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PREFACE

Aeroelasticity is a multidisciplinary technology area that integrates steady and unsteady aerodynamics and
elastic structures. Its importance has been recognized and considered since the early days of flight. It is
critical in that proper aeroelastic design reduces or eliminates the need for costly fixes later in the
development process. As the performance of vehicles increased, the need for control systems to control the
structural responses increased and, for very high-speed vehicles, the effects of structural heating on the
structural dynamic response had to be modeled. The advent of the computer led to the development of
computational unsteady aerodynamics methods that are used to predict aeroelastic response across the
aircraft flight envelope. The effects of aerodynamics and elastic structures must be considered and modeled
accurately to predict aeroelastic responses and to provide data for designing active control systems. In
recent years, smart materials and adaptive structures have been introduced as a means to control the

response of flexible structures.

Even as prediction methods advanced, the role of testing maintained its importance in the design and
certification processes. Models have improved, allowing for more realistic representation of aircraft.
Facility capabilities have increased, measurement techniques have improved, and the prediction methods
have been used to guide tests. This resulted in more efficient and effective use of test facilities.

As we strive to improve the performance of aircraft during flight, we have made significant advances in
understanding their behavior during ground OlX.:.-ations. The dynamic response during taxi, takeoff, and
landing have been shown to be critical to the performance of the flight crew, to the ride comfort of the
passengers, and to the safe operations of aircraft. The design of landing gear, brakes, and tires is taking on

more importance in the aircraft design process.

With the importance of aeroelasticity and structural dynamics increasing in the design and operation of
aircraft and spacecraft, it was with great pleasure that I accepted the responsibility of serving as Technical
Chair of the International Forum on Aeroelasticity and Structural Dynamics 1999. I would like to thank the

CEAS Specialists Committee on Structures and Materials for allowing me to take on this important and
honorable task. This is the premier gathering of aeroelasticians and structural dynamicists anywhere. We
have an outstanding program that will spark rewarding discussion and lead to many advances in the future.
Because of the success of this forum, I feel honored to recognize those who worked so diligently to make

this great event happen.

I would like to acknowledge Irving Abel for his efforts in bringing this outstanding forum to the United
States for the first time. The Program Committee members deserve special congratulations for their efforts

in selecting an outstanding series of papers to be presented. I thank the Organizing Committee members,
especially Dr. Robert Moses, for their help with the organization of the forum. Mr. Lee Pollard deserves
recognition for his efforts in designing the artwork that is featured on the forum program and on the
website. Finally, I wish to acknowledge the out_,.anding support of Ms. Emily N. Todd of the Institute of

Computer Applications in Science and Engineering for all of her help in addressing the administrative
details necessary to make the conference a success and in preparing this document.

Woodrow Whitlow, Jr.
NASA John H. Glenn Research Center at Lewis Field
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an F16 Wing

J. Cattarius 1 S. Preidikman _ D.T. Mook a D.J. Inman 4
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Blacksburg, Virginia 24061-0261
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Abstract

This paper will show initial results of a complete aeroelastic F16-1ike semi-span

wing model, used to analyze the feasibility of piezoelectric stack actuation as a wing/store

flutter suppression system. The model can identify the presence of aerodynamic in-

terference between the store, pylon, and wing wakes and examine its significance with

respect to the pressure and lift forces on the participating bodies. The wing and store

data considered in this analysis, represent an F16 configuration that was identified to

induce flutter in flight at subsonic speeds [9]. The pylon is based on the concept of

the decoupler pylon, introduced by Reed and Foughner in 1978 and flight tested in the

early 1980's, and models both yaw and pitching motion of the store.

The complete aeroelastic model is simulated in ABAQUS which has been aug-

mented by the unsteady-vortex-lattice-method (UVLM) to calculate the aerodynamic

loading. Both codes communicate through an iterative handshake procedure dur-

ing which displacements and air loads are updated. For each increment in time the

force/displacement equilibrium is found in this manner. At this point, the analysis is

confined to a static analysis of the flexible structure. The wing is modeled as an elastic

plate and pylon and store are rigid bodies. The store is connected to the pylon through

an elastic joint possessing two degrees of freedom, pitch and yaw, respectively.

1 Department of Engineering Science and Mechanics; Center for Intelligent Materials, Systems, and Structures

2Department of Engineering Science and Mechanics

3Department of Engineering Science and Mechanics

4Department of Mechanical Engineering, Center for Intelligent Materials, Systems, and Structures

443



1 Introduction

Wing/Store Flutter is an aeroelastic phenomenon for which both structural and aerodynamic

entities are equally important. Throughout the years a variety of analytical control schemes

have aimed at suppressing wing/store flutter through active counter-mechanisms. They

have been developed analytically and tested on wind tunnel models. The most common

of these procedures act on "wing-owned" control surfaces, such as ailerons, leading edge

flaps, and/or trailing edge flaps. The control laws range from simple velocity feedback to

optimal control including some adaptive configurations together with system identification.

However, the analytical representation of the system needs to be linearized in order to take

advantage of the advanced control mechanisms. Linearization forms a system that exhibits

good results under certain operating conditions yet deteriorates in performance quickly when

system parameters change. Aerodynamic forces exhibit highly nonlinear characteristics and

are the main, but not sole, source of system changes. In the past ten years, researchers

have established that structural non-linearities are an important contributor to the overall

dynamics of the system, e. g. [11].

In 1978, Reed and Foughner patented the so-called decoupler pylon which mounted

stores elastically to the wing, in contrast to the standard rigid connection. The idea was

to decouple the store from the wing by using an elastic pylon and with that restore the

performance capabilities of the wing. Simulations, wind tunnel tests and flight tests with

an F16 verified the potential of the method. It offered a practical alternative to previously

pursued wing-based methods.

In the past 15 years several semi-active decoupler pylon concepts, (e. g., adjustable

spring stiffness, electromagnetic friction damper), aimed at increasing the system's tolerance

to changing air and maneuver loads have been proposed. Cazier and Kehoe [3] headed a

program in 1986 to design, build, and flight test such a modified decoupler pylon. They

introduced an alignment system that maintained the store in a nominally aligned static

position. Flight tests demonstrated a 37% increase in flutter speed over conventional store
attachments.

In 1994, Gade and Flowers [1] first investigated the possibilities of active flutter sup-

pression by means of a "smart" pylon. Smart materials are easy to operate and require

less space than equivalent mechanical devices. The active concept is envisioned to improve

flutter suppression beyond the semi-active case and to provide, in the future, a practical

environment for controlled store release.

In the last three years Gade and Inman [2] fortified the smart concept and developed a

series of advanced control algorithms to suppress flutter based on the concept of piezoce-

ramic stack actuators. The analytical strategies are based on fundamental structural and

aerodynamic models that fall short of the complicated physics involved in the problem.

To compensate for these shortcomings, elaborate robustness studies involving uncertainty

models were undertaken. Simulations provide encouraging results as to how flutter can be
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suppressedby application of the active "smart" decouplerpylon.
To assessthe capabilities of the "smart" pylon reliably, it is necessaryto model the

physicsof the problem more accurately,particularly the aerodynamicaspects. Wing/store
flutter is a three-dimensional phenomenonand therefore it necessitatesthree dimensional
treatment of the structure and aerodynamics.

1.1 Aerodynamic Model

The unsteady-vortex-lattice-method (UVLM) is based on the fundamental physical obser-

vation that the flow past immersed bodies generates vorticity along surfaces in contact with

the flow. For attached flow this effect is confined inside a thin boundary layer. The vorticity

leaves the boundary layer to enter the free stream only at trailing edges or other sharp edges

and forms the trailing vortex sheet or wake. The boundary layer itself need not be modeled

explicitly but its implicit effects on the global flow mechanics are fully accounted for. Mean-

ing, the global flow can actually be regarded as being inviscid, confining vorticity into the

boundary layers and the wake. The location of the separation is not provided as part of the

solution. It must be specified a-priori in the sense of an implicit Kutta condition.

The UVLM has its main restriction in the incompressibility assumption, which makes it

impossible to capture shock waves and the drag associated with them. The flow speed must

be kept within the subsonic range. On the other hand, the vortex-lattice method also yields

the wake as part of the solution and is capable of approximating flow interference due to the

shedding of vorticity. The UVLM, and its variations, has been in use for many years and has

been applied to various aerodynamic configurations, including bridge flutter [6], influence of

canards onto the main wing in the case of an X29 fighter airplane [7], and store separation

including wake effects [8].

The mesh of the complete semi-span model can be taken from Figure A.3. The complete

configuration consists of 662 panels, 30 fuselage panels, 160 wing panels, 52 pylon panels,

and 420 store panels.

The fuselage is an extension of the wing from the root inboard to the plane of symmetry.

All fuselage panels contribute implicitly to the lift force by inducing velocities at the control

points on the wing. There is no explicit participation of the fuselage in the force calculations,

i. e., the total lift force is calculated across the wing panels only.

The wing extends from span station 41 to the wing tip at span station 180. It is modeled

as a camberless lifting surface in the shape of the plan form of the F16 wing, see Figure A.3.

From both the trailing edge and the wing tip, vorticity is shed to form the trailing vortex

sheet and the wing tip vortex, respectively.

At span station 120 the decoupler pylon is rigidly attached to the wing. The pylon is also

modeled as a thin plate, which convects vorticity from its trailing edge into the wake. The

shape of the pylon is modified from its original design, see Figure A.2, to accommodate the

pitch motion of the attached store. The v-shaped lower edge of the pylon allows a maximum
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+/- 5 degreestore pitch angle.
The store itself is an axisymmetric, open body of revolution.

from the trailing edgewhich producesa tube like wake.

Again, vorticity is shed

1.2 Structural Model

ABAQUS is a commercial finite element package that has been chosen for its powerful non-

linear capabilities. ABAQUS allows great freedom of model design, where anything from

geometric nonlinearities, i. e., large displacement theory, to structural non-linearities, e. g.,

freeplay, can be implemented. The model considered in this early stage of our research

employs a static non-linear solution process.

The data available to specify the structure are taken from [9]. The F16 wing is modeled

as a uniform plate using 4-noded reduced order general shell elements. The wing root

is connected rigidly to the rigid fuselage, which, in turn, is clamped along the plane of

symmetry. The symmetric mode frequencies are displayed in Table 1. Since further structural

Quantity

Wing Bending

GBU-8/B Pitch

GBU-8/B Yaw

Wing Torsion

True Frequency

4.07 Hz

5.35 Hz

8.12 Hz

-.- Sz

Model Frequency

4.05 Hz

5.04 Hz

8.01 Hz

13.04 Hz

Table 1: Wing Natural Frequency Data

properties of the wing could not be obtained, we defined a reasonable mass for the wing (2000

kg) and tuned the stiffness as to match the natural frequencies of the measurements in [9].

Mode shapes of the first four symmetric modes are depicted in Figure A.1. The store is

modeled as a rigid body with mass and inertia properties given in Table 2. The decoupler

Quantity

Mass

Ipitch

Iyaw

Iroll

Value

1027.0 kg

710.5 kg-m 2

710.5 kg-m 2

27.5 kg-m 2

Table 2: GBU-8/B Mass and Inertia Properties

pylon has a mass of 161 kg and was also modeled rigidly with its mass concentrated at the

area centroid. It is rigidly connected to the wing at the specified forward and aft mount

location. The pivot point is located forward from the forward mount and coincides with the

446



chord location of the C. G. of the store. The torsional spring stiffnesses for pitch and yaw

are 1.15 × 106 N. m/rad and 1.85 × 106 N. m/rad, respectively.

A full scale schematic of the semi-span configuration, examined here, can be taken from

Figure A.2. The structural mesh coincides with that of the aerodynamic model.

2 Results

The airspeed for this simulation is 193 m/s at an altitude of 3000 m with an angle of attack

of 4.0 degrees. The simulation starts by means of an impulsive start, during which the model

is accelerated from rest to its final speed in one time increment. Within 60 time increments

the solution converges to its steady state values. The development of the pressures on the

wing along the leading and trailing edge are depicted in Figure 1. The data clearly identifies

the presence of the pylon by a pronounced dip in pressure magnitudes in its vicinity. This

data is in good agreement with wind tunnel measurements published by [10].

The corresponding lift force on the wing at steady state is shown in Figure 2. The shaded

area is a measure of the total lift produced by all wing panels and the numbered lines display

lift force per panel along span-wise rows. Row one being the leading edge and row 10 the

trailing edge. Under above conditions the wing model produces a total lift of about 6.9 kN

per wing, enough to sustain stable cruise for an F16 with a maximum mass of almost 14
metric tons.

The store pressure coefficients are displayed in Figure 3 and are consistent with measure-

ments published by [12]. The term 'row' in Figure 3 refers to panel sections along the length

of the store. The store consists of twelve identical rows, where row one is adjacent to the

pylon on the side of the wing tip and row twelve is adjacent to the pylon facing toward the

fuselage. Near the trailing edge of the store the pressure plot exhibits numerical disturbances

that are related to the singularities in the Biot-Savaxt Law. The UVLM code employs em-

pirical tolerance margins to eliminate such effects. The effects shown in Figure 3 axe of little

consequence to the physics of the overall fluid flow.

Consulting the resultant force distributions over the length of the store, displayed in Figure

4, it is evident that the store is subjected to a significant drag force upstream from the pivot

point, which results in a small pitch up. It forces the store into a slightly bigger angle of

attack than the wing. We intend to add trailing edge fins to the store model, which will force

alignment of the store body with the flow. Lift and Side Forces are very small and have no

considerable effect on the store position.

Figure 5 displays the wake shed from the wing, pylon, and store after 60 time steps, which

corresponds to 0.1284 s or a flight distance of 24 m. Aerodynamic interference is clearly

noticeable in the wing wake, downstream along the location of the pylon; without a pylon

the wing wake would be a smooth sheet across the span. The effects of this interference on

the wing lift are, in this steady-state simulation, small, however. The model retains all wake

elements of the past 40 time steps in the sense of a first-in-last-out buffer. In other words,
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once every time step vorticities enter the wake from the trailing edge of the wing and stepwise

shift through the wake for a total of 40 time steps. After that time, they have traveled a

distance of about twice the average chord length and their influence on the airplane becomes

negligible.

In light of the non-dynamic character of the current analysis, this is not unexpected. Inter-

ference is presumed to effect the wing lift, if it occurs within one chord length of distance to

the trailing of the wing. In a dynamic environment, the motion of the wing, store, and pylon

is almost certain to induce larger interferences which, in return, will have a more pronounced

effect on the lift of the wing.

3 Conclusion

We have demonstrated a new aeroelastic modeling technique that consists of two independent

building blocks: ABAQUS and UVLM. Results from the static analysis are in good agreement

with experimental wind tunnel data and make the pursue of this method desirable. The

method possesses the versatility of modeling non-linear structural and aerodynamic effects

and offers a unique tool to examine fluid-structure interactions in the time domain. By

employing the unsteady-vortex-lattice method it is possible to include wake induced effects

in the aeroelastic analysis and account for aerodynamic interference phenomena. Already,

steady-state simulations reveal the onset of aerodynamic interference, even though it is

not significant as far as lift reduction is concerned. This is expected to change with the

introduction of a dynamic solution process.
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Figure 5: Wake Shedding of Wing/Pylon/Store Configuration
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A Appendix

F16 Symme_ic Mode 1 21 Mar 1999 I First Bendin_ at 4.05 Hz
[ 21 Marl999 [ Store Pitch at5.4 Hz

_16 S_4mrne_ic Mode U 21 Marl999 I Stole Ynw at 8.1 Hz F16 Symrnet_k: Mode I 21 MEt 1999 [ First Torsion at 13.4 Hz

Figure A.I: Symmetric Modes of Wing/Store/Pylon Configuration
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Sc_ l..20

Figure A.2: Structural Schematic of Wing/Store Configuration. The shaded pylon and wing

area depicts the shape used for the model representation.
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ABSTRACT

Flutter stability of movable control surfaces for aircraft stores is a rather complex topic because a large

variety of different store system conditions, aircraR configurations, store to aircra.R functional conditions,

aircrat_ maneuver and environmental conditions have to be covered by analysis as well as by ground and

flight tests. For this purpose, the most critical or most sensitive flutter parameters of the stores must be

known and covered by analysis and tests. For stores with only fixed aerodynamic stabilizers, the

verification of their flutter stability is usually quite simple because these surfaces are small and stiff. For

them, it is usually sufficient to include only their mass properties and attachment stiffnesses in the aircraft

flutter analysis, where the store is considered only by its rigid body motions Only in some cases it is

required to include also effects from rigid aerodynamic surfaces on the store. But as soon as a surface is

used to provide control forces, it usually needs to be larger and thus gets also more flexible. Additional

flexibility is added by the drive system, and, in some cases by a free floating attachment mode for captive

flight conditions. Detailed flutter investigations for the store itself are usually performed by the store

manufacturer. On this side however, possible impacts from the different types of aircrat_ are not known and

could also not be covered in their multitude during the development of a new store. For example, the

aerodynamic flow field in the vicinity of the aircraft, especially under the fuselage, can be completely

different from free flight conditions. This paper explains how to handle these aspects and depicts major

advantages and drawbacks of the state of the art analysis and testing techniques. The different specifications

for the development and certifications of aircraf_ and stores are also addressed briefly. Finally an approach

will be described how the flutter stability of control surfaces can be enhanced by means of formal

mathematical optimization methods.

Key)cords: store flutter, aeroelasticity, store-aircraft integration, unsteady aerodynamics, structural

optimization, flutter flight test, all-movable surface.

I.INTRODUCTION

In 1955, Holt Ashley gave in ref. _ the definition of flutter as ,,a dynamic instability occurring in an aircraft

in flight, at a speed called the flutter speed, where the elasticity of the structure plays an essential part in the

instability,,. This definition obviously also applies to any other kind of flying objects. Aircraft stores with

movable control surfaces include air-to-air and air-to-surface missiles, guided bombs, or other stand-off

weapons, with or without an own propulsion system. Depending on the specific kind of their mission,

* HARM PNU International Precision Navigation Upgrade Project Leader
e-mail: cponzi@aleniasystems.finmeccanica.it

** Head of Structural Dynamics and Aeroelasticity

e-mail: johannes.schweiger@m.dasa.de
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different approaches are used for their design and qualification. Some stores are designed for a one time use

only, others are carded almost constantly on the aircratt during training missions, which means that they

have to be certified for several hundred flying hours. For captive flight conditions, some of them meet the

aircraR flutter stability requirements quite easily because they are much faster in free flight than the

airplane, but for others the captive flight is more critical for flutter.

On some stores, the control surfaces must only be capable to guide the store to an unmoving target, on

others they must maximize aerodynamic forces and moments for fast, high-g maneuvers. For instance, the

Aspide multirole missile developed by Selenia, represented in Fig.1 mounted under the F-104ASA, is

characterized by rear body fixed wings and all movable center body wings.

