average, with eXoge- 
nous input (-4RMAX) equation has the form: 

y ( k ) = a l y ( k - l ) + . . . + a p y ( k - p )  

+ bou ( k )  + . . . + h p u  (k - p )  

+ e ( k )  + cle ( k  - 1 )  + . . . + c,e ( k  - p)  

where y(t) ,  u ( t )  are the output and input 
arrays at time t ,  e ( t )  is the error array at time 
t ,  a,, j = l , p ,  b j ,  j = 0,p  and c j ,  j = l , p  are 
the matrices of a porder, time-independent, 
linear discrete system. The number of equations 
is represented by the number of outputs m; 
matrices a, are m x m, as matrices c, are. 
Matrices bi are m x n, being n the number of 
inputs. Usually the matrices of the system are 
unknown, only measures of inputs and outputs 
being available; the error can be measurable or 
not, depending on its nature. An unmeasurable, 
biased error is assumed unless otherwise stated. 

System Identification. The yet unknown sys- 
tem matrices can be stacked in a matrix @, 
while the observations car1 be stacked in all array 
p (k) ,  as follows: 



T 
p =  [ ! / ' ( k -  l ) T , . . . , ! / ( k - l ) )  , 

. , ' (k )"- ,  . . , U ( k - p ) " - ,  
T 

e ( k - ~ ) ' ~ ,  . . . . e ( k - p ) ]  

The predicted output is: 

and the difference between the current and the 
predicted output represents the error at the cur- 
rent time step, which is unknown by definition. 
Matrix O depends on k as far as it is estimated 
from a finite set of measures; it approaches the 
exact value provided the true system has the 
form of the assumed model. Equation 1 gives 
a means to estimate the error at every time step 
in a recursive manner. The error may be due 
to unmeasured disturbances, errors in measures, 
and errors in the parameters of the model (type, 
order, and so on): 

The observations at time steps ranging from i 
to j can be stacked by columns: y = y (i : j ) ?  
p = y ( i  : j ) ,  e = e ( i  : j), giving: 

where the expected output that results from the 
yet to be identified system, ye = Op, is used. If 
the error is unbiased, Equation 2 does not de- 
pend on the error itself (the error does not par- 
ticipate in array p)  and thus O can be solved 
for a finite set of measures to determine the op- 
timal value of the unknown parameters. In case 
of biased error, instead, it can be determined by 
recursively adding columns to Equation 2, and 
using each parameter estimate to compute the 
current estimate of the error. X global measure 
of the error is: 

J = ee' 

The minimisation of J with respect to @ gives a 
least squares fit of the system: 

where the t denotes the pseudo-inversion, that is 
required in case the system is only semi-definite. 
In this case, the excitation is not persistent, or 
the system is not completely controllable. 

Recursive Implementation. The recursive 
expressions of matrices ypT and ypT are: 

The inverse of matrix ppT can be directly up- 
dated instead of factorising the updat,etl ma- 
trix, by usirig the L D L ~  factorisation, sirlce 
the matrix is symmetric and positive definite or 
seniidefinite in the worst case; the positive defi- 
niteness car1 be artificially enforced. In this way, 
the numerical loss of accuracy can be reduced 
while improving the efficiency of the computa- 
tion. The recursive algorithm is: 

+ (k) '  = ,J+ ( k  - 1 ) '  + cp  ( k )  cp  ( k l T  

* ( k )  = P* ( k  - 1 )  + Y ( k )  cp ( k l T  

@ ( k )  = * ( k )  9 ( k )  
e ( k )  = y ( k )  - Q ( k )  9 ( k )  

The first two above equations update the 

matrices B (k) = (zj=,,k v ( j )  v WT)' and 

$ (k) = Cj=l,k Y ( j )  p ( j lT,  where a forgetting 
factor p has been used to identify a compara- 
tively slowly time-varying system. The third 
equation updates the estimate of the system 
parameters; the last equation estimates the 
error a t  the current step. -4rtificial stabilisat ion 
of the moving average part of the system is 
required, since unstable error dynamics, that 
can occur during the identification especially in 
the initial phase, have no physical meaning [I]. 

O u t p u t  Prediction. As soon as an estimate of 
the system to be controlled is available, either by 
parametric modelling or by black box identifica- 
tion, the horizon of the prediction can be easily 
extended. The predicted value a t  time t = k + 1 
is : 

y ( k  + 1 )  = a l y  ( k )  + . . . + a p y  ( k  - p  + 1 )  
+ bou ( k  + 1 )  + . . . + b p u  ( k  - p  + 1 )  

+ cle ( k )  + . . . + c,e ( k  - p  + 1 )  

the difference between the predicted and the ac- 
tual values being the error. By substituting the 
predicted value of the output a t  time t = k, it 
becomes: 

~ ( k + l ) = a : ~ ( k - l ) +  . . . +  a k y ( k - p )  

+ bou ( k  + 1 )  + bAu ( k )  + . . . + bhu ( k  - p)  

+ c:e  ( k  - 1) + . . . + cAe ( k  - p )  

where the new system matrices are recursively 
defined as: 

where x stands for a, b, and c, respectively. The 
predicted error at step k and beyond is assumed 
to be null since the error is assumed to be un- 
correlated with the outputs, the inputs and the 



pi~st  errors, while the estir11at.e~ of the output fornlulation of the CPC (the same applies tro the 
arc supposed to bc exact. Thc predicted value PvIinimurn Variance), and because it resulted less 
at tirxlc t = k + j becornes: efficient than the CPC itself, a t  least in the in- 

vestigated case. The control output resu1t.s from 
! j ( k +  j )  = r l { ! / ( k -  1 ) +  . . . +  a i g ( k - p )  the minimisation of the functional 

+ b g u ( k + j ) + . . . + b J , u ( k )  with respect to the control input Us, yielding: 

Let s be the number of steps ahead of the pre- 
diction. The predicted outputs from time t = k 
to time t = k + s - 1 become: 

Y, = .4Yp + BU, + CE, + PU, (3) 

The arrays and the matrices in Equation 3 are 
obtained by stacking the equations of the out- 
put a t  the above mentioned time steps, i.e. Y, 
contains the predicted output a t  s future time 
steps from the current one; Yp, Up and Ep con- 
tain the (measured) outputs, inputs and errors 
at the previous p time steps, being p the or- 
der of the system, and thus are known; Us con- 
tains the control inputs that must be determined 
to obtain the desired behaviour. The predicted 
output should be equal to a desired sequence of 
values, namely Y, = Yd, resulting in: 

Yd = AYp + BU, + CE, + PU, (4) 

Generalised Predictive Control. The so 
called Minimum Variance Control (21 descends 
from Equation 4 by directly imposing the desired 
output and solving with respect to the required 
control input. Under the assumption that the 
system has a direct transmission term (namely, 
matrix ba is invertible) and provided that it is 
minimum phase, one prediction step is sufficient. 
Moreover, the response follows the desired be- 
haviour regardless of the required control effort, 
except for the (unpredictable, because uncorre- 
lated by assumption) error e (k). As a conse- 
quence, the variance of the error is minimal. 
The Generalised Predictive Control, on the other 
hand, represents an extension and a generalisa- 
tion of this behaviour. The control still tries 
to force the system to follow the desired output 
starting from the current step, but the desired 
behaviour is imposed over a higher number of 
steps ahead. A prediction horizon higher than 
the control one can be used; in this case the de- 
sired response is imposed in a least square sense. 
Moreover, the control effort is accounted for by 
weighting the control output against the predic- 
tion error, to avoid saturation of the actuators 
and/or a rough behaviour. Another form of pre- 
dictive control is called Deadbeat Control [12]. It 
has not been considered in this work since it can 
be obtained as a special case of a more general 

where X is the control weight coefficient. The 
control input at time t = k is given by: 

u ( k )  = acYp + ,fJcUp + ycEp + bcYd 

where 6, is the last block-row of matriv 
Q = (PTP + X I )  ' PT, and the feedback matri- 
ces are a, = -&A, PC = -b,B and y, = -d,C. 

Physical Interpretation of the Predictive 
Control. The minimum variance control clearly 
represents a form of zero-pole cancellation. The 
control cancels the system poles and zeroes by 
inverting the system -4-'B. This operation is 
permitted only if the system is stable and mini- 
mum phase, and the resulting close-loop system 
statically responds to the current, unpredictable 
input only. The GPC attenuates this effect by 
simply shifting the poles and zeroes of the sys- 
tem towards higher frequencies. By properly 
choosing the coefficient A, both non-minimum 
phase and unstable systems can be controlled, 
with limited loss in performances. The choice of 
the model order and of the prediction and con- 
trol horizons are key to the effectiveness of the 
control. The order p must be high enough to 
account for all the meaningful poles of the sys- 
tem (a rule of thumb says that p x m should be 
equal to or slightly higher than the number of 
poles). But too high an order could result in a 
poor, and time consuming, identification. The 
prediction horizon s must be as high as p to en- 
sure that the complete dynamics of the system is 
accounted for; higher prediction horizons do not 
add further information to the prediction, but, 
together with a smaller control horizon, result 
in an overcollocated enforcement of the desired 
behaviour, thus overconstraining, and implicitly 
reducing, the control effort. 

Multi-Body Model 

X multi-body fornlulation has been used to 
describe the dynamics of the tiltrotor. The 



eq~iilibrium equations of each node are written; 
Illnipcd inertia is associated to each node. 
The bodies are connected by kiriematic and 
dynamic joints. The former are written as  
algebraic equations that add reaction forces arid 
couples as unknowns, while the latter directly 
participate in the equilibrium equations by 
adding configuration-dependent forces. An 
important example of dynamic constraint is 
represented by the beam element. Initial value 
problems are considered, by time integrating 
the resulting Differential-Algebraic Equation 
(DAE) system from an initial compatible and 
a la d 'Alembert balanced configuration. .4 
Predictor-Corrector integration scheme is used, 
based on an original formulation that ensures 
second order accuracy and linear A - L stability, 
with tunable algorithmic damping [7]. 

Kinematics. The basic unknowns are repre- 
sented by the positions and the reference frames 
of the nodes. The total positions x are used as 
nodal translational unknowns. Finite rotations 
are intrinsically nonlinear and require a special 
treatment in multi-body formulation kinemat- 
ics. The rotations are described by means of the 
Gibbs-Rodrigues rotation parameters in a modi- 
fied Updated Lagrangian scheme, called Updated- 
Updated [7], that assumes the predicted config- 
uration as reference. The unknown rotation pa- 
rameters account for the correction only, and can 
be considered truly "small", provided the pre- 
diction is accurate. The rotation matrix R, as 
function of the rotation parameters g, is: 

where the x  represents the cross product be- 
tween vectors, such that a x  is the matrix that 
multiplied by b gives a  x  b. In case of an up- 
dated scheme, the total rotation at time k + 1 
is Rkf  = R (g) Rk and in the updated-updated 
approach it reads Rk+, = R (g) qfl, where the 
superscript 0 refers to the predicted value of R 
at time k + 1. The differentiation of a vector 
that is constant in the local frame gives the ex- 
pression of the rate of change of the rotation: 
v' = R ' R ~ v  = (Gg') x v,  where 

The angular velocity is s, = C (g) g; in updated- 
updated form it is w = G ( g )  j + R (g) uO. Both 
matrices R and G, as well as  other entities 

that depend on the rotatiori pararr~eters such 
as the angular velocity and those that arc used 
in the linearisation of the kinematic quanti- 
ties, assumc a particularly simple expression 
when y is zero: both R and G become the 
identity matrix, the angular velocity becomes 
w % g + do,  while 4 G  is zero. Since the 
unknown updated-updated rotation parameters 
are small, the simplified expressions are used 
to speed up the computation of the Jacobian 
matrix used in the correction iterations, while 
the residual is consistently computed by using 
the complete expressions to ensure the accuracy. 

Dynamics. The equilibrium equations are writ- 
ten in terms of the derivatives of the momenta 
P ,  7 :  

P = F  
? - ( w x S ) x i = M  

where S is the first order inertia moment and F, 
11.1 are generic forces and moments. The defini- 
tions of the momenta must be added: 

m, J being the mass and the second order 
inertia moment. 

Constraint  Equations. A kinematic con- 
straint is a relationship between kinematic 
unknowns. Examples of basic constraints are 
the coincidence and orthogonality constraints, 
that can be used to build more complex cases. 
They result in algebraic or differential equa- 
tions, depending on whether the constraint 
is or is not holonomic. A reaction force or 
couple is required to enforce the constraint. A 
Lagrangian Multiplier+like approach is used. 
The reactions are direcly used as unknowns 
instead of the multipliers, to avoid the need of 
postprocessing to determine their value. 

Finite Volume Beam. The finite volume 
beam results from the direct writing of the 
equilibrium of a finite piece of beam in terms 
of the internal forces a t  the boundaries and 
of the external loads. The internal forces and 
moments are expressed as functions of the 
spatial gradient of the configuration by means 
of arbitrary 6 x 6 constitutive laws, resulting in 
a Co formulation. The generalised deformations 
of the beam at the boundary sections result 
from the differentiation of a linear interpolation 
of the nodal positions and rotation parameters. 



Frorn n r:lathcrrl;lt,ic:nl stantipoint, thc finite 
volurne bean1 tlescends from a weighted resid- 
I I ~ L I S  weak forin of the differential equilibrium 
(quation of the beam, wit11 piecewise constant 
weighting functions. Advantages of the finite 
volume approach are the ease in the determi- 
nation of the contribution to the equilibrium 
equations (only collocated evaluation of the 
forces is required), the absence of shear locking 
without the need of any numerical adjustment, 
and a more intuitive, physical meaning of the 
contribution to the equilibrium equations. A 
three-node beam element has been implemented 

PI. 

Tiltrotor Model. The system under analysis 
is represented by a multi-body analytical model 
of the Wing and Rotor Aeroelastic Testing Sys- 
tem (WRATS) tiltrotor aeroelastic wind-tunnel 
model. It is a semispan model of the V-22 cur- 
rently used at LaRC to investigate the tiltrotor 
technology; it was originally built for the prelim- 
inary and full-scale design of the V-22. The ana- 
lytical model, Figure l, is made of a three blade, 
hingeless rotor mounted on a pylon, that is elas- 
tically attached to the clamped half-wing. The 
rotor blades are modelled by 4 beam elements 
each, plus one beam element for each flexbeam. 
The complete control chain has been modelled, 
from the swashplate to the blades through the 
flexible control links and the pitch horns. The 
hub is linked to the mast by means of a gimbal 
joint, that allows the flapped hub to maintain 
a constant rotation speed both in terms of am- 
plitude and direction. The correct modelling of 
the gimbal required seven basic joints and one 
extra body. The analytical model has been vali- 
dated in terms of kinematic, structural and aero- 
dynamic properties [7]. The kinematic analy- 
ses have been used to assess the correct kine- 
matic couplings between blade pitch, flap and 
lag. Some of these couplings involve the flexi- 
bility of the flexbeam and of the control chain, 
and required to be calibrated directly from the 
physical model. Structural properties have been 
compared to analytical results from Bell Heli- 
copter, from previous analyses by means of Uni- 
versity of hlaryland -4dvanced Rotorcraft Code 
(UM-ARC) and N.4STR.AN, and to experimental 
results from Ground Vibration Tests (GVT) per- 
formed a t  LaRC. Basic aerodynamic and aeroe- 
lastic validation has been performed by compar- 
ing to data from previous wind-tunnel tests and 
nun~erical simulations. 

Table 1: 888 rprn, eT5% = -3 deg, Hz 
Mode I blyklestad 1 UhIARC I h1BDyn 
Gimbal 14.8 1 14.8 

Numerical Results 

Cone 
1 Lag 
Coll Lag 
2 Flap 
2 Flap asym. 
3 Flap 
Flap/Torsion 
Lag/Torsion 
Torsion 

Model Validation. Each component of the 
model has been validated separately. Both 
non-rotating and rotating analyses have been 
performed. Good agreement with numerical 
and experimental data has been found. The 
relatively rough discretisation used for the 
rotor blade has been able to  capture all the 
desired modes. The full rotor vibration analysis 
highlighted the limits of conventional modal 
analysis of a single blade, since the gimbal joint 
and the three blade configuration break the 
symmetry the single blade analyses usually rely 
on. The UMARC code has been modified to 
model the three blades in the modal analysis 
phase, and it confirmed the results of the 
multi-body analysis. A comparison of modal 
analysis results is presented in Tables 1 and 
2, referring to the rotating frequencies at 888 
and 742 rpm, that correspond to the hover and 
cruise rotating speeds. More exaustive results 
of the analysis may be found in Ref. [7]. 

Cuft, Bearing 
Pllch bnk 

/ Aerodvnrnr Frnnm 

17.2 
22.4 
42. 

37.33 

75.33 
89.33 

Figure 1: Analytical Model 

17.3 
20.8 
44.0 
49.6 
70.2 
90.3 
92.7 

113.4 
116.0 

17.5 
24.0 
36.0 
41.0 
65.0 
73.0 
90.0 

104.0 
110.0 



the? rc?quired control force. 
Table 2: 742 rpm, HT5,& = 55 deg. H i  

>lotic I hlvklcstad ClIARC SIBDvn 
Gimbal 
Cone 
1 Lag 
2 Flap asym. 
Coll Lag 
2 Flap 
3 Flap asym. 
3 Flap 
Flap/Torsion 
Lag/Torsion 
3 Lag 

Control force - 

-0 5 
1 

Torsion 
Figure 2: 3 Masses - Control Signals 

116.0 108.5 

Node I - 
N& * . 
Ncdc 3 

Control Validation. A very simple system 
from Ref. [ll] is studied. It is made of three ,, 
masses in series with three springs and dampers; 
an excitation force is applied at the free end, 
and the control measures are the accelerations 
at the other two points, thus implementing a O 20 a t 6 0  SO 100 

system with no direct transmission term. The Figure 3: 3 Masses - Displacements 
properties are: ml = ml = ms = 1, kl = 1, 
k2 = 2, kg = 3; the damping is assumed 
proportonal to the square root of the stiffness, I 

i.e. c, = 0.03JkT. The system has 6 poles. 0.5 

Different values for the order of the identified 0 

system p as well as for the control weight X -O.' 

have been tested. The prediction and control -' 20 
50 t 60 80 100 

advancing horizons have been chosen equal 
to p. The integration time step is 0.01 s; the Figure 4: 3 Masses - Unstable Displacements 
sampling for the discrete controller is taken 
every 10 time steps. The system is excited by Hover Simulations. The effectiveness of the 
a unit amplitude harmonic force at 0.4 Hz; a GPC applied to a more complex and realistic 
white noise with 0.001 amplitude is applied system has been assessed by performing simple 
and measured to identify the system. The SISO control analyses of the WRATS model 
control is activated after 40 s of simulation. in hover. The rotor is rotating at 888 rpm, 
.4n order p = 6 has been used, with X = and it is externally excited by a shaker with 
The control weight is gradually lowered to the a harmonic load at 5 Hz, close to the first 
nominal value in about ten seconds to avoid an wing out-of-plane bending frequency, about 5.5 
abrupt intervention of the control. Figures 2, Hz. The time step is 0.001 s, and the control 
3 show the two measured accelerations and samples are taken every 8 steps, resulting in a 
the control force, and the displacements at frequency of 125 Hz, which is higher than the 
the three nodes, respectively. When the first first torsional frequency of the blade, to prevent 
damping coefficient is set to a negative value the blade resonance. The bending strain at 
cl = - 0 . 1 5 6 ,  the response, Figure 4, shows the root of the wing is measured, filtered by 
the effectiveness of this form of adaptive control a washout (band-pass) analog filter to cut out 
for unstable systems. It is interesting to note of the measured signal the static signal as 
that the control is not collocated and the well as the higher frequencies, and the rotor 
unstable section of the system is close to one thrust is used as actuator by controlling the 
of the measures, but not directly controllable. collective pitch. .A pass-band filtered measure 
The control weight X can be reduced even more, of the vertical acceleration a t  the pylon is 
witti performance improvements especially in alternatively used. -4 good compromise for the 
the u~ist;ible case, but with escessive penalty in system order has been found in p = 60. The 



Figure 5:  Hover bending moment, str. meas. Figure 7: Hover collective. str. meas. 

Figure 6: Hover bending moment, acc. meas. Figure 8: Hover collective, acc. meas. 

results of the two cases, compared to a baseline 
analysis with harmonic excitation but without 
control, are presented in Figures 5, 6, for two 
different values of A. They show the bending 
out-of-plane moment at the wing root. The 
control signals are shown in Figures 7, 8, while 
the vertical acceleration of the pylon in the 
latter case is shown in Figure 9; the high fre- 
quency noise is the persistent excitation that is 
used to continuously identify the system, while 
the control of the harmonic motion determines 
the main, low frequency oscillation. 

Forward Flight Simulations. Forward flight 
analyses have been performed by controlling the 
collective and the cyclic pitch of the blades based 
on different measures of strains at the wing root. 
The model is in airplane configuration, a t  an air- 
speed of 100 ft/s, and the rotor is rotating a t  712 
rpm. In this case the order is p = 20, since the 
number of measures is higher (3 vs. 1). First 
the wing out-of-plane excitation force is offset 
aft of the wing to obtain also a twisting exci- 
tation. The rotor has little control authority in 
its piarie ill  terms of force, the flapping of the 

disk being required to tilt the thrust. Since the 
flapping response has a delay of about 90°, the 
accuracy of the prediction is key to the effec- 
tiveness of the control. In this case the actu- 
ation force, transverse to the wing, lies in the 
plane of the rotor, thus being not directly con- 
trollable by a simple change in thrust. Moreover, 
since the motion of the gimballed rotor is char- 
acterised by a wide spectrum dynamics, from 
the high frequency vibrations induced by the ad- 
vancing blade modes, to the wing elastic modes, 
down to the very low frequency precession mo- 
tion, a high number of physical and numerical 
poles are required for an adequate identification. 
The results of the simulations are reported in 
Figure 10, that shows the wing root bending 
moment. Figure 11 shows the control signals. 
The initial low frequency oscillations in the con- 
trol signals are due to the precession of the rotor 
during the transient following the application of 
the harmonic excitation. The uncertain initial 
behaviour of the controller is related to a poor 
initial identification of the low frequency poles 
of the system. In fact, with X = 1.0 the con- 
trol authority is low, but with X = 0.1, after a 



Figure 9: Hover accelerometer signal 

lective is negligible, sirlcc it  mainly controls the 
in-plane bt:nding of the wing, that is not directly 
excited by the vertical gust. The cyclic controls 
instead are heavily used by the controller to gen- 
erate the rotor aerodynamic moment required to 
tilt the rotor disk. Sirice the disk tilts about an 
horizontal a ~ i s  due to the wing bending and tor- 
sion excited by the gust, the rotor is mainly re- 
quired to generate a pitch moment (in airplane 
sense) that counteracts this motion. In fact the 
higher cyclic control signal is the lateral pitch. 
about twice as large as the forelaft pitch, which 
causes a forelaft flapping of the rotor. Figure 13 
shows a detail of the control signals across the 
gust input. 

few cycles the system goes slightly unstable (af- 
ter about 1.5 s),  returning under control as soon 
as the identification is improved. The following Concluding Remarks 
behavior is definitely better than the previous 
case, as can be appreciated in the last part of The Generalized Predictive Control has been 

the plot. A more realistic case is considered, used in the multi-body numerical simulation of 

by using the control parameters tuned with the the active vibration control of a tiltrotor aeroe- 

former case. A cosinusoidal vertical gust, with lastic model currently investigated a t  NASA 

an amplitude of 4 ft/s and a wavelenght of 20 ft, Langley Research Center. The control has been 

is encountered by the model while the control is applied by means of the control mechanism that 

working. The effect of the control on the wing is used on the actual model, a conventional, hy- 

bending is shown in Figure 12: the free oscilla- draulically actuated swashplate. A combination 

tions resulting from the wind-up of the rotor are of strain and acceleration measures have been 

damped as the control starts; when the model used to identify the system, and different oper- 

encounters the gust, the peak of the moment is ating conditions and external disturbances have 

attenuated first, then the control overshoots due been considered. The predictive control resulted 

to the need to re-identify the system. The newly highly effective in most of the investigated con- 

identified system brings the bending moment, as ditions, giving substantial reduction of the load 

well as the other measured internal moments, to level. In detail, both the strain and the acceler- 

a neglibible value in a few cycles. The control ation measurements allowed the correct identifi- 

signals, i.e. the pitch controls determined by the cation of the system, and the intrinsic adaptivity 

controller, are particularly meaningful. The col- of the proposed implementation of the gener- 
alised predictive control allowed the correction 
of inaccurate initial system identification even 

Figure 10: Forward flight berrrlirlg Figure 11: Foru~ur.(l Piglrt control signals 
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Figure 12: Gust bending 

Figure 13: Gust control signals 

in variable test conditions. The multi-body ap- 
proach represented a viable solution for the anal- 
ysis of complex systems requiring a high level of 
detail in the modelling of mechanisms. Future 
developments of the control will involve the in- 
troduction of the adaptivity of the weight coef- 
ficient, to reduce the need of an ad hoc tuning 
of the various control parameters, and a variable 
order model in the identification of the system. 
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By Jeffrey Breaks, Engineering Manager, Micro Craft-Hampton Division, 
and Michael Cooper, Senior Analyst, Micro Craft-Hampton Division 

Abstract; 

Two agencies in the Republic of Korea have 6;ommissioned the design and fabrication of rotor test stands to 

provide performance and dynamic testing capability for helicopter rotor systems in newly constructed wind tunnel 

facilities ,near Taejon, Korea. These test stands, based on the proven design of the 2 Meter Rotor Test Stand 

(2MRTS) that has been operating in the NASA Langley Research Center, 14 X 22-Foot Low Speed Tunnel for 

some time, i.ncorporate significant improvements in the drive power and in the control and instrumentation 

subsystems. Both rotor test systems are robust and utilize many off-the-shelf components for durability and ease 

of maintenance. 

I 

Figure 1 - MRTS General Arrangement 

General Descri~tion; 

The Main Rotor Test Stand (MRTS) is a specialized, Mach scaled system which provides the capability for 

conductihg high-quality wind tunnel research on dynamically scaled models of ratars, rotor systems, and complete 

helicopter configurations. Power for the system is provided by a 75 -horsepower hydraulic motor driven by an 

hydraulic power source located outside of the wind tunnel test section. A comprehensive suite of instrumentation 

provides data for a wide variety of force and position measurements h bath the rotating and fixed systems. The 

MRTS may be sting or strut mounted and is capable af operating away from the wind tunnel as a static test stand. 

Rotary Wing Test Stand Capability for the Republic of Korea 



The second rotor test system is the General Small-Scaled Rotor Test System (GSRTS), designed for Froude- 

scaled and limited Mach-scaled testing. As a Froude-scaled system, keeping components light is a primary 

consideration. To accomplish this the hub is made of titanium, and aluminum is used extensively for other 

components such as the gearbox housing. Power for this system is provided by high power density, water-cooled 

electric motors driven by a solid state power supply located nearby. The transmission is capable of accepting one 

or two 20-horsepower motors. For Froude-scaled testing, one motor provides sufficient power. A second motor is 

added to bring the available horsepower up to 40 for limited Mach-scaled testing. 

Reduction of data from a rotating system is especially dependent on knowing the position of the rotor with 

respect to other model components and the phasing of the measured loads. To provide the needed data, both 

test stands are provided with state-of-the art sensors and an advanced data acquisition system. Rotating and 

fixed-frame balances can be installed to measure loads on the total system, the rotating system, and the fuselage 

shell separately. Hall effect sensors mounted on the hub measure blade lead-lag, flapping, and feathering 

motions. Another Hall effect sensor and a rotary shaft encoder determine rotor azimuthal position that is corrected 

for drive shaft windup due to load. Encoders and linear variable displacement transducers (LVDT) on the 

swashplate actuators provide data on control inputs. The data system digitizes selected parameters, processes 

data in real time, and outputs results to the Control Consoles and/or the wind tunnel data system. The system can 

stand alone or interact with other systems through an Ethernet connection. 

Control of the test stand and operation in conjunction with a wind tunnel, mandate displays and controls that 

present needed parameters clearly and conveniently and permit easy coordination of test stand operation with 

wind tunnel operation. Consoles are provided for a Pilot and a Safety Officer. The Pilot can input control 

commands through a joystick, a mouse, or the keyboard. Data displays are selected from a menu of all measured 

parameters and can include multiple windows and audible limit alarms. The Safety Officer's console is used to 

monitor system parameters such as bearing and gearbox temperatures and other operational and model data, as 

appropriate. 

As rotating systems, both test stands present challenges that require specialized design features to control 

dynamics and analyses to identlfy system response characteristics. A complete Finite Element Model (FEM) of 

each test stand, including backup flexibilities, was developed. NlSA finite element modeling software, from 

Engineering Mechanics Research Corporation, was used in this effort. Initial calculations were used in the design 

process to identify modal trends and avoid undesirable coalescence of operating frequencies. As fabrication 

proceeded, the FEM was revised and updated to reflect actual measured component weights and stiffness. 

During system operational checkout, data were taken and results were compared with FEM predictions. 

Adjustments were then made to the FEM so that the final FEM accurately calculated the hardware modes and 

frequencies. 
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Instrumentation; - - - - -- - - -- - - - - - - - -- - 

Basic blade position instrumentation is included on the test starids and provision is made for future expansion. 

The heart of the blade position instrumentation is the suite of Hall Effect sensors located on the hub to measure 

the blade position directly. Two blades are instrumented for flapping position, lead-lag position and feathering 

position. The data from only one blade are processed during test, so the system provides redundancy of all three 

parameters. Hall Effects sensors detect changes in the lines of magnetic flux, so the sensor is mounted on the 

fixed portion of the hub and a small magnet is mounted on the moving component. Circuits located in the rotating 

system power the sensors, and data signals are passed through sliprings to the data acquisition system. 

Figure 2 - Instrumentation 

Azimuthal position of the blades must be known in order to correlate the blade aeromechanic data with the 

fixed system and control parameters. An encoder mounted on the transmission output shaft and a Hall Effects 

sensor mounted near the hub provide this information. The encoder provides 1 -per-rev and 2048-per-rev position 

information. The sensor mounted near the hub provides a reference signal that allows correction for the torsional 

windup of the drive shaft under load. 

Other instrumentation in the rotating system is provided to gather real time data from numerous sources. 

Twelve channels are available to obtain straingage load data or pressure transducer data at specific locations on 

individual blades. Pitch links are instrumented to provide information on input force levels. The MRTS is equipped 
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with a 5-component force and moment balance in the fixed system, and a torque gage on the driveshaft provides 

data on the rotor drive power. A rotary balance can be installed on the GSRTS to provide full 6-component force 

and moment data on the rotating assembly. Signal conditioning circuitry on the rotor hub is used to reduce the 

number of slipring channels required so that a maximum amount of data can be sent through a 60 or 80 channel 

slipring. This circuitry can provide supply power and amplification of the signals for the instrumentation in the 

rotating system. 

Data Acauisition and the Control Console; 

The data acquisition system gathers information from the model, processes it and displays it as needed by 

the Pilot, Safety Officer, and other users. The data system is built around a Pentium computer system. A 

graphical user interface (GUI) based on National Instruments LabView software running under Microsoft Windows 

NT 4.0 operating system provides data display that can be customized by the various users. With this approach, 

identical or custom displays can be monitored at remote stations to perform such features as model health 

monitoring or test data monitoring. 

Figure 3 - Control Console Display 
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Data acquisition is accomplished by ISA circuit boards mounted inside the computer. A Keithly Metrabyte 

DAS1702St analog-to-digital converter board processes low speed time-independent data. A Keithly Metrabyte 

DAS1802STDA analog-to-digital converter with four digital-to-anabg outputs processes the high-speed time- 

depe.ndent signals, such as blade position, and generates, actuator reference commands. ' 

1 '  

~echahical test stand controls am provided through a mechanical user interface containing ten-turn 

potentiome&rs, enabling switches, and two joystick controllers. The potentiometers can be .used to provide direct 

ce&trol of model functions such as drive motor speed or swashplate acJuators in an emergency or, if desired, for 
/ 1 

oiher reasons. The &ibling switches are used to select the desired oontml mode. Joysflcks are prpvided for 

coll~ctive and cycb Gntroi in the mixer mode. 
);' , 

 installation of the test stand in a wind tunnel facility may require long cable runs. X custom fine-drker circuit 

board is provided to allovu' &hmmunlcation between the model and the ~bntrol cbnso~e at longer separation 

distances than the native TTL level signal& allow. In these applicatiom' the design didtmide' is 1 W feet, but this 

1 could be increased, if necessary. 
i 

T ~ P i l d s ~ t e i s r ~ I y s t ~ I I ~ t o ~ h ~ u s t t o r s  a n d ~ t ~ f i t w € i s m ~ A l l m e r  

consoles and data displays are for data monitoring only. Data received by the test stand computer system is 

passed through to the Wind Tunnel Data ~k~uisit ion System for recording, processing, or display. The individual 

uaer of each console or data display can tailor data displays to specific needs. A typical Pilok Console display is 

shown in Figure 3. This display shows the commanded value and also the actual reading of the parameter. The 

rotor speed system has a time lag,programmed into it so that a soft startup occurs and rotor acceleration or 

deceleration is limited during speed ~ h a n m .  The pilot is interested !n real-time displays of rotor speed and 

actuator positions. He coordinates his control movements with wind tunnel operating conditions through an 

intercom connection vliith the wind tunnel operator and the test director. 

Figure 4 - Data Set Selection 
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These data can be processed through any of the virtual instruments in the LabView System or can be connected 

to completely separate instruments such as a spectrum analyzer. 

The GSRTS was specifically designed for research in rotor dynamics through Froude-scaled testing. One of 

the swashplate actuators is equipped with a small hydraulically actuated shaker for enhanced aeroelastic test 

capabilities. This shaker has only +I- .05 inch of travel, but this is sufficient to change the pitch of a blade by +/-I 

degree. A small electrically driven, hydraulic pump provides power. The shaker motion is actuated and controlled 

by an hydraulic servo valve capable of response at over 100Hz. Output of the shaker is generally in the form of a 

sine wave with the frequency controlled from any convenient location near the Control Console. A linear variable 

displacement transducer (LVDT) mounted on the actuator provides position data to the shaker control system. 

With these test stands, the Froude scaled testing design point is approximately 1000 RPM, so a shaker frequency 

of 16Hz would produce a 1 per rev excitation in the rotating system. 

Analvsis and the Finite Element Model; 

These test stands are complicated structures with oscillating loads and, like any type of rotating machinery, 

are sensitive to unbalance, alignment, system flexibilities and mass. The blades are long, slender flexible beams 

beset with numerous natural frequencies that change with rotational speed. Encountering a resonant condition 

with the blades or the test stand could be catastrophic. Validating the design through analysis assures that these 

test stands will provide the desired data with a minimum of concern for dynamic instabilities. 

Modal analyses of the MRTS and the GSRTS were performed to determine the natural modes and 

frequencies of each system. Separate modal analyses of each blade were also performed to determine the 

natural frequencies of the rotating rotor blades. Analyses were conducted to determine stand response over a 

frequency range from zero to about 35Hz, which corresponds to a 1/Rev frequency at a rotor speed of about 2100 

RPM. These test stands are designed with pitch and roll springs and variable damping in the support system to 

decouple the rotor from ground resonances. The springs are designed to be replaceable andlor tunable so that 

the dynamic properties of various rotor systems can be accommodated. Proper "homework" must be done to be 

aware of potential instabilities, but the robust design and the combination of tuneable springs and adjustable 

damping in the support system allow the test rigs to be adapted to a wide variety of rotor systems. 

A ~ ~ r o a c h  to modal analvsis: 

The test stands are designed to accept a wide range of rotor blade sizes, weights, and rotor configurations. 

For stress purposes, the heaviest possible blade was used to determine maximum centrifugal force and failure 

loads (from a single blade-out condition). Included in the analyses are Mach scaled blades on the MRTS and 

Froude-scaled blades on the GSRTS. 

The blade modal analysis was conducted for a single articulated, blade rotating in a vacuum. This condition 

assumes that the hub and shaft are rigid, and that a preceding blade has no effect on the dynamics of the 

following blade. This is a relatively simple set of calculations to make because the structural model consists of a 
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single blade. The blade frequencies are known to vary dramatically with rotation speed, while the test stand 

dynamics are reasonably stable under rotation. However, the apparent hub mass and inertia does vary with 

rotation speed. Variation in hub mass and inertia is accounted for in the test stand dynamics by using an effective 

hub mass and inertia based on the method described in "Rotary Wing Structural Dynamics and Aeroelasticity" by 

Richard Bielawa. In his method, the effective mass and inertia is computed from a rotating beam that accounts 

for gyroscopic effects due to rotation. Using this approach allows the rotor blade dynamics to be computed 

separately from the test stand dynamics while still accounting for the apparent mass and inertia of the hub. 

~escr i~ t ion  of the FEM's: 

A detailed finite element model of a rotor blade was generated using shell and solid elements to verify the 

structural integrity of the as-built blade for the MRTS system. However, the rotor blade FEM for the dynamic 

analysis was comprised of 3D beam elements that accounted for the stiffness and mass distribution. There were 

436 grid points and 404 elements, each with its own cross section properties. The mass distribution was applied 

using point masses and inertias. The proper locations were constrained to act as pinned hinges for flapwise and 

chordwise motion, and fixed in torsion (blade pitch). The centrifugal force was computed and the geometric 

stiffness matrix was recovered. This matrix was added to the elastic stiffness matrix and with the mass matrix, 

the natural modes and frequencies were computed for various rotation speeds. 

Non-da&c Blades \ / 

Figure 6 - Finite Element Model for MRTS 
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Finite element models of each rotor test stand were generated to estimate the natural modes and frequencies 

of the system. Care was taken to adequately represent the mass and stiffness of each structure. Component 

assemblies were weighed and the FEM was updated with the as-built information. 

The major components included in the MRTS finite element model are shown in Figure 6. 

Support Post and Gusset 

Gimbal mount with yoke, pitch spring, and roll spring 

Transmission frame 

Drive system including drive shaft, output shaft, torque tube on flex couplings, and mast 

Four-post balance and bearing tower. 

The major components included in the GSRTS finite element model are: 

Post 

Gimbal mount with yoke, pitch spring, and roll spring (arrangement differs from MRTS) 

Transmission frame 

Drive shaft system including motor shaft, output shaft, and mast 

Rotating Balance on mast. 

Structural components missing from both FEMs are the fuselage shell, the motor(s), and the control linkage 

including actuators, control arms, and swashplates. These components do not contribute to the stiffness of the 

test stand, however their mass was accounted for. The natural modes and frequencies were computed using the 

NlSA finite element code. 

The following table lists the weight of various assemblies for the MRTS: 
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Seven flexible modes below 2100 RPM (35 Hz) were computed for the MRTS system, not counting the rigid 

body mode representing the rotation of the drive system shafts. The modes are listed in the table below. A 

subjective description of the modes is provided. The description indicates the major components that participate 

in the mode. 

Results: 

The overall mass properties of each test stand were computed to be: 

For the GSRTS, six modes under 2100 RPM were computed for the system, not counting the rigid body mode 

of the drive system shaft rotation. This system is relatively symmetric with respect to the fore-aft bending plane. 

Fore-aft modes are straightforward. However, the center of gravity lies off the post axis. Therefore, side-to-side 

motion necessarily couples post side bending with torsion. 

Note: Hub effective mass and inertia computed for maximum rotation speed of 2100 RPM. 

I Test Stand 

MRTS 

GSRTS 

Mass moments of inertia 

Mode # 

1 

2 

3 

4 

5 

6 

7 
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Weight, 

Ib 

345.6 

206.4 

CG w/ respect to gimbal 

axes 

o, CPM 

220.2 

366.6 

546.6 

941.4 

988.2 

101 2.2 

141 4.8 

o, Hz 

3.67 

6.1 1 

9.1 1 

15.69 

16.47 

16.87 

23.58 

Ju ,  Ib-inL 

2.61 4x1 o4 
9.864~10' 

Jxx, lb-inL 

1.780~1 o5 
1.471~1 O4 

MRTS System Modes Description 

System roll spring mode 

1" side bending (coupled yaw and roll) 

Pitch spring mode 

1" fore-aft bending mode 

Torque tube vibrating on flex couplings 

2"a side bending 

2"a pitch spring mode 

GSRTS System Modes Description 

Motor/transmission rolling on the roll spring 

1" side-to-side motion of the drive system, twist of the post 

1" fore-aft bending mode of the post 

2"' fore-aft bending mode of the post 

Up-down motion of the motor/transmission 

2M side-to-side motion of the post, twist of the drive system 

Mode # 

1 

2 

3 

4 

5 

6 

Z, in 

-12.97 

-1.65 

Jyy, lb-inL 

2.021 XI 0' 

2.268~1 o4 

X,in 

3.58 

-0.1 

Y, in 

0.00 

0.00 

o, Hz 

6.570 

7.775 

9.022 

14.573 

24.323 

26.700 

o, CPM 

394.2 

466.5 

541.3 

874.4 

1459.4 

1602.0 



Summarv; 

Goals of the program were to produce test hardware capable of gathering the parameter and position data 

necessary for performance and aeroelastic research on rotor systems. System operational and control 

characteristics were to be well defined and operation of the systems should allow Pilot attention to be directed 

towards the test itself rather than system peculiarities. These goals were met in all areas. 

The Mach scaled test stand is not horsepower limited and can achieve advance ratios, tip Mach number, and 

disk loadings of advanced rotor systems still on the drawing board. Hardware is designed to allow easy 

installation and test of hingeless and bearingless designs. For Froude scaled testing, the GSRTS provides a light 

weight responsive system able to gather large quantities of aeroelastic data. 

Instrumentation provided gathers the high quality time-dependant data needed to test advanced systems and 

verify analyses. 

Test Stand structure is documented with a FEM to assist in future analytical studies. Dynamic characteristics 

of the hardware are well separated from the operational envelope. 

The Control System is user friendly, easy to operate, and provides real-time review of data and model 

operating conditions. 

Special thanks to Dr. Seung-Ki Ahn and Dr. Gene Joo. 
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REVIEW OF NONLINEAR PANEL FLUTTER AT 
SUPERSONIC AND HYPERSONIC SPEEDS 

Chuh Mei, K. Abdel-Motagaiy and R. Chen y4 - O& 
Department of Aerospace Engineering 

Old Dominion tlniversiy, Norfolk, Virginia 23529-0247 

ABSTRACT 
A review of various analytical methods and experimental results of supersonic and hypersonic 

panel flutter is presented. The analytical methods are categorized into two main methods. The first category 
is the classical methods, which include Galerkin in conjunction with numerical integration, harmonic 
balance and perturbation methods. The second category is the finite element methods in either the frequency 
domain (eigen solution) or the time domain (numerical integration). A review of the experimental literature 
is given. The effects of different parameters on the flutter behavior are described. The parameters 
considered include inplane forces, thermal loading, flow direction, and initial curvature. Active control of 
composite panels at supersonic speeds and elevated temperatures is also presented. 

1. INTRODUCTION 
This review is an attempt to assess the recent developments and advances in nonlinear panel flutter 

at supersonic and hypersonic speeds. With the resurgent interest in flight vehicles such as the High-Speed 
Civil Transport (HSCT), the X-33 Advanced Technology Demonstrator, the Reusable Launch Vehlcle 
(RLV), the Joint Stnke Fighter (JSF), and the X-38 Spacecraft using a lifting-body concept that will 
operate at supersonichypersonic Mach numbers, this brings an urgent need for panel flutter analysis. 
When a flight vehicle travels at hlgh speeds, the aerodynamic pressure is not the only form of excitation. 
The skin-panel temperatures could potentially reach several hundred degrees (e.g. 350 FO for the HSCT 
cruising at Mach 2.4) due to aerodynamic heating. The presence of thermal loads results in a flutter motion 
at lower dynamic pressure or a larger limit-cycle amplitude at the same dynamic pressure. In addition, a 
high temperature rise may cause large thermal deflections of the skin panels, which could affect flutter 
response and motion. Thus the thermal effects on panel flutter response require special emphasis. The 
additional requirements for energy-efficient, high-strength and minimum-weight vehicles have become 
apparent. These requirements have generated an interest in advanced composite materials to meet the high- 
strength and minimum-weight requirements. There has been recent development in smart or adaptive 
materials such as piezoelectric materials and shape memory alloys that can be embedded into the lamhated 
composite panels to control or suppress limit-cycle or chaotic random panel motions. 

Dowell (1970) has grouped the vast amount of theoretical literature on panel flutter into four 
categories in a review on linear and nonlinear panel flutter. Gary and Mei (1993) added a fifth category for 
hypersonic flow. The five different categories of linear and nonlinear panel flutter are shown in Table 1. 
The weakness and remedes for the first four types of analysis were discussed in detail in (Dowell, 1970). 
An approach using the quasi-static Ackeret aerodynamic theory for the design of flutter-free surface panels 
was documented by Laurenson and McPherson (1977). The flutter-& design procedure considered the 
interaction of parameters such as support flexibility, inplane loads, pressure differential, and flow 
angularity; however, the thermal effects were not considered. A review of the finite element method of type 
1 panel flutter analysis was recently given by Bismarck-Nasr (1992). A survey on various analytical 
methods including the finite element approach for nonlinear supersonic panel flutter type 3 analysis was 
given by Zhou et al. (1994). For hndamental theories and physical understanding of panel flutter the 
readers are referred to the published books (Dowell, 1975; Librescu, 1975). 

This survey is an attempt to cover nonlinear panel flutter at supersonic and hypersonic speeds of 
type 3-5 analyses with the emphasis on thermal effects. Various analytical methods including the finite 



element for nonlinear flutter response are discussed. The influence of other parameters of practical interest 
on nonlinear panel flutter is considered. The particular parameters considered in this survey include inplane 
loads, thermal, flow yaw angle, and active control effects. 

Table 1. Panel Flutter Theories 

Type Structure Aerodynamic Theory Range of Mach - - 
Theory No. 

I Linear Linear Piston & < M , < 5  
2 Linear Linearized Potential Flow 1 < M, < 5 
3 Nonlinear Linear Piston & < M , < 5  
4 Nonlinear Linearized Potential Flow 1 < M, < 5  
5  Nonlinear Nonlinear Piston M , > 5  

2. AERODYNAMIC THEORIES 
As disclosed by these survey papers, a vast quantity of literature exists on panel flutter using 

lfferent aerodynmc theories. The aerodynamic theory employed for the most part of panel flutter at high 
supersonic Mach numbers (M, > 1.6) is the quasi-steady first order piston theory aerodynarmcs by Ashley 
and Zartarian (1956). The aerodynamic pressure loading as given by this theory is 

where q, = p , v 2  I 2  is the free stream dynarmc pressure, V the velocity, pa the air density and 

p = J M ~ ,  - 1 . If the aerodynamic damping is neglected in Eq. (2. l), the quasi-static Ackeret aerodynamic 
theory, also known as the static strip theory, is simplified to 

2% p - p ,  =-- 
P a€ 

For air flow with Mach number close to one. the full linearized inviscid potential theory aerodynamics is 
usually employed (Dowell, 1967). The aerodynamic pressure loading is given by 

where the velocity potential h c t i o n  $ must satisfy 

subject to the boundary conditions 
A & -+V- on plate a a 

off plate 

Because of the recent renewed interest in flight vehicles that will operate not only at high-supersonic Mach 
numbers but well into hypersonic regime, there is an interest in approaches that can employ unsteady 
nonlinear aerodynamic theories. The piston aerodynamic theories, although several decades old, have 
generally been employed to approximate the aerodynamic loads on the panel from local pressures generated 
by the body's motion as related to the local normal component of the fluid velocity and the local pressure. 
For supersonic Mach numbers, the quasi-steady aerodynamic theory reasonably estimated the aerodynarmc 
pressures and it gave h r  agreement between theory and experiment for plates exposed to static pressure 
loads and buckled by uniform thermal expansion (Ventres and Dowell, 1970). In the hypersonic regime, the 



unsteady full thrd-order piston theory aerodynamics (Ashly and Zartarian, 1956) is used to develop the 
aerodynarmc pressure given by 

where y is the ratio of specific heat. 
By using piston theories and the potential flow theory for aerodynamic l h g ,  it is assumed that 

continuum theory applies. For hypersonic vehicles at hlgh altitudes the continuum hypothesis may not hold 
true. A fiee molecule flow with quasi-steady approximation was presented by Resende (1991) to obtain the 
aerodynamic loadmg for a two-dimensional simply supported panel. The proposed rarefied formulation was 
highly dependent on two parameters: the fraction of the molecules and the temperature ratio (panel 
temperature to the temperature of the undisturbed flow). 

3. ANALYSIS METHODS 
The partial nonlinear behavior of a fluttering panel was first considered by several investigators: 

Bolotin (1 963), Fung (1958), Houbolt (1958) and Eisely (1 956). They were primarily concerned with 
determining stability boundaries of twodunensional plates. Using a two-mode Galerkin approach, Fralich 
(1965) studied the three-dimensional plate buckling effects on flutter boundaries using the von-Kamen 
plate theory and the Ackeret aerodynamic theory. In the following, the classical analytical and the f h t e  
element methods for nonlinear panel flutter at supersonic speeds are lscussed first, followed by nonlinear 
flutter in hypersonic flows. 

3.1 Classical Analytical Methods 
For the full structural nonlinear limit-cycle approach, a variety of analysis methods have been employed to 
assess the panel flutter problem. The Galerkin's method was used to reduce the governing partial 
differential equations to a set of coupled or* differential equations in time, which were numerically 
integrated for arbitray initial conditions. The integration was continued until a limit-cycle oscillation of 
constant amplitude, independent of the initial conditions, was reached. The nonlinear oscillations of simply 
supported (Dowell, 1 966; Dowell, 1967) and clamped, inplane elastically restrained, (Ventres, 1970) 
fluttering plates were studied using this method. Dowell (1966) determined that the l rect  numerical 
integration approaches require a minimum of 6 linear modes, as the Galerkin approximate functions, to 
achieve a converged solution for displacements and possibly more if stresses are required (McIntosh, 
1970). Recently, the limitcycle oscillation of a cantilever plate was studied by Weiliang and Dowell 
(1991). They employed a Rayleigh-htz approach in conjunction with the direct numerical integration and 
showed that the length-to-width ratio of the cantilever plate was a significant fhctor on the flutter vibration. 

A number of other classical analytical methods exist for the investigation of limitcycle oscillations 
of panels in supersonic flow. In general, the Galerkin's method is used in the spatial domain, and the panel 
deflection is expressed in terms of two to six linear normal modes. Various techmques in the temporal 
domain such as harmonic balance and perturbation techniques have been successfully employed to study 
the subject of nonlinear panel flutter. The harmonic balance method requires less computational time than 
the method of direct integration and is mathematically comprehensible and systematic, but it is extremely 
tedious to implement. The method was used with a two-mode Galerkin solution to obtain the limit-cycle 
motions (Bolotin, 1963; Kobayash, 1962). Rectangular plates were treated by Kuo et al. (1972), Eastep 
and McIntosh (1970), Eslami (1986; 1987) and Yuen and Lau (1991). The Rayleigh-Ritz approximation to 
Hamilton's variational principle was employed by Eastep and McIntosh to obtain the equations of motion 
in the spatial domain. Specific orthotropic panels were studied by Eslami. A hinged two-dimensional 
fluttering plate with moderately hlgh postbuckling loads using a four-mode expansion and an incremental 
harmonic balance method was reported by Yuen and Lau. 



The perturbation method was adopted to nonlinear panel flutter by Morino (1969) and Kuo et al. 
(1972). Detailed extensions (Morino and Kuo, 197 1) and the stability (Smith and Morino, 1976) of the 
application of this technique to nonlinear panel flutter were studied. Correlation between perturbation 
techniques and the harmonic balance method has been shown to be in good agreement (Kuo et al., 1972; 
Morino and Kuo, 1 97 1). 

3.2 Finite Element Method 
All of the early stules in nonlinear panel flutter using classical methods have been limited to isotropic or 
orthotropic of two or three dimensional rectangular plates with all four edges simply supported or clamped. 
Extension of the finite element method to study the linear panel flutter problem was due to Olson (1967; 
1970) using a frequency domain eigen solution. Because of its versatile applicability, effects of 
aerodynamic damping, complex panel configurations and support conditions, laminated composite 
anisotropic panel properties, flow angularities, inplane stresses and thermal loads can be easily and 
conveniently included in the finite element formulation. A survey on the finite element methods to linear 
panel flutter was given by Yang and Sung (1977) and Bismarck-Nasr (1992), and to nonlinear panel flutter 
by Zhou et al. ( 1994). 

Application of the finite element method to study the supersonic limit-cycle oscillations of two 
dunensional panels was given by Mei (1977) using an iterative frequency domain eigen solution. Mei and 
Rogers (1976) implemented the two-dimensional panel flutter analysis into the NASTRAN. Rao and Rao 
(1980) investigated the supersonic flutter of two-dimensional panels with ends restrained elastically against 
rotation. Sarrna and Varadan (1988) studied the nonlinear behavior of two-d~mensional panels using two 
solution procedures, both in the frequency domain. 

Further extension of the finite element method to treat supersonic limit-cycle oscillations of three- 
dimensional rectangular plates was given by Mei and Weidman (1977). The effects of damping , aspect 
ratio, inplane forces and boundary conditions were considered. Mei and Wang (1982) employed an 18- 
degrees of freedom (DOF) triangular plate bendmg element to study supersonic limit-cycle behavior of 
three dunensional triangular plates. Han and Yang (1983) used the 54-DOF hgh order triangular plate 
element to study nonlinear panel flutter of three-dunensional rectangular plates with inplane forces. 

All the investigations cited so %r dealt with flutter of isotropic panels. Few papers in the literature 
investigated the supersonic limit-cycle oscillations of composite panels. Dixon and Mei (1993) studied the 
nonlinear flutter of rectangular composite panels. The limit-cycle response was obtained using a 24-DOF 
rectangular plate element and a linearized updated mode with nonlinear time function (LUM/NTF) 
approximate solution procedure. The LUh4/NTF solution procedure in the frequency domain was 
developed by Gray (1991). Liaw and Yang (1993) used a 48-DOF rectangular element and investigated the 
effects of structural uncertainties occurring during the fabrication process on nonlinear supersonic flutter of 
laminated composite plates. 

3.3. Analysis Methods for Hypersonic Panel Flutter 
The aerodynamic nonlinearties were first considered in conjunction with structural nonlinearties by 
McIntosh (1970) and Eastep and McIntosh (1970) to a two-dimensional plate with simply supported ends. 
In their study a modified form of the second-order piston theory, in which the term ( ' d W ) z  was neglected, 

V at 

was used. They integrated the nonlinear modal equations of motion for given initial conditions and observed 
the resultant panel motion versus time until a limit-cycle of constant amplitude was reached. Flutter 
stability boundaries from linear and partial secondsrder piston theories were obtained for a 
nondirnensional axial force varying between -3 and +I.  The aerodynamic nonlinearties decrease the critical 
flutter dynamic pressure. 

Because of the renewed interest in panel flutter at high-supersonic/hypersonic speeds for the 
National Aerospace Plane (NASP) (Reed et a]., 1987), Gray et al. (1991) extended the finite element 
method to investigate the hypersonic limit-cycle oscillations of two-dunensional panels using the full thlrd- 



order piston aerodynamic theory. Gray (1 99 1) and Gray and Mei (1 993) extended further the finite element 
method to nonlinear flutter of three-dimensional thin laminated composite panels. The LUMNTF solution 
procedure was presented to solve the nonlinear panel flutter f h t e  element equations in structure node DOF. 
Nonlinear flutter analyses were performed for different boundary conditions and for various influence 
parameters: plate thickness to length ratio, plate aspect ratio, material orthotropic ratio, and number of 

aw 
layers. It was found that the (-)2 term of the full third-order piston aerodynamic theory is the most 

ax 
significant among the nonlinear aerodynamic terms for the large amplitude limit-cycle panel flutter. 

Bein et al. (1993) investigated hypersonic flutter of simply supported curved shallow orthotropic 
panels with uniform temperature distribution. Coupled nonlinear panel flutter equations were obtained 
using Galerkin's method with eight linear modes (4 in the airflow or x-direction and 2 in the y-direction). 
Then numerical integration in time was used to compute limit-cycle amplitudes. They showed that the 
unsteady aerodynamic lodng  based on the third-order piston theory gives virtually identical pressure 
distributions to that obtained from the direct solution of the Euler equations. Hypersonic flutter on curved 
panel was further studied by Nydick et al. (1995). Aerodynamic heating, the presence of shock in the flow, 
and non-zero initial curvature were shown to significantly affect the aeroelastic behavior. It was found that 
the aerodynamic load obtained from the third-order piston theory dffers substantially from that computed 
using Navier-Stokes equations. The limit-cycle results obtained by Nydick et al. compared well for the 
supersonic isotropic panel (Dowell, 1966) and for the hypersonic orthotropic case (Gray and Mei, 1993). 

Chandiramani et al. (1995) investigated the non-periodic flutter behavior of simply supported 
buckled composite panels subjected to uniform edge compression. The higher-order shear deformation 
theory and the thud-order piston theory aerodynamic were used and Galerkin's method with a 2x2 linear 
normal modes (2 each in the x- and ydirections). A predicator and Newton-Raphson type corrector 
technique was employed for the periodic solution, and the numerical integration was used for quasi-periodic 
or chaotic flutter solutions. Results showed that edges restrained parallel to the airflow do not significantly 
affect the immediate post-critical response, and that a higher-order shear deformation theory is required for 
a moderately thick composite panel. 

Sri Namachchivaya and Lee (1997) recently studied the bihrcation behavior near critical points of 
a simply supported isotropic panel using Galerkin's method and two linear natural modes in the airflow x- 
drection. The thlrd-order unsteady piston theory aerodynamics was employed in the formulation. 

4. INFLUENCE SYSTEM PARAMETERS 
The various Influence parameters that affect supersonic/hypersonic nonlinear panel flutter 

characteristics are described in this section. Those system parameters considered include the effects of 
thermal loads, inplane forces, flow direction, and curved plates or cylindrical panels. The two types of 
system equations, in structural node DOF and in modal coordinates, for large amplitude panel flutter using 
the first-order piston theory aerodynamics based on finite element methods are briefly presented. Flutter of 
laminated composite panels at elevated temperatures are considered. Two solution procedures, the 
L W T F  approximation and the numerical integration, can be employed. Flutter behavior of composite 
panels at elevated temperatures: flat, buckled, limit-cycle, periodic and chaotic motions are shown. 

4.1 Thermal Effects 
Few investigations on panel flutter have dealt directly with thermal effects. Houbolt (1958) was the first to 
study the buckling stability and flutter boundaries for twodimensional panels with uniform temperature 
distribution. Two linear modes were used for the thermal postbuckling deflection. Yang and Han (1976) 
used the finite element method to study linear flutter of thermally buckled two-dimensional panels. Abbas et 
al. (1993) studied the nonlinear flutter of simply supported orthotropic composite panels under 
aerodynarmc heating. The governing equations were derived by the Reissner functional and Hamilton's 
principle. Galerkin's method with six mode was employed and the time history was obtained by numerical 



integration, Hopkins and Dowell (1994) investigated a square cantilevered isotropic panel under 
temperature differential. The Rayleigh-Ritz assumed modes method was employed. Uniform and 
biquadratic temperature dfferentials were considered. Convergence of flutter response with number of 
transverse and inplane modes was investigated in detail. Stability regions for the two temperature 
dfferentials are quite different. 

For non uniform temperature distribution, Xue et al. (1990) investigated flutter boundaries of 
thermally buckled twohensional  panels. Xue (1991) and Xue and Mei (1991; 1993) extended to 
nonlinear panel flutter with non uniform temperature effects for two-dimensional and three-dimensional 
isotropic panels of arbitrary shape uslng the discrete Kirchhoff theory (DKT) triangular plate element. 
Dixon (1991) and Dixon and Mei (1992) investigated the limit-cycle oscillations of rectangular composite 
panels subjected to uniform temperature. Lee et al. (1997) have recently performed nonlinear flutter for 
stiffened composite laminated plates considering uniform temperature thermal effect. They employed the 
first-order shear deformable plate theory and the Timoshenko beam theory for the finite element modeling 
of a skin panel and stiffeners, respectively, and the influence of temperature dependent material properties 
on panel behavior was also considered. Liaw (1997) has used a 48-DOF rectangular thin-plate finite 
element to study the nonlinear panel flutter under uniform and sinusoidal temperature distributions. Effects 
of fiber orientation on supersonic flutter behavior of a rectangular symmetric angle-ply panel were 
investigated in detail. Recently, Udrescu (1998) developed a 33-DOF triangular finite element to study a 
simply supported three-dimensional isotropic panel under uniform temperature distribution. The higher 
order firute element was based on Argyris' natural approach, then extended to large deflection theory. All 
four dynamic responses: damped solution, limit-cycle, buckled panel and chaotic solution were presented. 

The system equations of motion for nonlinear flutter of composite panels at supersonic speeds and 
arbitrary temperature distributions based on the finite element methods (Xue, 1991; Xue and Mei, 1993; 
Dixon, 199 1; Dixon and Mei, 1992; Lee et al., 1997; Liaw, 1997) can be expressed in the matrix form as 

where [MI, [GI, [A,] and [K] are the system mass, aerodynamic damping, aerodynamic influence and linear 
s t iaess  matrices, respectively; [KI] and [K2] are the first and second order nonlinear s t i aess  matrices 
whch depend linearly and quadratically upon system structure DOF (W), respectively; and {P) is the load 
vector. The subscripts a and AT denote aerodynamic and thermal, respectively. The nondimensional 
dynamic pressure and aerodynamic damping are defined as 

where o, = (Dl ,, /pha4)1'2 is a reference frequency, and p, h and a are the panel density, thickness and 
length, respectively. The value Dl is the first entry of the laminate flexural stifiess [Dl calculated when 
all of the fibers of the composite layers are aligned in the airflow x-direction. 

The system f h t e  element equations in structural node DOF presented in equation (4.1) are 
mathematically separated into two sets of equations and then solved sequentially. The first set of equations 
yields the thermal-aerodynamic equilibrium position using the Netwon-Raphson iteration method, and the 
second set of equations of motion leads to the flutter limit-cycle motions using the LUM/NTF approximate 
method. The use of iterative linearized eigen solution (for example LUMMTF approximation) in the 
frequency domain has been successful to study nonlinear panel flutter. However, the application of the 
LUMMTF method to the system equations in the form presented in equation (4.1) has three disadvantages: 
(1) the number of structure node DOF of {W) is usually very large, (2) at each iteration, the element 
nonlinear stiffhess matrices have to be evaluated and the system nonlinear matrices have to be assembled 
and updated, and (3) the periodic and chaotic panel motions can not be determined. 

The remedy is to transform equation (4.1) into a set of modal coordinates of rather small DOF (e.g. 
6 modes by Dowell, 1966). For a rectangular panel with airflow along its length, the chosen modes, eigen 



solution of w r2[M]($r ) = [K]{+, ) , are the lowest few in the airflow free-stream direction and the first one 

in the cross-stream direction as 

r=l 

The system equations, Eq. (4. l), are thus transformed to the general Duffing-type reduced modal equations 
of the form 

Pkrr ,+[cG I+ (El+ Gu, I+ [K, b { q ~  = bm 1 
where T =coot is the nonhensional time, and the modal mass, aerodynamic damping and linear stifiess 
matrices are 

@ ~ [ ~ ~ , [ ' I ) = [ ~ ~ ( [ M ] ~ R ~ w ~ ~ A ~ I + [ K ]  - [K~I)[ ' I  (4.5) 
and the quadratic and cubic terms, and the modal thermal load vector are 

{ P A T  = [ @ I T  {'AT 

The nonlinear modal stifiess matrices [KI](') and [ ~ 2 ] ( ~ )  are assembled from the corresponding element 
nonlinear stifiess matrices which are evaluated with the corresponding element components obtained from 
the known system mode {+,I. Therefore, the nonlinear modal stifiess matrices are constant matrices. For 
detailed description of the modal formulation, the readers are referred to Zhou et al. (1994). For various 
combinations of dynamic pressure 1, temperature change AT and aerodynanuc damping g, ;r ,/- 
(p = p,a / ph) , all five types of panel behavior (flat, buckled, limit-cycle, periodic and chaotic motions) can 
be determined from the nonlinear modal equations, Eq. (4.4), using a numerical integration scheme. 

FLAT ..-. 
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Fig. 1 Comparison of limit-cycle amplitudes Fig. 2 Stability boundaries and limit-cycle 
for a simply supported square isotropic panel amplitudes of a simply supported square 
(p/MOD = 0.1). panel with uniform temperature. 



The limit-cycle results for a simply supported isotropic square plate at ATIAT, = 0, 1.0 and 2.0 
using the time domain modal method are shown in Fig. I. Results by Dowel1 (1966) using a six-mode 
model and by Xue and Mei (1993) using the LUM/NTF method in frequency domain are also shown for 
comparison. It demonstrates excellent agreement of these three approaches. Figure 2 shows the buckling 
and stability boundaries and limit-cycle oscillations for a simply-supported square isotropic panel subjected 
to uniform temperature distributions. 

Fig. 3 Convergence of limit-cycle amplitudes Fig. 4 Effect of temperature on limit-cycle 
for a simply supported [0145/-451901s square amplitudes of a simply supported square 
panel (NM, = 0.01). [0/45/-451901s panel (NM, = 0.01). 
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Application of the finite element modal formulation presented in Eq. (4.4) to composite panels is 
demonstrated with a simply supported square graphiteepoxy eight-layer [0/45/-451901s laminate. The 
convergence of limit-cycle amplitudes by retaining different numbers of modes is shown in Fig. 3. It can be 
seen that a six-mode model will give accurate limit-cycle response. Figure 4 shows the limit-cycle 
oscillations at various temperatures ATIAT, = 0, 1.0 and 2.0. The higher the thermal load, the lower the 
flutter dynamic pressure h. Figure 5 illustrates the limit-cycle motions of the composite panel at h = 450 
and ATIAT, = 1 .O. The harmonic behavior is clearly shown. In Fig. 6 the per idc  motions are shown for 
the same composite panel at h = 140 and ATIAT, = 3.0. The power spectral density (PSD) shows that 
there are four dominating frequencies and the phase plan plot indcates that there exist two weak wells. At 
higher temperature ATIAT, = 6.0 and moderate dynamic pressure h = 230, the panel exhibits chaotic 
behavior as shown in Fig. 7. 

Limited investigations on hypersonic panel flutter with aerodynamic heating exist in the literature. 
Bein et a]. (1993) studed square isotropic and orthotropic panels with simply supported edges subjected to 
uniform temperature distribution. A 4x2 mode model (4 in the x or airflow and 2 in the y or cross-stream 
directions) was used with Galerkin's method. The numerical integration results showed that the 
aerodynamic heating reduces h, and increases the limit-cycle amplitudes. Research is needed in this area 
including chaotic dynamic instabilities. 

[0/45/-45/90], 
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4.2 Inplane Force Effects 
Numerous studies on nonlinear panel flutter have considered the inplane force effects. A buckled two- 
dimensional panel was investigated in detail and a physical interpretation of the merge of flutter and 
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Fig. 5 Limit-cycle motions for a simply 
supported square 101451-45/90], panel 
(pIM, = 0.01) at A= 450, AT/AT,,=I.O. 

Fig. 6 Periodic motions for a simply 
supported square (01451-45/90], panel . 
($M, = 0.01 ) at A= 140, AT/AT,,=3.0. 

buckling stability boundaries \ a s  given for chaotic motions by Dowell (1982). 'The influence of inplane 
forces on three-dimensional panels that have been discussed earlier include Dowell (1 966: 1975). Monno 
and Kuo ( 197 l), Kuo et al. (1972), Mei and Weidman (1977), Han and Yang (1983) and Liaw and Ymg 
(1993). In general the influence on flutter behavior with the inplane force is similar to the behavior with the 
tbrrnal loads. That is reduced critical dynamic pressure and increased limit-cycle amplitudes with the 
increase of compressive inplane forces. 

Ibrahim et al. (1990) and Ibrahim and Orono (1991) have investigated the effect of mndom inplane 
forces acting on t~uodimensional panels in supersonic flow. The response moment equations were 
generated by using, the Fokker-Planck equations approach with hvo-mode and three-mode interactions. 
They found that the steady-state revealed in the response process is strictly stationary and that the inclusion 



of more modes results in a reduction of the response levels and expands the stability region. Chin et al. 
(1995), however, considered that the inplane forces were harmonic. Galerkin's method and the multiple 
scales were used to obtain the five first-order nonlinear ordinary differential modal equations. A 
combination of a shooting technique and Floquent theory was employed to obtain limit-cycles and stability. 
They showed that the existence of a sequence of periodicdoubling bifurcations culminates in chaos. 

4.3 Flow Direction Effect 
A large number of studies whlch considered the 
influence of air flow drection on linear panel 
flutter or critical dynamic pressure h, exist in the 
literature. The readers are referred to Laurenson 
and McPherson (1977) and Bismarck-Nasr 
(1992) for more review on this issue. 

Friedrnann and Hanin (1968) were the 
first to study supersonic nonlinear flutter of 
rectangular isotropic or orthotropic panels with 
arbitrary flow direction. They used the first-order 
quasi-steady aerodynamic theory and the 
Galerkm's method with a 4x2 mode model for 
panels with simply supported edges. Numerical 
integration was performed for limit-cycle 
motions. Chandirarnani et al. (1995) used the 
hrd-order piston theory aerodynamics and the 
lugher-order shear deformation theory to 
investigate nonperiodic flutter of a buckled 
composite panel. The flow yawing was 
considered, and Galerkin's method with a 2x2 
mode model was employed for simply supported 
rectangular laminated panel. 

