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ABSTRACT

J/j_a

A finite element formulation is presented for the analysis of large deflection response of composite panels
subjected to aerodynamic pressure at supersonic flow and high acoustic excitation. The first-order shear
deformation theory is considered for laminated composite plates, and the von Karman nonlinear strain-

displacement relations are employed for the analysis of large deflection panel response. The first-order piston
theory aerodynamics and the simulated Gaussian white noise are employed for the aerodynamic and acoustic loads,

respectively. The nonlinear equations of motion for an arbitrarily laminated composite panel subjected to a
combined aerodynamic and acoustic pressures are formulated first in structure node degrees-of-freedom. The
system equations are then transformed and reduced to a set of coupled nonlinear equations in modal coordinates.

Modal participation is defined and the in-vacuo modes to be retained in the analysis are based on the modal
participation values. Numerical results include root mean square values of maximum deflections, deflection and
strain response time histories, probability distributions, and power spectrum densities. Results showed that

combined acoustic and aerodynamic loads have to be considered for panel analysis and design at high dynamic
pressure values.

1. INTRODUCTION

Aircraft and spacecraft skin-panels are subjected simultaneously to high levels acoustic (sonic fatigue) and
aerodynamic (panel flutter) pressures. 1"2Sonic fatigue and panel flutter have been the major design considerations

for aircraft, spacecraft and missiles since the late nineteen sixties. An excellent review of sonic fatigue technology
up to 1989 was given by Clarkson. 3 Various types of pressure loads, developments of theoretical methods, and

comparisons of experimental results with theories and nomographs were given. Recently, Wolfe et al.4 gave
reviews in-depth of sonic fatigue design guides, classical and finite element approaches, and identification
technology. Experimental investigation of nonlinear beams and plates, and multimodal fatigue model were also

reported. Sonic fatigue design guides have been developed by Rudder and Plumblee 5 for isotropic metallic and by
Holehouse _ for graphite-epoxy composite aircraft structures. The design guides, however, were based on the semi-

empirical test data or the simplified single-mode approach. Vaicaitis et al. have developed a Galerkin-like
procedure (PDE and modal method) and a time domain Monte Carlo approach for the nonlinear response of
isotropic _'2and composite 7'spanels to acoustic and thermal loads.

An excellent survey of nonlinear panel flutter through 1970 was given by Dowell. 9 The vast amount of
theoretical literature on panel flutter were grouped into four categories based on the linear or nonlinear structure

theories, and the two aerodynamic theories (quasi-steady first-order piston or full linearized inviscid potential
flow). The partial differential equations (PDE), the Galerkin's method and the numerical simulation results showed

that a minimum of six modes are needed for a converged limit cycle amplitude response. Bismarck-Nasr 1°gave a

review of the linear panel flutter using the finite element methods. Recently, a review of various analytical methods
and experimental results of nonlinear panel flutter at supersonic and hypersonic speeds was given by Mei et al.l_ An

approach for the design of flutter-free surface panels using the quasi-static Ackeret aerodynamic theory was
documented by Laurenson and McPherson. 12A exhaustive search of the literature reveals that there is no study of
nonlinear panel response to combined acoustic and aerodynamic loads.

When a flight vehicle travels at supersonic speeds, panel flutter caused by aerodynamic pressure is not the only
form of dynamic instability. The surface panels also experience high frequency random pressure fluctuations (sonic

fatigue). 1"2This paper presents a finite element formulation for the analysis of nonlinear large deflection response of

composite panels subjected to high acoustic excitation and aerodynamic pressure at supersonic speeds. The first-
order shear deformation theory is considered for the laminated composite plates. The von Karman nonlinear strain-
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displacementrelationsare employed for the large deflection response of the panel. Simulated Gaussian white noise
and the first order piston theory aerodynamics are employed for the acoustic and aerodynamic loads. The nonlinear

equations of motion for an arbitrarily laminated composite panel subjected to a combined high acoustic and
aerodynamic loads are formulated first in the structure node degrees-of-freedom (DOF). The system equations are
then transformed and reduced to a set of coupled nonlinear equations in modal coordinates. Numerical integration is

employed to obtain the panel response. Examples are given for an isotropic and a composite panel at various
combinations of sound pressure level and dynamic pressure.