Fig.l: Aspide missile mounted on F-104 ASA.

2.FLUTTER OF ALL-MOVABLE SURFACES

2.1. Global Flutter Sensitivity of All-movable Surfaces

Some aircra_ also use all-movable surfaces like fore- and tailplanes, sometimes also integrating symmetric

and antisymmetric control functions like in a taileron for pitch and roll. Because these configurations are all

very sensitive for flutter, they are treated in the applicable specifications for flutter separately from other

control surfaces which are attached to fixed surfaces. Their criticality is also known from ground launched

rockets as reported in ref. 2. The reason for this is the spigot axis, an intrinsic, limited structural boundary,

which determines the major part of the overall flexibility. Ref. 3 describes these characteristics for the

foreplane of a fighter aircraft. Although specifications for the structuxal integrity of airplanes and stores are

quite different, one thus recognizes that the aircraft and the missile communities share the same problems

with respect to flutter.

General design requirements for the structural integrity for guided missiles are treated in ref. _, depicting key

parameters for flutter sensitivity in chapter 3.8: ,,Aeroelastic Stability,,, which thoroughly treats aeroelastic

stability margins, aeroservoelastic stability, all movable control surface features, mass balance, rigidity of

balance weight attachment, design loads for balance weight attachments, rigidity and frequency of control

surfaces, freeplay, and hydraulic dampers.

2.2. Avoidance of Flutter during Store Separation

In addition to the general design rules mentioned above, in order to prevent flutter occurrence, the spigot

axis of most stores is restrained by a lock on the drive during captive flight. In the case of the Aspide

missile, this lock is deactivated by sufficient hydraulic pressure in the actuator circuit. The mechanical

drawing for this system is shown in Fig.2.
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q \ I,

Fig2: Fin lock mechanism in Aspide actuation system.

2.3. Avoidance of Flutter during Captive Flight

In addition to the rules for meeting store separation flutter free conditions, two philosophies can be adopted.

As for in the Aspide missile, the fins are locked to enhance the stability. Depending on the flight condition

of the aircraft, however, such a mechanical constraint may cause high static loads on the control surfaces

which lead to unfavorable effects on the overall store structure too. A free-floating control surface, which

represents the second solution, can dispel the static loads but may also be unruly with respect to flutter. If it

is possible or not to design a stable free-floating control surface, this strongly depends on the flow

conditions with respect to Math number and turbulence, as well as on missile systems design issues. The

later solution was adopted on the HARM missile, developed by Texas Instruments Incorporated.

2.4. Provisions for Zero Freeplay

Because of store body and fin flexibilities, fr_play of the control surface attachment can be the major

source for flutter for both captive and free flight. It can be assimilated to a mathematical perturbation in

angle ofaffack which may help the ins_abiity develop. In the Aspide missile, w_ng axis rotation is activated

by a differential hydraulic pressure torque as shown in Fig.3 which ensures zero freeplay.
hlrdra___c pressure p2

V... .--P-tlPI---R+-. .
_ "." _. /,. i . :. ; "T i

L-----]_:I_IL_a=][_C pressure _:_

Fig.3: Differential hydraulic pressure system for Aspide missile.
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Experience has shown that the common practice for removing freeplay encountered during flutter flight

tests consists in modifying either hardware or sothvare design. Hardware modifications are more expensive

at a late stage of design, whereas software modifications are less expensive but have the pitfall of reducing

the missile flight envelope.

3.GENERAL DIFFERENCES FOR FLUTTER OF AIRCRAFT AND MISSILES

Airplanes are in general designed for a long life time with many rake-offs and soft landings. Missiles or

other aircraft stores on the other hand are sometimes designed for a one time use only. Nevertheless, they

must meet the safety standards of the airplane during captive flight and store separation.

Major differences with respect to specifications and mutual interference effects are represented in Table I.
Some comments arise from this table which are addressed below.

ITEM STORE

General Specification for the Structure

Specification for Strength and Rigidity,

Vibration, Flutter, Divergence

General Design Criteria for Airborne

Stores, Suspension Equipment and

!Aircraft-Store Interface (Carriage Phase)

Specification for Certification

Vibration Environment

Aerodynamic Environment

AIRCRAFT
MIL-,_-8860

MIL-A-8870

MIL-A-8591H

MIL-A-8868 (Strength

and Rigidity. Data and

Reports)
rMIL-STD- 1763

Maneuvers, gusts,

buffet, engine noise,

gunfiring, landing

impacts

Perturbed by store

MIL-M-8856B

No specific specification

MIL-A-8591H

MIL-STD-1763

(AircmR/Store

Certification)

Same nature as for

aircraft but generally
!lower levels

Dispersion: strongly

perturbed by aircraft

Table 1: Flutter Design ,,Environment,, Differences for Aircraft and Stores

3.1. Specifications

General specifications for the structure of aircraR and missiles are MIL-A-88604 and MIU-A-8856B 5. The

latter also encompasses aeroelastic stability criteria which are specified for aircraft in a dedicated document

MIL-A-88706. For the captive carriage flight phase, interface design criteria have been developed, such as

MIL-A-8591HT,which in chapter 3.12 ,,Flutter and divergence,, mentions indeed both MIL-A-8860 and

MIL-A-8856B. As far as certification is concerned, the aircraft side is covered by MIL-A-8868 s, whereas

MIL-STD-1763A 9 covers the case of the integrated weapon.

3.2.Vibration Environment

The dynamic environment for the store in captive conditions is generally far worse than in free flight. Stores

are designed to stand captive carriage life in terms of vibration levels and frequencies referred to prescribed

flying times (refs. I°'l i). Table l lists the sources of vibration in captive carriage which contribute to limiting

service life and building up fatigue levels. It should be mentioned here that the vibration environment is

also important for flutter because of its impacts on freeplay.
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3.3. Aerodynamic Environment

The aerodynamic flow field for the free flying store undergoes heavy modifications when the store is in

captive conditions under the wing or fuselage, during separation, and in the vicinity of other stores, altering

from type to type of all parent aircraR to be considered. Such secondary flows, which also include

contributions from the change of aircraR configuration in flight (landing gear out, wing trailing edge down)

affect the loads onto the missile.

4. AIRCRAFT / STORE INTEGRATION RULES FOR FLUTTER CLEARANCE

4.1. General Requirements for Aircraft / Store Integration

A general statement of work which describes the activities for correctly integrating a store onto an aircraR

(however specialized to the case of the Aspide) is described in ref. 12. It consists of three phases represented

in Fig.4.

I

STORE/AIRCRAFT
INTERFACE DEFINITION

AND VALIDATION

STORE/AIRCRAFT
INTEGRATION

PROGRAM

I
Phase "B"

HARD/,NARE
SUPPLY

I
1

I P.a..,,o.. l
GROUND/IN FLIGHT TEST_

AND DEVELOPMENT !

Fig.4: Integration Program Breakdown Structure

4.2. Requirements for Aircraft / Store Structural Integration

For aircrafU store design, ref.4 states in chapter 3.11 ,,Missile and launch platform compatibility,, that ,,the

required analyses, tests, and documentation shall be consistent with the missile and launch platform(s)

interface and may include, but are not limited to the following areas:

• structural captive flight loads

• missile launch dynamic response loads

• missile dynamic response loads due to separation of an adjacent store

• stress and fatigue

• aircmR/missile aeroelastic stability

• field landing, taxiing, and take-off tests

• aircratV missile ground vibration modal tests

• aircraR vibration and aeroacoustic environments

• catapult and arrested landing tests

• aircraft/missile ground vibration modal tests

• aircm_edmissile flight flutter tests

• aircraft/missile flight loads tests.

For the airborne carried missile, the requirements of MIL-A-8591 shall be met and the aircmtVstores

certification procedures of MIL-STD- 1763 shall be followed,,. Therefore, refs. 4 7. 9 contain all requirements

to cover the store point of view.
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4.3. Requirements for Aircraft / Store Flutter Clearance

Requirements for flutter free store configurations are listed in table 2. They can be split into two groups:

* those general requirements that are specific for stores in free flight conditions,

• those additional requirements that are specific for the aircraft-store integration.

ITEM
I

Aeroelastic Stability

Structural Dynamics Tests (incl. flutter model wind

tunnel test)

Aeroelastic Stability Flight Tests

Aeroelastic Stability Program Report

Aeroelastic Stability Analysis Report

Flutter Model Wind Tunnel Test Report

IAeroelastic Stability, Vibration and Aeroaeoustic

_Flight Test Planning Report

Aeroelastic Stability Flight Test Letter Reports

Aeroelastic Instability, Vibration or Sonic Fatigue

Occurrence Report

Flutter and Divergence for Carriage Phase

Flutter Analysis
Aeroelastic Effect Tests

Flutter Test

REFERENCE
I

MIL-M-8856B para 3.8

MIL-M-8856B para 30.7 of Appendix A

'Laboratory and Ground Tests)

MIL-M-8856B para 30.2.3 of Appendix B

(Operational Tests)

MIL-M-g856B para 30.4.3 of Appendix C

(Analyses, Data and Reports)

MIL-M-8856B para 30.6 of Appendix C

MIL-M-8856B para 30.8.2 of Appendix C

MIL-M-8856B para 30.11.1 of Appendix C

MIL-M-g856B para 30.11.5.1 of Appendix C

MIL-M-8856B para 30.11.5.3 of Appendix C

,MIL-A-8591 para 3.12 mentions both MIL-
M-8856B and MIL-A-8870

MIL-STD- 1763 para 5.1.4.4.3.1

MIL-STD-1763 TEST 143 of Appendix I

Ground Test Procedures)

MIL-STD-1763 TEST 210A of Appendix II

(Hight Test Procedures)

Table 2: Flutter Requirements for Stores

From the aircraR point of view, flutter certification and qualification of combat aircraft is extensively

described in ref.13, which naturally mentions all of the items treated in table 2. Because the physics involved

in aircraft and store flutter is the same, the aircraR and missile communities are recommended to closely

cooperate, even with the risk of performing redundant activities, in order to optimize the complete weapon

system.

5. GEOMETRIC AND STRUCTURAL FLUTTER SENSITIVITY PARAMETERS

Besides the stiffness properties of the spigot and its drive and lock mechanisms, the freeplay of all-movable

surfaces must be kept within very tight tolerances. Ref. 3 describes the main geometric and structural flutter

sensitivity parameters for an all-movable fighter aircraft foreplane. Because of the similarities, these results

can also be applied to typical store control surfaces. The most important parameters are:

• overallplanform,leadingedge sweep angle,airfoilshape and thickness,which determinethe basic

unsteady aerodynamic characteristics,

• spigot axis sweep angle, which usually gives the highest flutter speed near 30 degrees,

• distances between spigot axis, center of gravity, and aerodynamic center,

• frequencies of fin attachment pitch and roll eigenmodes, and frequency separation between them
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• frequency increase of pitch mode with airspeed, which largely depends on the mass moment of inertia

about the pitch axis and on the mount of static mass unbalance,

• stiffness and eigenmodes of the fin itself.

For the last item, the designer is limited in the design space, because the static design of a missile fin

usually requires already a single piece casted or machined part from high strength/high modulus metal.

6. FLUTTER ANALYSIS

The basis of flutter analysis is formed by a proper structural analysis model. Today, Finite Element Methods

(FEM) are used almost exclusively for this purpose. These models must be suitable to describe the

structural dynamic characteristics of the complete system with high accuracy, because the quality of the

obtained unsteady aerodynamic forces directly depend on them.

For the external forces, which are produced by the vibrating structure, linear potential flow methods are

common practice to calculate aircraft and store aerodynamics, including interference effects between them.

The most used ingredients are potential flow approximations associated to finite element methods such as

the Doublet Lattice or Mach Box methods (refs. 13' 14,15,16,17.is). Linear transonic effects are treated with the

,,Transonic Small Perturbation Theory,, (ref.13) which is a linearized approximation of the non-linear

potential equations. For high supersonic Mach numbers, the Piston Theory 19'20 gives good linear

approximations.

These tools are usually sufficient for the prediction of the general flutter stability of a free flying object, but

unfortunately not for a store in turbulent flow conditions under an aircraft fuselage, and in the vicinity of

other stores.

One of the concerns the flutter engineer deals with is predicting how structural and aerodynamic non-

linearities affect the real behavior of the structure. Typical phenomena include the onset of stable limit cycle

oscillations beyond the linear flutter boundary or the existence of unstable limit cycles within the linear

flutter boundary. Ref. 21 describes neutrally stable limit cycles oscillations due to aerodynamic non
linearities whereas refs. 14"15,19,20,22,23 call for structural non linearities. Analytical methods for predicting

non linear flutter boundaries are time domain techniques (refs. 14"20,21.23), or, when structural lineadzation is

performed (for instance, using the harmonic balance method of refs. 15"22 , or the iterative procedure of

ref. is), frequency domain techniques apply.

Referring to structural non-linearities, the flutter speed ratio (ratio of non linear flutter speed to linear flutter

speed) depends on the so-called amplitude parameter (amount of freeplay divided by the amplitude of the

limit cycle). Thus one realizes that prescriptions on maximum freeplay represent an attempt of limiting
flutter onset. Structural non-linearities such as friction, freeplays, softening and hardening stiffnesses are

addressed in refs.14" t5. ,_2,23, 24 which depict and discuss mathematical models for formulating these effects

and show their influence on flutter predictions. Aerodynamic non-linearities are discussed in let'. 21 which

proposes a direct CFD direct solving of the Euler (inviscid) equations to account for high incidence angles.
Ref. t6 includes non linear augmentations due to fin leading and side edge flow separation. Ref. 25 discusses

in Chapter VI unsteady transonic aerodynamics and aeroelasticity. Ref. 26 suggests to maintain a linear

formulation relating pressure coefficients and angles of attack but accounts for local non-linear effect

matching.

7. FLIGHT FLUTTER TESTING

The aim of any flight flutter test is, according to ref) 3, to establish measured structural frequency and

damping trends in the critical flutter modes for the key configurations, to match to these measurements and
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thus establish the basis for a flight envelope expansion to the maximum envelope. Because of the complex

flow conditionsfora storein the vicinityof an aircraft,flightfluttertestsare stillthe only fullyreliable

method toverifystabilityof theweapon system.But unfortunatelytheycan onlydescribetheconditionsat

thedmc ofthetest:issueslikeincreasingfreeplaycan onlybe coveredby inspectionprocedures.

[n order to define the proper flight test instrumentation, the flutter characteristics of the store and the aircraft

must be known, and possible interference effects between them must carefully be evaluated.

As a successful example of a flutter cleared weapon, Fig.5 represents three different F-104ASA-store

configurations, including the Aspide missile. The figure also depicts typical flight test points and the

cleared flight envelopes for the three configuratiom.

: I I [ t ;
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I 4 as)zn OTm_ 0 i.._-s

i/ / /"_"
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Fig.S: Key configurations, typical flight test points, and flutter flight envelope for F-104ASA.

8. FLUTTER ANALYSIS AND OPTIMIZATION OF A TYPICAL CONTROL FIN

In aircraft design it has become common practice to use formal mathematical optimization methods for

structural design. These tools will not only provide the lightest possible stmcna_ automatically. It is even

more valuablethatthese designs willat the same time also fulfillallstatic,structuraldynamic, and

acroclastic constraints. For a sound structure with respect to static loading conditions, it is a not too difficult

taskfor an experiencedengineertofinda designwhich meets allrequirementswith respectto allowable

materialproperties,especially,ifa reliableanalysismodel (FEM) isavailable.This processcan easilybc

turnedintoan optimizationprocess,assuming thatthe lightestpossiblestructureisthe one where each

clement issizedto the minimum forat leastone loadingcondition.This kind of optimizationprocessis

based on so-calledoptimalitycriteria,which arc only indirectlysubstitutingthe real objective.For

aeroelasticconstraintshowever, it is usually much more difficultto find a design that meets the

requirementsat a stilltolerableweight.Itis almost impossibleeven for very experiencedengineersto

predict,how a designmust be changed inordertomeet aeroelasticrequirements.Only extensiveparametric

studieswilldo thisjob fairlywell.Inthe caseofflutter,therearealsono simpleoptimalitycriteriaathand

todo thisjob.And cvcn iftherewere any,itwould notbc possibletocombine them withotheroneslikefor

static strength because the criteria will not be the same.

In the case of flutter, usually only direct mathematical formulations of the problem will help. This means

that gradients for the stiffness and mass of all members of the structure are required with respect to the
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flutter speed. In addition to the structural stiffness distribution, concentrated balance masses at dedicated

positions within or even outside of the structure should be considered to obtain the best possible design

with respect to minimum weight.

To demonstrate the effectiveness of these tools, the Dasa multidisciplinary optimization program

LAGRANGE 27"2s'29"3°was applied to the FEM model in Fig. 6 for a typical all-movable control surface of

an aircraft store. It consists of plate elements, assuming that their thickness is already meeting minimum

allowable margins with respect to limit strength and fatigue from vibrations. For simplicity, only one point

on the beam extending forward along the fin root was considered for the Iocation of a variable balance

mass. All other sensitive design parameters, as described above, are fixed in this example. In this case, the

flutter speed can be increased as depicted in Fig. 7.

(.,_
I

Fig. 6: Finite Element model for a typical missile fin.
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Fig. 7: Optimization restdts with balance mass attached on a fin root extension.

If balance masses are attached directly to the main surface, a surprise like in Fig. 8 from ref.3_ can show up:

an increase in balance mass in the most favorable position will first lower the flutter speed before an

improvement starts. The reason for this is that the mass not only separates the involved flutter modes but
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also changes the involved mode shapes. This may have been the reason, why the flutter optimization

attempts by balance masses reported in ref. 3 for a foreplane were unsuccessful.

Ud

O
_d

Fig. 8: Effectiveness of a balance mass in the leading edge of an aircraft wing from ref.31.

In general, mass balance is more effective on freely movable surfaces, whereas additional stiffness helps
better on fixed surfaces.

9. CONCLUSIONS

Efforts are needed in flutter analysis for filling the gap between prediction and testing results. This can be

achieved in two steps. Firstly, more work is needed for gaining full confidence in structural and

aerodynamic tools, and improving unsteady aerodynamic methods for the complex flow conditions of a

store under an aircraft. The application of existing procedures for verification and certification represents

the second step since they recommend to strictly cover all aircrat_-store combinations by means of analysis,

testing and correlation of results.

For the integration of a new store, it is very important that the flutter mechanisms of the store itself be fully

known to the aircraft flutter engineer in order to set up a correct analysis model and to define the proper

ground and flight tests, including the suitable instrumentation. For the development or modification of the

store itself, the store manufacturer needs to know the possible impacts from the aircraft and the store

attachment system onto the flutter stability of the store and the complete weapon system.