Abdel-Motagaly et al. (1998) have 
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recently extended the finite element method to .4 b 

study nonlinear flutter of composite panels with 
yawed supersonic flows, An efficient solution -: - 3 j-------------/.-------------- 
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LUM/NTF approximation to the reduced " 2 -------.------i------------. 

0' 
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E converged limit-cycle response with a minimum < 
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Fig. 7 Chaotic motions for a simply supported 
square [0/45/-45/90], panel (CJM, = 0.01) 
at A= 230, AT/AT,=6.0. 

4.4 Effect of Streamwise Curved Plates 
Dowell has shown theoretically the necessity for considering preflutter deformation under static 
aerodynamic pressure for nonlinear panel flutter at supersonic speeds. He investigated the effect of 
constant curvature on two-dimensional (Dowell, 1969) and three-dimensional (Dowell, 1970) rectangular 



isotropic panels. It was shown that the streamwise curvature is detrimental both in lowering the dynamic 
pressure at whlch flutter starts and in increasing the flutter amplitude once flutter begins. 

Nydick et al. (1995) stuhed the hypersonic nonlinear flutter of curved panels. Two types of initial 
curvatures were considered. Krause and Dinkler (1998) investigated the lduence of curvature on flutter 
behavior of simply supported two and three dimensional isotropic panels using finite element method. The 
first and thud order piston theories were used and the curvature of the panels was described by 
imperfections. The effect of panel curvature on the hypersonic panel flutter case was found to be sirniliar 
for that of the supersonic case. 

4.5 Active Control of Panel Flutter 
Many researchers have investigated the effectiveness of using smart or intelligent materials for passive or 
active control of flexible structures. Only a few studies have been reported in supersonic panel flutter 
suppression using smart materials. Scott and Weisshaar (1994) were the first to study controlling the linear 
panel flutter suppression using piezoelectric materials. The piezoelectric materials covered the full surface 
of the panel. Four modes were retained using the ktz method, and the panel was modeled as a simply 
supported isotropic plate. Linear optimal control theory was employed in the simulation. Hajela and 
Glowasky (1991) applied piezoelectric elements in linear panel flutter suppression. Finite element models 
for panels with surface bonded and embedded piezoelectric materials were generated to determine the 
response. Using a multi-criterion optimization scheme, the optimal panel configuration with minimum 
weight and optimal sizing and layout of the piezoelectric elements for maximum flutter dynamic pressure 
were determined. In both studies by Scott and Weisshaar, and Hajela and Glowasky, the bending moment 
induced by the piezoelectric actuators is not effective in controlling panel flutter since there is no bending 
behavior in the linear case. Frampton et al. (1996) employed a collocated direct rate feedback control 
scheme for the active control of linear panel flutter. The linearized potential flow aerodynamics was used 
for the full transonic and supersonic Mach number range. An aeroelectroelastic panel model was 
developed. They demonstrated that a significant increase of the flutter boundary was achievable for a 
simply supported square steel panel. Using a finite element approach, Suleman and Goncalves (1997) 
recently investigated a passive control methodology for linear panel flutter suppression. The methodology is 
to induce tensile inplane loads from a bonded or embedded piezoelectric patches, and it thus leads to an 
increased critical dynamic pressure for a stiffer panel. Since the main concern was reviewing nonlinear 
panel flutter, the search on the suppression of linear flutter was not exhaustive. 

Lai et al. (1993) stuled the control of nonlinear flutter of a simply supported isotropic plate using 
piezoelectric actuators. The Galerlun's method was adopted in obtaining the nonlinear modal equations. 
The optimal control theory and numerical integration were used in the simulation. They concluded that the 
bending moment induced by piezoelectric actuators was effective in flutter suppression. 

Dongi et al. (1995) have presented a finite element method for investigations on adaptive panels 
with self-sensing piezoelectric actuators. The LUMNTF algorithm was extended to include the linear and 
nonlinear active stifkess matrices due to output feedback. A control approach based on output feedback 
for active compensation of aerodynamic stiffness (ACAS) terms has been developed. They showed that the 
ACAS control is able to increase the linear flutter boundary to M, = 6.67 from (M,), = 3.22 for a simply 
supported isotropic panel. 

Zhou et al. (1 995) recently have extended the finite element method to control isotropic panels with 
surface bonded piezoelectric patches. An optimal controller was developed based on the linearized modal 
equations, and the norms of the feedback control gain (NFCG) were used to provide the optimal shape and 
location of the piezoelectric actuators. Numerical simulations showed that the critical flutter dynamic 
pressure can be increased about four times and two times for simply supported case and clamped case, 
respectively. Zhou et al. (1996) further improved the finite element formulation to consider coupling 
between structural and electrical fields for laminated composite panels. A simply supported square [0/45/- 
451901~ graphitelepoxy composite panel was investigated. The panel becomes less stiff when piezoelectric 



actuators are embedded, and the critical flutter dynamic pressure (A,) is 298 and 227 for [0/45/-45/90]s 
and [Piezo/45/-45/90]s panels, respectively. Because of the limitation of the maximum operating electric 
field of the piezoelectric actuators (set to one-half of depolarization in the study), there is a maximum 
dynamic pressure beyond whlch the flutter motion can nolonger be suppressed. Thls particular dynamic 
pressure is referred to as the maximum flutter-free dynamic pressure L,. 

Table 2 Comparison of maximum flutter-free dynamic pressure &, 
for one-set actuator placed at the leading edge 

xJa &(R=500xI) &,,, (R = 1000x1) 

0.0 298 (=L) 298 (=&) 
0.1 600 616 
0.2 819 878 
0.3 877 975 
0.4 1157 1262 
0.5 1100 1171 
0.6 1037 1150 
1.0 597 (A, = 227) 596 (A, = 227) 

I-set Piezo 2-set Piezo 
at Leading 200 

Completely 0.0 C 0.2 0.4 0.6 0.8 1.0 
Edge Covered x, /a 

Fig. 8 Configurations of a composite panel Fig. 9 Maximum flutter-free dynamic pressure 
with embedded piezoelectric actuators. vs. normalized separating position for a simply 

supported square 101451-45/90], panel. 

Table 2 shows the maximum flutter-fiee dynamic pressure L, for the different sizes of one-set actuator 
design placed at the leading edge (Fig. 8) and two constants for the control penalty matrix R. &,,, is low 
for the small-size actuator design (xJa < 0.3) due to limited moments induced by piezoelectric actuation. 
When piezoelectric layers replace completely the top and bottom layers of the composite panel (xJa = 1.0), 
L, drops to 597 since the [Piezo/45/-45/90Is has a small critical dynamic pressure A, = 227. It can be 
concluded that more piezoelectric materials do not guarantee having a better performance for flutter 
suppression. 



For the [Piezo/45/-45/90Is panel, activating two independent sets of the piezoactuator (two-set 
actuator design) would yield a better performance than only activating a portion of the piezoactuator at the 
leading edge because of the flexibility of using two control variables. The variation of A,,,, with the 
normalized separating position for using one control variable (dotted line) and two control variable (solid 
line) designs is shown in Fig. 9. The two-set actuator design will increase the critical dynarmc pressure 
three times (&,,,/ha = 3.0) for the case studied. 

Fig. 10 For a simply supported square [0/45/-45/90], panel: a) NFCG and 
b) optimal location for one-set partially covered piezoelectric actuators. 

Table 3 Comparison of A,,,, for two different designs 

Actuator at the leading edge Actuator based on NFCG 

xJa L L I h a  Size La LdL 
0.1 616 2.1 6 870 2.9 
0.2 878 2.9 12 987 3.3 
0.3 975 3.3 18 1170 3.9 

The norms of feedback control gain (NFCG) developed earlier (Zhou et a]., 1995) were employed 
to determine the optimal shape and location of piezoelectric actuators. The [Piezo/45/-45/90Is is divided 
into a number of small patches which equal the number of finite elements used. The NFCG values are then 
calculated for each set at h = 1000 and R = 1000x1 and the result is shown in Fig. 10a. The higher the 
value, the more control influence of the corresponding patch is for flutter control. By connecting these small 
patches, the optimal shape and location of the actuator can be determined. Four actuator designs are shown 
in Fig. lob based on the NFCG. Table 3 gives the maximum flutter-free dynamic pressure & and the 



ratio of &,/h, for three different sizes of actuator (6, 12 and 18 element sizes) based on the two design 
methods. The advantage of using the NFCG rather than placing the actuator at the leading edge is evident. 

Wind-Tunnel testing performed by Ho et al. (1997) has shown that panel limit-cycle motions 
observed in the wind tunnel can be successfUlly reduced for composite panels with one-sided surface 
mounted piezoelectric actuators, strain sensors and a simple iterative gain tuning algorithm were used. 

5. EXPERIMENTS 
A large number of experimental investigations on linear panel flutter exist in the literature. Those 

experiments were performed in the sixties and early seventies and most of the test results were published as 
AF Techcal Reports, NASA Contractors Reports or Techcal  Notes. 

However, experimental investigations on post or nonlinear flutter behavior of panels have been 
essentially non-existent. Kappus et al. (197 1) conducted the panel flutter tests in the 1.1 to 1.4 Mach 
number range for flat rectangular 30x6.7x0.032 in. aluminum panels clamped on four edges. The panel 
flutter boundary was defined as a function of primary variables: Mach number, in-plane compression load 
and pressure differential across the panel. Secondary variables consisting of cavity volume, boundary layer 
thickness, and panel cross stiffening were also investigated. Panel stresses and motion were measured at 
flutter onset and during penetration beyond the flutter onset boundary. Tests showed that minimum flutter 
onset dynamic pressures occurred between Mach 1.3 and 1.4. Panel buckling lowered the flutter onset 
dynaxn~c pressure by about a factor of four over the no-load condition. A pressure hfferential as little as 
0.1 psi raised the flutter onset dynamic pressure by 50 %. Maximum panel s u h c e  stresses of about 1 1,000 
psi were measured at the panel trailing edge during a deep flutter penetration run (dynam~c pressure set at 
1000 psf which is 3.33 times the onset value). The maximum stress conditions were maintained for over 
300,000 panel oscillations cycles without panel Mure. 

SUMMARY AND REMARKS 
A review of large amplitude panel flutter at supersonic and hypersonic speeds has been presented. 

The review has been limited to nonlinear structure models due to space limitation. The classical analytical 
methods include the Galerkin's method with numerical integration, harmonic balance, and perturbation 
solutions. The finite element methods include the structure node DOF formulation with frequency domain 
eigen solution and the reduced modal coordmates formulation with time domain numerical integration or 
frequency domain solutions. Emphasis has been placed on the finite element methods. Interaction 
parameters or effects considered include temperature or aerodynarmc heating, flow direction, inplane loads, 
curved panels and active control. Composite panel behavior at supersonic Mach numbers and elevated 
temperatures as well as active control using piezoelectric actuators were treated in detail. 

For the aerodynamic pressure l&g, the piston theory aerodynamics needs experimental 
validation, or better theories predicting the pressure loading need to be developed and verified as suggested 
by Nydick et al. (1993). 

Material degradation at hlgh temperature includes mechanical properties and cycles to fatigue 
failure, etc. The temperature dependent properties for the panel material have to be considered for high 
supersonic and hypersonic flutter analyses. investigations on hypersonic flutter of composite panels using 
the thlrd-order piston theory aerodynarmcs with temperature effects are almost non-existent. Curved or 
cylindrical panels at supersonic and hypersonic speeds need further research efforts. 

Suppression of panel flutter motions including nonperiodic and chaotic motions using smart 
materials and adaptive nonlinear control algorithms requires investigation. 

Finite amplitude panel flutter experiments performed at supersonic and hypersonic Mach numbers, 
high temperatures and flow yaw effects are urgently needed. The test data are needed for the validation of 
various analysis models. It is also to be hoped that those nonlinear panel flutter analysis capabilities will be 
incorporated into one of the general purpose h t e  element packages and the nonlinear structural panel 
flutter will be used for designing panels for fhtigue rather than catastrophic failure. 
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ABSTRACT 
A finite element formulation is presented for the analysis of large deflection response of composite panels 

subjected to aerodynamic pressure at supersonic flow and high acoustic excitation. The first-order shear 
deformation theory is considered for laminated composite plates, and the von Karrnan nonlinear strain- 
displacement relations are employed for the analysis of large deflection panel response. The first-order piston 
theory aerodynamics and the simulated Gaussian white noise are employed for the aerodynamic and acoustic loads, 
respectively. The nonlinear equations of motion for an arbitrarily laminated composite panel subjected to a 
combined aerodynamic and acoustic pressures are formulated first in structure node degrees-of-freedom. The 
system equations are then transformed and reduced to a set of coupled nonlinear equations in modal coordinates. 
Modal participation is defined and the in-vacuo modes to be retained in the analysis are based on the modal 
participation values. Numerical results include root mean square values of maximum deflections, deflection and 
strain response time histories, probability distributions, and power spectrum densities. Results showed that 
combined acoustic and aerodynamic loads have to be considered for panel analysis and design at high dynamic 
pressure values. 

1. INTRODUCTION 
Aircraft and spacecraft skin-panels are subjected simultaneously to high levels acoustic (sonic fatigue) and 

aerodynamic (panel flutter) pressures.'92 Sonic fatigue and panel flutter have been the major design considerations 
for aircraft, spacecraft and missiles since the late nineteen sixties. An excellent review of sonic fatigue technology 
up to 1989 was given by c larks on.^ Various types of pressure loads, developments of theoretical methods, and 
comparisons of experimental results with theories and nomographs were given. Recently, Wolfe et aL4 gave 
reviews in-depth of sonic fatigue design guides, classical and finite element approaches, and identification 
technology. Experimental investigation of nonlinear beams and plates, and multimodal fatigue model were also 
reported. Sonic fatigue design guides have been developed by Rudder and plumblees for isotropic metallic and by 
p ole house^ for graphite-epoxy composite aircraft structures. The design guides, however, were based on the semi- 
empirical test data or the simplified single-mode approach. Vaicaitis et al. have developed a Galerkin-like 
procedure (PDE and modal method) and a time domain Monte Carlo approach for the nonlinear response of 

and panels to acoustic and thermal loads. 
An excellent survey of nonlinear panel flutter through 1970 was given by   ow ell.^ The vast amount of 

theoretical literature on panel flutter were grouped into four categories based on the linear or nonlinear structure 
theories, and the two aerodynamic theories (quasi-steady first-order piston or full linearized inviscid potential 
flow). The partial differential equations (PDE), the Galerkin's method and the numerical simulation results showed 
that a minimum of six modes are needed for a converged limit cycle amplitude response. ~ i smarck-~as r"  gave a 
review of the linear panel flutter using the finite element methods. Recently, a review of various analytical methods 
and experimental results of nonlinear panel flutter at supersonic and hypersonic speeds was given by Mei et al." An 
approach for the design of flutter-free surface panels using the quasi-static Ackeret aerodynamic theory was 
documented by Laurenson and ~ c ~ h e r s o n . ' ~  A exhaustive search of the literature reveals that there is no study of 
nonlinear panel response to combined acoustic and aerodynamic loads. 

When a flight vehicle travels at supersonic speeds, panel flutter caused by aerodynamic pressure is not the only 
form of dynamic instability. The surface panels also experience high frequency random pressure fluctuations (sonic 
fatigue).',' This paper presents a finite element formulation for the analysis of nonlinear large deflection response of 
composite panels subjected to high acoustic excitation and aerodynamic pressure at supersonic speeds. The first- 
order shear deformation theory is considered for the laminated composite plates. The von Karman nonlinear strain- 



displacement relations are employed for the large deflection response of the panel. Simulated Gaussian white noise 
and the first order piston theory aerodynamics are employed for the acoustic and aerodynamic loads. The nonlinear 
equations of motion for an arbitrarily laminated composite panel subjected to a combined high acoustic and 
aerodynamic loads are formulated first in the structure node degrees-of-freedom (DOF). The system equations are 
then transformed and reduced to a set of coupled nonlinear equations in modal coordinates. Numerical integration is 
employed to obtain the panel response. Examples are given for an isotropic and a composite panel at various 
combinations of sound pressure level and dynamic pressure. 

2. FORMULATION 
2.1 Equations of Motion in Structure Node DOF 

The inplane strain, curvature and shear strain vectors based on the von Karman large deflection and the first 
order shear deformation theories are given by 

where u, v and w are the inplane and transverse displacements, respectively. Y, and YY are the rotations of the 
normal to the midsurface about the y- and x-axes, respectively. The subscripts m and b denote membrane (inplane) 
and bending components, respectively. The constitutive equations for a laminated composite plate are 

where [A], [B], [Dl and [A,] are the stretching, bending-stretching coupling, bending, and shear stiffnesses, 
respectively. The quasi-steady first-order piston aerodynamic theory is employed for the aerodynamic pressure at 
high supersonic Mach number (M21.6). The aerodynamic pressure is given by9 

2 where qa=p,~2/2 is the free stream dynamic pressure, pa the air density, V_ the velocity and 0 = JM, - 1 . 
Using the Hamilton's principle and the finite element expressions, the system equations of motion for a 

composite plate subjected to aerodynamic pressure and high acoustic excitation can be expressed as'3914 

where uo = ( D ~  I pha )l I is a reference frequency and p, h and a are the panel density, thickness and length, 

respectively. The value Dl10 is the first entry in laminate bending rigidity [Dl calculated when all of the fibers of the 
composite layers are aligned in the airflow xdirection. The [MIbr [GI and {Pb) are the system mass matrix, 
aerodynamic damping matrix and load vector due to random acoustic pressure, respectively. The linear and 
nonlinear system stiffness matrices are given by 

[KL 1 = ~ [ A U  I+ [ K I ~  + [KS  1- [KB IKL1 [KB IT 
[ K N L I = - [ K B I K ~ ~ [ K ~ I ~ ~ + [ K ~ B I + [ K ~ N ~ I ~ [ K ~ N ~ I + [ K ~ I - [ K ~ ~ [ K ~ ~ ( [ K B F + [ K ~ I & )  ( 5 )  

where the nondimensional dynamic pressure and nondimensional aerodynamic damping are given by 



where Co = p ( ~ + - 2 ) ? I ~ ( ~ i - l ) 2 i s  the aerodynamic coefficient and p =p,nlph is the mass ratio. For high 

supersonic speeds M>>l,   ow ell^ approximated C, = p I M, . [A,] is the system aerodynamic influence matrix, 
and [Kl] and [K2] are the first-order and second-order nonlinear stiffness matrices which depend linearly and 
quadratically upon the unknown system displacement vector {W}={ { Wb},{ W,} lT. The subscripts B, N, and Nb 
denote that the corresponding stiffness matrix is due to the laminate extension-bending stiffness [B], membrane 
force components {N,}=[A]{E,~} and {Nb}=[B]{~), respectively, and the subscripts a and s denote aerodynamic 
and shear deformation, respectively. The derivation of Eq. (4) can be referred to references 13 and 14. In the 
absence of acoustic loading, {Pb(t))=O, Eq. (4) reduces to nonlinear panel flutter at supersonic speeds; On the other 
hand, by setting kga=O, Eq. (4) describes nonlinear random response of a composite panel subjected to high 
acoustic excitations. According to the authors' knowledge, this is the first attempt in investigating of nonlinear 
response of panels subjected to a combined acoustic and aerodynamic pressures. 

For a given set of h and C, (or CI/M,), Eq. (4) can be solved by numerical integration in the structure node 
DOF for combined load case. This approach has been carried out for sonic fatigue analysis with simulated random 
10ads.'~"~ It turned out to be computationally costly due to: (i) at each time step, the element nonlinear stiffness 
matrices are evaluated and the system nonlinear stiffness matrix [KNL] is assembled and updated, (ii) the number of 
structure node DOF of {Wb) is usually very large, and (iii) the time step of integration should be extremely small. 

An efficient solution procedure is to transform Eq. (4) into the modal coordinates with a modal reduction. This 
approach is presented as follows. 
2.2 Equations of Motion in Modal Coordinates 

Express the panel deflection as a linear combination of some known base functions as 
n 

W b  I= C 4 r  (t)br I= [@%I) (7) 
r=l 

where the number of retained linear in-vacuo modes, n, is much smaller than the number of structure node DOF in 
bending, {Wb}. The normal mode {+,I, which is normalized with the maximum component to unity, and the linear 
natural frequency w, are obtained from the linear vibration of the system 

-i 

A small number of most contributing modes to be retained in the analysis can be determined from the modal 
participation value which is defined as 

n 

Participation of the r mode = RMS(~$ RMS(q, ) 
s=l 

(9) 

Since matrices [Kl],,,,,. [Kl s], [KINb] and [K2] are all functions of the unknown bending DOF { Wb), they can 
now be expressed as the sum of products of modal coordinates and nonlinear modal stiffness matrices as 

where the super-indices of those nonlinear modal stiffness matrices denote that they are assembled from the 
corresponding element nonlinear stiffness matrices. Those element nonlinear stiffness matrices are evaluated with 
the corresponding element components {wb)(') obtained from the known system linear mode (9,). Therefore, the 
nonlinear modal stiffness matrices are constant matrices. The matrix [ K l ~ d ,  however, is a linear function of the 
inplane DOF {W,) which consists of two terms as 



r=l  r=l s = l  
where the two inplane modes corresponding to the rh bending mode {$,I are given by 

The nonlinear stiffness matrix [KIN,,,] can be expressed as the sum of two nonlinear modal stiffness matrices as 
n n n 

[ K l ~ m l = -  z 4 r [ ~ 1 N m l ( ~ ) -  ~ 9 r 9 s [ ~ 2 N m l ( ~ )  (13) 
r=l  r = l s = l  

The nonlinear modal stiffness matrices [ ~ l ~ , p ; ~ " '  and [K~~J '" '  are constant matrices and they are assembled and 
evaluated with the known inplane modes {+,I, and {$,,},, respectively. Equation ( 4 )  is thus transformed to the 
reduced modal coordinates as 

where the modal matrices are given by 

and the quadratic and cubic terms are 

and the modal force is 

M , A structural modal damping %,w, -+I] has been added to Eq. (14),  and 5, is the modal damping ratio which can 
0, 

be determined experimentally or from the data base of structures of similar construction. The nonlinear response for 
a given panel at certain dynamic pressure h and damping parameters C, and S, can be determined from Eq. (14) by 
any numerical integration scheme. The advantages in using Eq. (14) are: (i) there is no need to assemble and update 
the quadratic and cubic nonlinear terms since all the nonlinear modal matrices are constant matrices, and (ii) the 
number of modal equations, n, is small. 
2.3 Random Surface Pressure 

The input acoustic excitation is assumed to be band-limited Gaussian random noise and uniformly distributed 
over the structural surface. The power spectrum density (PSD) has the form 

. , 
= O  otherwise 

where po is the reference pressure, po=2.9x1~9 psi (0.00002 ~ / m * ) ,  SPL is the sound pressure level in 
decibels and f, is the selected band width. The formulation presented in Eq. (14), however, is not limited 
to stationary Gaussian excitation. It can also handle nonstationary, non-Gaussian random loading which 
the high speed flight vehicles would probably experience. With recorded flight high frequency pressure 



fluctuations, random panel response can be determined much realistically by numerical integration of Eq. 
(14). 

3. EXAMPLES AND DISCUSSION 
The nonlinear system equations presented in Eq. (4) are general in the sense that they are applicable for 

re~tangular '~"~ or t~iangular'~ finite elements. The finite element emplo ed in the examples is the three-node 
IY triangular Mindlin (MIN3) plate element with improved transverse shear. The shear correction factor is defined 

as q = 1 / 0 + 0 5 ~ k , l  Bbii). The MIN3 element has a total of 15 DOF, 5 at each apex node. The bending node DOF 
d . 9  M Y  

{wb) comprise of transverse displacements and normal rotations (w, Y, and Y,) and the inplane node DOF {w,) 
comprise of inplane displacements (u and v). Nonlinear response are obtained for a square isotropic plate and a 
rectangular composite plate. An aerodynamic coefficient C,=0.01 and a modal damping ratio k 0 . 0 1 ,  r=l to n are 
used in the examples. 
3.1 Square Isotropic Plate 

A simply supported square aluminum panel under the combined acoustic and aerodynamic pressures is studied 
in detail. The plate is of 1 2 ~ 1 2 ~ 0 . 0 4 0  in. (30.5x30.5x0.lcm) with immovable inplane edge conditions u(0,y) = 
u(a,y)= v(x,O)= v(x,a)= 0. The material properties are E=lOMsi (68.89 GPa) and v=0.3. The plate is modeled with a 
12x12 mesh or 288 MIN3 elements. The number of structural node DOF {Wb) is 407 for the system equations 
given in Eq. (4). It is well know that 6 modes in the airflow direction are needed for a converged limit cycle 
response for panel flutter and the lowest few symmetrical modes are needed for the uniform input random pressure 
distribution for sonic fatigue. Therefore the modes considered for the combined aerodynamic and acoustic loads are 
(1,l) to (6-1) for the panel flutter and (1,1), (1,3), (3,l) and (3,3) for the sonic fatigue analysis. No modal 
participation calculations are needed for this well studied problem in panel flutter and sonic fatigue. The root mean 
square (RMS) maximum deflections to plate thickness versus the nondimensional dynamic pressure h at SPL of 0, 
100, 110 and 120 dB are shown in Fig. I .  
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The curve with the null acoustic pressure (0 dB SPL) is the conventional panel flutter limit cycle oscillations, 
and the RMS deflections at null dynamic pressure (h--0) are the conventional nonlinear panel response to acoustic 
excitations. The accuracy of the present formulation for panel flutter and sonic fatigue is verified and shown in Fig. 
2 and Table 1 for panel flutter and sonic fatigue, respectively. The Fokker-Planck-Kolmogorov (FPK) Equation 
1181 method is an exact solution to the single degree-of-freedom forced Duffing equation. The finite 
element/equivalent linearization (FEEL) approach assumes that the equivalent linearizd system obtained after the 
application of equivalent linearization technique is also stationary Gaussian, while the present time domain 



numerical integration method does not assume that the displacement response is Gaussian, therefore, the present 
method should be more accurate and realistic. 

Table 1. Comparison of RMS of (W,Jh) for a simply supported rectangular 

The maximum deflection is located at the three-quarter length from the leading edge. (3d4, d2)  for the panel 
flutter, however, it is at the plate center (al2, 42) for sonic fatigue. For a fixed SPL, the location of the maximum 
deflection thus moves from the plate center towards the three-quarter length as the dynamic pressure increases. On 
the other hand, for a fixed dynamic pressure, the location of the maximum deflection moves towards the center 
from the three-quarter length by increasing the SPL. The maximum deflection for the combined acoustic and 
aerodynamic loading case, therefore, is not at one fixed location, it can be anywhere between the plate center and 
three-quarter from the leading edge. 

The deflection results shown in Fig. 1 indicate that: (i) the superposition method does not applicable to 
nonlinear system, (ii) for a given SPL, the RMS deflection at k O  is higher than the deflection at O<h<L, this is 
due to the increase of panel frequency with increasing of h, thus increase the stiffness of the panel, and (iii) the 
RMS deflection at large dynamic pressure (b>L,) are always higher than those at Thus important 
conclusions can be drawn for design and analysis of surface panels at supersonic speeds: (i) for h<<k,, only 
acoustic loading or sonic fatigue has to be considered, and (ii) for bk,, both acoustic and aerodynamic loads have 
to be considered. 

Representative panel behavior at five loading combinations are presented in Figs. 3-7. Those five loading 
combinations correspond to A to E shown in Fig. 1. The maximum deflection and maximum strain response time 
histories, probability distribution and PSD for each loading case are presented. Figures 3 and 4 show the random 
response at SPL=100 and 120 dB and (sonic fatigue; points A and B in Fig. I), respectively. At the low 100 dB 
SPL, the panel basically experiences a small deflection linear random vibration dominated by the fundamental (1,l) 
mode. The panel motion at the high 120 dB SPL, however, is clearly a large deflection nonlinear random vibration. 
This is demonstrated by the peaks in PSD plots that are broadening and shifting to the higher frequency and by the 
presence of nonzero-mean inplane strain shown in strain plots. 

At L800 and 0 SPL (panel flutter; point C in Fig. l), the panel.response shown in Fig. 5 is a large amplitude 
limit cycle motion. The displacement probability density and the PSD of (W,,/h) both describe a periodic motion. 
The maximum strain time history shows clearly the effect of large inplane strain component due to large amplitude 
periodic motions. 

The panel responses at the combined loads of k 8 0 0  and SPL=100 and 120 dB (points D and E in Fig. 1) are 
shown in Figs. 6 and 7, respectively. The maximum deflection and strain time histories show the nonlinear large 
deflection vibrations dominated by the fundamental mode and the presence of inplane strain components. 
3.2 Rectangular Composite Plate 

Nonlinear response of composite panels under aerodynamic and acoustic pressures can be determined using 
the present formulation and solution procedure. As an example, a clamped rectangular graphite-epoxy plate of eight 
layers [0/45/-45/90]s is analyzed. The dimensions and material properties of the panel are: 

a=15 in. (38.1 cm) El=22.5 Msi (155 GPa) 
b=12 in. (30.5 cm) E2=1.17 Msi (8.07 GPa) 
h=0.048 in. (0.122 cm) GI2=O.66 Msi (4.55 GPa) 
p~.1458x10-3 l b - ~ ~ / i n . ~  (1550 ~ ~ / r n ~ )  G23=0.44 Msi (3.03 Gpa) 
~ 1 Z d . 2 2  

(15~12~0.040 in.) isotropic plate using different methods and number of modes 
SPL 
(dB) 

FEEL [ 191 
1 mode 4 modes 

FPK [18] 
1 mode 

Present 
4 modes 



The inplane edges are immovable and the plate is modeled with a 12x12 mesh. The number of system equations in 
structure node DOF {Wb} is of 363. The system equations are reduced to the modal coordinates using the lowest n 
modes in increasing frequency order. The RMS W,,h at 120 dB SPL and k 8 0 0  using different number of modes 
are shown in Table 2. The results show that a 20- or 25-mode model would yield a converged RMS maximum 
deflection. 

To demonstrate the advantage of using modal participation defined in Eq. (9), the participation values for the 
25-mode model are shown in Table 3. By retaining those 13 modes with participation value > 1% in the analysis, 
the RMS W,,h is 0.8124 at 120 dB SPL and k800.  Using the 13 most contributing modes, the RMS (W-h) 
versus nondimensional dynamic pressure h at SPL of 0, 100, 110 and 120 dB are shown in Fig. 8. Similar 
conclusion from the isotropic panel can be drawn for the composite panel, that is, at low dynamic pressure 
only acoustic loading needs to be considered, and at high dynamic pressure (I+.&,) both aerodynamic and acoustic 
loads have to be considered for the design and analysis of surface panels at supersonic flow. Response time history, 
probability distribution and PSD are not repeated for the composite panel. 

Table 2. RMS (W,Jh) for a clamped rectangular graphite-epoxy panel 
at 120 dB SPL and k800  using different number of modes 

Number of modes, n RMS (W,,h) 
1 0.5557 

25 0.8 183 
Selected 13 modes 0.8124 

Table 3. Modal participation values for a clamped rectangular graphite-epoxy 
panel at 120 dB SPL and M O O  using the lowest 25 modes 

Modenumber 1 2 3 4 5 6 7 8 9 10 11 12 
Participation, % 36.72 5.24 19.30 4.25 4.01 7.67 1.71 0.76 0.33 1.54 4.77 0.35 

13 14 15 16 17 18 19 20 21 22 23 24 25 

01 I I I 

0 200 400 600 800 1000 
Dynamic Prsssure 

Fig. 8 RMS maximum deflection of a clamped rectangular graphite-epoxy plate 



4. CONCLUDING REMARKS 
A finite element time domain modal formulation is presented for the analysis of nonlinear response of 

composite panels subjected to combined acoustic and aerodynamic pressures. The advantage of using modal 
participation for retaining the most contributing modes was demonstrated. For panels at supersonic flow, only 
acoustic excitations (sonic fatigue) are to be considered for kc&, and both acoustic and aerodynamic pressures 
have to be considered for bhc r .  Future extension of the present work includes the combined acoustic, aerodynamic 
and thermal loads. Arbitrary flow directions and curved panels will also be considered. 
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Fig. 3 Random Response of a simply supported square isotropic plate at 100 dB SPL and k 0  
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Fig. 5 Response of a simply supported square isotropic plate at 0 dB SPL and M O O  
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Abstract 

The paper describes panelflutter analyses performed in the context of the development of the first Brazilian 
satellite launcher (VLS).  The development of the structural-dynamic and aerodynamic formulations are 
presented, together with their coupling to obtain the aeroelastic equations. Two different approaches were 
used to describe the aerodynamic loading, namely formulations based on the quasi-steady, linearized, small 
perturbation potential equation and on 1st-order piston theory. Results are presented for the V L S  main 
aerodynamic fairing panels, both at zero incidence and at angle of attack. The effect of the anclusion of 
the unsteady aerodynamic terms in the aeroelastic results was also investigated. The overall conclusion of 
the study indicates that the V L S  payload shroud would be free from panel flutter even with a considerable 
reduction in the fairing panel thickness. 

1 Introduction 

The present work is concerned with panel flutter analyses performed in the context of the development of the 
first Brazilian satellite launcher, the VLS system. The VLS is a four-stage vehicle in which the first stage 
is composed of four strap-on boosters around a central core. The vehicle has a hammerhead-type payload 
shroud which is a configuration known to  be prone to flow separation during the transonic or supersonic flight 
regimes. This observation, therefore, also indicates that considerably higher structural loads could be present 
over the payload fairing for these flight conditions. A schematic representation of the VLS system is presented 
in Fig. 1. The vehicle is being designed for the mission of launching small satellites, of the order of 150 to 200 
kg, into low Earth orbit (LEO). Moreover, this vehicle is an integral part of the so-called Complete Brazilian 
Space Mission which has the goal of launching a Brazilian satellite, using a Brazilian-built rocket, from a 
Brazilian launching site. The satellite development is the responsibility of Instituto Nacional de Pesquisas 
Espaciais (INPE) whereas the launching site is the Alcantara Launching Complex (CLA). The responsibility 
of designing and building the launcher itself falls with Instituto de Aeroniutica e Espaso (IAE) which, together 
with its industrial partners, should deliver the VLS ready for launch. 

The vehicle has been under development for a few years now and, recently, there was an intensive effort to 
try to finalize its aeroelastic clearance studies. In particular, as in the development of any satellite launcher, 
panel flutter analyses are an important issue to be considered. Moreover, it is correct to  state that aeroelastic 
considerations were not taken into account in the origina.1 design studies and structural sizing of the vehicle. 
These considerations were treated as afterwards verifications, which is also a fairly common procedure in 
many organizations. The aspects which were mainly emphasized in the VLS aeroelastic clearance studies 
were transonic buffeting for the central body payload shroud, classical flutter and divergence of the vehicle 
fins, panel flutter and vortex shedding a t  takeoff conditions. It should be emphasized that the final VLS 
configuration, as shown in Fig. 1, does not have fins in the first stage boosters. However, until recently, the 
primary configuration under study was supposed to have those fins and there is no guarantee that  future 
vehicle upgrades will not require the fins. 

The present paper describes one of these studies, namely the verification of panel flutter stability for the 
vehicle main aerodynamic fairing, i.e., the payload shroud. The initial studies for the VLS design indicated 
that the payload shroud would be made with composite materials. For several reasons, which are beyond the 



Figure 1: Sketch of the VLS system. 

scope of the present paper, there was a decisison to  use standard aeronautical construction for the fairing. 
Hence, it currently has several longerons and stiffners which are riveted to the aluminum skin. Stiffners and 
longerons are also made of aluminum. The overall fairing construction allows its modeling as composed of 
several rectangular patches supported a t  the longerons and stiffners. The flat patches are uniform, isotropic, 
thin and simply supported on the four edges. The aerodynamic loading is based on the two-dimensional 
"static approximation" in the first instance including the effect of yaw of the panel. Then, unsteady terms 
are included in the aerodynamic formulation. The approximate solution is obtained by using Lagrange's 
equations and oblique coordinates. Numerical results indicate that, even at  the maximum dynamic pressure 
flight condition and if the plate thickness were reduced in half, the flutter dynamic pressure would still be 
considerably higher than the actual flight dynamic pressure. 

2 Structural Formulation 

The parallelogrammic flat panel simply supported all around is assumed to be uniform, thin, and isotropic. 
Damping is neglected and the classical, small-deflection, thin-plate theory is used in the structural formulation. 
The effect of yaw of the parallelogramic panel is taken into account. Lagrange's equations are used to  derive 
the equations of motion of the aproximate solution. The potential energy of the system is written based on 
the strain energy of deformation of the plate and the work of the mid-plane forces. The panel is exposed to 
supersonic flow on one side and to  still air on the other. Figure 2 shows the geometry of the panel, the system 
of oblique coordinates and the aerodynamic flow. The use of the classical small-defletion theory allows the 
governing equation for the problem to  be written as 

D v 4 w  + NZW,,, + 2Nx,W,zy + N,W,y, + phW,tt = [(x, Y, t ) ,  (1) 

where D = Eh3/12(1 - v2) is the stiffness of the plate, V4 is the biharmonic operator in oblique coordinates, 
p is the mass density of the material, h and W are the thickness and transverse displacement of the panel, 
respectively, and !(x, y ,  t )  is the aerodynamic loading normal to  the middle plane of the panel. Moreover, N,, 
N,, and Ny represent the structural loading at the mid-plane of the plate. Subscripts after a comma denote 
differentiation. The boundaries of the panel, in oblique coordinates, are xl = 0, X I  = a, yl = 0 and yl = b. 
The rectangular coordinates and the oblique coordinates are related by the expressions XI = x - y tan '3 and 
yl = y sec Q, where !P is the angle of skew of the panel. 



Figure 2: Parallelogramic panel and oblique coordinate system for the panel in yaw. 

3 Aeroelastic Formulation 

The aeroelastic equations for the problem are derived using two aerodynamic theories. The first one considers 
a quasi-steady aerodynamic formulation based on the linearized small perturbation potential equation. The 
second one uses a 1st-order piston theory which includes unsteady aerodynamic effects. 

3.1 Quasi-steady Aerodynamic Formulation 

The equations of motion of the system are obtained by the use of Lagrange's equations 

d d T  d T  dU 
-(-) - - + - = Q;( t ) ,  
dt dq; dq; dq; 

i = 1 , 2 , . - . , k .  

The kinetic energy is given by 

T = cos 9 ib La phlh'2dxldyl. 
2 

From thin-plate theory, the potential energy of the system U consisting of the strain energy of deformation of 
the plate expressed in oblique coordinates and the work of the mid-plane forces is given by 

u = - cos '$ Job i a [ ( ~ 2 ~ ) 2  - 2(1-  01 sec2 ~ ( ~ , , , , , ~ , , , , ,  - w:~,, )ldxldyl 
2 

b a 
- COS L 1 [N,u~,;, + N ,  sec2 P(W,,, - sin 9W,,l)2 

2 

+ 2Nxy sec !IJW,,, (W,,, - sin ~W,,,)]dxldyl, 

where V2W = sec2 V!(W,,,,, - 2sin 9W,,,,, + W,,,,,) is the laplacian in oblique coordinates applied to  W. 
The quasi-steady aerodynamic loading, based on the linearized small perturbation potential equation is given 
bv 

where q = ipaiY2 is the dynamic pressure, pa and U are, respectively, the air density and the mean flow 
velocity, and P = J-j, with M denoting fie freestream Mach number. 

The deflection of the panel can be written as 



where J = z l / a  and 7 = yl/b are nondimensional oblique coordinates. Thus, the kinetic and strain energies 
expressions can be rewritten, respectively, as 

1 

T = 5xxmij I$ cjj and U = b c c kij  pi pj, 

where m;, and k;, are presented in Durvas~ la [~] .  
Taking into account the effect of yaw of the parallelogramic panel, as shown in Fig. 2, the aerodynamic 

loading, considering a quasi-steady formulation based on the linearized small perturbation potential equation, 
is written, in normalized oblique coordinates, as 

- 29 a f(J, 7, t )  = -[(cos A - sin A tan q )  W,( + - sin A sec @ W,,] 
up b (8) 

where A is the angle between the flow direction and the axis x (yaw angle). The generalized forces Q i ( t )  can 
be calculated considering the virtual work of the aerodynamic loading as: 

6W = Q;(t)6q; = - 2qbcos 1' i l [ ( c o s ~  - sin A tan *)w,( 
P 

+ 2 sin A sec !P W,,]6Wd<dq 
b 

from which one can write: 
2qb cos Q k 

Q; = - C Lijqj, 
P i=1 

where 

a 
Lij = 1' ~ ~ [ ( C O S  A - sin A tan * ) m j s  + htq- sin 12 sec B]$id<dq. 

b 

Substituting the expressions for the kinetic energy T, strain energy U and generalized forces Q; into the 
Lagrange's equations (2), one can write 

At the critical flutter condition, as the motion is simple harmonic, the modal deformations can be written 

where {Ci) is the vector of constants to be determinated and w is the frequency of oscillation. Substituting 
this equation into Eq. (11) the resulting system of algebraic homogeneous equations is 

[[I;'] - w ~ [ M ]  - [i]]{c) = (0). (13) 

For the simply supported panel, the boundary conditions are W = 0 and M, = 0 all along the boundary. For 
the polygonal boundary, the foregoing boundary conditions reduce to  W = 0 and V2W = 0 on the boundary. 
For the assumed displacement mode function 4; one can take 

m = 1 , 2 , . . - , M  
d i ( [ ,  7 )  mmn(<, 7) = sin m ~ <  sin n ~ q  , with 

n = 1 ,2 , . . . ,Af  



and also, accordingly, kij N kmnrs, mij m,,,,, Qi Qmn and Lij Lmnrs. Thus, Eq. (13) can be rewritten 

where r2 = pha4 Dr4 'u2 and [E,,,,] is defined in Ref. [7]. Also, the dynamic pressure parameter, present 
t 2qa3 cos4 'JJ in [Em,,,], is given by Q - PDa4 * 

The matrix equation (15) corresponds to the general flutter problem of a parallelogrammic panel simply 
supported all around acted upon by uniform in-plane loads N,, N,, and N,,. This work, however, is concerned 

with the panel flutter of unstressed panels, i.e., with N,, N,, and N,, all equal to zero. The eigenvalues F2 
of the matrix [Em,,,] represent the frequencies of vibration of the panel. For the static aerodynamic theory 
used, all eigenvalues of [E,,,,] are real for sufficiently small values of Q*. Actually, for Q* = 0, Eq. (15) 
refers to a free vibration problem and the resulting eigenvalues correspond to  the in vacuo frequencies of the 
panel. Gradually increasing Q*, some eigenvalues approach each other and, for a certain value of Q*, two roots 
coalesce forming an eigenvalue loop. Further increasing the value of Q*, these two roots become complex. 
When the roots r2 become complex, the corresponding motion clearly is a divergent oscillation. Thus, the 
value of Q" a t  which two eigenvalues coalesce defines the critical value QF, for flutter. 

3.2 Aerodynamic Formulation with Piston Theory 

The aerodynamic loading, considering first order piston theoryr31, can be written as 

The structural-dynamic formulation is still given by Eq. (1). Hence, the aerodynamic loading, rewritten in 
terms of the dimensionless coordinates and considering the coordinate system indicated in Fig. 2 ,  can be 
expressed as 

29 a a 1( [ ,  r ) ,  t) = - - [(cos A - sin A tan B) W,( + - sin A sec XIJ W,, + - W J ]  . 
a M  b U (17) 

The Q;(t) generalized forces, obtained from the virtual work performed by the aerodynamic forces, can be 
written in this case as 

2qb cos XP k 

Qi(t) = - 
j=l 

where 
a 

Ll,ij = 1' 1' [(cos A - sin A tan B) bj,( + 6 sin A sec B a j ,  ai d[ d~ , I 
The equations describing the motion of the panel in terms of the modal coordinates can be obtained, using 

Lagrange's equations of motion, as 

The present formulation does not allow a direct eigenvalue analysis, as performed in the previous case, due to  
the presence of the modal velocities in Eq. (20). If one considers the transformation of variables defined by 
q1 = q and qz = q, it is possible to  rewrite the equations of motion in a standard first-order form as 



The various matrix terms in Eq. (21) were obtained from the matrices in Eq. (20) after appropriate normal- 
izations. The interested reader is referred t o  Ref. [6] for further details of this derivation. It is also possible to  
show161 that these terms can be written as 

where [Emn,,] appeared originally in Eq. (15). If one considers that ,  a t  the critical flutter condition, the motion 
is of the form 

{q) = Re{C;) e" , (23) 

it is again possible to  perform an eigenvalue-based stability analysis for the system. In this case, the instability 
condition will be reached when the real part of any of the eigenvalues becomes positive, since this will yield 
an exponentially growing amplitude of motion. 

4 Some Validation Results 

The formulation described in Section 3.1 was validated based on numerical examples present in Ref. [4], whereas 
the formulation presented in Section 3.2 was partially validated, based on the same examples, however taking 
the terms of matrix [I2] equal to  zero. 

An evaluation of the effect of the unsteady aerodynamic terms present in the 1st-order piston theory 
formulation was also performed. Results in graphical form are not presented here for the sake of brevity. 
However, the calculations indicated that, all other parameters held fixed, the lowest values of Qr, correspond 
to  the results obtained without including the unsteady terms, i.e., using quasi-steady aerodynamics. Moreover, 
computations with 1st-order piston theory used two different values of freestream air density, namely pa = 0.600 
kg/m3 and 1.228 kg/m3. The results indicated that higher values of air density yield larger values of QX. 
Therefore, the conclusion of these analyses is that, for the present cases, the inclusion of unsteady effects 
increases the flutter dynamic pressure because the unsteady aerodynamic terms add damping to the system. 
Moreover, higher air densities yield larger damping effects which, in turn, further increase the flutter dynamic 
pressure. 

The results for a flutter analysis using 1st-order piston theory and considering a panel with a / b  = 1, with 
air density p, = 1.228 kg/m3 and A = 0 deg., are presented in Fig. 3 in terms of the root locus of the first 
eigenvalue that  becomes unstable. One can observe that, as Q* is increased, initially the real part of the 
eigenvalue is essentially constant. Further increase in Q* makes the real part of the eigenvalue move towards 
the unstable right-hand semi-plane and, a t  Q:, = 5.9, there is the onset of flutter for this case. 

5 Flutter Analyses for the VLS Main Fairing 

A typical panel was chosen from the cylindrical region of the VLS main fairing for the analyses. The rectangular 
panel is simply supported all around the boundary. The elastic deformations of the support, i.e., the elastic 
deformations of the longerons and stiffners, were neglected. The panel to  be analyzed is rectangular with 
a = 115 mm and b = 120 mm. For the work herein described, firstly a yaw angle of 0 deg. was u . Since 
the chosen typical panel has sides parallel to the axes of the coordinate system, thus Q = 0 deg. "00. The 
calculations were performed using 16 term series by taking M = 4 and N = 4, and with the mid-plane loads 
N ,  = N ,  = N,, = 0. The results, pictured in Fig. 4, showed coalescence between the 1st and 2nd frequencies 
for Q;, = 5.11. If the vehicle flies with angles of attack different from zero, it would be equivalent to having 
the side panels with angle of yaw, A, with respect to  the flow, also different from zero. In the VLS case, all 
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Figure 3: Root locus for the first eigenvalue that becomes unstable with N, = N, = N,, = 0 and = A = 0. 

along its trajectory, the angle of attack varies from 0 to 6 deg. As shown in the literaturer41, and confirmed 
by the results obtained, the existence of yawing angles, in the range of 0 to  10 deg., when !P = 0 deg. and 
a lb  = 1, typically leads to higher critical flutter dynamic pressures. Thus, the results obtained for A = 0 were 
considered in the study described as follows. The panel's material is aluminum with E = 70 GPa, v = 0.3, 
and thickness h = 1.0 mm. It is possible to  write q/P as function of Q* by using the expression 

Then, substituting the value obtained for Q,', into Eq. (24) results q/P = 1.05 x 106N/m2. From the vehicle's 
flight data151 at  time t = 42 s, the maximum dynamic pressure is q,,, = 9.28 x 104N/m2 corresponding to a 
Mach number M = 2.383, which results in q/P = 4.29 x 104N/m2. The results clearly indicate a very safe 
vehicle operation, as far as panel flutter is concerned, since q/P, for the critical dynamic pressure parameter 
of the vehicle, is almost 2 orders of magnitude larger than the actual value obtained with the vehicle flight 
data. Moreover, if the panel thickness is reduced to 0.5 mm, the previous numerical procedures will produce 
q / P  = 1.31 x 105N/m2, which still represents a very stable condition, since the result is about 3 times larger 
than the one that actually occurs during the flight of the vehicle. 

Another approach to  present the previously discussed results would be to plot the stability region for the 
VLS main fairing for a fixed flight dynamic pressure, and as a function of the flight Mach number and panel 
thickness. This is indicated in Fig. 5 for the case in which the aerodynamic forces are calculated using the 
quasi-steady, small disturbances potential theory. All the geometric and material data used in this case are the 
same as in the previous discussion. For the present calculations, however, the point along the vehicle trajectory 
corresponding to 35 s after liftoff was considered, which yields a freestream dynamic pressure of 78.3 x lo3 
~ / m ~ .  The points above the curve in Fig. 5 correspond to stable operation as far as panel flutter is concerned, 
whereas those below the curve are unstable points. 

The actual point corresponding to  the VLS payload shroud panels in the above conditions is also indicated 
in Fig. 5. One can see that this point is well within the stable region. Moreover, one can also observe that, all 
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Figure 4: Eigenvalues as function of the aerodynamic loading Q*. 

other parameters remaining constant, the panel thickness could be reduced to approximately 0.4 mm without 
the occurence of panel flutter for this flight condition. 

Figure 5 :  Stability region for the VLS payload shroud panels calculated using quasi-steady aerodynamics 
(q = 78.3 x lo3 N/m2). 

Similar results are presented in Fig. 6, but for the aerodynamic loads computed using 1st-order piston 
theory. As before, all other parameters and the flight dynamic pressure are held fixed, whereas the Mach 
number and panel thickness are varied in order to determine the flutter stability limit. The dynamic pressure 
was fixed a t  87.0 x lo3 N/m2 in this case, which corresponds to  flight a t  40 s after liftoff for the VLS nominal 
trajectory. Again, the actual point corresponding to the VLS flight at  this condition is also shown in Fig. 6, 
and one can observe that  the vehicle is clearly stable for panel flutter under such conditions. The dimensionless 
critical flutter dynamic pressure a t  this condition, calculated using piston theory, is QL = 5.16. For the same 
conditions, if the flutter limit were computed using quasi-steady aerodynamics, the calculation would yield 



Figure 6: Stability region for the VLS payload shroud panels calculated using 1st-order piston theory (q  = 
87.0 x lo3 N/m2, pa = 0.447 kg/rn3 and altitude = 9375 m). 

unstable 1 

Q& = 5.11. This behavior is in agreement with the results previously discussed, since the addition of the 
unsteady terms adds damping to the system and, hence, increases the flutter speed. 

A still different form of trving to summarize the results of the   resent investigation is shown in Fig. 7. In 
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Figure 7: Comparison of flutter dynamic pressure and actual flight dynamic pressure along the VLS nominal 
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trajectory for payload shroud panel thickness assumed as 0.5 mm. 
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this case, the panel thickness was held fixed a t  h = 0.5 mm, and the dynamic pressure for the flutter stability 
limit was calculated as a function of the flight Mach number. All geometric and material parameters are equal 
to  the values used in the previous analyses for the VLS, and the atmospheric data is taken, as a function of 
the flight Mach number, from the vehicle nominal flight trajectory. The panel thickness was considered a t  half 
of its actual value for the VLS panels because the authors wanted to emphasize that, even with such a drastic 
reduction on the fairing plate thickness, the vehicle was still safe with regard to  panel flutter. The actual 
flight dynamic pressure for the VLS, as a function of Mach number, is also shown in Fig. 7 for comparison 
purposes. It is clear from this figure that the panel flutter margin for the payload shroud panels is very 
large throughout the relevant portion of the flight trajectory, even with half the actual plate thickness. The 
quasi-steady aerodynamic formulation was used for the calculations presented in Fig. 7. 



6 Conclusions 

Panel flutter analyses were performed in the context of the development of the first Brazilian satellite launcher 
(VLS). Lagrange's equations were used to  derived the aeroelastic equations for the problem. The aerodynamic 
loading was obtained based on two different aerodynamic formulations, namely the quasi-steady linearized 
small perturbation equation and the 1st-order piston theory. The panels are considered flat, rectangular, 
isotropic, and simply supported all along the boundary. The numerical results obtained indicate that the VLS 
payload shroud should fly free from panel flutter even with a considerable reduction in the fairing panel thick- 
ness. Moreover, the results also indicated that the inclusion of unsteady aerodynamic terms in the formulation 
consistently increases the flutter dynamic pressure for the present cases. Future work will concentrate on the 
evaluation of the effect of the support flexibility in the overall panel flutter stability. 
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Abstract 
The paper describes a Brake Torque Oscillations at Brake Initiation as a quasi self-induced oscillations due 
to the interaction of non-linear tyre circumferential force characteristics with the brake control system. Usual 
means to suppress oscillation (dampers or modification of landing gear geometry) are ineffective in this case. 
This case demonstrates that not only unsuitable combinations of structural stiffness, damping, and pneumatic 
tyre characteristics may lead to unexpected vibration problems on landing gears. Rather, an unlucky 
combination of brake system design with the peculiarities of circumferential force development by a tyre can 
also produce a serious vibration problem. 
In a series of development rig tests for a fighter aircraft brake system, some test, were scheduled to 
demonstrate fastest possible brake force rise at high speed. A fast brake force rise was considered to yield, at 
least in theory, shortest possible landing ground run distance. 

1. INTRODUCTION 

An aircraft landing gear system has to be designed to meet various requirements covering all ground-based 
operations. It is a complex non-linear system which incorporates many sub-components often procured of 
sources which can produce structural dynamics and loading effects on the gear as well on the aircraft. 
The landing gear must be capable to carry heavy weight for take off operations, hard impact of the landing as 
well as the kinetic energy of forward motion on landing to bring the aircraft safely to rest. Due to the long 
terms of developing an aircraft reducing the risk of redesign and the cost of testing it is desirable to be able 
to predict the dynamic behaviour of landing gear systems. 
In the past methods were used to calculate via mathematical criteria, the stability of the nose landing gear 
against oscillation. Since landing gear are very non-linear systems a time domain simulation code must be 
applied to show the behaviour of the landing gear itself and also the involved subsystems. An integrated 
approach to the modelling of the subsystems of the landing gear and the interaction of the elastic aircraft is 
required to accomplish the task. To get reliable results, which can also be validated by tests various 
components must be considered and introduced in the calculations like tyre, wheel, bogie, leg, oleo, braking 
system, anti skid control, steering and flexible aircraft. 

This report presents the straight forward trial to integrate the elastic aircraft into the shimmy investigation for 
nose landing gear of a fighter type aircraft development phase. 



2. BRAKE TORQUE OSCULATIONS AT BRAKE CNITIATION 

The case following demonstrates that not only unsuitable combinations of structural stiffness, damping, and 
pneumatic tyre characteristics may lead to unexpected vibration problems on landing gears. Rather, an 
unlucky combination of brake system design with the peculiarities of circumferential force development by a 
tyre can also produce a serious vibration problem. 

2.1 THE SITUATION 

In a series of development rig tests for a fighter aircraft brake system, some test, were scheduled to 
demonstrate fastest possible brake force rise at high speed. A fast brake force rise was considered to yield, at 
least in theory, shortest possible landing ground run distance. 

The test set-up "dynamometef'consisted of one main wheel with brake running within a heavy drum, where 
the rotational inertia of the drum was to represent respective mass per braked wheel of the aircraft. This 
arrangement not only gives a representative picture of aircraft deceleration by the brake but also provides 
correct kinetic energy to be dissipated by the brake. The brake was actuated by representative hydraulic 
components. Brake control was performed by one lane of the brake control computer, pilot's pedal input 
being replaced by a synthetic signal. Anti-skid fbnctions of the brake control computer were implemented 
and active. 

2.2 DESCRIPTION OF THE PHENOMENON 

At brake initiation ("pilot" quasi "jumping" onto brake pedal) there was not the expected crisp yet steady rise 
of brake force with eventual subsequent anti-skid system activity. Rather there was a sequence of rapid 
onloff switching of the brake which lasted for about 1.5 seconds at a frequency of about 6 Hz. Thereafter the 
system stabilised to a normal behaviour. 

Fig. 1 shows a principal sketch of those three test measurement traces which are considered essential for 
description and explanation of the phenomenon. From top to bottom, these are Wheel Speed, Brake Pressure 
(i.e. pressure on brake piston face), and Brake Torque. 

The very first increase of brake pressure is needed to overcome the piston lifting spring. To arrive at the net 
pressure acting on the brake pad, that "spring pressure" is to be subtracted from the value measured; thus, at 
the first three troughs in Brake Pressure trace, brake pads are practically unloaded. This becomes apparent in 
Brake Torque trace, where for all practical purposes torque reduces to zero at the corresponding non-zero 
troughs of Brake Pressure. 

The initial phase of Brake Pressure deserves a further comment: While brake servo valve output pressure 
(not shown) follows solenoid current with negligible delay, this is not true for the brake pressure proper as 
long as brake pistons are moving to close the gaps between rotor and stator disks of the brake package. The 
flow of hydraulic fluid from servo valve to brake is restricted by a quite narrow Restrictor orifice which limits 
loss of hydraulic fluid in case of e.g. rupture of a flexible hose. The Restrictor leads to a pressure drop 



between servo valve output and brake piston as long as the piston is moving. This pressure drop is the larger 
the faster the pilot tries to actuate the brake. However, when fluid flow stops, pressure drop across the 
Restrictor vanishes and full servo valve brake pressure gets through to brake pistons within fractions of a 
second. Thus indirectly the safety feature "Restrictor" is responsible for the extremely steep brake pressure 
rise following on the brake filling phase. 

WHEEL SPEED -+ I BRAKE 
PRESSURE I I BRAKE TORQUE 

Fig. 1 Measurement Traces from Brake Dynamometer Test 

2.3 EXPLANATIONS 

From measurement traces not shown here it became apparent that oscillations observed were produced by 
anti-skid system action. However, given the software and the parameters for skid identification installed in 
the control algorithm, the anti-skid system worked correctly. The real reason for that disagreeable and 
inappropriate series of anti-skid actions at brake initiation is a mismatch of brake system control and tyre 
physics. 

2.3.1 Physics of Tyre Braking Force 

Explanations following aim for a basic understanding of tyre mechanics with regard to developing 
circumferential force. 
When a tread element of a straight-rolling tyre enters the ground contact patch it will stick to that ground 
element. On a tyre rolling exactly at the forward speed of the wheel axle, the position in space of tyre tread 
element and ground element will be practically identical at entry to and exit fiom ground contact patch. 
Nevertheless within the patch there will be slight distortion due to the tyre tread being forced fiom originally 
circular shape to straight (ground) shape. Contact patch distortion changing sign at half patch length leads to 
approximately zero net circumferential force on the wheel. 
Non zero net circumferential force develops when wheel circumferential speed differs fiom axle ground 
speed. Due to speed difference the tread point and the ground point which coincided at entry to the contact 



patch depart from each other on their travel through the contact patch. As long as the relative distance of the 
two points is not too large, tread rubber will adhere to the original entry ground point; elastic deformation of 
the tread element increases on its travel through the contact patch, thereby increasing the local 
circumferential load on the tyre. If wheel circumferential speed is sufficiently less than ground speed, at some 
point along the contact patch shear force on the tread element will exceed adhesive friction capacity of the 
element. As a consequence, the tread element will start to slide on the ground. Sliding fiiction of rubber in 
quite complex manner depends, amongst other parameters, on sliding distance covered and sliding speed. In 
general it may gradually fall well below adhesive fiiction with increasing sliding distance and speed. This 
admittedly coarse view of rubber tyre mechanics leads to the following conjectures about circumferential 
force on a braked wheel: 

a) At low speed differences, circumferential force on the tyre should be approximately proportional to 
the distance between corresponding tread and ground points at exit from the ground contact patch. This 
"exit" distance de is, under stationary speed conditions, calculated to be 

where vg ground speed 
vc wheel circumferential speed 

lp length of ground contact patch 

Please note that circumferential force in this regime is dependent on a speed ratio rather than on actual speed. 

b) At increasing speed difference, adhesive friction capability will be exceeded in small portions of the 
footprint mainly at the exit end of the ground contact patch. Within the footprint spots affected, rubber will 
start to slip relative to ground albeit at a very low slip speed and for very short distance. This means that 
circumferential force will still increase with increasing speed difference. However, rise rate will decrease with 
friction limited areas covering increasing portions of the tyre footprint. 

c) At speed difference approaching ground speed practically all of the rubber in the footprint will be 
skidding at nearly ground speed and for extended distance. Since skidding fiiction depends on skidding speed 
and distance covered, circumferential force of a non-rotating tyre (full skid) will be less at high ground speed 
than at low ground speed. Furthermore, at fixed ground speed circumferential force of a skidding tyre will 
also be less than the maximum achievable at a lower differential speed, where almost all of the footprint area 
may also be skidding yet at a higher coefficient of fiiction. 

Circumferential coefficient of fiiction (pc) of a tyre usually is presented as a knction of "Slip Ratio" (SR), 
where 

v p  - "c SR = - 
"g 

This presentation compresses all tyre angular rates from rolling at ground speed (SR = 0) to full skid (SR = 

1) into an abscissa from 0 to 1. However, as shown above pc with an increase of slip ratio becomes 

increasingly dependent on ground speed. Hence there will be different pc vs. SR curves for different values 



of ground speed. Fig. 2 presents a qualitative picture of this speed effect on circumferential coefficient of 
friction. 
Figures concerning tyre circumferential force are in essence modifications of figures presented at Ref 2, 
which treats this subject in much more detail than it is done in present paper. 
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Fig.: 2 Friction Coefficient versus Slip Ratio Fig.: 3 Torque Coefficient versus Slip Ratio 

2.3.2 Conclusions with Regard to Sensible Brake Control 

2.3.2.1 Brake Control during Braking 

Fig. 3 is an somewhat exaggerated variation of Fig.2. However, the ordinate has been renamed "Wheel 
Torque" after, in ideas, having multiplied circumferential friction coefficient with wheel load and ground-to- 
axle distance. 

Best possible deceleration of the aircraft by wheel braking could certainly be achieved if retarding moment 
produced by the brake ("brake torque") was just equal to the maximum driving moment achievable by the 
tyre ("wheel torque"). However, this maximum point will move around very quickly due to wheel load 
fluctuation on uneven ground, due to fluctuation of ground to tyre fiiction on varying ground roughness, due 
to variation of ground-to-axle distance, and due to other effects (e.g. side load on a braked wheel). 

Although brake torque is measurable directly, wheel torque is not. Hence it is virtually impossible to exploit 
100 percent of achievable wheel torque throughout the braked ground run. Therefore, brake control systems 
in general are aiming for a working point below the maximum wheel torque on the left (stable) branch of the 
wheel torque vs. slip ratio curve. However, if by chance maximum wheel torque falls below brake torque or 
if brake torque is increased beyond maximum achievable wheel torque, this statically unbalanced torque 
difference will decelerate the wheel and thereby increase slip ratio. Provided torque difference is large 
enough and is acting for sufficiently long time, slip ratio will be increased to the unstable part of the wheel 
torque curve. 
In order to avoid this critical situation it is necessary in the first place to timely recognise an incipient skid 
and to reduce brake torque fast enough such that slip ratio is kept on the stable side. 



However, a backup procedure is needed in case that slip ratio has eventually reached the unstable side of the 
wheel torque vs. slip ratio curve. If this happened the wheel would continue to decelerate to an eventual 
standstill as long as brake torque is larger than actual wheel torque, even if maximum achievable wheel 
torque had meanwhile recovered beyond actual brake torque. To recover from this "deep skid" the safest 
way is to lift brake completely until wheel speed has returned to the stable part of the wheel torque vs. slip 
ratio curve. 

For better understanding of the case presented it is necessary to explain the principal method applied here to 
recognise an incipient skid: Wheel angular deceleration is the most important parameter used for skid 
detection. 

During perfectly steady braking wheel angular deceleration is proportional to aircraft linear deceleration. 
Hence, on first view one could assume that any wheel deceleration beyond this value could be interpreted as 
an incipient skid. In theory this assumption holds only if the brake is operating at the maximum wheel torque 
transmittable to ground, because any loss of transmittable wheel torque will drive the working point to the 
right (unstable) side of the curve (Fig.3 and 4). 

If the brake operates on the stable side somewhere below maximum transmittable wheel torque a reduction 
of transmitted wheel torque will be followed by a "useful" increment of wheel deceleration which brings 
transmitted wheel torque back to brake torque. Therefore, anti-skid action should only be triggered on 
exceedance of this "usefil" wheel deceleration increment. As stated above, admittable trigger level is zero if 
brake torque equals transmittable wheel torque; trigger level rises (progressively) with the ratio of 
transmittable wheel torque to brake torque. 

Assumed that a brake control system in its anti-skid branch contains a fixed wheel deceleration trigger 
criterion, the control system should also provide for the appropriate torque reserve between brake torque 
and maximum transmittable wheel torque. Since maximum transmittable wheel torque is not measurable 
directly, anti-skid systems of the type considered here contain algorithms which reduce brake pressure output 
from the servo valve according to frequency and intensity of previous anti-skid actions. Brake pressure will 
be cautiously re-increased (eventually to the level corresponding to pilot's command) if no more anti-skid 
action was triggered in a sufficiently long time interval. 
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Fig.: 4 Wheel Torque Gradient versus Slip Ratio 



2.3.2.2 Brake Initiation 

Up to the point of brake initiation, the wheel rolls freely at negligible wheel torque just balancing rolling 
drag. Therefore at brake initiation, rise of brake torque cannot immediately be counteracted by wheel torque. 
Rather, momentary difference between wheel torque and brake torque leads to angular deceleration of the 
wheel. This effects an increase of slip ratio and wheel torque. If brake torque is limited to a value below 
maximum transmittable wheel torque, slip ratio will eventually tune in to stationary balance of brake torque 
by wheel torque. 

Wheel deceleration occurs during brake initiation as well as during a skid. Hence, if during brake initiation 
wheel deceleration exceeds the threshold set for skid detection, anti-skid control will unnecessarily lift the 
brake. The wheel will recuperate to or nearly to freely rolling conditions. When brake pressure is re-applied 
by anti-skid control another undue skid prevention cycle may occur. 

For sake of a vibration-free brake onset it appears useful to gain insight into the factors influencing wheel 
angular deceleration during brake initiation. To this end quite basic considerations may be helpful: 

a) Step increase of brake torque: If brake torque is assumed to follow a step function then extremum 
wheel deceleration will occur at t = 0 and will equal brake torque divided by wheel moment of inertia. 

b) Creeping increase of brake torque: If brake torque is applied very slowly, this will lead to low wheel 
deceleration values as well, because the wheel is being given ample time to adapt to the slowly increasing 
demand on slip ratio. 

c) Influence of "brakes on" aircraft speed: In a diagram showing wheel torque versus slip ratio (see e.g. 
Fig. 3) the initial linear part is virtually independent of ground speed. However, analysis of the equation 
defining slip ratio, viz. 

indicates that wheel torque rise rate over time will reduce with an increase of ground speed. 

Assumed wheel torque is linearly dependent on slip ratio, i.e. 
v - v  

W T = K . S R = K - B  
vg 

or 

then wheel torque rise rate becomes 

From this equation it is easily concluded that wheel deceleration will increase proportionally to "brakes on" 
ground speed (brake torque rise rate assumed independent of speed). 



It is also concluded that wheel deceleration may vary with tyre type, e.g. if different tyre construction andlor 
tread material changes the slope K of the wheel torque vs. slip ratio, K may also change with operating 
conditions, e. g. dry or wet ground (Ref 2) 
Further on, wheel deceleration increases on transition tiom the quasi linear part of the wheel torque slope 
into the degressive part while approaching maximum transmittable wheel torque. 

Fig. 5 shows simulation results of a braked wheel during brake initiation. The model used is quite simple. It 
contains just one degree of freedom representing rotation of a wheel moving at constant ground speed. 
Brake torque is assumed to form a ramp type fbnction of time while K is assumed constant, i.e. brake torque 
is assumed to not exceed the linear part of wheel torque vs. slip ratio hnction. Eventual dynamic deviations 
of wheel torque vs. slip ratio from quasi-stationary behaviour were not taken into account. 
Numerical results from simulation confirmed principal considerations presented above. Hence a systematic 
evaluation of simulations was performed and summarised in Fig. 6. This figure presents kind of a design 
chart. With maximum design "brake on" speed given it shows which brake torque rise rate is at best 
admissible if skid detection threshold shall not be exceeded during brake initiation. This type of diagram can 
easily be set up for a specific aircraft using its tyre and wheel characteristics (mainly moment of inertia and 
wheel torque curve) in combination with brake and anti-skid control characteristics (primarily skid detection 
threshold). 
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Fig. 5 Histograms of Wheel Deceleration 

In developing Fig. 6 it was tacitly assumed that brake torque shall not exceed the straight part of the wheel 
torque vs. slip ratio curve. However, in reality this is rather improbable, because maximum brake torque 
achievable is mostly close to or even beyond maximum wheel torque achievable on dry runways. If brake 
torque ceiling is below maximum wheel torque achievable, wheel angular deceleration will increase on the 



degressive slope and fall sharply off to the value corresponding to aircraft deceleration when brake torque 
ceiling is reached. If brake torque ceiling is beyond maximum wheel torque achievable, then wheel 
deceleration will not fall off at brake torque reaching its ceiling; rather it will progressively increase on the 
negative slope of the wheel torque vs. slip ratio curve. Unless skid detection level had been exceeded already 
on the degressively positive slope of the curve, it will be exceeded here, provided it is small enough. In 
addition, since brake torque rise rate is not at all perfectly controllable (e.g due to brake temperature 
influence on brake torque vs. brake pressure characteristics), variations of rise rate will also lead to variations 
of wheel deceleration. 
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Fig. 6 Design Chart for Brake Torque Rise Rate 

Assumptions taken for Fig. 6 are therefore on the optimistic side. It is advisable to apply more realistic 
assumptions (especially on wheel torque vs. slip ratio) in developing brake and anti-skid control system 
algorithms and parameters. 