2. FORMULATION

2.1 Equations of Motion in Structure Node DOF
The inplane strain, curvature and shear strain vectors based on the von Karman large deflection and the first

order shear deformation theories are given by

+t4y, 
[U,y +V,x tW,xW, y

{_}=I IFY'Y , {}'}= , (1)
[ lffx , y + _ y ,x [ W'x + lffx

where u, v and w are the inplane and transverse displacements, respectively. W_ and Wy are the rotations of the

normal to the midsurface about the y- and x-axes, respectively. The subscripts m and b denote membrane (inplane)
and bending components, respectively. The constitutive equations for a laminated composite plate are

DJ[. _ J' {Q}= [A" ]{7} (2)

where [A], [B], [D] and [A,] are the stretching, bending-stretching coupling, bending, and shear stiffnesses,
respectively. The quasi-steady first-order piston aerodynamic theory is employed for the aerodynamic pressure at

high supersonic Mach number (M.,> 1.6). The aerodynamic pressure is given by 9

Ap- 2qa W,x +-- w,t (3)
M2_iv 

where qa=p,V.2/2 is the free stream dynamic pressure, Pa the air density, V. the velocity and fl = M_ - 1 .

Using the Hamilton's principle and the finite element expressions, the system equations of motion for a
composite plate subjected to aerodynamic pressure and high acoustic excitation can be expressed as _sJ4

(4)

where wo =(DllO / pha 4 )1/2 "Is a reference frequency and p, h and a are the panel density, thickness and length,

respectively. The value Duo is the first entry in laminate bending rigidity [D] calculated when all of the fibers of the
composite layers are aligned in the airflow x-direction. The [M]b, [G] and {Pb} are the system mass matrix,

aerodynamic damping matrix and load vector due to random acoustic pressure, respectively. The linear and
nonlinear system stiffness matrices axe given by

[KL]= Z[aa]+ [K] b + [Ks ]- [KBIK_ml [KB] r

[KNL]=-tKBIK ltKllmb +[KIBI+[K1Nml+[K1Nbl+[K2I-[K1]bm[KI_nl(IKB_ +[Kllm b ) (5)

where the nondimensional dynamic pressure and nondimensional aerodynamic damping are given by
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- 2qa a3 , ga = _x/_a (6)
/ Dll0

where Co=#(M2-2_/_(M_-I_is the aerodynamic coefficient and I.t=poa/ph is the mass ratio. For high

supersonic speeds M..>>I, Dowell 9 approximated Co = #/M.. [Aa] is the system aerodynamic influence matrix,

and [K1] and [K2] are the first-order and second-order nonlinear stiffness matrices which depend linearly and
quadratically upon the unknown system displacement vector {W}={ {Wb},{Wm} }r. The subscripts B, Nm and Nb
denote that the corresponding stiffness matrix is due to the laminate extension-bending stiffness [B], membrane

force components {Nm}=[A]{em °} and {Nb}=[B]{_:}, respectively, and the subscripts a and s denote aerodynamic
and shear deformation, respectively. The derivation of Eq. (4) can be referred to references 13 and 14. In the

absence of acoustic loading, {Pb(t)}=0, Eq. (4) reduces to nonlinear panel flutter at supersonic speeds; On the other

hand, by setting k=ga=0, Eq. (4) describes nonlinear random response of a composite panel subjected to high
acoustic excitations. According to the authors' knowledge, this is the first attempt in investigating of nonlinear

response of panels subjected to a combined acoustic and aerodynamic pressures.

For a given set of _ and Ca (or la/M.), Eq. (4) can be solved by numerical integration in the structure node
DOF for combined load case. This approach has been carried out for sonic fatigue analysis with simulated random
loads) TM It turned out to be computationally costly due to: (i) at each time step, the element nonlinear stiffness

matrices are evaluated and the system nonlinear stiffness matrix [KNL] is assembled and updated, (ii) the number of
structure node DOF of {Wb } is usually very large, and (iii) the time step of integration should be extremely small.

An efficient solution procedure is to transform Eq. (4) into the modal coordinates with a modal reduction. This
approach is presented as follows.

2.2 Equations of Motion in Modal Coordinates
Express the panel deflection as a linear combination of some known base functions as

/2

_Vb }= _qr(t){_r }= [O]{q} (7)
r=l

where the number of retained linear in-vacuo modes, n, is much smaller than the number of structure node DOF in

bending, {Wb}. The normal mode {¢r}, which is normalized with the maximum component to unity, and the linear
natural frequency o_ are obtained from the linear vibration of the system

_2o [M]b{_r}=([K]b +[Ks]-[KBIK]ml[KB]T _¢r} (8)