Aeroservoelastic aspects are often the major potential instability of a missile, as reported in ref 32. But these

were not addressed in this paper, because they are not the primary concern for the integration of an aircrai_
store.

Modem structural optimization methods are offering efficient approaches for the enhancement of the flutter

stability of any flying system.

Although all aspects of the flutter stability of stores, aircraft, and the combined system are covered by the

applicable specifications, it may be desirable for the future to formalize a closer cooperation between store

and aircraft manufacturer and the contracting agency for the verification of flutter stability for the complete

weapon systems.
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Abstract

A recently developed methodology for aircraft struc-

tural design, based on nonlinear airloads, is extended

to include a modal-based optimization option, and

an optional different computational aerodynamics

code for loads analysis. Nonlinear maneuver loads

are evaluated by a newly developed computational

scheme that efficiently combines fluid dynamics it-

erations with iterations for elastic shape deforma-

tions and trim corrections. An efficient design pro-

cess is obtained by performing several optimization

runs during one maneuver loads analysis, where each

optimization is based on the interim non-converged

airloads. This method was recently presented with

structural optimization based on full-size, discrete-

coordinate analyses. To allow the application of the

method with large finite-element models and many

constraints, the discrete-coordinates optimization is

replaced by a modal-based optimization where a

set of low-frequency vibration modes of the baseline

structure is used to represent the structure through-

out the optimization, both for response analysis and

for sensitivity analysis. Comparative modal-based

and discrete-coordinate design cases are shown to

converge to the same optimal design variable val-

ues, even though they do not follow the same path.

The current study also extends the loads analysis by

replacing the flow computation with a newIy devel-

oped code that handles complex geometries by us-

ing the Chimera overset grid method. This method

greatly simplifies the process of grid gefieration and
therefore allows for realistic complex configurations

to be considered. Moreover, the method avoids

the problem of mesh discontinuities due to elastic

shape deformations and control surface deflections,
as the displacements of each component only af-
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School of Aerospace Engineering, Georgia Institute of Tech-

nology.
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Professor

fect the component's mesh. The method is demon-

strated with a wing-fuselage-elevator transport air-

craft model performing symmetric and antisymmet-
ric maneuvers at Mach 0.85.

Introduction

A main issue in structural design optimization is

the validity of the disciplinary analyses used, espe-

cially the structural analysis and the fluid dynamics

analysis. Evidence of this can be found in struc-

tural design studies based on very detailed finite el-
ement models. 1 In contrast, aerodynamic tools of

automated structural design systems (e.g. NAS-
TRAN 2 and ASTROS 3) are usually based on the

relatively simple linear potential flow models (e.g.
the Doublet-Lattice Method4). While linear aerody-

namics provides a good approximation of the aero-

dynamic loads in the subsonic flow regime, it may

be inadequate for the transonic regime where shock

waves significantly affect the flow field. In the more

advanced stages of structural design, the linear aero-

dynamic loads are normally replaced with more ac-

curate maneuver loads, calculated from databases

of loads from wind tunnel testing or from Computa-
tional Fluid Dynamics (CFD) analyses (e.g. LoveS).

These databases reflect the airloads acting on the

rigid configuration, and thus have to be corrected

to account for structural elasticity. The resulting

design process is therefore non-automatic. The pur-
pose of the current study is to integrate CFD-based

maneuver loads into a structural design optimization
scheme that accounts for stresses and static aeroe-

lastic considerations. The study focuses on a fully

automated integration of the load analysis and de-

sign steps, such that the optimization is based on

the computed, nonlinear, trimmed loads, and the

loads computation is automatically affected by the

structural changes during the design process.

Three major obstacles prohibit the use of CFD

schemes for structural design: First, regular CFD
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schemes are designed to provide the airloads on

a rigid configuration, in specific flight conditions.

They do not have the required mechanism to ac-
count for aircraft flexibility and required "algorithms

to trim the aircraft according to a prescribed ma-

neuver. Second, the high computational costs that

are associated with CFD analyses. This difficulty

is amplified in structural design applications where
the airloads have to be evaluated several times dur-

ing the design process. Third, aeroelastic consid-
erations require the evaluation of the derivatives of

the aerodynamic loads with respect to the structural

design variables. When using nonlinear CFD analy-
ses these derivatives are not available explicitly, and

their evaluations by finite-difference methods typi-

cally amounts to unreasonable computational costs.

Several studies published in recent years ad-

dress the evaluation of maneuver loads using CFD

schemes. Generally, these studies differ in the CFD

scheme used, the structural elastic model, the way

the two disciplines are integrated, and in the amount

of generality and complexity of the studied test
cases. The early works on computational static

aeroelasticity combined CFD analyses with simple

structural models and were applied to wing models

only. 8-s Tatum and Giles 9 addressed a complete

aircraft configuration using a full potential aero-

dynamic method (SIMP), together with an equiv-

aient plate structural model, and Vinh et al l° added

a trim routine to the CAP-TSD (Computational

Aeroelasticity Program - Transonic Small Distur-

bance) code. n Schuster et alp- addressed the prob-

lem of computing the flow field about flexible fighter

aircraft operating at extreme flight conditions, using

Euler/Navier-Stokes simulations for flows where the

small disturbance assumption is no longer valid. Gu-
ruswamy and co-authors 1_-1s performed aeroelastic

computations on a wing, a wing-fuselage configura-

tion, and complete aircraft configurations using an

Euler/Navier-Stokes aerodynamic method coupled
with finite-element structural models (ENSAERO).

Karpel et a119 introduced an efficient computa-

tional scheme for evaluating the aerodynamic ma-

neuver loads on flexible rockets in supersonic flight

conditions, based on an Euler solver. Computational

efficiency was obtained by applying relatively small

number of elastic shape updates and maneuver trim

corrections during the process of flow field conver-

gence. This scheme was expanded by Raveh et at2°

to realistic aircraft configurations whose trimmed
conditions were achieved through the use of var-

ied incidences, control surface deflections, and ro-
tation rates. A modal structural model was used

for interfacing the CFD and structural models and

for calculating elastic shape deformations and ap-

plying them to the CFD grid. A trim-corrections

algorithm was used for varying the incidences and

control-surface deflections for obtaining user-defined
maneuvers. This maneuver loads scheme serves also

in the current study.

Raveh and Karpe121 introduced a structural de-

sign methodology, based on nonlinear maneuver

loads. An affordable design process, in terms of the

required computational resources, was obtained by

a new approach to the integration of analysis and

optimization. Several structural optimization runs,

using ASTROS, were performed within one flow sim-

ulation where each optimization run is based on in-

terim, non-converged maneuver loads, 'such that the

flow simulation and the structural design are con-

verged simultaneously. The necessity of computing

the sensitivity of the airloads to structural design

changes was circumvented since in every optimiza-

tion run the airloads were applied as a fixed set of

loads. The number of iterations required for conver-

gence of the combined maneuver-optimization anal-

ysis was practically the same as that of regular CFD

analysis for a rigid-shape configuration.

The above approach was based on the assump-

tion that the computational time required for struc-

tural optimization is relatively small compared to

the time required for the CFD loads analysis. For

large finite element models, and for design studies

that involve many constraints, this assumption may

not be valid. The current study broadens the design

methodology of Ref. 21 to include the modal-based

option to structural optimization, as presented by

Karpel and co-authors. _2-26 The modal-based struc-

tural design is based on modal representation of the

structure in both the static and the dynamic disci-

plines. The structure is represented throughout the

optimization by a set of the low-frequency vibration

modes of the baseline structure. The disciplinary re-

sponses and their sensitivity derivatives to changes

in the design variables are calculated with respect
to the modal coordinates. The reduced-basis modal

representation decreased the computational cost of

typical design cases by one to two orders of magni-
tude?3, 26

The computation of maneuver loads in Refs. 20

and 21 is also generalized in this study to include a

different CFD scheme that is more suitable for ap-

plications that involve moving grids. Comparison of

maneuver loads analyses performed with the two dif-

ferent CFD schemes demonstrates the independence

of the algorithms with respect to the CFD method
used.
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Figure 1: Phases of the maneuver analysis

Maneuver Loads Analysis

Maneuver load analysis is comprised of three levels

of iterative processes. The inner-most level contains

the original CFD analysis for a rigid-shape configu-

ration which, if iterated until convergence, provides

the aerodynamic load distribution on the rigid air-

craft with prescribed aerodynamic incidences. The
next iterative level introduces the structural elastic-

ity which is combined with the aerodynamic loading

to obtain the corresponding deformed shape. This

level, if iterated until convergence, provides a load

distribution that agrees with the shape distribution
of the elastic aircraft. The outer-most level contains

the maneuver trim loop where the incidences and

control surface deflection angles are varied to obtain

the total aerodynamic forces and moments implied
by the maneuver. For computational efficiency, both
the elastic deformations and trim corrections are in-

troduced during the CFD solution convergence, as

described in Fig. 1.

The user prescribes a number of CFD iterations

after which elastic deformations are computed and
applied to the CFD grid, and a number of elastic

shape updates after which maneuver corrections are

performed. Typically, the number of CFD iterations
between two successive shape updates is 5 to 10 per-

cent of the number of iterations required for flow

field convergence. The shape and trim parameters

are not updated after each CFD iteration in order

to avoid excessive computations, and also in order

to avoid numerical instabilities in the flow computa-

tions. The main advantages of the integrated aeroe-

lastic computation scheme are that typical conver-

gence rates and computational costs are very similar

to those of a rigid-shape CFD run.

The core of the maneuver loads analysis is a CFD

code by Yaniv 27 (FA3DMB) for solving the Euler

equations. The code is based on Jameson et al multi-

stage method, 2s a finite volume method using cen-

tral differencing in space with explicit time-stepping.

A steady state solution to the time dependent Euler

equations is obtained by iterating in time using local

time steps and implicit residual smoothing.

Elastic shape deformations, denoted by {ug}, are
calculated based on the modal approach to static

aeroelasticity 29 which assumes that the elastic de-

formations of the aircraft structure, under exter-

nal loads, can be described as a linear combination

of a set of low-frequency elastic mode shapes leE],
namely,

= (1)

where {_E} is the generalized elastic displacement

vector. The static equilibrium equation in general-

ized coordinates is given by

[KE]{_z} = {Fz} (2)

where [KE] is the generalized stiffness matrix asso-

ciated with [¢E], and {FE} is the generalized aero-

dynamic force vector. Orthogonality of the rigid-

body and elastic modes with respect to the struc-

tural mass and stiffness matrices implies that [KE]

is diagonal and that inertia relief effects in the right
hand side of Eq. (2) are handled automatically. 3°

The generalized forces in Eq. (2) are obtained by

summing the aerodynamic forces according to

{RE} = [¢EA]T {FA(Ct, _E)} (3)

where {FA} is the aerodynamic force vector at the

aerodynamic surface grid points. The vector {FA}

depends on the aerodynamic trim parameters vec-

tor {a} and on the elastic shape {_}. The matrix

[¢_A] is the elastic modes matrix, expressed at the

aerodynamic interface grid points. The elastic mode

shapes were mapped from the finite elements nodes,

in which they are generated, onto the CFD interface
grid points, by a newly developed method, based on

the Infinite Plate Spline (IPS) by Harder and Des-
marais 31 and Beam Spline '_ methods. The interface

method is presented in details in Ref. 32.
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Figure 2: CFD Grid deformation
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The generalized elastic deformations are trans-

formed into displacements of the CFD interface

points and applied to the whole grid using a three

steps shearing method, following the method sug-

gested by Schuster et al. z2 First are moved the inter-

face points, according to the computed generalized

displacements by

{,,A}= (4)

Then, the surfaces ahead, behind, and beside the de-

formed interface surfaces are adjusted so that they

meet the displaced boundaries of the interface sur-

faces. Finally, internal grid points are redistributed,

such that each grid point along an 77grid line (nor-

mal to the surface) is moved in the same direction

as the first point (point j = 1) by the distance

uj =uz (1- S_) (5)

Figure 2 illustrates the above described steps of ap-

plying the elastic shape deformations to the CFD

grid.
Most structural design cases are based on aero-

dynamic loads of prescribed aircraft steady maneu-

vers defined by the rigid body accelerations {_'R}. In

symmetric maneuvers, the required aerodynamic lift

and moment coefficients, CL and CM, are related to

{_R} by

} =[MR]{&}qS CM_ r,q
(6)

where _ is the reference chord, S is the reference area,

and q is the dynamic pressure. The mass matrix

[MR] is associated with the rigid-body modes ma-

trix [Ca] where the first mode reflects a unit heave,

and the second reflects a unit pitch about the cen-

ter of gravity. Similar expressions can be written for

antisymmetric or asymmetric maneuvers.

The CFD run starts with an initial estimate of the

trim variables that are updated during the flow field

convergence according to the differences between the

required and the current values of the aerodynamic
coefficients. The current values are calculated dur-

ing the CFD solution by

' "= {FA} (7)

where [¢Ea] is the matrix of rigid body modes ex-
pressed in the CFD surface interface points. The

angle of attack a and elevator deflection J are cor-

rected in a symmetric maneuver by

where

{ d_OL } [ CLa eL6 _-1a_ = CMoe CM6e J x

(9)

and CLa, CMa, C'L_ and CM5 are the derivatives

of the aerodynamic coefficients with respect to the

symmetric trim variables. With nonlinear CFD

analysis, these derivatives are not available explic-

itly. They can be obtained from a computationally

expensive finite-difference analysis, but this is not

necessary because trim convergence is likely to occur

even with rough estimates of the derivatives, such
as the aerodynamic derivatives obtained from a lin-

ear analysis. Relaxation can be used to avoid large

overshoots of the correcting terms, as suggested in
Ref. 21.

The initial values of the aerodynamic trim param-

eters can be the maneuver trim parameters obtained
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from trim analysis conducted with linear aerody-

namics. However, _ shown in Ref. 21, the algorithm

is robust with respect to the initial choice of trim pa-

rameters. Therefore, initial trim parameters can be

almost arbitrarily set, e.g., zero angle of attack and
zero control-surface deflection.

Angular rates associated with the maneuver (e.g.

pitch rate in the symmetric maneuver case) are in-

troduced to the aerodynamic analysis by adding

terms to the fluid dynamics equations to account for

the fact that they are written in a rotating frame of

reference. The formulation of the flow equations in

a frame of reference rotating in a steady pitch rate

is presented in Ref. 32.

Following every trim iteration, the corrections to

the angle of attack and control-surface deflection an-

gle are introduced into the CFD solver. The change

in the angle of attack is introduced to the CFD solver

by changing the far field flow conditions.

Changing the control-surface deflection angle

amounts to a change in the configuration and there-

fore requires regeneration of the aerodynamic grid.

A difficulty that arises is the slope discontinuity that

is caused by the rigid rotation of the elevator rela-

tive to the fuselage, which in turn results in discon-

tinuities in the updated CFD mesh. To avoid grid

discontinuities, that are prohibited in the FA3DMB

code, elevator rotations are treated by an elevator
mode enhanced with a blended zone. The elevator

mode is an artificial mode that describes unit rigid

elevator rotation where the elevator is rigidly rotated
while the rest of the aircraft does not move. Discon-

tinuities in the mode shape are avoided by adding a

blended zone at the elevator root, ranging along a

few grid lines, that are moved only by a fraction of
the total elevator rotation. Figure 3 displays a part

of the elevator mode, where the blended zone ranges

along the first two elevator grid lines. The elevator

mode is used for CFD mesh update in the same way

as the elastic modes are used for CFD mesh updates
for elastic corrections.

This difficulty of grid discontinuities, related to

relative movements of parts of the aircraft, can be

avoided by using the Chimera overset grid method

instead of the multi-block, patched grid approach.

In this study a similar maneuver trim procedure was

introduced into a different Euler/Navier-Stokes code

that employs the Chimera overset grid method. 33

The EZNSS code, developed by the second author of
this paper, provides the choice between two implicit

algorithms, the Beam and Warming 34 algorithm or

the partially flux-vector splitting algorithm reported

by Steger et al. 35 Finite differences in the frame-

work of structural computational mesh are used in

Figure 3: Elevator mode

the discretization process. Grid generation and inter

grid connectivity are handled in the following man-

ner. A separate computational mesh is generated for

each component separately: An outer grid, or in the

case of an aircraft, the fuselage mesh, is extended

to fully include the meshes of the rest of the com-

ponents. The holes that the meshes introduce into
each other and the boundaries of the meshes and the

holes are handled using the Chimera approach. 33 In

this approach, intersecting components, such as the

fuselage and the wing, create overlapping holes and

therefore introduce complication in the intersection

region. A convenient mean to provide proper in-

terpolation near intersection regions is to generate
collar grids, s6 In the current work, an automatic

collar grid generation for intersecting geometries is

employed. The collar grid is algebraically gener-

ated based on the surfaces of the geometries and is

smoothed using an elliptic grid generation method.

The automatic collar grid generation is embedded
in the CFD code to facilitate control-surface deflec-

tions. Also embedded in the CFD code, are the hole

generation and the grid connectivity procedures.

The introduction of the maneuver trim procedure

into the EZNSS code allows to elegantly handle the

geometry changes and removes the problems of grid
discontinuities altogether. Furthermore, it demon-

strates that the algorithms for elastic shape updates

and trim corrections are independent of the CFD
code used.

Structural Design

As mentioned in the introduction, the main diffi-

culty in the integration of the maneuver loads com-

putations with structural optimization arises from
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the fact that the [oad analysis is computationally in-

tensive and therefore extremely expansive. Typical
time measures for the CFD and finite-element mod-

c.qs of this study are 7 hours for a maneuver load

analysis compared to 5 minutes for a structural op-

timization. Obviously it is impractical to perform a

complete maneuver load analysis for every optimiza-
tion step.

The new approach is based on the execution of

several optimization runs during the maneuver anal-
ysis, where each optimization is based on the non-

converged maneuver loads. The steps of the com-
bined load-optimization analysis are illustrated in

Fig. 4. The analysis starts with load computa-

tions for the baseline structure represented by its

modal model. The analysis pauses several times

during the flow field convergence for structural opti-

mization. At each pause the interim non-converged
loads are extracted and mapped onto the structural

nodes. Optimization is then performed using AS-
TROS, while introducing the nonlinear loads as a
virtually fixed set of loads. These loads do not

provide the exact required maneuver loads, because

they are extracted from a non-converged maneuver

analysis, and because of the weight change during
the optimization which changes the required maneu-

ver lift. Therefore, at each optimization step the

aircraft is trimmed using the linear rigid derivatives
of the aerodynamic coefficients. These trim correc-

tions are reduced to zero as the maneuver analysis

and structural optimization converge. The nonlin-

ear trimmed loads define some of the design cases in

a structural optimization task. Other design cases

in the same optimization task may include linear or

nonlinear loads, possibly from other disciplines, and

using different boundary conditions. A new modal
database for the new structure is created at the final-

analysis stage of the optimization. The new vibra-

tion frequencies and modes of the optimized struc-

ture are used as input to the CFD simulation which

then resumes by applying the airloads to the new
structure.