Nevertheless, the simplified approach which was taken here yields sufficient insight into the oscillation 
problem observed during dynamometer tests of rapid brake application at high aircraft speed. 

2.4 RECOMMENDATIONS AND CONCLUSIONS 

In the case treated here, both brake pressure and brake torque rise at enormous rates. Brake torque rise rate 
alone would have been sufficient to trigger anti-skid action. In addition, presumably due to slight time delays 
in the system, brake torque is allowed to by far overshoot maximum wheel torque achievable. Although in 
the next cycle the brake torque ceiling is lowered it is still too high due to the excessive overshoot in the 
previous cycle. In cycles following it is hard to decide whether sharp rises of brake torque or brake torque 
over stressing wheel torque capacity lead to hrther anti-skid actions. 



In any case, a substantial reduction of brake pressure and brake torque rise rates during initial brake 
application would be beneficial in two ways: First, undue anti-skid action could be reliably avoided thereby. 
Second, eventual brake torque overshoot could be drastically reduced with the effect that brake pressure 
ceiling could adapt to wheel torque capacity within a single step and with significantly less pressure 
amplitude. In summary, reduced brake torque rise rate is suited to overcome the brake torque 1 brake force 
oscillation treated here. 

From all insight gained into the problem there is no solution to be expected From any kind of bolt-on 
structural damping device. 

2.5 POINTS OF IMPROVEMENT IN THE BRAKE SYSTEM 

The brake torque oscillations observed in dynamometer tests at extreme "brakes on" speed and at extreme 
step input to the system can be avoided through improvement by design as well as through improvement by 
operation. 

Improvement by operation means that pilots are instructed to initiate brakes such that brake torque rise rate 
is kept below critical values. Improvement by operation is viable as long as an average pilot is not 
overcharged by the operation required. At best, oscillations should not occur if the pilot just avoids 
"jumping" onto brake pedals. 
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Fig. 7 Nose Landing Gear Histograms from Dynamic Braking Analyses 



Nevertheless there are aspects of the problem rendering improvement by design a desirable alternative. 

Experience shows that aircraft get heavier in course of time. As a consequence maximum "brakes on" 
speed shows tendencies to increase, too. If safety margins against oscillations shall be kept constant 
then brake torque rise rate andlor skid detection threshold must be changed. If brake torque rise rate is 
a hardware constant then the necessary lifting of skid detection threshold will lead to reduction of skid 
detection quality. In turn, reduced skid detection quality reduces anti-skid system efficiency throughout 
all braked ground roll. Ground roll distance lost at soft yet non-oscillatory brake initiation is only a 
fraction of that which can be gained by improvement of brake efficiency by correspondingly lower skid 
detection threshold. 

Quickest possible brake reaction at braking onset appears desirable with regard to flight performance. 
However, nose diving provoked by abrupt braking will eventually produce critical loads and/or reduce 
aircraft capability to cope with rough ground (e.g. aircraft operation on bomb damaged and 
provisionally repaired runways) [Ref. 11. If brake torque rise rate is reliably controlled by brake system 
control then this can be advantageously used in structural design (Fig. 7). 

Adjustable control of brake torque rise rate is considered a sensible means not only to avoid oscillatory anti- 
skid action at brake initiation but also to improve aircraft ground handling and performance. 
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APPENDIX 

Consider a wheel equipped with a pneumatic tyre. The wheel axle shall be connected to a straight guiderail 
by a linear springidamper element. This guiderail shall be moved across the ground at constant speed; further 
on the guiderail shall be inclined against the ground. 
Motion of the wheel axle relative to the guiderail is influenced by radial tyre force (also represented by a 
linear springldamper element) and by circumferential tyre force. Modelling of circumferential force depends 
on assumptions made. 

Al.  "Cog-Wheel" Assumption 

The wheel is assumed to rotate at that angular velocity which is defined by the ratio of ground speed to 
deflected tyre radius. Circumferential force is then defined by rotational acceleration of the wheel enforced by 
tyre radius variations. Since this radius depends only on the co-ordinate of the wheel axle relative to the 
guiderail, the equation of motion reflecting the "Cog-Wheel" assumption has one degree of fieedom, viz the 
linear displacement of the wheel axle on the guiderail. 
With regard to potential self-induced oscillations of this system it is interesting to study the various damping 
terms in that equation of motion. 

With 

DC Damping coefficient of the guiderail spring XB Axle displacement relative to guiderail 
DT Damping coefficient of tyre radial spring RR Distance axle to ground 
IW Wheel moment of inertia p Inclination of guiderail (positive fiont end up) 
VG Ground speed 



the complete damping term reads 

D = DC+DT.s in2p - IW-sinp-cosp.(VG + X3.cosp) 
(RR + XB. sin p)3 

The damping term resulting from the "Cog-Wheel" assumption is negative (destabilizing). Since it increases 
approximately proportional to ground speed, the equation indicates that there might exist a critical ground 
speed at which overall damping becomes negative. 

This critical speed can be increased by a "hardware" modification to the model by reducing inclination of the 
guiderail. In reality this would mean a reduction of landing gear leg forward rake. 

Improvement can also be achieved by a quasi "softwareN modification, i.e. by pumping up the tyre to increase 
RR. 

A2. The "Slip Ratio" Assumption 

As already discussed in present paper, circumferential force on an almost freely rolling tyre is approximately 
proportional to slip ratio SR. 

If this assumption is introduced to the model then linear displacement of the wheel axle and rotation of the 
wheel are two separate degrees of freedom which are coupled by the circumferential force. 

This system is not as readily analyzed as the "Cog-Wheel" system. However, from the main part of this paper 
it is concluded, that one and the same axle linear velocity relative to the guiderail will effect different slip 
ratio rates, slip ratio rates becoming smaller with increasing ground speed. That means that the ratio of 
circumferential force oscillation amplitude to axle displacement amplitude reduces with increasing ground 
speed. 

Apart from any phase shift effects it is therefore expected that an eventual destabilizing effect of tyre 
circumferential force on axle fordaft motion will cease with speed. 

A3 Conclusion 

Comparison of the "Cog-Wheel" model and the "Slip Ratio" model perception lead to the conclusion that 
sustained fordaft bending oscillations may well occur under unfavourable landing gear design parameters. 
However, this type of self-induced oscillation should be limited to the low to medium aircraft speed range. 

In a realistic analysis of the phenomenon, care should be taken that all important effects are included in the 
model. For instance, effective "guiderail" inclination can be influenced by hselage bending and 1 or by 
stroking motion of the oleo strut. 
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Abstract 

The objective of this paper is to present a 
nonlinear transient analysis method for 
understanding and solving aircraft brake whirl 
vibration problems. Mathematical modeling and 
derivations of the brake mechanism, which 
include the hydraulic interaction between the 
brake and the fluid, will be discussed. The 
factors that influence whirl will be presented. 
Potential methods for resolving whirl vibration 
will also be discussed. 

1.0 Introduction 

When designing an aircraft brake, such as the 
one shown in Figure 1, whirl vibration is one of 
the many design criteria that is to be minimized 
by brake dynamists. Whirl vibration of aircraft 
brakes can be characterized as the brake stack 
(rotors and stators) having a whirl axis around 
the aircraft axle, whirling with respect to the 
piston housing. This vibration phenomenon can 
be detected by measuring piston pressure 
oscillations, which will have phase angles 
proportional to the circumferential spacing of the 
respective pistons. Whirl vibration, if not 
controlled, is undesirable and may be 
destructive. 

Previous studies investigating brake induced 
vibration, such as whirl, were either linear in 

phenomena, it was not possible to obtain 
accurate, meaningful conclusions. On the other 
hand, it would be very costly and time 
consuming to optimize brake vibration stability 
simply by repeated laboratory experiments. 
Thus, it is desirable to develop an analytical 
model to simulate the basic phenomenon of 
whirl for both whirl problem resolution and for 
proactively optimizing brakes for whirl 
prevention. This paper will focus on the 
interaction between the brake frame and the 
hydraulic fluid in the development 0f.a whirl 
model. Factors that influence whirl vibration 
will be investigated. 
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nature [I], or the hydraulic system was not Figure 1 : A typical aircraft brake assembly 
included [2,3]. However, laboratory tests have 
shown that changes in the hydraulic system, such 2,-, Finite Element Model 
as the addition of orifices between brake pistons, 
significantly reduce vibration. If the 
mathematical models excluded the fluid 

Aircraft landing and braking systems of recent 
design have become more geometrically 



complex. In order to understand braking system 
vibration and to provide optimized braking 
system designs, AlliedSignal Aircraft Landing 
Systems (ALS) has developed the ability to 
mathematically model all components k d  
interfaces of the complete wheel and brake 
system. This includes the backup structure (such 
as the landing gear or the dynamometer). A 3-D 
finite element approach is used. Two typical 
models are shown in Figure 2a and 2b. 

I I 
Figure 2a: A typical FE model of brakes and 

wheels on an aircraft. 

I 

Figure 2b: A typical FE model of a brake and 
wheel mounted on a dynamometer. 

The backup structures must be included in the 
model because they are dynamically coupled 
with the brakes and wheels. 

The differential equation that governs a system 
as shown in Figure 2, excluding the non-linear 
fluid portion, can be written as: 

where [m], [c(x, x)] , and [k ]  are the system 
mass, damping, and stiffness matrices, 

respectively, and @, (x) , and {i) are the 
system displacement, velocity, and acceleration 
response vectors, respectively. Note that the 
damping matrix is non-linear to account for the 
presence of joint dry friction. 

Due to the friction force, the formulation of the 
stiffness matrix [k] is slightly different from the 
conventional method and will be discussed in the 
next section. The non-linear representations of 
the hydraulic fluid inside the pistons, which are 
not part of Equation (I), will be discussed in the 
section pertaining to orifices. 

3.0 Stiffness Matrix Formulation 

The root cause of whirl vibration is the non- 
conservative friction force. To illustrate, 
consider two contacting points, one on the rotor 
and one on the stator. The respective friction 
forces due to axially applied braking load are 

where f, and f, are the friction forces acting at 
the stator and the rotor, respectively, due to axial 
applied braking load k(x ,  - x ,  ) . k is the 
contact stiffness between the friction surfaces, 
and p is the friction coefficient, or brake 



effectiveness. The matrix form of Equation (2) 
is 

where 

Note that [k,] matrix will become un- 
symmetrical when it is placed into global 
stiffness matrix since vector { x )  is in normal 
DOF and vector up) is in tangential DOF. 

To account for the braking Friction effect, the 
above derived friction forces must be added to 
the linear global stiffness matrix. To do this, we 
define the linear global stiffness matrix [kg ] as 

where (f, } and {x) are global load and response 
vectors, respectively. Merging of Equations (3) 
and (4) yields 

where ( f J = ( f g  + f,,} and [k]=[kg + k,]. 
Note that the stiffness matrix [k] is the combined 
stiffness matrix from the linear portion, [k,], and 
the friction portion, [k,]. Also note that [k] is 
not symmetric due to the presence of [k,]. The 
above stiffness matrix represents the stiffness 
term in Equation (1). 

Due to the un-symmetrical nature of the stiffness 
matrix, the system governed by Equation (1) 
could become unstable. The dynamic instability 
caused by the presence of braking friction is 
called whirl vibration in brake dynamics 

terminology. As can be seen, whirl instability is 
a function of (a) the friction coefficient (or brake 
effectiveness) f i  (b) the contact stiffness [k,]; 
(c) the brake fiarne stiffness, which influences 
[kg], {xrt) ,  { x ~ )  ; and (d) the mass of the heat 
sink which influences the mass matrix and 
inertia. 

4.0 Degree-of-Freedom Reduction 

The governing differential equation, Equation 
(I), is usually large. Therefore, it is very time 
consuming to solve this equation when it is 
combined with the governing fluid equations. 
As previously noted from laboratory test data, 
the system governed by Equation (1) possesses 
unique modes of vibration. Thus, it is justifiable 
to reduce the size of Equation (1) by 
transforming it into generalized coordinates 
using normal modes. Thus, let [$] be denoted as 
the generalized coordinates that uncouple the 
linear portion of the mass and stiffness matrix 
and that also satisfy 

where [A] is the system eigenvalue matrix, and 
{q )  is the participation vector. Equation (1) can 
then be transformed into 

where c, = $rc(x,x)$, k,(p) = +'(kg + k,)+ , 

~ ~ = $ r f .  

Note that c, and kq are not diagonal in general. 

5.0 Fluid - Brake Frame Interaction 

Whirl vibration is the rotors and stators whirling 
with respect to the piston housing with an axis of 
whirl motion about the axle. As a consequence 
of this motion, the piston hydraulic fluid is 
"pumped" by the phased axial motion of the 
pistons. This pumping will generate pressure 



fluctuations, which, in turn, will force the brake 
frame. This is illustrated by the schematic 
pictures in Figures 3 and 4. Figure 3 shows the 
piston stroke. Figure 4 shows the piston fluid 
flow between adjacent pistons. 

M . PP 
piston 1-i ~1 = Ur - Ur 

Piston 
Housing 
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introduced to damp the fluid motion and, in turn, 
damp the whirl vibration. This makes orifices an 
effective and efficient means of stabilizing whirl 
vibration. 

The goal of the subject analysis is optimization 
of orifice sizes and locations. Two orifice 
related equations are introduced. One is the 
pressure drop between adjacent pistons. The 
other is the continuity constraint equation. 

Figure 3: Piston stroke caused by whirl motion 

5.1 Pressure Drop 
'ube 

Figure 4: Piston housing fluid diagram. 

The stroke of the piston, defined as the relative 
velocity of the pressure plate with respect to the 
piston housing, as shown in Figure 3, will cause 
"pumping" of the fluid because of the brake 
whirl vibration. The fluid will move from piston 
to piston. For this reason, orifices can be 

The pressure drop, Ak", between adjacent 
pistons due to an orifice is .[4] 

. . 
0.. =P, -P. = MUQG + BqQU 

rl I (6)  
where 

0.25 

g . .  = P 
rl ( C D ~  ) , I Q ,  1 + 1.75CV - ' ( v )  2 - D &lQ310~75 A'.'~ 

LU = line length between piston i and piston j; 
A = cross-section area of passageways; 
p = fluid density; 
C ,  = orifice discharge coefficient; 
Aii = orifice size between piston i and piston j; 

C ,  = line loss coefficient; 
D = diameter of passageway; 
v = fluid kinematics viscosity (inA2/sec); 
Q, = fluid flow rate from piston i to piston j. 
Note that 

Q.. = -Q .. . 
r/ 11 

Equation (6) introduces a 2N-set of unknowns, 
however, there are only N equations. Thus, 
additional constraints must be sought. They are 
discussed in the next section. 

5.2 Continuity Constraint 

Continuity constraint requires the net fluid 
change due to (a) piston stroke, (b) fluid 



compressibility, and (c) fluid discharge between 
adjacent pistons be zero: 

where 

Si = stroke velocity at piston i. 
A, = area of piston; 

= fluid volume, i-th piston; 
8 = pressure oscillation, i-th piston; 
B = fluid bulk modulus. 

Solving for 8 : 

5.3 Fluid Differential Equations 

The fluid differential equations may be obtained 
by substituting Equation (8) into Equation (6): 

Equation (9) is the second order non-linear 
differential equation that governs the fluid 
responses. 

6.0 Structural and Fluid Combination 

Since the fluid interacts with the brake frame, the 
differential equations that govern the fluid and 
the brake frame must be combined and solved 
simultaneously. We thus introduce the state 
space vectors {Y} as 

where 

The matrix form is 

where 

{QI = 

The total equation of motion, when combining 
fluid and structure, then becomes 

which is a first order nonlinear differential 
equation. Note, in Equation (I I)  ( q )  is governed 



by the brake frame structure, {Q) is governed by 

the fluid, and they are coupled by {s) . 

The optimized orifices should minimize the work 
done by the fluid flow. The work done by the 
fluid flow between piston i and piston j is 
calculated using 

When considering all pistons, it becomes: 

which has lb-in units. 

The brake effectiveness shown in Figure 5 was 
chosen as the model input because the analytical 
model does not predict brake effectiveness, so it 
must be provided for the numerical solution. 

For the first investigation, each orifice had a 
0.1 10 inch diameter. The piston housing (PH) 
acceleration in the brake frame axial direction 
and the piston pressure were calculated using 
Equation (1 1). They are shown in Figure 6. 
The model whirl frequency was 238 Hz. 
compared to the test frequency of 225-235 Hz. 
The model acceleration level was about 120 g's 
(axial) with a pressure oscillation of about 250 
psi. The test acceleration level was 100 g's. The 
Fourier Transform (FT) uses sample time of 0.25 
seconds with 50% overlapping. 

( 1  2 )  
A second set of orifices having diameters of 
0.070 inches was analyzed. The resulting 
accelerations and pressure oscillations are shown 
in Figure 7. 

7.0 Correlation with Test Data 

In this section, the analytical model for a specific 
brake frame having six pistons and mounted on a 
dynamometer was solved numerically using 
Equation (1 1). Different orifice sizes were L I 

evaluated. The results are compared with the test i, 
1 
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data to verify and correlate the analytical model. Freq (Hz) 
1000 
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Figure 6: Acceleration and pressure responses 
Orifices: 0.1 10 inches 

A third set of orifices that had 0.070 inch 
diameters, except for one that was blocked, was 

0.0 0.5 1 .O 1.5 
time (sec) 

2.0 analyzed. The resulting accelerations and 
pressure oscillations are shown in Figure 8. 

Figure 5: Brake effectiveness 
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Figure 7: Acceleration and pressure responses 
Orifices: 0.070 inches 

configuration comparison. First, the work by 
fluid were calculated for each of the cases using 
Equation (1 2). The results are shown in Figure 
9. The piston housing calculated acceleration 
levels are shown in Figure 10 along with the 
correlation test data. 

The trend shown in Figure 9 is that the work by 
fluid decreases as the size of the orifice size 
decreases. This implies the pressure oscillation 
will decrease as the orifice size decreases. Also, 
a blocked orifice performs better than a series of 
uniform orifices. 

I -1 oo r 
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Figure 9: Work done by fluid 
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Figure 8: Acceleration and pressure responses 
Orifices: 0.070 inches with one block 

Comparison of Figures 6 and 7 shows that 
reducing the orifice size reduced the vibration 
level. 

Comparison of Figures 7 and 8 shows that 
blocking one orifice reduced the vibration level. 

A fourth set of orifices having 0.0375 inch orificesize 
diameters and a fifth set of vkab le  diameter 
orifices were analyzed to complete a 
performance trend versus orifice size and 

Figure 10: Piston housing acceleration levels - 
Correlation of analysis with test. 



Comparing Figures 9 and 10, the work done by 
pressure drop has the same trend as that of the 
piston housing acceleration. 

Figure 10 exhibits good correlation between the 
calculated and the test data accelerations for 
orifice size variation. The calculated 
acceleration amplitudes vary by 20% from the 
measured acceleration levels, which is of the 
same order of magnitude of variation expected 
within test data. Therefore, the analytical 
methods and models developed in this paper may 
be used to optimize orifices with good 
confidence. 

8.0 Conclusions 

The following conclusions were drawn from 
these studies. 

8.1 Blocked Orifice 

The fluid equations exhibit an incompressible 
mode, i.e., any fluid disturbance will cause a 
constant flow (which will eventually decay). The 
blocked orifice removes this mode by setting the 
fluid degree of fieedom to zero ( P O )  at the 
blocked orifice. The physical system also 
becomes more stable when a blocked orifice is 
introduced. 

Secondly, the blocked orifice effectively stiffens 
the fluid, which, in turn, reduces piston axial 
compliance and heat sink motion. Numerical 
analyses using just the linear portion of the 
model show that as the piston axial stiffness 
increases, the whirl stability also increases. 
Other evidence is entrained air in the fluid will 
lower the piston axial stiffness resulting in a less 
stable brake. 

Lastly, the blocked orifice will reduce the total 
degrees of freedoms in Equation (12) since the 
summation index is reduced by one. Therefore, 
it will certainly make Ef, lesser. 

In conclusion, a blocked orifice in the brake 
hydraulic system will increase brake whirl 
dynamic stability. The location of the blocked 
orifice should not inhibit brake bleeding. 

8.2 Orifice Size 

Orifice size can be selected using the developed 
analytical model, which will significantly reduce 
orifice optimization testing. Because each brake 
frame has its unique set of global stiffnesses, 
each brake fiame may have a unique set of 
optimized orifices. 

Variable size orifices provide another option 
when optimizing the brake fiame for whirl 
vibration minimization. Using the techniques 
developed in this paper also makes this task 
easier. 

8.3 Hydraulic Resonance 

As with any structure, the fluid system also has 
its own resonance. If the fluid system resonant 
frequency coincides with the brake whirl 
frequency, orifice damping will be less effective. 
Key factors that affect hydraulic resonance are: 
(a) fluid bulk modulus, (b) fluid density, (c) fluid 
volume, and (d) number of pistons. 

8.4 Number of Pistons 

The number of brake pistons is usually based on 
the required performance of the brake, rather 
than a consideration for whirl vibration. 
However, the total number of pistons does have 
an influence on whirl vibration. 

8.5 Brake Frame Geometry 

The brake frame design will impact the whirl 
stability in many aspects. For instance, the 
torque tube backing plate affects whirl stability. 
The stiffer the backing plate in the axial 
direction, the better the whirl stability. Thus, a 



stiffer torque tube backing plate design is usually 
viewed as positive when dealing with whirl 
vibration. 

8.6 Stator Inserts 

Stator inserts provide more Coulomb damping 
than direct carbon contact with the torque tube 
splines during whirl motion. An additional 
benefit of stator inserts is that they reduce stator 
slot wear. 

Coulomb damping is very amplitude dependent. 
Its effectiveness is inversely proportional to the 
vibration amplitude. On the other hand, orifice 
damping is proportional to the vibration 
amplitude. Thus, Coulomb damping and orifice 
damping complement each other during whirl 
vibration. 
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A passageway cross-section area 
A, piston area 
B fluid bulk modulous 
[Be] damping matrix of fluid equations 
[c] damping matrix 
[c,] damping matrix, generalized coordinates 
C ,  line loss coefficient 
CD orifice discharge coefficient 
Ef, work done by fluid (lb inch) 

force vector 
f, force acting on stator 
f, force acting on rotor 
(F,)  force vector, generalized coordinates 
[k] stiffness matrix 
[k,] stiffness matrix, generalized coordinates 
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[kg] linear portion of the global stiffness 
[k,] stiffness matrix incurred by braking 
Lii line length between piston i and j. 
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[Me] mass matrix of the fluid 
P pressure 
4 modal displacement of brake frame 
Q fluid flow rate 
s piston stroke 
Vi fluid volume of i-th piston 
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P fluid mass density 
v fluid kinematic viscosity 
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p brake effectiveness 
[h] system eigenvalue matrix 
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Abstract Overview 

This article introduces an identification procedure 
from flight-data, in the perspective of quasi r e d  
time flutter prediction models upgrading. Para- 
meters are introduced to model uncertainties on 
the unsteady aerodynamics. While tests are per- 
formed for increasing velocity, identification algo- 
rithms use flight data to update the parameters 
and make flutter prediction more accurate for in- 
vestigation towards higher velocity. Performance 
of identification is evaluated in terms of accuracy 
for unsteady aerodynamics estimation, and of flut- 
ter prediction capability, with and without turbu- 
lence. 

1 Introduction 

Motivation 

Is is assumed that the structural dynamics is well 
known (i.e. previously identified during ground 
tests), and that most remaining uncertainties on 
the prediction model are due to the unsteady aero- 
dynamics. Identification consists in updating some 
parameters which are introduced in the unsteady 
aerodynamics tensor. The procedure is developed 
in the article, including : 

a brief description of the prediction model 
with introduction of design parameters; 

the derivation of conditions for parameters 
identafiability; 

a presentation of algorithms for the search 
of an optimal set of parameters to fit flight 
data; 

practical considerations for the selection of 
flight test conditions; 

a preliminary validation of the identification 
procedure using simulated data; 

an interpretation of the results in term of un- 
Flight flutter tests must be conducted with much steady aerodynamics and accuracy for flutter 
caution, in order to avoid entering unpredicted prediction. 
flutter for some flight conditions. The suggested 
strategy is to monitor flight flutter investigation, 
using both flutter prediction models and a con- 2 Flutter prediction model 
venient identification procedure. 

Such an identification procedure may be diffi- Basic model 
cult. It needs a suitable parameterization of the 
prediction models and fast algorithms. lhrbulence The flutter prediction equation is obtained for the 
may also significantly disturb flight tests measure- longitudinal motion of a conceptual transport air- 
ments and corrupt flutter evaluation. craft, using both computatio~ls of the structural 



dynamics model in the generalized coordinates basis The generalized forces are then linearized and 
and the generalized unsteady aerodynamics tensor. developed at first order in the frequency domain 
This yields: [61: 

pq + Pq + ~q = Fa + F6 + Fw (1) 
y = asq 

where A. et A, are computed for convenient fitting 
where of Fa at given reduced frequencies kl, k2 in the 

bandwidth concerned by flutter. In the nominal 
F,(g, V, k, 8) are the generalized (potentially case : 

non-linear) unsteady aerodynamics forces, with 
8 a suitable low dimensional vector of design A. = rRe (QG;) (3) 

parameters; A1 = rzm (GG:) 

Fa (V, k) are the forces due to the actuators and for the actual aircraft: 
6, assumed to be constant versus k as a first 
order approximation Fa (V, k) = qAoa (V)c5; Ao(8) = rRe (8~:) 

A1(8) = rZrn (8~:)  
Fw(V, k) are the forces due to turbulence w, 
assumed to be constant versus k as a first with 
order approximation Fw (V, k) = qAoW (V)w;  

Go = G(k1,) + G(k2) 

y is a vector of measured accelerations on 2 
the structure, and Q, the modal projection G, = klG(kl) + k2G(k2) 

on the measured outputs; kf + k: 

k = w/V the normalized frequency and Q the 
dynamical pressure. Full state space representation 

With the previously described parameterization, 
Unsteady aerodynamics design paramet- flutter prediction equation (1) yields: 
ers 

0 I 
The main contribution to generalized forces is the [ l b ]  = [ q ~ ~ - ~  $ A ~ - B ]  [ i ]  + . a -  

contribution of the wing. It is parameterized as a 
linear function of complex design parameters vec- . + [ O  4 0 6  QAow o ] [["I 
tor 8: 

where r, G(k) are known matrices and O = diag(t9). 
For the nominal case (basic prediction model), Including the actuators dynamics A,, B,, Ca, D, = 

0 leads to the following state space representation: 

8 = @,Fa = Fa(q, V,  k, 8) 
0 0 

For the actual aircraft, 0 I 

Fa  = Fa(9, V,k,O) 
... + 

where t9 will be identified. w 
0 ?Aow 

Other contributions to generalized forces are 
assumed to be known and constant. Y = QS;i 
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Preliminary flutter prediction 

The nominal model is computed with nominal para- 
meters 8 = 8. This leads to the nominal unsteady 
aerodynamics on the wing illustrated figure 1 by 
lift amplitude distribution a t  f  = 3 f o  where fo  is 
a normalized reference frequency. 

Figure 1: Nominal wing lift distribution ( a m p  
litude a t  3 f o )  

A preliminary flutter prediction is then performed. 
As illustrated on figure 2 for a specific configura- 
tion, no flutter can be clearly predicted. However, 
coupling effects between modes can be observed 
when velocity reaches 200 to  250kts. As some 
parameters of the prediction model are uncertain, 
there is a potential risk for a worse flutter beha- 
viour. 

Figure 2: Preliminary flutter prediction, using 
nominal model 

Modal sensitivity to parameter variations 

A first order formal analysis of the eigenstructure 
variations versus parameters variations 60 leads to: 

where X i  = f jwi, Ui, V, respectively are the purely 
imaginary eigenvalues, left and right real eigen- 
vectors of the conservative structure 

3 Identifiability The first term is real and gives the effect of para- 
meter variations on the damping ratio of the modes. 

Before designing algorithm for identification of un- The second one is imaginary and gives the effect on 
steady aerodynamics parameters, it is necessary to the frequencies. Figure 3  illustrates the sensitivity 
check they can be identified. This is done using of mode #4 to all parameter variations a t  300kts. 
formal analysis of the prediction model, showing It appears that some parameters have a higher in- 
that, under some simple assumptions, there is ex- fluence on both frequency and damping than oth- 
istence and uniqueness of an optimal set of para- ers. They will obviously be easier to identify and 
meters 8 that lead to a given state space repres- a good accuracy on this parameters will be neces- 
entation. sary for flutter prediction enhancement. Figure 4 
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shows how a specific parameter alters character- F - r n ~ l b - r ~ z *  
I .  . .  

istics of all modes. 3 5  

This kind of analysis indicates that some modes , 5 

are insensitive to any parameter variations (such as t - , 
modes #2 and 9). The dynamics of the structure O 5  

(which includes 10 modes, i.e. 20 states), could 
then be split into its sensitive part (8 modes, 16 4 5  

states) and its insensitive one (2 modes, 4 states). z!J,b 1 2 3 1 5 6 ? 1 0 % 0  

-nbi 

Moreover, some parameters have no significant ef- 
fect on any mode: they should either be removed 
from the parameterization of the model, or not be 
included in the identification procedure. 

2s 
L - - d e r 4 Q I W  

2 - 
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f " 
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4.s. Figure 4: Sensitivity of all modes for arbitrary 10% 
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modes in the structural dynamics, which are sens- 
Figure 3: Sensitivity of mode #4 (VEM) for ar- itive to variations of parameters 8 (see previous 
bitrary 10% variation on each parameter section). 

"1 s.4 

Formal inversion 

This mathematical inversion is not part of the 
identification procedure, but a preliminary test for 
existence and uniqueness of solution for 8. In prac- 
tice, the assumptions are not satisfied. Noise and 

120 5  10 I 5  10 8 W 
1N The assumptions are satisfied if there are enough 

\ A.. . . . . . . . .: 

turbulence may corrupt the measurements and pre- 

with 8,6 both diagonal. Under rank assumptions, 
this equation is invertible for 8, with uniqueness. 

It is shown here how unsteady aerodynamics para- vent exact identification. Moreover, there is no 
meters could be mathematically computed from a way to identify structured matrices Ao, A1 1 and 
known state space representation, proving that a there are some uncertainties on the structural dy- 
perfect identification of the global dynamics of the namics. However, from the mathematical point of 
structure leads to a unique set of parameters. view, this formal analysis can be extended to mod- 

Equations (3)  write : 
els with uncertainties on the structural dynamics. 
Models at different velocities must be considered 
simultaneously, and equation (5) is rlon linearly 

[ - A. - A I  ] = r... (5) dependent on the parameters. 
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4 Identification procedure Under linear assumptions of equation (2)  and us- 
ing results of the sensitivity analysis frorn section 

Description of the algorithms 3, there is an analytical formulation for the gradi- 
ent 

Two different algorithms have been implemented 
- =  

for the search of an optimal set of parameters 8 aJ ~e ( J m  a v ' ~ ( w ) ( ~  - Ymeas),) 
89  -, 38  

to fit flight (or simulated) data: Output Error 
(OE) and Spectral Estimation (SE), the principle and the Hessian 
of which are presented on figure 5 et 6. 

This approach remains valid for more complex (po- 
tentially non linear) modeling of the unsteady aero- 
dynamics Fa(q, V, k, 8) with explicit dependence 
on 8. 

For SE, the identification is conducted in two 
steps. The first one is the estimation of the fre- 
quency response HmeaS(w) of the actual aircraft, 
using Welch like spectral computation [I]. This 

Figure 5:  output Error identification scheme assumes that the dynamics is linear.  he second 
one consists in fitting the estimated and predicted 
transfer functions [ 5 ] ,  minimizing a criterion: 

m 

J = ' / (H(d)-Hmeas)* Q(u)(H(e)-Hmeas )& 
2 -, 

with H(8)  the frequency response of the prediction 
model. Parameters 6 are updated using a sim- 
ilar Gauss-Newton algorithm, based on analytical 
gradient and Hessian. 

Figure 6: Spectral Estimation identification Validation 
scheme 

The algorithms are first validated with simulated 
data: 

For OE, the objective is to minimize a cri- 
terion: A perturbated model is designed, using a 

00 specific set of parameters 8. 
J = ' / ( y ( 0 )  - Ymeas)*Q(~)(Y(8) - Ymeas)dw 

2 -m 
Excitations are swept sinusoids, the climb- 

with YmeaS, Y the Fourier transform of the actual ing rate and length of which are adjusted for 
measurements and the prediction model outputs, each identification algorithm (typically from 
and Q a weighting matrix for emphasizing some fo to 7fo  in 40s at 50fo sampling rate). 
specific frequency range, for instance having suffi- 
cient coherence. Parameters 9 are updated with a 

Measurement locations are chosen on the struc- 

Gauss-Newton like algorithm: ture to give good information on modes which 
are sensitive to parameter variations. 

Time responses are simulated in noise free 
and turbulence free conditions, a t  velocity 



Kd = 250kt.s where preliminary prediction 
showed some aeroelastic coupling character- 
ized by a small damping decrease (see figure 
2).  

Both algorithms showed capability to estimate the 
true set of parameters 0, confirming practical iden- 
tifiability of the design parameters. 

5 Identification in turbulence 

Modeling of turbulence 

For simulation purpose, the effect of turbulence w 
is modeled as a non-white noise having Karman 
Spectra [4], going through a specific input as il- 
lustrated figure 7. The intensity of the noise is 
tuned to fit a given noise to signal ratio on a refer- 
ence output (max amplitude ratio from 10 to 40% 
on time response). Figure 8 shows the time re- 
sponses for simulated 30% turbulence. Figure 9 
compares the frequency responses of the outputs 
without turbulence and the contribution of such 
turbulence to the outputs. Figure 10 illustrates 
the coherence of the data. A lack of coherence 
can be observed around 3 f o ,  where coupling ef- 
fects have already been detected. 

White noise wind + 
Excitation Aircraft 

Actuator 

Figure 7: Simulation of turbulence 

Application 

Maximum Likelihood Parameter Estimation Tech- 
nique [7] are difficult to apply to systems with high 
order dynamics. In order to keep good conver- 
gence properties, OE and SE techniques are pref- 
ered, though they are significantly perturbated by 
turbulence. Identification is performed at Kd = 
250kts for simulated turbulent data at various tur- 
bulence rates (from 10 to 40%), with the same 

Figure 8: Time responses with swept sinusoids and 
30% turbulence 

Figure 9: Frequency responses: - turbulence free 
outputs for swept sinusoids; - - contribution of 30% 
turbulence to the outputs 



Figure 10: Data coherence with first input for 30% 
turbulence 

excitations as for turbulence free validation. Be- 
cause of non perfect decorrelation between turbu- 
lence and measurements, the algorithms cannot 
perfectly estimate the true set of parameters 19 but 
still work correctly to provide a reasonnably good 
estimation in terms of unsteady arodynamics. The 
identified parameters 8 lead to the wing lift distri- 
bution of figure 11. Section 6 analyzes the impact 
of parameters estimation error on the accuracy of 
flutter prediction. 

Figure 11: Wing lift distribution with identified 
parameters (amplitude at 3 fo )  

obtained by identification at Kd = 250kts. Obvi- 
ously, the higher turbulence is encountered, the 
poorer accuracy is obtained for parameter estima- 
tion. 

Statistics on the estimated parameters Figure 12: Confidence region for modulus of para- 
meter #24 

Exact determination of the confidence region for 
parameters 8 is impractical [2], especially in pres- 
ence of turbulence. A simple approximation is 

6 Accuracy of flutter prediction 

Predictability of flutter in case of turbu- 
where ,L? is chosen to fit statistics obtained with lence 
random Monte Carlo runs for a specific case. Fig- 
ure 12 gives an estimation of confidence region for The best estimated parameters e are used to com- 
modulus of parameter #24 versus turbulence level, pute F,(q, V, k,  6) and the flutter curve for any 



speed V .  .As illustrated on figure 13, parameters 
identified with a 30% turbulence level indicate flut- 
ter occurrence on mode #4 at 2.8 fo, the damping 
ratio of which decreases from 1.8 to 0.7% between 
300 and 350kts. Despite high level of turbulence, 
the updating algorithms on a unique flight condi- 
tion allow prediction of initially unexpected damp- 
ing loss. In the next section, we discuss the accur- 
acy of flutter prediction. 

level of turbrilence and for identification at various 
velocities: 

Though some parameters may have a large 
confidence region, the accuracy on damping 
ratio C4 remains satisfactory up to high levels 
of turbulence. In this sense, a maximum ac- 
ceptable turbulence level could be between 
20 and 30%. For higher turbulence levels, 
identification algorithms still significantly cor- 
rect the preliminary estimation of damping 
ratios (preliminary prediction was C4 = 5.4% 
at 300kts and identification performed a t  Kd = 
250kts with 40% turbulence estimates c4 = 
1.8 f 0.6%). 

Identification performed at velocities signi- 
ficantly lower than aeroelastic coupling speed 

Y ) l a l l Y ) 2 0 0 ~ Y a 3 m U X )  
v WI gives early accurate information for updating - 

flutter prediction, but with a higher sensitiv- 
I[ 1 ity to turbulence, as illustrated-for identific- 

ation a t  Kd = 170kts and 250kts to estimate 
damping at 300kts. - 

C 

z 
5 --"L U 

a5 - 
50 tm r ~ ) z c o z % x o w u a  

v (m) 2 .  

z- - - - - - -  ,+ - - - -  * - - - -  4% - 
L. 

Figure 13: Flutter prediction, using parameters 
identified a t  K d  = 250kts with 30% turbulence D1. 

Figure 14: Confidence region for damping C4 at  
Accuracy of damping and damping gradi- 300kts, identification performed with data at :  o 
ent estimate Kd = 170kts, + Vd = 250kts 

The accuracy of flutter prediction can first be eval- 
uated via the damping ratio C at given velocity. The knowledge of the damping ratio is not suf- 
 hi^ can be done using sensitivity equation (4) to ficient for good flutter prediction. The accuracy 

compute standard deviations on c from errors on must also be evaluated via the damping ratio gradi- 

the estimated parameters: ent dC/dV at velocity where coupling between modes 
occurs, in order to be able to extrapolate to higher 

varCi = - I -- I ' ~ ~ ~ - l r ~ m  ( v a r e ~ ~ ) ~  velocities. From sensitivity equation (-I), one can 
2 V w i  compute 

Figure 14 gives a confidence region for the damping 
ratio of the destabilized mode c4 at  300kts versus d q / d V  = ' ~ ~ ~ p - l r l m  4 wi (ecT)~  



and the corresponding variance var[dCi/aV] from 7 Conclusion 
variance of parameter estimates, a s  illustrated fig- 
ure 15 for mode #4 with identification at K d  = An identification procedure from flight data is pro- 
250kts. Again a reasonnable level of turbulence for posed, for quasi real time updating of flutter pre- 
acceptable confidence region is 20 to 30%. Higher diction models, parameters introduced in the un- 
levels give too large uncertainties. steady aerodynamics model are estimated during 

--ll(p flight test, while velocity is increased. 

Figure 15: Confidence region for damping gradient 
i3<4/aV at  300kts 

Perspective 

The identification procedure is currently applied 
to real flight data. Different problems must be 
controlled: 

As the unsteady aerodynamics parameters 
have a physical interpretation, all optimal 
solutions obtained by the algorithms are not 
valid. Constraints on the parameters must 
be included in order to  make solutions phys- 
ical. 

The structural dynamics model is not per- 
fect, and modeling errors may remain due to 
uncertainties on mass distribution. Tricky 
selection of tests a t  different velocities may 
minimize effects on mass distribution uncer- 
tainties (however loosing strictly real-time 
potential). 

In order to determine flutter speed, the ac- 
curacy of damping and damping gradient es- 
timate can be improved cumulating estima- 
tions obtained by different identification a t  
increasing velocities, as suggested in [3]. 

Performance of identification is evaluated in 
terms of accuracy for unsteady aerodynamics es- 
timation, and of flutter prediction capability, with 
and without turbulence. Though turbulence may 
significantly alter the accuracy of parameter iden- 
tification, it is shown that the estimation of modal 
damping ratios is accurate enough for flutter pre- 
diction enhancement. Moreover, identification per- 
formed at velocities significantly lower than aer- 
oelastic coupling speed gives early accurate inform- 
ation for updating flutter prediction. 
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Parameter Estimation in Flutter Analysis 

by Wavelet and Neural Network* 

Y .S. Wongl, B.H.K. Lee2 and T.K.S. Wong3 

~ e ~ a r t m e n t  of Mathematical Sciences, University of Alberta, Edmonton, Canada 
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1. INTRODUCTION 

Despite rapid advances in the development of computational aerodynamics and wind tunnel 
testing techniques, flight tests are still required to determine flutter boundaries of aircraft. 
Normally, modal frequencies and damping values are measured, but these quantities can 
be di£Ecult to determine accurately when noise is present or when modal frequencies are 
close to each other. Various methods have been considered for parameter estimation in 
flutter tests, and these include curve fitting based on non-linear least squares, maximum 
likelihood estimation, Kalrnan filters and filter error method, to name but a few. Extensive 
discussions on these methods are given in Refs. [I-61. Some of these techniques require 
considerable amount of computations, and hence real time evaluation of frequency and 
damping values may require efficient algorithms. 

Wavelet theory for signal processing [Refs. 7-91 has made great progress in recent years. 
Also, artificial neural networks [Refs. 10-111 capable of modeling complex characteristics 
in nonlinear systems have contributed to the development of more advanced methods in 
analyzing aeroelastic response signals. Unlike conventional methods discussed in Refs. [I- 
61, these approaches do not require explicit mathematical manipulations. Furthermore, 
the required parameters can be estimated in real time once the neural network has been 
properly trained. To achieve optimal computational efficiency, the required parameters 
can be determined by a group of neural networks using a parallel algorithm. This study 
is an extension of the approach suggested by Lee and Wong [Ref. 121 where only one 
neural network was used to analyze a one-degree-of-freedom time signal represented by an 
exponentially decaying sine wave corrupted with noise. 

*This work is supported by the National Sciences and Engineering Research Council of Canada. 
Professor, email: yaushu.wong@ualberta.ca 

2Principal Research Officer 
3Research Student 



2. REPRESENTATION OF FLUTTER SIGNALS 

To simulate a flutter time series, we represent it by a linear superposition of a number of 
exponentially decaying sine waves 

where N denotes the number of modes, Ai, ai, wi and #i represent the amplitude, 
damping ratio, frequency and phase angle associated with the i-th mode. This time 
signal represents the response of the aircraft structures excited by an impulsive load, or 
the decaying portion of the response signal from a sine dwell or sine sweep excitation. In 
practice, all signals are subject to noise corruption. Thus, a realistic flutter signal can be 
expressed in the form 

Y(t )  = W(t)  + n(t) (2) 

where the noise is defined by 

n(t) = E x W(t) x Gaussian random number. (3) 

Here, the value E represents the noise level. For example, when E = 0.2, the original 
signal W(t )  is contaminated with at most 20% noise. 

3. NEURAL NETWORKS 

A neural network can be regarded as  an information processing system which has the 
capability to model highly complex nonlinear systems. Simply stated, when a given input 
information and a desired output are prescribed, a neural network provides a nonlinear 
mapping to the input-output subspace. A particular attractive feature of a neural network 
is its ability to learn through examples, and it can be trained to perform a specific task 
such as parameter estimation. 

The network consists of a set of computing unit known as neurons, and they are connected 
to other units by weights. Each unit computes a weighted sum of the inputs a d  trans- 
lates it to outputs by making use of a transfer function. The transfer function may be 
linear or nonlinear and is chosen in order to satisfy some specifications of a given problem 
for which the solution is sought. Various transfer functions are available, and they have 
been discussed by Hagan et al. [lo]. Lee and Wong [12] developed a simple two-layer 
neural network model (Fig. 1) which consists of one hidden layer for parameter estimation. 
In the figure, p and a are the input and output vectors, f is the transfer func- 
tion, W and b denote the components of the weighted matrix and the bias vector. 



Let W1, bl, f 1  denote the components of the weighted matrix, bias vector and transfer 
function corresponding to the first layer, the resulting output a' is expressed by 

which is then taken to be the input for the second layer. The output for the second layer 
a2 is given by 

2 -  w2a1+b2)= f 2 ( ~ 2 f 1 ( ~ 1 p + b 1 ) + b 2 ) .  a - f (  (5) 

For the neural network shown in Fig. 1, information travels only in the forward direction, 
and it is usually referred as a feed forward neural network. 

In the present application to flutter parameter estimation, the input vector p consists of 
the discrete data values of a given signal Y(t), and the output variables are the required 
estimated damping ratio cri and frequency wi, for i = 1,2,. . . , N.  

Following the output formula given in equations (4) and (5), once the input p is given 
and the transfer function f has been determined, the remaining task is to compute the 
weighting matrix W and the bias vector b. This can be achieved by using a learning 
rule or a training algorithm. Here, we use a supervised learning procedure, in which a set 
of examples of proper network behavior { t } ,  i = 1 , .  . , known as a training 
set is provided, where pi is input to the network and ti is the corresponding correct 
output. The input {pi) is applied to the network to obtain the network output {ai), 
the weights W and biases b are then adjusted after comparing the network output 
{G )  with the correct output (ti). We introduce an error vector e given by e = t-a, 
and define the performance index F as the mean square error, i.e., 

The performance index provides a measure of the neural network performance, F being 
small when the network performs well, and large when the network performs poorly. Back- 
propagation algorithm is applied to the present two-layer network, in which W and b 
are adjusted so that the performance index is minimized using an optimization procedure 
based on the conjugate gradient algorithm. The detail implementation of the algorithm is 
described by Hagan et al [lo]. Depending on a particular problem, the learning (training) 
process may require a considerable amount of computing time in order to reduce the 
performance index to a sufficiently srnd level. However, once the training process is 
completed (i.e. the values of W and b are determined), the outputs for the neural 
network can be computed almost instantaneously according to EQ. (5). This attractive 
feature makes it feasible for applications in a real time on-line environment while the 
training process can be executed off-line. 

The complexity of a neural network is determined by the number of hidden layers, and 
the number of neurons in each layer including the input and output layers. This in turn 



defines the size of the weighting matrices W. Most of the computing time used in the 
training process is to determine the elements of W. 

We consider a two-layer neural network shown in Fig, 1. The input vector p consists 
of R neurons, and the output a has S neurons. For a simple network model, the 
number of neurons J for the hidden layer is usually chosen so that J > d m .  The 
weighted matrix for the first layer is given by 

and consists of R x J elements. Similarly, the weighted matrix for the second layer W2 
consists of S x J coefficients. .During a training process, the total number of elements 
needed to be adjusted are (R + S) x J. The determination of the weight coefficients is 
the most time consuming part in the development of a neural network. Since the weight 
coefficients are modified using nonlinear optimization routines, solving a nonlinear problem 
with a smaller number of neurons for input and output will result in a significant reduction 
in computing time for the training process. In using a two-layer neural network to estimate 
frequency and damping coefficients for a given flutter signal, the input neurons R consist 
of 600 discrete values of Y(t )  given in (2), and the output neurons S represent cui 

and w, for i = 1,2,3. The complexity of the network for this case (i.e. Case 1) is 
shown in Table 1. In the same table, the complexity for Case 2 is also given in which the 
input R has 60 neurons and the output S has only one neuron. The complexity 
of a neural network is greatly reduced when the size of the input and output neurons is 
small. The total number of elements of W 1  and W2 for Case 2 is less than 1.5% 
of that needed for Case 1. 

Table 1. Complexity of 2-layer Network 

4. WAVELET ANALYSIS 

In recent years, extensive publications on wavelet analysis and their applications in signal 
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W 1 = R x J  
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480 
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600 
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W = J x S  
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processing can be found in the open literature [7-91. Wavelets are particularly useful in 
data compression, signal decomposition and signal denoisiig, and these features can be 
used in conjunction with neural networks for parameter estimation. 

Wavelet transforms can be regarded as harmonic analysis tools which provide time and 
frequency representations in the form of localized waveforms. For a given function f (t), 
a discrete wavelet expansion can be expressed as 

where $ is called the wavelet, @ are the wavelet coefficients which are defined as 

The reconstruction of a function f (t) is achieved by applying an inverse transform to 
Eq. (8). The commonly used wavelets include the Harr wavelet [9], Daubechies' wavelets 
[8], Coiban's wavelets [7], localized sine and cosine transforms [9]. When a wavelet trans- 
form is applied to a given signal, the transform process convolves to a series of selected 
local waveforms with data iden-g the correlated features associated with the signal. 
The resulting wavelet coefficients can thus be interpreted as mul ti-dimensional correlation 
coefficients. 

To illustrate that a wavelet transform can be effectively used to perform signal decompo- 
sition, data compression and signal denoising, we consider the following example. We let 
W(t) be a signal consisting of two modes, where 

Here, the amplitudes A; and the phase angles 4; as defined in Eq. (1) are chosen 
such that A; = 1, 9; = 0 for i = 1,2. Different values for Ai and ; can 
be used, but they will not affect the performance of a wavelet transform. In Fig. 2, we 
display the signal W(t) using 500 data points where t = nAt, At = 0.004, 
n = 0,1,. . . ,500. Applying a wavelet transform with local cosine as basis to W(t), 
the resulting 500 wavelet coefficients are plotted in Fig. 3. In Fig. 4, we show the 
first 100 wavelet coefficients presented in Fig. 3. Fkom the results given in Figs. 3 
and 4, we observe the following: First, the amplitudes of most of the wavelet coefficients 
are very small, except for the first 50 coefficients while the remaining 450 wavelet 
coefficients can be considered to have approximately zero amplitude. Secondly, the signal 
contains two components with two distinct frequencies, which correspond to two separated 
groups of wavelet coefficients shown in Figs. 3 and 4. Another way to identify the signal 
components is to display the wavelet coefficients in a time-frequency plane, where the 



signal is decomposed into rectangular cells of equal area, and each cell is related to the 
amplitude of the corresponding wavelet coefficient. The total number of cells is equal to 
the dimension of the data representing the given signal. By applying an inverse wavelet 
transform to a selected group of wavelet coefficients, the individual signal component which 
associates with a particular frequency is then reconstructed. In Figs. 5 and 6, we display 
the reconstructed W,* (t) and W; (t) where each component is reconstructed by using 
only ten wavelet coefficients, namely the coefficients 11 to 20 and 21 to 30 as 
shown in Fig. 4. The reconstructed components represented by dash lines are compared 
with the exact components Wl(t) and W2(t) shown by solid lines in Figs. 5 and 
6. Excellent agreement in using wavelet transform for signal decomposition is obtained. 
Combining W; (t) and W,* (t) as W* (t) = Wi (t) + W,' (t), W* (t) now represents 
the reconstructed signal using 20 wavelet coefficients. In Fig. 7, W*(t) is compared 
to the original signal W(t), and again excellent agreement is obtained. 

The results applying a wavelet transform for signal decomposition and reconstruction are 
illustrated in Figs. 2-7 for a clean signal W(t) given in Eq. (10). To investigate the effect 
of noise, we repeat the numerical simulation by adding a noise level of 20%, i.e. E = 0.2 
in Eq. (3), to the signal W(t). In Fig. 8, we show the reconstructed signal W* (t) by 
a dash line and the noise-free signal W(t) by a solid line. W* (t) is reconstructed by 
using 20 wavelet coefficients which are obtained by applying wavelet transform to the 
noisy data defined in Eq. (2). Comparing the results presented in Figs. 7 and 8, we conclude 
that the application of a wavelet transform for signal decomposition is effective even if the 
signal is corrupted by noise. Since noise is usually represented by wavelet coefficients with 
small amplitudes, it can be effectively removed by selecting only a number of appropriate 
wavelet coefficients for signal decomposition. 

5. WAVELET-NEURAL NETWORK MODEL 

When the number of neurons associated with the input and output layers are small, the 
neural network can be trained efficiently. We have shown that applying a wavelet trans- 
form to a signal of the form given by Eq. (I), the amplitudes of the majority of the wavelet 
coefficients are practically zero. Since the important features of the original signal can be 
represented by a small number of non-zero wavelet coefficients, we can use these coeffi- 
cients as network input instead of the original data set. In addition to its usefulness in 
data compression, wavelets can also be used for signal decomposition. The wavelet-neural 
network model for parameter estimation is illustrated in Fig. 9. 

We consider a signal Y(t) which consists of N exponentially decaying sine waves is 
given by 

Y(t) = Yl(t) +&(t)  + - - - + Y N ( t ) +  noise (11) 

where Y,(t) = &e-"it sin(wit+&) and the damping values and frequencies, respectively. 



In using a wavelet-neural network model to estimate a* and wi, we apply a wavelet 
transform to decompose the signal into N components where each Y,(t) is a single- 
mode time series deked  by a single frequency and a damping value. A wavelet transform is 
then carried out for the individual single-mode signals, and we select only a small number of 
the largest wavelet coefficients as input to two neural networks so that the outputs provide 
an estimated a* and wi, respectively. To compute the damping values and frequencies 
for an N-mode signal, we need 2N neural networks. The attractive feature of the 
present model is that it logically leads to a parallel algorithm, and is a promising technique 
for estimating signal parameters in a real-time environment. 

6. APPLICATIONS TO SIMULATED DATA 

To investigate the performance of the two-layer neural network (Fig. 1) and the wavelet- 
neural network (Fig. 9), we apply both models to a simulated flutter data set. The test 
signal is generated from Eq. (11) and it consists of two modes with 512 data points. The 
noise is defined in Eq. (3) with t varying between 0 to 0.2. The set contains 1000 
test signals, and the values of damping ratio and frequency are determined by a' random 
number generator such that 0.3 < al, a 2  < 0.8, 3 < wl ,  w2 < 8. Initially, the 
training set starts with 200 random signals which are generated in the same manner 
as the test data set. The relative error is denoted by the absolute value of the difference 
between the network output and the correct output normalized by the correct output 
solution. Upon completion of the initial training, 500 test signals are constructed and 
the relative error recomputed. The training data set can be increased until the relative 
error is less than 0.1. A more accurate network can be achieved by decreasing the relative 
error at the expense of increasing training time. 

The two-layer neural network is implemented in a C++ computer code program for a 
desktop personal computer. The input layer consists of 512 neurons representing the 
discrete data for a given signal, and the output has four neurons giving the values for 
a l ,  wl ,  a2, w2. The wavelet-neural network model consists of four neural networks, the 
input layer for each network contains 60 neurons where the first 30 neurons correspond 
the largest 30 wavelet coefficients for a given signal and the remaining 30 neurons 
provide the locations of the selected wavelet coefficients. The output layer for each network 
has only one neuron. 

The two-layer network is first tested for a single mode signal (i.e. a 2  = wz = 0), using 
input vector containing the original 512 discrete data of a given signal or the largest 30 
wavelet coefficients and the corresponding locations. In both cases, the relative errors from 
a 1000 testing set are within 5% accuracy. As expected, significant training time is 
reduced when the wavelet coefficients are taken as network input. Rapid convergence of 
the estimated damping value is achieved when wavelet coefficients are used as input. 



When the testing signal contains two modes, the two-layer network fails to converge even 
after a long training process. This can be explained from examining the network out- 
puts where (al, wl  , a 2 ,  w2) and (a2 , w2, al, wl) are both acceptable solutions. When 
the solutions in the nonlinear optimization step during the training process oscillated be- 
tween these two sets, diBculties in convergence arise. Although it is possible to overcome 
this difEiculty by reordering the network output to (aA, wA, a ~ ,  wB), where WA > WB, 
a~ and ag are the damping coefficients corresponding to frequencies WA and WB, 

respectively. The convergence rate for the training process becomes extremely slow com- 
pared to parameter estimation for one-mode signal, this approach will not be practical for 
parameter estimation applied to multi-mode signals. However, the wavelet-neural network 
model presented in this paper does not encounter this problem. The relative errors for 
the 1000 test data set for the estimating damping and frequency are shown in Figs. 10 
and 11, and the results are within 4.5 and 6% for the damping value and frequency, 
respectively. The model has also been tested for cases in which the time series signals are 
represented by set of 256 to 1024 data. In all cases, it has been found that it is sufficient 
to represent the signal using its 30 largest wavelet coefficients. 

7. CONCLUSIONS 

The novel wavelet-neural network presented in this paper has the capability to estimate 
parameters for a given signal with good accuracy. The model employs signal decompo- 
sition and data compression usixig wavelet transforms. This leads to an efficient training 
process and the network outputs can also be determined by a parallel algorithm. The only 
limitation of the present method is that the frequencies of the signal components can not 
be too close in order that decomposition can be performed. The method can also be used 
applied to non-stationary signals by dividing the signal into segments. Each segment is 
then used as input to the present wavelet-neural network model. 
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ABSTRACT 

Flight flutter testing is a crucial part in the certification of a prototype aircraft. The flight 
envelope must be expanded safely, however, there is always the pressure to complete the 
tests as quickly as possible. Although there will be an aeroelastic model of the system for 
comparison, the decision to proceed to the next test point is usually based upon the modal 
parameters estimated from the flutter test data. A number of different methods have been 
proposed to determine the speed at which flutter occurs, however, the most commonly 
used approach is simply to extrapolate the estimated damping ratios. In this paper, a 
method for the prediction of flutter speed from flutter test data is proposed based upon 
the use of Neural Networks. The method is demonstrated upon a simulated aeroelastic 
model. 

INTRODUCTION 

Flutter is a violent unstable oscillation that occurs due to the interaction of inertial, 
aerodynamic and elastic forces. Flight Flutter Testing [I] is a mandatory part of the 
certification process that must be undertaken in order to demonstrate that the aircraft is 
flutter free throughout the desired flight envelope. The flutter testing procedure [2,3] can 
be difficult due to the conflicting requirements of completing the tests safely in as short a 
time as possible. 

The flutter test procedure consists of three elements aiming to clear the flight envelope 
shown in figure 1 at a number of constant height and also constant Mach no cases: 

1. The aircraft is excited in some manner and the response measured 
2. The modal parameters are estimated using system identification methods [4] 
3. The decision is made to proceed to the next flight test point 

Arguably it is the last element that is the most difficult. In essence, the flutter test 
engineer needs to ensure that an adequate degree of stability is maintained at the next test 
point, and this is usually determined by considering the modal parameters estimated from 
the measured test data. Any deficiencies in the first two elements of the test will be 
passed through to the prediction stage causing greater uncertainty. It must also be 
remembered that the stability of the system can change abruptly with only a small 
increase in flight speed. The computational aeroelastic model is generally only used for 
guidance regarding the characteristics of the flutter behaviour, and it is rare to update the 
model as the envelope is expanded. 



By far the most common approach to extrapolating the test results is simply to consider 
the damping trends. Often this approach is performed by hand. There is somewhat of an 
art to this procedure, particularly when there are closely coupled modes. Figure 2 shows 
typical frequency and damping trends for a civil aircraft, and it can be seen how difficult 
it can be to follow the damping trends. It is often useful to include information about the 
mode shapes, see [5]  for an automated procedure to do this, in order to reduce problems 
with the mode tracking. 
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A number of methods have been proposed that attempt to automate the flutter speed 
prediction from test data process. The Flutter Margin method [6] is based on the premise 
that a more fundamental stability criterion (the Routh Stability criterion) should be used 
rather than simply tracking the damping ratios. Originally, the method was formulated 
for binary systems and the user has to know a-priori which of the modes are going to 
form the flutter mechanism. A recent extension [7] has produced a formulation for 
ternary flutter. 
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The envelope hnction [8] was developed based on the assumption that the impulse 
response function contained information about the overall stability of the system. A 
shape function based upon the centroid of the impulse response envelope is plotted and 
then extrapolated to predict the flutter speed. Similarly, a time domain ARMA method 
[9,10] using the Jury Stability criterion has also been tried that also considers the overall 
stability of the system. This method was developed for the response to unmeasured 
turbulent excitation although the method can be extended to the measured input case. 
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Figure 1. Flight Test Envelope Clearance. 



Figure 2. Frequency and Damping Trends for a Civil Aircraft Model [8] 

Nissim and Gilyard [ l  11, extended a method introduced by Gaukroger et al.[12], adopted 
a different approach by attempting to identify the entire aeroelastic system. If data fiom 
two different flight test points is measured, then it is possible to identify all of the 
matrices in the conventional aeroelastic model. Once the model is know, an eigenvalue 
solution of the system equations can be performed at increasing speeds until the flutter 
speed is found. Although this approach is the most ideal fiom a mathematical viewpoint, 
there are problems in its implementation with large order systems. Finally, recent work 
[13] has developed an approach for determining the flutter speed based upon worst case 
robust stability theory. 

In this paper, an approach is introduced to determine the stability at the next flight test 
point using Neural Networks. The network is trained upon sub-critical modal parameter 
estimates using the computational aeroelastic model. During the flight test, previous 
frequency and damping values are used to help predict damping values at future test 
points. The method is intended to be used during flight flutter testing, unlike a previous 
implementation [14], as an extra tool to aid the safe expansion of the flight envelope. 
The approach is demonstrated upon a simple simulated aeroelastic system. 



NEURAL NETWORK APPROACH 

Consider the damping trend versus speed for a single mode shown in figure 3 as an 
example of the approach that is taken in this paper. A number of numbered test points 
are shown. Once the expansion of the flight envelope is underway, the flight test 
engineer has to decide whether it is safe to proceed to, say, point 6 based upon the 
previous 5 test points. This procedure is then repeated for all the other test points. 
Obviously, in practice there will be damping and frequency values from other modes. 

Known values 
of damping 

1 b 

T speed 
Current test speed \ 

Figure 3. Test Points on a Single Damping Trend. 

In this paper, training of the Neural Network was achieved by mimicking the approach 
used during a conventional flight test, i.e. five consecutive sets damping values were used 
to predict the damping at the next three test points. The basis of this method is data 
extrapolation using a nonlinear autoregressive moving average (NARMA) model. In the 
present case the NARMA model is implemented in the form of a neural network, with the 
fiee parameters in the model represented by the connection strengths in the network. The 
advantage of using a NARMA model as opposed to ordinary algebraic extrapolation is 
that the former method allows inclusion of problem-specific information. This 
information is provided through the examples used to train the network. 

The network used was a feed-forward multi-layer perceptron trained using error back 
propagation. Networks were implemented and trained using commercial neural network 
software (?leuframe) running on a PC. 

A simple simulated binary flutter model [15] was used to demonstrate the proposed 
approach. 5 data sets were produced for different values of the wing root stiffness. Data 
sets 1,3 and 5 were used to train the network with data set 4 used as a control set during 



training to test for over fitting. Finally, data set 2 was used as an independent query set to 
validate network performance on new data. 

One training example consists of a training input vector and a training target vector. The 
input vector consists of frequency and damping values for modes 1 and 2 for 5 
contiguous speed increments. The target vector consists of damping values for modes 1 
and 2 for the next three contiguous speed increments. For each data set, 23 training 
examples were produced to give a training input matrix and a training target matrix 
(shown below). The purpose of network training is to establish the mapping between the 
input and target vectors by repeated cycling through the training examples, updating the 
network weights to minimise the network error after each cycle. 

Training input matrix 

Training target matrix 

(the subscript refers to the mode number and the superscript refers to the speed number) 

A three layer network was used. As dictated by the training data, the network has 20 
input neurons and 6 output neurons. The number of middle layer neurons was 10 
(optmised by trial and error). 

RESULTS AND DISCUSSION 

The frequency and damping characteristics for the 5 test cases are shown in figure 4. 
Classic binary flutter behaviour is exhibited. In the present case, the unstable mode 
(tendency to negative damping) is always mode 2. This is not generally the case and has 
not been assumed in the present study. 

A numerical conditioning problem is clearly anticipated by the large numerical difference 
between the damping values of the two modes, bearing in mind that the unstable mode 
can not necessarily be predicted. 



Network training proceeded robustly, with no evidence of false minima. Typical training 
runs took 1000 iterations through the training data ( 2 minutes on a P166). With 10 
hidden neurons and 23 training examples, overfitting was not observed. 

Results from querying the trained network with previously unseen data are shown in 
figure 5. The network predicts mode 1 damping values accurately, apart from at the 
comer where actual values saturate at 100%. The results for mode 2 (the unstable mode) 
are less good. The reason for the difference in accuracy between the modes is the lack of 
resolution at the small damping values presented by mode 2. The network minimises the 
global error function and thus small values contribute less to the overall weight 
distribution. 

Note that if the network is queried with mode 2 data that was used in the training set, the 
accuracy of the predicted values is considerably better than that shown in figure 5. 

The prediction error increases only slightly with increasing number of steps. This 
suggests that predictions fbrther forward are viable with this method. 

To improve the accuracy of prediction for the modes with lower damping (usually the 
unstable modes of interest) a modified approach is required that provides better 
conditioned training data for the network. This might be achieved by selective 
normalisation of the data as it proceeds. 

CONCLUSIONS 

An approach using neural networks to predict whether it is safe to move to the next test 
point in a flight flutter test has been demonstrated. The initial results show that the 
approach is promising and further work is ongoing to determine the robustness for full 
scale simulated flutter models and actual flight test data. 



speed (WS) 

speed (WS) 

-case 1, model 
--case 1. mode 2 
--b case 2, mode 1 
+case 2, mode 2 
-case 3, mode 1 
-case 3, mode 2 - case 4, mode 1 
- case 4, mode 2 
-case 5, mode 1 
+case 5, mode2 

Figure 4 Frequency and damping characterisitcs for binary flutter 
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ABSTRACT: FBP ( Flutter Boundary Prediction ) due to subcritical signal analysis is becoming a 
significant research subject in the field of flutter testing. In this paper, traditional modal damping and 
modem system stability analysis are reviewed. The principle and specifics of the methods are also 
briefly discussed. Especially, a new hybrid prediction method based on NNES ( Neural Network Expert 
System ) is proposed integrated current FBP techniques and human experiences from experts. 

1. INTRODUCTION 

During a flutter testing of a new aircraft, how to decide the critical speed on line is of great important 
to flutter envelop expansion and testing safety and testing efficiency. Flutter Boundary Prediction 
( FBP ) , directly using subcritical response analysis, has been interested in two decades. To meet the 
requirements with accurate, rapid and reliable, FBP techniques have been quickly developed and 
applied in actual data processing of wind-tunnel and flight flutter experiments. 

To improve the quality and reliability of FBP, there are two paths to consider. First, being difference 
with theory prediction using aeroelastic calculation, FBP depend mainly on test. And so, test techniques 
and the quality of measured signal are the foundation. Except for data communication and data record, 
measurement and excitation are the both key factors in flutter test. For measurement, the kind and 
position of sensor will be considered and generally not too difficult in test preparing stage. But for 
excitation, there exist two problems, namely, excitation pattern and excitation signal design. The former 
includes natural airflow, rocket, operation lift, etc. The latter are separated to sine, sweep, impulse and 
turbulence. The signal measured has different characteristics under different excitation manner. And 
obviously, the excitation using the natural airflow or turbulence is relatively economic, safety and easy 
use in engineering, but the excitation is more difficult than other excitation cases in signal processing. 
And so, we have to pay more attention on the data with lower quality. As a matter of fact, the excitation 
force is unmeasured and the affection of airflow or turbulence is also not avoidable in test. 

The second way is to find more advanced method to meet the data functions and requirements of 
FBP analysis. The present FBP methods can be divided into two branches, i.e., modal damping vs 
speed and system stability parameter vs speed. Damping techniques is a traditional method and has 
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been widely used in flutter testing field. NASA and other professional organizations of the world use 
the way to flutter testing in wind-tunnel and flight. Damping is mainly developed based on Fourier 
theory and human experiences play an important role in using. System stability analysis ( SSA ) is 
quickly developed in recent year, which primarily consisted of data modeling ( system identification ) 
and stability criteria. SSA has a different idea with damping and flutter is considered to be an unstable 
or divergence behavior of testing object. 1964, Zimmennen and Weissenburger gave a stability 
parameter called Flutter Margin related to Routh-Hurwitz criterion firstly in FBP field. Although the 
parameter calculation requires measured values of the frequencies and dampings of both modes 
involved in the flutter condition, it has a more monotonous property than damping. After that, many 
methods have been developed in time-domain. Yuji Matsuzaki built an ARMA model to random 
response of aeroelastic model by using RPEM method and Jury criterion was used to determine 
stability parameter. H. Wendler-Bruce adopted AR model for measured data fitting, and AR 
coefficients were estimated by Levinson algorithm and also Jury being as the stability criterion. 1986, 
Dr. Xiao Chuangbai completed the ARMA modeling using Overdetermined Instrumental Variable 
algorithm and presented a Lyapunov criterion. The authors proposed a fast algorithm integrated data 
modeling and stability criterion, in which AR and ARMA were considered and the stability parameter 
were directly obtained from reflection parameter in Lattice algorithm. Several hybrid methods were 
also developed by authors and used in actual flutter testing. The success~ l  experiences have been 
accumulated in practice. 