A small number of most contributing modes to be retained in the analysis can be determined from the modal
participation value which is defined as

n

Participation of the r thmode = RMS(qr)/X RMS (qs) (9)
$----1

Since matrices [K1]_, [K1B], [Klm] and [K2] are all functions of the unknown bending DOF {Wb}, they can
now be expressed as the sum of products of modal coordinates and nonlinear modal stiffness matrices as

n )([rl b,[rlB],[K1Nbl,[x2])= 2 qr [KI_r),[K1B_r),[K1Nb_ r),  ,qs[X2 rs) (10)
r=l s=l

where the super-indices of those nonlinear modal stiffness matrices denote that they are assembled from the
corresponding element nonlinear stiffness matrices. Those element nonlinear stiffness matrices are evaluated with

the corresponding element components {wb} (° obtained from the known system linear mode {_0_}-Therefore, the
nonlinear modal stiffness matrices are constant matrices. The matrix [K1N_], however, is a linear function of the
inplane DOF {W_} which consists of two terms as
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: +
#7 n n

=- X qr{_r}m - _, _'_qrqs{_Prs}m
r=l r=ls=l

where the two inplane modes corresponding to the rth bending mode {_r} are given by

: =[KL' } (12)
The nonlinear stiffness matrix [K1Nm] can be expressed as the sum of two nonlinear modal stiffness matrices as

n n n

[K1Um]=- ___ qr[K1Nm] (r) - _, ]_qrqs[KZNm] (rs) (13)

r=l r=ls=l

The nonlinear modal stiffness matrices [K1N_] Cr)and [K2N_] (=) are constant matrices and they are assembled and

evaluated with the known inplane modes {_,}r. and {¢rs}_, respectively. Equation (4) is thus transformed to the
reduced modal coordinates as

where the modal matrices are given by

([-M-]b ,_], K[K[_L]): [_] T ([M]b,[G],[KL])[d#] (15)

and the quadratic and cubic terms are

[Kq]{q}=[_] T r_=lqr(-[KBIK_ml[KI_r)+[K1B_r)-[K1Nm_ r) +[K1Nb_r)-[KI_;)[K]--ml[KB_" )_]{q}

[Kqq][q}:[_" _ _qrqs(tK2_rs)-[K2Nm_rS)-[Kl_;)tK_ml[Kl_S)b)_]{q} (16)
r=l s=l

and the modal force is

_(t)}= [_] T {Pb (t)} (17)

A structural modal damping 2_,o_, -_[1] has been added to Eq. (14), and _ is the modal damping ratio which can

be determined experimentally or from the data base of structures of similar construction. The nonlinear response for

a given panel at certain dynamic pressure _. and damping parameters C, and _ can be determined from Eq. (14) by

any numerical integration scheme. The advantages in using Eq. (14) are: (i) there is no need to assemble and update

the quadratic and cubic nonlinear terms since all the nonlinear modal matrices are constant matrices, and (ii) the

number of modal equations, n, is small.
2.3 Random Surface Pressure

The input acoustic excitation is assumed to be band-limited Gaussian random noise and uniformly distributed

over the structural surface. The power spectrum density (PSD) has the form

S(f)= p21oSPL/IO O<_ f <_fc
(18)

= 0 otherwise

where Po is the reference pressure, po=2.9×10 9 psi (0.00002 N/mZ), SPL is the sound pressure level in

decibels and fc is the selected band width. The formulation presented in Eq. (14), however, is not limited

to stationary Gaussian excitation. It can also handle nonstationary, non-Gaussian random loading which

the high speed flight vehicles would probably experience. With recorded flight high frequency pressure
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fluctuations, random panel response can be determined much realistically by numerical integration of Eq.
(14).

3. EXAMPLES AND DISCUSSION

The nonlinear system equations presented in Eq. (4) are general in the sense that they are applicable for
rectangular _3'15or " 14 ....triangular finite elements. The fimte element employed m the examples is the three-node
triangular Mindlin (MIN3) plate element with improved transverse shearJTThe shear correction factor is defined

as a, =l/(l+0.5_kJ ,__.kb_).The MIN3 element has a total of 15 DOF, 5 at each apex node. The bending node DOF
/=4,9 i=4,9

{wb} comprise of transverse displacements and normal rotations (w, Wx and _Fy) and the inplane node DOF {win}

comprise of inplane displacements (u and v). Nonlinear response are obtained for a square isotropic plate and a

rectangular composite plate. An aerodynamic coefficient Ca=0.01 and a modal damping ratio _=0.01, r=-l to n are
used in the examples.
3.1 Square Isotropic Plate