Trim corrections are computed within ASTROS,
based on the linear rigid aerodynamic derivatives,
according to

K.l K.. -qT_s" Ao u.

DT Mtt + M.t DT MI. + M.. 0 Aa

= FS. + M.ID+M.. {_'R} (10)

0 0

This equation is a modified version of the trim equa-
tion solved in ASTROS, 3r where K and M are the
discrete coordinate structural stiffness and mass ma-

trices respectively, and the subscripts r and l denote

start k trim loops 1

start m elastic loops

T

execul_ n

CFD iteralions

t ir

r compute gene_lizedI deform CFD mesh forces and displacements
i

F I
i

Ym

1

I

Ym

l- 1- n
Figure 4: Phases of the load analysis-structural op-
timization procedure
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the restrained and left-over degrees of freedom re-
spectively. The kinematic rigid-body displacement

matrix is denoted by D, q is the dynamic pressure,

[Tas] is the structure-to-aerodynamic model trans-

formation matrix, [Am] is the aerodynamic force co-

efficient matrix for a rigid aircraft, and {a} is the

aerodynamic trim parameters vector. {Fs} is the
nonlinear maneuver loads vector extracted from the

non-converged CFD simulation and mapped onto

the structural nodes. Equation 10 is solved for {An}
- the required corrections to the aerodynamic trim

parameters that would provide the maneuver rigid-
body accelerations {6"a}- The equation is also solved

for the l-set and r-set maneuver displacements, ul

and Ur respectively.

ASTROS is unique in its capability to simultane-

ously optimize for several design cases from differ-

ent disciplines with different boundary conditions.

When some of the design cases require the evaluation

of aerodynamic loads, the designer can choose either

to perform every aerodynamic load evaluation by a

separate CFD run, or to limit the use of CFD only

to design cases that would benefit the most from an
accurate evaluation of the aerodynamic loads. When

required, several CFD runs can be performed at the

same time in parallel, all paused at the same position

for elastic, trim, and optimization updates.

Modal-Based Optimization

The design approach presented in the previous sec-
tion was motivated by the run-time differences be-

tween an optimization run and a CFD analysis, that

were obtained for the models of this study. However,

it is realized that for larger finite-element models,

and for design studies that involve a large number of

constraints, the optimization run time may become

much larger, and it would be impractical to perform
several optimization runs within one design study.

The computational cost of the structural optimiza-

tion can be minimized, even for large finite:element

models, by replacing the discrete coordinates opti-

mization with a modal-based optimization.

The basic assumption behind the modal-based op-
timization is the same one that is used for maneu-

ver loads analysis. The displacements calculated

by Eq. (1) as a linear combination of a set of

low-frequency vibration modes are used for aerody-

namic loads calculations and for stress analysis. It

was previously shown 24-26 that, with approximately

20 to 40 modes taken into account, typical appli-

cation of the basic modal approach yields accurate

stress results when applied to the structure for which

the modes are calculated, but exhibit large errors

when applied to modified structures without chang-

ing the modal basis. To allow for an efficient, fixed-

basis, optimization process with analytic sensitiv-

ity expressions, the modal basis is complemented

with modal perturbations that are calculated once

for the baseline structure, and then used efficiently

throughout the optimization process. The revised
method presented several cost-effectiveness trade-

off options. The fastest option was the first-order,
the mode-displacement (MD) method, 24'22 which is

also the least accurate (but still adequate in cases of

moderate design changes). The summation-of-forces
(SOF) method, with expandable modal basis, 2s was

the most accurate option, but also the most time

consuming. Demonstrated with optimization cases

of 5 to 28 thousand degrees of freedom, the various

modal-based options demonstrated CPU speed-up
factors of 7 to 80.

As demonstrated below, the most simple modal-

based optimization option (lst-order MD option)

can be adequately used in the CFD-based optimiza-

tion process. With the modal data base updated

in each optimization run, the entire process should

converge to the optimal solution even though the

interim optimization runs might be somewhat inac-
curate.

Numerical Example

The Aircraft Model

A simple transport aircraft model which has all the

features necessary to verify the proposed method-

ology was created. The model aircraft includes a

fuselage, wing, aileron and all-movable tail. The

wing and elevator are similar in shape and struc-

ture - both are tapered and swept aft. The cross

section profiles of the wing and elevator are scaled

NACA0012 symmetric airfoils. The fuselage is ax-

isymmetric and is 20m long. Table 1 summarizes

the wing and tail geometrical dimensions.

wing tail

aspect ratio 10 6.4

half span 10m 4m
root chord 3m 1.5m

leading edge sweep angle 20 ° 20 °

taper ratio .333 .667

Table 1: Wing and tail geometrical dimensions

An H-type grid topology is used to generate the

computational mesh for the flow simulations. Taking
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advantage of the multi-zone capability of the CFD

code the grid is divided into 24 zones, each describ-

ing a logical component such as wing upper/lower

surface, fuselage, etc. The entire flow field contains
approximately 500,000 grid points. 21

A general view of the structural model is given in

Fig. 5. It has approximately 1000 degrees of free-

dom. The torsion boxes of the wing and tail, and

the aileron are modeled in detail with elements rep-

resenting skin, ribs, spars, spar caps and stringers.

Table 2 summarizes the weights of the half-aircraft

model. The wing weighs 384.6kg of which 284.6kg

is the weight of the torsion-box structure which is

subjected to optimization. A modal analysis is per-

formed to provide the 13 low-frequency vibration

modes, and the corresponding generalized stiffness

matrix required for the CFD maneuver analysis.

component weight [kg]

wing
aileron

elevator

fuselage: structure
fuel

engine

384.6

8.5

98.5
2700.0

20OO.0

700.0

total weight 5891.6

Table 2: Weight summary - half aircraft

%

of ll,000rn, which defines a pitch rate of _ = (n -

1)g/V = O.066[rad/sec], and which corresponds to
required lift and moment coefficients of CL = 0.84,

and CM = 0.

Figure 6 presents the convergence history of the

lift and moment coefficients, indicating their ap-

proach to the required values, while Fig. 7 shows the
convergence history of the residual for the maneuver

run case compared to that of a regular CFD run

of a rigid-shape configuration. These figures indi-
cate the good convergence properties of the scheme.
Reference 21 includes more details on the maneuver

loads analysis results, plus a demonstration of the

robustness of the scheme with respect to initial trim

parameters, and with respect to the aerodynamic
derivatives that are used to trim the aircraft.

1.5 r r-'-"---=__

1 . i

0.5

--0.$ :

o elastic deformations [• trimcorrctions
J

10 200 400 600 800 [000 1200 [400 [600 1800
Iterations

Figure 6: CL and CM convergence history
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i0 -l

_0="

'_ 10-J
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[ _ maneuver run case
.__ .[o o elastic deflections

o • trim corrections

Figure 5: Finite element model

Maneuver Loads Analysis

The followingdescriptionisofa 3g pull-upmaneuver

of the baselinestructure,at Mach 0.85 and height

0 200 400 5(]0 800 1000 1200 1400 [600 1800

[tcradoas

Figure 7: Residual decay history

To evaluate the effects of the nonlinear model-
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big on the loads distribution, a second maneuver

loads analysis was performed, using ASTROS and
its linear aerodynamic module, USSAERO. 3s Fig-

ure 8 presents the differential pressure coefficient

(ACp) distribution along this wing section, compar-

ing the linear and nonlinear values. It is notable
that the nonlinear and linear pressure distributions

significantly differ. The nonlinear chordwise center

of pressure is moved aft compared to the linear one,

causing a nose-down moment and an increased sec-

tional wash-out angle. The difference between the

computed linear and nonlinear ACp distributions,
which is attributed to the different aerodynamic the-

ories, has a significant effect on the structural opti-

mization, especially on the local structural gage dis-

tribution, as seen in the following section.

2.5

1.5

0.5

gt1_at'

10 10.5 11
X

Figure 8: Differential pressure coefficient distribu-

tion at 82% of the span

Structural Design

The wing torsion box is divided into five spanwise

segments. At each segment, the design variables

control the thicknesses of the wing skin, the ribs, the

front and rear spar webs, and the cross section area
of the front and rear spar-caps, and the stringers,

resulting in a total of 35 design variables. The tor-

sion box is optimized for minimum weight under the

following constraints:

(a) The Von-Mises stresses are constrained by 2/3 of
the material ultimate stress (280MPa) in a symmet-

ric 3g pull-up maneuver at Mach 0.85, h = 11,000m.

(b) (b) The aileron effectiveness is constrained by

rl_,,_ _> 30% in an antisymmetric roll maneuver at

Mach 0.85, h = ll,000m, where r/_n_ is the aeroe-
lastic aileron effectiveness.

The combined loads-optimization process was ex-

ecuted by replacing every third trim correction in a

maneuver load run by a structural optimization run.

Optimization runs were carried out using the two ap-

proaches: (a) with the standard discrete-coordinate
static aeroelastic module of ASTROS, modified to

accommodate the CFD loads as a fixed set of loads

to which a trim correction is added in every opti-

mization step, and (b) with the modal-based option

of ASTROS.

Figure 9 shows the history of convergence of the
lift and moment coefficients, showing both design

studies. In both cases the convergence of the aero-

dynamic coefficients is smooth. Until the first opti-

mization pause, both design studies follow the same

trend. Following the optimization, the plots slightly

differ, where it is noted that the modal-based opti-

mization has a bit larger fluctuations in the coeffi-
cient values.

%

o

.,-o_

o_- : .....

lJ , ] - - - mod=l optimization
I ]0 0 elastic ck)foc'mations

lO 0 miracormcdor=
',_ '4 oprimizarioa pauses

:ZOO 400 600 800 1000 1200 1400 1600 18DO

Iterations

Figure 9: CL, CM convergence history - optimization

case

Figure 10 shows the history of residual decay of
the combined maneuver-optimization run case. On

return from the optimization, when the airloads are

applied to the optimized structure that is less stiff,
new deformations are obtained. These shape change

increase the CFD error which then rapidly decays.

The phenomenon is further amplified in the modal-

based optimization due to the larger changes in the

design variable values in each optimization. The to-
tal number of iterations required for convergence of

the combined loads-optimization run is almost the

same as for a CFD run of a rigid-shape configuration

in the discrete optimization run case, and slightly

larger in the modal-based optimization run case.
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Figure 10: Residual decay history - optimization
case

To evaluate the effects of nonlinear loads on the

structural design, the same optimization run case

was performed by the standard ASTROS, with both

design cases based on linear aerodynamics. The

structural optimization in ASTROS was performed

by several gradient-based design steps, with each

step based on a single-variable optimization us-

ing structural approximation concepts. The refer-
ence optimization performed by ASTROS with lin-

ear aerodynamics converged in 7 optimization steps,

and the variable-structure weight was reduced from

284.6kg to 180.0kg. The same design task using
the non-linear maneuver loads lead to a variable-

structure weight of 173.9kg. Figure 11 shows the

history of weight reduction during the optimization,

comparing the reference ASTROS optimization with

the CFD-based optimizations (discrete-coordinates

and modal-based run cases). The same optimal

weight was obtained by the discrete-coordinate and
the modal-based optimization studies. It-is noted

that while in the discrete-coordinate optimization

the weight was monotonically reduced, in the modal-

based optimization a non-monotonic convergence
was observed.

The 4% difference between the optimal weight of

the linear and nonlinear wing designs is not small

considering the fact that both load distributions

yield the same design maneuvers, and that the op-

timization was not only controlled by the maneuver
stresses, but also by the demand for aileron effec-

tiveness, that was similarly analyzed in both design

cases using linear aerodynamics. A distinct effect of
the non-linear loads can be observed when examin-

ing the optimal values of the design variables of the

linear and nonlinear designs (Fig. 12). The nonlinear

design reflects the discrete optimization, similar val-

ues were obtained by the modal-based optimization.

While the skin converged to almost the same values

as for the linear and nonlinear designs, with small
differences near the tip due to the different wash-

outs, significant differences were found in the front

and rear spars. Material is moved in the CFD-based

optimization from the front spar to the rear spar be-

cause the centers of chordwise pressure distributions

are significantly aft of those of linear aerodynam-

ics,which also cause larger wing tip wash-out.

300

i,_ linear loads dilcletc

_alinear loads discrete

280 aortlinez Io_ls modal
return from CFD

260

tso ", ....... ...................;;.

160_30

Optimizatio,, Steps

_220

Figure 11: Wing structure weight history
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Figure 12: Optimal Design Variables
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Load Analysis with EZNSS

Th(, com[)ut_tt.ional mesh used for the EZNSS simu-
lations consisted of five zones, hlselage, wing, eleva-

tor, an([ two collar grids, one for the fuselage-wing

intcrs<yction and one for the fuselage-elevator inter-

s(,(:t+ion. Tile fuselage grid is based on an O-type

nmsh. For the wing, tail, and collar grids a C-H-

type grid topology is used. The entire flow field con-

sists of approximately 600,000 grid point. Figure 13

shows the model's complete geometry and the com-

putational mesh of the main components. Figure 14
shows a close-up of the fuselage-wing collar grid (ev-

ery other grid point in each direction is shown).

Figure 13: Overall view of the grid system

15 shows the convergence history of the lift and mo-
ment coefficients. Both coefficients converge to their

required values and the convergence history follows
a similar behavior to the FA3DMB simulations.

1.2 --_

0

-0.2_

-0.4

-0.6

-0'80 500 1000 1500 2000 _00 3000 3500 4000
Iterations

Figure 15: CL and CM convergence history (EZNSS)

Figure 16 shows the convergence history of the

simulation. Also shown in the figure is the conver-

gence history of a simulation of a rigid geometry. In
contrast to the FA3DMB simulations, each geome-

try change is associated with a rather large increase

of the residual. The large changes arise due to the
Chimera overset method. Every control-surface de-

flection or elastic correction may change grid points

in the fuselage mesh from being holes to become reg-

ular points. Since such points are far from conver-

gence, their inclusion in the simulation contributes

large values to the residuals. However, the number
of these points is limited and the implicit algorithm

has fast convergence qualities. Therefore, the resid-

ual values decrease quickly to the values of a rigid-

shape simulation.

Figure 17 shows the converged aerodynamic pres-
sure distribution on the aircraft surface in 3g pull-up
maneuver. A shock wave can be seen at approxi-

mately 85% of the chord on the upper wing surface.
Another shock exists on the lower surface of the el-

evator. A similar image for the flow obtained using
the FA3DMB code can be found in Ref. 21.

Figure 14: Close-up of the fuselage-wing collar grid

The results of the flow simulations using the

EZNSS are pr(,sented in figures 15, 16 and 17. Figure

Conclusions

The paper presented efficient methodology for struc-

tural design studies, with static aeroelastic consid-

erations, where the aerodynamic loads are provided

by a nonlinear CFD scheme. Structural optimiza-

tion was performed both with the regular discrete
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discrete-coordinates optimization must be replaced

by the modal-based optimization to maintain a com-

putationally affordable design process. Comparison

between the linear and nonlinear designs showed sig-

nificant differences in both total weight and local '

structural gage distribution, indicating that accu-

rate evaluation of the maneuver loads is important

even in the early design stages.

The maneuver analysis was examined using two

flow simulation schemes. The first is an explicit,

finite volume scheme using a multi-block patched

grid approach (FA3DMB), and the second is an im-

plicit, finite difference code using the Chimera over-

set grid method (EZNSS). The EZNSS code allows

to perform a rigid body like rotation and there-

fore the whole elevator is placed at the angle of

deflection providing higher efficiency. The maneu-

ver analysis exhibited good convergence properties,

for both codes, with different convergences patterns

due to the different grid methods, indicating that

the loads analysis methodology is independent of the

flow analysis used.

The study establishes a framework for structural

design, where some disciplines are based on nonlin-

ear aerodynamic modeling while others are based

on linear methods. The computational schemes

presented are specifically desi_gned for the study of

realistic aircraft configurations, based on detailed

finite-element modeling and involving several design

disciplines.

Figure 17: Surface pressure contours (EZNSS)

coordinate approach and with the modal-based op-

tion. Both cases demonstrated very good conver-

gence properties of both the aerodynamic loads and

the structural design, with the total number of CFD

iterations required for convergence being almost the

same as for a regular flow analysis for a rigidconfigu-

ration. It was demonstrated that the use of a simpli-

fied structural modeling does not significantly affect

the convergence of the combined loads-optimization

process. The discrete coordinate and modal-based

optimizations converged to the same optimal de-

signs, where in the modal-based optimization, a non-

monotonic convergence was observed, which in turn

slightly increased the number of iterations required

for convergence. For the relatively small finite-

element model of this study the use of the modal-

based optimization does not provide any computa-

tional cost reduction, however, for larger models, the
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Abstract

The system for coupled aero-structural analysis has been implemented on distributed-parallel

processing environment at Japan Atomic Energy Research Institute(JAERI). The system is

based on loose coupling of CFD(Computational Fluid Dynamics) and CSD(Computational

Structural Dynamics), solves fluid and structural equations concurrently exchanging each so-

lution data, and has been applied to the dynamic aeroelastics problem of a high aspect-ratio

swept-back wing. The analytical model of skin, spar, and rib construction of a wing box struc-

ture was created and used for aero-structural computations. Parallel and distributed approach

employed in the system is efficient for multidisciplinary applications.

Nomenclature

[C] Damping matrix. Q,/_, -_, _

{ f } External force. { u }, {/t }, {/i}

[K] Stiffness matrix.

[M] Mass matrix. _, rh

Generalized flux vectors.

Displacement ,velocity, and

acceleration vectors.

Generalized coordinator.

.Assistant Advisor, Parallel Processing Tools.

tSenior Scientist, Parallel Algorithms.

SResearcher,Materials Fabrication Lab.

§Head,Software Engineering Lab.

483



Introduction

During the last two decades, complexities of computational models for CFD/CSD analy-

sis have been largely increased with the computer progress. As shown in Table 1, simple

models like a lumped-mass and beam were used for aeroelastic design purpose on early

low performance computer[l]. The introduction of finite element method to CSD made

it possible to use more sophisticated models such as aerodynamic panel or contoured sur-

face. Most of the early researches are concerned with static analysis because of computer

performance issue, and dynamic analysis or flutter prediction is becoming a major interest

of current research efforts. Also CFD made a large progress in solving non-linear flow.

With these advanced software tools and computers, aerospace companies are exploring

multi-disciplinary engineering into aerospace research and development[2][3][4].

In our research, primary concern is the dynamic aeroelastic analysis using three-dimensional

structural model[5][6]. Parallel processing technologies have been largely introduced as a

key to efficient computations of fluid and structural codes. The thick line region in Table

1 designates our research coverage.