Note, although every FBP method has its theoretical principle, the actual prediction results for 
different methods are usually not consistent, even a big gap among them. It's no doubt that the human 
experience is a very important factor about how to use FBP techniques and to judge the final flutter 
speed in engineering application. And so, we need to find a more reasonable FBP technique due to 
subcritical turbulence response and human experiences. In this paper, traditional damping and SSA 
methods are reviewed at fist. Hybrid FBP problem is discussed and a new method named FBP-NNES is 
presented. Finally, some suggestions for next research are suggested. 

2. DAMPING TECHNIQUES 

Basic Description 
The basic idea of damping extrapolation is ( Fig. 1 ) : the major flutter modal frequency and damping 

are firstly obtained, and then the onset speed value is extrapolated by fitting the varied trend of the 
damping vs speed with zero damping. 

1 Measured Pre- Fitting + vf 
I Data 1 j Processing Extrapolate 

Fig. 1 Damping Prediction Diagram 



Pre-processing is a significant but skillful primary work, the purpose of which is improving the 
quality of measured signal, namely, canceling the unnecessary department or noise and keeping the 
interested information. Honestly, the foundation of damping prediction is the vibration modal analysis 
and generally Fourier analysis is used in frequency domain and Random Decrement Technique ( RDT ) 
is used in time domain. The important work is how to correctly separate or confirm the structure flutter 
modes and how to estimate damping parameter. Becareful, the damping value may be not same with 
the different estimation methods and measured data selected from same testing. 

By authors' opinion, the key problem is the variable trend but not the concrete damping value. 
Because damping is sensitive to noise ( From measurement or calculation ) and the time-variant in 
flutter process, the kind of FBP method is not suitable to occasions of closed modal arrangement and 
sudden flutter. 

Frequency Methods 
In frequency domain, the data spectrum is first obtained by FFT. Frequency and damping are 

generally determined from the response peak bandwidth at the half power point. Of course, if the 
excitation signal is supposed to be available, the approximate transform function method can be used. 

In practice, there are many concrete ways to determine modal damping. Sometimes, the equiv.alent 
method are also used, such as Peak-Hold, Cross-Spectrum and even to observe the response time 
history or calculate the points passing zero. Here are several problems should be care when using 
damping method: 

A The spectrum estimation is the most important step. There are more then ten approaches in 
modem spectrum analysis, and each of them has its specifics and scope in application. The 
selection of spectrum estimation method is dependant on data quality, sample internal, data 
length, modal arranged condition and environment applied. Sometimes several methods may be 
used at the same time 

A The overlapping rate must be chosen carefully to insure smoothing and an adequate frequency 
resolution, especially in the case of an aircraft with close modes and low damping. 

A The half power band is derived from system with single degree of freedom. And so, it is carehl 
to face many modes or closed modes. 

A Pre-processing is necessary. Simple technique may be better and more efficiency than a 
complicated one. 

A Human skills play a very important role in flutter mode confirmation, signal selection, 
processing strategy and concrete implementation steps. 

Time Domain Methods 
In time domain, there are also many different ways to get the flutter modal frequency and damping. 

For examples, Ibrahim Time Domain (ITD ) , random process modeling and Random Decrement 
Technique ( RDT ). Generally, RDT is widely used in engineering, especially in wind tunnel flutter 
testing. 

What are the problems using RDT? The following viewpoints are suggested: 
A RDT is also derived from system with single degree of freedom and carefully to use under the 

condition of many modes or closed modes. 
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A Human skill is also a very important factor, especially for selecting some related parameter in 
practice, for example, trigger , the length of the sub-sample and tolerance. 

A The longer data is generally needed to get a smooth Randomdec Signature, from which damping 
can be obtained by curve fitting or experience formula. 

A Digital FIR bandwidth filter is often used before RDT and right efficiency to those data from 
high speed wind-tunnel testing because the structural modes of the kind of aeroelastic model can 
be clearly separated. 

A RDT is a better pre-processing tool to reduce the random noise. And it is possible to partially 
resolve the closed modes problem by through the integration of RDT and Prony's algorithm. 

3. SYSTEM STABILITY ANALYSIS 

Basic Description 
The basic idea of SSA is shown in Fig. 2. The measured data are used to build a random mathematics 

model at first. AR parameter is then applied to construct stabil.ity criterion, and the relative stability 
parameter is calculated. The onset speed is finally extrapolated by fitting stability parameter trend vs 
speed. 

The kernel goal of SSA is to generate stability parameter corresponding to damping. In other words, 
damping is a special stability parameter. According to random process theory, the related pre- 
processing is also necessary. And fitting extrapolation is same with damping method. We must note the 
following facts for SSA. A group of model parameter can be used to construct different stability criteria. 
A criterion may generate many stability parameter with various definition. And the varied trend may be 
not consistent for different stability parameter, which will directly affect the FBP result. Something for 
data modeling and stability criterion will be respectively addressed in following sections. 

1 Stability 1 2::; h' cessing ' ~ b  , Modeling1 parameter LI Fitting Vf I I Estimation ! Extrapolate 1 1  

Fig.2 SSA Diagram 
Data modeling 

About data modeling of SSA, we must decide the kind of model and the order of the model at first. 
And then, a feasible algorithm will be chosen and used to estimate the model parameter. ARMA 
(autoregresive moving-average ) and AR models are often used in SSA. Because the excitation signal is 
unmeasured under exact meaning in flutter testing, the parameter estimation of ARMA is a nonlinear 
problem and little complex in algorithm structure. In fact, system stability or poles distribution is 
decided by AR part. The characteristic equation and stability criteria are also performed using AR 
parameter. And thus, AR model is more suitable to application, but the model order may be longer than 
ARMA. 

There exist several criteria to determine model order, such as AIC, BIC and FPE. The principle of 
these rules requires the fitting error being minimum at a suitable order, and has something to do with 
algorithm. Except these, the order can be automatically decided for some algorithm. In engineering 
practice, data spectrum is usually used to judge the order of model. 



On algorithm for model parameter estimation, many implementation methods have been developed 
in the fields of signal processing, system identification and adaptive control. ML (maximum likelihood) 
and LS ( least square ) are the general cost criteria on theory. The concrete algorithm must meet the 
application condition with good numerical specifics. Generally, recursive and adaptive algorithm is 
considered for real time analysis. From the viewpoint of algorithm structure, free-delay line or 
transversal filter and lattice are often chosen. 

Stability Criteria 
Based on the theory of system analysis, the stability criteria of Flutter Margin, Jury and Lyapunov 

have been developed and used in SSA. The mathematical principles of the criteria are easy to find. A 
special stability parameter called Reflection Coefficient will be emphasized here. The important 
contribution of Reflection Coefficient to SSA is making data modeling and stability parameter in one 
step. The paper's authors completed the related mathematics description and program code[l6], and 
successfully used it to wind-tunnel testing and flight flutter testing supported by Aeronautic Science 
Foundation of China. 

The advantages of Reflection Coefficient are: 
A Reflection Coefficient can be directly obtained before model parameter which needn't to be 

estimated. 
A AR and ARMA models are covered by lattice algorithm. The model order can be automatically 

decided by recursive. 
A FBP efficiency is guaranteed and increased by a series lattice algorithm with excellent properties 

for calculation. 
A Parallel lattice architecture is convenient for Special-purpose hardware implementation. 

4. HYBRID FBP 

Basic Description 
In actual application, the different FBP methods may lead different results. Why? Generally, there 

are several reasons, including the difference of the theory used, the varied characteristics of the 
measured data, the restrictions for using and the distinct human experiences or skills. 

In many cases, no single technique is sufficient and the use of several techniques is required for 
reliable flutter onset prediction. To ensure the testing safety and raise the reliability of FBP, scientists 
and engineer often adopt hybrid method according to their experience in practice. The purpose of 
damping only synthesis is to get a reasonable damping value. Combination of Damping and SSA is 
used to choose a suitable FBP value. We will introduce a new hybrid FBP technique integrated much 
more information in next section. 

FBP NNES-based 
Aimed to attract the reasonable information from different FBP methods and to bring human 

experiences into play, a new FBP technique called FBP-NNES based on Neural Network Expert 
System is proposed by the paper's authors. FBP-NNES is consisted of two kernel parts, namely, 
Characteristic Information Acquiring (CIA) and NNES, see Fig.3. In CIA, original data will be 
processed by order and the interested information from time domain and frequency domain will be 



carried out. The information is parameterized and optimally synthesized in NNES part, in which the 
rules from deep knowledge base for theory analysis or shallow knowledge base for human experiences 
may be adopted. Reasoning Machine is used for rules judgement, trend extrapolation and result 
confirmation. Finally, FBP value with its occur probability will be presented using statistics analysis 
and shown on VO interface to user. The detailed of FBP-NNES on architecture and theory will be 
found in [35]. 

The program code of FBP-NNES has been completed. Using computer simulation and a lot of flutter 
testing data ( Low-speed and Transonic Wind-Tunnel, Flight ), the related properties on numerical and 
application are researched, especially, something about prediction accurate, prediction abundance, 
condition parameter, SNR and data length. The software system also supplies a work station to evaluate 
various combinations of FBP method and control parameter. For instance, we can change the matter of 
hybrid or fitting extrapolation by adjusting the corresponding parameter in operation window. The 
result interface will show us the final prediction speed, probability distribution plot and the distribution 
map of major modal damping and frequency. 
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Fig. 3 The basic structure of FBP-NNES 
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General Discussion 
Comparing to other FBP methods, the main advantages of FBP-NNES include: 
A Damping, SSA and human experiences are considered and integrated. 
A AR and ARMA modeling are covered using BP neural network. 
A BP Neural Network is used to complete damping or stability parameter fitting. The accuracy is 

obviously raised than either linear or quadratic extrapolation. 
A Using Reasoning Machine, the prediction abundance is improved and an early prediction can be 

obtained. 
A FBP-NNES is developed aimed to the testing excited by airflow turbulence and also suitable to 

other excitation state. 
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5. CONCLUTION AND DEVELOPMENT 

Flutter testing signal processing has been researched from 1981 in Data Processing Center of 
Northwestern Polytechnical University of China. A lot of experiences have been accumulated by 
through various engineering experiments on aeroelastic model and actual aircraft for civil or army 
aviation. Aimed to the data characteristics and analysis requirements in the fields of classical flutter, 
ASE and flutter active suppression, a series of techniques have been developed. The theoretical analysis 
involves modem digital signal processing, adaptive filter, system identification, neural networks, 
wavelet, chaotic time series analysis, nonlinear realization etc. Four professional s o b a r e  systems are 
developed. This paper is only a brief summary of our research on FBP. In this paper, the state of the art 
and the history of FBP techniques are reviewed. Both FBP methods of damping and SSA are generally 
discussed, and a new FBP method NNES-based is proposed. This paper leaves some questions 
necessary to be done in the future. Especially, the following subjects will be focused: 

A The operation speed and structure optimization need to be hrther improved for FBP-NNES. 
A The stability of neural network will be studied and used to predict flutter boundary. 
A Related FBP software and hardware will be developed, which will be directly applied to 

engineering. 
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Abstract. Unsteady turbulent flow calculations involving moving 

boundaries and fluid-structure interaction problems are solved using 

a finite element method and Spalart-Allmaras and k-E turbulence mod- 

els. These models are tested on buffeting problems with 2D airfoils. 

Wall functions have been implemented for both turbulence models in 

order to perform 3D simulations with the Dyvas wing. 

1. Introduction 

The objective of this study is to develop numerical techniques for performing aeroelasticity 

simulations with turbulent viscous flow models using the multiphysics software spectrumTM. This 

software developed and commercialized by Centric Engineering Systems, Inc. is based on the fi- 

nite element method for both aerodynamic and structural analyses. It is therefore able to handle 

unstructured meshes. Two turbulence models have been used in this study: 

1. the Spalart-Allmaras model, which is a one-equation model solving for the turbulent kinematic 

viscosity 

2. the classical two-equation k-E model. 

In order to perform three-dimensional simulations with a reasonable number of mesh nodes, wall 

functions have been implemented for both turbulence models. 

An outline of this paper follows: After a brief description of the numerical techniques relevant 

to fluid-structure interactions problems. we present numerical results for fluid-structure interaction 

involving the RA16SC1 airfoil and the DYVAS wing. 



2. Numerical approach 

We present in this section a brief description of the numerical techniques implemented in the 

Spectrum software and applied to the present project. 

2.1. Fluid analysis 

The compressible Navier-Stokes equations written in a symmetric form [6] in an arbitrary 

Lagrangian-Eulerian (ALE) frame of reference are used to model the fluid flow. The ALE formulation 

is used to take into account the deformation of the structure imbedded in the fluid domain. Moreover, 

the fluid is modeled as an ideal gas and the stress tensor is that of a Newtonian fluid. 

where X is determined by the Stokes law ( A  + 2p/3 =O ) and p by the Sutherland's law 

Spatial discretization of the Navier-Stokes equations is done using the Galerkinlleast-squares 

(GLS) finite element formulation [5]. Time discretization is done using the Hilbert-Hughes-Taylor 

(HHT) algorithm [4] based on Newmark's implicit scheme. Both spatial and temporal discretizations 

of the finite element formulation lead to a nonlinear system of equations to be solved a t  each time- 

step. This system is linearized through a Newton-like algorithm, yielding a series of nonsymmetric 

linear systems of equations. Each system is solved using a matrix-free implicit iterative solver based 

on the preconditioned GMRES algorithm with a tolerance ranging from lo-' for static problems to 

for dynamic problems. 

The mesh deformation approach used in this study models the fluid domain as a hyperelastic 

material (i.e., a rubber-like material) and uses a large-deformation neo-hookean formulation. Dis- 

placements of mesh nodes are computed using a preconditioned conjugate gradient algorithm with a 

tolerance usually of the order of 

2.2. Turbulence models 

Two turbulence models have been used in this study: the classical two-equation k-E model and 

the Spalart-Allmaras model. 

The k-E model is a "low Reynolds" model based on the Chien's formulation [2,12]. The variables 

k and E are computed in down to the wall, thus requiring a very fine mesh near the no-slip wall. 

The first grid point away from wall should be such that y' < 0.5. The partial differential equations 

within k-E are coupled. They are solved using a GLS formulation like the one for the Navier-Stokes 

equations. But the turbulence equations are uncoupled from the Navier-S tokes equatiorls and solved 

in a staggered fashion. The linearized systems from the turbulence equations are solved using a 

GhIRES algorithm. 



The Spalart-Allmaras model [lo] was developed by Boeing at the beginning of the 1990's to 

compute external turbulent flows. It is a one-equation model that governs the kinematic viscosity. 

We can note that: 

1. The model does not require the knowledge of any non local quantity like thickness of the 

boundary layer. It is then more useful for unstructured meshes than algebraic models like the 

Baldwin-Lomax model. 

2. The kinematic viscosity is linear close to the no-slip wall. The model therefore requires less 

refined meshes than the k-E model to reach the same accuracy. Reasonable solutions can be 

obtained with the first grid point as far away from the wall as y+ = 5 to 10 and y+ = 20 if only 

pressure is of interest. 

3. The model is based on only one equation to solve. It  is considerably less expensive computa- 

tionally than the k-E model. Moreover the use of iterative solvers is easier. 

In order to perform three-dimensional simulations with a reasonable number of mesh nodes, wall 

functions have been implemented for both turbulence models. In the wall function approximation, 

the fluid is assumed to follow the "law of the wall" in the finite elements adjacent to solid boundaries. 

In these elements: the flow is determined by Spalding's law [13]: 

with y+ = p y u * / p  ; u+ = /lull/u* ; n = 0.41 et B = 5.0. The values of y  and /lull being known, the 

shear velocity is deduced from (2) with a Newton method. The wall friction is given by 

This approximation leads to having both a slipvelocity Dirichlet boundary condition to satisfy the 

condition of zero mass flux, and a friction Neuman boundary condition by specifying 

where qn is the heat flux at wall. 

2.3. Structural analysis 

A large-deformation elasticity formulation is used to model the structural part of aeroelastic 

problems [ l l ] .  Structures can be modeled either with three-dimensional continuum elements, or 

with structural elements such as shells, beams or trusses. Time-marching is performed with an 



in~plicit integrator based on the HHT algorithm. This semi-discrete scheme is identical to the one 

used for the fluid equations, which simplifies the overall time-marching process when solving coupled 

aeroelastic problems. Due to ill-conditioning that arises when the solid is discretized with non- 

continuum elements, a sparse direct solver is used to solve the linear systems of equations resulting 

from discretization of the variational formulation. 

2.4. Fluid-solid interface 

The interface region between the fluid domain and the solid domain is defined by: 

1. a list of nodes and element faces on the fluid side; and 

2. a list of nodes and element faces on the solid side. 

Since nodes on both sides of the interface do not need to match, a search algorithm is used to 

identify the solid face that contains each fluid interface node. Once this mapping is obtained, local 

fluid pressure forces are computed at each fluid interface node. They are then interpolated at the solid 

interface nodes. The resulting pressure load is used as a boundary condition to solve the structural 

analysis problem. One can note that this approach leads to a total fluid pressure force (i.e., the 

pressure integrated over the fluid side of the interface) being transferred to the solid side of the 

interface. Since the fluid mesh is usually finer than the solid mesh (which translates into having a 

finer fluid surface mesh at the fluid-solid interface), this interpolation strategy would appear to be 

more accurate than interpolating the fluid pressure directly onto the solid interface nodes and then 

computing the local pressure forces on that surface using the solid discretization. 

In addition to pressure loading on the solid, a velocity boundary condition is applied at the 

fluid interface nodes. This boundary condition is: 

1. u = w for a no-slip boundary condition; or 

2. (u - w )  . n = 0 for a slip boundary condition. 

Finally, the solid displacement is interpolated at the fluid interface nodes and is used as a 

boundary condition when solving the mesh deformation problem. 

3. Numerical examples 

3.1. Buffeting of t h e  RA16SC1 Airfoil 

Experiments in a wind tunnel at ONERA show oscillations of the shock at a single frequency 

of about 100 Hz for a Mach of 0.73 and an angle of attack greater than 3 degrees. The amplitude of 

the oscillations is about 40% of chord. The fluid flow has the following free-stream conditions: 

o iLI, = 0.73 



o Re, = 4.6 x lo6 

The airfoil chord is 180 mm. 

Two numerical simulations at an angle of attack of 3 degrees are done to test the Spalart- 

Allmaras and k-E models. The first simulation uses the Spalart-Allmaras model. The fluid domain 

is discretized with 17538 nodes and 17180 wedge elements. Even though this is a two-dimensional 

problem, three-dimensional meshes made of one layer of elements together with appropriate bound- 

ary conditions are generated since Spectrum has only three-dimensional capabilities. The following 

boundary conditions are applied: 

o velocity and static temperature a t  the i d o w  

o static pressure a t  the outflow 

o no slip velocity at the wall. 

A steady flow is first computed using a local time-stepping and a CFL set to 5. The solution of 

the 200th time-step initializes the unsteady computaton using a global time-step. The experimental 

frequency fo being 108 Hz, the numerical time increment is chosen such that 

The computation does not show any buffeting. The steady case converges well, but the shock 

oscillations in global time-stepping are rapidely damped. The same results are obtained on a finer 

mesh or at a greater angle of attack. The Spalart-Allmaras model developed for steady computations 

does not seem to be appropriate for buffeting simulations. 

The second computation using the k-E model follows the same strategy. The mesh is refined 

close to wall and contains 25396 nodes and 25014 elements (see figure 1) .  The local time-step is 

determined by a CFL equal to 3. The steady computation does not converge (oscillations of residuals 

of pressure velocity and temperature). The computation is restarted with a global time increment 

chosen to have 4000 time-steps per period id est At = 2.3 x s. The results illustrated by figures 

2 and 4 show that the shock oscillates between 35% and 60% of chord with a frequency of 95 Hz. 
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Figure 1. Fluid mesh around RA16SC1 airfoil Figure 2. Chord-wise Cp distribution 
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Figure 3. turbulent (k -E)  mach contours Figure 4. Lift (k-E model) 

3.2. Buffeting of the DYVAS Airfoil 

The same computation is done with a 2D airfoil that is deduced from the 3D wing using 

similarity relations and corresponds to the section a t  66% of wing. The similarity relations give the 

flow conditions: 

M3Dm = 0.82 M 2 ~ 0 0  = 0.737 
ReBD = 2 x lo6 -+ Re3D = 1.165 x lo6 

alocal3D = 2-72' alocal2D = 3.02" 



Thc k:-E ~riotlol with wall fu~ictions is used with a mesh of 14884 nodes and 14546 elements. The 

first layer is 5 x 10-~chord thick (figure 5). The first 1500 time-steps are computed with local time- 

stepping anti CFL set to 3. The following time-steps are computed with a global time increment 

such that 

where the experimental shock oscillation frequency is fo = 50Hz. 

The computed frequency of the oscillations of lift is 45 Hz, close to the experimental results (see 

figures 6 and 7). 

For the next simulation with the same model, a pitching motion is imposed on the airfoil 

following the law: 

2 
a ( t )  = a 2 ~ ,  + a,,,l sin (2.n f t) for t < 1/(4 f )  

a ( t )  = ~ 2 2 ~ ~ ~  + aampl s i n ( 2 ~  f t) for t > 1/(4 f) 

where aampl = 0.2'. The law in sin2 allows a zero initial velocity. The simulation is initialized with 

a steady case for an angle of attack of a z ~ , .  This case is computed for the frequencies f = 40 Hz 
and f = 60 Hz. The computed lift frequencies for the cases at 40 Hz and 60 Hz are respectively 42 

Hz and 47 Hz (figure 8). 
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Figure 5. Fluid niesh around Dyvas airfoil Figure 6. Chord-wise Cp distribution 



time 

Figure 7. Lift ( k - E  model) 
time 

Figure 8. Unsteady lift 

3.3. 3D viscous flow around the DYVAS wing 

The objective of this numerical example is to perform the coupled fluid-structure interaction 

analysis with a viscous flow model. Fluid flow accuracy near walls is achieved by generating layers of 

6-noded wedge elements. An unstructured fluid mesh made of 229,000 nodes, 344,000 tetrahedra and 

321,000 wedges was generated around the DYVAS wing model [14] (see Figure 9). The structural 

mesh has about 2,500 shell elements and 22 beams (see Figure 10). The caracteristics of the structural 

wing are defined such that the numerical first two modes are identical to the experimental ones. The 

frequency of the first bending mode is 23.4 Hz, and the one of the first pitching mode is 31.8 Hz. 

The turbulent viscous flow around the undeformed wing using the k-E model with wall functions 

is initially computed. The pressure distribution along the wing chord at a given section is shown 

in figure 11. An unsteady fluid-structure computation with an initial velocity applied at the wing 

requires a time increment of 2 x s, which leads to 10000 time-steps per period. It would require 

too much CPU-time for the currently available computers. 

Figure 9. Fluid rrlesh around the Dyvas wing Figure 10. Dyvas wing structural model 



Figure 11. Chord-wise Cp distribution Figure 12. Dyvas wing-fuselage configuration 
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A steady fluid-structure computation is performed for a wing-fuselage configuration using the 

Spalart-Allmaras model with wall functions at  Mach = 0.78. The structural model is the same as 

the one of the previous simulation. The fluid domain is discretized with about 88,600 nodes, 42,300 

wedges (it corresponds to 3 layers around the wing) and 364,000 tetrahedra (see figure 12). The 

pressure distribution along the wing chord a t  a given section is shown in figure 13, and the deformed 

wing is shown in figure 15. An unsteady computation leads to a time increment too small to perform 

the simulation. 
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Figure 13. Chord-wise Cp distribution Figure 14. Convergence of steady case 

4. Conclusions 

Numerical simulations have allowed us to test the Spalart-Allmaras and k-E turbulence models 

on buffeting and fluid-structure interaction problems. The numerical solutions obtained with k- 

E model for buffeting are close to the experimental data, whereas the shock oscillations on upper 



Figure 15. Deformed wing (wing-fuselage configuration) 

surface are damped by Spalart-Allmaras model. Wall functions have been developed to make 3D fluid- 

structure computations possible. Both Spalart-Allmaras and k-E models give good steady solutions. 

But unsteady computations still require too many time-steps to obtain results in a reasonable time. 
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Flow and Its Aeroelastic Scaling 

E. Presente* and P. P. F'riedmannt 
Mechanical and Aerospace Engineering Dept . 

University of California 
Los Angeles, California 90095 - 1597 

ABSTRACT 

Active flutter suppression of a two dimensional wing section in subsonic flow is studied. 
Pitch and plunge dynamics, combined with a trailing-edge control surface is considered. 
Aerodynamic loads are expressed in time-domain using Roger's approximation. Augmented 
aerodynamic states are reconstructed using a Kalman filter, and linear optimal control is 
used to design a full-state feedback regulator for flutter suppression. Constraints on actuator 
deflection and rate limit the flutter envelope expansion. A new two-pronged approach to 
developing aeroelastic and aeroservoelastic scaling laws is presented and applied to a typical 
example. 

Flutter suppression for a typical cross-section with a conventional trailing edge control 
surface is compared with that obtained with piezoelectric actuation utilizing bend/twist 
coupling on a finite span composite wing. Power consumption and its scaling for these two 
cases is compared. 

NOMENCLATURE 
a Nondimensional offset between elastic axis (EA) and midchord 

IAI System matrix 
Hamiltonian system matrix 

b Airfoil semi chord 

[Bl Open-loop control matrix in state space 

Ch, Cl, Cm Hinge moment, lift and pitch moment coefficients per unit span 
- - 
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CP, CP Power coefficient and its average value 

CP Nondimensional flap hinge location 
c ( k )  Theodorsen's lift deficiency function 
[Cg19 [Cll' [Gal 
[Dl, [El, [R] Constant aerodynamic matrices in state-space formulation 

Observation matrix ( y (t) = [Cl ( x ( t )  ) ) 
Control law gain matrix 
Shear modulus of composite material 
Shear modulus of honey comb 
Shear modulus of plate wing section 
Plunge displacement at the EA, and its initial condition 
Hinge moment per uqit span and its nondimensional value 
Wing section mass moment of inertia about its EA, per unit span 
Control surface mass moment of inertia about its hinge, per unit span 
Cost function 
Cross section polar moment of inertia 
Reduced hequency (= 9)  
Spring stiffness in plunge 
Spring stiffness in torsion 

Control surface torsional stiffness 
Typical wing section nondimensional stiffness matrix 
Modified wing section nondimensional stiffness matrix 
Lift force per unit span 

Wing section mass per unit span 
Mach number 
Pitch moment per unit span acting at the EA 
Nondimensional mass matrix 
Modified nondimensional mass matrix 
Pressure and its nondimensional value (= +) 

Power, its nondimensional and average nondimensional value 
Riccati matrix 
Observer Riccati matrix 
Displacements vector 
Wing section radius of gyration about its EA 
Flap radius of gyration about its hinge 

Laplace variable and its modified value (1 = bs) 

Time and its nondimensional value 
Various nondimensional time points 



Composite material ply thickness 
Honey comb thickness 
Tot a1 airfoil thickness 
Coefficiens for Theodorsen's theory 
Free stream velocity and its nondimensional value (= 5) 
Divergence velocity, and its nondimensional value 
Flutter velocity, and itsnondimensional value 
State excitation noise intensity, and measurement noise intensity 
State vector 
Nondimensional static moment of the airfoil about its EA, for undeflected flap 
Nondimensional static moment of the flap about its hinge axis 
Output measurement 
Airfoil angle of attack 
Flap deflection angle 
Damping coefficient 
Augmented aerodynamic state vector 
Flap hinge location 
Mass ratio (= "-) 

npaz 

Nondimensional plunge displacement (= %) 
Air density 
Phase lag angles 

Natural frequency in plunge (= e) 
Natural frequency in pitch (= ,/&) 

Natural frequency of flap (= G) 
Nondimensional time derivative 9 

INTRODUCTION 
The field of aeroservoelasticity has been one of the central subjects in aeroelasticity dur- 

ing the last thirty years; excellent surveys on aeroservoelasticity can be found in Refs. 1 ,2  
and 3. Early theoretical and experimental studies in aeroservoelasticity were performed in 
frequency domain. This approach was dictated by the frequency domain unsteady aerody- 
namic theories, limited to simple harmonic motions, that were in widespread use until the 
mid 70's4t5. Aeroservoelastic studies performed in frequency domain are inconvenient since 
they provide limited information on system behavior before and after flutter. Edwards6 was 
among the fist to recognize the need for time domain aerodynamics in aeroservoelasticity 
and by developing the time domain approximation to earlier fiequency domain theories, he 
initiated the use of multi-input multi-output control laws for flutter suppression. Roger7 



extended Edwards approach and used it to-demonstrate active flutter suppression in a flight 
test. Since then numerous studies have been conducted to demonstrate active flutter s u p  
pression in flight, or in wind tunnel tests. 

Recent advances in the area of smart structures, have led to the use of such materials, 
as actuators for aeroservoelastic applications. The attractiveness of such materials is their 
potential for introducing continuous structural deformations of the lifting surface that can 
be exploited to manipulate the unsteady aerodynamic loads and prevent undesirable aeroe- 
lastic effects such as flutter. Some of the more notable studies in this area include the work 
of Ehlers and Weisshaar8 that has analyzed the application of piezoelectric materials to the 
control of static aeroelastic problems in a composite wing. Heeg et a19~10 have conducted 
several studies demonstrating flutter suppression using piezoelectric actuation on small scale 
wind tunnel models, in incompressible flow. Other studies1' have also looked into static 
aeroelastic control using piezoelectric actuation. Later this research has been extended to 
flutter suppression using piezoelectric act~ation'"'~, culminating in a wind tunnel test of a 
swept wing, controlled by piezoelectric patches. An increase in flutter dynamic pressure of 
approximately 12% was demonstrated in these tests15. While the potential of piezoelectric 
actuators in aeroservoelasticity is substantial, currently such materials have major limita- 
tions on their stroke and force producing capabilities. Therefore most of the successN 
demonstration tests were conducted on small models, in incompressible flow. Aeroelastic 
scaling has been disregarded and the question of how one would scale such actuators for 
different sized models, or an actual full scale vehicle has not been carefully addressed. 

During the last forty years aeroelastically scaled wind tunnel models have been widely 
used in testing, and aeroelastic scaling laws that enable one to relate wind tunnel test results 
to the behavior of the full scale system have played an important role in aeroelasticity. Such 
scaling laws have relied on dimensional analysis to establish a set of scaling parameters used 
for aeroelastically scaled models, suitable for wind tunnel testing'"l8. More refined laws can 
be obtained using similarity solutions, which represent closed form solutions to the equations 
of motion. However, for complex aeroelastic problems such solutions are i~n~ractical '~.  It 
is important to emphasize that since the 60's practically no research has been done on 
aeroelastic or aeroservoelastic scaling. 

The general thrust of this paper is the development of innovative scaling laws for aeroe- 
lastic problems in compressible flow, where control is implemented either by conventional 
trailing edge surfaces (i.e. flaps) or by piezoelectric induced actuation, so as to expand 
the flutter margin. A twepronged approach is used, in which basic similarity laws are ob- 
tained using typical cross sectional informat ion and dimensional analysis, resembling the 
conventional, or classical, approach. In parallel simulations, playing the role of "similarity 
solutions", are obtained for each of the aeroservoelastic problems for which innovative scaling 
laws are desired. 

To achieve this general objective several spec%c goals are pursued, namely: (1) devel- 
opment of a time domain based aeroservoelastic simulation capability for a typical cross- 
section in compressible flow, using optimal control theory and a conventional trailing edge 
flap/control device; (2) present a new, two pronged, approach for the development of mod- 
em aeroelastic scaling laws and implement it for the aeroservoelastic problem being con- 
sidered; (3) development of scaling laws for aeroservoelastic problems, emphasizing scaling 
requirements for actuator forces, hinge moments and power, using the simulation capability 



developed; and (4) application of the tools developed to several sample problems. 
This research shows how results obtained from aeroservoelastic testing, conducted on 

s m d  aeroelastically scaled wind tunnel models, can be related to much larger models or the 
full scale vehicle. Thus, the paper constitutes an important contribution to the state of the 
art. 

AEROSERVOELASTIC MODEL 

Aeroelastic Model 

The aeroelastic model consists of a typical cross-section of a wing with plunge and pitch 
degrees of freedom, combined with a trailing edge control surface representing an actively 
controlled flap, as shown in Fig. 1. The equations of motion of the system are obtained from 
Lagrange's equations. The equations, in nondimensional matrix form, with viscous damping 
terms are: 

where the nondimensional time f = w,t is used. The damping matrix [C] is given by: 

The unsteady aerodynamic loads in Eq. (I), can be obtained by various methods. For in- 
compressible flow Theodorsen's theory20 is used, while for the compressible case the doublet- 
lattice method (DLM)21 is a convenient tool for generating frequency domain oscillatory 
loads. The general form of the compressible aerodynamic loads acting on a typical section 
is given in Ref. 16. The pressure distribution over the airfoil is related to the downwash 
velocity through a kernel function, given by: 

In the DLM, the airfoil is divided into segments, and downwash boundary conditions, at  
each segment are imposed. The solution obtained from Eq. (3) yields the distribution of 
pressure over the airfoil for a given Mach number, reduced frequency and location of flap 
hinge combination, for a kernel function, K (x, q, k, M), given in Ref. 16 (pg. 235). Once the 
pressure distribution over the airfoil is found, aerodynamic loads - lift, pitching moment and 
hinge moment are found from an appropriate integration process. 

The frequency domain aerodynamic loads are transformed into the time domain using 
Roger's approximation7. The approximation requires first a transformation of the frequency 
domain loads into the Laplace domain. Subsequently, these loads are expressed as a linear 



combination of the system states. 

A vector of aerodynamic lag states is introduced by 

Combining Eqs. (4) and (5) and transforming them to the time domain yields 

Equation ( 6 )  is rewritten in first order state variable form and combining it with Eq. (5) 
yields the open-loop equation of motion in state space 

where 

and the matrices used in [A] are 

P2 v2 
[K]  = [K]  - - - [Co]  ; [Dl = - [D]  

=C1 =C1 

Stability of the open loop system is governed by the eigendues of Eq. (7), which are usually 
represented by root locus plots. 

The trailing edge control surface is used for flutter suppression. The control scheme 
applies an external hinge moment, to the cbntrol surface, that modifies the aerodynamic 
loads acting on the typical cross section. The aeroservoelastic equation of motion is similar 
to Eq. (6): 



which in first order form is written as: 

where [A] and {x) were defined previously, and: 

Control Approach 

A somewhat idealized approach to flutter suppression is the use of optimal control the- 
ory with full state feedback. In this case the objective function for flutter suppression is 
represented by6? 12* 22 

where [Q] is a non-negative cost weighting matrix of the states, and [R] is a positive definite 
weighting matrix involving the control; these are often chosen to be diagonal22. The positive 
weighting constant A determines the ratio between state and control cost. The solution to 
the linear optimal control problem is provided by the solution to the Riccati differential 
equation23, which is obtained numerically. The solution to the Riccati differential equation 
approaches that of the algebraic equation, when i?; + oo. It is easier to obtain and frequently 
used22,24. This solution can be obtained from the Hamiltonian matrix of the system, given 
by23 

The eigenvalues of [AH] are symmetric with respect to both real and imaginary axes. Each 
eigenvalue with a positive real part has an image eigenvalue with a negative real part. Only 

. the stable eigenvalues are considered. It can be shown that the number of eigenvalues with 
negative real parts is equal to the number of eigenvalues of the original open-loop system, and 
that the closed loop system is always stable. The solution to the Riccati algebraic equation 
is based on Potter's method25, and the optimal control law is given by 

The closed loop dynamic equation of motion is23 



The control design described above does not account for any constraints such as  deflection 
or rate limits on the trailing edge control surface. Addition of these constraints to the cost 
function in Eq. (10) does not d e c t  the result of the h e a r  optimal control theory26. A 
potentially rewarding alternative is to recognize that control activity constraints, lead to a 
nonlinear problem, and use adaptive control for flutter suppression. The studies described in 
Refs. 27,28 and 29 indicate that adaptive control may be a suitable tool for flutter suppression 
in the presence of nonlinearities. 

The control approach based on full state feedback requires knowledge of the augmented 
aerodynamic states. The augmented aerodynamic states cannot be measured and have to 
be reconstructed from the time response. This is accomplished using a Kalman filter. The 
steady state observer Riccati matrix [Q] , and the steady state observer gain matrix [K] are 
found in a similar manner to the calculation of the algebraic Riccati matrix [PI, and the 
closed loop control law gain matrix [F]23. A new Hamiltonian matrix is formed for the 
algebraic Riccati observer equation: 

and a solution to the matrix [Q], similar to that explained previously for the Riccati matrix 
[PI leads to the steady state observer gain matrig3: 

It is important to determine the hinge moment requirements needed for control surface 
actuation and the power required for flutter suppression. These quantities are required for 
practical implement at ions of flutter suppression systems 

The instantaneous power is given by 

and in nondimensional form its average value becomes 

For the cases considered in this study the average power in Eq. (17), represents the power 
consumed during a period when the response of the wing section, due to control activity, 
reduces by a predetermined amount. 

Piezoelectrically Twisted Wing/Airfoil 
As indicated earlier, one of the goals of this paper is to obtain equivalence relations 

between a conventional airfoil/trailing edge flap combination and a continuously deform- 
ing wing section which is piezoelectrically actuated. To achieve this objective consider an 



idealized section of the wing structural element used for piezoelectric actuation based on 
bend/twist coupling, shown in Fig. 2. The typical cross section consists of a layer of honey- 
comb core between two composite face sheets. Two PZT layers are attached to the top and 
bottom of the composite cover sheets, and resemble the actuation patches used in Ref. 12. 
The change in the pitch moment coefficient, as a result of flap deflections, based on static 
thin airfoil theory30 is given by: 

i 
AC,(t) = -sinef (cos O f  - l)p(t) 

2 
The static change in pitch moment, due to change in pitch angle, can also be written as 

It is assumed that due to the bend/twist coupling, bending moments acting on the section 
cause only twist along its spanwise axis, and that no external twisting moments act on it. 
Furthermore, it is assumed that the structural element, shown in Fig. 2, represents the cross 
section of a flat plate type airfoil tbat is being twisted so as to produce the same pitching 
moment that is induced by an actively controlled trailing edge flap. The power, per unit 
span, required to twist a flat plate is given by 

where the moment required to twist the plate can be determined, following the analysis 
described in Ref. 31, for a beam-like wing, &om MV(Q = GJ,aa(f)/ay. For a constant 
twist angle along the span, acu/dy is found directly from the local, instantaneous, angle of 
attack at the typical section. The shear modulus of the typical section; averaged between 
the various layers, but excluding actuation layers, and the polar moment of inertia for a 
rectangular cross section (Ref. 32, ch. 5) are given by: 

The equivalent power required to deform the plate section, expressed in terms of an 
equivalent control flap deflection acting on a typical cross section located at 0.75 semi-span, 
is determined hom Eqs. (18), (19) and (20): 

When Eq. (21) is divided by m,b2wt and averaged over time, the resulting expression is 
comparable with Eq. (17). Additional details can be found in Ref. 33. 

AEROELASTIC AND AEROSERVOELASTIC SCAL- 
ING LAWS 

The classical approach to aeroelastic scaling is presented in detail in Ref. 16, Ch. 11. 
The procedure is best illustrated by considering first the scaling relations in incompressible 



flow, for a two dimensional airfoil - control surface combination, under the assumption of 
simple harmonic motion. The extension of these relations to the compressible case is straight 
forward. For this case one has 

The loads corresponding to Theodorsen's theory20 are 

Values of TI through q4 are defined in Ref. 20, and T15 through Tlg are convenient 
combinations of the first fourteen Z's, as indicated in Ref. 34. The quantities depend 
only on the nondimensional hinge location cp and the nondirnensional offset a. Substituting 
Eqs. (22) and (23) into Eq. (I), neglecting damping e f f d s  and dividing by (w/wa)? yields: 

= F1(cp, a, k, P, to1 a o ,  41, Po, 4 2 )  

A convenient rule of thumb derived by Buckingham states that the nondimensional so- 
lution can then be written in terms of a reduced set of nondimensional combinations that 
consist of n - k parameters, where n are the original parameters, and k = 3 are the primary 
parameters - M (mass), L (length) and T (time). The nondimensional parameters that can 
be extracted from Eqs. (24), using Buckingham's n theorem are listed below: 



The first twelve parameters can be expressed as combinations of the three primary vari- 
ables, while the last four are nondimensional quantities. For aeroelastic stability the quan- 
tities of interest are: $, 2 and where the subscript F refers to the flutter condition. k o '  
For aeroelastic similarity all other nondimensional parameters such as p, (uh/ua), (wP/wa) ... 
etc. for the model, must have the appropriate values. The external shape (i.e. airfoil type) 
and Reynolds number also have to be retained. When compressible flow is considered the 
list of sixteen parameters, given above, has to be augmented by an additional parameter, the 
Mach number M. Increasing the Mach number modifies the density of the fluid, and with 
it the mass ratio. Density is related to the Mach number through its value at stagnation: 

For the full scale configuration, stagnation density increases with an increase in flight 
Mach number. The value of the static density remains unchanged and corresponds to the 
value at the local altitude analyzed. When wind tunnel tests are conducted the value of 
the stagnation density, related to the value of stagnation temperature and pressure, remains 
usually unchanged and the value of the static density decreases with an increase in Mach 
number. When scaling a full size system for wind tunnel tests, the compressibility effect in 
the tunnel needs to be reflected in the design of a model. 

Flutter conditions of similar structural configurations imply that their nondimensional 
flutter velocity is kept constant, as well as the Mach number. The pitch frequency of a scaled 
model relates to that of the full scale configuration according to the geometrical scaling ratio: 

where subscript rn stands for model while subscript w for the prototype. 
The scaling of damping properties needs to be also addressed. EQs. (1) and (2) imply that 

the damping of each mode is related to the natural frequency associated with that mode. 
Once the natural frequencies change, the damping coefficient of a corresponding mode needs 
to be modified to match the appropriate damping loads: 

Cm (wa)w bm -=-- -- 
(to (wa)m bw 

The aeroelastic scaling considerations discussed above are based on classical solutions 
that are obtained from Eqs. (1) and (22) - (24). Modem aeroelastic studies are based on re- 
fined computer simulations, similar to those used in this or other studies28. Figure 3 depicts 
the new two pronged approach developed for generating r ehed  aeroelastic scaling laws. In 
this approach basic scaling requirements are established using typical cross sectional infor- 
mation and dimensional analysis, in a manner that resembles the conventional, or classical, 
procedure. This process is represented by the left hand branch in Fig. 3. In parallel, solu- 
tions based on computer simulations are obtained for each of the aeroelastic problems, for 
which innovative refined scaling laws are desired. These solutions are assumed to represent 
"similarity so l~ t ions"~~,  except that they are obtained numerically. These computer sim- 
ulations enable one to account for additional effects such as: presence of control surfaces 



and stores, shock wave motion in transonic flow, and any effect captured by the simulation. 
This portion is represented by the right hand branch of Fig. 3. By combining the classical 
aeroelastic scaling requirements with the additional ones obtained from the simulation, a set 
of expanded or refined aeroelastic scaling requirements is obtained. 

In the case of aeroservoelasticity a more general treatment of aeroelastic scaling is re- 
quired, since scaling requirements for control surface hinge moments and the power needed 
for flutter suppression play an important role, when considering the practical implementation 
of the control system on the full-scale vehicle. The nondimensional frequency variable 2 is 
replaced by the nondimensional time unit w,t = 6 and the reduced frequency is replaced 
by the nondimensional velocity Sb = v. In this case simulation is used again to obtain 
numerical "similarity solutions" for the aeroservoelastic system, operating in the closed loop 
mode. These computer simulations enable one to examine the intricate scaling relations 
governing control power, control forces and hinge moments. Again, the combination of the 
classical scaling parameters with the additional information obtained from the simulation, 
produces the refined aeroservoelastic scaling requirements. 

RESULTS AND DISCUSSION 

Open and Closed Loop Results for Baseline Configuration 
RRsults presented were calculated for a typical cross section in subsonic flow using a 

computer code implementing the time domain aeroservoelastic analysis described earlier 
in this paper. Airfoil parameters used to generate the results were selected to resemble 
values for an executive jet type of aircraft with a wing span of 52.6 f t, semichord length of 
b = 35.0 inch and a pitch frequency of w, = 110.0 E: o = -0.2 ; co = 0.8 ; x, = 0.2 ; xp = 
-0.008 ; r i  = 0.25 ; r$ = 0.036; W ~ / W ,  = 0.25 ; wa/w, = 2.0, and a structural damping 
coefficient of C = 0.002. Estimations for a wing weight, from which the mass ratio was 
deduced were found in Refs. 35 and 36. A value of p = 25.6 was chosen to represent the 
typical cross section at sea level conditions. 

Aerodynamic loads were calculated from a DLM code, for a specific Mach number, and 
approximated in the time domain using Roger's approximation. A reduced frequency range 
of 0.000 5 k 5 1.300 was used for the analyses. Results shown were calculated with four 
aerodynamic lag roots located at +yl = 0.0250, 72 = 0.1500, 7 3  = 0.6000 and 3.4 = 1.2000. 

Stability analysis for a typical cross-section representative of this full scale codguration 
yields a matched point flutter Mach number of M = 0.702. Figure 4 depicts the open loop 
root locus plots for this configuration. The nondimensional open loop flutter velocity found 
was vF = 2.441, which at standard sea level conditions corresponds to a true velocity of 
V = 783.2 5 or a flight Mach number of M = 0.702. 

The closed loop results were generated for a diagonal state cost matrix in which all 
the states had a unit cost, i.e. Qii = 1.00. The R matrix was reduced to a single scalar 
component given by R = 1.00, and the cost function parameter was set to X = 100.00. The 
root locus plots in Fig. 5 illustrate the behavior of the closed loop configuration. Three 
modes are shown. The unstable part of the open loop root locus, shown in Fig. 4 is reflected 
to the stable half of the s plane, in Fig. 5. A precise reflection occurs only when the control 



cost parameter is very high6v23. 
When examining the time domain system behavior two initial conditions were used. A 

ramp input of 10 "lsec angle of attack rate, was applied to the system as an initial distur- 
bance. This is denoted as Case I in the discussion that follows. Control surface saturation 
limits were selected with typical values of I&,-I < 4O, @,,-l < 90°/sec, and a maximum 
hinge moment of (He),, = 50000 lb - in was used for a flap span of 68.5 inch. These values 
yield a typical cross section hinge moment saturation value of 729.3 Lb - inlin. A second 
case with initial conditions consisting of a 0.9" step function in angle of attack, denoted 
Case 11, was also considered. It cbrresponds, at M = 0.702, to a gust of approximately 
12.5 ftlsec. Flap control saturation levels similar to Case I were used in this case. 

Figure 6 depicts a plunge displacement time history plot, for Case I, of the full scale con- 
figuration in closed loop at three velocities: VF, 1.025V~ and 1.05VF. As velocity increases, 
peak response in plunge also increases, however values are below 0.05 of a semi-chord length. 

To construct a control law it was assumed that all the augmented aerodynamic states, 
as well as the structural states, were known. In Figs. 5 and 6 it is shown that the closed 
loop system is stable, that after a few oscillations the initial disturbance is dissipated, and 
that the system returns to its initial undisturbed state under the action of a control law. 
To estimate the augmented aerodynamic states, state excitation noise and measurement 
excitation noise intensities were selected. The dynamic system is assumed to be perfectly 
modeled, and therefore state excitation noise intensity was selected as [&I = 0, while a unit 
matrix was used for the measurement excitation noise intensity. Figure 7 depicts the plunge 
motion results for Case I, in which four aerodynamic lag roots were used to approximate the 
aerodynamic states. It appears that at V = VF + 5% results diverge, while for cases with 
slower speeds above flutter the system oscilates without converging. Clearly, reconstruction 
of the augmented states causes problems. To avoid these problems it was assumed, for the 
rest of the results generated here, that the augmented aerodynamic states are known exactly 
and do not need to be reconstructed. 

Aeroelast ic Scaling Example 
To illustrate the importance of aeroelastic scaling, two approaches to scaling the baseline 

configuration are explored. For the first case, only geometrical scaling of wing dimensions was 
used (GSM). In the second case aeroelastic scaling, which requires a change of wing stiffness, 
was implemented (ASM). Both cases were assumed to represent 1 : 6 scaled versions of the 
full scale configuration. The ratio between a model's torsional frequency and that of the full 
scale configuration, as indicated by Eq. (26), is related to the geometrical scaling between 
both systems. The ASM pitch frequency was increased by a factor of six. The mass ratio of 
the ASM also changes. The full scale configuration flutters at a Mach number of M = 0.702, 
at which Eq. (25) results in a density ratio of po/p = 1.2649. The mass ratio of the ASM 
was decreased by the same factor to compensate for the drop in fluid density. This ratio, 
for the ASM was p = 20.241, while for the GSM the mass ratio of the baseline configuration 
was retained. The damping of ASM was also mod5ed according to the relation given in 
Eq. (27). Table 1 summarizes the parameters describing the two models. 



Table 1: Comparison of scaling parameters between three typical cross section models 

b 

0, 

p 

C 

Open loop results for the baseline and the two scaled configurations are shown in Table 2, 
depicting flutter velocity - dimensional and nondimensional, Mach number at flutter, flutter 
frequency, and nondimensional divergence velocity. 

Table 2: Comparison of stability results between three typical cross section models 

full scale 

35 inch 

110.0 R.d 

25.6 

0.002000 

It is evident that only the' ASM has an open loop behavior similar to the full scale 
configuration. The geometrically scaled model becomes unstable at conditions Merent from 
those of the full scale configuration. 

Figures 8 and 9 exhibit the closed loop root loci of the geometrically and aeroelastically 
scaled models respectively. It is evident that the GSM does not display a behavior resembling 
the full scale configuration, while the ASM does. 

A corresponding time history plot for the GSM is shown in Fig. 10, which depicts plunge 
displacement. Plunge response of the GSM, to the same initial conditions which were applied 
to the full scale configuration, is very similar to that of the full scale configuration, and 
oscillation amplitudes are of the same order of magnitude. Note that close to flutter boundary 
the systems exhibit similar behavior in the time domain, although they are not similar, 
and will generaly behave differently at velocities that exceed the flutter boundary by a 
considerable amount. 

The initial disturbance was nondimensionalized and found to be & ( 0 )  = 
= 0.00158666. For the ASM case this initial disturbance was applied to the model, a%d 
a dimensional value of the similar case was determined as ci(0) = w, ( 0 )  = 60°/sec. The 
appropriate flap rate limit was also determined &om scaling considerations and found to be 
1b- 1 < 360°/sec. In addition a scaled hinge moment limit was determined, based on the 
relations in Eq. (16).  Hinge moment limit of the ASM was reduced by a scaling factor of 
1 : l2 and found to be 20.26 [Lb - in l in] .  Figure 11 depicts corresponding plunge results 
for the ASM. Plunge displacement is similar to the corresponding result of the full scale 
configuration, shown in Fig. 6 .  

GSM 

5.8333 inch 

110.0 ;;; 

25.6 

0.002000 

ASM 

5.8333 inch 
Rad 660.0;;; 

20.241 

0.000333 



Influence of Control Saturation 

System behavior for Case I1 type of initial conditions was also considered to illustrate 
saturation and stabilization loss due to nonlinearities associated with stabilization. Time 
histories for plunge motion, with a control cost parameter of A = lo2, are shown in Fig. 12, 
for the full scale configuration, or baseline configuration. Deflection limits were modified to 
10-1 < 1.5' and their effect on flutter suppression of the baseline configuration studied. 
Figure 13 exhibits the plunge displacement of the typical section, similar to that depicted in 
Fig. 12, for the baseline configuration. A plunge of about 15% of the semichord is evident, at 
flutter conditions, while in Fig. 12, a plunge of only 10% is observed. Due to tighter control 
flap deflection limits, the typical cross section reaches nonlinear regions earlier, and flutter 
boundaries can be expanded by smaller amounts. For higher velocities above the flutter 
boundary the control system fails to stabilize the system". 

Comparison of Piezoelectric Actuation to a Conventional TE De- 
vice 

Hinge moments needed for actuation and power required for flutter suppression are im- 
portant aspects of aeroservoelastic behavior. Two separate cases are examined. The first 
case considers the hinge moments and power requirements for the baseline, or full scale, 
configuration. The second case compares the relative merits of piezoelectric actuation with 
that of a conventional, equivalent, trailing edge control surface. Two models were studied. 
The first was an articulated wing section/trailing edge control flap combination, with the 
same properties as the full scale configuration studied earlier. 

Figure 14 depicts time history of the power coefficient required for the full scale con- 
figuration, for Case I. Negative values of power imply that the system produces power and 
such contributions were neglected. Since power decreases rapidly, only the first 50 seconds 
of nondimensional time history is shown. The maximum power necessary to overcome the 
initial pulse is needed for only a short duration. This phenomena implies that another mea- 
sure of power required to suppress flutter should be used such as the average power needed 
to reduce wing oscillations to a certain level. The average power required to reduce the 
wing section pitch oscillations by 90% from its maximum value together with the time frame 
required for this reduction are shown in Table 3. 

Table 3: Average power required to suppress flutter of a baseline wing-section, at several 
nondimensional velocities 

It is evident from Table 3 that only small amounts of power are required for flutter 
suppression, when flying at modest speeds above the open-loop flutter velocity. 



The second model, of a flat plate employing a continuous twist of the wing section for 
flutter suppression, had similar properties to those of the plate used in Ref. 12, and shown in 
Fig. 2. A half wing span configuration with a semispan of 26.33 feet and a semi chord of 35 
inch was used. The plate configuration modeled included an aluminum based honeycomb and 
a layer of six Glass/Epoxy laminates having a [30°, 30°, 0°], construction. Other parameters 
required for modeling this configuration were: (EL)a = 8.70 [Mpsi]; t p  = 0.11667 inches; 
Z,, = 0.70117 inches; GLT = 0.87 [Mpsi]; t~ = 6 x 0.030 inches; vc = 0.28; 
GH = 0.11 [Mpsi]; tH = 1.0325 inches; v~ = 0.3; dgl = 7.09 lo-' [In/Volt]; 

, Next, comparison of the power requirements for flutter suppression for a piezoelectrically 
twisted wing section and a conventional wing sedion/flap combinationwere addressed. Power 
required obtained from the relations described earlier, Eq. (21), are presented in Table 4. 
These results are similar to those presented in Table 3 for the baseline configuration. 

Table 4: Average power required to suppress flutter of a piezoelectrically actuated wing- 
section, at several nondimensional velocities 

Actuation strains are shown in Fig. 15, and the corresponding voltages are depicted in 
Fig. 16. Limits reported in Ref. 37 are 200 p~ for actuation strains and 200 volts for voltage 
source. From these results it appears that PZT materials are suitable candidate materials 
for flutter suppression, particularly in view of the fact that the initial impulse required to  
overcome the first response of the controller is artificial in nature. It is interesting to note 
that the power requirements of the actively controlled flap are an order of magnitude lower 
than those required for the piezoelectrically twisted wing section. The main reason for this 
is that piezoelectric actuation requires actual structural deformations of the wing. This 
additional energy is not needed for the case of the conventional airfoil/flap combination. 
Additional results can be found in Ref. 33. 

CONCLUDING REMARKS 
This study re-examines the issue of aeroelastic and aeroservoelastic scaling within the 

framework of modern aeroelasticity. This is a very important and somewhat neglected aspect 
of aeroelasticity. The principal findings of this study are summarized below. 

1. A new, two pronged approach to aeroelastic and aeroservoelastic scaling was developed. 
It combines the classical approach with computer simulation of the specific problem. 
It is capable of providing useful scaling information on hinge moments and power 
requirements for flutter suppression. 

2. Solutions to the nondimensional aeroelastic or aeroservoelastic problems provide simi- 
larity solutions. Only such solutions predict correctly the behavior of a full scale con- 



figuration, as well as that of aeroelastically scaled models. A partially scaled model, 
such as the GSM, does not provide accurate predictions of the behavior of a full scale 
configuration. 

3. Saturation of flap deflection and rate may limit in some cases the extent of flutter 
margin expansion. This introduces a nonlinearity that can not be treated conveniently 
by currently available methods in the control field. 

4. Power requirements for flutter suppression were calculated for two models of a typical 
cross section: one with an actively controlled flap, and the other with a piezoelectrically 
actuated continuously distributed twist. The average power required for piezoelectric 
actuation is approximately an order of magnitude larger than that required by a typical 
wing section employing an actively controlled flap. 

5. Using time domain unsteady aerodynamics with full state feedback requires reconstruc- 
tion of the unsteady aerodynamic states that can not be measured. This introduces 
considerable additional complexity in the aeroservoelastic problem. This issue has been 
overlooked in previous studies. 
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Abstract 

In this paper experimental activities on stall flutter phenomenon will be presented. Tests have been 
performed in the low speed wind tunnel at the Department of Aeronautical Engineering @PA) of the 
University of Naples on a model using a typical single deck box girder bridge section. In the first part 
of the work, the stall flutter has been controlled using a leading edge (1.e.) movable surface (tab) 
deflecting downward. Application of a new active control system has been performed using the 
previous movable surface. The stall flutter in dynamic conditions has been controlled using an active 
system which automatically changes the tab position (from 0 to 10") and is able to suppress the stall 
phenomenon. The control system consists of a mixed digital-analogue feedback circuit with an 
accelerometer as error sensor and two electromagnetic actuators to control the tab rotation. 
In the second part a new approach has been tested. The new methodology consists of a rotating cylinder 
placed at the section leading edge. Through the cylinder rotation it is possible to change the section 
aerodynamic behaviour and then to increase stall flutter critical speed up to 60% at certain angles of 
attack. 

Introduction 

During the last decades the span length of suspension bridges has grown rapidly. During 1998 two very 
long suspension bridges were opened for traffic: the Akashi Kaikyo Bridge in Japan (the longest 
suspended bridge in the world) with span length of 1991 m and the Great Belt Bridge in Denmark with 
span length of 1624 m. Future ultra-long span suspension bridges that may be constructed are the 
Messina Crossing with the span length 3300 m and the crossing of the Gibraltar Straits, 3500 m. 
The increase of span length leads to some aeroelastic problems that must be solved, ensuring the bridge 
stability up to a design wind speed ranging from 60 to 80 d s .  
Traditionally the increase of the structural stiffness of the bridge girders have been used for flutter 
suppression. For example a deep truss section with high torsional stiffness was selected for the Akashi 
suspension bridge. Improvement in aerodynamic stability can also be obtained by streamlining the 
bridge deck. Other possibilities are the use of passive or active control tools to limit bridge vibrations. 
Passive control systems, e.g. viscoelastic damping elements, tuned mass dampers and eccentric masses 
can be usehl to this aim. Also active control systems as a gyroscope [I]  whose motion is coupled with 
torsional motion of the deck can be used for the prevention of onset of flutter. 
Active and passive flutter suppression methods, discussed above, aim to modify the dynamic properties 
of the bridge structure itself. 



Modification of the flow around the bridge deck or generation of stabilising aerodynamic forces fiom 
the flow is another approach to the flutter problem. Passive aerodynamic dampers have been proposed, 
most of them consisting in wing profiles fixed at the section leading or trailing edge zone [2,3]. 
Passive aerodynamic control can be obtained also through additional surfaces moved by a pendulum 
which "feels" deck rotations and accelerations [4]. Control surfaces rotation is then used to generate 
stabilising aerodynamic forces. Advanced active flutter control can be accomplished by using 
aerodynamic control surfaces or tools controlled by signals through an appropriate feedback control 
law. 
This methodology comes fiom the aeronautical field where advanced aircraft actively controlled 
surfaces are moved relative to the main surfaces (wings, flaps or ailerons) they control [5]. An example 
of flutter control obtained with a trailing edge tab on an airfoil was previously noted by the authors 
through a wind tunnel experimental activities presented in [6]  and [7]. 
The same principle can be used to control vibration and flutter of bridges as originally proposed by 
Ostenfield & Larsen [8] and as also shown by the authors [7] through wind tunnel tests on a bridge 
section with leading edge movable surface. 
In this work experimental activities on stall flutter control of a bridge section will be presented. The 
stall flutter control experiment has been perfonned in the small low speed wind tunnel of D.P.A. 
(Department of Aeronautical Engineering) usually used for aeroelastic applications. In the first part of 
the paper the control has been obtained using a movable surface at the bridge leading edge, using a very 
innovative and general active system developed in collaboration with Glasgow University and also 
applied on wing flutter control [7]. In the second part the section flutter control has been accomplished 
by using an innovative solution with a rotating cylinder mounted in the section frontal part. This new 
approach is still a work in progress but seems to be an attractive solution to increase bridge flutter wind 
critical speed. 

Test Facilities and Model 

Wind Tunnel 

The experimental activity has been carried out at DPA, in the low speed wind tunnel shown in fig. 1. 
The main characteristics of the tunnel are shown below : 
0 Close circuit - Open test section 

Test section dimensions : 1.0 m x 0.9 m (width x height) 
Maximum speed : 45 m/s 
Low turbulence level 

Model characteristics 

The model used in the tests is an aluminium model with leading and trailing edge wood fairings. The 
model properties are reported in table 1. The section shape is shown in fig. 2. 
The model is connected to the wind tunnel support system by means of torsional springs which allow 
only the rotational d.0.f.. The model is provided with two Plexiglas end-plates to achieve two- 
dimensional flow conditions. A picture, showing the model mounted in the test section, is shown in fig. 
3. The model and the stifiess of the elastic support were designed in order to have a flutter speed as 
low as possible and with a sufficient speed margin with respect to the wind tunnel maximum speed. 
The aerodynamic instability is due to the stall flutter phenomenon, because the classical flutter is 
characterised by two d.0.f. systems. 



Fig. 1 : DPA, Low Speed Whd Tunnel 

Tab, 2 : Modd Properties 

Fig. 2 : Model section 

Fig. 3 : Model mounted in the test section 



Stall flutter 

The stall flutter phenomenon is an aeroelastic instability which is related to sections operating at high 
angles of attack. The difference respect to the two d.0.f. classical flutter is that the role of flow viscosity 
(Reynolds number) is not negl.igible and the influence of flow separation on stall flutter is revealed 
through the hysteresis effect. As explained in more detail in [9] stall flutter is a self-excited torsional 
oscillation induced by flow separation which occurs when the angle of attack is close to the section stall 
angle. This behaviour is related to the aerodynamic hysteresis loop represented in fig. 4. 
The section post-stall aerodynamic behaviour (represented with a dotted line in fig. 4) plays a crucial 
role in the stall flutter section instability in relation to the amount of energy which can be extracted 
from the flow in the hysteresis loop. A section characterised by an abrupt stall with massive flow 
separation and big lift loss will have an explosive stall flutter behaviour with high-degree of instability 
and thus a relatively low flutter critical wind speed. 
An.. . device which can modify the section aerodynamic behaviour at high angles of attack, trying to 
keep the flow attached, delaying the stall or reducing the negative lift-curve slope in post-stall 
condition will be a way to increase section stall flutter speed. 

Fig. 4 : Stall flutter phenomenon 

Leading edge tab stall flutter control 

The model exhibited signs of stall flutter instability conditions for an angle of attack a of 9" and a wind 
speed of 20 m/s. The model fi-ont wood fairing was then connected to the aluminium model through a 
hinge which allows the leading edge surface (called tab) to be deflected downward(see fig. 5) up to an 
angle P of 20°.The section static aerodynamic behaviour has been obtained at different tab deflection 
angles P. The model moment coefficient curves (obtained by measuring the section moment through 
strain gauges mounted on the torsional springs) measured for different tab positions are shown in fig. 6. 
The tab deflection changes the section aerodynamic behaviour and it is possible to see that a deflection 
p of 10" allows an higher stall angle and an improved post-stall behaviour. 



It is evident that the original section with P=OO at an angle of attack of 9" is close to its stall angle and 
then presents stall flutter instability even at relatively low speeds. 

Fig. 6 : Section moment coefficient versus 
alpha at different tab deflection 

A numerical investigation on optimal design of leading edge fairing shape has been done and presented 
in [7]. A deep wind tunnel test campaign on model dynamic behaviour at different angles of attack 
alpha, angles of tab deflection P and wind speed has been performed [7] .  
At V=20 m/s and P=OO at a=9O (close to the stall angle for the basic configuration) the model shows 
unstable dynamic behaviour and a strong stall flutter instability is present, see fig. 7. 
With a tab deflection P=lOO, which delays section stall and improves post-stall conditions (see fig. 6), 
the model is stable up to a wind speed of 40 m/s (close to the wind tunnel maximum speed). In fig. 8 it 
is clearly shown that at V=40 m/s and a=9", changing tab deflection from P=15" (flutter, like P=OO) to 
P=l 0°, the flutter has been suppressed. 
Then it is evident that, changing the configuration at section leading edge, it is possible to suppress stall 
flutter instability. 
An active control system has been implemented, using an accelerometer as error sensor and two 
electromagnetic actuators to control the tab rotation. The control algorithm consists of a synchronising 
circuit that links the accelerometer signal to the actuator action and is explained in more details in [7] .  
The active control was performed changing the deflection from 15" to 10" with V=25 m/s and a=9". 
A continuous control was applied. The model dynamic response together with the tab deflection (P=15" 
corresponds to the OFF position, 0 Volt and P=lOO corresponds to the ON condition, 0.4 Volt) is shown 
in fig. 9. Through the tab deflection it is possible to keep the system in stable conditions. 
The active system is also able to automatically recover the system from incipient stall flutter instability 
conditions. The model has been brought to deep stall flutter instability with the active system put in the 
OFF position such that activating the active control, the stall flutter has been suppressed, see fig. 10. 



The measured flutter frequency is about 7 Hz and is almost equal to the model first torsional frequency, 
as well known from the theory. 

Fig. 7 : Stall flutter - V=20 d s ,  ###=9', ###=0° 
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Fig. 8 : Stall flutter suppression 
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Fig. 10 : Stall flutter suppression 

Rotating Cylinder 



The model shown in fig. 2 has been modified at the leading edge substituting the wood fairing with a 
new geometry composed by an aluminium cylinder with a diameter of 14 mrn and its billet fixed to the 
model, see fig. 11. The cylinder is free to rotate and is connected to an electromagnetic small engine. 
The engine allows the cylinder to rotate up to a speed of about 9000 rpm. The cylinder rotation speed in 
rprn will be indicated with "n". 
The rotating cylinder should change the section stall and post-stall behaviour. The idea is based on 
coanda effect. In our case not a very strong effect is expected due to the very small ratio between the 
tangential speed at the cylinder surface and the fieestream velocity (about 0.20 with n=8500 rprn and 
V=30 d s ) .  The maximum effect should be present with a ratio of 4 [lo]. 
The cylinder rotation should not change the model dynamic properties. A modal analysis has been 
performed on the torsionally oscillating model with the cylinder locked and with the cylinder rotating at 
its maximum rotation speed. The analysis does not show a change in the first torsional frequency which 
is still about 7.1 Hz, see fig. 12. 

Fig. 1 1 : Model modified with rotating cylinder 
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Fig. 12 : Influence of cylinder rotation on model torsional frequency 

Steady aerodynamic analysis 

A steady aerodynamic analysis has been performed to check the effect of cylinder rotation on section 
aerodynamic behaviour. The section moment coefficient (respect to the model elastic axis) versus alpha 
obtained with a wind speed V=14 m/s at different cylinder rotation speeds is shown in fig. 13. 
It is clearly shown that the cylinder rotation changes the section aerodynamic behaviour at high angles 
of attack. The stall still occurs at an incidence of about 7" but the cylinder rotation changes the post- 



stall conditions. The rotation (through the coanda effect) reduces flow separation on section upper 
surface at high alpha and the moment curve slope is not negative anymore in post-stall conditions (see 
fig. 13). Thus different model dynamic behaviour is expected with the rotating cylinder. 
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Fig. 13 : Section moment coefficient versus angle of 
attack at different cylinder rotation speeds 

Flutter analysis without cylinder rotation 

Different tests have been performed to check model stall flutter instability at different angles of attack 
and by varying the wind speed. 
With the cylinder locked (no rotation) at each angle of attack the model vibration has been measured 
through an accelerometer varying the wind speed. An example is shown in fig. 14 (on the vertical axis 
accelerometer output, in Volt). At a=5.75" is possible to see that at V=12.6 m/s the model is stable 
(dumped response due to an external excitation), while at V=22 m/s the model has about a zero degree 
of stability and at V=31 mls the model is unstable. At higher angles of attack, always with the locked 
cylinder, the flutter unstable condition takes place at lower wind speed. In fig. 15 the dynamic 
behaviour at a=7.75" is shown. At this angle of attack, at V=12 rnls the model already presents stall 
flutter conditions. 
Then it is possible to evaluate from the model dynamic response the logarithmic decrement which is a 
measure of damping and also of model stable/unstable conditions. A plot of logarithmic decrement 
versus wind speed at different angles of attack is shown in fig. 16. 
It is possible to notice that at high wind speed, although the model is always unstable for a greater than 
5.75", the degree of instability (which indicates if the flutter takes place in a more or less strong and 
explosive manner) is stronger at a=7.75O than at a=9.75". This is mainly due to the fact that the 
incidence a=7.75" is really close to the stall condition and the energy extraction due to the hysteresis 
loop is stronger. It can be seen from fig. 13 that at a=9.75 and n=O the section is in post-stall condition 
and the moment coefficient curve slope is slightly positive. In t h s  condition the flow is strongly 
separated on section upper surface and model oscillations cannot lead to flow attached condition. As we 
know when stall flutter conditions are present (due to the hysteresis loop) the section is oscillating 
between two extreme positions, one characterised by attached flow (and high moment forces) and the 



other by strongly separated flow (low mom. forces).From this graph it is then possible to evaluate stall 
flutter critical speed at each angles of attack (the wind speed for which the damping is zero). 

a = 5.75" 
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Fig. 14 : Model forced vibrations at a=5.75' and different wind speeds 
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Fig. 15 : Model forced vibrations at a=7.75O and different wind speeds 
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Fig. 16 : Logarithmic decrement versus wind speed 
Effect of cylinder rotation on stall flutter speed 



Tests at different angles of attack and at different wind speed have been repeated with the cylinder 
rotating clockwise at different speed. 
Fig. 17, 18 and 19 show test results at an angle of attack of 6.75". In fig. 17 the model unstable 
behaviour without the cylinder rotation is evident at a wind speed of 22 m/s. The stall flutter starts due 
to natural fieestream excitation and is quite strong. In fig. 18 the rotating cylinder control action is 
shown. At a certain moment, when flutter brought the model to high amplitude vibrations, the electric 
engine controlling cylinder rotation was put in the ON position. With the cylinder rotating at a speed of 
8500 rprn the model vibrations are damped and stall flutter has been suppressed. In fig. 19 the same has 
been repeated, but at a wind speed of 25 m/s. The cylinder rotation is able to damp vibrations and 
suppress the stall flutter, but the action is less powerful and effective. It is evident that increasing wind 
speed, even with the rotating cylinder the model is unstable and stall flutter conditions are present. In 
fact, at this incidence, the measured critical speed with n=8500 rpm is about 29 m/s (see fig. 22). 