A simply supported square aluminum panel under the combined acoustic and aerodynamic pressures is studied

in detail. The plate is of 12×12×0.040 in. (30.5x30.5×0.1cm) with immovable inplane edge conditions u(0,y) =

u(a,y)= v(x,0)= v(x,a)= 0. The material properties are E=10Msi (68.89 GPa) and v=0.3. The plate is modeled with a

12x12 mesh or 288 MIN3 elements. The number of structural node DOF {Wb} is 407 for the system equations
given in Eq. (4). It is well know that 6 modes in the airflow direction are needed for a converged limit cycle
response for panel flutter and the lowest few symmetrical modes are needed for the uniform input random pressure
distribution for sonic fatigue. Therefore the modes considered for the combined aerodynamic and acoustic loads are

(1,1) to (6,1) for the panel flutter and (1,1), (1,3), (3,1) and (3,3) for the sonic fatigue analysis. No modal
participation calculations are needed for this well studied problem in panel flutter and sonic fatigue. The root mean

square (RMS) maximum deflections to plate thickness versus the nondimensional dynamic pressure 2, at SPL of 0,
100, 1l0 and 120 dB are shown in Fig. 1.

y-

°!er-
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/..//°dB

o6 200 400 600 800
Dynamic Pressure

Fig. 1 RMS maximum deflection of a simply
supported square isotropic plate

"- Present

J_

I -H I I

 '6o soo- .oQ prdOOr. 800Dynamm

Fig. 2 Comparison of limit cycle amplitude for a
simply supported square k_U'opic plate

The curve with the null acoustic pressure (0 dB SPL) is the conventional panel flutter limit cycle oscillations,

and the RMS deflections at null dynamic pressure (L---0) are the conventional nonlinear panel response to acoustic

excitations. The accuracy of the present formulation for panel flutter and sonic fatigue is verified and shown in Fig.
2 and Table 1 for panel flutter and sonic fatigue, respectively. The Fokker-Planck-Kolmogorov (FPK) Equation
[18] method is an exact solution to the single degree-of-freedom forced Duffing equation. The finite
element/equivalent linearization (FE/EL) approach assumes that the equivalent linearizd system obtained after the

application of equivalent linearization technique is also stationary Gaussian, while the present time domain
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numericalintegrationmethoddoesnotassumethatthedisplacementresponseis Gaussian,therefore,thepresent
methodshouldbemoreaccurateandrealistic.

Table 1. Comparison of RMS of (WmJh) for a simply supported rectangular
(15x12x0.040 in.) isotro

SPL FPK [18]
(dB) 1 mode

90 0.249

100 0.592
110 1.187
120 2.200

using different methods and number of modes

FE/EL [19]
1 mode 4 modes

0.238 0.238
0.532 0.533
1.030 1.031
1.902 1.905

Present

4 modes

O.266

O.489
1.092
2.113

The maximum deflection is located at the three-quarter length from the leading edge. (3a/4, a/2) for the panel
flutter, however, it is at the plate center (a/2, a/2) for sonic fatigue. For a fixed SPL, the location of the maximum

deflection thus moves from the plate center towards the three-quarter length as the dynamic pressure increases. On
the other hand, for a fixed dynamic pressure, the location of the maximum deflection moves towards the center

from the three-quarter length by increasing the SPL. The maximum deflection for the combined acoustic and
aerodynamic loading case, therefore, is not at one fixed location, it can be anywhere between the plate center and
three-quarter from the leading edge.

The deflection results shown in Fig. 1 indicate that: (i) the superposition method does not applicable to

nonlinear system, (ii) for a given SPL, the RMS deflection at k=0 is higher than the deflection at 0<_,<_, this is

due to the increase of panel frequency with increasing of 2_,thus increase the stiffness of the panel, and (iii) the

RMS deflection at large dynamic pressure (L>>_) are always higher than those at ;_=0. Thus important

conclusions can be drawn for design and analysis of surface panels at supersonic speeds: (i) for 3.<<_r, only

acoustic loading or sonic fatigue has to be considered, and (ii) for L>_r, both acoustic and aerodynamic loads have
to be considered.

Representative panel behavior at five loading combinations are presented in Figs. 3-7. Those five loading
combinations correspond to A to E shown in Fig. 1. The maximum deflection and maximum strain response time
histories, probability distribution and PSD for each loading case are presented. Figures 3 and 4 show the random

response at SPL=100 and 120 dB and L---0 (sonic fatigue; points A and B in Fig. 1), respectively. At the low 100 dB

SPL, the panel basically experiences a small deflection linear random vibration dominated by the fundamental (1,1)
mode. The panel motion at the high 120 dB SPL, however, is clearly a large deflection nonlinear random vibration.