Table 1. Progress in Computational Aeroelastic Analysis

Compumion_ Model CFD CSD Analysis

rwo Dimeazi_al W'm

Lumped MissPm_el

mgBoz

ml

N_i_-$_

Turb_mt Flow

LES
DN$

Moment Coeffici_t

FEM _ An_i_

FIEM Dim_ Method

Static SU'ocmral An_ z'sis

=atom= Our ResearchInsemsts

Analytical Equations

Tight or loose coupling approach is applied to solve fluid-structural interaction problems.

In Tight Coupling(TC), fluid and structural equations are solved in one step. Ref.[7]

shows the approach of merging stiffness matrix for fluid and structure and solving it in

one equation. Ref.[8] shows other TC approach solving the Newton-Raphson equation

with the tangent vector which contains fluid and structural derivatives. The derivatives

are derived from fluid and structural equations. This approach allows to use different

forms of the equations.
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In Loose Coupling(LC), two different equations are solved in different steps. Usu-

ally the solver program for each equation is prepared and executed in different processes

through the interface for exchanging each solution data. We considered LC had the ad-

vantage in larger flexibility in integrating solver programs on distributed environment.

The equation(l) and (2) are the structural motion equation and Navier-Stokes fluid equa-

tion. CSD code solves the equation(l) by the finite element method and CFD code solves

the equation(2) by the finite difference method. They were integrated with the interface

program for moving grid generation and load transfer. (See Ref.[9] and [10] for more

details of the fluid-structure interface.) As described in later section, each program is

parallelized and executed on different computer.

[M] {ii) 4- [C] {/_} + [K] {u} -- {f} (1)

OQ+ ok or
0¢ av 0¢

= 0 (2)

Geometry Processing and Grid Generation

Geometry is a common data set of fluid and structural grid, and is automatically

generated from parametric data defining a wing configuration. The parameters define

the data relating to wing plan form, contour, and internal layout. Polygon data of the

external skin is formed by wing plan form and contour. Internal structures are generated

by simply connecting external polygon nodes or by cutting out external surface at rib

and spar locations. Figure 1 shows the examples of simple and complex generations of

a wing geometry. Finite element data with load and constraint conditions for CSD code

is generated by discretizing external surface into 20 Degrees-Of-Freedom shell elements.

Flowfield grid is also generated from external surface(Figure 2). Fluid and structure

interface is so accomplished as to contact at same grid positions in simple generation

scheme. In complex generation, grid point is completely different from the opposite.

Simple generation scheme makes easy to implement a conversion program of deformation

and pressure data. Deformation and pressure are converted into a movement data of fluid

grid and structural load, respectively. Although requiring interpolations of deformation

and pressure because of the dispositions of fluid and structural grids, complex generation

scheme has an advantage in configuring flowfield and structure.
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Figure 1. Simple and Complex Geometries of a Wing Box.

Figure 2. Fluid Grid Around Wing
Surface.

Figure 3. Moving Grid Generation.

(viewed from front and upward.)

Example Run on Parallel Computers

The system was applied to the transonic analysis of a high aspect-ratio wing on dis-

tributed parallel computers. Configuration of a wing was come from the preliminary

design of YXX transport aircraft[ill. A computational model have the following dimen-

sions of NAL (National Aerospace Laboratory) flutter tunnel model with 1/45 size of a
full scale aircraft.
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Wing span
Root chord length
Aspect ratio
Taper ratio
Thicknessratio
Kink location length
Sweptbackangle of 32% chord line

Airfoil

0.355m

0.125m

10

0.324

16%

0.106m

17 degree

Super critical

Before applying a computational model to the analysis, structural characteristics was

evaluated in comparison with the wind tunnel model. Figure 4 shows the result of a

modal analysis of a finite element model, showing 1st bending mode. Current model was'

tuned to have near frequency of a physical model only for 1st bending. It is our future

subject to improve the model accuracy by tuning higher frequencies.

Figure 4. Results of a Modal Analysis. (1st bending mode)

In the distributed parallel environment, 5 different types of parallel computers are

connected with 800 MBPS HIPPI switch and data communications between computers

are established by Stampi library. Stampi has so developed on the standard MPI(Message

Passing Interface) library as to add the capabilities for the communications between dif-

ferent types of parallel computers[12][13]. CFD and CSD codes on different computers

are executed simultaneously while each code is parallel-processed. Distributed parallel

processing has greatly reduced the required time for the coupling computations as shown

in Table 2. Table 2 presents a comparison of the execution times for the single and dis-

tributed processing. Single processing case shows CFD, Grid, and CSD prosecces are

executed on one computer, and distributed case shows CFD and Grid process are exe-

cuted on vector computers while CSD process is executed on scaler computer. The names

of the computers used are IBM RS6000/SP(scalar type), Hitachi SR220I(scalar type),

and Fujitsu VPP300(vector type). As shown in the table, CFD and Grid generator are

more efficient when they are executed on vector computer while CSD is more efficient on

scalar computer. The best performance has been observed when they are executed on the

distributed computers of VPP300 and SR2201.

487



Table 2. Comparison of the Execution Speed in sec. of Single and Distributed Processing

Type: The type of computer.

Number:The number of processor elements for each process.

Type RS6OOO/SP SR2201 VPP300 VPP300&SR2201

Number (45,1,2) (60,1,3) (8,1,6) (14,1,5)

CFD 5.139 2.501 1.645 1.315

Grid 1.183 0.956 0.071 0.071

CSD 0.991 1.139 1.795 0.793

Total 9.152 4.945 2.029 1.395

Conclusion

An approach for constructing a computational platform for multidisciplinary applications

of aero-structural simulations has been presented. The major advantages of distributed

parallel processing approach are:

- the availability of large CPU numbers and memory spaces.

- the selection of the best suited computers for the specific codes.

Current results have been obtained from the limited runs of the computers. Future works

include the flutter analysis by longer computations.
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Abstract

This paper reports application cases to benchmark and test the analysis capabilities of the seamless

integration of the Automated STRuctural Optimization System (ASTROS) with a unified steady/unsteady

aerodynamics module (ZAERO) called ASTROS*. With these unified aerodynamics, ASTROS* can now

perform analysis and design optimization for realistic wing-body configurations throughout the linear

subsonic/supersonic and the nonlinear transonic/hypersonic flight regimes. Three fully-built up wing/

fuselage models were used to validate ASTROS* and to show its applicability in all Mach number ranges.

Background and Introduction

ASTROS is a finite element based optimization code tailored to the preliminary design of aerospace

structures 1, but applicable to all industries involving light weight structural design coupled with other

disciplines. As such, it combines generality with the flexibility of multiple discipline integration. For the

design of aircraft, spacecraft, or missiles, ASTROS can save design effort and time, improve flight

performance, and reduce structural weight. Specifically, ASTROS was created to allow for the effective

multidisciplinary interaction between aerodynamics, structures, controls, and other modules. While an

enhancement of the aeroservoelastic capabilities in ASTROS is in progress, the seamless integration of a

unified aerodynamic module (ZAERO from ZONA Technology, Inc.) for all Mach numbers with ASTROS

has been completed 2. The resulting code is called ASTROS*. The new module ZAERO, which consists of

four steady/unsteady aerodynamic codes, improves the capabilities of ASTROS in several ways: it allows

for the modeling, analysis, and optimization of realistic wing-body configurations, and it adds the nonlinear

unsteady transonic/hypersonic flow regimes to the Math number ranges already supported in ASTROS to

jointly cover all flight regimes.

Here, the objective was to present benchmarking and applications test cases for the validation of

ASTROS* and to exercise some of its new capabilities in the unified flight regime of the subsonic-

transonic-supersonic and hypersonic speeds for various wing planforms. The capabilities of the ZAERO

module will be briefly described. Three fully built-up aircraft wing models will be introduced which were

used to perform the analyses for the benchmarking and testing of ASTROS*. They are the Generalized

Advanced Fighter (GAF) wing, the Drones for Aeroelastic and Structural Testing (DAST) wing, and the

ASTROS* Aeroelastic Wing (AAW). The metal GAF wing model was generated from MSC/NASTRAN

data, obtained from ZONA Technology, Inc. 3 The composite (orthotropic) DAST model was developed

from a supercritical wing model used to analyze a drone, flown in a flight test facility 4. The ASTROS* and

MSC/NASTRAN data for this model were generated from Engineering Analysis Language (EAL) data,

obtained from NASA Langley Research Center. The AAW model represents a derivative of a MSC/

NASTRAN model supplied by AFRL/WPAFB 5. For verification and validation, some of the ASTROS*

results were compared with those from MSC/NASTRAN and a minimum state flutter solution method.
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ZAERO: UAIC Based Aerodynamic Module

The ZAERO module consists of four maj or steady/unsteady aerodynamic codes that jointly cover

the complete flyable Mach number range. Together they enhance the purely subsonic and supersonic

capabilities for lifting surface type configurations presently available in ASTROS and MSC/NASTRAN.

Thus, the ZAERO module serves as a unified aerodynamic tool for general wing-body configurations

throughout all Mach numbers using a AIC (Aerodynamic Influence Coefficient) approach 6. In detail, the

different codes have the following capabilities:

- ZONA6: Subsonic steady/unsteady aerodynamics for arbitrary wing-body configurations

with or without external stores including body wake effects

- ZTAIC: Unsteady transonic AIC method using externally provided steady pressure input

- ZONA 7: Supersonic steady/unsteady aerodynamics for arbitrary wing-body configurations
with or without external stores

- ZONA 7U: Unified supersonic and hypersonic steady/unsteady aerodynamics for arbitrary

wing-body configurations with or without external stores.

Development of Benchmarking Models GAF, DAST, and AAW

In order to benchmark and test the aerodynamic, structural, and aeroelastic analysis as well as

structural design optimization capabilities in ASTROS* for multiple disciplines, all three wing models were

used. They consisted of fuUy built-up finite element models with skins, spars, and ribs. In the DAST EAL

model, the spaces between the fibs of the original structure were rather large; therefore, many local modes

were experienced in the normal modes analysis, causing problems in the flutter analyses. To prevent these

local vibration modes, more ribs were added to the original structure. Also, the skins of the DAST wing

consisted of composite material. The fuselage was included in the AAW model, and its structural and

aerodynamic effects were considered. The GAF and AAW wing models represented fighter wings and were

a good choice to test ZONA6 and ZTAIC at the transonic Mach number M = 0.85. Since the DAST model

had a supercritical wing thicker than the other two wings, it was already transonic at Mach M = 0.8 and

was used to test ZONA6 and ZTAIC at this Math number. The GAF and AAW wing models were also

utilized to test ZONA7 in the supersonic regime; however, the DAST wing was too thick for supersonic

flow. Although none of the three models represented hypersonic wings, ZONA7U was tested on the GAF

and AAW models at M = 3.0, in the high supersonic/low hypersonic regime.

Application Cases

Structural, aerodynamic, and aeroelastic analyses were performed for the three aircraft wing models

(Table 1). For the steady Navier-Stokes flow calculations in the transonic regime, required for the

calculation of the transonic aerodynamic influence coefficients in ZAERO, the CFD code ENSAERO 7was

used on a CRAY supercomputer. Then, static structural, normal modes, and flutter analyses were

performed for the GAF wing and normal modes, static aeroelastic, and flutter analyses for the DAST and

AAW wings. All ASTROS* and MSC/NASTRAN cases were run on SUN SPARC Ultra workstations.
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Table 1. Summary of Aircraft Wing Model Analyses

GAF Model DAST Model AAW_Model

• Statics

•Normal Modes

• Flutter

- With ZONA6

- With ZTAIC

- With ZONA7

- With ZONA7U

• Static Aeroelasticity
- With ZONA6

- With ZTAIC

• Normal Modes

• Flutter

- With ZONA6

- With ZTAIC

• Static Aeroelasticity
- With ZONA6

- With ZTAIC

- With ZONA7

- With ZONA7U

•Normal Modes

• Flutter

- With ZONA6

- With ZTAIC

- With ZONA7

- With ZONA7U

The GAF Wing Model:

Structural ConJ_guration, Static Analysis, and Normal Modes Analysis: The GAF wing is composed of

spars, ribs, and skins. A leading edge flap and a trailing edge control surface are attached to the main wing

box. The wing is cantilevered at the root. The FE model is shown in Figure 1a. Spars, ribs, and skins were

modeled by QUAD4 elements, and CELS2 elements were used to connect the control surface to the wing

box. The model had 288 nodal points and a total of 530 elements• A static analysis was performed for

applied distributed loads• The wing showed a tip displacement under load of 27.068 in. The maximum

principal stress was 64,000 psi. The natural frequencies (see Table 2), modes, and generalized stiffness and
mass were also calculated. The modes were later used in the flutter calculations.

Aerodynamic Analysis: The steady aerodynamic pressure coefficients as input for ZTAIC were calculated

on a CRAY supercomputer using ENSAERO, first in Euler flow, then in Navier-Stokes flow, with a

Reynolds number of 10,000,000 and with spanwise and normal viscous terms. For turbulence, the Baldwin-

Lomax turbulence model was used and, for vortex flow correction, Degani-Schiff modeling• Iteration

indices were less than 1.0E-09 throughout, with 500 Euler flow iterations and at least another 500 Navier-

Stokes flow iterations. There were 151,44, and 34 grid points in the x-, y-, and z-directions, respectively.

The number of grid points on the wing surfaces was 61 by 34. Total CPU time for these calculations was

about 2 hours per case, which consisted ofM = 0.85 and M = 0•90 with angles of attack a = 0.0 ° and

ct = 5.0 °. The higher transonic cases required more iterations to counter slower convergence rates.

Table 2. Aircraft Wing Model Free Vibration Analyses
i

Mode Freq.(Hz.)- Model Freq.(Hz.)- DASTModel
1 1.02243E+01 0.00000E+00

2 3.09708E+01 0.00000E+00

3 3.58906E+01 I. 12884E+01

4 4.97371E+01 4.86654E+01

5 5.80406E+01 5.57209E+01

6 6.55094E+01 1.03325E+02

7 7.60945E+01 1.30824E+02

8 8.47504E+01 1.47822E+02

Freq. (Hz.) - AAW Model
0.00000E+00

0.00000E+00

5.47166E+00

9.28638E+00

1.27116E+0!

1.36666E+01

1.57567E+01

1.58556E+01
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Flutter Analysis: Flutter analyses were performed by the k-method in ASTROS*, the p-k method in

MSC/NASTRAN, and by the root-locus method. Mach numbers were M = 0.85 (using ZONA6 and

ZTAIC in ASTROS*), M = 1.15 (using ZONAT), and M = 3.0 (using ZONA7U). A comparison of the

results is given in Table 3. The generalized aerodynamic loads as calculated in ASTROS* were utilized

in the root-locus method. The generalized unsteady aerodynamic force coefficients Qlj at M = 0.85,

calculated by ZTAIC, and their approximations by the minimum state method s are shown in Fig. 2. The

associated V-g and root-locus plots for this case are given in Figures 3 and 4, respectively.

The DAST Wing Model:

Structural Configuration andNormalModesAnalysis: The DAST model was a wing model but had free

boundary conditions and could maneuver like a full airplane (Fig. 1b). It was a spar-fib-skin wing made

from composite material, specifically, from AS/3501 graphite epoxy with the following lamina stiffnesses:

E I = 1.8E+6 psi, E2 = 0.86 E+6 psi, vl2 = 0.3, G12 = GI_ = GEz = 0.46 E+6 psi, p = 0.057 Ibs/in 3. The

strenghts were: SL<+)= 210,000 psi, SL<) = 170,000 psi, Sr<÷)= 7,000 psi, Sr _') = 36,000 psi, SLr = 9,000

psi. The skins were modeled by QUAD4 and TRIA3 plate elements composed of four plies. The

asymmetric stacking sequence of these plies was assumed to be [90,_45,0], rather than the simple

orthotropic orientations in the EAL model. The spars and ribs also utilized QUAD4 elements. The spar caps

were modeled by BAR elements. The total number of nodal points was 428, with a total of 1680 elements.

Fuselage weight was added to the model. The model had two trailing edge control surfaces. Again, the

natural frequencies (see Table 2), modes, and generalized stiffness and mass were calculated with the first

two frequencies corresponding to the rigid body modes plunge and pitch. To calculate eigenvalues, the

Inverse Power method was used. Again, the modes were later used in the flutter calculations.

Aerodynamic Analysis: The aerodynamic analysis of the wing was performed by the CFD code

ENSAERO as for the GAF wing model. It was shown that the DAST model was just entering the transonic

regime at Math M = 0.7 for zero degree angle of attack, and was fully transonic at Mach M = 0.8. The

strength of the shock in Euler flow was larger than that in Navier-Stokes flow.

Steady Aeroelastic Analysis: Since the trailing edge was composed of two straight lines, two CAERO7

Table 3. Flutter Analysis Results of GAF Model

Math

0.85

1.15

3.0

Method

ZONA6

Flutter Speed

( in/sec )
17,336

Flutter Frequency

14.3

Remarks

ZTAIC 18,172 18.1

MSC/NASTRAN 15,800 16.7

Root-locus (ZONA6) 15,888 17.3

Root-locus (ZTAIC) 16,581 15.6

ZONA7 20,776 19.8

MSC/NASTRAN 14,500 0.0 Divergence

14,170 0.0

31,743 21.1

MSC/NASTRAN 36,100 22.0

Root-locus (ZONA7)

ZONA7U

331536 21.3Root-locus (ZONA7U)

Divergence
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entries were chosen, one with 15 by 7 panels for the inboard wing section, the other with 15 by 10 panels

for the outboard wing section, for a total of 255 panels. Symmetric static aeroelastic analysis was

performed and the trim parameters angle of attack and control surface deflection angle were calculated

under a 10g pull-up condition with zero pitching rate and zero pitching acceleration at Mach M = 0.80.

The inboard control surface was assumed to be fixed. Grid point displacements and ply stresses in the plate

elements were computed at the trim condition. ZONA6 was used for the aerodynamic calculations. The

trim parameters for the rigid and flexible structures at this trim condition are given in Table 4. The

calculated angle of attack, 4.06 ° for the rigid case, was reasonable and a large deflection angle, -45.98 °,

of the control surface was necessary to obtain trim since no horizontal tail was included. The vertical

displacement at the wing tip was 5.506 in. The required CPU time was 9 minutes 25.0 seconds

Flutter Analysis: Flutter analyses were performed by the k-method in ASTROS* and by the root-locus

method for a Math number ofM = 0.80 using ZONA6 and ZTAIC. The results from ASTROS* and the

root-locus method were compared and are shown in Table 5. The generalized unsteady aerodynamic loads

calculated in ASTROS* were also used in the root-locus method. The V-g plot for the flutter results by

ZONA6 in ASTROS* is shown in Fig. 5. The required CPU time by the k-method and ZONA6 in

ASTROS* was 13 minutes 13.5 seconds and that by the k-method and ZTAIC in ASTROS* 5 hours

22 minutes 31.4 seconds, respectively.