.I m + 

.zm - n=O rpm 

Fig. 17 Fig. 18 Fig. 19 

The same tests have been performed at different angles of attack. Obviously at higher angles the critical 
wind speed is higher compared to that one obtained at small angles. The effect of cylinder rotation on 
suppressing flutter and increasing critical flutter speed is still present. 
The effect of cylinder rotation speed is shown in fig. 20-21. At an angle a=9.75" and V=14 mls the stall 
flutter has been controlled with n=7000 rpm (fig. 20) and with n=8200 rpm. With a higher rotation 
speed the flutter has been suppressed in a more efficient way. It is clear that the increase in cylinder 
rotation speed results in an increase in flutter critical speed, at a fixed angle of attack. 
Tests have been performed fixing the angle of attack and cylinder rotation speeds and increasing wind 
speed up to unstable conditions (stall flutter critical speed). In fig. 22 the stall flutter speed versus angle 
of attack at different rotation speeds is plotted. The flutter speed decreases increasing angle of attack. 
At low angles of attack a flutter critical speed increase up to 60% (at maximum rotation speed , n=8500 
rpm) has been obtained with the cylinder rotation. An increase of about 50% has been obtained at high 
angles of attack (see always fig. 22). At the stall angle a=7.75 the control is very difficult, due to the 
large amount of energy which is extracted from the flow with the hysteresis loop and then the strong 
intensity of stall flutter. At this angle, an increment of about 40% of stall flutter speed has been 
measured, but there seems to be no effect of rotation speed. 
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Fig. 20 : a=8.75", V=2 1 mls, n=6000 rpm Fig. 21 : a=8.75", V=21 mls, n=8500 rpm 
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Fig. 22 : Flutter speed versus angle of attack at 
different cylinder rotation speeds 

Conclusions 

Experimental activities on a typical bridge section stall flutter has been carried out at D.P.A. low speed 
wind tunnel and have been presented in this paper. Two different flutter control systems have been 
proposed and tested. A leading edge tab deflection improves section aerodynamic behaviour at stall 
conditions and is a good way to increase flutter critical speed. This method has been tested with an 
active control system which automatically controls and suppresses stall flutter phenomenon. 
In the second part a new approach has been tested. A rotating cylinder on section leading edge is 
another approach to change the section aerodynamic behaviour reducing separations at high angles of 
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attack and leads to an increase of model flutter critical speed up to 50+60%. A study of the possible 
application of such a system on real streamlined deck bridges is in course. Concerning application of 
this system to real bridges, although for safety reasons it is not possible to believe that the aeroelastic 
stability of the structure could depend only on the active control system, the control can be used for 
incrementing the overall performances in term of global safety and further margin of maximum 
sustainable wind speed, but also in terms of comfort, rail and road runnability, fatigue life-expectance. 
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The section dynamic behaviour has been tested with the rotating cylinder. In fig. 4 the section flutter 
speed (fieestream speed at which the section become unstable and stall flutter appears) versus angle of 
attack for different cylinder angular speeds is represented. The cylinder rotation is able to increase 
section flutter speed up to 55% at low angles of attack and about 40% at high incidences. 

The 1.e. tab deflection changes the static aerodynamic behaviour of the section and leads to different 
stall flutter instability conditions. It is then evident that a different tab position can increase the model 
aeroelastic stability and delay the stall flutter to higher angles of attack. For instance a downward 
deflection of about 10" allow an higher stall angle and a less critical post-stall behaviour. Numerical 
aerodynamic analysis has been also performed to improve section aerodynamic behaviour through an 
appropriate shape of the section leading edge. Numerical prediction are in good agreement with 
experimental results. 
Application of a new active control system has been performed using the previous movable surface. 
The stall flutter in dynamic conditions has been controlled using an active system which automatically 
changes the tab position (from 0 to 10") and is able to suppress the stall phenomenon. The control 
system consists of a mixed digital-analogue feedback circuit with an accelerometer as error sensor and 
two electromagnetic actuators to control the tab rotation. 

In the second part a new approach has been tested. The new methodology consists of a rotating cylinder 
placed at the section leading edge (see fig. 2). Through the cylinder rotation is possible to change the 
section aerodynamic behaviour as well. In fig. 3 the section moment coefficient versus angle of attack 
for three different cylinder angular speed are shown. The section stall angle is always about 7" and does 
not change with the cylinder angular motion. The post-stall section behaviour is on the contrary 
strongly influenced by the cylinder angular speed. Cylinder angular motion can be a successful way to 
control and suppress stall flutter phenomenon. The section dynamic behaviour has been tested with the 
rotating cylinder. In fig. 4 the section flutter speed (freestream speed at which the section become 
unstable and stall flutter appears) versus angle of attack for different cylinder angular speeds is 
represented. The cylinder rotation is able to increase section flutter speed up to 55% at low angles of 
attack and about 40% at high incidences. 

1 1 5 '  11 ]Butter 1 1 1 1 

Table 1 : Section behaviour at different angle of 
leading edge tab attack and tab deflections 



Fig. 2 : Rotating cylinder at section leading edge 
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Fig. 3 : Section moment coefficient versus angle of 
attack at different cylinder rotation speeds 
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ABSTRACT 

A method is proposed by which the 
computational efficiency of the aeroelastic sizing 
optimization process is improved. It uses a reduced 
basis model approach. 

This reduced basis model is first validated 
through flutter simulations under large structural 
modifications. The test case is a simplified model of 
a four engine aircraft wing . 

It is then applied to a flutter optimization study. 
The case studied is a full model of a large four 
engine aircraft. The flutter behavior of this model is 
controlled through an optimization of engine pylons. 

For a comparison purpose, two optimization 
methods are applied to this second case. The first 
one is the classical approach using exact modal and 
flutter reanalysis at each iteration, the second one 
uses the reduced basis model. Results are very close, 
but the optimization with the reduced basis model is 
considerably faster. It facilitates mode tracking 
during the optimization process as well as rapid 
evaluations of alternative optimization problem 
formulations. 

NOTATIONS 

finite element stiffness matrix 
finite element mass matrix 
stiffness matrix modification 
mass matrix modification 
current modal shape for the perturbed 
structure 
associated squared angular frequency 
mean value for perturbed squared angular 
frequencies 
rank of the truncated modal basis 
j Ih modal shape (increasing frequency 
order) 
associated squared angular frequency 
modal matrix for the initial structure 
component of x relative to cp, 
associated vector 
number of design variables 

ifh design variable defined as a global 
scaling factor applied to the ifhgroup of 
elements 
associated vector 
assembled stiffness matrix of the ifh group 
of elements 
assembled mass matrix of the ith group of 
elements 
extended modal basis matrix 
jth modal shape vector of components in Y 
complex frequency 
dynamic pressure 

( ) i n  lag terms 
nI number of lag terms 
Fi aerodynamic matrices 
d damping coefficient = Re(s)/Im(s) 

INTRODUCTION 

Statement of the Problem 

Flutter Analysis requires full aircraft modeling 
and expensive modal analysis, which generally lead 
to heavy optimization tasks. 

It is not compatible with the several studies often 
necessary to tune an optimization problem. 
Moreover a mode tracking procedure is often 
required to optimize the flutter behavior of a large 
aircraft whose normal mode frequencies are very 
close. It supposes a continuation approach with 
additional modal and flutter reanalysis which is 
difficult to perform in a reasonable time with a large 
size dynamic model. 

This paper presents a method to overcome these 
difficulties by accelerating the structural 
optimization process. This method uses a model 
reduction. 

Review of model reduction methods 

In Ref. 2.,3. Giles proposes to build a reduced 
model for a wing by using an equivalent plate 
formulation. But it appears difficult to get significant 
results with such an approach. The flutter behavior is 
indeed very sensitive to modeling hypothesis and 



quality. One serious difficulty is the complexity of 
the engine pylon-to-wing attachment idealization 
which can be obtained through a quite detailed finite 
element model only. 

A classical approach, described in Ref. 7., 
consists in using a truncated modal basis to represent 
displacement vectors. A reduced model is built 
through the Lagrange equations using, as generalized 
coordinates. the components of the displacement 
vector in this basis. This is the Rayleigh-Ritz 
approach. This approach is used in flutter simulation 
where the truncated modal basis is restrained to the 
sixty lowest frequency modes. It is natural to extend 
i t  to flutter optimization which means that the modal 
basis is kept constant along the optimization process, 
thus avoiding the modal reanalysis. This method was 
tested but with no satisfactory result even if the 
truncation frequency is much higher than in flutter 
simulations. 

In Ref. 8.,9. Karpel proposes a method to control 
the modal truncation error. It consists in using 
additional masses, called "fictitious masses" located 
in the area of structural changes so as to lower the 
frequencies of relevant modes. But the difficulty 
encountered when using this method is the choice of 
well-suited values for fictitious masses. 

In Ref. lo., 1 1. Kirsch presents an approximation 
method used for static responses of trusses or 
grillage-type structures. He derives an analytical 
expression of static displacements for trusses and 
shows it is exact."' This method uses a first order 
reduced basis method. It is extended to grillage-type 
structures with satisfactory results.'' 

The approach proposed in this paper can be seen 
as an extension to modal analysis of the method 
proposed by Kirsch and comparisons will be pursued 
in the next section. 

PROPOSED APPROACH 

Introduction 

Design variables and structural modifications 

Structural modifications are parameterized by the 
design variables used in optimization. These design 
variables are associated with predefined structural 
regions. The ith design variable is a scaling factor p, 
applied to all element properties of the 
corresponding region. These properties are 
generally skin thicknesses or stiffener cross sectional 
areas. Moreover airframes have thin-walled 
structures whose elements essentially work as 
membranes. 

Regarding the choice of design variables and the 
mechanical behavior of the structure, stiffness matrix 
modifications are linear and can be written as : 

Mass matrix modifications are obviously linear and 
can be expressed as : 

Extended Modal Basis Derivation 

The modal equations of a structure involving 
stiffness and mass changes AK and AM is 
given by: 

( K + A K ) x = A ( M  + M ) x  (3) 
The effect of pure structural mass changes on 
frequencies being negligible, AM is not taken 
into account further. 

Let introduce a parameterff, which 
represents a mean value for the squared angular 
frequency h in the frequency domain of interest. 
Then equation (3) can be written as a fixed-point 
equation : 

The proposed method is a Ritz-type method 
based on an extended modal basis. As mentioned x = ( A - a X K  -&)-'MX-(K - c N ) - ' A K x  (4) 

before a truncated modal basis gives no accurate 
results even if the truncation is made at a high If x is written as a combination of the initial 
frequency. Thus a new basis of displacements is eigenvectors: 
developed. n 

This basis is an extension of the modal basis with X =  1 4 j q j  ( 5 )  
complementary vectors capturing the effect of j=1 
structural modifications on the modal shapes. then x can be expressed as xl - x2 with : 

As explained in the next section, structural 
modificatibns are linear with respect to design 
variables in most of our sizing optimization tasks. 
This important property is exploited further. 



x can be represented by a truncated modal basis 1 
A-a . 

because - IS  negligible in the high 
A.-a 

J 
frequency domain (large values of 4). 

x2 leads to a completion of the initial modal 

basis with displacement vectors of the kind 

These considerations give the following 
displacement basis : 

1 @ , ( K - a M ) -  K i @ ,  i = I  ,..., n p  1 (9) 

where @ is a truncated modal matrix which is 
usually selected as a satisfactory modal basis for 
a flutter analysis of the initial structure. 

Remarks 

As explained below, this method is close to 
the method developed by Kirsch for grillage-type 
structures. Kirsch uses a second order Taylor 
expansion of the static response to build the basis. 
It can be considered as a second iteration of the 
fixed-point equation (4) following the method 
used by High to compute the modal shape 
derivatives. " 

But applications with the proposed method 
show that the first order is enough even with 
large magnitude structural changes. 

This is because an appropriate selection of 
modal shapes enables to cover the rank of the 
matrices Ki with the vectors K, q. 

In this sense, the extended modal basis 
method joins the exact reanalysis method 
proposed by Kirsch for trusses'? Its success 
leans on the fact that the elementary stiffness 
matrix of a free-free compression bar has rank 
one. 

Reduced structural model 

Stiffness and mass matrices are then written 
in the "extended modal basis" Y .  As Y is 
constant, their updating consists in simple linear 
combinations of small order matrices: 

The vectors (rj)j=l.m which approximately 
represent modal shapes of the modified structure 
are calculated with a Ritz method using the 
basis Y .  The squared angular frequencies Aj and 
the new modal shapes xj=Yrj are thus given by 
the resolution of the generalized eigenvalue 
problem: 

Reduced aerodynamic model 

Aerodynamic influence coefficients are issued 
from a Doublet Lattice Method. They are 
converted to generalized aerodynamic forces by a 
projection on the extended modal basis. 

The approximation derived by Roger in Ref. 
12. is then used. It takes the form of a rational 
function: 

The advantage of such an approach is to 
reduce the flutter equation at a given speed to an 
eigenvalue problem for a real matrix. It simplifies 
flutter simulations and damping coefficient 
sensitivity computations. More details can be 
found in Ref. 2. Hence aerodynamic data consist 
of 3+nl matrices (Fi)i=0,nl+2 constant along the 
optimization process. nl is the number of lag 
terms 6,. A current value for nl is 3. 

RESULTS 

Validation on a simplified wing model 

After some convincing validations on modal 
reanalysis of a bending-torsion beam, the method is 
applied to flutter reanalysis. 

A simplified wing model of a four engine aircraft 
is used. This model is clamped at the root rib and has 
about 5000 degrees of freedom. It is divided into 20 
optimization regions. In each region, one design 
variable is defined as explained before. Two 
additional design variables are added to control the 
stiffness of engine pylon-to-wing attachnment 
elements. For a total of 22 design variables and with 
a rank 15 modal basis, the extended modal basis 
consists of 160 displacement vectors (the model 
dimension is thus reduced by a factor 30). 

Very large modifications are made to validate the 
robustness of such a basis. One example is presented 
for which the mid-wing shows an 80% under-sizing 
and the inner wing a 50 % over-sizing. 

The quasi-perfect similarity of the damping plots 
obtained with the proposed approach versus those 



obtained with the exact reanalysis approach can be 
seen in figure 1. It shows the performance of the 
reduced basis model (especially for whom knows the 
sensitivity of flutter results to wing modal shapes). 

Application to engine pylon aeroelastic 
optimization 

Statement of the problem 

The extended modal basis method is then applied 
to flutter optimization. 

The application case is a full four engine large 
aircraft dynamic model based on a finite element 
model with 20000 degrees of freedom. Figure 2 
shows the powerplant area for this finite element 
model and illustrates the role of pylons. 

Preliminary sensitivity computations on the four 
pylons show that the outer pylon stiffness is an 
essential driving parameter to improve the flutter 
behavior. Indeed the studied case mainly presents a 
smooth coupling involving engine modes and 
yielding a critical flutter speed. Thus it has been 
decided to perform sizing optimization of outer 
pylons with flutter requirements. 

The flutter optimization problem is stated as a 
minimization of the structural mass m(p) with a 
constraint on the damping coefficient d,(Vc) of the 
unstable mode at the critical speed. Side constraints 
on design variables are also included so as to take 
into account stress and design requirements. 
Thus the problem solved is given by 

Min m(p) 
w.r.t. 
d,(V'.) ' dm,, 
s.t. 
(P,)~," < PI < (P,),"~~ 

29 optimization regions are defined for each outer 
pylon. A modal basis with 60 vectors is selected. 
The extended modal basis retains about 120 vectors 
(the model dimension is thus reduced by a factor 
200). 

Comparison of two methods 

The problem is treated following two algorithmic 
approaches. 

The first one is the classical approach using exact 
modal and flutter reanalysis at each iteration. It is 
associated with the sequential approximation used 
by most structural optimization codes. The 
optimization algorithm used is CONLIN, recognized 
as one of the most well-suited to structural 
optimization problems.' 

The second one uses the reduced basis model 
presented above. All small order computations are 

made in a same FORTRAN program and the 
damping coefficients and their analytical sensitivities 
are provided to a library algorithm as subroutines. 
This library algorithm is the NAG implementation 
of the Sequential Quadratic Programming Algorithm 
(E04UCF subroutine). 

As shown in figure 3, for the approach using the 
reduced basis model, large order computations are 
concentrated in the reduction stage, while modal 
and flutter reanalysis are then made at a small order. 

A first comparison between both method results 
is made with realistic side constraints for design 
variables. Results are similar but the comparison is 
biased because most of the side constraints are active 
at the optimum. It has thus been decided to relax 
these side constraints for a comparison purpose. 

It involves for the exact reanalysis method to run 
again the optimization process at a large order. For 
the extended basis method, as the definition of 
design variables is not modified, it is not necessary 
to compute again the basis. Hence large order 
computations are avoided. This is a major advantage 
of the proposed method: as long as the design 
variables are not redefined, several formulations of 
the problem can be run at a low computational cost, 
which is very useful for industrial applications in 
aircraft design. 

With relaxed design variable bounds, much 
design variables are free at the optimum and both 
methods show very close values, as shown in figure 
4. 

The conclusion is that the reduced basis model 
gives satisfactory optimization results but is much 
less computationally expensive : 1 hour against 50 
hours due to a reduction of the full aircraft model 
from 20000 degrees of freedom to 120 generalized 
degrees of freedom. This comparison completes the 
validation of the extended modal basis approach in 
the scope of an optimization process. 

Analysis of results 

Results show that, the flutter behavior can be 
improved by outer engine pylon optimization, with 
reasonable weight penalties. The structural 
improvement leads to a shift at a higher speed of the 
aeroelastic coupling with a significant increase of the 
damping giving no flutter, as shown on figure 5. 

In preliminary applications, an asymmetrical 
pylon is studied. The over-sizing exhibits a "bevel 
shape" whose objective is to increase the combined 
lateral and yaw stiffness of the pylon. But these 
structural modifications are not easy to use in an 
industrial process. So further optimization cases are 
then treated with symmetrical constraints, without 
computing again the extended modal basis, showing 



once again the interest of the approach. Symmetrical 
results have a slightly higher mass for the same 
flutter improvement. Main modifications are on the 
side panels and on the upper spar, as shown on 
figure 6. 

New parameters are then included (internal ribs, 
forward engine-to-pylon attachment), and lead to 
better weight performances. The process is then 
completed by a multi-disciplinary work between 
aeroelastic, design and stress specialists. 

CONCLUDING REMARKS 

A new method has been developed to facilitate 
flutter optimization. This method uses a basis 
reduction process, allowing a control of the 
truncation error with respect to a modal approach. 
This basis is dedicated to sizing design variable 
modifications. A part of its success is due to the 
linearity of finite element models for thin-walled 
structures with respect to this kind of variables. The 
performance of this method has been demonstrated 
on a simplified wing model. Then an industrial 
application was performed showing very reliable 
results, when compared to classical approaches, 
while great computational time reductions. 

The method presented here enables to include 
mode tracking in flutter optimization with a 
reasonable computational time and to solve rapidly 
variants of the optimization problem. More 
generally, it authorizes intensive modal or flutter 
reanalysis, and can help to better understand flutter 
mechanisms. 
Hence it is really well-suited to flutter parametric 
studies during the concept phasis of new aircraft. 
Applications to global analysis (uncertainties 
modeling) or global optimization are made possible 
with this approach. It could also be used to 
accelerate model updating based on modal tests. 
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Fig 1. Comparison of flutter plots - extended modal basis vs exact reanalysis. 
Damping coefficient (96) vs. air speed (EAS, kts) variations for each mode as computed with the 
exact reanalysis (left) and the extended basis model (right). 

Fig 2. Powerplant sketch. The engine pylon is a torsion box used to attach the 
lower part. 

engine to the wing 
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Fig 3. comparison of both optimization approaches. In the extended modal basis approach large 
order computations are in the reduction process, optimization iterations only involved small order 
computations. 
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Fig 4. Comparison of optimization results -extended modal basis vs exact reanalysis - case with 
relaxed side constraints. White bars represent design variables (scaling factors) obtained with the 
extended modal basis approach, hatched bars those obtained with the exact reanalysis. 
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Fig 5. Comparison of flutter plots - initial vs optimized. 
Results show that there is no more instability. The critical mode has got an increased damping. 
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Fig 6. Pylon over-sizing after flutter optimization. The most stiffened area are the rear part of the 
upper spar and the front lower part of the panels. 
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This paper provides a survey of shape parameterization techniques for multidisciplinary 
optimization and highlights some emerging ideas. The survey focuses on the suitability of 
available techniques for complex configurations, with suitability criteria based on the effi- 
ciency, effectiveness, ease of implementation, and availability of analytical sensitivities for 
geometry and grids. The paper also contains a section on field grid regeneration, grid defor- 
mation, and sensitivity analysis techniques. 
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Introduction 

I MAGINE that you have been asked to perform multi- 
disciplinary shape optimization (MSO) for a complete 

aircraft model during the preliminary design phase. Dur- 
ing this phase, the focus is on the mathematical model- 
ing, with sufficient accuracy, of the outside skin of an 
aircraft. After this phase, the geometry is frozen, and 
any change could be costly. 

Generally, multidisciplinary design optimization 
(MDO) should exploit the synergism of the primary, 
mutually interacting phenomena to improve the design. 
The MDO applications commonly involve sizing, topol- 
ogy, and shape optimization. Sizing optimization is used 
to find the optimum cross-sectional area for bars and 
trusses and thickness for plate and shell elements. Sizing 
optimization is a matured technology and is available in 
most commercial computational structural mechanics 
(CSM) tools. Topology optimization is a technique for 
determining the optimal material distribution, which 
could suggest the optimum layout of the structure. 
Shape optimization finds the optimum shape for a given 
structural layout. Obviously, the selection of shape 
parameterization technique has enormous impact on 
the formulation and implementation of the optimization 
problem. This paper reviews and evaluates the available 
shape parameterization techniques. 

Over the past several decades, single discipline shape 
optimization has been successfully applied to two- 
dimensional and simple three-dimensional configura- 
t i o n s . ' ~ ~  In recent years, there has been a growing 
interest in the application of MSO to complex three- 
dimensional ~onf i~u ra t ions .~  The MSO for a complete 
airplane configuration is a challenging task, especially if 
the MSO application is based on high-fidelity analysis 
tools. The analysis models, also referred to as grids or 
meshes, are based on some or all of the airplane compo- 
nents. 

The aerodynamic analysis uses the detailed definition 
of the skin shape, also referred to as the outer mold 
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Fig. 1 Internal components of a wing. 

line, whereas the CSM tools use all components. Gener- 
ally, the structural model only requires a relatively coarse 
grid, but it must handle very complex internal and ex- 
ternal geometries. In contrast, the computational fluid 
dynamics (CFD) field grid is very fine, but it only needs 
to model the external geometry. The MSO of an air- 
plane must treat not only the external geometry (i.e., 
wing skin, fuselage, flaps, nacelles, and pylons), but also 
the internal structural elements such a s  spars, ribs, and 
fuel tanks (see Fig. 1). The treatment of internal struc- 
tural elements is especially important for detailed finite 
element (FE) analysis. 

For a high-fidelity MSO application to be successful, 
the parameterization model must yield a compact and 
effective set of design variables so the solution time would 
be feasible. For more details, readers are referred to an 
overview paper by this author4 on geometry modeling 
and grid generation for design and optimization. 

Multidisciplinary Shape Parameterization 
The complexity of geometry models is increasing for 

today's preliminary design applications. It is not un- 
usual for a computer-aided design (CAD) model to use 
over twenty thousand curves and surfaces to represent 
an aircraft. This level of complexity underscores the 
importance of automation. With any multidisciplinary 
application come the problems of consistent and accu- 
rate shape parameterization. 

The shape parameterization must be compatible with 
and adaptable to various analysis tools ranging from 
low-fidelity tools, such as linear aerodynamics and equiv- 
alent laminated plate structures, to high-fidelity tools, 
such as nonlinear CFD and detailed CSM. For a mul- 
tidisciplinary problem, the application must also use a 
consistent parameterization across all disciplines. An 
MDO application requires a common geometry data set 
that can be manipulated and shared among various d i s  
ciplines. 

In addition, an accurate sensitivity derivative analysis 
is required for gradient-based optimization. The sensi- 
tivity derivatives are defined as the partial derivatives of 
the geometry model or grid-point coordinates with re- 

spect to a design variable. The sensitivity derivatives of 
a response, f, with respect to the design variable vector, 
6, can be written as 

where R~ is the field (volume) grid, R, is the surface grid, 
and R~ is the geometry. In some of the CSM literature, 
the sensitivity derivatives are referred to as the design 
velocity field. 

The first term on the right-hand side of Eq.(l) r e p  
resents the sensitivity derivatives of the response with 
respect to the field grid point coordinates. For a de- 
tailed discussion, readers are referred to Refs. 1 ,2 ,5  for 
CSM and to Refs. 6-8 for CFD disciplines. Newman et 

have provided an overview of the recent advances in 
steady aerodynamic shape-design sensitivity derivative 
analysis and optimization based on advanced CFD. The 
second term on the right-hand side of Eq.(l) is vector of 
the field grid-point sensitivity derivatives with respect to 
the surface grid points. The sensitivity derivative vector 
must be provided by the field grid generator, but few 
grid generation tools have the capability to provide the 
analytical grid-point sensitivity deri~at ives.~ The third 
term on the right-hand side of Eq.(l) denotes the sur- 
face grid sensitivity derivatives with respect to the shape 
design variables, which must be provided by the surface 
grid generation tools. The fourth term on the right-hand 
side of Eq.(l) signifies the geometry sensitivity deriva- 
tives with respect to the design variable vectors; this 
must be provided by the geometry construction tools. 

Figure 2 shows a high-speed civil transport with seven 
planform design variables. Figure 3 shows errors in- 
volved in using a central-difference approximation for 
shape sensitivity derivative calculations for the high- 
speed civil transport shown in Fig. 2. This error behavior 
is typical of finite-difference approximations to sensi- 
tivities. For larger step sizes, the truncation error is 
predominant, and for smaller step sizes, the round-off er- 
ror is predominant. There is an optimal step size where 
the error is minimum. This optimal step size is differ- 
ent for each design variable, and it would also vary for 
each optimization cycle. ' As a result, it is difficult to 
estimate the error involved in finite-difference approxi- 
mation of sensitivity derivatives. If the source codes are 
written in FORTRAN or C, and are available, they can 
be differentiated with automatic tools* such ADIFOR'' 
or ADIC." 

An important ingredient of shape optimization is the 
availability of a model parameterized with respect to 

*Argonne National Laboratory maintains a www site with 
information on automatic differentiation tools <http://www- 
unix.mcs.anl.gov/autodiff> 
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Fig. 3 Error in using central-difference approxima- 
tion for shape sensitivity derivatives calculations. 

the airplane shape parameters such as planform, twist, 
shear, camber, and thickness. The parameterization 
techniques are divided into the following categories: ba- 
sis vector, domain element, partial differential equation, 
discrete, polynomial and spline, CAD-based, analytical, 
free form deformation (FFD), and modified FFD. Read- 
ers are referred to reports by Haftka and Grandhi1 and 
Ding2 for surveys of shape optimization and parameter- 
ization up to 1981. The present focus is on some recent 
developments in the area of shape parameterization for 
complex models and their suitability for MSO applica- 
tions. The suitability criteria are based on the efficiency, 
effectiveness, ease of implementation, and availability of 
analytical sensitivities for geometry and grid models. 

Basis Vector Approach 
Pickett et a1.12 proposed a technique that combines 

the second through fourth terms of Eq.(l) into a set of 
basis vectors. The shape changes can be expressed as 

where R is the design shape, i; is the baseline shape, Ci is 
the design variable vector, and ci is design perturbation 
based on several proposed shapes. Assuming that the 
reduced basis is constant throughout the optimization 
cycle, this technique is a good approach and is avail- 
able in most commercial CSM codes.13-l6 However, it is 
difficult to generate a set of consistent basis vectors for 
multiple disciplines. As a result, this method can be ap- 
plied only to problems involving a single discipline with 
relatively simple geometry changes. 

Domain Element Approach 

The domain element approach is based on linking a 
set of grid points to a macro element, domain element, 
that controls the shape of the m'odel. Figure 4a shows 
a domain element with four nodes (A-D) for the base- 
line model. As the nodes of the domain element move 
(A1-Dl), the grid points belonging to the domain will 
move as well (see Fig. 4b). The movement is based on 
an inverse mapping between the grid points and the do- 
main element, and the parametric coordinates of the grid 
points with respect to the domain element are kept fixed 
through the optimization cycles. l4 The domain element 
technique is available for shape optimization in some 
commercial software.16 This method is useful only for 
problems with relatively simple geometry changes. 

Partial Differential Equation Approach 
Bloor and Wilson1' presented an efficient and com- 

pact method for parameterizing the surface geometry of 
an aircraft. The method views the surface generation as 
a boundary-value problem and produces surfaces as the 
solutions to elliptic partial differential equations (PDE). 
Bloor and Wilson showed that it was possible to r e p  
resent an aircraft geometry in terms of a small set of 
design variables. Smith et a1.18 extended the PDE a p  
proach to a class of airplane configurations. Included 
in this definition were surface grids, volume grids, and 
grid sensitivity derivatives for CFD. The general airplane 



Fig. 5 Airfoil designed by a set of points. 

configuration had wing, fuselage, vertical tail, horizon- 
tal tails, and canard components. Grid sensitivity was 
obtained by applying the automatic differentiation tool 
AD IF OR.^^ 

Using the PDE approach to parameterize an exist- 
ing complex model is time-consuming and costly. Also, 
because this method can only parameterize the surface 
geometry, it is not suitable for the MSO applications 
that must model the internal structural elements such 
as spars, ribs, and fuel tanks. As a result, this method 
is suitable for problems involving a single discipline with 
relatively simple external geometry changes. 

Discrete Approach 
The discrete approach is based on using the coor- 

dinates of the boundary points (see Fig. 5) as design 
variables (e.g., Refs. 19,20). This approach is easy to im- 
plement, and the geometry changes are limited only by 
the number of design variables. However, it is difficult to 
maintain a smooth geometry, and the optimization solu- 
tion may be impractical to manufacture, as pointed out 
by Braibant and ~ l e u r ~ . ~ ~  To control smoothness, one 
could use multipoint constraints and dynamic adjust- 
ment of lower and upper bounds on the design variables. 
For a model with a large number of grid points, the num- 
ber of design variables often becomes very large, which 
leads to high cost and a difficult optimization problem 
to  solve. 

The natural design approach is a variation of the 
discrete approach that uses a set of fictitious loads as 
design variables (e.g., Ref. 22). These fictitious loads 
are applied to the boundary points, and the resulting 
displacements, or natural shape functions, are added 
to  the baseline grid to obtain a new shape. Conse- 
quently, the relationship between changes in design vari- 
ables and grid-point locations is established through a 
finite element analysis. Zhang and Belegundu23 p r e  
vided a systematic approach for generating the sensi- 
tivity derivatives and several criteria to determine their 
effectiveness. The typical drawback of the natural design 
variable method is the indirect relationship between de- 
sign variables and grid-point locations. 

For an MDO application, grid requirements are dif- 
ferent for each discipline. So, each discipline has a 
different grid and a different parameterized model. Con- 
sequently, using the discrete parameterization approach 
for an MDO application will result in an inconsistent 
parameterization. 

The most attractive feature of the discrete approach 

is the ability to use an existing grid for optimization. 
The model complexity has little or no bearing on the 
parameterization process. It is possible to have a strong 
local control on shape changes by restricting the changes 
to a small area. When the shape design variables are 
the grid-point coordinates, the grid sensitivity derivative 
analysis is trivial to calculate; the third and fourth terms 
in Eq.(l) can be combined to form an identity matrix. 

Polynomial and Spline Approaches 
Use of polynomial and spline representations for shape 

parameterization can obviously reduce the total number 
of design variables. For example, Fig. 6 shows an air- 
foil definition with only nine control points. Braibant 
and Fleury2' showed that Bezier and B-spline curves are 
well suited for shape optimization. A polynomial can 
describe a curve in a very compact form with a small 
set of design variables. Automatically taken into ac- 
count are the additional optimization constraints most 
often needed to avoid unrealistic design when the shape 
variables are the grid-point coordinates. The analytical 
sensitivity derivatives with respect to the design variable 
vector can be computed efficiently and accurately. 

For example, a curve can be described as the polyno- 
mial 

R~ (u) = u' 

where n is the number of design variables, and u is the 
parameter coordinate along the curve. The 4 is a set 
of coefficient vectors corresponding to three-dimensional 
coordinates, and the components of these vectors can 
be used as design variables. The sensitivity derivatives 
of geometry, R,, with respect to ci is ui. The polyne 
mial representation in Eq.(3) is in the power basis form, 
and the ci coefficient vectors convey very little geometric 
insight about the shape. Also, the power basis form is 
prone to round-off error if there is a large variation in the 
magnitude of the coefficients. Nevertheless, the polyno- 
mial form is a powerful and compact representation for 
shape optimization of simple curves (e.g., Refs. 24,25). 

The Bezier representation is another mathematical 
form for representing curves and surfaces. For example, 
a Bezier curve can be described by 

where n is the number of control points (design vari- 
ables), and the Bi+,(u) are degree p Bernstein polyno- 
mials. The pi are the control points (forming a control 
polygon), and they are typically used as design variables. 



Fig. 6 Airfoil designed by a set of control points. 

Readers are referred to Farin26 for further discussions 
on the properties of Bezier form. The Bezier form is 
a far better representation than the power basis, even 
though mathematically equivalent. The control points 
are more closely related to the curve position. In fact, 
the colitrol points approximate the curve. Also, the 
computation of Bernstein polynomials is a recursive al- 
gorithm, de Casteljau algorithm,26 which minimizes the 
round-off error. The convex hull of the Bezier control 
polygon contains the curve. This property is very use- 
ful, especially in defining the geometric constraints. The 
first and the last control points are located exactly at the 
beginning and the end of the curve, respectively. The 
sensitivity derivative of geometry, R,, with respect to 
Pi is Bi,,(u), the Bernstein polynomial functions. These 
functions are independent of the Bezier control points 
(i.e., design variables) ; therefore, the sensitivity deriva- 
tives stay fixed during the optimization cycles. 

The Bezier form is an effective and accurate repre- 
sentation for shape optimization of simple curves (e.g., 
Ref. 27). However, complex curves require a high-degree 
Bezier form. As the degree of a Bezier curve increases, 
so does the round-off error. Also, it is very inefficient 
to compute a high-degree Bezier curve. To use Bezier 
representation for a complex curve, one can use several 
low-degree Bezier segments to cover the entire curve. 
The resulting composite curve is referred to as a spline 
or, more accurately, a B-spline. A multisegmented B- 
spline curve can be described by 

where pi are the B-spline control points, p is the de- 
gree, and N i , p ( ~ )  is the i-th B-spline basis function of 
degree p. In addition to the desirable properties of the 
Bezier representation, the low-degree B-spline form can 
represent complex curves efficiently and accurately. The 
sensitivity derivatives of geometry, R,, with respect to 

is N ; ,p (~ ) ,  the B-spline basis function. Similar to 
a Bezier form, the sensitivity derivatives of a B-spline 
curve stay fixed during the optimization cycles. 

There are some limited applications in the literature 
that are based on polynomial and spline representations. 
Cosentino and Holt2' optimized a transonic wing config- 
uration by using a cubic spline representation for two- 
dimensional airfoils that define a wing geometry. Then, 
they used the position of the spline control points-in 

particular those points that affect the wing region wetted 
by supersonic flow-as design variables to be optimized. 
In a design case study on the Lockheed C-141B aircraft, 
they reduced the number of design variables from 120 to 
12 by using the cubic spline technique. In recent years, 
Schramm and P i l k e ~ ~ ~  used a B-spline representation 
to perform structural shape optimization for the torsion 
problem with direct integration and B-splines. Simi- 
larly, Anderson and Venkatakrishnan3' used B-splines 
for aerodynamics design optimization with an unstruc- 
tured grid CFD code. 

The only drawback of the regular B-spline represen- 
tation is its inability to represent implicit conic sections 
accurately. However, a special form of B-spline, nonuni- 
form rational B-spline (NURBS), can represent most 
parametric and implicit curves and surfaces without loss 
of accuracy.26 NURBS can represent quadric primitives 
(e.g., cylinders, cones) as well as free-form geometry.26 
There are some implicit surfaces (e.g., helix and heli- 
c0ida1)~l that cannot be directly converted to NURBS, 
but these surfaces are not common in most aerospace 
applications. A NURBS curve is defined as 

where the Pi are the control points, W; are the weights, 
and the N;,p are degree p B-spline basis functions. 
Similar to the Bezier form, the sensitivity derivatives 
of a NURBS with respect to the control points are 
fixed during the optimization cycles. However, if the 
weights are selected as design variables, the sensitiv- 
ity derivatives will be a function of the weight design 
variables. Schramm et al.32 have successfully used the 
two-dimensional NURBS representations for shape opti- 
mization. 

Despite recent progress, it is still difficult to parame- 
terize and construct complex, three-dimensional models 
based solely on polynomial and spline representations. 
Complex shapes require a large number of control points, 
and optimization is prone to creating irregular2' or 
wavy33 geometry. Nevertheless, these techniques are well 
suited for two-dimensional or simple three-dimensional 
models. 

CAD-Based Approach 
Use of CAD systems for geometry modeling could po- 

tentially save development time for an MDO application. 
For a more detailed account of the role of CAD in MDO, 
readers are referred to Ref. 4. Most solid modeling CAD 
systems use either a boundary representation (B-Rep) 
or a constructive solid geometry method to represent a 



physical, solid object.34 Based on a complete mathe- 
matical definition of a solid, it is possible to create a 
complete geometry that is suitable for detailed CFD and 
CSM codes. 

Feature-based solid modeling (FBSM) CAD systems35 
are capable of creating dimension-driven objects. These 
systems use Boolean operations such as intersection and 
union of simple features. Examples of simple features 
include holes, slots (or cuts), bosses (or protrusions), fil- 
lets, chamfers, sweep, and shell. Today's CAD systems 
allow designers to work in a three-dimensional space 
while using topologically complete geometry (solid mod- 
els) that can be modified by altering the dimensions of 
the features from which it was created. The most im- 
portant capability of FBSM is the ability to capture the 
design intent. The FBSM tools have made design modi- 
fication much easier and faster. The developers of FBSM 
CAD systems have put the "design" back in CAD. Be- 
cause FBSM CAD tools enable today's design engineers 
to create a new, complete, and parametric model for a 
configuration, these tools are being incorporated into the 
design environment. 

Even though use of parametric modeling in design 
would make the FBSM tools ideal for optimization, exist- 
ing FBSM tools are not capable of calculating sensitivity 
derivatives analytically. Townsend et al.36 discussed 
issues involved in using a CAD system for an MDO 
application. They identified the analytical sensitivity 
derivative calculations as a one of the important inte- 
gration issues. Blair and R e i ~ h ~ ~  presented a vision to 
integrate an FBSM CAD system with full associativ- 
ity into a virtual design environment. Within such an 
environment, however, calculations of the analytical sen- 
sitivity derivatives of geometry with respect to the design 
variables could prove to be difficult. 

It  is possible to relate some design variables to  the 
NURBS control points.38 Then the analytical sensitivity 
derivatives can be calculated outside the CAD system. 
For some limited cases, the analytical shape sensitivity 
derivatives can be calculated based on a CAD 
however, this method will not work under all circum- 
stances. One difficulty is that, for some perturbation of 
some dimensions, the topology of the CAD part may be 
changed. 

Another way to calculate the sensitivity derivatives is 
to use finite differences, as long as  the perturbed geom- 
etry has the same topology as the unperturbed geome- 
try. Both methods-the analytical and finite-difference 
approximations-have their difficulties and limitations. 
He et ala3' presented a procedure for integrating CAD 
and CAE systems to support geometry- and detailed- 
analysis-based optimization. The sensitivity derivatives 
were calculated by a finite-difference approximation. 

So, it is not a trivial matter to incorporate FBSM CAD 

systems into a design optimization, and it is even more 
difficult to use them for an MDO application. Also, it is 
still a challenging task to parameterize an existing model 
that is not parametric. 

Analytical Approach 
Hicks and Henne40 introduced a compact formulation 

for parameterization of airfoil sections. The formulation 
was based on adding shape functions (analytical func- 
tions) linearly to the baseline shape. The contributiofi 
of each parameter is determined by the value of the par- 
ticipating coefficients (design variables) associated with 
that function. All participating coefficients are initially 
set to zero, so the first computation gives the baseline ge- 
ometry. The shape functions are smooth functions based 
on a set of previous airfoil designs. Elliott and Peraire25 
and Hager et used a formulation similar to that of 
Hicks and Henne, but a different set of shape functions. 
This method is very effective for wing parameterization, 
but it is difficult to generalize it for a complex geometry. 

Free Form Deformation Approach 

The field of soft object animation (SOA) in computer 
graphics42 provides algorithms for morphing images43 
and deforming  model^.^^^^^ These algorithms are pow- 
erful tools for modifying shapes: they use a high-level 
shape deformation, as opposed to manipulation of lower 
level geometric entities. The deformation algorithms are 
suitable for deforming models represented by either a 
set of polygons or a set of parametric curves and sur- 
faces. The SOA algorithms treat the model as rubber 
that can be twisted, bent, tapered, compressed, or ex- 
panded, while retaining its topology. This is ideal for 
parameterizing airplane models that have external skin 
as well as internal components (e.g., see Fig. 1). The 
SOA algorithms relate the grid-point coordinates of an 
analysis model to a number of design variables. Conse- 
quently, the SOA algorithms can serve as the basis for 
an efficient shape parameterization technique. 

presented a deformation approach in the con- 
text of physically based modeling. This approach uses 
physical simulation to obtain realistic shape and motions 
and is based on operations such as translation, rotation, 
and scaling. With this algorithm, the deformation is 
achieved by moving the grid points of a polygon model 
or the control points of a parametric curve and surface. 
Sederberg and Parry45 presented another approach for 
deformation, based on the FFD algorithm, that oper- 
ates on the whole space regardless of the representation 
of the deformed objects embedded in the space. The al- 
gorithm allows a user to manipulate the control points 
of trivariate Bezier volumes. C ~ ~ u i l l a r t ~ ~  extended a 
Bezier parallelepiped to a nonparallelepiped cubic Bezier 
volume. 

Lamousin and Waggenspack47 modified FFD to in- 



clude NURBS definition and multiple blocks to model 
complex shapes. The modified technique has been used 
for design and optimization by Yeh and V a n ~ e ~ ~  and 
Perry and   all in^.^' Yeh and Vance4' developed an ap- 
plication based on NURBS where the user can change 
the shape of a virtual object and examine the effect the 
shape change has on the displacement of the structural 
deformation and stress distribution throughout the ob- 
ject. Perry et al." successfully used FFD algorithm for 
the optimization of an automobile air conditioning duct 
system. 

Hsu et presented a method to directly manipulate 
the object, which creates a more intuitive and trans- 
parent environment for FFD. Borrel and RappoportS2 
presented a simple, constrained deformation that allows 
the user to define a set of constraint points, giving a 
desired displacement and radius of influence for each. 
Each constraint point determines a local B-spline basis 
function centered a t  the constraint point, falling to  zero 
for points beyond the radius. This technique directly 
influences the final shape of the deformed object. 

Multidisciplinary Aero/Struc Shape Optimization 
Using Deformation (MASSOUD) Approach 

Creation of CFD and CSM grids is time-consuming 
and costly for a full airplane model: it takes several 
months to develop detailed CSM and CFD grids based 
on a CAD model. To fit into the product development 
cycle times, the MSO must rely on the parameterization 
of the analysis grids, for which the FFD algorithm is 
ideal. The disadvantage of FFD is that the design vari- 
ables may have no physical significance for the design 
engineers. This drawback makes it difficult to select an 
effective and compact set of design variables. This au- 
thor developed a set of modifications to the original SOA 
algorithms to alleviate this and other drawbacks; the 
modified algorithm set is referred to as MASSOUD.53 - 

MASSOUD is a novel parameterization approach for 
complex shapes suitable for a multidisciplinary design 
optimization application. The approach consists of three 
basic concepts: 1) parameterizing the shape perturba- 
tions rather than the geometry itself, 2) utilizing SOA 
algorithms used in computer graphics, and 3) relating 
the deformation to aerodynamics shape design variables 
such as thickness, camber, twist, shear, and planform. 

The MASSOUD formulation is independent of grid 
topology, and that makes it suitable for a variety of 
analysis codes such as CFD and CSM. The analytical 
sensitivity derivatives are available for use in a gradient- 
based optimization. This algorithm is suitable for low- 
fidelity (e.g., linear aerodynamics and equivalent lami- 
nated plate structures) and high-fidelity analysis tools 
(e.g., nonlinear CFD and detailed FE modeling). The 
report by this authors3 contains the implementation 

details of parameterizing for planform, twist, dihedral, 
thickness, and camber. The results presented were for a 
multidisciplinary optimization application consisting of 
nonlinear CFD, detailed CSM, performance, and a sim- 
ple propulsion module. 

Typically, the optimization starts with an existing 
wing design, and the goal is to improve the wing perfor- 
mance by using numerical optimization. The geometry 
changes (perturbations) between the initial and opti- 
mized wings are very sma11,28~40 but the difference in 
wing performance can be substantial. By parameteriz- 
ing the shape perturbations instead of the shape itself, 
MASSOUD reduces the number of shape design vari- 
ables. Throughout the optimization cycles, the surface 
grid can be updated as 

where F is the baseline grid, R is the deformed (per- 
turbed) grid, is the change (perturbation), and 5 is 
the design variable vector. It takes far fewer design vari- 
ables to parameterize the shape perturbation U than to 
parameterize F itself. 

The MASSOUD algorithm has been used for param- 
eterizing a simple wing, a blended wing body, and 
several high-speed civil transport configurations. The 
algorithm has been successfully implemented for aero- 
dynamic shape optimization with analytical sensitivity 
derivatives with structured grids4 and unstructured grid 
CFD5' codes. In addition to ease of use and imple- 
mentation, MASSOUD has the following benefits: 1) 
parameterization is consistent, 2) the analytical sensi- 
tivity derivatives are available, 3) complex existing grids 
can be parameterized, 4) there is a strong local control, 
5) smoothness can be controlled, and 6) few design vari- 
ables are required. 

Summary of Multidisciplinary Shape Parameterization 
Figure 7 presents a summary and rating of the nine 

approaches surveyed in this paper. There are three rat- 
ings: 1) good (thumb-up), 2) fair (neutral), and 3) poor 
(thumb-down). The summary uses ten criteria that are 
important for multidisciplinary applications of complex, 
three-dimensional configurations. 

Consistent: Is the parameterization consistent 
across multiple disciplines? 

Airplane shape design variables: Are the design 
variables directly related to the airplane shape de- 
sign variables such as camber, thickness, twist, 
shear, and planform? 

Compact: Does the parameterization provide a 
compact set of design variables? 



Fig. 7 Comparisons of parameterization approaches. 

Smooth: Does the shape perturbation maintain a 
smooth geometry? 

Local control: Is there any local control on shape 
changes? 

Analytical sensitivity: Is it feasible to calculate the 
sensitivity analytically? 

Grid deformation: Does the parameterization allow 
the grid to be deformed? 

Setup time: Can a shape optimization application 
be set up quickly? 

Existing grid: Does the parameterization allow the 
existing grid to be reused? 

CAD: Is there a direct connection to the CAD sys- 
tem? 

Field Grid Movement and 
Sensitivity Derivatives 

The parameterization techniques are used to move the 
grid points and geometry of the design surfaces. The 
next step is to propagate the changes and sensitivity 
into the field. The field sensitivity derivatives can either 
be calculated analytically or approximated with finite 

differences. As discussed before, there is some error in- 
volved in the finite-difference approximation that could 
slow the optimization. 

For a CFD calculation, the field (volume) grid may 
contain several million grid points. There are two basic 
techniques to propagate the surface grid-point move- 
ments into the field: 1) grid regeneration and 2) grid 
deformation. 

Structured Field Grid Movement 
Most structured grid regeneration and deformation 

techniques are based on transfinite interpolation (TFI). 
Gaitonde and F i d d e ~ ~ ~  used a regenerating grid tech- 
nique based on using TFI with exponential blending 
functions. The choice of blending functions has a consid- 
erable influence on the quality and robustness of the field 
grid. Soni5? proposed a set of blending functions based 
on arc length that is extremely effective and robust for 
grid regeneration and deformation. =s algorithm has 
been incorporated in most commercial structured grid 
generation packages. 

Jones and Samarehg presented an algorithm for grid 
regeneration and deformation based on Soni's blend- 
ing functions, and they also provided analytical sensi- 
tivity derivatives by using an automatic differentiation 
tool, "ADIC .I1 The method is suitable for a general, 
multiblock, three-dimensional volume grid deformation. 
The idea of volume grid deformation was also used by 
Hartwich and A g r a ~ a l . ~ ~  They introduced two new 
techniques: 1) the use of the "slave/master" concept to 
semiautomate the process and 2) the use of a Gaussian 
distribution function to preserve the integrity of grids 
in the presence of multiple body surfaces. Reuther et 

used a modified TFI approach with blending func- 
tions based on arc length, and they used finite-difference 
approximation to compute the sensitivity derivatives for 
the field grid. 

Leatharn and Chappel159 used the Laplacian tech- 
nique, commonly used for unstructured grid deforma- 
tion, for moving structured grids. They have been suc- 
cessful in deforming structured grids with this technique. 

Unstructured Field Grid Movement 
For unstructured grids with large geometrical changes, 

BotkinGO proposed to regenerate a completely new grid 
at the beginning of each optimization cycle. However, 
for gradient calculations many small changes must be 
made, and it would be too costly to regenerate the grid 
for each design variable perturbation. Botkin has intro- 
duced a local regridding procedure that operates only 
on the specific edges and faces associated with the de- 
sign variables being perturbed. Similarly, Kodiyalam et 
a1.61 used a grid regeneration technique based on the as- 
sumption that the solid model topology stays fixed for 
small perturbations. The solid model topology contains 



the number of grid points, edges, and faces. Any change 
in the topology will cause the model regeneration to fail. 
To avoid such as failure, a set of constraints must be sat- 
isfied among design variables, in addition to constraints 
on their bounds. 

For a dynamic aeroelastic case with unstructured 
grids, Batina62 presented a grid deformation algorithm 
that models grid edges with springs. The spring stiffness 
for a given edge j-k is taken to be inversely proportional 
to the element edge length as 

The grid movement is computed through predictor and 
corrector steps. The predictor step is based on an exist- 
ing solution from the previous cycle, and the corrector 
step uses several Jacobi iterations of the static equilib 
rium equations by using 

where the sum is over all edges of the elements. This is 
similar to a Laplace operator, which has a diffusive be- 
havior. In contrast to its use for dynamic aeroelasticity, 
the previous optimization cycle may not provide a good 
initial guess to be used by the corrector step. 

Zhang and B e l e g ~ n d u ~ ~  proposed a similar algorithm 
to handle large grid movement. The equation for grid 
update is similar to B a t i n a ' ~ ~ ~  approach, 

p e w =  k,@ld , where k, = - 8 ' J 1  ( L O )  
C k m  V '  

J  is the cell Jacobian defined within cell parametric co- 
ordinates, and V is the cell volume. 

Crumpton and found the spring analogy to 
be inadequate and ineffective for large grid perturba- 
tions. They proposed a technique based on using the 
heat transfer equation 

1 
V . { / E , V ( ~ ) }  = 0 where k ,  = 

max(V, 6 )  ' ( 1 1 )  

V is the cell volume, and 6 is a small positive number 
needed to avoid a division by zero. This technique is sim- 
ilar to the spring analogy,62 except that it uses the cell 
volume for k, .  The coefficient k ,  is relatively large for 
small cells. Therefore these small cells, which are usually 
near the surface of the body, tend to undergo rigid body 
motion. This rigid body movement avoids rapid varia- 
tions in 0, thus eliminating the possibility of small cells 

having very large changes in volume, which could lead 
to negative cell volumes. Crumpton and used 
an underrelaxed Jacobi iteration, with the nonlinear km 
evaluated at the previous iteration. 

Summary 
The results of this study are summarized in Fig. 7. 

Traditional shape parameterization techniques are not 
suitable for application to multidisciplinary shape opti- 
mization for complex, three-dimensional configurations. 
At first look the CAD approach appears to be ideal, 
but there are some unresolved issues, such as analytical 
sensitivity, that require more research. In the interim, 
the MASSOUD approach will be useful. Ideally, the 
CAD and MASSOUD approaches can be combined to 
form a powerful parameterization tool for multidisci- 
plinary shape optimization application. This combined 
approach will 1 )  be automated, 2) provide consistent 
geometry across all disciplines, 3) provide analytical sen- 
sitivity derivatives, 4) fit into the product development 
cycle times, and 5) have a direct connection to the CAD 
systems used for design. 
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Abstract 
A new method for extracting accurate stress information fiom reduced order structural and aeroelastic 
models is presented. The method has second order accuracy when approximate reduced order direct and 
adjoint solutions (based on different reduced order bases) are used simultaneously to obtain approximate 
stresses. The method is applicable to both static and dynamic linear analysis. A review of four common 
methods for structural model order reduction (two variants of the mode displacement (MD) method, the 
Mode Acceleration (MA) method, and the Ritz Vector (RV) method) identifies sources of difficulty and 
causes of mors in stress behavior sensitivity calculations. The new method is then presented and its 
relations with the other methods examined. Considerations usedfor selection of the reduced order direct 
and adjoint bases are discussed. A series of static and dynamic test cases is used to assess accuracy of the 
new method in an analysis mode. Accuracy studies of sensitivity calculations follow. The present work 
hopes to contribute to the field of design-oriented structural dynamics in terms of both insight and 
practice. 

Introduction 
Methods for order reduction of mathematica1 models have always been an important part of structural 
dynamics (Refs. 1-5). In early years the need for order reduction was motivated by limited numerical and 
computational capabilities for solving large, coupled, dynamic equations of motion. Today powerful 
computers and sophisticated computer codes are available for modeling and simulation of dynamic 
behavior of systems with hundreds of thousands of degrees of freedom. Still, when design o~timization, 
rather than just a single analysis, is involved, even these powerful tools lead to considerable 
computational costs and times. The need to solve, as the design evolves, tens of thousands of equations 
repetitively, over time, including their sensitivities with respect to design variables, is still a formidable 
task. 
Even in the linear static structural analysis case, when design optimization is involved, it is still 
demanding computationally to carry out large numbers of detailed analyses with static models tens or 
hundreds of thousands of degrees of fieedom large. In the case of linear static aeroelastic analysis (Re&. 
6-7) a structural stiffhess matrix (which, in the case of finite element methods, is banded and sparse) is 
modified by an aerodynamic stiffhess matrix, which is usually fully populated. The resulting combined 
structures-aerodynamic matrix does not have the sparseness and small bandwidth of the purely structural 
stiffhess matrix. As a result, even with smaller numbers of equations (hundreds to few thousands) the 
computational cost of solving static aeroeIastic problems and obtaining sensitivities of static aeroelastic 
behavior can be considerable. 
An examination of order reduction methods in structural analysis reveals a wide selection of methods for 
a variety of applications. Order reduction methods include, among others, the well known Guyan 
reduction (Ref 8), Ritz functions (Ref 9), substructure synthesis (Refs. 10- 12), Lanczos coordinates 
(Refs. 15,14), and Rrtz vectors (Refs. 15-18), to name a few. The importance of order reduction has 
been well recognized for nonlinear structural analysis (Refs. 19,20). Modal order reduction methods, the 
cornerstone of structural and aeroelastic dynamic analysis, have also been used for static aeroelasticity 
(Ref 2 1) and buckling prediction (Ref 22). 
Common to all these methods is the search for a group of reduced basis vectors (reduced order set of 
deformation shape functions) superposition of which will lead to accurate enough results, while reducing 
the order of the resulting model as much as possible. The difficulty with all displacement based finite 
element or Rayleigh-Ritz formulations is that it is much harder to obtain accurate stress results from a 
reduced order model than just deformations or deformation related entities such as natural frequencies 
and mode shapes. With a set of modes which can capture the deformation with satisfactory accuracy, 
differentiation of approximated deformations to  obtain strains and stresses can lead to large stress 
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errors. Additional difficulties with order reduction methods arise in cases with concentrated loads, and 
cases in which sensitivity of structural behavior with respect to design variables of local nature is sought 
(Refs. 23, 24). 
It is the purpose of this work to present a new method for extracting accurate stress information from 
reduced order structural and aeroelastic models. The method is applicable to both static and dynamic 
linear analysis. In the following four common methods for structural model order reduction are 
reviewed: two variants of the mode displacement (MD) method, the Mode Acceleration (MA) method, 
and the Ritz Vector (RV) method. The new method is then presented and its relations with the other 
methods examined. A series of static test cases and dynamic test cases is used to assess accuracy of the 
new method in an analysis mode. Accuracy studies of sensitivity calculations follow. It is hoped that the 
present work will contribute to the field of design-oriented structural dynamics in terms of both insight 
and practice. 

Order Reduction Methods in Structural Dynamics 

Mode Displacement method 

In the Mode Displacement (MD) method (Refs. 1-5 and Ref 25, pp. 298-301) the original structural 
dynamic equations of motion 
[ ~ @ ( t ) }  + [cKLi(t)> + [~l{u( t ) l=  {F(t)l (1 
with n degrees of fieedom, are reduced in order by using a subset of triodes (deformation shape vectors) 

{urn (4 = [{@J7{@2 }7.---.{#~}]{4(t)l = ~@lk(f)> (2  
The number of mode shape vectors used is N, and the dimension of the [@I matrix is, thus, n x N. The 
stress in a particular point on the structure is obtained h m  the displacement vector by 
0 = (cIT (4 (3 
The (c j  vector contains only a few non-zero entries if the finite element method is used. These non- 
zero entries are associated with the degrees of freedom of the nodes connected by the element in which 
the stress is evaluated. 
In the mode displacement method, then? the order of the problem is reduced by introducing Eq. 2 into 
Eq. 1, and pre-multiplying Eq. 1 by [@I . The result is a set of N differential equations 

[@lT[~l[@R;i(t)1 + [~'[cl[@Nq(t)}+ l@lT[~1@Kq(t)1 = [@lT{~(t)l (4 1 
which are solved (with given initial conditions and excitation force) for the generalized displacements 
(q( i)) .  Approximate ("reduced order") stresses are calculated by using Eq. 2 in Eq. 3 leading to 

0, = {dT[@l{q1 ( 5 )  
In the most common application of the MD method, the deformation shape vectors used are the natural 
modes of vibration of the structure - the eigenvectors of the problem 

[MI- ~ ' [ M I K ~ I  = 101 ( 6 )  
corresponding to the lowest N natural frequencies. With this choice of reduced basis vectors the Mode 
Displacement method is known to lead to inaccurate stress results, especially when concentrated forces 
are involved. When sensitivity of stresses with respect to sizing type design variables is required, 
accuracy of the MD method is even poorer, and the rate of convergence of results (as the number of 
modes is increased) is slow (Ref 25). 

It  has long been recognized that a major reason for the loss of stress accuracy in the MD method is 
due to the reduction in order of the stiffnsss matrix fiom (4 into [@I~[KI@] . A similar loss of 
accuracy of stresses is encountered in the static problem if the full order static problem 
[KKu) = ( F }  (n x 1) (7) 



where {F) is a static force vector, is reduced in order, using natural modes (Eq. 2), to yield 

[ @ l T [ ~ I @ X q 1  = [@lT{~l (Nx  1) (8) 
and (where r.0. denotes reduced order solution) 

( .)KO = [@Xd ( 9 )  

0, ,,. = IclT[@X91 (10) 
By examining the static case it becomes clear that another reason for the loss of accuracy in the reduced 

order model is the projection of the load vector { P )  onto [@Y{P}. If the load vector represents 
concentrated forces and excitation action of localized nature, then, the pre-multiplication by the 
transpose of the modal matrix leads to errors due to "smearing" of this localized action over the 
structure. 

Mode Acceleration Method 

The Mode Acceleration method (MA) (Refs. 1-4,26,27) is based on the observations outlined above. It 
relies on the modally reduced order dynamic equations (Eq. 4) for displacement approximation, but for 
stress recovery the full order stifiess matrix is used. Eq. 1 is rewritten in the form 

[ ~ K u ( t ) l  = - [MKii(t)) - ~ l { ~ ( t ) )  (1 1) 
and then the velocities and accelerations on the right hand side are replaced by their reduced order 
approximations from the MD solution of Eq. 4: 

[ ~ X ~ * ( t , l  = I ~ ( t ) l -  [~1[@1{~(4) -[cN@1(4(f)l 
The effect is to create a time dependent right hand side load vector based on the reduced order model of 
Eq. 4, but solve for new displacements based on the static full order model, from which stresses will be 
later extracted: 

0, = {c}'{u*I (13) 
Eq. 1 1 captures the external load vector {F(r)) fully. The dynamic loads on the right hand side of Eq. 1 1 
due to inertia and damping, being distributed in nature in most structures (rather than concentrated), can 
be captured well using reduced order results, provided enough modes are used in the reduced order model 
to cover the fiequency content of the excitation and response vectors {F(r)) and ( u ) .  

Ritz vectors and "fictitious mass" modes 

Because low fiequency natural vibration modes of common aerospace structures involve motion of the 
whole structure in some form (while patterns of inherently local motion are more typical of high 
fiequency modes), it is no wonder that the MD method cannot capture local behavior accurately when 
Iow-frequency modes are usedfor order reduction. Based on this observation the Ritz vector (Refs. 15- 
19) method for order reduction was developed to generate deformation shape vectors capable of 
capturing structural response to loading of local nature. This is done by loading the structure with static 
loads reflecting the spatial distribution of the actual loading, and, then, augmenting with static 
deformation shapes due to loads reflecting the inertia distribution in the structure. Based on the same 
observations, the method of "fictitious masses" (FM) had been developed (Refs. 28-31), in which not 
the natural modes of the structure are used for order reduction, but, rather, the modes of a related 
"fictitious" structure. In this fictitious structure, the original structure under consideration is loaded with 
a set of very large concentrated masses at key degrees of freedom. The resulting mode shapes now 
contain information reflecting higher weighting on local inputs and outputs in the areas where these 
large masses are added. Actually, when fictitious large masses are added to a small number of degrees of 
fieedom in a structure, the corresponding set of lowest-frequency mode shapes tends to span the same 
subspace spanned by static deformation shapes due to concentrated forces at these degrees of freedom 
(Ref 23). The masses are fictitious, because they are only used to create shape vectors for the order 



reduction process. Order reduction itself, with the fictitious mass modes, is carried out with the original 
structure (Eq. 4). G e n h e d  mass and stiflkess matrices in this case are not diagonal any more, but with 
the resulting low order model, integration of Eq. 4 can still be done orders of magnitude faster than the 
full order analysis. In aeroelastic analysis, when aerodynamic generalized force matrices are not 
diagonalized anyway with any structural mode shapes, the replacement of the actual mode shapes of the 
structure by FM mode shapes or any other mode shapes makes little difference in terms of computing 
time. 
Results of solving the dynamic reduced order equations (whether natural modes of vibration, Ritz 
vectors, a mix of Ritz vectors and modes of vibration (Ref. 19), or fictitious mass modes are used) can, 
of course, all be used in a subsequent mode acceleration (MA) step to obtain accurate stress information. 
The thrust behind the Ritz vector and FM methods is to get good stress information directly fkom the 
reduced order deformation approximation (Eq. 5) without the need to use the MA step. Thus, in most 
applications of the MA method, it is used to improve stress accuracy when the dynamic equations of 
motion are reduced by using natural modes of vibration. 

Structural order reduction and behavior sensitivity analysis 

The full order structural behavior sensitivity equation in the static case is (Ref 25) 

(14) 

If the load vector does not depend on the structural design variables ( {z} = 0 ), and if sizing-me 

design variables, x, (Ref 25, p. 239) are considered, this equation contains a right-hand-side which has 
the nature of a vector of forces applied to the structure locally. Because individual sizing type design 
variables in typical finite element models affect only the element they belong to, the vector 

{?}Iu) contains non-zero entries only in degrees of freedom associated with a single element. The 

sensitivity vectors {g} can, thus, be viewed as BspIacements due to concentrated local loads, aud the 

set of mode shapes used in order reduction (Eqs. 8-10) for sensitivity analysis has to be created 
accordingly to capture these local effects (Ref 23, 24 and 25). 
Using ktz vectors or fictitious mass modes to obtain a reduced order model capable of capturing both 
analysis and sensitivity responses accurately is problematic. To load the structure (in order to generate 
the deformation response vectors) with concentrated forces or fictitious masses at the degrees of 
fieedom loaded by the actual input forces might be practical if these local inputs are s m d  in number. I f  
sensitivities are involved, we now need to load the structure with concentrated forces or fictitious masses 
at all degrees of fieedom affected by each design variable. This will lead to a large number of 
deformation shape vectors for the reduced basis, resulting in a large reduced order model. Indeed, the 
realization that "fictitious mass" modes lead to inaccurate reduced order sensitivity results motivated the 
improvement of fictitious mass reduced order bases by the addition of vectors representing changes in 
deformation response due to changes in design variables (Ref 3 1). 

The Adjoint Method for Static Stress Analysis and its order reduction 

Equation 3 for obtaining stresses fiom displacements can be, in the static case (Eq. 7) for a restrained 
structure, written in the form 

CT = (cy .(K' - { F } )  = { $ H F }  (15) 



where {u} = [KI' - {F), and the static adjoint vector is defined by 

frllT = {c}' - [K]-I ( 1  6)  
leadin (due to the symmetry of [K] ) to  
[ K X ~  = {cl (17) 
The adjoint method is widely used in optimization when the number of constraints is small (Refs. 25, 
32,33). In the case of Eq. 17 here an adjoint vector is associated with each evaluated stress. Because the 
vector (c) in a typical finite element application contains non-zero terms only at a small niunber of 
degrees of fieedom (associated with the element involved) Equation 17 represent a case of "adjoint" 
static loading involving "local action" in the form of equivalent concentrated forces and moments at 
these nodes. 
Can a mode displacement (MD) type method be used to reduce the order of the adjoint static problem, 
in a manner similar to MD order reduction of the static direct problem? The challenge here is to find a 
reduced basis 

fIII = [ Iw,XIvZl7 . - . -? I~ ,~I{~I  = [YKPJ (18) 
so that the reduced order static adjoint problem 

I Y ~  [ K X ~ K P I  = I ~ I ' I ~ }  
c ~ r . o ,  = {a0.)'l~l = blT[WTI~1 (20) 
will lead to accurate approximate stresses (the index A denotes stress fiom adjoint formulation, and r.o 
denotes reduced order solution). 
Because of the local nature of the loading represented by the ( c )  vector, it is quite clear that to use the 
natural modes of the structure (portraying global behavior in the lower frequency modes) will lead to  
large errors. Two options suggest capability to capture the local behavior at the stress evaluation points 
with a reduced basis: Ritz vectors (solutions of the static adjoint equation (Eq. 17) with the (cf  right 
hand sides associated with the required stresses), or fictitious mass modes (where the structure is loaded 
with fictitious masses at the degrees of fieedom corresponding to the non-zero entries in the ( c )  
vectors). Recall that in most applications of the fictitious mass method to the direct problem, fictitious 
masses were added to the points where concentrated forces acted and not to points where stresses were 
evaluated. In Ref. 29 fictitious masses were added at stress points, but only in a way to generate rigid 
body motions of sections of the structure for loads calculation purposes, not for the order reduction of 
the structural model itself. 
In the case of reduced order adjoint method based on static Ritz vectors, Eqs. 19, and 20 can lead to  
exact results if the [Y] matrix is used for the same structure on which it was created. The reduced order 

- - 

results are approximate if a reference structure is used to create the reduced basis, and then this reduced 
order basis is used to reduce the order of different structures (evolving fiom the reference structure in 
the course of optimization). 