This is demonstrated by the peaks in PSD plots that are broadening and shifting to the higher frequency and by the
presence of nonzero-mean inplane strain shown in strain plots.

At 3=800 and 0 SPL (panel flutter; point C in Fig. 1), the panel.response shown in Fig. 5 is a large amplitude

limit cycle motion. The displacement probability density and the PSD of (W_Jh) both describe a periodic motion.
The maximum strain time history shows clearly the effect of large inplane strain component due to large amplitude
periodic motions.

The panel responses at the combined loads of L=800 and SPL=100 and 120 dB (points D and E in Fig. 1) are

shown in Figs. 6 and 7, respectively. The maximum deflection and strain time histories show the nonlinear large
deflection vibrations dominated by the fundamental mode and the presence of inplane strain components.

3.2 Rectangular Composite Plate

Nonlinear response of composite panels under aerodynamic and acoustic pressures can be determined using

the present formulation and solution procedure. As an example, a clamped rectangular graphite-epoxy plate of eight
layers [01451-45190]s is analyzed. The dimensions and material properties of the panel are:

a=15 in. (38.1 cm) E1=22.5 Msi (155 GPa)
b=12 in. (30.5 cm) E2=1.17 Msi (8.07 GPa)
h---0.048 in. (0.122 era) GI2=0.66 Msi (4.55 GPa)

p--0.1458x 10.3 lb-s2/in.4 (1550 Kg/m 3) G23=0.44 Msi (3.03 Gpa)

v12---0.22

194



Theinplaneedgesareimmovableandtheplateismodeledwitha 12x12mesh.Thenumberof systemequationsin
structurenodeDOF{Wb}isof 363.Thesystemequationsarereducedtothemodalcoordinatesusingthelowestn
modesin increasingfrequencyorder.TheRMSW_x/hat 120dBSPLandL=800 using different number of modes

are shown in Table 2. The results show that a 20- or 25-mode model would yield a converged RMS maximum
deflection.

To demonstrate the advantage of using modal participation defined in Eq. (9), the participation values for the

25-mode model are shown in Table 3. By retaining those 13 modes with participation value > 1% in the analysis,

the R_MS W_x/h is 0.8124 at 120 dB SPL and L=800. Using the 13 most contributing modes, the RMS (W_,/h)

versus nondimensional dynamic pressure _. at SPL of 0, 100, 110 and 120 dB are shown in Fig. 8. Similar

conclusion from the isotropic panel can be drawn for the composite panel, that is, at low dynamic pressure (t.<<L=)

only acoustic loading needs to be considered, and at high dynamic pressure (L>_r) both aerodynamic and acoustic
loads have to be considered for the design and analysis of surface panels at supersonic flow. Response time history,
probability distribution and PSD are not repeated for the composite panel.

Table 2. RMS (WmJh) for a clamped rectangular graphite-epoxy panel

at 120 dB SPL and 2k=800 using different number of modes

Number of modes, n RMS (W_x/h)
1 0.5557
2 0.5845
6 0.7814

9 0.7798
16 0.8279
20 0.8110
25 0.8183

Selected 13 modes 0.8124

Table 3. Modal participation values for a clamped rectangular graphite-epoxy

panel at 120 dB SPL and X=800 usin6 the lowest 25 modes
Mode number 1 2 3 4 5 6 7 8 9 10 11 12

Participation, % 36.72 5.24 19.304.25 4.01 7.67 1.71 0.76 0.33 1.54 4.77 0.35
13 14 15 16 17 18 19 20 21 22 23 24 25

0.28 4.19 0.38 0.99 1.38 2.55 0.21 0.27 0.53 0.33 0.54 0.14 1.54

5:
i//

I I I I I% 200 400 600 800 1000
Dynamic Pressure

Fig. 8 RMS maximum deflection of a damped rectangular graphite-epoxy plate

195



4. CONCLUDING REMARKS

A finite element time domain modal formulation is presented for the analysis of nonlinear response of

composite panels subjected to combined acoustic and aerodynamic pressures. The advantage of using modal
participation for retaining the most contributing modes was demonstrated. For panels at supersonic flow, only

acoustic excitations (sonic fatigue) are to be considered for 2,<<_, and both acoustic and aerodynamic pressures

have to be considered for k>Xcr. Future extension of the present work includes the combined acoustic, aerodynamic

and thermal loads. Arbitrary flow directions and curved panels will also be considered.
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