The hA W Model:

Structural Configuration and Normal Modes Analysis: The FEM representation of the skins, spars,

and ribs consisted of QUAD4 plate elements while those of the horizontal tail, vertical tail, and fuselage

were BAR elements. The structural FEM configuration is shown in Fig. lc. There were nearly 800 grid

points and over 2000 elements in the model. The natural frequencies (see Table 2), associated normal

modes, and generalized stiffness and mass matrices were calculated as for the GAF model. The Inverse

Power method was used. The translation component in the axial direction of the fuselage was fixed. The

first two modes were rigid body modes, vertical translation and pitching rotation. These data were used

in the subsequent flutter calculations. The required CPU time was 6 minutes 2.7 seconds.

Aerodynamic Analysis: Aerodynamic analyses of the main wing of the AAW model were performed

using the CFD code ENSAERO as for the GAF and DAST wing models.

Static Aeroelastic Analysis: The aerodynamic panels of the wing, the horizontal tail, and the vertical tail

Table 4. Trim Parameters of DAST Model: 10g Pull-up Maneuver, M= 0.8, by ZONA6 of ASTROS*

DEFINITION LABEL FLEXIBLE RIGID

LOAD FACTOR

PITCH ACCELERATION

ANGLE OF ATTACK

CONTROL SURFACE

CONTROL SURFACE

PITCH RATE
THICKNESS/CAMBER

"NZ" 3.86399E+03 3.86399E+03 (Input)

"QACCEL" 0.00000E+00 0.00000E+00 rad/s 2 (Input)

"ALPHA" 4.03914E+00 4.06115E+00 deg (Computed)

"AILI" 0.00000E+00 0.00000E+00 deg (Input)

"AIL2" -4.50767E+01 -4.59823E+01 deg (Computed)

"QRATE" 0.00000E+00 0.00000E+00 deg/s (Input)

"THKCAM" 1.00000E+00 1.00000E+00 (Input)
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Table 5. Flutter Analysis Results of DAST Model at M = 0.80

Method

k-method (ZONA6)

Flutter Speed (in/sec)

Root-locus (ZTAIC)

14,357.3

Flutter Frequency (Hz)
II

48.67

12_892.0

Root-locus (ZOZA6) 13.489.5 36.30

k-method (ZTAIC) 11,800.0 56.01

49.30

Table 6. Trim Parameters of AAW Model: 7g Pull-up Manuever, M = 0.85, by ZONA6 of ASTROS*

DEFINITION LABEL FLEXIBLE P_IGID '

LOAD FACTOR

PITCH ACCELERATION

ANGLE OF ATTACK

CONTROL SURFACE

PITCH RATE

THICKNESS/CAMBER

"NZ " 2.70479E+03 2.7047E+03 (Input)

"QACCEL" 0.00000E+00 0.0000E+00 rad/s _ (Input)

"ALPHA" 6.26928E+00 6.9735E+00 deg (Computed)

"STBLTR" 2.34365E+00 2.510BE+00 deg (Computed)

"QRATE" 0.00000E+00 0.0000E+00 deg/s (Input)

"TI-IKCAM" 1.00000E+00 1.0000E+00 (Input)

Table 7. Trim Parameters of AAW Model: 7g Pull-up Maneuver, M = 3.0, by ZONA7U of ASTROS*

DEFINITION LABEL FLEXIBLE RIGID

LOAD FACTOR

PITCH ACCELERATION

ANGLE OF ATTACK

CONTROL SURFACE

PITCH RATE

THICKNESS/CAMBER

"NZ" 2.70479E+03 2.7047E+03 (Input)

"QACCEL" 0.00000E+00 0.0000E+00 rad/s 2 (Input)

"ALPHA" 7.09505E+00 2.1903E+00 deg (Computed)

"STBLTR" -2.32463E+00 2.8218E+00 deg (Computed)

"QRATE" 0.00000E+00 0.0000E+00 deg/s (Input)

"TI-IKCAM" 1.00000E+OO 1.0000E+O0 (InPut)

were modeled using CAERO7 cards. Horizontal and vertical panels were generated separately for the

fuselage, using over 40 CAERO7 cards, as well. Over 700 boxes and 1100 aerodynamic grid points were

required to calculate the aerodynamic loads for the AAW model. Symmetric static aeroelastic analysis was

performed and the trim parameters angle of attack and horizontal control surface deflection angle were

calculated under a 7g pull-up trim condition with zero pitching rate and zero pitching acceleration at

velocities ranging from transonic to low hypersonic. The main wing flaps were assumed to be fixed. Grid

point displacements and element stresses were calculated at this trim condition. ZONA6, ZTAIC, ZONA7,

and ZONA7U were used to obtain the aerodynamics at Mach numbers M = 0.85, 0.85, 1.15, and 3.0,

respectively. The calculated trim parameters for both the rigid and flexible structure at this trim condition

are shown in Tables 6 and 7 for M = 0.85 by ZONA6 and M = 3.0 by ZONA7U, respectively. The required

CPU times were 1 hour 10 minutes 6.6 seconds, 6 hours 4 minutes 10.6 seconds, 47 minutes 47.5 seconds,

and 49 minutes 59.2 seconds for ZONA7, ZTAIC, ZONA7, and ZONA7U, respectively.

Flutter Analysis: Flutter analyses were performed by the k-method in ASTROS* and by the root-locus

method for three aerodynamic regimes: transonic (M = 0.85 by ZONA6 and ZTAIC), low supersonic (M

= 1.15 by ZONA7), and high supersonic/low hypersonic (M = 3.0 by ZONA7U). The comparable results

from ASTROS* and the root-locus method are listed in Table 8. The generalized unsteady aerodynamic

loads from ASTROS* were used in the root-locus method. The V-g plots for the flutter speed

determination at M = 0.85 by ZONA6 and at M = 3.0 by ZONA7U are given in Figures 6 and 7.
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Table 8. Flutter Analysis Results of AAW Model

Mach

Number

0.85

1.15

3.0

Aerodynamic
Module

Method Flutter Speed

(i  ec)
11,281.4ZONA6 k-method

Root-locus 10,978.9 14.77

ZTAIC k-method 10,713.7 14.96

Root-locus 10,537.6 14.73

ZONA7 k-method 11,087.9 14.90

Root-locus 11,308.3 14.93

ZONATU k-metho d 58,768.0 8.55

Root-locus No Flutter

Flutter Frequency

(Hz)
14.80

There was no flutter until 50,000 in/sec by the root-locus method and ZONA7U. The required ASTROS*

CPU times were 56 minutes 41.7 seconds, 6 hours 59 minutes 52.9 seconds, 39 minutes 57.2 seconds, and

29 minutes 44.4 seconds for ZONA6, ZTAIC, ZONA7, and ZONA7U, respectively.

Conclusions

The benchmarking and testing of the aeroelastic analysis capabilities in the recently modified code

ASTROS* throughout the unified subsonic to hypersonic flow regime was the main characteristic of the

present research. Three wing models, GAF, DAST, and AAW, were selected and modified as required.

ASTROS* was then applied to the models, and the accuracy, ease of use, and applicability of the code to

reasonably sized problems was tested. Some of the ASTROS* results were compared to MSC/NASTRAN

results, especially in flutter analysis, where the ZAERO results in ASTROS* (k-method) were compared

to results from MSC/NASTRAN (p-k-method) and the root-locus method. Acceptable results were

obtained for the three models for most of the cases. Some anomalies occurred and need to be investigated

further: the results for ZTAIC on the GAF wing showed a higher flutter speed than linear theory; the k-

method, p-k method, and root-locus flutter results did not always agree well, especially for the GAF wing,

with k-method results generally higher; the results for M = 3.0 are probably questionable as the wings did

not represent high supersonic/low hypersonic configurations; the DAST model had to be more heavily

modified to obtain acceptable results, most likely due to problems encountered in the EAL/ASTROS*

conversion. The best intuitive results were obtained for the DAST and AAW wing models. Therefore, these

wing models seem to represent the best choice for use as benchmarks. Additional cases need to be rtm:

for non-symmetric configurations in steady aeroelasticity and flutter; to evaluate other failure modes such

as buckling; with high supersonic/low hypersonic models to evaluate ZONA7U; with stores and full bodies

to evaluate these respective ZAERO capabilities; modeling a control system with the newly incorporated

aeroservoelastic facilities in ASTROS*.
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Aeroelastic Behavior of High-Aspect-Ratio Wings
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This paper presents the results of nonlinear aeroelastic analysis of a representative

large-aspect-ratio wing. The effects of steady-state lift and drag are characterized

and quantified. Certain simplifications for obtaining nonlinear results are given and

a way of avoiding deleterious nonlinear effects is presented.

Introduction

There has been a growing interest in High Altitude, Long Endurance (HALE) aircraft in recent

years. These aircraft are being considered for unmanned reconnaissance mission, long term surveillance,

environmental sensing and also for communications relay. Such aircraft have slender wings (aspect ratio

of the order of 35), which are highly flexible. Due to the high flexibility and large aspect ratios, large

deflections can result, reaching about 25% of wing semispan. Linear theory fails to accurately analyze

such deformation and the changes in the stiffness and dynamic characteristics of the wing (e.g., natural

frequencies) accompanying such deformation. Linear theory thus fails to give accurate estimates of the

speeds at which aeroelastic instabilities occur.

Aeroelastic characteristics of highly flexible aircraft has been investigated by van Schoor and yon

Flotow. 1 The complete aircraft was modeled using a few modes of vibration, including rigid-body modes.

Linear aeroelastic and flight dynamic analysis results for a HALE aircraft are presented by Pendaries? The

results highlight the effects of wing flexibility on the aeroelastic characteristics of the wing and aircraft

flight dynamic characteristics. Both analyses, though focused on the aeroelastic characteristics of high-

aspect-ratio wings, are linear and do not take into account the geometrical fionlinearities induced by large
deflections.

As will be shown in this paper, it is of primary importance to analyze the structure using accurate

geometrically nonlinear structural models. It is necessary here to reiterate that such analyses are not only

required in extreme situations but are even necessary under normal flight conditions. The wings of HALE
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aircraft are highly curved during flight. Curved beams behave very differently from straight wings. The

static, dynamic and aeroelastic characteristics of curved wings are affected by curvature-induced changes

in the effective bending-torsion coupling and the direction of aerodynamic loading. It is necessary to

take these effects into account when analyzing a flexible and curved high-aspect-ratio wing, regardless of
whether the wing is pre-curved or curved due to structural deformation.

Present Model

The present study analyzes a high-aspect-ratio wing as a beam. A complete nonlinear mixed variational

formulation is used for the structural dynamics of the wing. 3 Two-dimensional (2-D) unsteady finite state

aerodynamics theory is used for the loading. 2-D aerodynamics is an ideal approximation for such large

aspect ratios. The formulation and analysis is given in detail in Ref. 4.

By using simple shape functions, the mixed variational formulation leads to a set of coupled nonlinear

differential equations in terms of the element displacements (u) and rotations (0), nodal internal forces (F)
and moments (M), and linear and angular momenta (P and H). The equations are presented here for the
ith finite element,

_,tr Cab(i _ C_)el + CaW.r]_+ uz + ._[_Cab(I _ C_)el + CaWe]_+l u,+, 0

_t °_)Cab_]_+l - 0TM = 0q[(I + _ + °i_)cob_]_+ 0_+ T[(I + _ +

-P - _P - mgCWie3 + fa + A_.(_b + "_)( F-+F+ \'_--T---) + F+ - F- = 0

-H - _H - VP - mg_cgCWie3 + "_acfa + ma+

Ae(_ 1 -4- _w)( F- +F+ "_- - --T--, + _e(_b+ _)(_) + M+ M- = 0

(1)

+ Vo + _0(rb + u) - C_'_V = o

where 7 and _, the strains and curvatures, are related to F and M via a cross-sectional constitutive law,

and V and _, the linear and angular velocities, are related to P and M using the cross-sectional inertial

properties. The direction cosine matrix C zv transforms the components of a vector from the y-frame to

x-frame. The frames a, b, w are, respectively, at the wing root, at an arbitrary undeformed wing cross

section, and at an arbitrary cross section of the deformed wing.

fa and ma are the aerodynamic forces and moments acting on each element, and are calculated using

geometrically exact airloads model coupled with a linear finite state inflow model given briefly as,

1

27rp

where the equations are in terms of coefficients of the Glauert expansion, L is the pressure distribution,

U is the freestream velocity, v is the velocity perpendicular to the airfoil, h is the airfoil deformation, A is

the induced flow, and [M], [C], [K], [G] are constant matrices given in Ref. 5.
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Table 1: Model data

WING

Half span
Chord

Mass per unit length

Morn. Inertia (50% chord)

Spanwise elastic axis

Center of gravity

Bending rigidity

Torsional rigidity

Bending rigidity (edgewise)

16 m

lm

0.75 kg/m

0.1 kg m
50% chord

50% chord

2 x 104 N m 2

1 x 104 N m 2

CaseStiff: 5 x 106 N m 2

CaseFlex: 1 x 106 N m 2

FLIGHT CONDITION

Altitude 20 km

Density of air 0.0889 kg/m 3

The induced flow is calculated by a finite-state induced flow model, which is expressed as a set of

first-order differential equations approximating the unsteady flow over an airfoil, viz.,

[A]{An} + {.kn} = {c} (i_o + l i;1) (3)

where [A] and {c} are constant matrices given in Ref. 6.

By coupling the aerodynamic and structural equations the complete nonlinear aeroelastic model is

obtained. There are various analyses possible with such an analysis tool. Firstly, it is used to calculate

the nonlinear steady state for the given flight parameters. One could then linearize the problem about this

nonlinear steady state to get the instability speed. This instability speed predicts whether infinitesimal

disturbances are amplified or alleviated. If they grow (e.g., there is an instability), however, then a time-

marching solution is required to determine the amplitude of limit-cycle oscillations.

Results and Discussion

The objectives for this research have been to analyse the aeroelastic behavior of high-aspect-ratio wings

while taking into consideration the non-trivial steady state and obtain some understanding as to the changes

caused by large deflections, the nature and occurence of these effects and the nessecity and sufficiency

of the theories in including the nonlinear effects. The case used for this study is a slender wing with

semispan-aspect-ratio of 16.7 The results are presented for two values of edgewise bending rigidity (denoted

as CaseStiff and CaseFlex), because the aeroelastic behavior has strong dependence on the frequency

distribution of various mode (including edgewise bending mode). The model data for the case is presented
in Table 1.

Linear Results

Table 2 presents the natural frequencies for the wing. The two cases considered are such that in

CaseFlex the first edgewise bending mode frequency is lower than the torsional mode and in CaseStiff it is
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Table 2: Linear frequency results

1 st Flatwise Bending

2 nd Flatwise Bending

3Ta Flatwise Bending

1st Torsion

1st Edgewise Bending

CaseStiff CaseFlex

2.247 2.247

14.61 14.61

44.01 44.01

31.15 31.15

35.49 15.87

Table 3: Comparison of linear aeroelastic results

Present Analysis Analysis of Ref. 8 % Diff.

Flutter Speed 32.21 32.51 --0.9

Flutter Frequency 22.61 22.37 +1.1

Divergence Speed 37.29 37.15 +0.4

higher. The flatwise bending mode frequencies are an order of magnitude lower than the edgewise bending

and torsional frequencies, a normal occurance in high-aspect-ratio wings.

Table 3 presents the linear flutter results for the wing at an altitude of 20 km above sea level where

high-altitude long-endurance (HALE) aircrafts are expected to fly. The results are compared with those

obtained by linear flutter code based on modal solution s and a satisfactory correlation is observed. Note

that the linear flutter results are unaffected by the edgewise bending modes and thus are the same for both
CaseStiff and CaseFlex cases.

Effect of Steady-State Lift

The aircraft in flight is supported by the lift produced by the wing. This lift in turn produces deflec-

tions of the wing. For low-aspect-ratio wings the steady-state deflections are small and the nonlinearities

negligible. With increasing aspect ratio, there is increase in the root bending moment for the same loading,

leading to increase in the curvature of the wing. Also the total deflection of the wing is magnified due to the

long length. Thus large deflections are expected in a high-aspect-ratio wing, even at normal steady-state
loads.

The lift and the associated deflection lead to a drastic change in the structural dynamic characteristics

of the wing and consequently a possibly catastrophic change in aeroelastic stability. To investigate these

effects, nonlinear aeroelastic analysis is conducted on the wing model about a steady state obtained by

assuming a constant load distribution over the wing. Figs. 1 and 2 show the change in the structural

dynamic frequencies with wing loading for the two cases. The maximum tip deflection (at load of 20 N/m)

is less then 25% of the wing span. However, the curvature and the corresponding internal strains are still

small. The high deflections are a result of the length of the beam. The flatwise frequencies seem to remain

almost constant. The edgewise bending and torsion modes are the ones that are significantly affected. The

deflection of the wing leads to a structural coupling between the torsion and edgewise bending modes. For

CaseStiff, there is a decrease in the (originally) torsional mode frequency and increase in the (originally)
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edgewise bending mode frequency, while for CaseFlex it is the opposite. Basically the higher frequency

increases further and the lower frequency decreases.

Though change of frequencies in flight is a matter of concern, it is the changes in aeroelastic charac-

teristics that are very important. Fig. 3 shows the changes in the flutter speed and frequency with wing

loading for CaseStiff. There is a drastic decrease in flutter speed with increase in wing loading. This can

be attributed to the decrease in frequency with wing loading. There is almost a 50% decrease in flutter

speed which significantly compromises the flight envelope. Also this decrease occurs for low wing loadings,

and thus this effect will occur even at normal flight conditions. Therefore, it is nessecary to include such

effects - not only during the detailed analysis stage - but even during the preliminary design stage, the

stage at which the avoidance of such deleterious effects could effect the largest cost reduction.

The nonlinear flutter results for CaseFIex are even more surprising. By comparing with CaseStiff,

one would expect that the flutter speed for CaseFlex would increase with wing loading, since the torsional

mode frequency increases; and it does as seen in Fig. 4. But unexpectedly the edgewise bending mode

becomes unstable at a lower speed at the slightest wing deflection. Now such behavior is of immediate

concern since it is in general practically impossible to have a straight wing even for no wing loading. The

behavior can be attributed to the fact that an infinitesimal deflection induces a coupling between the

torsion and edgewise bending modes. It is this torsional content in the lower frequency edgewise bending

mode that leads to the instability. And since the pure edgewise mode is just neutrally stable, any small

amount of coupling is enough to destabilize it, thus the jump in flutter data. Fig. 5 shows the frequency

and damping versus velocity plots for various wing loading conditions. The various wing loadings leads to

levels of nonlinearities and consequently levels of coupling. At very low wing loading (1 N/m), there is less

coupling and the instability is quite weak. It can be expected that a small amount of structural damping

as well as the neglected aerodynamic drag should be able to eliminate this weak instability. Thus, even

though the flutter speed is around 22 m/s, the actual system may not exhibit catastrophic failure until

about 34 m/s where there is a much stronger instability. The strength of the instability increases with

increase in the wing loading. As can be seen in Fig. 5, at 10 N/m, there is sufficient coupling and the

flutter is stronger and would need to be taken seriously. Another way of understanding this instability is

by plotting the unstable damping at a fixed velocity with change in wing loading. Fig. 6 shows such a plot

of modal frequency and damping at 25 m/s. The continous increase in the unstable damping from zero

(neutral stability) to high values (strong instability) are indicative of the smooth transition in the system

behavior. Whether or not the lower flutter mode is significant depends completely on the frequencies,

which in turn depends on the wing loading and the coupling introduced by this nonlinearity.