The second order approximation 

Examine the &ll order direct problem, Eq. 7, and associated reduced order direct problem, Eqs. 8,9. The 
full order adjoint problem, Eq. 16, has a reduced order associated adjoint problem, Eqs. 18,19. Now, the 
full order stress at some point is given by 

0 = {clTIul = I I I J T { ~ l  (21) 
and the error associated with the direct reduced order problem based on mode displacement is 

60, = 0 . m . K .  - 0 = {cIT{W (22) 
where 

{b} = {ur.o,}- Iul (23) 



Similarly, the stress error associated with the reduced order adjoint method is 
6 0 ,  = oAr,,. - ~r = { S r l I P I  (24) 
where 

We can substitute Eq. 7 into Eq. 24 to yield 

60, = o,,, - = I&I{FF)= I G ~ ~ I ' [ K K ~ I  (26) 
similarly, Eq. 22 combined with Eq. 17 lead to (K is symmetric) 

&D = 0h0.r.o. - 0 = {c}'{&) = {rl}T [ K H s ~ )  (27) 
Examination of Eqs. 26 and 27 suggests the following way for obtaining an equation for the stress which 
will have second order accuracy. Consida the expression { l I } T [ ~ X u ) .  If instead of full order ( u )  and 

{ q }  we use approximate vectors based on reduced order direct and adjoint solutions, then, the 
approximate expression can be written in terms of the full order expression and error terms as follows: 

(28) 
{qr.o.}[Kl{~r.o.} = Iq + ' v I [ K X ~  +&I = I t l I T [ ~ X u l  + { ~ r ) } ' [ ~ K u l  + I ~ I I ' [ K X & I  + I ' t lXKKhI 
The first order error tenns of Eqs. 26 and 27 can be easily recognized. If Eq. 28 can be subtracted from 
the sum of Eqs. 26 and 27, a second order error term will result. A new expression for stress in terms of 
direct and adjoint solutions can now be constructed (Refs. 34,35). 

0 = { V I T { ~ I  + I c I T { ~ l  - I I I ~ [ K I { u I  (29) 
lf the static full order direct { u )  and adjoint (77) solutions are replaced by approximate solutions (with 

errors, {6u) and (SV} 1, 

then, the error in stress obtained by Eq. 30 is of second order. 
Similarly, the following expression for stress, based on direct and adjoint solutions, also has second order 
accuracy: 

This can be shown by taking the first order variation of the following equivalent of Eq. 3 1 : 

.{V } ' [ K K ~ I  = ( I c l T { ~ 1 ) ( { r ~ l T  { F I )  (32) 

Substituting Eq. 3 1 into Eq 33 and multiplying by { q r [ ~ x u ) ,  and then, using Eqs. 3,7,15,17 and 2 1 
leads to 
60=0 (34) 
The first variation of the stress, obtained using Eq. 3 1, is zero. It is straight forward to show, then, that 
Eq. 3 1 is 2nd order accurate. 

Implementation of Reduced Order Second Order Stress Evaluation for Static Structural 
Analysis 

Approximation-Concepts based Structural Synthesis (Ref 25, pp. 209-254) follows a strategy in which a 
small number of detailed analyses of a system to be optimized are used to construct robust, 



computationally fast approximate analyses. These numerically inexpensive approximations are, then, 
used to communicate with the optimization algorithm used to search for an optimal design satisfying all 
constraints. 
Consider a baseline linear elastic structure, represented by a stifiess matrix [ KO ] and a mass matrix [ 
Mo 1, with a full order model of n degrees of fieedom. Let it be loaded by NL load cases, represented by 
the right hand side vectors {F;},{&}, . . . { F , ) . . . { F ~ ~ ) .  The number of stresses to be evaluated is Nu.  
Stress number s is obtained fiom the deformation vector (uf  (Eqs. 7, 2 1) using the vector {c,). There 
are, thus, N, vectors {c,},{c,}, --, {c, }, -.{cNU}. 
In the course of sizing type design optimization the topology, geometry, boundary conditions, and 
many times, the load cases remain unchanged. What does change are the thickness and cross sectional 
areas of structural elements, such as skin or web elements, and rib and spar cap elements in typical 
aerospace thin walled structures. Based on the baseline structural model, we want to create reduced basis 
matrices [a] and [Y] for reducing the order of the analysis problems when the structure is modified by 
changing sizing-type design variables. 
The following procedure is examined for design-oriented reduced order stress analysis of static linear 
structures. First, a baseline (reference) structure is used to obtain reduced basis matrices for the direct and 
adjoint problems. For the direct problem, a reduced order basis can be formed using (A) the lowest 
frequency natural vibration modes of that structure 

[ [ K O  I -of [ M O  N@i) = I01 (35) 
or, alternatively, (B) the natural vibration modes of a modified reference structure, where large 
"fictitious" masses (Ref. 28) are added at the degrees of fieedom loaded by the largest concentrated 
forces in the load vectors 

[ [ K O ]  - @ F M i 2 [ ~ 0  + ~ J ? b 4 1 ] { # F M i }  = {'I (36) 
Two other alternatives include (C) Ritz vectors (Ref 15), and (D) a combination of Ritz vectors (based 
on the loading vectors) and natural mode shapes (Ref. 19). The result is a matrix [a] for order 
reduction of the direct static problem. 
For the stresses required prepare a set of reduced basis vectors for the matrix [Y] . Each stress is usually 
associated with a small number of degrees of fieedom - those connected by the element in which the 
stress is calculated. Alternative sets of {w} vectors include (a) the same vectors as in the [a] matrix 
used for the direct problem. Also there are two sets of vectors more capable of capturing local behavior 
in the area where stress is calculated: (b) for each stress required, a set of "adjoint" Ritz vectors 
corresponding to reference static solutions with unit loads applied one at a time to the degrees of 
fieedom corresponding to the non-zero entries in the {c) vector used for this stress; (c) a set of 
vibration modes of the reference structure loaded with fictitious masses at the degrees of fieedom 
associated with the required stresses. It becomes clear, then, that when many stresses are required, there 
is a need to solve static problems with many right-hand sides (corresponding to all the (c) vectors 
involved, or h d  modes of the structure with fictitious masses at many degrees of fieedom. The second 
order approximation, then, is most effective when a relatively small number of stresses are calculated. 
However, in the context of optimization, even if a large number of stresses is requ~red, the { y }  vectors 
are generated only once, at the beginning of the optimization, and they are then used to reduce the 
order of the structure for all structures evolving throughout an optimization step. 
For structures obtained fiom the reference structure by changing any sizing type design variables, let the 
s t iaess  matrix be [a, and mass matrix [MJ. A reduced order direct problem is now generated using (Eq. 
8) 



with reduced order approximation of ( u )  ( {ur , , }  = [axq}). The number of right hand sides is equal to 

the number of load cases. 
A reduced order adjoint equation is now created (Eq. 19) for the reduced order approximation of the 

adJoint vector ( {11,., .) = IylIpJ 
[ y r  [ K I ~ K P I  = [ ~ l T { c 1  (38) 
If the same [Y]  matrix is used for all stresses, then, Eq. 38 is solved for No right hand sides, each 
corresponding to one of the calculated stresses. More right-hand sides per stress point can be used in the 
form of unit loads on all degrees of fieedom of the element containing the stress point. Alternatively, a 
different [Y]  matrix can be used for each of the required stresses. In that case, Eq. 38 leads to No 
equations, each with its own single right hand side. 
The second order mess expression (Eq. 30) can now be used for the evaluation of each stress in each 
load case 

US.,, = { q r . o . l T { ~ l  + ('IT {u~. , . )  -{rlr.,. l T [ ~ ~ ~ r . . . l  (39) 
Note that if we choose [Y]  =[a] ,  Eq. 39 loses its second order nature. This can be shown by 

substituting {ur.,.1 = [axq} and {q,,,,} = [Y]Ip} into Eq. 39 and using either Eq. 37 or Eq. 38. 

Static sensitivities using reduced order models 

In the case of reduced order direct problem, using fixed modes (Re&. 25,36) and assuming fixed external 
loads, differentiation of Eq. 8 with respect to a design variable x, leads t o  

T dK 
[ ~ I T [ K I ~ I { ~ }  = - [ ~ I T { $ } ~ Q I { ~ I  = +I {m}{r.o. l  (40) 

Then 

and the derivative of a first order mode displacement (MD) stress is 
T 

d o ,  h r . 0 .  a4 a c T  - an = ~ c I T { ~ }  + {$} { ~ r . ~  = {'IT + {z} [aKql  

In the case of the adjoint problem, using a fixed r e d u d  basis for order reduction, differentiation of Eq. 
1 9 with respect to a design variable x leads to  

sensitivity solution associated with a particular stress is now 

(44) 

The derivative of the approximate stress obtained by the adjoint method is (assuming fixed external 
loads) 

In the case of the second order approximation, the sensitivity of a stress with respect to design variable 
x is (Eq. 3 9) 



using Eqs. 41 and 44 in Eq. 47, we get 

-- dq-o.A - {ZJT - ([mlr(P) - [.PJT[ K J [ ~ ~ ~ R  
h 

Note that if the {c) vector is independent of sizing type design variables, and if we use the same reduced 
basis vectors for the direct and adjoint methods ([Y] =[@I), then, based on Eqs. 37 and 38, Eq. 48 
yields 

ax 
(49) 

We can also use the following sensitivity equation 

(*)- - iP l r [~ r [$ )mx. i l  
This is obtained from Eq. 48 when the reduced order equations in the terms multiplying the derivatives {z} ,{:I are assumed to vanish in some approximate ray .  

A full order stress sensitivity equation based on combined, direct and adjoint solutions 

Equation 49 is similar to the stress sensitivity equation, when both direct and adjoint solutions of the full 
order problem are used. We start with the direct stress sensitivity (assuming (F) and {c) independent of 
design variables) and use Eq. 16 and the full order sensitivity of the direct problem 

(51) 

to obtain (Ref 3 7) 

Consider a case involving NL load cases, No required stresses, and NDv design variables. If the direct 
method is used, Eq. 7 has to be solved for NL right hand sides corresponding to all load vectors, and, 
then, Eq. 5 1 has to be solved for NDv right hand sides for each load case. That is a total of (NDv + 1) x 
NL right hand sides for the 111 order direct method. In the case of the full order adjoint method (Eq. 17) 
there are N,  right hand sides for the analysis problem. The sensitivity equation requires solution of 



for each stress required and each design variable. Sensitivity analysis of the full order adjoint equation 
requires No x NDv right hand sides, adding up to a total of (NDv + 1) x No for the adjoint method. 
In the combined direct - adjoint method (Ref 37), as seen in Eq. 52, only NL right hand sides for the 
direct analysis equation plus No right hand sides for the adjoint fidl order solutions are required adding 
up to a total of (h7, + N 3  right hand sides. 
If a few displacements constraints on the structure are also required, then, similar to stresses, their 
sensitivities can be evaluated by Eq. 52, using adjoint solutions with proper ( c }  vectors. Each of these 
additional (c) vectors will contain zero entries except for a unit entry in the degree of fieedom where 
displacement is required. 

Dynamic Response 

The mode displacement (MD) method in the case of dynamic response has already been discussed above 
(Eqs. 4 and 5) 

t S T l ~ l ( @ ~ 9 ( ~ ) l + t Y T t ~ I [ ~ ~ 9 ( f ) l + t ~ ' I ~ I @ ~ q ( ~ ) ~  = t@lT{~(t)l  (54) 
which are solved (with given initial conditions and excitation force) for (q(t)). Approximate ("reduced 
order") stresses are calculated using 

0, ct) = I~ ' I@I{~}  (55) 
Note that the choice of mode shapes can, again, be the natural modes of the original structure, or 
fictitious mass (FM) modes, with large concentrated masses placed at the degrees of fieedom where 
"local action" takes place. 
Dynamic adjoint equations can be formulated (Ref 25 pp. 299-301) then reduced in order, integrated in 
time, and the dynamic reduced order adjoint solution used (together with the direct reduced order 
dynamic solution) to construct a second order dynamic stress approximation. The computational cost 
of t ihe integration, even in the case of reduced order models, makes it undesirable to solve a large 
number of dynamic adjoint cases for the many ( c }  vectors associated with all required stresses. Instead, 
the insight gained to this point regarding stress-oriented order reduction of the static problem can be 
used to obtain reduced order dynamic stresses based on the Mode Acceleration (MA) method as follows: 
Stress recovery in the MA method is based on the solution of a full order quasi-static problem with a 
dynamic right hand side (Eqs. 3., 4, 12, 13). The static adjoint (Eqs. 19, 20) can, then, be used together 
with the dynamic Mode Displacement direct solution (q(1)) to obtain either a quasi-static adjoint or a 
second order approximation. 
In the quasi-static adjoint method, the Mode Displacement deformations (Eq. 4) are used to create a 
dynamic pseudo load (right hand side) for Eq. 20. Static reduced order adjoint solutions of Eq. 19, can 
now be used to calculate approximate stresses by (56) 
o,,.,, = {qr.,lT I F O )  - [cI[@I{~I - [M~[@I{~I}= w T [ y ~ ' { ~ ( t )  - MI@I{~I - [MI~@I{~II 
A second order approximation for the dynamic cases can also be constructed, based on Eq. 30) 

0, = {~I,.,.I~{F(~) -[a @I{@- ~MI~@I{~}I + {c~~{~,.,.(t)} - { t l r . o . J T ~ ~ ~ { ~ r , o ( ~ ) j  = 
(5 7) 

( P ) ~ [ ~ I ' { F ( ~ )  - - [Mlf @I{# + {~]~[@Yq(t)) - {P]~L'W[KI@Y~(~)J  

In Eq. 57 the dvnamic Mode Displacement reduced order solutions (corresponding to different load 
cases) {q(r)) are used together with the adjoint solutions (p) (corresponding to different stresses). 
Since in the MA method the quasi-static problem (Eq. 12) is solved with the full order stifiess matrix 



for all time steps (right hand sides), and since in the approximate reduced order methods presented here, 
this problem is solved in reduced order, considerable computational savings can be materialized. 

Stress Sensitivity in the Dynamic Cases 

For Mode Displacement dynamic deformations, differentiation of Eq. 4, with respect to a sizing type 
design variable x, using fixed modes and assuming an excitation force which does not depend on the 
design variables, leads to 

ax 

with zero initial conmtions on {&},{A}. 
ax ax 

Design sensitivity of MD dynamic - stresses is obtained from: 

For Mode Acceleration dynamic stresses, assuming invariable external force vectors (F(r)), and fixed 
modes, solutions of Eqs. 12, 58 are used to yield the sensitivity of dynamic displacements and stresses: 

(60) 

For quasi-static reduced order adjoint dynamic deformations we use the solutions of the reduced order 
static adjoint problem (Eq. 19) together with the dynamic pseudo load of Eq. 12, the static sensitivities 
in Eqs. 43, 447 and the dynamic sensitivities of Eq. 58: 

using {u,,) = [<P]{q(t)) Eq. 62 can also be written as 

Finally, with the reduced order static adjoint solutions (Eqs. 19, 43) and the dynamic reduced order direct 
solutions in Eqs. 4 and 58, an analytic sensitivity equation for the second order approximate stresses can 
be obtained, by differentiating Eq. 30: 



Using the static reduced order adjoint and the dynamic MD direct solutions, analytic sensitivity of the 
second order stress approximation can be written in the form: 

T 
h r . 0  dii ( t )  dK {,} tKI{urO(tI} - { q r O } ' [ ~ ( = }  { ~ ~ . ~ } ' [ ~ ) ~ ~ . ~ ( t ) )  

W i l e  the reduced order adjoint solutions, @},{$) are static. the reduced order direct solution 

{ql,{$} are time dependent and me obtained fiom a mode displacement simulation. Both 

approximate direct and adjoint solutions are obtained using reduced order models, with much less degrees 
of fieedom than the fill order model, or the MA method using the full order quasi-static solution. 
Computer implementation of the sensitivity equations presented above will take advantage of the 

sparsity of [w, and [K] and the small number of non-zero elements in 
dM dK 
[-j-][z] a d  [$I. Many 

of the vector and matrix products in the reduced order equations can be prepared once for a reference 
structure, and then used in the course of optimization for generations of structures obtained by large 
variations of sizing type design variables. While some of the reduced order sensitivity equations might 
look long and time consuming, they actually involve vector and matrix products of low dimensions. 
Given the localized nature of stifkess and mass matrix sensitivities and the low order of the reduced 
order vectors, it is believed that significant computational savings can be realized. To precisely assess 
these savings depends on the actual implementation of the methods, the type of design variables and 
structures involved, and is beyond the scope of this paper. For the assumptions and approach used to 
study computational performance of sensitivity analyses in the case of structural dynamic response the 
reader is referred to Refs. 38-40. In the work reported in these references a number of methods were 
considered including mode displacement and full order mode acceleration (where "full order" relates to 
the static solution). To make the study general, so that it would apply to general finite element code 
implementation, the work in Refs. 38-40 is based on finite difference techniques to obtain derivatives of 



system matrices with respect to design variables. In the work reported here, all sensitivities were 
obtained analytically. 

Test Case 

While the methods presented here apply to both purely structural and aeroelastic problems, the focus of 
this study is on the structural aspect. The structural model chosen is that of a model wing structure, for 
which anal-c as well as experimental results for stresses under loading are available. Of major concern 
is, of course, the accuracy of predicted stresses and stress sensitivities with the different reduced order 
alternatives. This accuracy is evaluated using a fixed-modes approach in all cases, where the mode 
shapes and adjoint vectors are evaluated on some reference "base" structure. The same basis vectors, 
then, are used to reduce order of structural models whch are modified to various degrees compared to  
the base structure. 
This is aimed at evaluating the adequacy of a base structure, and approximations based on its properties, 
for constructing reduced order approximations of related different structures, representative of the 
changes the structure undergoes in the course of design optimization. 
Only sizing type design variable changes are considered here. In addition, accuracy of reduced order 
stress approximations is evaluated for anal-c stress sensitivities with respect to sizing type design 
variables. The stress sensitivities serve, in the context of gradient-based structural and aeroelastic 
optimization, to construct first order approximation of stress constraints, to be used by the 
optimization algorithm for fast evaluation of the constraints (Ref 25, pp. 209-254). Both static and 
dynamic response cases are considered. 
This wing, known as "the Denke wing" (Ref 4 I), is an all aluminum 45 degrees swept wing, with an 

n 

aspect ratio of 5 and a depth to chord ratio of 0.35 (Fig. 1). The chord length is 12& . The half span 
#f 

(fiom root to tip) is 30& . There are four internal ribs and a tip rib present along with the fiont and 
rear spars. The ribs are arallel to the root and are evenly spaced spanwise. The material properties are ? - taken to be: E = 10x10 PSI, v =  0.3 , and p = 0.000259 1bm/in3: Thickness for aIl wing skin panels 
is 0.032". Thickness for spar and rib web elements is 0.051". Front and rear spar cap areas are 0.371 
square inches, and all remaining stingers have an area of 0.06 1 square inches. 
In the finite element model skin panels, spar webs and rib webs have all been modeled using plane-stress 
4-noded isoparametric elements. Truss elements were usedfor spar caps and stringers. The wing mesh is 
refined by using one "dummyn rib (Ref 42) between each pair of real ribs. This mesh leads to good 
correlation of calculated stresses with respect to experimental stresses measured on this wing. Figure 1 
shows coarse and rehed  numerical meshes for the wing. The wing is cantilevered at the root, and the 
total number of degrees of fieedom in the full order finite element model is 300. 
Two static and one dynamic load cases were studied. The first load case (Load Case #I) is designed to  
simulate a wing loaded by a distributed aerodynamic load plus concentrated loads due to engine 
attachment. Forces of 100 lbseach are applied to all nodes on the upper skin of the wing pointing up. 
Three 60 lbs concentrated forces are applied along the second real rib, pointing down. 
Load Case #2 includes a concentrated force of 100 Ibs at node #33 (Fig. 1). Load Case #3 is a 100 Ibs 
concentrated step load applied at trO at node #33, for dynamic response simulations. 
The following stresses were used for accuracy studies: 
1. The normal force at spar cap number 5 (Fig. 2). 
2. Normal stress (in the local xx direction) at skin membrane number 7 (Fig. 2). 
Normal stress (in the local xx direction) at spar webnumber I (Fig. 2). 
Modified stif&ess matrices, reflecting changes in the structure from its base design, were calculated for 
the following cases (Fig. 2): 
1. Variation of spar cap areas by factors of 0.2, 0.5, 0.8, 1.3, 2.0 and 5.0. The elements were modified 
by groups of 10, along the span direction. This way, we can examine the effect of structural 



modification on a given stress point, where the modification is at different distances fiom the stress 
point. 
2. Variation of skin membrane thickness by factors of 0.2, 0.5, 0.8, 1.3, 2.0 and 5.0. Again, the 

modification is done one group at a time for groups of 8 membrane elements at different locations along 
the span. 

Static Results 

In Figures 3-4, (Load Case #1) the relative stress error for different reduced order approximations is 
shown for selected structures which are modified variants of the base structure as a function of the 
location of the group of elements modified. The following procedure was followed in creating the data: 
The 111 order problem for the nominal (base) structure was solved. Mode shapes, natural frequencies, 
and Ritz vectors were obtained. The Ritz vectors in this work are the static full order solutions (Eq. 7) 
corresponding to point loads at degrees of freedom affected by the ( c )  vector corresponding to each 
stress 
The structure was, then, modified to reflect changes in area or thickness of a group of design variables. 
A new stifhess matrix was created, followed by 111 order static solution, as well as reduced order Mode 
Displacement (MD) approximation, and reduced order adjoint approximation. The mode shapes and 
adjoint Ritz vectors used for order reduction were those of the original unmodified structure. 
Next, stresses were calculated using the exact static solution as well as the MD method, adjoint method, 
and new second order approximation method. In the second order approximation, approximate reduced 
order MD and adjoint deformation vectors were used, together with "exact" unmodified (c}, ( F }  vectors 
and a full order [fl matrix. The stress approximation errors were then calculated for the reduced order 
approximate methods relative to the full order "exact7' results. 
This procedure was repeated for design variations in different groups of elements, and for different 
stresses. 
For Load Case #2, additional reduced order stress results were obtained using a variant of the MD 
method, with "fictitious mass" modes instead of natural modes of the original base structure. The large 
concentrated mass in this case was added to the degree of fieedom where the concentrated force is 
applied. A concentrated mass four orders of magnitude bigger than the average physical element size was 
used. Another order reduction method tested in Load Case #2 was the combined Ritz vectors - mode 
shapes reduced base method of Ref 1 9. 
For Load Case #1, Figures 3-4 show stress errors with reduced order approximations for two levels of  
structural change from the original structure (factors of 0.5 and 2.0). 
Accuracy of the stress at spar cap number 5 (Fig. 3) is shown versus the group identity defining the 
group of spar cap and stiffener elements being changed (Fig.4). Three mode shapes and 6 adjoint Ritz 
vectors were used. The 6 adjoint Ritz vector are due to unit loading of each of the 6 degrees of freedom 
of the two nodes defining the truss element representing spar cap number 5. 
In Figure 4 (Load Case #I), stress errors are shown for skin membrane number 7 (Fig. 2), and the 
structural elements modified in groups are skin membranes at different locations along the span. In this 
case, three mode shapes and twelve Ritz vectors were used. The 12 adjoint Ritz vector are due to unit 
loading of each of the 12 degrees of freedom of the four nodes defining the quadrilateral element 
representing skin membrane number 7. The large errors in the MD method, especially when the 
elements changed are in the region close to the stress point, are evident. The adjoint reduced order 
method performs much better. Yet, when changes in the structure are in the area of the stress point, this 
performance deteriorates. The second order approximations shows excellent accuracy independent of  
where structural changes are introduced. Given the very small number of mode shapes and adjoint Ritz 
vectors used and the relatively large structural changes, this accuracy is quite remarkable. 
Typical stress errors in Load Case #2 are shown in Figure 5, presenting stress errors at skin membrane 7, 
with skin membrane element groups modified by a factor of 2.0. Three modes were used in the MD and 
MD/FM methods and 12 adjoint Ritz vectors in the adjoint and second order approximations. The Ritz 



vector / Modes method used one Ritz vector (at the location of the actual concentrated force plus 3 
modes. The superior performance of the second order method is again clearly evident. It is interesting 
to note disappointing performance of the fictitious mass method in many cases where the stress point is 
not too far away fiom the load point. This is not surprising. While the fictitious mass method leads t o  
excellent stress results when fictitious mass modes are used with the original base structure, it performs 
poorly in the case of sensitivity calculation for modified structures, as discussed in the preceding 
sections. The Ritz / Mode method produces similar results to those of the MD/FM method. This is not 
surprising, since by adding a large fictitious mass to a degree of fieedom, a mode shape of the "fictitious" 
structure will be created that will be similar to the static deformation of the structure under a 
concentrated force at that degree of fieedom. 
One might argue that it is unfair to compare accuracy of MD or MD/FM reduced order models based on 
3 modes with the second order method with 3 modes and 6 (or 12) adjoint Ritz vectors. Perhaps the 
accuracy of the second order method (with Nm modes and NR adjoint Ritz vectors) should be compared 
to MD or h4D/FM methods with Nm+NR modes. In order to study the effect of the number of MD 
mode shapes used on the accuracy of the approximation, we turn next to a typical case. For stress at  
skin membrane number 7, Load Case #2, and skin membrane elements in group 3 (Fig. 2) modified by a 
factor of 2.0, the accuracy of stress as a function of the number of modes used (3,6,9,12,15) is shown in 
Fig. 6. The adjoint method results shown are only with 12 adjoint vectors. The accuracy of the second 
order method (with 3 modes and 12 adjoint Ritz vectors) is clearly superior to that of either the MD 
reduction or the MD/FM reduction with 15 modes, or the Ritz 1 Modes method with 1 Ritz vector and 
14 modes. That with only 3 natural mode shapes and 6 to 12 (depending on the element in which the 
stress is calculated) adjoint Ritz vectors such good stress accuracy is obtained is quite remarkable. 
Accuracy of reduced order stresses was studied for the cases described above when the structural stif6ness 
variations were much larger, up to 0.2 and 5 times that of the base stnrcture. While errors in the reduced 
order stress predictions with MD, adjoint, MDfFM and RitzfModes methods were considerable, the 
second order approximation with only 3 modes and 6 or 12 adjoint Ritz vectors led to stress errors of  
less than 25% in the worst case studied. 

Dynamic Results 

Fig. 7 shows time histories of stress at spar cap number 5 due to a concentrated step load as defined for 
Load Case #3. The structure's stifhess is modified compared to the base structure by changing group 
number 4 of spar caps and stiffeners by a factor of 1.3. Damping ratios of 2% in all modes is assumed 
for the base structure. Then, using the procedure described in Ref. 29 (Eqs. 8- 12), a 1 1 1  order damping 
matrix for the reference structure is created and assumed fixed as the structural stiflthess is being 
changed. Mode Displacement (MD) and Mode Displacement with Fictitious Masses approximation 
results are compared to the full order "exact" results, as well as statically Full Order Mode Acceleration 
(FO-MA) with 3 MD modes, reduced order mode acceleration (RO-MA) based on reduced order adjoint, 
and, finally, reduced order second order approximation of the MA method (Eqs. 64, 65). 
Three mode shapes are usedin Fig. 7 (with six adjoint Ritz vectors). Nine modes are used in Fig. 8. It is 
not surprising that with only 3 modes (Fig. 7) the second order method cannot capture all the sub- 
harmonics in the transient response. Yet, the accuracy of maximum stresses is very good. 
Figure 9 shows relative error in the maximum peak stress as a h c t i o n  of the number of modes used. 
Large errors are the result of using the MD method, the MD method with fictitious mass modes, or the 
f i t .  1 Modes method of Ref 19. Errors in the 1 1 1  order MA method, or reduced order MA method based 
on adjoint Ritz vectors and second order approximations are comparable. 

Stress Sensitivity in Reduced Order Static Cases 

Convergence study results for stress sensitivity in the static case using increasing numbers of modes are 
shown in Fig. 10. Compared are the MD, MD with fictitious mass modes, and second order 



approximations, shown together with results obtained with the reduced order adjoint method with a fixed 
number of adjoint Ritz vectors. Results for the Ritz / Modes method are similar to those of the MD/FM 
method, and will not be discussed further. 
Figure 10 shows accuracy of the sensitivity of stress in spar cap number 5 (Fig. 2) with respect to a 
design variable linking the spar cap areas at caps 4, 14, 24, and 34 (Fig. 2). The sensitivity is evaluated 
at the base (reference) design. 
Large errors are evident in the results with the two variants of the Mode Displacement approximations 
(based on natural modes of the base structure, and on fictitious mass modes). The reduced order adjoint 
method (with a fixed number of 6 adjoint Ritz vectors) leads to moderate errors in Fig. 10. In other 
cases (Ref 43) the adjoint method lead to very large stress sensitivity errors. The second order stress 
sensitivity, obtained with the second order approximation, was found to be very accurate in all cases 
studied. For the case of Fig. 10 comparison of sensitivity errors when Eq. 48 and Eq. 50 were used, 
showed that Eq. 50 led to almost identical accuracy as Eq. 48 when more then 40 modes were used. 
When less than 40 modes were used, Eqs. 50 and 48 had comparable accuracy. It is striking that with the 
MD or MD w/FM methods it takes almost all modes of the structure (almost full order) to converge. 

Stress Sensitivity in Reduced Order Dynamic Cases. 

Figures 1 1-1 3 show time histories of the sensitivities of dynamic stresses at a spar cap with respect to 
changes in spar-cap linked design variables as functions of time, when 3, 9 and 30 modes are used. 
Compared are the MD method, MD method with FM modes, statically full order Mode Acceleration 
Method, Adjoint method with a fixed number of adjoint vectors (corresponding to unit loads at the 6 
degrees of fieedom contributing to the local stress calculation in the spar cap - a truss element), and 
finally the second order method. The excellent accuracy of the reduced order derivatives over time in 
the second order method is clearly evident. With MD and MD w/FM order reduction, the errors in 
dynamic sensitivities are large even with a large number of modes. With only 3 modes the second order 
method cannot capture all the sub-harmonics in the full order response sensitivity, but it does capture 
sensitivity trends quite well. 

Conclusions 

Order reduction methods such as Mode Displacement (MD) or Mode Displacement with Fictitious Mass 
modes (MD w/FM) are widely used for displacement deformation prediction in structural dynamics and 
aeroelasticity. Yet, their accuracy when stress information is involved is poor, especially when stress 
sensitivities with respect to sizing type design variables are calculated. When reduced order structural 
models are generated for a given structure using its modes or adjoint solutions, and then the same modal 
and adjoint base vectors are used to reduce the order of a modified structure, accuracy of the reduced 
order modified structure suffers. 
The loss of accuracy with modally reduced order models is, in many cases, associated with static 
truncation effects, making the reduced order static solution not capable of capturing local effects due t o  
the action of concentrated forces. Stress sensitivity analysis, because of the local nature of changes in 
the sti&ess matrix due to changes in a local design variable ( { a ~ /  ax}), leads to sensitivity equations 
which are similar to structural response to locally concentrated loads. When using Ritz vectors or 
fictitious masses for order reduction, a modally reduced vector base is created to reflect actual 
concentrated forces acting on the structure, or location and identity of stresses required. For sensitivity 
analysis, however, this reduced order base of Ritz vectors or FM vectors must also reflect local action a t  
the degrees of freedom affected by each and every design variable change. This makes the generation of 
reduced order bases for the MD method or its variants very difficult and the resulting models cannot be 
of very low order. 



The second order structural reduction method overcomes these difficulties by combining a modal 
reduction method for the direct problem with a Ritz vector reduction method for an adjoint static 
solution. The resulting stress and stress sensitivity approximation, using reduced order models based on 
modes and adjoint responses of the reference structure, has excellent accuracy with a small number of 
modes and adjoint Ritz vectors for a large group of modified structures obtained fiom the reference 
structure by varying sizing type design variables. In a structural optimization process, a set of mode 
shapes and adjoint Ritz vectors of the o r ipa l  structure is prepared up-front. Those same base vectors 
are then usedto reduce the order of the structure throughout the optimization process as it gets varied 
and modified. Both static and dynamic stresses and stress sensitivities are accurately calculated using the 
resulting reduced order models over large design variable variations. In the dynamic case, the method 
presented here uses a static order reduction method to reduce the order of the full order static solution 
part of the Mode Acceleration method. 
In the case of static aeroelastic analysis, the [lk;l matrix is augmented by an aerodynamic matrix to lead 
to a non-symmetric system matrix in the aeroelastic static equation 

[ K  - 4, -AKuI = {FI 
The same second order reduction technique can be used now. The only difference fiom the equations 
derived for the purely structural case is that the adjoint problem involves the transpose of the system 
matrix 

[K- 9, - ~ l i v l =  14 
where { c )  is the vector used to obtain a stress from the deformation vector (u ) .  
Further studies of the potential of the second order method for obtaining accurate information in 
reduced order models are now underway for cases involving static and dynamic aeroelasticity, dynamic 
(time dependent) adjoint solutions, and reduced order solutions obtained on coarse meshes and then used 
to approximate the solutions on fine meshes in cases of multi-grid methods or mesh adaptation in 
structural analysis. Additional work, which is beyond the scope of this paper: extension of the method 
to the case of free-fiee structures, reduced order stress approximation for frequency response and 
structural response to random excitation, study of alternative approximate adjoint solutions for the 
second order method. The present paper, it is hoped contributes to both efficiency of design oriented 
structural analysis and to the understanding of errors sources and the way to overcome them in structural 
order reduction. 
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Figure 1 .  The test wing. 
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Ficure 3 .  Relative stress error for spar cap #5 in Load 
Case # I (Elements modified: area of spar caps and 
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Fieure 4 .  Relative stress error for skin membrvle $7 
in Load Case #I (Elements modified: thickness o f  skin 
membranes by a factor of 2 ) 
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Ficure 7. Dynamic stresses in spar cap #5 due to a step Figure 8. Dynamic stresses in spx a p  #5 due to a step 
load in l o d  case $3 (Elements changed area of spar load in load case #3 (Elements changed area of spar 
caps and stringers in group 4 by a factor of 1.3. caps and smngas in group 4 by a factor of 1 .5 .  
Number of modes used: 3, Number of adjoint static Number of modes used: 9, Number of adjoint static 
Rin vectors: 6 )  Rin  vectors: 6) 
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Fi ure 12.  Dynamic stress sensitivity errors for stress 
Ficure I I Dynamic stress vnsitivity errors for stress se:sitivity in spar rS in load g3, mod- 
sensitivity in spar cap $5 in load c u e  # >  3 mod6 uwd Elements spu c.ps x4. Ir, 24 md 
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Figure 13.  Dynamic stress sensitivity mors for stress 
sensitivity in spar cap #5 in load case #3. 30 modes 
used. Elements modified: spar caps #4, 14, 24 and 34. 
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A B S T R A C T  

This paper discusses a method for the 
identification and application of r e d u c e d d r  
models based on linear and nonlinear aerodynamic 
impulse responses. The Volterra theory of 
nonlinear systems and an appropriate kernel 
identification technique are described. Insight 
into the nature of kernels is provided by applying 
the method to the nonlinear Riccati equation in a 
non-aerodynamic application. The method is 
then applied to a nonlinear aerodynamic model of 
an RAE 2822 supercritical airfoil undergoing 
plunge motions using the CFL3D Navier-Stokes 
flow solver with the Spalan-Allmaras turbulence 
model. Results demonstrate the computational 
efficiency of the technique. 

I N T R O D U C T I O N  

As the complexity of modem computational 
fluid dynamics (CFD) codes increases, so does 
their computational cost and execution time. As 
a result, these codes are not used routinely in 
disciplines where the information provided by 
these codes could be of great benefit. These 
disciplines include aeroelasticity, 
aeroservoelasticity, optimization, and preliminary 
design. In order to improve this situation, the 
development of reduced-order models has become 
a major goal of several national and international 
organizations"12. 

A reduced-order model is a simplified 
mathematical model that encapsulates most, if 
not all, of the fundamental dynamics of a more 
complex system. Due to its mathematical 
simolification. the computational cost (CPU 
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memory, execution time, and turnaround time) of 
using a reduced-order model can be orders of 
magnitude lower than the computational cost of 
using the original more complex system. In the 
case of CFD codes, development of aerodynamic 
reduced-order models provides a cost-effective 
means for incorporating CFD analyses into 
several disciplines where, heretofore, it has not 
been incorporated. 

This paper will discuss reduced& 
aerodynamic models based on linear and nonlinear 
aerodynamic impulse responses. Previouslyg~", 
the concept of an aerodynamic impulse response 
was introduced and its relationship to the more 
traditional aerodynamic functions (Wagner's, 
Theodorsen's) was defined. Aerodynamic impulse 
responses are obtained from any CFD model of 
interest using standard digital signal processing 
techniques and the Volterra theory of nonlinear 
systemsY"'. Computationally-efficient linear a d  
nonlinear digital convolution schemes are then 
applied for predicting the response of the 
nonlinear aerodynamic system to arbitrary inputs. 

The paper begins with mathematical 
definitions of time-invariant and time-varying 
systems. This is followed by a description of the 
Volterra theory of nonlinear systems, including 
derivation of the kernel identification equations. 
These kernel identification equations are then 
applied to nonlinear systems in order to gain 
insight into the nature of the kernels. The 
nonlinear systems investigated include: first, a 
nonlinear Riccatti circuit which will illustrate the 
nature of kernels and then a plunging airfoil 
using the CFL3D (Navier-Stokes) flow solver 
with the Spalart-Allmaras turbulence model. 

MATHEMATICAL S Y S T E M S  

A time-invariant (TI) system, also referred to 
as a shift-invariant, stationary or autonomous 
system, is a system whose fundamental 
properties do not change with time. That is, the 
equations defining a TI system are not explicit 
functions of time so 



An example of a simple, TI, nonlinear system is 
a pendulum. Although the full nonlinear 
equation of a pendulum is certainly a function of 
time which can exhibit nonlinear, unsteady 
responses i f  an unsteady excitation is applied, 
neither the length of the pendulum nor the mass 
at the end of the pendulum are functions of 
time'.'. 

Differential equations with constant 
coefficients are TI because the coefficients are not 
explicit functions of time. But not all TI 
systems are defined by equations with constant 
coefficients. Time-invariance is sometimes 
mistakenly interpreted as implying functions that 
are independent of time. Even a classical, 
fundamental text such as Ref. 14 misinterprets 
nonlinear, TI systems as systems that do not 
accept time-dependent forcing functions. This is 
clearly not correct since the time-invariance of a 
system refen to the system itself and not to the 
characterization of the inputs or outputs (i.e., 
steady or unsteady) of the system. 

A time-varying (TV) system, also ref& to 
as a non-stationary or non-autonomous system, 
is a system whose fundamental properties Q 
change with time. That is 

An example of a TV system is a rocket during 
launch. The mass of the rocket, mostly fuel, is 
spent very quickly. The mass of the rocket, and 
therefore the rocket's dynamics, are changing 
with time. The identification of impulse 
responses for a time-varying system is typically 
more complicated than for a TI system. 
Reference 15 addresses the problem of Volterra 
kernel identification for TV, nonlinear systems. 

Fortunately, for many of the problems in 
aircraft unsteady aerodynamics, aeroelasticity, and 
aeroservoelasticity, the governing nonlinear 
equations are time invariant. Although an 
airplane's fuel quantity, or mass, is certainly not 
constant, present-day analyses treat an airplane's 
fuel loading as separate, constant-mass cases (full 
fuel to near empty, for example) as opposed to a 
continuously-varying quantity. The linearization 
of these TI, nonlinear equations about an 
operating point yields the familiar TI, linear 
equations that comprise the majority of modem- 

day, linear analysis techniques within these 
disciplines. 

The Navier-Stokes equations do not have any 
coefficients that are explicit Functions of time. 
As a result, the Navier-Stokes equations are, by 
definition, time invariant1'.''. The discretized 
Navier-Stokes equations, or CFD codes, do 
exhibit time-varying behavior at certain 
conditions, especially in  the initial time steps 
when the residual (error) is in the process of 
converging to an acceptably small number. But 
the residual term is a byproduct of discretization 
that is not present in the continuous-time Navier- 
Stokes equations. A condition of consistency 
requires that, in the limit, the discretized system 
approach the original, continuous-time system. 
Therefore, given appropriate discretization and 
convergence of the residual, the discretized 
Navier-Stokes equations should be, and are in 
fact, TI as well. This is important since it would 
be unacceptable for a discretization process to 
transform a TI system into a TV system, as the 
associated dynamics of a TI system versus those 
of a TV system are vastly different. 

VOLTERRA THEORY 

Introduction 
The Volterra16 theory was developed in 1930. 

The theory is based on functionals, or functions 
of other functions, and subsequently became a 
generalization of the linear convolution integral 
approach that is applied to linear, time-invariant 
(LTI) systems. 

The basic premise of the Volterra theory of 
nonlinear ~ysterns".'~ is that any nonlinear 
system can be modeled as an infinite sum of 
multidimensional convolution integrals of 
increasing order. This infinite sum, presented 
here in continuous-time form, is known as the 
Volterra series and it has the form 



where y(t) is the response of the nonlinear 
system to u(t), an arbitrary input; h,, is a steady 
value about which the response is computed; 
hi([) is the first-order kernel or the linear unit 
impulse response; h,(r, ,s2) is the second-order 
kernel, and h , (~ , , .  . .,T,) is the n"'-order kernel. It 
is assumed that: 1) the kernels, input function, 
and the output function are real-valued functions; 
2) the system is causal ; and 3) the system is 
time invariant. 

Inspection of Equation ( 1 )  reveals some very 
interesting and characteristic features of the 
Volterra series. The value of h, is known based 
on the steady-state value of the system at a 
particular condition. It does not require any 
special identification technique. This will be 
discussed in more detail when applied to an 
aerodynamic system. Also, if the kernels of 
order two and above are zero, then the response of 
the system is linear and is completely described 
by the unit impulse response h,(t), and the frst- 
order convolution integral. 

The higher order kernels (h,(r,,s,), ..., 
hll(r ,,.... r,)) are the responses of the nonlinear 
system to multiple unit impulses, with the 
number of impulses applied equal to the order of 
the kernel of interest : e.g., h,(r,,r,) is the 
response of the nonlinear system to two unit 
impulses applied at two points in time, r ,  and 

T,. The variation of the time difference between 
these two times characterizes the second-order 
(nonlinear) memory of the system. Therefore, 
the second-order kernel is a two-dimensional 
function of time: t and the time difference T = 7,- 
r,. This mathematical definition follows directly 
for the nh-order kernel, although visualization of 
these functions can become difficult for orders 
,geater than three. As will be shown, these 
kernels are also a function of the amplitude of the 
input used for identification. 

The impulse response of a linear system is 
referred to as the memory of the system. 
Convolution then allows exact prediction of the 
response of the system to an arbitrary input 
because all responses of the system are scaled and 
shifted superpositions of this memory function". 
It is important to understand that the set of 
arbitrary inputs includes any and all possible 
inputs, from steady (step) inputs to random 
inputs, thus the term "arbitrary". For the linear 
case, the arbitrary input has no amplitude or 
frequency limitations. 

For a nonlinear system approximated by a 
Volterra series, the higher-order kernels are a 
measure of the nonlinear memory of the system. 
Unlike the linear system, however, the arbitnry 
nature of the input, primarily with respect to 
amplitude, does have some limitations due to the 
fact that the Volterra series is truncated for 
practical applications. As BoydiY has shown, the 
convergence of the Volterra series is limited by 
the infinity norm of the input (maximum value). 
If this norm exceeds a particular value, then 
convergence of the series, and, therefore, the 
predictive ability of the series, is not guaranteed. 
The infinity norm of the input is, of course, 
system dependent and will not usually be known 
a priori. Similarly, the convergence of the series 
is a function of the number of components that 
are identified for a particular kernel. Rugh17 and 
Boyd" discuss Volterra's (and Frechet's) 
extension of the Weierstrass theorem to nonlinear 
systems with finite (or fading) memory, and its 
relationship to the Volterra series. 

Wiener" contributed significantly to the 
development of the Volterra theory and, as a 
result, the theory is sometimes referred to as the 
Volterra-Wiener theory of nonlinear systems. 
Reference 21 presents a kernel identification 
technique based on auto- and cross-correlation 
functions. References 22-29 are additional, 
excellent sources of information regarding the 
Volterra theory of nonlinear systems. 

This research focuses on the time-domain 
Volterra theory because CFD analyses are 
typically performed in the time domain. There 
exists, however, a great deal of information on 
the freqwncydomain Volterra The 
freauency-domain Volterra theory deals with the . - 
multidimensional Fourier transf~rms of the time- 
domain kernels. The resultant functions are 
referred to as higher-order spectra31J2. A double 
Fourier transform of a second-order kernel is 
referred to as a bispectrum. Whereas time- 
domain Volterra kernels may be better suited for 
computational methods, the frequencydomain 
methods appear to be better suited for 
experimental identification techniques. Boyd et 
a]'' describe a frequency-domain technique that 
was successfully applied to the experimental 
identification of the second-order kernel of a 
nonlinear electroacoustic transducer (speaker) 
system. The theory also has some very 
interesting applications in the fields of general 
turbulence" and low-frequency drift oscillations 
(LFDO) experienced by moored vessels in 



turbulent seas". A time-domain Volterria kernel 
identification technique is described in  a 
subsequent section. 

Weakly Nonlinear Systems 
One approach for obtaining Volterra series 

representations of physical systems is to assume 
that the system is a 'weakly' nonlinear system. 
A weakly nonlinear system is well defined by the 
first two kernels of the Volterra series so that 
kernels of third order and above are negligible. 

33 
Boyd, Tang, and Chua mention some physical 
systems that are accurately modeled as weakly 
nonlinear systems including electromechanical 
and electroacoustic transducers and some 
biological systems. In this study. it is assumed 
that the nonlinear aerodynamic system that is 
identified from the Navier-Stokes equations is a 
weakly nonlinear, second-order system. It is 
important to develop expertise with the 
application of Volterra methods to nonlinear 
aerodynamic models in a systematic manner and a 
weakly-nonlinear model provides this type of 
gradual approach to the problem. 

Although this truncation may exacerbate 
known convergence and amplitude restrictions of 
the Volterra series, it is of interest to investigate 
the effectiveness of this truncated model to 
practical applications. The truncated, second- 
order Volterra series is 

For the applications considered in this study, 
kernel identification will consist of the 
identification of the first- and second-order kernels 
with h,, clearly stated as appropriate. 

Kernel Identification 
The advantage of the Volterra series 

approach for modeling nonlinear systems is that 
once the kernels are identified, the response of the 
nonlinear system to an arbitrary input can be 
predicted. The problem of kernel identification. 
therefore, is central to the successful generation 
of an accurate Volterra series representation of a 
nonlinear system. The most obvious approach 
for identifying the kernels is to derive analytical 

expressions for the kernels from the governing 
nonlinear equations of the system of 

?0.2?23 
interest . Although this approach is 
theoretically applicable to any set of nonlinear 
equations, including the nonlinear fluid flow 
equations such as TSD. Euler, and Navier-Stokes 
equations, it  would require a significant amount 
of effort to analytically compute the kernels for 
different configurations and for various inputs. 
Instead, a kernel identification technique is desired 
that uses the output of a CFD model directly for 
quick and efficient kernel identification, regardless 
of the CFD code being used and the particular 
model geometry. 

In Eq. (2), analytical application of unit 
impuises (Dirac delta functions) results in 
equations that define the first- and second-order 
kernels. The equations are derived in detail in 
Ref. 12 and are presented here in final form: 

where y,(r,) is the response of the nonlinear 
system to a single unit impulse applied at time 
r, ; y,(.rz) is the response of the nonlinear system 
to a single unit impulse applied at time r, ; 
y,(s,,r?) is the response of the nonlinear system 
to two unit impulses, one at time r ,  and one at 
time r2 ; and y,(r,) is the response of the 
nonlinear system to a single impulse at time 7, 

(same time as y,(t,)) but with double the 
amplitude. For a TI system, y,(rz) is just y,(z,) 
shifted in time to zt. It should be noted that 7, 
is held constant (usually at t=O) while 7, is varied 
for the computation of y,(s,,r,). 

The first-order kernel, h,(r,), is a one- 
dimensional function of time. Clearly, for a 
purely linear system, the first-order kernel is 
identical to the linear unit  impulse response. For 
a nonlinear system, the first-order kernel captures 
a first-order, amplitude-dependent deviation from 
linearity (i.e., nonlinearity) because it is 
comprised of two impulse responses of different 
amplitudes. 

Once the first-order kernel has been 
computed, computation of the second-order kemel 
requires computation of several y , ( 1 , , ~ ~ )  
responses for varying values of r? .  As a result, 
the second-order kernel is a two-dimensional 
function of time. It is 3 function of time t and a 



function of the time difference between r ,  and r,. 
As the time difference between T ,  and T? is 
varied. this leads to several values of y , ( ~ , , t , )  
that, in  turn. leads to several values of the 
second-order kernel. These responses are hereby 
nfemd to as "components" of the second-order 
kernel. Subsequent examples will clarify this 
concept. 

EXAMPLE- NONJ.INEAR CIRCUIT 

A simple nonlinear system that can be used to 
illustrate the kernel identification technique is a 
series circuit consisting of a linear inductance, a 
nonlinear resistance, and a voltage source2", 
shown in Figure 1. The governing equation for 
this circuit is the Riccati equation 

with y(t) the current around the circuit, x(t) the 
input voltage, and a and E parameters from the 
nonlinear resistance. After discretization of the 
Riccati equation, the first-order kernel and several 
components of the second-order kernel, for this 
system, are generated using a time step of 0.01. 
A time lag (difference between t ,  and T*) of T = 
0.01 (or one time step) is used for computation 
of the components of the second-order kernel. 
The first component of the second-order kernel 
corresponds to T=O.O with both impulses at same 
point in time; the second component corresponds 
to T=0.01 (one time step apart); the third 
component corresponds to T=0.02 (two time 
steps apart); and so on. 

Two cases wil be investigated. In the first, 
a = 1.0 and E = 0.0001 ; in the second, 
a = 0.1 and E = 0.001. The effect of these 
variations on the nonlinearity of the system and 
the resultant first- and second-order kernels is 
investigated. For this system, the constant term 
in Eq. (2) (h,,) is zero. 

Case 1 : a = 1 .O, E = 0.000 1 
The first-order kernel for this case is 

presented in  Figure 2 for 1000 time steps. 
Selected components for the corresponding 
second-order kernel are presented in Figure 3. 
Shown in Figure 3 are the first component, the 
one-hundred-and-first component, and so on. As 
can be seen, the largest component of the second- 
order kernel (the first) is very much (seven orders 

of magnitude) smaller than the tirst-order kernel 
(Fig. 2) and goes to zero in about half the time. 
As might be expected with E = 0.0001, Figure 3 
indicates that nonlinear effects for this case are 
quite small. Verification of this is presented in  
Figure 4, a comparison of various step responses 
obtained directly from the numerical solution of 
the Riccati equation (actual) and those obtained 
from the convolution of the step inputs with the 
first-order kernel of Figure 2. These 
indistinguishable results indicate that the first- 
order kernel is sufficient to capture the response 
of this system for the range of amplitudes 
investigated. 

Case 2: a = 0.1, E = 0.001 
The first-order kernel for this case is presented 

in Figure 5, along with the first-order kernel 
from Case 1 (Fig. 2) for comparison purposes. 
The net effect of the change in the two 
parameters results in an increased effect of the 
nonlinearity of the Riccati equation. This is 
evidenced by the increased memory of the fust- 
order kernel (slower approach to zero) as 
compared with the first-order kernel of Case 1. 
Selected components from the second-order kernel 
for this case are presented in Figure 6,  revealing a 
kernel two orders of magnitude larger than the 
second-order kernel of Case 1 (Fig. 3). Figure 7 
is a comparison of step responses obtained 
directly from numerical solution of the hccati 
equation (actual) and those obtained via 
convolution of the step inputs with the first-order 
kernel of Figure 5 for this system. A noticeable 
difference between step responses, as step 
amplitude is increased, indicates the effect of 
increased nonlinearity in the system and the need 
for the second-order kernel. 

The sign of the second-order kernel is 
important since i t  is an indication of the effect of 
the second-order nonlinearity on the total 
response of the system. That is, since the 
second-order kernel of Figure 6 is negative, then 
the effect of the second-order convolution, which 
provides the effect of the second-order kernel, is 
to decrease the magnitude of the total response of 
the system from that obtained from the first-order 
convolution alone. This is clear in  Figure 7, 
which shows that the response due to the first- 
order term "overshoots" the actual response. 
Addition of the negative second-order response to 
the first-order response would cause the sum 
(both terms in Eq. (2)) to approach the actual 
response. The second-order kernel can therefore 



provide an indication of the additive effect of the 
second-order nonlinearity with respect to the first- 
order term. The additional accuracy achieved, dw 
to the inclusion of the second-order convolution. 
for the viscous Burger's equation has ken 
demonstrated"." but is not presented here. 

This example demonstrates the identification 
of tirst- and second-order kernels of a simple 
nonlinear system. Inspection of the kernels can 
provide very useful information regarding the 
level of nonlinearity as well as the net effect of 
the nonlinearity of a particular system. These 
techniques will now be applied to a CFL3D 
model. 

RESULTS USING THE CFL3D CODE 

The CFL.3D code3'" (version 5.0) solves the 
time-dependent, Reynolds-averaged Navier-Stokes 
equations in conservation law form. Upwind- 
biasing is used for the pressure and convective 
terms, central differencing is used for the shear 
stress and heat transfer terms, and the spatial 
discretization is based on a semi-discrete finite- 
volume concept. Accelerated convergence can be 
achieved using multigrid and mesh sequencing 
capabilities and implicit time-stepping is used. 
The code provides several turbulence models, 
including the Spalart-Allmaras turbulence model 
used in the subsequent analyses. 

Results for RAE Airfoil 
Navier-Stokes results for a dense-grid RAE 

2822 airfoilM with the Spalart-Allmaras 
turbulence model undergoing plunge at a Mach 
number of 0.75, Reynold's number of 6.2 
million. and a zero de-gee angle of attack were 
computed using a time step of 0.001. At this 
condition, this non-symmetric supercritical 
airfoil induces a net normal force coefficient of 
0.2953. This corresponds to the h, term in Eq. 
(2). When generating the first- and second-order 
kernels for this system, h, has to be subtracted 
from the kernel computations. The response to a 
particular input is computed using the 
convolution procedures and then the h,, (= 
0.2953) term is added back to obtain the total 
response. 

The CFL3D code has several computational 
options, depending on the type of analysis 
desired. Accelerated convergence can be obtained 
using the sub-iteration and multigrid 
capabilities". In addition, a method is avclilable 

that diagonalizes the governing matrices 
(diagonally dominant) baed on the sprctral 
radius. Limiled experimentation with these 
techniques, including the effects of tirst-order-in- 
time versus second-order-in-time numerical 
accuncies are presented and discussed i n  Ref. 12. 
An optimal procedure for using multigrid and 
diagonalization to identify kernels has not yet 
been developed. As a result, the remainder of the 
results presented in  this section are limited to 
solutions corresponding to second-order-in-time 
accuracy with no multigrid and no 
diagonalization. 
These tirst- and second-order-in-time solutions 
refer to the numerical algorithm within C K 3 D  
and should not be confused with first- and second- 
order kernel functions. 

Recall that the t-it-order kernel is identified 
using a response due to a uni t  plunge amplitude 
and a second response due to double that 
amplitude. An important question is "What is 
the effect of varying these amplitudes on the 
identification of the kernels and on their 
predictive capability?'Figure 8 is a comparison 
of non-diagonalized, no-multigrid, second-order 
accurate-in-time first-order kernels for two 
different identification input plunge amplitudes. 
The small-amplitude kernel of Figure 8 was 
identified using the primary amplitude of 0.01 
and a secondary (doubled) amplitude of 0.02. The 
large-amplitude kernel was identified using the 
primary amplitude of 0.1 and a secondary 
amplitude of 0.2. The correlation between these 
two fmt-order kernels (Fig. 8) is not linear, as 
expected. That is, one kernel is not exactly ten 
times the other, indicating a deviation from 
linearity or some measure of nonlinearity. 
Therefore, for small amplitudes (linear regime), 
the first-order kernel is identical to a linearized 
(small perturbation) impulse response. At larger 
amplitudes, however, the fmt-order kernel can 
capture a certain level of nonlinearity. It is 
important to note how quickly these first-order 
kernels reach equilibrium (go back to zero). This 
quick return to zero provides significant 
computational efficiency when extracting these 
functions from a CFD model, as will be seen. 

The first five components of the second-order 
kernel for this airfoil in  plunge are presented in 
Figure 9. The input aniplitude used to identify 
these components of the second-order kernel was 
0.10, consistent with the large-amplitude tirst- 
order kernel of Figure 8. Even so, the first 
component of the second-order kernel is an order 



of magnitude smaller than the large-amplitude 
first-order kernel. The remaining components 
approach zero rather quickly, an indication that, 
for this condition and for this motion (plunge), 
the first-order kernel may be sufficient for 
predicting nonlinear plunge responses. 

Figure 10 is a comparison of two nonlinear 
sinusoidal plunge responses from CFL3D and the 
convolved responses using the large-amplitude 
first-order kernel and including the addition of the 

. h,, term to the total response. The smaller, 
CFL3D response corresponds to a plunge 
amplitude of 0.01 (based on chord length). The 
larger CFL3D response corresponds to a plunge 
amplitude of 0.05. The reduced frequency of the 
plunging motions is 0.67. These results indicate 
that the first-order kernel can be used to 
accurately predict the nonlinear plunge responses 
of this CFWD model over a wide range of 
amplitudes. Of great importance is the fact that 
the first-order kernel, which has a temporal 
duration of less than 20 time steps, can be used 
to predict the response of an input of arbitrary 
length (5000 time steps, in this case). This is 
due to the mathematical efficiency of 
convolution. 

It is important to properly choose the 
amplitude used for identifying the first- and 
second-order kernels. One possible approach for 
determining this identification amplitude is to 
base it on 1) physical considerations and 2) code 
execution limitations. If the CFD code executes 
properly for the largest input amplitude of 
interest (a sinusoidal input, for example) and the 
input amplitude is physically realistic, then the 
accuracy and effectiveness of the first- and second- 
order kernels, identified within this amplitude 
range, will be nearly optimal assuming 
convergence issues are satisfied. 

Computational Efficiency 
The cost of each sinusoidal plunge response 

using CFL3D was about 2,000 CPU seconds and 
a turnaround time of about a day. These 
responses were for a particular frequency of 
motion that required a particular length of time 
for a certain number of cycles. A change in the 
input (frequency, for example) requires another 
execution of the: CFL3D code. This translates 
into large (and expensive) turnaround times & 
to: I) the time spent waiting for job execution in 
the queue of a supercomputer, for example, and 
2) the time spent in actual execution of the code. 
The latter becomes even more expensive if 

several cycles of a low-frequency response m 
desired. 

On the other hand, the results presented in 
this paper show that the application of the 
Volterra theory to CFD codes reduces 
computational turnaround time significantly. 
This computational efficiency is achieved by 
virtue of the following: 1) the short duration of 
the first- and second-order kernels (see Figs. 8 and 
9) and 2) the mathematical efficiency of 
convolution. The short duration of the kernels 
leads to very small turnaround times. In fact, the 
kernels presented here were generated using the 
debug queue of a Cray supercomputer. The 
debug queue is limited to no more than 300 time 
steps for the purpose of code debugging. The 
average turnaround time for the responses needed 
for computing the kernels was about five 
minutes. The computation of the first-order 
kernel, for the RAE airfoil using the CFL3D 
code, cost 400 CPU seconds; 200 for each of the 
two required responses (Eq. (3)).  Once the 
kernels were identified, costly re-execution of the 
CFD code was side-stepped by applying 
convolution for every new input of interest. The 
cost of each convolution, for the plunge motions 
investigated, was 30 seconds per motion on a 
workstation. 

CONCLUSIONS 

Reduced-order aerodynamic models based on 
linear and nonlinear aerodynamic impulse 
responses have been discussed. The autonomous 
(time-invariant) nature of the Navier-Stokes 
equations was described in detail and the 
applicability of the Volterra theory of nonlinear 
systems to the Navier-Stokes equations was 
formally presented. The nature and 
computational efficiency of linear and nonlinear 
discrete-time convolution was described as well. 

The method was applied first to a nonlinear 
circuit described by the Riccati equation and then, 
to a plunging airfoil using the CFL3D (Navier- 
Stokes) flow solver with the Spalart-Allmans 
turbulence model. Results presented include the 
linear and nonlinear impulse responses for these 
systems as a function of several parameters. 
These parameters range from equation coefficients 
(Riccatti circuit) to varying the amplitude of 
identification of the first-order kernels (CFL3D 
model). 



The nonlinear impulse responses capture the 
nonlinear nature of the system under 
investi_gation. Computational cost comparisons 
were presented for the CFL3DIRAE 2822 model. 
It was shown that Volterra kernels provide 
significant computational efficiency over the full 
(and repetitive) solution of the complete system 
(CFL3D). 
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Fig I Simple nonlinear circuit defined by the Riccati 
e,quation with x(t) (voltage) as input and y(t) (current) 
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Fig 2 First-order kernel for the Riccati nonlinear circuit, 
Case I. 
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Fig 5 First-order kernels for Riccati nonlinear 
circuit, Case 1 and Case 2. 
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Fig 3 Selected components of the second-order kernel Fig 6 Selected components of the second-order 
for the Riccati nonlinear circuit. Case I .  kernel for the Riccati nonlinear circuit, Case 2. 
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Fig 7 Comparison of actual and first-order step 
responses for the Riccati nonlinear circuit, Case 2. 

Normal Force 

F 

loo0 2000 3000 4000 5000 
Time Steps 

Normal Force/Plunge 
Fig 10 Comparison of CFL3D and first-order responses 
for two plunge amplitudes (0.01,0.05). 
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Fig 8 First-order kernels for RAE airfoil in plunge, 
effect of identification amplitudes. 
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Fig 9 First five components of the second-order 
kernel for the RAE airfoil in plunge, largest ID 
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TRANSONIC FLUTTER SUPPRESSION CONTROL LAW 

--I 
DESIGN, ANALYSIS AND WINR TUNNEL RESULTS ~ 

Vivek Mukhopaclhyay 
NASA Lmgley Research Center* Hampton, VA,USA 

abatraet 
The benchmark active contfols teGhnology and 

wind tunnd test program at NASA Langley Research 
Centet wats mmd with the objmtive to ihvpstigate the 
nonlinear, unsteady aerodynamics and active flutter 
supppion of .oPings in transonic fbw. 'X 'b  paper will 
present the flutk suppression catm1 law Wgn process, 
numerical nonlinear simulation and wind &awl test 
result& for the NACA 0012 benchmark active wntrol 
wing model. TIre flutter suppression control' law &sip 
processes using (1) chssicd, (2) linear quadr~tic Gaussian 
(LQG), and 0) minima techniquss are desciibed, A 
unified geneal fornulation and solution for the LQB and 
minimaxsapproches, based on the steady stare differential 
g m e  t h e q  ig pre~ented. Design consideratiofis for 

I m - p m k g - t l w z m m a I - I  
1 i~piemmtatsm are outlined. It was shown thht simple 

control laws when properly dedgned based on physic& 
prindples, oan suppress flutter with limited control power 
even in the psesance of tmnsonic shocks and flaw 
separation. In whd funnel testa in air and heavy gas 
m & i m  the closed-loop flutter dynamic pressure was 
inmased to the tunnel upper limit of 200 psf. The control 
.law robustness and perfornee predictions were verified 
in highly nonlinear flow conditions, gdn and phase 
pmturbations, and spoiler dqdoymem. A non-design 
plunge instability condition was also sucaesdully 
suppremed. 

The benchmark: active controk technolagy 
@ACT) and wind tunnel test pmgw at NASA Lm@w 
Research Center was started with the objective to 
investi@pte the aonlineq, unsteady aerddynarnies and 
active flutter supprm-sfon of wings in transonic flow. 
Under t h ~  initid wind tunnel test progcam, a NACA 0012 
airfoil rectangular wing, quipped with pressure 
tra-cers, active trailing edge control surfack and two 
qoilsrs were cons0rucled for active flutter suppression 
tests. The modd was mounted on a pitch and plunge 
apparatus in the NASA Transonic Dynamics Tunnel in 
ordsr to tesY flutter suppression control l&ws and measure 
unsteady pressure distributions in nonlinear flows with 
oscillating shocks and boundary layer separation, It war, 
necessary to develop a flutter suppression system that 
would be stable under these flow uncertainties. 

f / * 

This paper dcsnibss flutter suppsaion control 
l ~ w  d&gn  pro^^ using classiwl and unified linear- 
quadratic Gaussian m i m a x  tecbniqtles. A unified 
general f~nnulation for the linm q u ~ t i c  C38ussian and 
minimax methods based on the steady state differential 
game thew is pmented. Lesso-ns learned I& 'evaluating 
and impro* the singular value based multi-input multi- 
output system robhstness aze described. Qe~ign 
~onsideratiam 'far digitai implementatian .are ~u t l in~d .  
Numerical simuktion of the control law pafmance,  and 
wind-tunnel test results for flutter suppression, are alsa 

' i ,  , , 
Wind Tuqiid Model Description 

A perqective view of the BACT ma&l test set. 
up dn the Pitch and Plunge Apparatus FAPA) in the whd 
(tunnel is shown in Fig. 1. Fig. 2 shows the control swfdce . 
and sensor loetations. The r@d wing section ha8 piteh and 
plunge d e w s  of h.eedmn, T ~ B  accelerometer sensors are 
located near the seetion leading edge (gk) and trailing 
edge &ts) at the section inboard. An i&nticd pair af 
sensors is located at tlw sectim outbeard as a spare. The 
partial span spoiic?rs are located on the upper and lower 
s u r f a c ~ ~  just ahead of the trail@ edge control surface. 
EaGh of the control surfaces stretched over 30% of the 
span and 25% of the chord. '?'he bendring and torsion 
frequencies of the PAPA mounted NACA 0012 wing 
model were 33  Hz and 53 Hz respectively. 



(Pitoh and Plunge Apparatus) 

Fig. 2 NACA a012 BACT wing on PAPA. 

Preliminary Analysis 
The preliminary analysis, control surface sizing, 

and flutter suppression control law-design were based on 
the analytical state-space equations of motion of the 
BACT wing model.14 These equations were developed 
analytically, using structural dynamic analysis and 
unsteady doublet lattice aerodynamics with rationaI 

-).normal a p p r o x i r n ~ ~ ~ 1 ~ ~ ~ p a t : e  
equations consisted of 14 States (plunge, pitch, plunge 
rate, pitch rate, 3 aerodynamic states for plunge, 3 
aerodynamic states for pitch, 2 trailing edge flap actuator 
states, 2 Dryden gust states), 2 inputs (actuator command 
and gust input noise) and 7 outputs (z te  and z k  
acceleration, flap command, flap deflection, rate, 
acceleration, and gust velocity). This 14" order state 
space equation was used for classical control law design 
and for performance simulation and verification purposes. 
For the optimal control law design purposes and for 
presentation of the design data in a concise form, the 14' 
order state-space equations were reduced to 4" state-space 
equations, using residualization and Schur's balanced 
reduction method6*'. First, it was reduced to ari 8th order 
system using residualization technique, in which only the 
static part of all modes. above 15 Hz were retained. The 
resulting 8th order sygtem was then balanced and the four 
states of the system with largest balanced singular values 
were retained. A sample of the 4" order model design data 
is presented in the Appendix. 

$hen-loo? Responses 
The analytical open-loop flutter dynamic 

pressure in air was 128 pounds per square feet @sf) at a 
flutter frequency of 4.5 Hz. Fig. 3 shows the response of 
the wing trailing edge and leading edge accelerometers 
due to a 1 degree step input of the trailing edge control 
surface in air at 225 psf dynamic pressure. The primary 
plunge motion mixed with small pitch diverges rapidIy. 
The unsteady lift forces oscillate about 8 lbs mean lift and 

diverges at the rate of 6 lbslsec. The moment diverges at a 
rate of 1 lblsec. 

Fig. 3 Open loop transient responses in air at 225 psf. 

P 
The open loop frequency responses were studied 

using this 14" order plant model, to select a possible 
candidate for feedback signal in the flutter suppression 
4ontrotlaAesign-me-Bade-Biaga-of-#emilhgedge-- 

and leading edge accelerometers (zte) and (zle) and their 
difference (ae-zle) due to the trailing edge control 
surface excitation (6te) in air at 225 psf at Mach 0.5, are 
shown in Fig. 4. The magnitude plots indicate 
predominant plunge response at 3.3 Hz excitation 
frequency. At 4.2 Hz excitation, the motion is a 
combination of pitch and plunge with pitch motion 
leading the plunge. The (zte -zle) represents a signal 
proportional to the pitch acceleration and can be 
integrated to provide a pitch-rate signal. Feedback of this 
signaI with proper gain can provide maximum pitch 
damping at the flutter frequency. 

Fig. 4 The Bode diagrams of zte and zle and (zte -zle) 
due to &e excitation in air at 225 psf, Mach 0.5. 



Classical Control Law Design 
Based on this Bode plot, a classical flutter 

suppression scheme using pitch-rate proportional 
feedback from the zte and zle accelerometers was first 
devised by studying the Nyquist diagrams. The Nyquist 
diagram of the difference between trailing edge and 
leading edge accelerometers (zte - zle) due to the trailing 
edge control surface excitation (ate) in air at 200 psf, is 
shown in Fig. 5(a). The arrow indicates increasing 
frequency of excitation from 2 Hz to 6 Hz, with each * 
representing frequency increment of 1 radianlsecond. 
Since the open-loop plant had a pair of complex unstable 
poles, and the Nyquist contour did not encircle the -1 
point, the unit feedback closed-loop system would be 
unstable. However, if the (zte -zle) signal was integrated 
to provide a 90 degree phase lag and then used for 
feedback with sufficient gain, the Nyquist contour would 
rotate 90 degrees clockwise and then expand to encircle 
the -1 point to achieve stability. A washout filter of type 
d(s + a) was also required, to remove any static bias that 
would otherwise be amplified by the integration. The 
series connection of integrator l / s  and washout filter was 
equivalent to a first order lag filter a/(s + a), where s is 
the Laplace operator. 

plant 1 1; 
air 200 psf 

(zte-zle) 

imaginary 
24.5 

Fig. 5(a) Nyquist diagram of (zte-zle) due to ate 
excitation in air at 200 psf, Mach 0.5 

Gain Selection 
Two types of lag filters, namely 5/(s + 5) and 

IO/(s + 10) were examined. The latter was selected to 
achieve a higher phase margin at the plant input above the 
flutter frequency. Higher phase margin was desirable for 
two reasons7. First, the 25 Hz antialiasing filter and the 
11200 seconds computational delay contribute about 20 
degrees of phase lag at the flutter frequency. Secondly, 
with increasing dynamic pressure, the actuators may have 
additional unknown phase lag, as the control surface 

moves against higher aerodynamic loads. The Nyquist 
diagram of the difference between trailing edge and 
leading edge accelerometers (zte - zle) with IO/(s + 10) 
lag filter and a gain KR = 500 due to the trailing edge 
control surface excitation (ate) in air at 200 psf, Mach 0.5, 
is shown in Fig. 5(b). The unit circle is also shown. 
Because the Nyquist contour encircled the -1 point, the 
unit feedback closed loop system would be stable. As 
desired, the phase margin at the plant input above the 
flutter frequency was about 60 degrees, but the phase 
margin below the flutter frequency was only 20 degrees. 
Preliminary analysis indicated that this basic simple 
-01 law 1 

can suppress the flutter instability in the dynamic pressure 
range from 0 to over 225 psf, both in air and in heavy gas 
medium. However, the closed loop transient responses 
and stability margins required substantial improvement. 

imaginarypart, 

24.5 degldeg 

zte, g 

23.5 

I 
5 

real part, 
d 5 . 5  degldeg 
radls -5 - 

dtev deg * 

Fig. 5(b) Nyquist diagram of (zte -zle) with 10/(s+10) 
lag filter and a gain KR = 500, due to 6te excitation in air 
at 200 psf, Mach 0.5 . 

plant 
air 220 psf 

l3sabms 
Analysis of the root locus with pitch 

acceleration (zte - zle) feedback through a IO/{s + 10) lag 
filter with increasing gain KR = 0, 500, ..., 2500 is shown 
in Fig. 6(a). The stabilization was achieved by increasing 
the pitch model damping and lowering the plunge mode 
frequency. An additional feedback of the pitch rate 
proportional signal through a 5/(s + 5 )  lag filter with KR 
= 500 and increasing gain KP =0,500, ..., 2500 was used 
to increase the damping and frequency separation further, 
as indicated by the root-locus diagram shown in Fig. 6(b). 

zle, g 



This design strategy was equivalent to pitch-angle and 
pitch-rate proportional feedback that increased the pitch 

mode frequency and plunge mode damping. 

imaginary part, 
rad/sec 

imaginary part. 
radlsec 

real part. radlsec real part. radlsec 

Fig. 6(a) Root-locus with (zte - zle) feedback through a 
104s + 10) lag filter, with increasing gain KR (at left). 
6(b) Root-locus with additional pitch-rate feedback 
through a 54s + 5) lag filter with KR = 500 and 
increasing gain KP. The arrows indicate increasing gain. 

W m & e d b a c k  Control Law 
From the root-locus study, the feedback gains 

were selected as KR = 500 and KP = 1. Thus, the second 
order state space equations of the initial pitch and pitch- 
rate feedback ~ontrol law 2 is Dven by 

The control law inputs are zte and zle in g unit 
and the output 6te is in degrees. The high feedback gain 
was required because the maximum (zte - zle) signal was 
only of the order 0.1 gideg. The response exhibited 2% 
settling time in 1.5 seconds. However, the high gain 
resulted in a severe sensitivity with respect to plant 
perturbation and individual sensor uncertainty, as 
indicated by the corresponding singular value plots in Fig. 
7. Here G, K and A denote plant, controller and 
uncertainty block, respectivelysr9. This figure indicates 
that the minimum singular value g(I+KG) is 0.3 at plant 
input and g(I+GK) is only 0.01 at plant output. This 
means that at 225 psf dynamic pressure, the closed-loop 
system has very little robustness to multiplicative 
pert~rbation'.~ at the plant output. 

These singular value g plots can be related to 
multivariable gain and phase margins using the universal 
gain and phase margin diagram8 shown in Fig. 8. For 
example, minimum singular value o_(I+KG) of 0.3 is 

equivalent to *20 degrees phase and ~3 dB gain margins 
at the plant inputs. The singular value l/g[K(IffiK)"] is 
close to 0.005 @degrees near 2 Hz. This means that the 
plant has very little tolerance to an additive perturbation A 
to the plant. The complex determinant locus of (I+KG) 
and its distance from the origin is a measure of its 
closeness to singularity. 

Fig. 7 Singular value plots for analysis of multivariable 
stability margins to a perturbation A, at the plant input or 
output, with classical control law 2, at 225 psf, in air. 

Q Minimiurn siwlar value 

0.01 , . 0 < , , , , ,V?  , , , , , , , , , 
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Fig. 8 Universal gain and phase margin analysis diagram. 

Final Pitc- Feedb- 1 aw 
This lack of robustness associated with this pitch 

and pitch rate feedback control law was alleviated by 
choosing a feedback of a proper linear combination of the 
two sensors with lower gains for KR, instead of using the 
difference (zte -zle). The linear combination of zrt and 
zle, which is equivalent to feeding back both pitch 
acceration (zte - zle) and plunge acceleration (zte + zle) in 
the ratio O.7(zte-zle) + O.J(zte + zle), appeared to 
provide a superior control law. The final classical 
feedback control law, using this combination that is 
equivalent to (zte - 0.4 zle) feedback, along with reduced 



gains of KR = 5 0  and KP = 1, was analyzed and 
implemented. The basic control is shown here in state- 

space form and is denoted by classical control law 3. 

Response and Robustness Analvsis 
The closed-loop transient responses due to 1 

degree step deflection of ate, in air at 225 psf, at Mach 
0.5, is shown in Fig. 9. The trailing edge control surface 
shows only 0.25 degrees overshoot with a maximum rate 
of 12 degrees Isec. The lift and moment forces indicate 
about 20% load alleviation compared to the open-loop 
initial transient values shown in Fig. 3. Figure 10 shows 
the singular-value plots for analyzing the system stability 
marginssg with law 3 at 225 psf dynamic pressure. Here 
G, K and A denote plant, controller and uncertainty block 
transfer function, respectively. This figure indicates that 
the minimum singular value $[+KG) is increased to 0.8 
at plant input and at plant output aI+GK) is increased to 
0.3 from the corresponding values with law 2 presented in 
Fig. 7. The minimum singular value g(I+KG) of 0.8 is 
eq"ivalent to +45 degrees phase and -5 dB to 12 dB gain 
margins at the plant inputs. These gain and phase margins 
are determined from Fig. 8 as previously described. The 
minimum singular value I/~[K(I+GK)'~] is also increased 
from 0.005 gldegree to 0.04 gldegree near flutter 
frequency, thus increasing the plant's tolerance to additive 
plant perturbation. The complex determinant loci of 
(I+KG) ideally should be outside the unit circle to achieve 
&dB gain margins and 6 0  degrees phase margins. The 
computational delay and antialiasing filters added 20 
degrees phase lag. Hence, the system nearly attained these 
margins. The singular value plots indicate that the system 
is stable with adequate singular value based multivariable 

solution only requires an eigen-solver. The corresponding 
Matlab script is presented in the Appendix. 

Clmcd loop dle Law3 ClmcdLoopdanuc.Lm3 
I I 
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Fig. 9 Closed-loop responses: control surface deflection 
and rate, lift and pitching moment, due to step input 6te 
with control law 3, at 225 psf, in air, at Mach 0.5 (open 
loop qfluW, =I28 psf). 

Fig. 10 Singular value plots for analysis of multivariable 
stability margins to perturbation A, with classical control 
law 3, at 225 psf, in air. 

stability margins even at this high design dynamic . . 
pressure of 225 psf. This pressure is 97 psf above the Consider the state space Eqs.(l-3) representing 

flutter dynamic pressure qfkutier 12' psf' the nth order plant, control input u(t), disturbance w(t ) ,  
representing a 75% increase. design output yd and sensor outpuiy,, where all necessary 

Unified Optimal Design 
Flutter suppression control law design using an 

unified (1) linear quadratic Gaussian (LQG) and (2) 
Minimax methodl0.11 is presented next. The Minimax 
approach is analogous to the time domain H-infinity 
design12 and is based on the steady state differential game 
formulation. The unified formulation of these optimal 
design techniques provide a basic understanding of the 
relation between them. The derivation from basic 
principles using variational principles are provided. The 

rank, controllability and observability conditions are 
assumed to be satisfied. 

Plant state-space equations 
dx(t)/dt = F x(t) + G u(t) + Gw w(t)  
and 40) = xo (1) 

Design output 
yd t )  = Hd x(t) + Edu ~ ( t )  
Sensor output 
y.dt) = Hs x(t) + Esw w(t) 



. . 
e-Feedb Pro 

The Minimax problem is to determine the plant (3-r (F - GQ-'Q,:) ( -GQ-~G~ + Y - ~ G , % ~ G , ~ )  
m i  quadratic - ( Q X  + Q ~ Q - ~ Q ; )  -(F - G ~ I Q : ~  I{;:;} 
performance index J , and find the worst plant 
disturbance w(t)  and initial condition x,, which would withx(0) = xo and 4,) = 0 (12) 
maximize J defined in Eq. (4), 

e-Feedb- 

J = ~ [ ( X ' Q ~ X  + X'Q,U + u T g u ) d t  (4) Substituting 42) = S(t)x(t), in Eqs.(lO-12), leads 
to Eqs.(13-15). The general Riccati Equation (15) is then 
solved for the unknown n by n matrix S. 

subject to the constraint Eq.(l) with xoTxO = I and 
specified W defined by, u(t) = - Q u - l ( ~ T ~  + QXuT) x(t) (13) 

Usually, the constant weighting mamces Qx, Q,  are &idt + SF + FTS + Q, -(SG + Q,)Q,-~(sG + Q,)T 
unity, and Qxu = 101 in a H-infinity exposition. These are + s ( y 2  G , , , R ~ - ~ G ~ T ) S  = o 
included herein to derive a unified general time-domain (15) 

formulation. The cross weighting ma& Qxu originates if 
The positive definite symmetric solution for S is obtained 

One uses yd from Eq. (2) in the performance index from the (2n x nJ eigenvecton of the n stable eigenvalues 
replace x. Then, Qx = HdTQydHd. Qxu = H d T ~ y d ~ d u ,  and of the Hamiltonian matrix inside the square bracket [ 1 in 
Qu is replaced by I Qu + E ~ ~ ~ Q ~ ~ E ~ ~  1. The siinificance Eq.(12). For the steady state ~ r o b l e ~  (i.e. dS/dt = o )), 
of the cross weighting matrix Q,, and how it can be only the steady Part of the Riccati Equation (15) is solved 
selected for pole-placement of the state regulator will be in order to obtain the symmetric positive-definite matrix 

shown later in the state-feedback regulator subsection. S. If the eigenvectors are partitioned into two n x n 
matrices d and 4 which represent the stable subspace 

The minimax solution is given by the stationary eigenvectors of x and A, then S = ~ - ' h  The constant 

condition of the augmented performance index J optimal feedback gains, Co and Cw, and the closed-loop 
system matrix are given by, 

J = f [ ( x T Q X x  + 2xTQ_u + U'QU - y2wT&w)dt 

where, y is a scalar parameter. Using the calculus of 
variation with respect to x(t), u(t), w(t) and the vector 

cw = ~2 R ~ - ~ G ~ T s  

Lagrange multiplier a t ) ,  the conditions for dl=0 are 
given by Eq.(l) and Eqs. (7) to (9). dddt = [F + GwCw + GCo]x. 

Using Eqs.(l),(l5) and (18), it can be shown" that 
(7) optimal J and W defined in Eqs.(4) and (5) are given by. 

QUu = - G ~ A - Q X U ~ X  (8) J = 0.5 Trace [Sl (19) 

@Rww = GWTd (9) W = 0.5 Trace [ c ~ ~ R ~ c ~ x ] .  (20) 

Solving for u(t) and w(t) from Eqs. (8-9) and substituting where X is the solution of the Lyapunov Equation (21) 
them in Eqs. (1) and (7). the necessary stationary 
conditions for J are obtained as, [F+GwCw + GCo] X + X[F + GwCw + GcolT + 

The worst x ( 0 )  that maximizes J is given by the 

(11) eigenvector of the maximum eigenvalue of S. The 



standard linear quadratic regulator (LQR) solution is 
obtained when y= oo, (i.e. Cw = 0) .  As ? is decreased, 

the worst response due to the disturbance w(t), measured 
by the maximum singular value of [xTp,'" u ~ Q , , ' ~ ] ,  is 

reduced. The minimum value of ? for which a stable 
solution of Eq. (15) exists provides the minimax state- 
feedback regulator that minimizes the maximum singular 
value of [xT~, jR u ~ Q ~ * ~ ] .  

The State-Estimator Equation 

Qx GwRwcwT 
Qu Rv 
S P 
Qxu Rwv 
ctf - 1) ( 2  - t o )  

Table 1. Duality relations between linear quadratic state- 
regulator and state-estimator equations. 

The derivation of coupled state-estimator 
ller F+i equations using linear quadratic minimax approach is still The 'Om0 

a subject of research. Here the equivalent state-space Substituting Eqs. (13), (14). (22) and (23) in Eq. 
(26). the state-estimation feedback controller equations  solution^^^ of the H-infinity problem are presented. The 

state estimator gain B$, is obtained by finding the dddt = [F + GwKw + GCo + DoBoHs] z -DoBoys (27) 
symmetric positive definite solution for P from the state 
estimator Riccati Eq. (24) which is dual to the state 

= C,z regulator Riccati Eq. (15). (28) 

(22) 
are obtained. The standard LQG solution is obtained 

Bo = - ( P H , ~ +  R,,)R,-] 
when y = oo. The minimum value of f for which a stable 
solution exists for P in Eqs. (22-24), provides the 

Do = (I - y2 PS)-],  p(PS) < (23) minimax control law that minimizes the maximum 
singular value of the matrix I ~ ~ ~ Q ~ ~ ~ / ~  U ~ Q , , ' ~ ] ,  for the 

dP/dt = P F ~  + FP + GWR,,GwT - ( P H , ~  + R,,,,,) RV-I closed loop system. 

( P H S ~  + RwvlT + p ( y 2  Qx)p (24) Unified Design Procedure 

In this design, the output yd was chosen to be the 
where R~ = E S ~ & W '  and be positive definite and linear combination of the trailing edge and leading edge 
Rwv = G ~ ~ s w T .  In Eq. (23) the spectrum PIPSI must accelerometer output (zte-0.4 zle), same as that used in 
me less than ? for D o  to exist. The positive definite the final classical design. One advantage of this choice 

symmetric steady-state solution for P in Eq. (24) is Was that the plant had no trarIsmission zeros in the open 

obtained from the (2n x n) eigenvectors of the n stable ight  half plane. Usually in a frequency domain H-infinit~ 

eigenvalues of the estimator Harniltonian matrix, design, the plant equations are augmented with weighting 
transfer functions. In this time domain formulation, the 

( F  - R,,.vK1~2)* 

- I weights were chosen as constants. These weighting 
(-H:K1H2 + y-2H1 Q ~ l  H l )  constants are chosen as inverse of the desired magnitude 

-G,&G; - &q1C -(F - kVK1H2) of the weighted quantities. The initial controller was 

(25) designed with a large value of f, using the plant Eqs. (1- 
which is dual to the state regulator Hamiltonian matrix 3)- at 225 psf, in air, at Mach 0.5, assuming Gw = G .  The 
inside [ ] in Eq.(12). If the eigenvectors are partitioned block diagram for this unified design procedure is shown 
into two (n x n) matrices X and 4, then p = X-I& The in Figure 11. The detailed design steps are described next. 
state estimate vector z is given by the Eq. (26). 

dddt  = F z  + Gww +Gu + DoBo(H2z -y2)  (26) Initially, the maximum output of the 
accelerometer sensors were of the order O.lg, (see figure 

The complete duality relations between the state regulator 3)* and surface maximum rOOt-mean-square 
problem and the state estimator problem are presented in was desired to be the degrees. Thus* 
Table 1. the initial values of the weighting matrices were chosen as 

follows: = I Qys = [ l oo ] ,  and QU = [ I ] .  
state remlator state estimator It was interesting to note that, instead of setting the cross 

F F~ weighting matrix Qxu = [O] as usual practice, the cross 

G HsT weighting matrix Qw can be selected to place all state 



regulator poles beyond a certain distance a to the left of 
imaginary axis. This selection is accomplished by using 

so that in Eq. (12). the eigenvalues of the diagonal matrix 
block Fare off-set by 

The control-weighting matrix Qu was 
subsequently reduced to 0.01 after a few design cycles to 
improve the regulator performance. This process of 
reducing Qu is equivalent to the state estimator loop- 
transfer recovery technique at the plant output. 

and a large value of $2 

Design state regulator 
Check stability and 

performance 

es 
Analyse stability, performance 

with4th order plant 

1 Yes 
I Analyse stability, performance ] 
I with full order nlant I 

1 

Nonlinear simulation I 
Fig.11. Unified minimax control law design and 
evaluation procedure block diagram. 

The state estimator was designed as a dual to the 
state-regulator with Rw = 1, each diagonal elements of 
R ,  = 0.01, and Rw, = [O]. After a few design cycles the 
performance of the combined full-order controller was 
examined, and then Rw was increased to 36. Since we 
also choose Gw = G, this was equivalent to asymptotic 
state-regulator looptransfer recovery 2 the plant input. 

4th Order 
Subsequent solutions to the state-regulator and 

state-estimator were obtained with the same choice of 
weighting matrices but for decreasing value of $, for 
which positive definite solutions for S and P could be 
obtained. Note that feasible solutions can be obtained for 

lower values of $ up to $> p(PS), below which the 
disturbance authority exceeded the control authority. The 
4th-order optimal control law was designed with ?=50 in 
order to obtain a low bandwidth controller. Fig. 12 shows 
the key singular value plots for analysis of multivariable 
stability margins to multiplicative and additive 
perturbation A at the plant input and output, with this 
minimax optimal control law, denoted as ~ontrol  law 4. 
The minimum singular value oJI+KG) is increased to 0.9 
at plant input and at plant output oJI+GK) is increased to 
0.5 from the corresponding values of 0.8 and 0.3 for 
control law 3, shown in Fig. 10. 

Fig. 12 Singular value plots for analysis of multivariable 
stability margins with minimax optimal control law 4, at 
225 psf, in air. 

Fig. 13 Open-loop and closed-loop responses due to step 
input Ste, with classical control laws 2, and 3, and 
minimax optimal control law 4, at 225 psf, in air. 

Fig.13 shows the open-loop and closed-loop 
responses due to unit step input Ste of trailing edge 
control surface, at 225 psf, in air, at Mach 0.5, with initial 
control law 2, classical control law 3, and minimax 
optimal control law 4. The transient responses indicate 



that the classical control law 3 provided better damping 
with lower control surface activity although the 

minimax control law 4 provided better robustness 
properties. This is the traditional trade-off between 
performance and robustness. The classical control law 3 
was implemented and tested in wind tunnel. These test 
results along with those using two optimal control laws 
designed by W a s ~ a k ' ~  are presented next. 

Flutter Suppression Test Results 
The performance and robustness of the final 

design was tested using the original full plant state-space 
equations and filters required for digital implementation. 
The 25 Hz antialiasing filters 157/(s+157) were added to 
the plant output. The washout filter 5s/(s+5) and 
computationaI delay were added to the controller output 
equations. The 1/200 second computational delay was 
modeled by a (400-s)/(400+s) filter. Before the wind- 
tunnel test entry, the digital implementation was also 
numerically simulated. The numerical simulation block 
diagram of the control system using the final classical 
control law 3 is shown in Figure 14. This nonlinear 
simulation also included the effects of a dead-band 
present in the electro-hydraulic actuator. Application of 
the upper and lower spoiler for transonic flutter 
suppression with the same digital control law was also 
investigated using this simulation. 

The active flutter suppression control-law using classical 
design was successfully tested in air and in heavy gas 
medium at transonic speeds up to Mach 0.95. The tests in 
air indicated an increase in the flutter instability boundary 
from the open-loop dynamic pressure of 158 psf (Mach 
0.38) to the tunnel limit of 200 psf. A summary of flutter 
suppression test results in heavy gas is shown in Fig. 15. 
The solid line indicates the experimental flutter boundary, 
with the transonic dip at Mach 0.8. The tests at Mach 0.8 
indicated an increase in the flutter stability boundary from 
the open-loop dynamic pressure of 142 psf to the tunnel 
upper limit of 200 psf. A non-design plunge instability 
condition was also successfully suppressed. Classical 
control law 3 exhibited superior performance and was 
demonstrated to be stable with gain variation from 0.25 to 
7, and phase variation from -90 to 60 degrees. A non- 
design plunge instability condition was also successfully 
suppressed. Comparison of open-loop and closed-loop 
root mean square (RMS) responses of trailing edge 
accelerometer and control surfaces using the present 
classical control law 3 and two other control laws 
designed by waszak13 are shown in Figs. 16 and 17, 
respectively. These two control laws used upper and 
lower spoilers as control surface, for flutter suppression. 
Fig. 16 indicates that when the system is open loop stable, 
closing the loop actually reduces the response by 30%. 
Fig. 17 indicates that that the classical control law 3 
generally requires less control activity. All three control 

laws are comparable in performance, with control law 3 
exhibiting higher stability margins. 

Fig.14 Numerical simulation block diagram of the control 
system implementation using the final classical control 
law 3 for flutter suppression. 

Clawd Loop Teat Polnta 
220 

100 
0.5 0.6 0.7 oa 0.9 1.0 

Mach Number 

Fig. 15 Open-loop flutter boundary and closed-loop flutter 
suppression results from wind-tunnel tests in heavy gas. 

1 open loop stable 

Fig. 16 Open-loop and closed-loop RMS responses with 
classical control law 3 and two control laws employing 
spoilers from wind-tunnel tests in heavy gas medium. 



Conclusions 
Simple classical control laws, when properly 

designed based on physical principle, can successfully 
suppress transonic flutter and provide significant stability 
robustness in presence of shock and flow separation. 
Comparable robust optimal control laws can also be 
designed using a new generalized unified minimax 
formulation. Verification and improvement of the 
multivariable system stability robustness to unstructured 
perturbations at the plant, input and output were important 
steps in such a design process. Wind-tunnel tests in air 
and heavy gas indicated an increase in the transonic 
flutter dynamic pressure to the tunnel limit upper limit of 
200 psf. The control law robustness and performance 
predictions were verified in highly nonlinear flow 
conditions, gain and phase perturbations, and spoiler 
deployment. 

0.58 
0.48 

Fig. 17 RMS responses of the control surfaces with the 
classical control law 3 and two control laws from wind- 
tunnel tests in heavy gas medium. 
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Appendix 
Reduced 4' order state space equations in air at 225 psf. 
and Matlab script for unified minimax formulation and 
solution 

[G G,] = [ -3.8259 0.0597 
12.7130 0.2720 
-2.2202 -0.1 107 
4.1351 -0.1745 ] 



% Matlab script for unified formulation and solution 
% x d o t = F x +  Gww + G u  
% yd = Hd x + Edw w + Edu u Design output 
% ys = H x + Esw w + Esu u Sensor output 
% 7 design output [zte zle dte ddte gust lift moment] 
% ................................................ 
Q l  1 = h'*qh*h+hdl*qhd*hd; 
4 2 2  = [q2]+[Edu'*qhd*Edu]; 
% pole placement using cross weight Q12 

alpha = 3.0; 
Q12=-alpha*g*((g'*g)\Q22)+[hd'*qhd*Edu]; 
WW = [ Q l l  Q12;Q12'  4221; 
% Generalized LQR Weights 
Ru = [gw*rw*gw'+nu*g*g']; 
Rv = [rv]+[Esw*rw*Esw']; 
Rwv = [gw*rw*Esw']; 
% generalized EST Weights 
VW = [Ru Rwv ; Rwv' Rv 1; 
% Generalized DESIGN with Edw=O 
[af,bf,cf ,dri=lqg(f,g,h,Edu,~,W; 

%--------------------------------------------- 
% STATE REGULATOR 
% Check if Q11 is positive semi-definite and symmetric 
if any(eig(Ql1) < -lO*eps) I (norm(Q11'-Q11,l)lnorm 
(Q11,l) > eps) 
error('Q11 must be symmetric positive semi-def), end 
% Check if Q22 is positive definite and symmetric 
if any(eig(Q22) <= 0) I (norm(Q22'-Q22,1)/norm(Q22,1) 
> eps) 
error('Q22 must be sym. positive definite'), end 
%-------------------------------------------------- 

% Construct Hamiltonian 
Hrn=[(f-g* [Q22\Q 1 2'1) -g* [Q22\gt]+gw * [rw\gw9]/mu 
-Q11-Q12*[Q22\Q12'] -(f-g*[Q22\Q12'])']; 
[v,d]=eig(Hm); 
% - - - - - -- -- - - -- - - - -- - - - - - - - - - - - - - - - - - --- -- - - - - - - - - - - - 
% Sort eigen vector of neg eigenvalues 
d = diag(d); 
[d,index] = sort(real(d)); 
if (-( (d(n)d) & (d(n+l )s) )) 

error('Can"t order eigenvalues'), end 
% select vectors with negative eigenvalues 
chi = v(l:n,index(l :n)); 
lambda = v((n+l):(2*n),index(l :n)); 
S = real(1ambddchi); 
% - - - - - -- -- - - -- - - - - - - -- - - - - - - -- -- - -- - - - - - -- -- - - - - - - -- 
% Positive feedback gain ku 
ku=-Q22\(g1*S+Q 12'); 
kw=[rw\gwt] *S/mu; 
%-------------------------------------------------- 

% closed loop plant f = fcl 
fcl=f+g*ku+gw*kw; 
X=lyap(fcl,eye(n)) % assume xo*xo'=I 
Xg=lyap(fcl,gw*gw'*36) 
W=0.5*trace(kw'*rw*kw*Xg) 
Jo=0.5*mce(S) 
Uu=trace(ku'*ku*Xg) 
Ycov=Hd*Xg*Xg'*Hd' 
%--------------------------------------------------- 

% H-inf ESTIMATOR DESIGN 
% define Hamiltonian Jam 
Ru = [gw*rw*gw'+nu*g*g']; 
J = [ (f-[RwvIRv] *h)' [-h'lRv]*h+[hd'/qhd]*hd/mu 

-Ru-[Rwv/Rv]*Rwv' -(f-[RwvlRv]*h) 1; 
[v,d]=eig(J); 
%-------------------------------------------------- 
% sort eigenvector of stable eigenvalues 
d = diag(d); [d,index] = sort(real(d)); 
% sort on real part of eigenvalues 
if (-( (d(n)d) & (d(n+l)>O) )) 

error('Can"t order eigenvalues'), end 
qg, - -- - - - - - -- - - - - -- - - - -- - - -- - - - - --- --- -- - - -- --- --- --- - 
% select vectors with negative eigenvalues 
chi = v(l :n,index(l :n)); 
lambda = v((n+l):(2*n),index(l :n)); 
P = real(1ambddchi); 
ky = -(F'*h'+Rwv)/Rv; 
% check positive definiteness of kd 
% Is this matrix (I - P*Slmu) nonsingular ? 
mumin=max(abs(eig(P*S))) 
if (mu > mumin), 
kd = inv(eye(n)-(P*S)/mu); , else 
error('spectrum(P*S) > mu , increase mu'), end 
%-------------------------------------------------- 

eve=eig(f+kd*ky*h); 
% controller structure 

Ao=f+g*ku+gw*kw+kd*ky *h; 
evc=eig(Ao); 

% H-inf~nity controller 
% Kop = [Ao -kd*ky -ku zeros(nc,ns)]; 
[fc, gc ,hc, ec] = feedback(f, g, h, e, Ao, -kd*ky ,-ku, 
zeros(nc, ns)); 
% - - -- --- - -- - - - - -- - - - -- - - - - - --- - - - - - - - - - - - - - - 





WAVELET APPLICATIONS FOR FLIGHT FLUTTER TESTING 

Rick Lindl, Marty Brenner2, and Lawrence C. Freudinger3 
NASA Dryden Flight Research Center 

Abst rac t  Wavelets represent a type of processing that relaxes sev- 
eral constraints on the signal that are assumed to be 

Wavelets present a method for signal processing that satisfied when using traditional Fourier processing (241. 

may be useful for analyzing responses of dynamical sys- The wavelet transform has been used for a wide variety 

tems. This paper describes several wavelet-based tools of signal and image processing applications; however, its 

that have been developed to  improve the efficiency of use for dynamical systems, and particularly flight flutter 

flight flutter testing. One of the tools uses correlation fil- testing, has been somewhat more limited to  applications 

tering to identify properties of several modes throughout such as denoising in the time-frequency domain [3, 71. 

a flight test for envelope expansion. Another tool uses 
features in time-frequency representations of responses 
to  characterize nonlinearities in the system dynamics. 
A third tool uses modulus and phase information from 
a wavelet transform to estimate modal parameters that 
can be used to update a linear model and reduce conser- 
vatism in robust stability margins. 

1. Introduct ion 

Flight flutter testing for envelope expansion is a time- 
consuming and dangerous procedure because of the rel- 
ative inefficiency of traditional methods. The most com- 
mon of these methods is to track damping of structural 
modes throughout the envelope and predict the onset 
of flutter through decreases noted in the corresponding 
trends [ll] .  The danger with this method, and therein 
the main cause of inefficiency, is the possibility of un- 
expectedly encountering a flutter instability as  a result 
of sudden changes in damping that are not indicated by 
trends. Thus, the envelope is expanded using small in- 
crements in flight condition that reduce the possibility of 
such an occurrence. 

NASA Dryden Flight Research Center has been develop- 
ing tools to increase the efficiency of flight flutter testing 
by reducing the required amount of flight time while si- 
multaneously increasing safety to aircraft and crew [15]. 
These tools encompass several areas of flight flutter test- 
ing ranging from excitation to data transfer to stabil- 
ity prediction. In particular, tools have been formulated 
that use wavelets to accurately analyze the types of data 
that are typically measured during flight flutter testing. 
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-4 tool has been developed recently to use wavelets as ba- 
sis functions for a correlation filter that identifies modal 
properties [8]. This tool uses inner products between 
data and a set of wavelets as a measure of correlation. 
The modal properties of the system are then identified 
by noting the associated properties of the wavelets that 
are highly correlated with the data. 

Another wavelet-based tool that has been recently de- 
veloped uses wavelet maps to extract information about 
nonlinearities in system dynamics [16, 171. This tool con- 
siders features and trends in the time-domain represen- 
tations of transient responses to indicate the presence of 
nonlinearities. Furthermore, these features and trends 
can be exploited to characterize the nature of the non- 
linearities. 

A third tool uses wavelets for parametric estimation of 
modal dynamics and state-matrix elements [4]. This tool 
is developed in conjunction with a flutter analysis tool 
such that the parameter estimates are incorporated into 
the analysis to reduce the amount of modeling error con- 
sidered by robust stability metrics [12]. This tool is espe- 
cially appropriate for flight flutter testing by considering 
an on-line formulation of the tool that estimates modal 
parameters during flight [5]. 

This paper presents these wavelet-based tools that have 
recently been developed for use during flight flutter test- 
ing. These tools have been previously documented; 
therefore, the purpose here is to present a summary and 
compendium of the recent advances. 

This paper is divided into 3 main sections such that each 
section is devoted to a particular tool. The discussion is 
limited for brevity to the basic theoretical foundation 
and an example to demonstrate each tool in a flight test 
context. References are listed that can be consulted to 
obtain more extensive information. 



2. Correlation Filtering 

This section presents the wavelet-based tool for correla- 
tion filtering. Laplace wavelets are introduced in terms of 
damping and natural frequency to represent basis func- 
tions for the tool. The filtering uses these functions to 
generate a correlation coefficient and indicate modal pa- 
rameters of the system. The tool is demonstrated by 
filtering data from an envelope expansion flight test. 

2.1. Laplace Wavelet 
The Laplace wavelet, $, is a complex, analytic, single- 
sided damped exponential. 

expressed as a linear combination of the finite number of 
entries in the dictionary. The dictionary approximates 
a basis assuming the responses to be analyzed are simi- 
lar in nature to the Laplace wavelets. The dictionary is 
basically a database of waveforms. 

A finite set of wavelet parameters is used t o  generate the 
dictionary. A discrete gridding of the parameter space 
results in sets fl, 2 and 7. 

The dictionary is defined for the set of Laplace wavelets 

A e - h w ' t - T ) , - j u ( t - ~ )  : t E [T, + T] whose parameters are contained in these sets as denoted 

: else b y y ~ Q x 2 x T .  

The parameter vector, y = {w, C, T),  determines the 
wavelet properties. These parameters are related to 
modal dynamic properties by associating w with fre- 
quency, C with viscous damping ratio, and T as a time 
index. The coefficient A is an arbitrary factor used to 
scale each wavelet to unity norm. The range, T, ensures 
the wavelet is compactly supported. 

This function is called a Laplace wavelet to emphasize 
that its derivation is related to the Laplace transform. 
In particular, the Laplace wavelet has a strong similarity 
to the inverse Laplace transform of the transfer func- 
tion for an underdamped, second-order system. Thus, 
the Laplace wavelet is generated by considering features 
anticipated in mechanical system responses. 

2.2. Laplace Wavelet Dictionary 
The analysis of response data from dynarnical systems 
often uses assumptions of linearity such that the system 
response should be a linear combination of subsystem 
responses [lo]. These subsystems are second-order single 
degree of freedom systems in the case of modal analysis. 
Signal decomposition of the response into the subsystem 
responses for steady-state data can be accomplished via 
Fourier transforms which use a basis of infinite length 
sinusoids of varying frequencies. 

Transient response data are difficult to effectively decom- 
pose even for linear systems since the system response 
is composed of subsystem responses with time-varying 
magnitudes. The basis of infinitely long sinusoids used 
by the Fourier transform is not ideal for this nonstation- 
ary data. Wavelets may be used for signal decomposition 
of transient response data since they inherently allow 
time-varying magnitudes of the subsystem responses. 

The concept of a dictionary is introduced to describe a 
set of wavelets used for signal decomposition [24]. This 
dictionary is distinguished from a basis since the re- 
sponse of any dynamical system may not necessarily be 

2.3. Filtering Approach 
An inner product operation measures the correlation be- 
tween signals. Correlating a signal, f (t), with a Laplace 
wavelet, $, ( t )  , measures similarity between frequency 
and damping properties of the wavelet and the system 
that generated the signal. 

A correlation coefficient, n, E R, is defined to quantify 
the degree of correlation between the wavelet and a time 
signal. This correlation coefficient considers the angle 
between the vectors such that the maximum coefficient 
results from correlating parallel vectors. 

K-, is a matrix whose dimensions are determined by the 
parameter vectors of {w, 6 , ~ ) .  A useful correlation coef- 
ficient K(T) is defined for on-line modal analysis to cor- 
relate frequency and damping at each time value. Peaks 
of the surface plot of K, for a given T relate the wavelets 
with the strongest correlation to the data. Define K(T) 
as the peak values of n, a t  each T and define i7 and < 
a s  the parameters of the Laplace wavelet associated with 
the peak correlation. 

A normalizing factor of fi allows K(T) = 1 when the sig- 
nal in some time interval T is a linear combination of the 
real and imaginary components of a particular wavelet. 
The formulation of K(T) searches for a maximum value 
across values of w and ('. This search can use subsets of 
R and 2 to find local maxima and compute a K vector 
a t  each time index. The subset searching is analogous 
to finding multiple peaks of interest on a frequency spec- 
trum plot, with the added variables of damping and time. 

The support range T is not explicitly used to define K 

but it can greatly affect the computed value. Small T 



may increase n for signals not strongly correlated while 
large T may decrease tc to the noise floor even for signals 
which are strongly correlated. Thus, T can not be chosen 
arbitrarily. Knowledge of crest factors; signal-to-noise 
ratios, and effective decay rates observed in the data can 
all be used in guiding the choice of T. 

A correlation filter approach computes the tc vector for a 
response signal. The dampings T and frequencies J asso- 
ciated with peak R values indicate the modal properties 
of the system which generated the data. This filter acts 
as a transform from the time domain to a modal param- 
eter, or stability, domain. This stability estimate should 
be representative of the modal properties of the system 
if the data represent a linear, time-invariant system in 
free decay. 

2.4. Flight Data Analysis 
Application to actual aircraft data is required to evalu- 
ate Laplace wavelet correlation filtering for use in a flight 
test environment. Consider the DAST aircraft (Drones 
for Aerodynamic and Structural Testing), a remotely pi- 
loted research drone which encountered explosive flutter 
in June 1980 [9]. 

Figure 1: NASA DAST vehicle in flight 

The last 40 s of flight data demonstrate the transition 
from stable flight to  the onset of flutter and thus are 
of interest for evaluating correlation filtering. This data 
corresponds to flight at 15,000 ft over which the Mach 
number varies between approximately 0.80 and 0.825. 
Wingtip accelerations are measured at 500 Hz in re- 
sponse to symmetric aileron pulses and are used to ana- 
lyze modal properties of the vehicle. A flutter suppres- 
sion controller was engaged during this flight; however, 
the vehicle encountered a flutter instability due to an 
implementation error. 

The response data was correlated with a Laplace dictio- 
nary based on support T = 2 s. The starting time indices 
for filtering, 7, are data dependent and correspond to lo- 
cal maxima with an emphasis on transient excursions. 
The remaining elements of the dictionary are members 
of the sets Q and Z. 

The results of correlation filtering are presented in Fig- 
ure 2. Figure 2a presents the acceleration response of 
the left wingtip while Figures 2b, 2c, and 2d present 
the peak correlation, frequency, and damping values as 
a function of time. A threshold n( r )  > 0.8 is applied to 
avoid clutter on the plot without discarding interesting 
information. 
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,. 

-30 -20 -10 0 
Time, s 

Figure 2: Correlation Filtering of the DAST Data with the 
LapIace Wavelet Dictionary: Left Wingtip Acceleration (a), 
Peak Correlation Values n( r )  > 0.8 (b), Wavelet Frequen- 
cies Associated with Peak Correlations (c), Corresponding 
Wavelet Damping Values (d) 

Classical flutter testing uses trend analysis based on 
grouping correlations for a given pulse into an average 
value. The results from performing this operation on 
the data in Figure 2 are presented in Table 1. 

Table 1: Frequency and Damping Values Estimated by Cor- 
relation Filtering 



As can be seen in both Figure 2 and Table 1, the average 
frequency and damping values show a roughly steady 
trend until the impulse at t = -13s at which time the 
dominant frequency edges up slightly by 0.5 Hz and the 
damping tends toward zero. From t = -9s and later, 
a progressive increase in residual dynamics observed in 
Figure 2a indicates the arrival of the stability boundary. 
As the frequency spread converges to a single frequency, 
the damping values converge to zero. These estimates 
agree with previous parameter estimation results [I]. 

This analysis demonstrates that frequency and damp 
ing estimates provided by Laplace wavelet analysis are a 
diagnostic tool useful for free decay analysis because it 
provides time-varying estimates at arbitrary resolutions, 
which are not available from Fourier or traditional linear 
estimation techniques. This information is particularly 
useful in cases such as the DAST where pulse responses 
of closed-loop systems are observed specifically with the 
intent of tracking modal dynamics in the time domain. 

3. Analyzing Nonlinearities 

This section discusses the tool that uses wavelets to ana- 
lyze nonlinearities. This tool generates a time-frequency 
representation of a signal and then uses associated dom- 

The parameter can be utilized to determine sample 
length period of the dominant wavelet pattern in the 
data. This periodicity can be interpreted as a measure 
of the dominant sinusoidal frequency component in the 
response data under the approximations that the Mor- 
let wavelet is essentially sinusoidal in nature. Thus, the 
dominant scale is loosely related to the well-known con- 
cepts of ridges and instantaneous frequency [23]. 

Values of q are computed at each instant of time to 
produce a time-varying measure of dominant scale and 
frequency; however, there are instances when no value 
can be computed. For example, the real Morlet wavelet 
will be alternating from in-phase to out-of-phase with 
a sinusoidal signal and so there will be instances when 
the wavelet does not correlate well with the signal. The 
possible misinformation that could result from this is 
eliminated by applying a threshold factor that ignores 
portions of the wavelet map with no noticeable energy 
or low correlation factor. 

3.2. Nonlinear Testbed 
An aeroelastic testbed is used at Texas A&M Univer- 
sity for flutter research using a prototypical aeroelastic 
wing section. This system allows pitch-plunge motion 
to represents the bending-torsion motion that is often 
association with a classical flutter mechanism. 

inant features to indicate information about nonlinear- Nonlinearities are introduced to the system dynamics 
ities in the dominant dynamics. Responses from lin- through the stiffness associated with pitch movement. 
ear and nonlinear pitch-plunge systems are analyzed to This stiffness is described by a nonlinear polynomial 
demonstrate how nonlinearities are detected and charac- of the pitch Such nonlineari- 
terized with this tool. ties occur in physical aeroelastic systems and have been 

investigated to determine their effect on inducing limit 
3.1. Extracting Dominant Scales cycle oscillations [6]. 
Wavelet maps can sometimes be difficult to interpret be- 
cause of the large amount of information contained in Models of the T~~~ A&M aeroelastic system are formu- 
this two-dimensional representation. Many applications lated using three types of stiffness functions to investi- 
are only interested in the dominant components of a sig- gate a variety of behaviors related to different nonlinear- 
n d  and consequently are only interested in the dominant ities. These functions associated with the pitch stiffness 
information from these maps. One method of extracting are chosen to represent a linear a hard- 
dominant information is to identify the scales associated ening spring, and a softening spring. 
with peaks in the wavelet maps, F ( r ,  a), that are associ- 
ated with the Morlet wavelet [24]. The linear spring constant is denoted kli,. 

Consider a vertical strip F(ti, a) that represents the.mag- k~i, = 2.82 
nitude of the correlations between the signal f (t) and 
wavelets at position T = ti for the vector of scales a E A. The softening spring function is denoted ksoft. 
Define as the maximum peak magnitude correlation 
for this strip which corresponds to a wavelet with scale kSoft = 2.82 - 200a2 f 10000a4 

defined as q E A. The hardening spring function is denoted khard. 

around the equilibrium condition at the phase-plane ori- 
gin by eliminating higher-order terms in a .  Each lin- 
earized model is identical and has a pitch-mode natural 

- 
Fi = F(t i ,Z)  = maxF(ti,a) = maxF(r,a) 

aEA aEA 
khard = 2.82 - 62.3a + 3 7 0 9 . 7 ~ ~  - 24196.0a3 + 48757a4 

r=ti The models with each of these springs can be linearized 



frequency at 1.29 Hz. Thus, the the linear and nonlinear 
systems at stable flight conditions should behave simi- 
larly for responses with small cr values. 

3.3. Pitch Responses 
Simulated free-decay responses are computed for each 
nonlinear model using a 4th order Runge-Kutta algo- 
rithm to integrate the equations of motion with a time 
step of .001 s. The pitch responses are shown in Figure 3. 
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Figure 3: Simulated Time Responses of the Pitch Angle of 
Each Model at Airspeed U=8 m/s : Linear kli, (a), Nonlinear 
Softening ksolt (b), Nonlinear Hardening khard (c) 

The plunge responses are not presented here because 
they are not used for the current analysis. The plunge 
mode has a higher damping than the pitch mode and 
consequently the plunge response decays quickly to zero. 
ConverseIy, the pitch motion continues with a magni- 
tude that is sufficient to demonstrate properties of the 
dynamics and so the analysis will focus only on the pitch 
response. 

Time-scale information is obtained by computing the 
continuous wavelet transform of these time responses. 
Figure 4 presents the maps F(T,  a) generated by a 
wavelet analysis on the pitch data using real Morlet 
wavelet basis functions. 

Figure 4 shows Zdimensional plots of the 3-dimensional 
wavelet maps. The correlation magnitude between the 
wavelet and signal at each position and scale value is 
represented by a shade of gray with white implying low 
correlation and black implying high correlation. Such 
a shading approach is not optimal for representing these 
wavelet maps since several closely spaced scales will often 
appear to have a similar correlation magnitude and the 
resulting signal decomposition appears to be spread over 
these scales; however the 3-dimensional images are often 
more difficult to display. 

Figure 4: Wavelet Transform Maps of the Pitch Data Ob- 
tained from the Models Simulated at Airspeed U=8 m/s 
: Linear k l i ,  (a), Nonlinear Softening k S o f t  (b), Nonlinear 
Hardening khard (c) 

3.4. Detecting Nonlinearities 
The detection and characterization of nonlinearities af- 
fecting the system dynamics is difficult based on the gen- 
eral time responses of Figure 3 and corresponding time- 
frequency maps of Figure 4. The concept of dominant 
scales is therefore introduced as a means to  extract the 
most important information and simplify the analysis of 
nonlinearities. 

Figure 5 presents the plots of 7i;: corresponding to the 
peak magnitude wavelets from the maps of Figure 4. 
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Figure 5: Scale Ti; Corresponding to Peaks of the Wavelet 
Transform Maps of the Pitch Data Obtained from the Models 
Simulated at Airspeed U=8 m/s : Linear k~,, (a), Nonlinear 
Softening k,, (b), Nonlinear Hardening khatd (c) 

The wavelet maps in Figure 4 and the scales corre- 
sponding to the peaks of those maps in Figure 5 show 
clear differences in the responses from each spring. These 
plots may not be immediately obvious to interpret; how- 



ever, a careful examination reveals the wavelet analysis 
presents information which can be directly compared to 
properties of the dynamical systems. Interpretation is 
aided by referring to convenient regions of the time re- 
sponse. 

Region I 0 < t < 2 s 
Region I1 2 < t < 7 s 
Region I11 7 < t < 10 s 

Consider the wavelet information from Region I corre- 
sponding to the responses for t < 2 s. This portion of the 
responses from each system is dominated by the plunge 
displacement which is evident from further analysis of 
time-domain plots that are not presented here [16]. The 
dominant scale associated with each response is initially 
low and corresponds to the high-frequency dynamics of 
the plunge mode. The presence of this dynamic is a result 
of the pitch-plunge coupling through the mass matrix in 
the equations of motion. 

The transition a t  the end of Region I is caused by the de- 
cay of the plunge-mode response and an emerging dom- 
inance of the pitch-mode response. This early decay is a 
result of the larger damping in the plunge mode as com- 
pared to the pitch mode. The wavelet map demonstrates 
an increase in dominant scale to correspond with the de- 
crease in frequency between between dominant modes. 

The response in Region I1 is dominated by the dynamics 
of the pitch motion with only a small contribution from 
the coupled plunge motion so this data is useful for an- 
alyzing the dynamics of a single degree of freedom pitch 
system. The dominant scale, q, demonstrates signifi- 
cantly different behavior for the wavelet analysis of the 
three systems as evident from Figure 5. 

The constant scale for the linear system response in 
Region I1 is directly indicative of linear system dynam- 
ics. The response in this Region results from a linear and 
time-invariant system with a single mode so the dorni- 
nant frequency in the response should be constant and 
thus the dominant wavelet scale should be constant. The 
dominant scale has a value of Z = 625 and a corre- 
sponding frequency is computed as the sampling rate of 
1000 Hz divided by this scale. The true frequency is 
then computed by normalizing the ratio by 1.2 which is 
the dominant wavelength of the Morlet wavelet. Thus 
the linearized responses shows a dominant frequency of 
1.333 Hz which is similar to the predicted natural fre- 
quency of the pitch mode for the linear system. 

The time-varying values of 7i; associated with the re- 
sponses in Region I1 from the system with a nonlin- 
ear hardening spring are considerably different than the 
scale for the linear system. Consider that the response 
from the system with a hardening spring initially shows 

a small dominant scale and increases with time. The 
effect of a hardening spring is to incur a larger restor- 
ing force at large amplitudes as compared to a linear 
spring. This force returns the system to the origin faster 
and consequently the response has a higher frequency 
for the nonlinear system. The difference between non- 
linear and linear decreases as the response decays to a 
smaller amplitude and so the frequency in the responses 
becomes nearly identical. Thus, the wavelet maps reveal 
this behavior because an increasing scale is indicative of 
a decrease in frequency. 

A similar analysis on the dominant scales associated with 
the response of the nonlinear system with the softening 
spring demonstrates the wavelet maps can detect and 
characterize this nonlinearity also. In this case, the soft- 
ening spring results in a lower frequency in the response 
as compared to the linear system but the difference is 
small when the response amplitude is small. The domi- 
nant scale is initially larger for the response of the non- 
linear system as compared to the linear system and de- 
creases as time increases. Thus, the wavelet map reveals 
the initial frequency is lower in the response of the non- 
linear system but it increases as the response decays to 
small amplitude. 

The Region 111 analysis from Figure 5 notes the dominant 
scales, and consequently the frequency components, are 
similar for the responses from each system. This result 
is expected because the response magnitude has decayed 
as a result of damping and so each system can be approx- 
imated by the same linearized dynamics. The period of 
the dominant wavelet is Ti; = 625 which corresponds to 
a frequency of w = 1.33 Hz and matches the natural 
frequency of the linearized system. 

The wavelet maps of the time responses are clearly in- 
dicative of nonlinearities under the assumptions of free- 
decay responses from single-mode, time-invariant sys- 
tems. In particular, the responses in Region I1 reveal 
distinct differences between the responses of linear and 
nonlinear systems. Furthermore, these differences can 
be used to characterize the nature of the nonlinearities 
in the system dynamics. 

4. Model Updating 

This section presents the tool for parametric estima- 
tion of modal dynamics. A theoretical overview of the 
wavelet-based estimation is derived in terms of magni- 
tude and phase characteristics. The p method for flutter 
analysis is then discussed with respect to extending the 
baseline method to include the estimation tool. Robust 
flutter margins are generated for an F/A-18 using a nom- 
inal model and a model updated by the wavelet tool. 



4.1. Parametr ic  Moda l  Est imation Flight data is incorporated into the p method by for- 
Consider f (t) = k(t) cos(I$(t)t) as a general harmonic mulating an uncertainty description that accounts for 
signal that may represent a typical sensor measurement. observed variations and errors[l3]. A model validation 
The corresponding wavelet transform, F ( a , r ) ,  can be analysis is performed on the plant model to  ensure the 
analytically derived for a set of Morlet wavelets. range of dynamics admitted by the uncertainty is suffi- 

cient to cover the range observed with the flight data. 
F(a, T )  = & k ( t ) e - ( a # ( t ) - w o ) 2 e i @ ( t ) r  

The modulus and phase of this wavelet transform are of 
interest because they indicate modal properties of the 
system. In particular, these quantities can be evaluated 
for a given scale, a i l  that corresponds to a natural fre- 
quency, of the system. 

A concept of instantaneous frequency can be easily de- 
rived using the expression of phase of the wavelet trans- 
form [22]. This concept shows that a general time- 
varying envelope, k(t) , or time-varying phase, 4(t), of the 
signal can be determined from the modulus and phase of 
the wavelet transform for specific frequencies. 

Flight data measured during flutter testing will often dis- 
play features associated with viscously-damped, single 
degree of freedom systems. The corresponding envelope 
and phase functions can be explicitly written by noting 
that f (t) = Ae-Cwnt cos(wdt + 4,) describes the mea- 
sured signal. The corresponding wavelet expression for 
the envelope and instantaneous frequency for these sys- 
tems can be formulated based on the general expression. 

The expression using phase of the wavelet transform in- 
dicates that the relationship between instantaneous fre- 
quency and damped natural frequency can be expressed 
as 4 = wd. Similarly, the envelope decay rate can ex- 
pressed as Cw, Thus, modal parameters of the system 
can be estimated by analyzing modulus and phase of the 
wavelet transform. 

4.2. p Me thod  wi th  Wavelet Processing 
A method to compute stability margins of aeroservoelas- 
tic systems has been formulated based on robust stability 
theory[l2]. This method uses a set of structured opera- 
tors A, referred to as uncertainty, to describe errors and 
unmodeled dynamics in an analytical model. The struc- 
tured singular value, p, is used to compute a stability 
margin for this model that is robust, or worst-case, to 
the uncertainty operators[20]. 

The p framework represents systems as operators with 
interconnections known as linear fractional transforma- 
tions. This paper will use the notation F(P ,  A) to repre- 
sent a feedback interconnection of the plant, P, and an 
associated uncertainty, A. 

An ASE stability margin, I', is determined by computing 
p with respect to an uncertainty description, h, that ad- 
mits variations in dynamic pressure and an uncertainty 
description, A, that describes modeling errors[l4]. This 
margin reIates the largest change in dynamic pressure 
that may be considered while guaranteeing the plant 
model is robustly stable to all errors described by A. 

An implementation of the p method with modal param- 
eter estimation has been formulated that analyzes the 
wavelet maps of flight data to extract frequencies and 
damping. A plant model, PI ,  is computed by updating 
elements of the nominal plant model, Po, with the modal 
parameter estimates. Only a limited subset of dynamics 
will be observed in the data so only a correspondingly 
limited subset of the plant modes will be updated. The 
parameters describing dynamics that are not observed 
by the data can not be estimated so the updated plant 
will directly use the nominal plant elements to describe 
these dynamics. 

An uncertainty description, A l l  is generated for the plant 
with updated modal parameters, PI, using a model val- 
idation procedure. This description will generally be 
smaller than the description associated with the nom- 
inal plant because the updated model should be more 
representative of the flight data. Essentially, the updated 
model is centered within the range of dynamics observed 
by the flight data. 

The conservatism in robust margins computed by the 
p method arises from excessive uncertainty descriptions 
needed to account for errors in a model. The decrease 
in uncertainty resulting from updating the model by the 
parameter estimation process may correspondingly de- 
crease the conservatism in the robust stability margin. 

4.3. F/A-18 HARV 
Robust stability margins for the aeroservoelastic dynam- 
ics of the F/A-18 HARV are computed using the p 
method with wavelet filtering. This aircraft, shown in 
Figure 6, is a twin-seat fighter that was modified to 
include thrust vectoring paddles on the engines and a 
research flight control system [21]. The flight system 
also included a method to generate excitation signals for 
measuring aeroservoelastic responses by summing pro- 
grammed digital signals to the controller commands to 
the actuators [2]. Inputs from 5 to 25 Hz were added to 
the control surface commands at angles of attack from 5 
to 70 deg of a at lg. 



Figure 6: F/A-18 IEARV 

The ,u method was used to analyze the stability margins 
at several points in the enveIope; however, this paper 
will only consider the worst-case condition [18]. This 
worst-case margin is associated with the antisymmetric 
modes of the lateral-directional dynamics for the aircraft 
at Mach 0.3 and an altitude of 30000 ft with the dynamic 
pressure at t j  = 41 Ib/ft2. The baseline p method indi- 
cates an instability may lie close to the flight envelope so 
any reduction in conservatism could be significant. 

A set of operators are used to indicate uncertainties in 
an analytical model. A complex operator, Ai,, is a mul- 
tiplicative uncertainty in the control inputs to the plant 
and accounts for actuator errors and unmodeled dynam- 
ics. Another complex operator, A,dd, relates the control 
inputs to the feedback measurements to account for un- 
certainty in the magnitude and phase of the computed 
plant responses. The remaining operator, AA, is a real 
parametric uncertainty affecting the modaI parameters 
of the open-loop state matrix to describe errors in natu- 
ral frequency and damping parameters. 

Figure 7: F/A-18 HARV Uncertainty Block Diagram for 
Robust Stability Margin Analysis 

ing the modulus and phase of the wavelet transform of ac- 
celerations measured in response to sine sweeps through 
the control surfaces. An uncertainty description, Al, is 
derived-toa~count-for-features-in-thedata4hat-~n-not- 
be exactly reproduced by the updated model. 

Table 2 presents an example of the modal properties for 
the original and updated models. The parameters are 
larger for the updated model than for the original model 
because the flight data indicates the theoretical values 
are too low. Consequently, the amount of variation in 
the parameters that results from uncertainty is consid- 
erably less for the updated model than for the original 
model. Note the absolute amount of variation in damp- 
ing is actually greater for the updated model; however, 
the percentage of variation is less and this is the impor- 

The block diagram for robust stability analysis of the tant this 

F/A-18 HARV aeroservoelastic dynamics is shown in 
Figure 7. This figure includes an operator, $, that af- model w (Hz) c 
fects the nominal dynamics to describe changes in flight F(Po,Ao) 15.69 & .63 .010 & .007 
condition and is used to interpret p as a stability mar- F(P1, A,> 16.51 & .35 .045 f .023 
gin [14]. Additional operators, Wadd and Win, are shown 
as weightings to the frequency-varying uncer- Table 2: Modal Parameters and Uncertainty Variations for 
tainty operators, Aadd and Ain. the Wing Fore-Aft Mode for Each Model 

4.4. Models and Uncertainty 
An initial model of the aircraft, Po, is computed us- 
ing 6 rigid-body modes and 10 antisymmetric structural 
modes along with 20 states associated with the unsteady 
aerodynamics. The control system adds 90 states to ac- 
count for actuator dynamics and 29 states for the feed- 
back controller. 

An updated model, PI, is computed by using modal pa- 
rameter estimates to replace elements of the structural 
modes of Po. These parameters are generated by analyz- 

4.5. ASE Stability Margins 
Nominal stability margins are computed for the plant 
model using the original theoretical modal parameters 
and the updated models using parameters estimated 
hom wavelet filtering. These margins are computed from 
a p analysis with respect to the variation in flight condi- 
tion, Q, but ignoring the modal and complex uncertainty 
operators. The nominal stability margins, I?, are given 
in Table 3 and demonstrate the largest decrease from the 
nominal dynamic pressure of Q = 41 lb/ft2 that may be 
considered before the models incur an ASE instability. 



model r w 
F(P0,O) -268 lb/@ 14.8 HZ 
F(Pl  , 0) -368 lb/ft2 14.8 HZ 

Table 3: Nominal Stability Margins for Each Model 

The original theoretical model has a nominal stability 
margin of r = -268 Ib/@ resulting from a critical insta- 
bility of the wing fore-aft mode at 14.8 Hz. The margin 
is increased by updating the model with modal param- 
eter estimates; however, the wing fore-aft mode remains 
the critical mode. This increase in stability margin asso- 
ciated with wavelet filtering is not guaranteed to occur 
for all applications; rather, the filtering is designed to 
make the nominal model more accurate. The nominal 
model for the F/A-18 HARV had low dampings so the 
wavelet filtering increased the modal damping levels and, 
in a sense, made the plant effectively more stable and in- 
creased the stability margins. 

These nominal margins are all greater than the dynamic 
pressure at this flight condition so they demonstrate the 
nearest instability to the flight envelope occurs at a neg- 
ative dynamic pressure, which is physically unrealizable. 
Thus, the nominal dynamics are free of ASE instabilities 
within the research flight envelope. 

Robust stability margins are computed with respect to  
the uncertainty description of Figure 7 and given in Ta- 
ble 4. The original model and uncertainty description is 
represented by F(P0, A,) while the updated model with 
reduced uncertainty description is given by F (P l ,  Al) .  

model r w 
F(Po,  A,) -4 Ib/@ 15.4 HZ 
F(Pl, A,) -222 lb/ft2 7.0 HZ 

Table 4: Robust Stability Margins for Each Model 

The stability margin of the original model is strongly 
affected by considering uncertainty. This margin is re- 
duced from r = -268 1b/ft2 for the nominal dynamics 
to I? = -4 lb/ft2 for the dynamics with respect to uncer- 
tainty. The critical mode remains the wing fore-aft mode 
despite the uncertainty; however, the dynamic pressure 
at which this mode becomes unstable is quite different. 
This robust stability margin demonstrates the nominal 
model may be misleading and the nearest unstable flight 
condition may actually lie close to the flight envelope. 

The robust stability margin for the model F(Pl ,Al ) ,  
which uses modal parameter estimates, is significantly 
larger than the margin of the original system. The 
wavelet processing is able to identify a more accurate 
model with less associated uncertainty so the conser- 
vatism in the margin is reduced. The robust stability 
margin for this model is r = -222 lb/ft2 and indicates 

the nearest instability for the updated model, despite 
the range of dynamics incurred by uncertainty, is at a 
negative dynamic pressure and so the flight envelope is 
robustly free of ASE instabilities. 

The critical mode associated with the robust stability 
margin for the updated model is the first fuselage bend- 
ing mode, which is different than the critical mode as- 
sociated with the nominal margin. This shift in critical 
modes results from the inclusion of uncertainty that al- 
lows a variation to the fuselage dynamics that becomes 
unstable before the wing fore-aft mode. Similarly, the 
critical mode for the robust stability margin of the orig- 
inal model F(Po,  A,) is the wing fore-aft mode, but the 
reduced uncertainty associated with F (P l ,  Al) shifts the 
critical mode so the variation in fuselage dynamics for the 
updated model encompasses the critical instability. 

Comparison between the nominal results in Table 3 and 
the robust results of Table 4, both in r and modal fre- 
quency, clearly show the change in stability characteris- 
tics resulting from model updating and the correspond- 
ing uncertainty updating. The original model showed a 
substantial decrease in margin for the instability associ- 
ated with the wing-fore .aft mode when uncertainty was 
included. The updated model showed a much smaller 
decrease in margin despite the shift in modal instability. 
For this model, wing fore-aft modal frequency increased 
about 1 Hz from its theoretical value to the updated 
value and thereby became a less significant factor in the 
stability margin calculation compared with the fuselage 
mode. This result confirms that the effect of parameter 
estimation in model validation can be a critical factor for 
predicting robust stability margins. 

5. Concluding Remarks 

Wavelet analysis produces a time-frequency representa- 
tion of data from which informative features may be ex- 
tracted. This paper has shown several applications of 
wavelets that are valuable for flight flutter testing. A 
correlation filter is developed that can identify modal 
properties and indicate coupling and perhaps the onset of 
flutter during envelope expansion. Another application 
can be used to characterize nonlinearities in the system 
that may indicate behaviors such as limit cycle oscilla- 
tions. Also, a method of modal parameter estimation 
is developed that can be used to update models and re- 
duce conservatism in robust stability margins and allow 
envelope expansion to proceed to points that may be ini- 
tially considered as dangerous because of excessive con- 
servatism in original models. 
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ABSTRACT 

This paper presents novel analytical results for 
eigenvalues and eigevectors produced using discrete 
time aerodynamic and aeroelastic models. An 
unsteady, incompressible vortex lattice aerodynamic 
model is formulated in discrete time; the importance 
of several modeling parameters is examined. A 
detailed study is made of the behavior of the 
aerodynamic eigenvalues both in discrete and 
continuous time. The aerodynamic model is then 
incorporated into aeroelastic equations of motion. 
Eigenanalyses of the coupled equations produce 
stability results and modal characteristics which are 
valid for critical and non-critical velocities. Insight 
into the modeling and physics associated with 
aeroelastic system behavior is gained by examining 
both the eigenvalues and the eigenvectors. Potential 
pitfalls in discrete time model construction and 
analysis are examined. 

INTRODUCTION 

A standard procedure for solving a structural 
dynamic problem is to employ eigenanalysis to 
calculate the structural dynamic eigenvalues and 
eigenmodes. Recently, this procedure has been 
extended to unsteady aerodynamics, and to coupled 
aeroelastic equations I.*.  

Because applying eigenmode analysis to 
aerodynamic and aeroelastic systems is fairly new, 
there are many modeling issues that may not be 
familiar to the analyst. The intent of this paper is to 
discuss several of the many issues which are 
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associated with these new aeroelastic techniques. To 
accomplish this, we analyze relatively simple fluid 
dynamics and aeroelastic models using discrete time 
techniques and eigenmode analysis. 

In computational fluid dynamics, CFD, there are two 
approximations that are typically employed. One is the 
construction of a computational grid, which determines 
the limits of spatial resolution of the computational 
model. The second is the approximation of an infinite 
fluid domain by a finite domain. It is a principal purpose 
of the present discussion to demonstrate that the 
computational grid not only determines the spatial 
resolution obtainable by the CFD model, but also the 
frequency or temporal resolution that can be obtained. 
Also, as will be shown, the finiteness of the 
computational domain determines the resolution of the 
eigenvalue distribution for a CFD model. Both of these 
observations have important ramifications for assessing 
the CFD model and its ability to provide an adequate 
approximation to the original fluid model on which it is 
founded. To these ends, a finite-wake, time-domain, 
discretized vortex lattice aerodynamic model has been 
utilized. 

This paper presents results of aerodynamic parametric 
variations. A detailed discussion of the trends produced 
by these systematic variations will be presented. The 
discussion includes the effects on both the discrete- and 
continuous-time eigenvalues. These studies give new 
insights into aerodynamic modeling in the discrete time 
domain including how one may construct reduced order 
aerodynamic models. 

The aerodynamic model was also combined with time- 
domain discretized structural dynamic equations to 
examine the aeroelastic behavior of a typical section. 
Aeroelastic analyses are also discussed in terms of 
eigenanalysis results. Aeroelastic stability analyses 
generally focus on the migration of the eigenvalues as a 
function of the velocity or other flow parameter. Indeed, 
much flutter analysis in practice today uses at best only 
an approximation to the true aeroelastic eigenvalues 3-7. 

Here, the true eigenvalues are found for all aeroelastic 



modes without iteration. Also in this study, the 
characteristics of the eigenvectors are examined as 
the aeroelastic system becomes unstable. 

AERODYNAMIC STUDIES 
Aerodvnarnic Modeling . 
A Vortex Lattice solution to Laplace's equation for 
incompressible two-dimensional flow is utilized in 
this study. We consider the flow over an airfoil with 
a certain number of vortex elements on the airfoil and 
in the wake. The airfoil is modeled as a 2- 
dimensional flat plate. The airfoil and the wake are 
divided into segments, referred to as aerodynamic 
elements. Vortex lattice aerodynamics are generated 
by placing vortices of strengths to be determined at 
points on the airfoil and in the wake. Collocation or 
control points, usually located aft of the vortex 
locations, are points where the boundary conditions 
must be satisfied. Typical placement is for the 
vortices to be located at the %-chord points of the 
aerodynamic elements. The collocation points are 
typically placed at the W-chord locations of the 
elements. 

The governing equations are presented by Hall in 
reference 1; they are briefly summarized here. There 
are 3 basic relationships, detailed in the following 
paragraph, which are combined to form the matrix 
equation 

 AX^)!"' + [ B K ~ ?  = {w))'+' (Eqn. 1) 
where n and n+l denote the current and the next 
discrete time sample. r is a vector of vorticities and 
w is a vector of downwashes at each of the 
collocation points. The number of elements on the 
wing is denoted M, while the total number of 
elements is denoted N. 

Three basic relationships determine the contents of 
the A and B matrices seen in Equation 1. These 
represent N equations with N variables. The first of 
the three basic relationships equates the velocity 
induced by the discrete vortices at the collocation 
points to the downwash caused by the airfoil's 
motion. This relationship accounts for M rows 
within equation 1. Applying Kelvin's theorem 
generates a second basic relationship utilized in 
deriving equation 1. Quoting Hall, "unsteady 
vorticity is shed into the wake; its strength is 
proportional to the time rate of change of circulation 
about the airfoil. ... The time step is taken to be equal 
to the time it takes the vorticity to convect from one 
vortex station to the next." This relationship 
accounts for the (M+l) row of equation 1. Once the 
vorticity has been shed into the wake, it is convected 
in the wake at the freestream velocity. This is the 

third basic relationship and appears in equation 1 in rows 
(M+2) through (N-1 ). Vorticity convection also 
provides the final, Nth, row of equation 1.  Because the 
wake is modeled with a finite length, the last vortex 
element must be treated specially. "Otherwise, the 
starting vortex would disappear abruptly when i t  reached 
the end of the computational wake, producing a 
discontinuous change in the induced wash at the airfoil. 
To alleviate this difficulty, ... the vorticity is allowed to 
dissipate smoothly by using a relaxation factor," wrote 
Hall '. 

The formulation and analysis of the aerodynamic model 
progresses in the following manner. Discrete, time- 
marching equations are written, equation 1. Once these 
equations are written, they inherently contain the 
approximations of the finite wake and the discretization. 
A discrete Fourier transformation is performed on the 
unforced equations, producing the z-plane 
representation, eqn 2. 