Characterizing the Lift-Induced Nonlinearities

The nonlinear effects that were presented in the earlier section significantly change the aeroelastic

behavior of high-aspect-ratio wings. Though it has been explained physically in the earlier section, there

is a need to dig deeper into the equations and find the source of the nonlinearities and use it to effectively

analyse the system.

The source of the nonlinearity comes from the fourth equation in the equation set (1). In the undis-

cretized form, the equation can be written as,

-[-I - _H - _-P - mg_cgC- Wie3 + _acfa + ma + (el + _)F + (kb + _)M + M' -= 0 (4)

Here, the term _M is the dominant nonlinear term, where _ and M were introduced before. If the equation
is linearized about a steady state, we get two terms, _2_/+ khT/, where (-) is the steady state value and ( )

is the perturbation. It is obvious here that if there is a steady-state bending moment (and corresponding
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Table 4: Corn

Tors. - Edge. Bend. Freq.

Edge. Bend.- Tots. Freq.

Flutter Speed

Flutter Freq.

_arison of curved beam and fully nonlinear analyses

CaseStiff

Fully Curved
Nonlinear Beam

Error

17.10 16.39 -4.2

43.95 44.19 +0.5

22.36 22.37 +0.1

15.83 15.23 -3.8

CaseFlex

Fully Curved % Error
Nonlinear Beam

35.37 35.76 +1.1

12.64 12.33 -2.5

22.25 21.98 -1.2

12.18 11.88 -2.5

curvature) in the flatwise direction, the above terms will affect the torsion and edgewise bending equations

(due to the cross product). It is important here to note that there will be two terms affecting the torsion

and edgewise bending equations. One term is due to the steady-state moment (A:/) and the other due

to steady-state curvature (_). Out of these two terms, it is the one due to the steady-state curvature

that is more important because of the ratios of the flatwise bending rigidity to the other cross-sectional

rigidities being small. This implies that one could approximate the nonlinear behavior by assuming a

curved beam represented by the nonlinear steady state and not considering the internal moments that are

actually present.

Linear curved beam aeroelastic analysis where the beam shape is based on the actual nonlinear deflec-

tion of the beam (which can be easily calculated using a simple nonlinear beam analysis) is much simpler to

implement then is a complete nonlinear analysis as presented here. For a high-aspect-ratio wing with low

wing loading, such an anMysis may give sufficiently accurate results for the changes in aeroelastic behavior

of a lifting wing. To test this hypothesis, aeroelastic analysis is conducted on a curved beam with the

same curvature as that obtained when the wing is loaded with 10 N/m loading. The results are presented

in Table 4 and compared with those obtained by using the complete nonlinear analysis. The results show

that more than 95% accuracy can be obtained by simple curved wing aeroelastic analysis, and show that

the nonlinearity due to steady state curvature is the most important nonlinearity for a long slender wing.

Another point of interest here is the aerodynamic nonlinearity induced due to the large deflection. Due

to the large slope of the beam deflection, the lift which is perpendicular to the wing acts at an angle pointing
towards the center of the aircraft. This lead to a decrease in the effective lift in the vertical direction. Such

nonlinearity are more important in the static steady-state calculation and have been discussed in detail in
Ref. 7

Avoiding Catastrophic Decrease in Flutter Speed

From the earlier sections it is clear that wing bending leading to large deflections in a slender wing can

lead to dangerous aeroelastic repurcussions. But, it also points out the major culprit; the wing curvature

due to deformation leads to torsion-edgewise bending coupled modes which can be destabilized. Thus it

is important to control the curvature of the beam. One could increase the stiffness of the beam, but that

would lead to an increase in the overall weight. A much simpler way would be to pre-curve the wing

downwards so that at nominal flight condition the wing is as close to a straight wing as possible. One

could optimize the pre-curvature to give maximum flutter clearance over all expected flight conditions.

Assuming that the nominal flight condition leads to a wing loading of 10 N/m, one could seek to

minimize the wing deflection by constructing a wing with constant pre-curvature. Such a pre-curved
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Table 5: Comparison of pre-curved beam and straight wing results

Tors. - E. Bend. Freq.

E. Bend. - Tors. Freq.

Flutter Speed

Flutter Freq.

CaseStiff Wing

Pre-curved Straight Straight

(nora. load) (nora. load) (no load)
26.04 17.10 31.15

39.27 43.95 35.49

30.17 22.36 32.21

21.26 15.83 22.61

CaseFlex Wing

Pre-curved Straight Straight

(nora. load) (nom. load) (no load)

30.74 35.37 31.15

15.50 12.64 15.87

22.08 22.25 32.21

15.39 12.18 22.61

Table 6: Effect of drag for CaseFlex

Flat. Bending Freq.

Torsion Freq.

Flutter Speed

Flutter Freq.

Results with Drag Linear Results

2.257 2.247

31.15 31.15

32.26 32.21

22.66 22.61

model was used and aeroelastic analysis was conducted at nominal flight condition. It is neccesary here to

point out that the cross-sectional coefficients change with curvature. Here, the curved beam analysis was

conducted using the given cross-sectional coefficients for simplicity. For more consistent results one would

need to use an appropriate cross-sectional analysis tool, e.g., Ref. 9. Table 5 gives the torsion-edgewise

bending frequencies and the flutter results of a pre-curved wing under nominal conditions and compares

them with the straight wing results with and without the nominal load. By introducing the pre-curvature,

the linear straight wing results are partly recovered. For CaseStiff, there is 35% increase in the flutter

speed at nominal condition. Fig. 7 shows the damping and frequency plot with corresponding plots for

the straight wing. It is again seen that precurvature leads to decrease in the detrimental nonlinear effects

of lift. For CaseFlex, the flutter results are similar to those obtained for a lower wing loading, i.e., the

lower flutter mode is weaker and the higher flutter mode occurs at lower velocity. Thus even though there

is no significant change in the flutter speed, the flutter is weaker in a pre-curved wing and thus might be

overcome easily by inherent structural and aerodynamic damping (Fig. 8).

Effect of Drag

The effect of drag on the aeroelastic response has also been shown to be important in some cases.

To qualitatively investigate the effect of drag, a constant wing loading in the edgewise direction is added

assuming a lift-to-drag ratio of 5, which is very low and thus gives an idea as to the maximum effect of

drag. At the nominal condition of drag wing loading of 2 N/m (20% of lift) the frequencies and aeroelastic

damping results are calculated for CaseFlex and presented in Table 6. It clearly shows that the effect of

drag is negligible even for the flexible case, much less than the large effect of lift.

Conclusion
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Nonlinear aeroelastic analysis has been conducted on a representative high-aspect-ratio wing. The

nonlinear effects of steady-state lift and drag have been investigated, and an effective way of avoiding

catastrophic changes in aeroelastic behavior has been pointed out. From the foregoing results and discus-

sions one can draw the following conclusions:

There is a drastic change in the structural and aeroelastic characteristics of high-aspect-ratio wings

under nominal wing loads.

The type of nonlinear aeroelastic behavior is intimately connected with the distribution of modal fre-

quencies relative to each other and the corresponding normal mode shapes, including flatwise bending,

torsion and edgewise bending modes.

The dominant geometrically nonlinear effect comes from the non-zero steady-state curvature, and thus

the effect of nonlinear behavior on the linearized stability can be fairly accurately predicted by using

a linear analysis for curved beams.

The decrease in flutter speed due to large deflections may be essentially cancelled out by pre-curving

the wing so as to get an approximately straight wing at nominal flight condition.
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Simulation of Non-Linear Transonic Aeroelastie Behavior on the B-2
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Abstract /, /:z
At high subsonic flight speeds, large flexible aircraft begin to encounter unsteady aidoads which are not predicted

by most currently available aerodynamic analysis and design methods. With increasing speed and the development

of transonic flow and shocks, viscous effects quickly become very important, and flow separation can occur. The

Northrop Grumman USAF B-2 Bomber encountered a nonlinear aeroelastic Residual Pitch Oscillation (RPO) under

these conditions. Simulation studies were performed with the Computational Aeroelasticity Program-Transonic

Small Disturbance, Viscous (CAPTSDv) computer program to evaluate its ability to predict these nonlinear

aeroelastic responses. Open and closed loop simulations were performed to assess the participation of the flight

control system. Control ' system actuator hysteresis characteristics were modeled and found to be a significant

participant in the RPO phenomenon. Simulations were also performed for varying Mach numbers and altitudes to

establish the stability boundaries and compare with flight test data. These CAPTSDv simulations compared well

with flight data and revealed many potential further modeling enhancements.

Key Words

Residual pitch oscillation, Limit cycle oscillation,
Shock induced oscillation, Transonic aerodynamics,

Body freedom flutter, Hump mode, Computational
fluid dynamics, Computational aeroelasticity.

Introduction

At high subsonic flight speeds, large flexible

aircraft begin to encounter unsteady airloads which

are not predicted by most currently available

aerodynamic analysis and design methods. With

increasing speed and the development of transonic

flow and shocks, viscous effects quickly become

very important, and flow separation can occur.

The Northrop Grumman USAF B-2 Bomber
encountered a nonlinear aeroelastic Residual Pitch

Oscillation (RPO) during low altitude high speed

flight. The RPO response was observed after control

surface pitch doublets were input at flight conditions
outside the operational envelope z. The initial air

vehicle response decayed in amplitude but

transitioned to a small, constant amplitude, residual

pitch oscillation after several cycles.

Eleven additional dedicated flights were

performed to investigate the RPO phenomenon. The

pitch oscillation was characterized by a rapid

decrease in damping over a very narrow Mach

number range. The RPO motion was dominated by

an interaction of the rigid body short period mode

and the 1_ flexible symmetric bending mode and

exhibited limit cycle characteristics. The oscillation

also exhibited "hump" mode characteristics for many

configurations. Altitude variations, indicated the

phenomenon was more severe at low altitudes, but

the critical Mach number was nearly constant. Angle

of attack increases produced increases in the

oscillation amplitude. Configurations with heavy
outboard fuel were more sensitive to RPO since the

1_ flexible symmetric bending mode frequency was

in close proximity to the short period mode.

Chase plane video of the B-2 during control

surface excitations showed a moving shock visible in

the condensation clouds over the engine nacelles.

Analysis of the flight data indicated that the RPO was

caused by an oscillating shock interacting with the

short period and 1" flexible symmetric bending
modes.

Simulation models of the B-2 were developed

using the Computational Aeroelasticity Program -

Transonic Small Disturbance - Viscous (CAPTSDv)

computer code, and evaluations were performed to

assess its ability to predict the B-2 RPO non-linear

aeroelastic phenomenon. CAPTSDv performs a

time marching solution, which employs the transonic
small disturbance potential aerodynamic formulation.

CAPTSDv includes an interactive viscous boundary

layer modeling capability, which enables calculation
of the aerodynamic flow field where transonic shocks

and flow field separation begin to occur. The viscous

effects play a key role in predicting the location and

motion of oscillating shocks, which were believed to
be important in modeling the B-2 RPO. The

CAPTSDv structural equations utilize a modal
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formulation to compute the air vehicle elastic
deformations.

Applying CAPTSDv to the B-2, required adding

the vehicle rigid body motions, the closed loop flight

control system, and the capability to trim the free

flying vehicle. Non-linear surface actuator hysteresis
characteristics were also modeled.

Analytical studies were performed for two

vehicle configurations where flight data were

recorded. Heavy and light outboard fuel tank

configurations with a forward center of gravity and a

heavy payload were evaluated. Simulations for open

and closed loop flight control systems were

performed to assess the participation of the flight

conlxol system. Surface actuator hysteresis
characteristics were varied to evaluate their

contribution. Simulations were performed for
various Mach numbers and altitudes to establish the

stability boundaries and to compare with flight test
data.

B-2 RPO Flight Testing and Results

After the RPO was encountered, 11 dedicated

flights were flown to collect data to better understand

the phenomenon and to define the on-set boundaries.
Data were collected with the envelope expansion and

flutter clearance instrumentation suites. Many flight

conditions, fuel distributions, and CG configurations

were tested which were operationally achievable,

although not necessarily typical.

Data were gathered for both control surface

pitch doublets and random excitations. Pitch

doublets were input at 0.002 Mach number

increments during very slow accelerations starting

from 0.005 Mach number below the test point to

0.005 Mach number above the test point. Real time

data analysis was performed to quantify the damping.

If greater than 3% damping existed for the doublets,

a symmetric pitch rudder random excitation was

executed at the test point. All flight data results

presented herein use both sources of data

collectively.

Figure 1 shows typical Attitude Motion Sensor

Set (AMSS) vertical load factor responses to pitch

doublets as an RPO condition is approached. The

response transitions from being highly damped to

being oscillatory with a relatively small increase in

Mach number. Figure 2 shows a typical AMSS pitch

rate response near an RPO condition where the initial

pitch response decays in amplitude with positive

damping and then transitions to a zero damped small

amplitude residual oscillation after several cycles.

The oscillatory motion is dominated by interaction of

the rigid body short period and 1= flexible symmetric

bending modes.
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Figure 2 - Typical RPO Response To Pitch
Doublet

A complete understanding of the interaction

between the rigid body short period and the 1=

flexible symmetric bending modes proved to be

somewhat illusive during the flight test program. As

the RPO Mach number was approached, the

frequencies of these two modes came together, and
mode identification became difficult. In most cases,

only one frequency and damping result could be
extracted.

Only limited data were taken at Mach numbers

far away from the RPO Mach, where the two modes

were not in close proximity. Flight data presented

does not contain tracking of the short period and 1=

flexible modes independently, but presents the

interacting result. Figure 3 illustrates the rigid body
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short period and 1_ flexible symmetric bending mode

frequency trends.

1st Symmetric

Bending Mode _

Short Period

Rigid Body Mode

I
Mrpo-0.2 Mach M_m

Figure 3 - Critical Mode Frequency Trends

Conditions affecting RPO sensitivity in order of

decreasing importance are: Mach number, forward

CG, heavy outboard fuel, elevated load factor

(elevated angle of attack), heavy payload, and low
altitude. In general, the closer the short period and I x

symmetric bending mode frequencies are, the more

sensitive the configuration is to RPO. Forward CGs

increase the short period frequency. Increased

outboard fuel generally reduced the first symmetric

bending mode frequency. Higher dynamic pressures
at lower altitudes intensified the RPO at a given

Mach number, and slightly reduced the critical RPO
onset Mach number.

Analysis of the RPO flight data did not show the

characteristics normally expected of a classical flutter

phenomenon. An oscillating shock was visible in the
condensation cloud over the engine nacelles during

some of the forced response tests. The RPO occurred

in a very narrow transonic Mach number range where
a shock induced oscillation (SIO) is most likely to

occur. Flight test data indicated that the aircraft

aerodynamic center moved aft by as much as 3 feet

as the RPO Mach was approached. The conclusion

from the flight test program was that the RPO was

most likely a shock induced oscillation (SIO).

CAPTSDv Application Results

The aeroservoelastic (ASE) models developed

and used during the Engineering and Manufacturing

Development phase of the B-2 program did not

predict the RPO phenomenon. The RPO was

discovered during flight test, and occurred in the low

altitude high subsonic regime where nonlinear

aerodynamic flow field effects are present. The

aerodynamic representations used for the ASE
models were based on linear aerodynamic prediction

methods. Simulations with CAPTSDv were initiated

to assess the participation of nonlinear flowfields.

Simulation of the rigid body plunging (h) and

pitching (0) motions in CAPTSDv was performed

following the procedure of Reference 2. CAPTSDv
was modified at Northrop Grumman with the

assistance of Dr. John Edwards of NASA Langley

Research Center (LaRC) to include the rigid body

equations of motion. The equations implemented are:

63= qU= + (mg-q.SCL)/m (1)

_1= co (2)

Cl = q**S_m / Iy (3)

_)=q (4)

_vVhere;

q = Pitch rate
m = Mass

g = Gravity

U** = Freestream Velocity

q** = Freestream Dynamic Pressure
S = Reference Surface Area

= Reference Chord

C L = Lift Coefficient

C m= Pitching Moment Coefficient

Iy = Moment of Inertia about C.G.

These equations are correct within a body fixed,

"rotating" coordinate system. Their use in the

inertial coordinate system in the CAPTSDv code is a

reasonable approximation for the small pitch rates

involved in this study.

The downwash boundary condition was

modified to account for the rigid body motions:

÷ tO - q

_z _=fi+ft U_ (x-xcg)c_ (5)

Where:

X = Streamwise Location

Xcg = Streamwise Location for Center of Gravity

The first two terms are the streamwise slope and

vertical velocity of the upper (+) and lower (-)

vehicle surfaces, including elastic deformation. The
last two terms are the additional terms necessary for

the rigid body plunge and pitch motions. This work

uncovered sign errors in equation 28 of Reference 2.

The B-2 aircraft configurations which were
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evaluated during this study are shown in the

following table:

Desc. Wt. Pitch Incr. C.G. Payld Fuel

(Lbs) (In-Lbs) %MAC (Lbs_ (Lbs)

Heavy 328k 3.57E9 28 46k 64.9k

Light 266k 2.71E9 28 46k 33.7k

The Heavy configuration is representative of the

most sensitive RPO flight configuration and the Light

configuration is representative of the reduced

outboard fuel configuration tested. While analyses

were performed at 4,000, 8,000 and 16,000 altitudes,

discussions contained herein will present only the

4,000 feet altitude cases.

Aerodynamic Modeling

The CAPTSDv aerodynamic grid contains 100

streamwise, 60 spanwise, and 50 vertical grid points

for a total of 300,000 aerodynamic grids. Sixty of

the streamwise and forty of the spanwise grid points

reside on the B-2 planform. The aerodynamic grids

for the first three rows and the planform geometry

evaluated in CAPTSDv are compared with the actual

B-2 geometry in Figure 4.

The B-2 aircraft wing tip and control surfaces

edges are planform aligned and are not streamwise as
on typical aircraft. Modeling of the wing tip

requires that the grid lines which start at the wing

root, extend beyond the wing tip to the outer

boundary in a smooth fashion. Since, tightly packed

grid lines are undesirable and can cause poor
convergence (Ref, 7), a clipped wing tip was defined.