The discrete time eigenvalues, z, and the eigenvectors, 
r,, are extracted from these equations to determine 
system stability. These eigenvalues are then converted 
to the continuous time domain, 1-plane, through a zero 
order hold transformation, equation 3. 

Baseline Configuration 

As the first of several numerical examples, we consider 
the flow over an airfoil with 20 vortex elements on the 
airfoil and 180 elements in the wake, equally spaced. 
This will be referred to as the baseline case. The (finite) 
length of the wake thus extends 9 chord lengths. The 
eigenvalues and eigenmodes of the flow can be 
computed by established methods '. Because there are 
200 elements in the model, 200 eigenvalues result. 

The discrete time (z-plane) eigenvalues, extracted from 
equation 2, approximately form a circle centered at the 
origin, as shown in figure 1. In addition to these 
eigenvalues, there are a finite number of eigenvalues at 
the origin. The number of eigenvalues at the origin is 
equal to the number of segments or grid points on the 
airfoil. This conclusion follows from examining the 
rank of the system matrices in equation 1, from the 
numerical results obtained here, and appears to be 
supported by the results presented in reference 1, though 
it was not noted in this previous work. Eigenvalues at 
the origin in the discrete time domain transform to 
negative infinity in the continuous time domain. 



The continuous time eigenvalue distribution for the 
baseline case is shown in figure 2. The real part of 
the eigenvalue is indicative of the damping and the 
imaginary part is the damped frequency of each fluid 
eigenmode. Examining the eigenvalues of the 
aerodynamic matrix in the continuous domain 
produces several observations. The continuous 
domain eigenvalues are discretely spaced and are 
arranged in "arms" that emanate from the origin and 
reach up and down in the left half plane. 
Additionally, the real parts of the arms 
asymptotically approach a limiting value. 

The presence of aerodynamic damping is evidenced 
by the arms lying in the left half plane. The primary 
contribution to the damping appears to lie with the 
overall flow field, however, there is additional 
damping due to the presence of a vorticity relaxation 
factor at the last wake element. The relaxation factor 
used in the vortex lattice model provides energy 
dissipation in the wake; as the relaxation factor is 
decreased, more energy is dissipated and the 
aerodynamic damping increases. If the number of 
aerodynamic boxes within the wake is increased, the 
last box will be a smaller percentage of the total wake 
length and thus, the influence of the relaxation factor 
will be diminished. 

Parametric Variations 

Three aspects of the aerodynamic modeling 
significantly impact the eigenvalue distribution: the 
size of the aerodynamic elements, the number of 
these elements that lie in the wake, and the length of 
the wake. The three aerodynamic configurations, 
detailed in table 1, compared against each other two 
at a time, produce the three comparison cases, which 
are organized in table 2 and discussed next. The three 
comparison cases are discussed in terms of their 
discrete time eigenvalue distributions (z-values), their 
discrete-to-continuous time domain transformations 
(2-transformations) and their continuous time 
eigenvalue distributions (A-values). 

Comparison case I compares aerodynamic 
configurations 2 and 3, examining the effects of 
varying the size of the aerodynamic elements while 
maintaining the number of elements which lie in the 
wake. Because the number of wake elements remains 
fixed, configuration #2 has a wake that is twice the 
length of the wake in configuration #3 and elements 
which are twice as large. Although not shown, the 
discrete time eigenvalue patterns for configurations 2 
and 3 are identical because the number of elements in 
each wake is identical. However, changing the size 
of the aerodynamic elements changes the 

transformation, which must be applied to convert the 
discrete time system to continuous time. This difference 
in transformation produces the change in continuous 
domain eigenvalues, as illustrated in figure 3. 

It is easily shown that the frequency of each eigenvalue 
scales linearly with the aerodynamic element size. The 
maximum frequency of the arms can be determined a 
priori by utilizing Shannon's sampling theorem '. The 
aerodynamic eigenfrequencies are bounded from discrete 
time considerations similar to those that predetermine 
the discrete Fourier transform frequencies 8.9. The 
maximum frequency, o, that can be resolved would have 
1 cycle spanning two adjacent aerodynamic panels. 
Using the velocity, U, to relate the spatial, Ax, and 
temporal, At, sample sizes leads to 

nU 
max (w ) = - 

Ax 
Thus, changing the aerodynamic element size changes 
the frequencies of the aerodynamic eigenvalues. As the 
size of the elements becomes infinitesimal, we speculate 
that the eigenvalue arms will cover the frequency range 
from +/- infinity. 

It should be noted in studying Case I that the number of 
eigenvalues has remained constant in going from 
configuration 2 to configuration 3, while the frequency 
range has doubled. Thus, the density of the eigenvalues 
has halved. The implications of this will be further 
discussed in studying Case 111. 

Comparison case I1 compares aerodynamic 
configurations 1 and 2 and examines the effect of 
varying the number of aerodynamic elements in the 
wake while holding their size constant. The number of 
aerodynamic elements in the wake determines the 
number of discrete time eigenvalues comprising the 
pseudo-circular pattern. As more elements are placed in 
the wake, the more crowded pattern expands outward 
towards the unit circle. As the element size decreases, 
the radius of the pseudo-circular pattern asymptotically 
approaches 1. In discrete time eigenvalue analysis, an 
eigenvalue lying on the unit circle represents a neutrally 
stable system. In the continuous time domain, the 
imaginary axis is the line of demarcation for stability. It 
is thus anticipated that the additional boxes in the wake 
force the "arms" of the continuous time eigenvalues 
closer to the imaginary axis. Figure 4 bears this out. As 
more elements are added to the wake, the closer the 
aerodynamic roots get to those associated with simple 
harmonic motion. Thus, changing the number of 
aerodynamic elements in the wake changes the damping 
of the aerodynamic eigenvalues. As the number of 
elements goes to infinity, we speculate that the arms will 
move to the imaginary axis. 



It should be noted in studying Case 11, as the wake 
length is increased, leaving the size of the 
aerodynamic elements constant, the frequency range 
of the continuous time eigenvalues remains constant. 
Doubling the number of elements in the doubles the 
number of eigenvalues on the "arms." Twice as 
many eigenvalues reside in arms of the same length. 
Hence, the continuous time eigenvalue distribution 
has become denser. 

Comparison case 111 compares aerodynamic 
configurations 1 and 3 and examines the effects of 
varying simultaneously and in inverse proportion, the 
number and length of aerodynamic elements in the 
wake, such that the wake length remains constant. 
The expected trends for the behavior of the arms of 
the continuous time eigenvalues are difficult to 
predict because, in going from configuration 1 to 
configuration 3 there are multiple tendencies: 
increasing the number of elements tends to move the 
arms closer to the imaginary axis; decreasing element 
size tends to extend the frequency range of the arms. 
The combined result on the continuous time 
eigenvalues, shown in Figure 5, is that the arms of 
the eigenvalues lie approximately the same distance 
from the imaginary axis, while the frequency range of 
configuration 3 is twice that of configuration 1. This 
corresponds to the effects of smaller element size of 
configuration 3. Thus, the spacing of the eigenvalues 
is approximately constant between the two analysis 
runs. 

An approximate formula for eigenvalue spacing is 
derived using the frequency range and the number of 
eigenvalues. The maximum frequency was found 
using equation 4. Accounting for positive and 
negative values, the frequency range is twice this. 
Dividing this range by the number of elements or 
eigenvalues in the wake, and recognizing that the 
element size times the number of elements in the 
wake is the wake length, Lmk, produces the 
relationship 

The reader may recognize that this is similar to 
determination of the discrete Fourier transformation 
frequencies, as determined by the length of the time 
record. The eigenvalue spacing is approximate due 
to the eigenvalues not lying on the imaginary axis, 
that is, due to the discretization-induced damping. 
For the case of the element size becoming 
infinitesimally small, the formula is exact. 

Thus, the effect of the finite wake is to produce 
discretely spaced eigenvalues, instead of a continuous 
line. As the wake length becomes infinite, we speculate 
that the arms of discretely spaced eigenvalues form 
continuous lines emanating from the origin. 

The study of aerodynamic eigenvalues using the vortex 
lattice code has led to some basic ideas. The eigenvalues 
have been shown to be artifacts of the discretization and 
the finite length wake. 

The effects of discretization are controlled by two 
independent factors. The size of the elements 
determines the range of frequencies covered by the 
eigenvalues, while the number of elements in the wake 
drives the damping. Their effects are shown to be 
independent, as one controls the transformation from 
discrete to continuous time, and the other controls the 
discrete time eigenvalue pattern. The effect of the finite 
wake is to produce discretely spaced eigenvalues, instead 
of a continuous line. 

We offer the following speculations regarding the 
limiting cases. As the size of the elements becomes 
infinitesimal, the eigenvalue arms will cover the 
frequency range from +I- infinity. As the number of 
elements goes to infinity, the arms will move to the 
imaginary axis. As the wake length becomes infinite, 
the arms of discretely spaced eigenvalues form 
continuous lines emanating from the origin. 

AEROELASTIC STUDIES 

With the ability to model aerodynamic eigenmodes as 
well as structural modes, we now have the capability to 
investigate the coupled fluid/structural modes or 
aeroelastic modes. We study these in this section of the 
paper and thereby gain additional insight into the 
behavior of such system. One intriguing finding, 
previously foreshadowed in the literature, is that the 
critical mode may originate in an aerodynamic mode 
rather than a structural mode. 

Aeroelastic Modeling 
The discrete time aerodynamic model can be coupled 
with a discretized structural dynamic model to produce 
the following time-marching aeroelastic equations of 
motion ' which can then be analyzed to determine the 
behavior of the system 

D?~"+'  + D,qn - f "+' = 0 (Eqn.6) 

where the vector q contains the structural dynamic 
degrees of freedom, the vector f represents the 



aerodynamic loads and the matrices Dl and D2 
describe the structural dynamic behavior of the 
typical section. 

The coupling between the aerodynamic and the 
structural dynamic quantities is present in an 
aeroelastic system because the vorticity distribution 
results in the aerodynamic loads, f, which can be 
expressed in terms of the vorticities, T. 

f "+I = c2rn+' + cI rn (Eqn.7) 

For an unforced response, the downwash on the 
airfoil, w, is produced by the motion of the airfoil. 

W" = ~ g "  (Eqn.8) 

Combining equations 1, 6, 7, and 8 produces the 
unforced aeroelastic system equations. 

(Eqn.9) 
Aeroelastic Confieuration 
A typical section with only a single pitch degree of 
freedom, figure 6,  is analyzed in this paper. For these 
analyses, 10 aerodynamic elements were placed on 
the wing; 90 aerodynamic elements were placed in 
the wake. The structural parameters are given in 
Table 3. 

The stability of this system was analyzed by 
calculating the equations of motion for a series of 
reduced velocities. Reduced velocity, V, is defined 
as the velocity, U, normalized by the pitch frequency 
and semi-chord. Eigenanalyses of the discrete time 
systems were performed on each set of equations and 
the system eigenvalues tracked. The eigenvalues 
were transformed into the continuous time domain 
using a zero order hold transformation. Stability can 
be inferred from either the discrete or the continuous 
time root locus- both are examined here. 

Discrete Time Eioenvalues - The discrete 
time root locus is presented in figure 7 ;  only the 
portion of the complex plane near the unit circle's 
intersection with the real axis is shown. The coupled 
pitch mode-originating eigenvalue and the 
aerodynamic-originating eigenvalues, referred to as 
the aeroelastic eigenvalues, migrate as the reduced 
velocity is increased. The single structural dynamic 
eigenvalue can be seen near the unit circle, indicating 
that it is more lightly damped than the aerodynamic 
eigenvalues. 

An instability occurs when an eigenvalue lies outside the 
unit circle. For this system, the instability is observed by 
examining the real aerodynamic-originating eigenvalues 
on the positive real axis. Figure 7 shows the migration 
of the structural-dynamic-originating eigenvalue, and 
also the interplay with several aerodynamic eigenvalues. 
The lowest complex aerodynamic eigenvalue is clearly 
influenced, as well as the real aerodynamic eigenvalues, 
one of which destabilizes. It is difficult to further study 
system behavior from these graphs because each velocity 
produces eigenvalues that essentially belong in different 
z-planes. This will be discussed in detail in a subsequent 
section of this paper. For a more intuitive interpretation, 
we turn now to the continuous domain eigenvalues for 
this aerodynamic model. 

Continuous Time Eioenvalues - The systems 
are converted to the continuous domain by zero order 
hold transformations. The behavior of the continuous 
time domain eigenvalues is shown in figure 8. For 
clarity, only the region near the origin is presented. The 
influence of velocity on the aerodynamic eigenvalues is 
now evident. As velocity increases, the eigenvalues' 
frequencies increase at constant damping. This 
particular configuration destabilizes at zero frequency, 
termed divergence. In figure 8, the eigenvalues at the 
divergence velocity, V=2.3, are indicated by square 
symbols. 

It is interesting to note that the eigenvalue of the pitch 
mode does not go to zero as divergence occurs. The 
pitch mode eigenvalue maintains a non-zero frequency 
as the system destabilizes, as one of the real 
aerodynamic roots migrates into the right half plane. 
This is contrary to conventional wisdom regarding 
divergence, although several similar phenomena have 
been reported by Dashcund lo, Edwards ", Rodden and 
Stahl 1 2 ,  and Rodden and   el linger'^. The mechanism 
responsible for the divergence of this configuration 
appears to have its origin in the aerodynamic terms. 
Further work is planned to determine the physical and 
mathematical significance of this discovery. 

Modal Partici~ation - Often neglected when 
interpreting the results of an eigenanalysis, the 
eigenvectors provide much interesting information. 
Afolabi, Pidaparti and Yang l4 studied aeroelastic 
stability from the standpoint of system eigenvectors. In 
their work, they discuss the orthogonality between 
eigenvectors associated with the different modes of the 
system. The approach taken in the current work is to 
examine the eigenvectors associated with individual 
modes. The eigenvector associated with a particular 
eigenvalue can be viewed as the set of modal 
participation factors for each degree of freedom. Note 



that the eigenvectors are invariant under the 
transformation from discrete to continuous time 
domain. 

In a numerically stiff set of ordinary differential 
equations Is, the system behavior is seen to be 
dominated by the lightly damped and unstable 
modes. The disparity in the time scales of 
components of the system allows the overall behavior 
to be studied by observing only a few eigenmodes of 
the system. Thus, in studying the system behavior, 
only the modal participation factors associated with 
the least stable dynamic mode and with the least 
stable static mode were examined. Here, the 
complex mode corresponds to the one that originated 
as the structural pitch mode, and the real mode 
corresponds to an eigenvalue that originated in the 
aerodynamics. 

Vorticitv Associated with the Pitch Mode- 
The modal participation at a low reduced velocity, 
V=0.2, is presented for the mode which is primarily 
the pitch degree of freedom, figure 9. The 
corresponding eigenvalue is identified in figure 8 by 
the diamond symbol. For clarity, only the real part of 
the modal participation is plotted as a function of 
chord-wise or downstream position. At this low 
velocity, the aerodynamics are being driven at the 
frequency of the structural mode. The portion of the 
eigenvector associated with the vorticity at each 
aerodynamic control point, referred to as the vorticity 
participation, shows that most of the aerodynamic 
energy associated with this mode is in the wake. The 
first ten participation factors correspond to elements 
on the airfoil. Only these vorticities can produce 
forces on the airfoil. At this velocity, there is very 
little aerodynamic energy being imparted to the 
airfoil. 

mode contains significant participation from both the 
structural dynamic and the aerodynamic states. Figure 
10 shows the vorticity participation spatially for a 
velocity just below divergence, V=2.3. The number of 
oscillations to be expected in the wake, Ncydcr, can be 
estimated using the frequency of the associated 
eigenvalue, he, the reduced velocity, V, and the 
discretization, Nmkc and M: 

- @mod< woke 
'-Its - (Eqn. 10) 

0, MlrV 
Using the values for the divergence condition results in a 
prediction of 0.8 oscillations; the vorticity participation 
in figure 10 therefore looks reasonable. 

Vorticitv Associated with the Real Aerodynamic Mode- 
The aeroelastic system studied destabilizes as a real 
eigenvalue moves into the right half plane. It is - - 
interesting to examine the progression of the 
characteristics of this mode as the reduced velocity 
increases. Regardless of reduced velocity, the associated 
vorticity participation factor resembles a pressure 
coefficient distribution on the airfoil elements, while the 
wake contains almost no participation except for the last 
element. The vorticity participation factor at an example 
reduced velocity, V=2.3, is presented in figure 11. As 
the reduced velocity changes, it is the participation of the 
last wake element which is interesting. The magnitude 
of this term is plotted versus reduced velocity in figure 
12. As this plot is examined, note that these 
eigenvectors have an overall magnitude of 1. Initially, 
nearly all of the vorticity participation resides in the last 
element of the wake. Just prior to divergence, the 
participation drops sharply. At the divergence velocity, 
all of the vorticity participation is on the airfoil; the wake 
factors are zero. As the system moves beyond the 
divergence velocity, the behavior of all of the vorticity 
participation factors change. The last wake element 

The wake portion of the vorticity participation quickly becomes influential again, but now with vorticity 
that is negative, or out of phase, with the airfoil vorticity. appears as a negatively damped sinusoid when 
As velocity is further increased, the participation of the 

viewed spatially, as in figure 9. The eigenvector last wake element smoothly, asymptotically, approaches provides a snapshot of the vorticity distribution. 
zero. Also beyond divergence the overall wake vorticity Initial examination of the data in figure 9 may lead 
participates. one to conclude that the system is unstable. In fact, 

the opposite is indicated. For a stable system, the Transition from stability to instability produces dramatic vorticity being shed from the wing into the wake will 
changes in the associated eigenvector. While the decrease as time advances. The vorticity on the last eigenvalue smoothly traverses across the imaginary axis, wake element at time n is the same as the vorticity on 
the character of the vorticity participation changes the first wake element at time n-NWAe. Thus, the sharply. Future work will focus on understanding the spatial vorticity distribution could also be thought of nature of this instability through examination of the as a time history, where time originates at the wake 
eigenvectors. trailing edge and proceeds towards the airfoil. 

Near the divergence reduced velocity, the eigenvector 
associated with the structural-dynamic-originating 



Com~utat ional  Issues for Simultaneous Solution 
of Aerodvnamic and Structural Eauations 

Transformation Com~atibilitv - To 
incorporate the discrete time aerodynamic model into 
aeroelastic equations, the structural dynamic model 
must be cast in discrete time also. The structural 
dynamic equations contain first and second 
derivatives that could be approximated using a 
central difference technique. While this is 
convenient and easy, this method results in a 
mismatch of discrete time transformations. Central 
differencing produces discrete time equations to 
which a first order Tustin transformation 

must be applied to obtain the proper continuous time 
results. The Tustin transformation is equivalent to 
the first term in a series expansion of the zero order 
hold transformation presented in equation 3. In these 
transformations, the sample interval, At, establishes 
the relationship between the discrete time 
eigenvalues, z, and the continuous time eigenvalues, 
h. The aerodynamic equations which were generated 
with a zero order hold discretization, are solved 
simultaneously with the discretized structural 
dynamic equations. Thus. it is desirable to have 
structural dynamic equations that would also be 
correct when a zero order hold transformation is 
applied. This is easily accomplished through 
standard discretization techniques '. Accepting the 
mismatch in the transformations results in a 
phenomenon that resembles aliasing. However, as 
the time step becomes small, the zero order hold 
transform and the Tustin transform become 
approximately equivalent. 

Aliasing - The equations have been 
constructed in the discrete time domain. Given data at 
discrete times, we can utilize a transformation to 
approximate the response in continuous time. There 
are limitations to discrete time transformation 
methods; aliasing is the primary concern *. 9. To 
avoid aliasing, a continuous time signal must have 2  
samples per period of period of the highest frequency 
to be resolved. The aerodynamic equations arose 
from the fundamental concept of vorticity being 
convected downstream at a velocity, U. The 
equations are valid only if the relationship U=Ax/At 
is maintained. It is thus observed that the minimum 
velocity, at which the system may be accurately 
analyzed, is set by the spatial discretization and the 
maximum frequency that is important to the problem. 
Another interpretation is that for frequency and 

velocity ranges of interest, the minimum number of 
aerodynamic elements required to avoid aliasing can be 
approximated. This can serve as a guideline in selecting 
the spatial discretization required for a given problem. 
There are additional implications of the discrete time 
effects when the aerodynamic equations are combined 
with the structural dynamic equations or control laws. 

Methods of Stabilitv Analysis - The aeroelastic 
stability analyses, which require variation of the 
velocity, were performed using a single spatial 
aerodynamic discretization. This was accomplished b 
adjusting the temporal discretization to produce the 
proper velocities. There are several complications in 
performing the analyses in this manner: (1) a separate 
transformation rule must be applied for each velocity; 
and ( 2 )  interpreting the discrete time eigenvalues is not 
intuitive. The aerodynamic matrices were unchanging 
for different velocities, but the matrices which couple 
them to the structural dynamics were not. The resulting 
aeroelastic eigenvalues change with each velocity. The 
migration of the eigenvalues in the discrete time domain 
is not due solely to the velocity change, but to a 
combination of velocity and sample rate change. 

A brief study was conducted to look at the results when a 
consistent sample rate was utilized, meaning that as the 
velocity changed, the spatial discretization changed. 
This required constructing a new aerodynamic model at 
each velocity. There was negligible effect on the 
continuous time eigenvalues. The discrete time 
eigenvaiue pattern associated with the structural dynamic 
mode changed significantly. It was observed, however, 
that the discrete time eigenvalue pattern in this case is 
nearly identical to the pattern produced when the 
eigenvalues from the nominal analysis method are 
rediscretized using the consistent sample rate. 

CONCLUDING REMARKS 

Aerodynamic and aeroelastic eigenanalyses were 
performed utilizing a time-domain vortex lattice 
aerodynamic code, coupled with discretized structural 
dynamic equations. The study of aerodynamic 
eigenvalues using the vortex lattice code has led to some 
basic ideas. The eigenvalues have been shown to be 
artifacts of the discretization and the finite length wake. 
The effects of discretization are controlled by two 
independent factors. The number of elements in the 
wake drives the damping, while the size of the elements 
determines the range of frequencies covered by the 
eigenvalues. The effect of the finite wake is to produce 
discretely spaced eigenvalues, instead of a continuous 
line. 



Aeroelastic analyses were performed to examine the 
stability and modal character as a function of reduced 
velocity. Insight into the modeling and physics 
associated with system behavior can be gained by 
examining the eigenvectors. A novel determination 
is that under some circumstances an eigenmode of 
aerodynamic origin can be the critical mode for 
aeroelastic instability. 
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Table 1. Aerodynamic Configurations 

Table 2. Comparison Cases for Parametric Variations 

Comparison 
Case No. 

I 

I1 

I11 

Table 3. Structural Parameters of Typical Section 

Semi-chord, (b) 
Distance from midchord to elastic axis, 
Non-dimensionalized by semi-chord, (a) 
Span, (S) 
Radius of Gyration,(r,) 
Mass ratio, (p) 
Pitch frequency, (w,) 
Distance from aerodynamic center to elastic axis, 
non-dimensionalized, (elb) 

Aerodynamic Configurations 
Compared 

2.875 inches 

-0.1304 

4 inches 
0.4 1 
23.1 
50.2 radianslsecond 

0.37 

Parametric Variation 

Size of aerodynamic 
elements in wake 

Number of aerodynamic 
elements in wake 

Size and number of 
elements in wake 

1 

J 

J 

Quantity Held Constant 

Number of aerodynamic 
elements in wake 

Size of aerodynamic 
elements in wake 
Length of wake 

2 

J 

J 

3 

J 

J 
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INFLUENCE OF NONPLANAR SUPERSONIC INTERFERENCE ON AEROELASTIC 
CHARACTERISTICS 

V. Kouzmin, S. Kouzrnina, V. Mosounov, F. Ishmuratov 

Central Aerohydrodynamic Institute (TsAGI), 
Zhukovsky, Moscow Reg., Russia, 140 160 

Abstract. A new version of supersonic panel method for computing the generalized aerodynamic 
forces on nonplanar lifting surfaces is described. Integral equation relating the velocity potential 
and a unit value of pressure distribution has been used. A flexible improved numerical procedure 
has been developed for the achievement the high accuracy at different Mach numbers, reduced 
frequencies and panels dimensions. In practice proposed computer code has not restrictions for 
mentioned above parameters. 

Applied for the computational flutter investigations a software package KC-2 includes unified 
computer code for analysis in subsonic and supersonic flow because of the basic data organization 
is the same in both cases. 

Proposed method is illustrated by the flutter and static aeroelastic characteristics calculations for 
modem aircraft. The influence of nonplanar supersonic interference on obtained results is 
analyzed. 

Nomenclature 
x, y,z - orthogonal coordinates on the lifting surface, nondirnensionalized with reference length I, 
x,, yo,zo - orthogonal nondimensional coordinates of a control point, 

-coordinates of panel with respect to control point, 

r = z o - - z  

n = (ny , n, ) - the direction cosines of the normal to the panel, 

n, = (n@, nzo} - the direction cosines of the normal at the control point, 

R = Jc2 - p2r2 
M - Mach number, 

ol k=- - reduced frequency, 
v, 

w - circular frequency of harmonic motion, 
V ,  - freestream velocity, 
I - reference length, 

kM k'=-, 
p2 

ACP - nondimensional pressure coefficient. 



1. Introduction 

An accurate prediction of unsteady aerodynamic loads is very important problem for the flutter 
and aeroservoelasticity. Modem vehicle, as a rule, consists of few nonplanar lifting and control 
surfaces. It is necessary to take into account the interference between all such surfaces in solving 
the equation of the elastic aircraft vibration in flow. In TsAGI an original version of doublet-lattice 
method and based on it program module are used with success in static and dynamic aeroelasticity 
problems during more than 20 years [I]. The problem of creation a similar universal robust linear 
method for supersonic flow encountered with mathematical difficulties, though many different 
interesting important publications, concerning calculation of loads on nonplanar oscillating 
surfaces have arisen in last decade [2-71. 

The purpose of this paper is to describe new version of panel method and to evaluate the capability 
of it to predict unsteady aerodynamic loads on interfering surfaces. 

2. The main relations 

The integral equation for the velocity potential at the arbitrary point due to a unit nondimensional 
pressure difference is used for the calculation of the downwash matrix coefficient [2,3] 

where 

The downwash at the control point is determined by the derivative [2,3] 

where 

exp(-ik 'Me) sin(k 'R) 'O Sv ] + iM lexp(-ik !Me) sin(* 'RM + 
k ' 

5~ SL 
( 5 )  

ik(c - MR) 

SL 

( [- 2m b(5 + M R )  - ik(c + MR) 1 ,. - - 1  1- ex^ 
1- 2- 46 - M R ~  ik(e - MR) 1) 

ex0 - 
1 

8 I$ 



3. Computational procedures 

The most essential part of the described method is a computation of the normal velocity, which 
accuracy determines the precision of the determination of aerodynamic loads. 

Numerical integration is performed by using Gaussian quadrature. Two types of Gaussian 
quadratures are applied in present method: 

1) standard formula giving the exact integral values for hnctions I, v, 3, v3,. . . on the interval 

2) formula, which can be received fiom standard formula by replacing the variables v = sinP . In 
this case new knots and weights quantities are connected with the standard by the obvious 
relationships 

Using the quadratures the integral can be substituted by the finite sum 

The knots and weights both quadratures are represented in table 1 for seven knots. 

Utilization of the two types of quadratures is connected by the variety of the hnctions in integrals 
(4) and (5). If the integration limits are determined by the panel limits, then the first (standard) 
quadrature is applied. In the case of one of integration limits is on the Mach cone, the second 
quadrature is used. 

Table 1. Knots and weights of Gaussian quadratures 

For approaching a high precision of the determination F(E) (5) and w (4) the integration intervals 
are divided into some additional parts. In cordwise integration the number of divisions is evaluated 

kM2 
by the empirical fotmula N4 = int 0.6- [ M2-1 

(R (& ) - R(5,)) + 1 , where int(.) is the whole part 

of number. 
I 

The number of divided regions in spanwise integration is obviously depended on the number of 
crossing points on the leading and trailing edges and can range fiom 1 to 4. On fig. 1 the example 
with maximum number of divisions is presented. Each integration region is characterized by the 

7- G'L limit value of the variable E = - 
7u - G'L 



in all regions except central one the integration is 
executed numerically by the quadratures one of 
two types mentioned above. The selection of the 
quadrature type is defined by the behavior of the 

e,.q,.k) q 
fbnction F(E) in the vicinity of the points in which 
Mach cone crosses the panel. On figure 2 typical (t1.rh.C) 

dependence of the finction F(E)  on variable E is 
represented for a case of crossing the panel and 

(1 

Mach cone. Figure 2 shows the dependence of real 
(the solid line) and imaginary (the dotted line) parts Fig. 1. Domain ofiduence and subdivision 
of the finction F versus E .  On the right side of of integration region. 
the figure the disposition of the panel with respect 
to control point is shown, here the dotted line is 
the line of crossing panel and cone; Mach number, reduced frequency and altitude of the control 
point about the panel are represented too. On the presented figure breakages of the fbnction F(E) 

W E )  in the crossing points have been well seen. It is obvious that in these points the derivative - 
a r  

has a singularities. 

Fig. 2. Real and imaginary parts of function F(E) at nonplanar 
disposition of the control point with respect to panel. 

W E )  One of the most important moment is the numerical evaluation of the derivative - . The 
Br 

dF(&) derivative - can be computed numerically using the central difference (since the fbnction 
dr  

F(E) is analytic). Standard value of the increment with respect to r is defined by the formula 

where A? = 1 o-' . 



The lower limit of integration in (5) can lie on the trailing panel edge or on Mach cone and 

derivative - has singularity in the transition point. Therefore, for the final selection of the 
dr 

increment Ar two conditions are controlled at the leading and trailing edges: 

1 )  R2 ( r+Ar)  >0, R 2 ( r - & ) > o  and 

2) type of lower limit must not be changed with the change of the value r. If at least one of these 
conditions is not satisfied at the standard increment, then it is decreased up to acceptable value. 
Described conditions are implemented if magnitudes r + & and r - Ar range in the interval fiom 
r,, to r,, , which are determined by the formulas 

On figure 3 dependencies of downwash value versus altitude of the control point with respect to 
the panel plate are represented for different angles between panel normal and control normal 
( c p  = arccos(q . no) ). The solid lines in figure 3 correspond to real downwash part, the dotted 
lines correspond to imaginary downwash part. 

low 
0 

9-  so' 

L 
1,o 

rq 
P 

Fig. 3. Downwash complex value W at nonplanar disposition of the control 
point with respect to panel for three normal directions. 



Fig. 4. Coefficient of generalized force versus 
number of subpanelling for two schemes 

of integration. 

Fig. 4 shows the influence of the 
downwash calculation accuracy on 
accuracy of the generalized aerodynamic 
force computation of the delta wing. The 
relative variation of the generalized force 
in heave motion with respect to 
chordwise and spanwise panel numbers is 
presented in this figure. The solid line 
corresponds to exact downwash 
calculation, which is achieved using 
appropriate number of additional 
divisions on integration range. The dotted 
line corresponds to fixed scheme of the 
integration with 7 points for all regions. 
Presented result shows that flexible 
integration scheme used in this method 
allows to compute aerodynamic 
coefficients in wide range of the reduced 
fiequency for rather big panels. 

4. Flutter investigation 

To demonstrate the capability of the proposed code and the influence of the aerodynamic 
interference on aeroelastic characteristics theoretical flutter investigations of modem fighter 
aircraft were conducted. 

Aeroelastic equation of motion are derived on the base of methods which are developed in KC-2 
computer code. The Ritz method is 
used in KC-2 when the deformations are 
represented as polynorniai functions of 
the spatial coordinates. 

The complete aircraft aerodynamic 
model and antisymmetrical flutter mode 
at fiequency 7 Hz at M=1.2 are 
presented on figure 5. The unsteady 
aerodynamic forces were calculated by 
the doublet lattice method for subsonic 
Mach numbers and by the presented 

Fig. 5. Aerodynamic model and antisymmetrical above panel method for supersonic 

flutter modep7 Hz, f i 1 . 2 ,  7 = 0.85. Mach numbers. Half aircraft structural 
model is defined by 15 elastic surfaces: 
fiselage, wing, fin with rudder, 

stabilizer, canard, pylon, missile fbselage and 8 missile wings. The pylon and the missile are 
supposed to be the rigid surfaces, which have elastic connections with the wing. These 
connections are modeled by a set of the springs. Figure 6 shows some computed results of 
antisymmetrical flutter modes of the investigated aircraft with stores under wing. In our flutter 
analysis the masses of the pylon and the missile and stiffness of the connections were not varied. 
The critical dynamic pressure was obtained for three different locations of the missile along the 



span: j 4 . 7 8 ,  0.85 and 1.0 of semi-span. The coefficients of the aerodynamic matrices were 
computed versus Mach number for such three variants: 

1. no aerodynamic loads on missile and pylon; 

2. complete calculation using mentioned above linear unsteady subsonic/supersonic codes; 

3. no aerodynamic interference between lifting surfaces. 

mach number 

Only the single flutter mode ( e l 6  Hz) 
proved to be when y=0.78 (fig.6). This is 
bending-torsion fin flutter coupled with the 
vibration of the stabilizer. Practically there is 
no displacement of the wing with store under 
wing in this flutter mode. Therefore the 
distinctions of the critical dynamic pressure 
for three variants of the aerodynamic matrices 
are small. Since the considerable loads 
changes are in the root sections of the fk and 
the stabilizer, where the vibration amplitudes 
are small, taking into account the interference 
between vertical and horizontal surfaces gives 
a small influence on this flutter mode. 

If the missile location is near the wing tip the 
another flutter mode (+7 Hz) arises (fig.6). 
This is bending-torsion wing flutter coupled 
with the missiie yaw vibration. Aerodynamic 
contribution of the missile and the pylon on 
summed generalized loads is rather great: the 
critical flutter pressure increases almost twice 
at low supersonic Mach number when this 
aerodynamic contribution is not taking into 
account (fig.7). The influence of the 
aerodynamic interference, as it can be seen on 
figure 6, decreases by increasing Mach 
number. 

In the case of the missile location on the tip 
of the wing the flutter mode depends on the 
store mass greater than on its aerodynamic 
contribution, since the missile mass is 20% 
from the wing mass and the wing surface is 

Fig. 6. Flutter dynamic pressure of the fighter more greater than stores surfaces. Figure 6 
shows that the flutter mode at frequency 4.5 

aircraft versus Mach number at three H, almost does not depend on ~~~h 

missile locations. numbers. The critical flutter pressure in this 
case is the lowest. It is important to note that 

by taking into account fill aerodynamic interaction between all lifting surfaces it is possible to 
obtain minimum critical dynamic pressure. 
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Fig. 7. Flutter analysis, M=1.2 
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b) 
no aerodynamic loads on missile and pylon; 
full interaction between all lifting surfaces. 

5. Static aeroelasticity 

Characteristics of static aeroelasticity can be computed on the base of various aerodynamic 
theories, including nonlinear methods. But in practice to analyze realistic aircraft often the linear 
panel methods are employed because the analysis of the characteristics of static aeroelasticity 
needs variety parametric computations. Therefore it can be treated the application of the present 
method (and computer code) of computation of aerodynamic forces in supersonic flow to analyze 
static aeroelasticity. 

On the base of polynomial Ritz method and KC-2 computer code the original approach is 
developed to compute static aeroelasticity characteristics. The approach is based on the solving of 
equilibrium of the elastic aircraft equation in polynomial general coordinates at specified quasi- 
steady flight condition. Aerodynamic forces are computed at reduced frequency k=O. 

Using this approach the static aeroelasticity problems are investigated for realistic aircrafts of 
various structure with the aim to study the significance of the aerodynamic interference between 
nonplanar lifting surfaces. The computations show that there are cases in which the interference is 
important. Some results are discussed below concerning tail loading of double-fin airplanes in 
lateral motion. 

For maneuverable aircraft (fig.8) at low supersonic Mach numbers the considerable decrease of 
aileron effectiveness is appeared due to structure flexibility. It can be seen from the dependence on 
dynamic pressure Q of roll moment coefficient derivative m,6 with respect to aileron deflection 
(Q=O. corresponds to the case of rigid structure, fig.8, a). Therefore differential moveable 
stabilizer is introduced for rolling control; its roll effectiveness less depends on structure flexibility. 
Nevertheless relative effectiveness <=(mx4cr 1 (m:)"r , which is considered as flexibility factor, falls 
up to 40% in the case of computing without interference. If that flexibility factor will be 
introduced for effectiveness determined from rigid model wind tunnel test the incorrect conclusion 
may be drawn about insufficient stabilizer effectiveness for roll control. When Mach number 
increasing the interference influence decreases (fig.8, b). 
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MultifUnctional fighter 

Fig.9. Side force coefficient derivative c,,~ 
with respect to side-slip angle and rolling 

Fig.8. Roll moment coefficient derivative m,6 moment coefficient derivatives m: with 
with respect to control surface deflection respect to aileron section deflections versus a 
versus dynamic pressure. dynamic pressure. 
- with interference - with interference 
-- without interference without interference 



Fig. 9 shows some characteristics of heavy multifhnctional fighter: side force coefficient derivative 
$* with respect to side-slip angle and rolling moment coefficient derivatives with respect to 
inboard (Aileronl) and middle (Aileron2) aileron section deflections versus a dynamic pressure at 
Mach number M=l. 1 with and without taking into account the interference between horizontal 
and vertical surfaces. Similar to the case above the interference has a small influence on the 
characteristics at high dynamic pressure, but the flexibility factors C; differ significantly. 
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Abstract 

The P-Transform method provides an alternative to the Rational Function 
Approximation (RFA) methods for representing oscillatory aerodynamics in the time 
domain. It is based on the flutter eigenvalues and eigenvectors obtained for each mode at a 
given velocity from a PK-flutter analysis. As such it avoids the curve fitting errors of the 
RFA and assures exact agreement with flutter predictions. Furthermore, it makes no 
assumptions regarding the transient aerodynamic lagging mechanism and is therefore 
equally valid at subsonic and supersonic speeds. 

An application is presented to a forward-swept wing aircraft configuration that has 
been the subject of earlier maneuvering studies by quasisteady methods. The differences 
between the responses using quasisteady aerodynamic loads and general unsteady loads are 
illustrated in this example. 

Keywords. Transient aerodynamics, transient response, P-Transform method, 
maneuvering loads, dynamic aeroelasticity. 

Introduction 

The equations of motion for quasistatic maneuvering of a flexible aircraft contain 
two approximations, e.g., in Ref. 1. The first is that the dynamic behavior of the structure 
is neglected, i.e., it is assumed that the motions of all structural grid points are in phase 
with some reference point. The second is that all aerodynamic lags, beyond those 
accounted for in the first order 6 and p stability derivatives are also neglected. An 
extension of Ref. 1 to include dynamic structural effects has been given in Ref. 2 that 
removes the first approximation but the second approximation is retained. The removal of 
the second approximation by considering general unsteady aerodynamic loads is the subject 
of this paper. 

The literature on the so-called Rational Function Approximation (RFA) began with 
exponential curve fitting of the Wagner indicial lift function in two-dimensional 
incompressible flow by R. T. Jones in 1940 (Ref. 3). The extensive literature on the RFA 
(e.g., Refs. 4, 5, and 6) is also based on the exponential behavior of subsonic indicial 



aerodynamics. The accuracy of the RFA at supersonic speeds would be less than that at 
subsonic speeds because of the different mechanism of transient supersonic loading. The 
present formulation does not involve curve fitting and is therefore equally valid at subsonic 
and supersonic speeds. It is based on the work of Heimbaugh (Ref. 7) as discussed by 
Winther, Goggin, and Dykman (Ref. 8). It can be regarded as a transient extension of the 
oscillatory British (PK) flutter method and offers the advantage over the RFA methods of 
exact agreement with calculated flutter speeds without the need of any additional states to 
represent aerodynamic lags. All basic data for the analysis may be obtained from the PK- 
flutter solution sequence in MSCNASTRAN (Ref. 9) with some minor DMAP 
modifications. 

Aeroelastic Equations of Motion 

The fundamental equation of motion of a linear aeroelastic system in generalized 
(modal) coordinates is given in Eq. (1). The amplitudes of the system free vibration mode 
shapes are the generalized coordinates q and the amplitudes of the control surface inputs 
are generalized coordinates q, . 

The generalized structural mass, damping, and stiffness matrices are M, C, and K,  
respectively; g is the acceleration of gravity and gM is a vector of weight and static 
unbalance components adjusted for the pitch and bank angles of the body axes. The 
control surface generalized structural mass matrix is neglected as well as its stiffness and 
damping. The generalized aerodynamic coefficients Q,(M) are intercept values for 
incidence, twist, and camber and are functions of the Mach number M. The generalized 
unsteady aerodynamic coefficients for motion Q(M,k) and for the control surfaces 
Qc(M,k) in the frequency domain are functions of Mach number and reduced fi-equency k 
where k = w-/2 V in which o is the angular frequency, F is the reference chord, and V is 
the flight velocity. The aerodynamic coefficients are based on the modal frequencies. The 
frequencies may be those of the fiee vibrations or damped frequencies as determined in a 
PK-flutter analysis. The aerodynamic coefficients are scaled by the dynamic pressure ij 
where q = pV2/2 in which p is the atmospheric density. The generalized unsteady 
aerodynamic coefficients are complex and can be separated into an aerodynamic stiffness 
and an aerodynamic damping via 

These coefficients are obtained fiom an unsteady aerodynamic theory such as the Doublet- 
Lattice Method (Refs. 10 and 1 1) where the aerodynamic stiffness Q ~ ( M , ~ )  is the real part 
of Q and the aerodynamic damping Q1(M,k)/k is the imaginary part of Q divided by k. 
Similarly, for the control surfaces 

Cast into a first order differential equation form after substituting Eqs. (2) and (3), 
Eq. (I)  becomes 



(4) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
M - ' ~ ( T I ~  v)(Q;(M, k ) / k )  M-'~(Q;(M, k)) M-'(~Q,(M) + g ~ )  + 

.. . .  0 0 0 

Making the following substitutions into Eq. (4) 

~ ( q ,  V, M, k) = 
M - ' ( ~ ( Y ~ ~ ) ( Q ' ( M ,  k)/k) - C) M-'(q(QR(M, k)) - K)] 

I 0 
(6 )  

yields 

For a fixed flight condition, Eq. (8) becomes 

The P-Transform Method 

The P-Transform method eliminates the dependence of A and B on the reduced 
frequency and transforms them into the constant matrices 6 and B for a fixed flight 
condition, resulting in the following equation of motion. 

Defined in Eq. (5), X is a vector of generalized coordinates consisting of both modal 
displacements and velocities for the mean axis and flexible body degrees of freedom and U 
is a vector of inputs from control surfaces. The matrices A and B are real constant 
coefficient matrices. In the P-Transform method the matrix A is approximated using the 
converged ("lined-up") eigenvalues and eigenvectors from the PK-flutter solution by 



where T and A denote the matrices of the "lined-up" eigenvectors and eigenvalues. The 
matrix A then has the frequency response characteristics over a wide frequency range that 
are necessary to perform transient response analyses without any need of curve-fitting the 
oscillatory aerodynamics as in the RFA methods. The P-Transform method might be called 
a "zero-state" method in contrast to Karpel's "minimum-state" method (Ref. 6) in that no 
additional states are required to model the unsteady aerodynamics. 

The matrix B is approximated using the converged eigenvectors from the PK-flutter 
solution by 

where B denotes the matrix of the assembled converged row pairs from the product 
T(ki)-' ~ ( k , ) .  T ( k i )  is the complete eigenvector matrix and ~ ( k , )  is the input matrix both 
evaluated at the "lined-up" frequency k;. 

An Example of a Forward-Swept Wing Airplane 

The P-Transform method is illustrated by comparison to an example of a forward- 
swept wing airplane for which the maneuvering solutions are known (Refs. 1 and 2) using 
other approximations. In Ref. 1 Strip Theory aerodynamics were used and in Ref. 2 the 
Doublet-Lattice Method was used. The planform with its structural, inertial, and 
aerodynamic idealizations is shown in Fig. 1. The structural model is shown on the right 
side with the grid points (GP) numbered. The Doublet-Lattice aerodynamic model is 
shown on the left side with 8 boxes on the left canard and 32 boxes on the left wing, and 
body interference is neglected. The airplane has a gross weight of 16,000 lbs. Its wing 
span is 40 ft, its canard span is 10 ft, and both surfaces have chords of 10 ft. The 
structural damping is assumed at two percent. The canard mass and aerodynamic damping 
are neglected, and the intercept coefficients are assumed to be zero. The remaining 
characteristics are discussed in the references. This simple model has only six vibration 
modes for out-of-plane motion; their frequencies are 9.89, 1 8.40, 43.22, 56.77, 7 1 -03, 
and 138.35 Hz. The example maneuver assumes a dynamic pressure of 1200 psf which 
corresponds to a speed of 1005 Ws and a Mach number of 0.90 at sea level. 

Numerical integration of Eq. (10) results in the basic modal responses (mean axis 
and flexible body) of the aeroelastic vehicle. The control surface (canard) input is shown in 
Fig. 2. The transient maneuvering acceleration responses are shown in Figures 3,4,  and 5 
in which the present P-Transform solution is compared to the dynamic solution of Ref. 2.  
The P-Transform results are shown with solid lines in these figures while the quasistatic 
aerodynamic results of Ref. 2 are shown with dashed lines. Fig. 3 compares the load 
factor responses on the mean axis at the reference point of GP 90. Fig. 4 compares the 
first flexible modal acceleration responses. Finally, Fig. 5 compares the load factors at GP 
90. Large differences between the present method and that of Ref. 2 are only found in Fig. 
4, the first flexible modal acceleration. 

One would not expect significant differences between the mean axis responses or 
the responses of a particular physical point, in this case GP 90. However, one would 
expect differences in the fundamental modal responses because the aerodynmc lags are 
more appropriately considered in this analysis than in Ref. 2. In Fig. 4 the peaks are 
higher from the P-Transform method which shows a reduction in aerodynamic damping in 
the first aeroelastic mode. 



In the example problem we have neglected the aerodynamic damping on the canard. 
This was done for consistency in comparing with the results of Ref. 2. Inclusion of the 
aerodynamic damping (first order in Ref. 2 and general unsteady here) would have been 
straight-forward but was not done. 

Concluding Remarks 

The significant feature of the P-Transform method is its adequate accuracy without 
the use of explicit aerodynamic lag states. Although it is also an approximate method, it 
does not contain anythmg comparable to the possible curve fitting errors of the RFA. 
There may be no advantage in the initial analysis since the requirement for PK-flutter 
analysis is probably comparable to the computations required by the RFA curve fitting. 
However, the later computational advantage of the P-Transform method is substantial when 
the different number of states are recognized: the P-Transform has the same number of 
states as the vibration problem whereas the RFA requires the additional states for the 
aerodynamic lag functions, N in each mode where N is the number of terms in the 
aerodynamic lag approximation. 

There are several aspects to the accuracy of the P-Transform method that should be 
emphasized. Without curve fitting errors, it provides exact agreement with the flutter 
speeds. Furthermore, the RFA assumes a subsonic character in the aerodynamic lag 
functions, i.e., exponential decays, whereas transient supersonic behavior is characterized 
by finite lag times. The P-Transform method is equally accurate for transient motions at 
both subsonic and supersonic speeds. 

The present paper is the third in a series of transient analyses of the maneuvering 
aeroelastic airplane via approximations with increasing accuracy. An exact solution can be 
obtained utilizing Fourier transform methods that can be anticipated to be much more 
computationally intensive. That will be the next phase in this series of investigations. 
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Fig. 1 - Idealization of forward-swept wing airplane 



Fig. 2 - Control surface input 



Fig. 4 - First flexible modal acceleration responses 

Fig. 5 - GP 90 load factor responses 



A Damping Perturbation Method for 
Flutter Solution: The g-Method 

P.C. Chen* 
Zona Technology, Inc., Scottsdale, Arizona 85251 

Abstract 
By utilizing a damping perturbation method the present g-method includes a first order damping tenn in 
the flutter equation that is rigorously derived from the Lclplace-domain aerodynamics. The g-method 
generalizes the K-method and the P-K method for reliable damping predction. It is valid in the entire 
reduced frequency domain aM! up to the first order of damping. m e  present work also praides a 
theoretical foundation for the g-method that can be used to estimate the truncation error for huge values 
of damping. 7 7 ~  solution algorithm ofthe g-method is proven to be robust and can obtain an unlimited 
number of aerodynamic lag roots; as demonstrated by the results of the selected test cases 

1. Introduction 
Since its applicability for flutter analysis was first 
demonstrated by Irwin and Guyett (Ref 1) in 1965, the 
P-K method has been widely adopted by 
aeroelasticians as the primary tool for finding flutter 
solutions. Hassig (Ref 2) has given a detailed 
description of the superiority of the P-K method over 
the K-method. In Ref 2, the equation of the P-K 
method reads: 

where: 
V is the m e  speed 
L is the reference length, and usually: 

L,C , where c is the reference chord 
2 

and: 
p is the air density 
q is the generalized coordinates 
M, K, and Q@) are the generalized mass, 
stiffness, and aerodynamic forces matrices, 
respectively. 

For simplicity, Eq (1) excludes the structural modal 
damping matrix, but it can be easily included. p is the 
non-dimensional Laplace parameter and can be 
expressed as: 

p = g f  ik (2) 

where: 
k is the reduced frequency: 

w is the oscillatory frequency, and: 
g = yk, 
y is the transient decay rate coefficient. 

The P-K method is an approximation of the P-method 
that requires the generalized aerodynamic force 
computed in the Laplace domain, i.e. Q@). Since 
most of the unsteady aerodynamic methods (Ref 3, 4, 
5, and 6) used by the aerospace industry are 
formulated in the hquency domain (i.e. the k- 
domain), the P-K method can directly adopt Q(ik) 
fiom these unsteady aerodynamic methods for flutter 
calculation. 

Rodden (Ref 7) modified Hassig's P-K method 
equation by adding an aerodynamic damping matrix 
into Eq (1). The modified P-K method equation reads: 

where: 
Q~ and Q' are the real part and imaginary 
part of Q(ik), i.e.: 

By substituting p = g + ik into the third tenn of Eq 
(3), this equation can be rewritten as: 
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By comparing Eq (5)  to Eq ( I ) ,  it is clearly seen that 
the extra term: 

yields the approximated pdomain solution of Q(p) in 
terms of k and for small g: 

is the added aerodynamic damping matrix. Eq (3) is 
solved at several given values of V and p, for complex 
roots p associated with modes of interest. This is 
accomplished by an iterative procedure that matches 
the reduced frequency k to the imaginary part of p for 
every structural mode. This iterative procedure is 
called the reducedfiequenq "lining-up "process (Ref 
8). 

In the following section, we will show that the added 
aerodynamic damping rnamx in Eq (3), is valid only 
at small k or for linearly varying Q(ik). The present g- 
method provides an aerodynamic damping matrix that 
is valid in the complete k-domain and includes Eq (3)  
as a special case. 

2. Formulation of the g-Method 
The basic assumption of the g-method lies in the 
existence of an analytic function of Q@) = Q(g + ik) 
so that Q(p) can be expanded along the imaginary axis 
(i.e., g = 0 )  for small g by means of a damping 
perturbation method: 

The second tenn on the right hand side of Eq (6)  is 
generally not available fiom the kdomain unsteady 
aerodynamic methods. However, due to analytic 
continuation, it can be replaced by: 

Eq (7) is valid in the complete pdomain except along 
the negative real axis in subsonic flow (Ref 9). This 
implies that QY(ik) can be computed fiom Q(ik) by a 
central differencing scheme, except at k = 0. At k = 0, 
a forward differencing scheme is employed to 
accommodate the discontinuity of Q(ik) dong the 
negative real axis. Substituting Eq (7) into Eq (6)  

Replacing Q(ik) in Eq (1)  by Q(p) of Eq (8)  yields the 
g-method equation: 

At g = 0, both the g-method and the P-K method 
reduce to the same form. This indicates that both 
methods will provide the same flutter boundary for 
zero damping. For non-zero g, comparing Eq (9) to 
Eq (S), it can be seen that the difference between the 
P-K method d o n  and the g-method equation lies "1 in the terms Q lk in Eq (5)  and Q'(ik) in Eq (9). In 
fact, ~ ' l k  is a special case of Q'(ik). This can be 
shown as follows: 

Expanding Q(ik) about ik = 0 by Taylor's expansion 
gives: 

Since all Q"(0) are real, Q(ik) can be split into the real 
and imaginary parts. It reads: 

where: 
1 Q R  = Q(0) - zk'Q"(0) + ... (12) 

and: 
1 

Q' = kQ'(0) - -k3  Q"'(0) + ... (13) 
6 

Dividing Eq (13) by k gives the tenn ~ ' l k  in Eq ( 5 )  as: 

Differentiating Eq (10) with respect to ik gives the 
tenn QY(ik) in Eq (9) as: 

Comparison of Eq (14) with Eq (15) shows that the 
equal'* of ~ ' l k  and Q ( i k )  exists only if Q(ik) is a 
linear knction of k or at R-O. This proves that the 



added aerodynamic damping matrix in Eq (5) is valid 
only if one of the above conditions is satisfied. In 
fact, if Q(ik) is highly nonlinear, the P-K method may 
produce unrealistic roots due to the error from the 
differences between Eq (1 4) and Eq (1 5). 

3. Solution Algorithm of the g-Method 
Substituting p = g + ik into Eq (9) yields a second- 
order linear system in terms of g: 

where: 

A = (;JM 

Here, Eq(16) is formally called the g-Method 
equation. For completeness, in Eq(16), we have 
included a modal structural damping matrix Z. The 
solutions of Eq (16) exist when Im(g) = 0. To search 
for this condition, we fist  rewrite Eq (16) in a state 
space form: 

where: 

Next, a reduced-jZepency-sweep technique is 
introduced. This technique searches for the condition 
Im(g) = 0 and solves for the eigenvalues of D in term 
of g; starting fiom k = 0, incrementally increasing k by 
Ak, and ending at ki- (k,- is the highest value in the 
reduced fiequency list of the unsteady aerodynamic 
computations). The reduced frequency-sweep 
technique searches for the sign change of the 
imaginary part of the eigenvalues between k and 
Ik + 4. If this occurs, the condition of Im(g) = 0 can 
be obtained by a linear inteplation in k for the 
appropriate fiequency range. Then the flutter 
frequency q-and damping 2 yare computed by: 

Fork = 0, an alternative form of Eq (19) is used (Ref 
8) : 

One of the issues in performing the reduced 
frequency-sweep technique is the eigmvalue tracking 
fiom k to Jk + 4. In order to monitor the sign change 
of eigenvalues, it is required that the eigenvalues are 
lined up at each k and + 4. Using the regular 
sorting scheme by comparing the differences of the 
eigenvalues at Ik + 4 to those at k is certainly not 
robust and requires small Ak values that may be 
costly. This eigenvalue tracking issue can be resolved 
by means of a predictor-corrector scheme. 

4. Predictor-Corrector Scheme for Eigeovalue 
Tracking 

The predictor predicts the eigenvalues at Ik + w by a 
linear extrapolation fiom the eigenvalues and their 
derivatives at k: 

ds g, (k + Ak) = g(k) + Ak- 
dk 

where g, is defined as the predicted eigenvalue. dgldk 
can be obtained by using the orthogonality property of 
the left and right eigenvectors of Eq (17). This leads 
to: 

where Y and X are the left and right eigenvectors of 
Eq (1 7), respectively, and: 

Once g, is given by the predictor, g, is used as the 
baseline eigenvalues for sorting the computed 
eigenvalues at Ik + 4, defined as &. The maximum 
norm of the error between g, and & for all eigenvalues 
is also computed. If it exceeds a certain level, the 
predictor could potentially introduce incorrect 
eigenvalue tracking results due to rapid changes of the 
eigenvalues. In this case, the corrector is activated. 

The corrector reduces the size of Ak by a factor, for 
instance 100, and recomputes g, and g, at (k + 
Ak/100) as well as the maximum norm of the error. 
This process repeats until the maximum norm of the 



error is below a certain level. However, numerical 
experience shows that when the corrector is activated, 
this condition can be satisfied by reducing the size of 
Ak only once. Therefore, the corrector normally 
would not increase the computational time 
significantly. It serves only as a fail-safe scheme. 

At k = & dddk is also used to search for the 
condition Im(g) = 0 at k > & by a linear 
extrapolation. Thus, the reduced-frequency-sweep 
technique offen a scheme that could find all real roots 
of Eq (16) in the complete reduced fiequency domain. 

At this point, the issue of the number of real roots that 
could exist in Eq (16) is discussed. For n smctural 
modes, the P-K method and K-method normally 
provide only n roots of the flutter equation. However, 
as indicated by Ref 10, the number of roots could 
exceed the number of the structural modes if the 
aerodynamic lag roots appear. For instance, if the 
exact Theodorsen hc t ion  is used, the number of 
aerodynamic lag roots that would appear is id~nite. 
As one can see, unlike the P-K and K-methods, the 
reduced tiequency-sweep technique employed by the 
present g-method potentially gives an unlimited 
number of roots. The inclusion of all activated 
aerodynamic lag roots could provide important 
physical interpretations of the flutter solution 

5. Test Cases and Discussed 
The test cases for validating the present g-method are 
selected fkom those of the User's Guide of 
MSC/NASTRAN Aeroelastic Analysis (Ref 11). The 
generalized aerodynamic forces, mass matrices and 
natural frequencies are obtained fiom 
MSC/NASTRAN by the DAMP alter statements. 
Thus, the difference between the results computed by 
the P-K method and the g-method is mainly due to the 
differences in their basic formulation and solution 
algorithms of these methods. 

Fig 1 CenerPlized Aerodynamic Foras vs. 
Reduced Frequency of the 15' Sweptback Wing at 

M = 0.45,4 Modes 

vdomg (Ws) 

Fig 2 V-g and V-f Diagrams of the lSO Sweptback 
Wing at M = 0.45 

The 15-Degree Swe~tback Wing at M4 .45  
This test case is denoted as HA145E in Ref 11. Four 
structural modes are used for flutter analysis. The 
imaginary parts of the 4x4 generalized aerodynamic 
forces matrix (denoted as Qij) vs. k are presented in 
Fig 1. Since Im(Qij) are all nearly linear that gives a 
close equality of Eq (14) and @(IS), the agreement 
between the damping computed by the P-K method 
and the g-method is expected. Fig 2 shows the 
damping vs. velocity diagram (v-g diagram) and the 
flutter fkquency vs. velocity diagram (v-f diagram) 
computed by both methods. Good agreement between 
these methods is obtained except the g-method 
predicts one extra aerodynamic lag root (represented 
by the crosses in Fig 2). This aerodynamic lag root 
becomes active at V=550 Wsec with stable damping 
but its fiequency remains zero. Since the number of 
roots computed by the P-K method is restricted to be 
the same as the number of the structural modes, at 
V=600 ft/sec the P-K method's reduced frequency 
"lining-up" process skips the bending mode and 
obtains the aerodynamic lag root; this creates a 
discontinuity of the damping associated with the 
bending mode in the v-g diagram (represented by the 
opened triangles). By contrast, the g-method gives a 
continuous damping curve of the bending mode 
(represented by the solid triangles) and a discontinuity 
in the damping curve of the aerodynamic lag root (the 
crosses) at V=550 Wsec. 



Fig 3 Search History of tbe Reduced Frequency- 
Sweep Technique at V = 500 ftlsec, (a) Imaginary 

Damping and (b) Real Damping 
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Fig 4 Search History of the Reduced Frequency- 
Sweep Technique at V =  600 ft/sec 

In order to investigate how the g-method obtains the 
aerodynamic lag root, the search history in terms of 
eigenvalues vs. k for the reduced frequency-sweep 
technique is presented in Fig 3 for V=500 Wsec and 
Fig 4 for V=650 ft/sec. Since there are 4 struchd 
modes, the state space form of Eq (17) provides 8 
eigenvalues. At V=500 Wsec the imaginary parts 
(ImCg)) of these 8 eigenvalues provide four zero 
crossings (marked by the opened circles in Fig 3.a). 
These four zero crossings represent the four roots of 
the four structural modes. It is noted that the zero 
crossing of the first eigenvalue is obtained by 
extrapolation fiom the eigenvaiue and its derivative at 
k= &. At V=650 Wsec Im(g) of the seventh 
eigenvalue becomes zero at k=O which corresponds to 
the occurrence of the aerodynamic lag root. This can 
be seen clearly in the expanded vim of Im(g) at small 
k (at the upper right comer of Fig 4.a). The real part 
of this eigenvalue (Re(g)) at H I  has a negative value 
(Fig 4.b) that indicates this aerodynamic lag root is 
stable; however, the expanded view shows a potential 
coupling between the aerodynamic lag root and the 
sixth eigenvalue since the zero crossing of the sixth 
eigenvalue already occurs at small k. This indicates 
an instability may appear at a higher velocity. 
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Fig 5 V-g and VlfDiagrams of the BAH Wing, M =  

0.0,10 Modes 

BAH Wing at M4.O with 10 Modes 
This test case is denoted as HA145b in Ref 11. Ten 
structural modes are used for flutter analysis but only 
the results of the first bending and torsion modes are 



presented in the v-g and v-f diagrams shown in Fig 5. 
Two types of instability are predicted by both the P-K 
method and the g-method: a flutter speed at V=1056 
ft/.sec and a divergence speed at V= 165 1 ft/.sec. This 
agreement is expected since at g=O the flutter equation 
of both methods reduce to the same form. Three 
aerodynamic lag roots are obtained by the g-method 
and their frequencies are all zero throughout the 
velocity range of interest. Both of the first and second 
aerodynamic lag roots become active at the same 
speed (V=1400 Wsec). Atter this speed, the second 
aerodynamic lag root forms a super-stable mode but at 
this speed the damping of the first aerodynamic lag 
root jumps suddenly from zero to -0.1 then gradually 
crosses the zero-damping axis, forming a divergence 
type of instability at V=1651 Wsec. At this divergence 
speed, the third aerodynamic lag root becomes active 
and suddenly jumps to a high value of unstable 
damping (Fig 5.a). This is an interesting phenomenon 
because it indicates that this divergence speed could 
be a bifurcation point. Determining the third 
aerodynamic lag root is bifurcated fiom the first 
aerodynamic lag root or originates on its own needs 
fhther investigation. 
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Fig 6 Generalized Forces of 2 D.O.F. Airfoil, C.G. 

@ 37% Cbord (HA145Al), 
M = 0.0,2 Modes 
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Fig 7 2 D.O.F. Airfoil, C.G. @ 37% Cbord 
(HA145Alh M =  0.0,2 Modes 

Similarly to the first test case, the damping curve of 
the bending mode computed by the P-K method has a 
discontinuity while that of the g-method remains a 
smooth curve. The damping curve of the torsion mode 
computed by both methods are in excellent agreement. 
The frequency curves of the two structural modes 
computed by both methods also in good agreement 
except for the absence of the three aerodynamic lag 
roots of the P-K method. 

Fig 8 Damping and Frequency vs. Velocity of 2 
D.O.F. Airfoil, C.G. @ 37% Chord (HA145Al), M 

= 0 .42  Mode 

Two Degrees of Freedom Airfoil at M 4 . O  
This test case is adopted from Ref 10 and is derived 
fiom the case denoted as HA145A in Ref 1 1  but with 
the fuselage grid point being constrained. The center 
of gravity is located at 3 7% chord. Fig 6 presents the 
variations of the 2x2 Qij vs. k. In this case, Fig 6 
shows that the imaginary parts of Qij is not linear. 
Therefore, some difference in flutter results between 
the P-K method and the g-method is expected. First, 
for clarity, the v-g d i i  computed by the g-method 
alone is presented in Fig 7. Two d y n a m i c  lag 
roots are found. Again, it seems that the second 
aerodynamic lag root is bifurcated fiom the first one at 
V=210 Wsec where a divergence instability occurs. 
The comparison of the damping and flutter 
frequencies between the P-K method and the g- 
method is shown in Fig 8; however, for clarity, the 
second aerodynamic lag root is not repeatedly shown. 
In Fig 8 the results computed by the transient method 
(Ref 12) are also presented. The transient method is 



based on a time-domain unsteady aerodynamic 
method, therefore it can be considered as a p-method. 
All of the three methods predict the same instabilities: 
a divergence instability at V=210 ft/sec and a flutter 
instability at V=250 Wsec. The damping curves of the 
first and second modes computed by the g-method 
correlate well with those of the transient method. But, 
again, the P-K method gives a discontinuous damping 
curve of the first mode. 
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Fig 9 Damping and Frequency vs. Vdocity of 2 

D.O.F. Airfoil, C.G. @ 45% Chord (HA145A2h M 
= 0.0,2 Modes 

For the case of the center of gravity moved to 45% 
chord, the v-g diagram shown in Fig 9.a indicates that 
the flutter instability (at V=170 Wsec) occurs before 
the divergence instability (at V=225 Wsec). Again, 
this is well predicted by all three methods. The 
fiequency curves in the v-f diagram (Fig 9.b) 
computed by the g-method show a similar trend as 
those of the transient method. But the curves of the P- 
K method are discontinuous at V=100 Nsec where an 
aerodynamic lag root appears (not obtained by the 
transient method but well captured by the g-method). 
This results a poor correlation of the v-f curves 
obtained by the P-K method with the other two 
methods. 

Three Demees of Freedom M o i l  at M4.O 
This test case is denoted as HA145A in Ref 11. A 
hselage ffee-fke plunge mode is added in the above 
two degrees of freedom case. The v-g and v-f 
diagrams for the case of the center of gravity located 

at 37% chord are shown in Fig 10 and those for 45% 
chord are in Fig 11. For both cases, the so-called 
"dynamic divergence" (Ref 13) occurs and its speeds 
and frequenci& are well predicted by all three 
methods: the P-K method, the g-method, and the 
transient method. Both the a-method and the transient 
method capture one aerody&nic lag root (in the 45% 
chord case, the g-method obtains a second lag root but 
it becomes active at the dynamic divergence speed and 
is not discussed here). Unlike the restrained structures 
of all previous test cases where the fiequency of the 
lag roots remains zero, the aerodynamic lag root of the 
~;&ent unrestrained structure 'takes off from the 
zero-frequency axis then couples with the bending 
mode. This coupling of the lag root and bending 
mode forms a "dynamic divergence" instability. As 
indicated by Ref 13, this dynamic divergence has a 
non-zero frequency and could be defined as a low- 
frequency flutter instability. On the other hand, the P- 
K method generated lag root somehow redkses to 'take 
off from the zero-frequency axis. This problem of 
the P-K method is probably due to the fact that since 
Qij of the present test case is nonlinear, the P-K 
method is valid only at R.=O for non-zero damping. 
This k 4  condition restricts the fiequency of the lag 
root fiom being a non-zero value and results in a poor 
correlation in the v-f diagram with the other two 
methods. 
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Fig 10 Damping and Frequency vs. Velocity of 3 

D.O.F. Airfoil, C.G. @ 37% Chord (HA145A2), M 
= 0.0,3 Modes 



Fig 11 Damping and Frequency vs. Velocity of 3 
D.O.F. Aiioil, C.G. @ 45% Chord (HA145A2), M 

= 0.0,3 Modes 

The Johnson Configuration at M4.84 with 17 Modes 
This test case is adopted fiom Ref 14 and has been 
discussed in Ref 15. The Johnson configuration has 
three rigid body modes and 14 elastic modes. The 
imaginary parts of Qij vs. k for i and j =4,5, and 6 
pre&ed in Fig 12 show that spikes occur at small k. 
The cause of the spikes is probably due to poor 
aerodynamic modeling; but this is not an issue to be 
discussed here. Since Qij are highly nonlinear, a large 
difference between the results obtained fiom the P-K 
method and the g-method is anticipated. In fact, in 
this case the P-K method breaks down (ref 15) and its 
results are totally unreliable. It is believed that the 
break-down of the P-K method is caused by the 
unrealistic roots produced by the nonlinear Qij. In 
order to validate the g-method result, the K-method is 
used for comparison. 

Fig 12 Johnson Configuration Generalized 
Aerodynamic Forces, M=0.84,17 Modes 
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Fig 13 Damping md Frequency vs. Velocity of 

Johnson Configuration, 
M = 0.84,17 Modes 

There are 13 aerodynamic lag roots obtained by the g- 
method. Due to the spikes at small k, some of them 
become active even at very low speed. These lag 
roots are not presented here. Fig 13 shows the v-g and 
v-f diagrams obtained by the K-method and the g- 
method for the first three elastic modes; denoted as 
mode 4, 5, and 6. It can be seen that both methods 
predict the same flutter boundary around V=470 Wsec. 
The good agreement between the K-method and the g- 
method indicates the robustness of the g-method's 
solution algorithm. 

Conclusions 
It is generally believed that the K-method is only valid 
at the g-O condition. The present work also proves 
that the P-K method is valid at the conditions of g-O, 
A=O, or d"Q/dk%, where n>l. The g-method 
generalizes the K-method and the P-K method. It is 
valid for all k and up to the first order of g. This first 
order term of g is rigorously derived fiom Q@) by a 
damping perturbation method. 

The present work also provides a theoretical 
foundation for the g-method that can be used to 
estimate the error of large damping (beyond the first 
order assumption) due to the truncation of the higher 
order terms of g. However, based on the formulation 
of the g-method, adding higher order terms in g seems 
to be straightforward. 
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