The wing tip model possesses the same planform area
as the actual. The flight control surfaces were

modeled by selecting constant chord and streamwise

grid lines which best approximated the actual

geometry. The Middle Elevon was not modeled

since it does not actively move during the RPO

responses. Other modeling approaches which may

represent the wing tip and control surface geometries

more accurately were not investigated during this

study.
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Figure 4 - B-2 Planform and CAPTSDv

Aerodynamic Layout

The aerodynamic model for CAPTSDv was
developed from a B-2 moldline definition referred to
as the "nacelle subtracted moldlines". CAPTSDv

currently does not have the capability to model the
engine mass flow. The moldlines in the area of the
nacelle have been modified so that the inlet mass

flow is approximately represented. These moldlines

were previously developed for CFD based

performance analyses.

Structural Modeling

The slluctural model is derived from a

NASTRAN finite element model of the B-2 aircraft.

The model is constructed with beam elements and

has been tuned to match ground vibration test results.

The NASTRAN model was used extensively for B-2

analyses. NASTRAN modes, frequencies,

generalized mass, and generalized stiffness quantifies

were generated for the desired configurations. These

results were then processed by the modal
preprocessor to transform them onto the CAPTSDv

aerodynamic grid locations. All CAPTSDv

aeroelastic simulations were performed with the first

five elastic modes plus the rigid body pitch and

plunge modes. The control surface mode frequencies
are above those of the fu'st five modes and were not
included. The control surface commanded

deflections were therefore modeled aerodynamically
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butnot inertiaUy.

The primary elastic contributor to the RPO

phenomenon is the 1= flexible symmetric wing

bending mode. The unique flying wing configuration

of the B-2 yields a design in which this lowest elastic

mode and the closed loop rigid body short period

mode frequencies are in close proximity at medium

and high air speeds. Figure 5 shows the 1= flexible

symmetric wing bending mode deflection

characteristics. Figure 6 contains a listing of the

modal frequencies for the Heavy and Light structural

configurations.

Outboard

GLAS

1st Symmetric Bending Split Drag
Mode Node Line Rudders

Deft.

P

Figure 5 - 1= Flexible Symmetric Bending
Mode Deflection Characteristics

Heavy Config.[ Light Config.

IHz'I l _Hz'I

1.80 I 2.12

4.37 | 5.15

8.74 | 10.41

9.58 [ 12.3114.69 17.12

(1 st Flexible Symmetric Bending)

Figure 6 - Modal Frequencies

Flight Control Modeling - Linear

The B-2 aircraft employs a full time active flight

control stability augmentation system. Figure 7

shows the major components of this system. The B-2

flight control surfaces include three sets of elevons

for pitch and roll control, a centerline gust load

alleviation surface (GLAS) for pitch control, and

upper and lower split drag rudders for yaw control.

Since the flight control surfaces are large, surface

motions as small as 1 degree can command up to 1 g
incremental load factor at medium and high speeds.

Sensor feedbacks used for stability augmentation
include the Air Data System (ADS) and the Attitude

Motion Sensor Set (AMSS). The ADS measures the

vehicle flight condition, angle of attack, and angle of

sideslip. The AMSS senses the vehicle inertial
attitudes and accelerations and is located on the

vehicle centerline near the 1= flexible symmetric

bending mode node line, forward of the center of

gravity. The Flight Control Computers (FCCs)

compute the surface position commands in response

to pilot commands and feedback sensor inputs.

Figure 7 - Flight Control Architecture

A simplified Flight Control System (FCS) pitch

control augmentation model was implemented into
CAPTSDv to evaluate the FCS effects and closed

loop aeroservoelastic interaction. CAPTSDv rigid

body plus flexible load factor and pitch rate

responses at the AMSS sensor location were used for

the feedback sensor inputs to the FCS model. The

simplified version of the full up FCS was valid for

the RPO flight conditions, and used the same control

algorithms, filter compensation, gains, and

calculations as the operational flight program in the

FCCs. Fifth order linear actuator position to

command models were tuned to match flight data for
each of the surfaces. Surface command rate and

position limits were also included.

Nonlinear FCAS Model

The Flight Control Actuation System (FCAS)

hydraulic actuators which position the B-2 control

surfaces have nonlinear response characteristics for

small amplitude motion commands. These nonlinear

characteristics are caused by a small overlap in the

actuator main control valve as shown in Figure 8.

This overlap results, in a small deadband in the
commanded fluid flow and actuator rate from the

main control valve, and shows up as an effective

hysteresis in the surface position to command

response. Figure 9 shows the effect of the hysteresis

on actuator position when a sinusoidal surface

command is applied. The surface position lags the

command and has flattened peaks as measured during

flight testing.

The time/phase delays are dependent on the
amplitude of motion and for small motions

significantly degrade the closed loop FCS stability.

515



The flight test elevon position to command frequency

responses shown in Figure 10 have over 25 degrees

of additional phase lag for small and slow

commanded devon motion from a pilot pitch

frequency sweep as compared with large and fast
commanded motion from a random excitation. The

25 degree additional phase lag occurs across a wide

frequency range and represents variable time delays

of approximately 62 milliseconds at 7
radians/second, 44 milliseconds at 10 radians/second,

and 29 milliseconds at 15 radians/second. Time

history analysis of flight data showed the FCAS

hysteresis size and resulting phase delay was

inversely proportional to a combination of the

commanded elevon amplitude, rate, and frequency.

The phase delay from the FCAS hysteresis

effectively eliminates the gain and phase stability

margins measured with large amplitude elevon

motion, and can contribute to closed loop limit cycle

oscillations for small amplitude elevon motion.

Limit cycle oscillations will set up at an amplitude
which has zero damping because of the amplitude

dependant FCAS phase delays.

Figure 2 shows a large amplitude pitch doublet

flight test example, where large surface motions

initially provided a well damped pitch response. The

vehicle approaches a zero damped limit cycle

oscillation (LEO) around 4 seconds when the elevon

deflections became smaller and the additional phase

delays generate a zero damped condition. The small

amplitude oscillation is bounded, since larger

amplitude motions are stable.
A constant size actuator hysteresis was

implemented into CAPTSDv to approximate the

small amplitude motion effects. Flight test data

showed approximately 0.13 degrees of hysteresis on

the inboard elevon during small amplitude motion.

The variations in hysteresis size with commanded

amplitude and rate that were observed in flight, were

not included in CAPTSDv. Future upgrades to

include a variable hysteresis size would provide

improved modeling.
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Other Flight Control System and ActuaeQr Mgdei
Limitations

Mechanical backlash and surface free play were

estimated at up to +0.3 degrees, but were not

modeled in CAPTSDv. For the range of control

surface motions expected during RPO, the control

surfaces would not encounter a zero hinge moment
condition. Therefore, for the current studies,

modeling of the freeplay was considered of

secondary importance. However, improved
modeling of the actuator and surface inertias,

mechanical backlash, freeplay, and interaction with

airloads, could improve the simulation.

Static Pressures vs. Wind Tunnd Results

The chordwise static pressures of CAPTSDv
were compared with wind tunnel data recorded from

a 6% scale model. The configuration was

representative of a Ig high altitude deflected shape

and was sting mounted on the plane of symmetry.

Figure 11 shows upper, lower, and delta coefficients

of pressure (Cp) at spanwise station 474 (through

middle of inboard devon) for the heavy

configuration at 4,000 altitude and Mach 0.8. Results

for conditions of approximately zero angle of attack
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are shown. Note Cp upper and Cp lower are plotted

on left and right vertical axes respectively. The Cp

lower results are plotted unconventionally (with
negative values down) for clarity. The delta Cp

lower minus upper results show good agreement with
the wind tunnel data,
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Trim Solutions

Initial CAPTSDv solutions were performed to

obtain a trimmed state at 1 g flight with a zero

pitching moment. The angle of attack was varied to

obtain lift equal to the air vehicle weight and the

inboard elevon was deflected to trim the pitching

moment. The B-2 normally trims with a combination
of the inboard and middle elevons.

_namic Simulation Results

The dynamic simulations were started from the
saved trim solutions and run for a sufficient time to

evaluate the stability characteristics. Inboard elevon
control surface doublet commands were used to

perturb the air vehicle. Simulations for both open

and closed loop control laws were generated. All
closed loop solutions were run with the same 0.13

degree hysteresis (unless specifically stated

otherwise) on the GLAS, inboard elevon, and
outboard elevon.

Dynamic aeroelastic simulations were run at a

series of Mach numbers to determine the stability

characteristics. Transient responses of the vehicle

angle of attack were used to extract the damping and

frequency information. Large amplitude pitch

doublet excitations were used and the damping

properties were extracted in the first 3 seconds of the

response, prior to the onset of constant amplitude

residual pitch oscillations. As with the flight test data,
independent identification of the rigid body short

period and 1_ flexible symmetric bending modes
from the CAPTSDv results was difficult.

Heavy Configuration

Dynamic aeroelastic simulations were run for the

heavy configuration at 4,000 feet altitude for a series

of Math numbers with 1 degree inboard elevon

doublet excitations. Angle of attack transient

responses for several open and closed loop control
law simulations at several Mach numbers are shown

in Figure 12.

The CAPTSDv open and closed loop 4,000 foot

altitude stability boundary for the heavy

configuration is compared to flight test results in

Figure 13. The flight test results are shown with

symbols, for the raw data, and a fitted curve. The

damping curve fit used the minimum damping values

at each Mach number. The FCS closed versus open

loop simulation results tend to slightly increase the

frequency of the RPO motion and raise the Mach

number of the neutrally stable point. The CAPTSDv

frequencies are slightly lower than the flight results.

The damping for the closed loop CAPTSDv

simulations compare well with flight test. The

abrupt slope change at 0.785 Mach number is

believed to be associated with the development of
shocks.

Figure 14 shows station 345 closed loop upper

and lower surface pressure coefficients (Cpu and

Cpl) for several Math numbers. Station 345 is

located outboard of the engine nacelles and passes

through the inboard elevon. These pressure
distributions were obtained from the trimmed

aeroelastic solution prior to applying the control

surface doublet. The significant change in the mid

chord pressure distribution as the Mach number

increases is believed to be one of the prime

contributors to the RPO onset. Shocks begin to

develop around Mach 0.785 and become very strong
by Mach 0.835.

The significant change in the pressure

distributions cause large movements in the aircraft

aerodynamic center. This was suspected from
analysis of the flight test data.
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Figure 15 shows a CAPTSDv simulation which

predicts a divergent _ansient response for the closed

loop heavy configuration at 4,000 feet altitude and

Mach 0.835. The upper plot shows the angle of attack

and control surface positions. The lower plot shows

the CG vertical acceleration along with the angle of

attack. Figure 16 shows how the chordwise pressures

vary with angle of attack. Chordwise pressure

distributions for trim, and angles of attack of -3.22

and 5.28 degrees were selected for visualization.

Figure 16 shows the upper and lower surface

pressure coefficients at station 345, through the
middle of the inboard elevon, for the selected time

cuts. Both the upper and lower surface (near 60%

chord) shock locations move forward for nose up

angles and aft for nose down angles. The upper

surface shock motion was contrary to the expected

result as described in Reference 5. Even though this
example case represents higher amplitudes of motion

than observed in flight, it illustrates a :1:5 percent

chord variation in shock position. The inboard

elevon motion during the vehicle oscillations also

impact the pressure distribution. The FCS works to

damp and reduce the oscillations by commanding the

inboard elevon trailing edge up when the aircraft
AOA is nose down.
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Light Confi_ration

Dynamic aeroelastic simulations were also run
for the light configuration at 4,000 feet altitude.

Selected angle of attack transient responses for the

open and closed loop control law simulations are
shown in Figure 17. Extracting the frequency and

damping data for the light configuration was more

difficult than the heavy configuration. The lower

Math number responses were highly damped (dead

beat) and did not have sufficient response to

adequately extract frequency and damping values.

The light weight short period damping was generally

much higher than typical structural modes. Higher

quality frequency and damping data could be

computed in CAPTSDv in the future by making
enhancements that would allow control surface

frequency sweeps or random excitation inputs.

The light configuration open and closed loop

4,000 foot altitude stability boundary (for Mach

numbers that weren't deadbeat) is compared to flight

test results in Figure 18. The CAPTSDv closed loop

frequencies appear to abruptly change near a Mach

number of 0.8. The dominant aircraft frequency

appears to be primarily from the short period mode

below Mach 0.8, a combination of both short period
and 1" flexible symmetric wing bending between

Mach 0.8 and 0.85, and takes on a higher frequency

normally associated with the 1" flexible symmetric

bending mode above Math 0.85.
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CAPTSDv simulation and flight results have

similar damping up to Mach 0.82, where the flight

results exhibit a hump mode character. The hump

mode character did not appear during the
simulations. The cause of this difference has not

been determined and is a subject of future studies.

Two hypotheses for the source of the difference are:
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1) the degree of flow separation is under predicted

and in flight the flow separation helps quench the

oscillations, and 2) the spanwise flow in separated

regions, (CAPTSDv does not predict) disrupts the

shock development.
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Non-linear Control Results

When the actuator hysteresis was included in the
CAPTSDv aeroservoelastic simulations, constant

amplitude residual pitch oscillations occurred, similar

to those seen in flight test. This was a major

advancement in understanding the flight test results

and the physics of the RPO mechanism. Constant

amplitude residual pitch oscillations occurred when

the actuator hysteresis was included for Mach

numbers with light damping.

Figure 19 shows actuator hysteresis size

variation results for the heavy configuration at 4,000

feet altitude. The initial transient responses have

positive damping with decaying amplitude but

transition to constant amplitude residual oscillations,

similar to the flight data in Figure 2. The frequency

of the residual oscillations appear to be independent

of the hysteresis size, while the amplitude is

approximately a linear function of the hysteresis size.
These simulation studies modeled the GLAS,

inboard elevon, and outboard elevon with the same

0.13 degree hysteresis. Further modeling

improvements would adjust the hysteresis for each

surface using flight test data.
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Figure 19 - Effect of Actuator Hysteresis - Heavy

Configuration

Condusions

CAPTSDv showed good success in predicting
the non-linear aeroelastic RPO behavior on the B-2

Bomber. Two vehicle configurations were evaluated,

where flight data were available. Open and closed

loop flight control system simulations were

performed to assess the participation of the flight

control system. Control actuator hysteresis

characteristics were modeled and found to be a key

contributor in simulating the RPO. Mach number

and altitude sweeps that were run to establish the

stability boundaries, compared well with flight test
data. The CAPTSDv results increase the

understanding of the B-2 RPO and establish

improved capabilities for non-linear aeroelastic and
aeroservoelastic simulation.

The following conclusions can be made from the

studies performed:
1. The CAPTSDv transonic small disturbance

potential aerodynamic formulation was capable of

predicting the B-2 RIO phenomenon where previous

analysis tools could not. CAPTSDv's moderate

computational requirements as compared to the large

requirements of higher order methods, make it more

feasible to perform multiple configuration surveys.

2. Steady flow field pressure distributions predicted

by CAPTSDv matched B-2 wind tunnel data well.

3. CAPTSDv simulation results for the heavy

configuration at 4,000 feet altitude configuration

produced a good match to flight test results.

Frequency and damping characteristics compared

well with the flight test data. CAPTSDv predicted

the point of neutral stability within 0.007 Mach

number of the flight results. CAPTSDv showed that
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as the RPO Mach number is approached, strong

shocks develop on both the upper and lower surfaces.

4. CAPTSDv simulations for the light configuration

showed a more severe RPO response than the flight

test results. Although response characteristics were

similar in many aspects, the hump mode character

observed during flight testing was not simulated.

5. Identifying and extracting frequency and damping

properties for highly damped transient responses and

closely spaced modes were very difficult with

CAPTSDv as they were with the flight data.

6. Closed loop control simulations with actuator

hysteresis successfully simulated the constant

amplitude residual pitch oscillations recorded during

B-2 flight testing. This was a major advancement in

understanding the flight test results and the physics of
the RPO mechanism.

7. Results from this study are consistent with the

flight test conclusions, in that the RPO phenomenon
is due to a non-linear shock induced oscillation (SIC))

where the air vehicle's rigid body short period and 1x

flexible symmetric bending modes interact.

Recommendations

Recommendations based on the results of this study

include the following:

I. Develop the capability to perform control surface

frequency sweeps or random excitations within

CAPTSDv. This would provide an enhanced means

to identify highly damped or closely spaced modes.

2. Investigate improved geometric approaches to

more accurately model the wing tip and control

surfaces and evaluate their impact on the predicted
RPO.

3. Model the middle elevon so it can be used in

concert with the inboard devon to trim the aircraft.

4. Model the FCAS with a variable hysteresis similar

to that observed in the flight data with small and

large amplitude surface commands/rates.

5. Improve modeling of the surface backlash and

free play to improve the correlation with flight data.

6. Model the control surface dynamics by including
the control surface modes and inertial terms in the

simulation.

7. Continue flow field investigations including

computing aerodynamic center movement and shock

phasing relationships with the aircraft angle of attack.

8. Perform additional studies to investigate why the

hump mode characteristics were not predicted.

Investigate queenching mechanisms such as large

flow separation or spanwise flow effects.
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Abstract

In this paper we consider an aeroelastic section with cubic free-play nonlinearities, ap-

proximating Wagner's function in the expression of aerodynamic forces with exponentials in
the time domain. The mathematical model is then recast in the standard first order ordi-

nary differential form, with x the global state-space vector, to which nonlinear analysis tools

apply. An extensive numerical study has been performed to show the dependence of Hopf

bifurcation characteristics from the structural and geometric properties of the wing section.

Bifurcation and frequency vs. dynamic pressure plots are presented. In such cases the onset

of flutter might happen before the linear flutter speed for certain initial conditions.

1 Introduction

It is well known that there exist two types of flutter: benign and explosive. In the first case, above

the flutter speed, the system tends to limit cycle oscillations (LCO) with amplitude growing

like v_-- UL (for small values of U - Uz, where UL is the linear flutter speed, obtained with

classical linear stability analysis). In the second case, even below the flutter speed, the system

may experience finite-amplitude oscillations, provided that the initial conditions are sufficiently

high (the initial condition amplitude necessary to excite this destructive oscillations varies like

- U, again for small values of UL-U). From a mathematical point of view the two phenomena

may be described in terms of stable and unstable limit cycles (see Figs. 1 and 2). The first case,

stable limit cycle, is known as supercritical Hopf bifurcation, the second one as subcritical Hopf

bifurcation (Guckenheimer and Holmes [1]).

There is well known experimental evidence (see Refss. [2], [3], [4], [5]) that large amplitude,

stable limit cycle and small amplitude, unstable limit cycle oscillations might appear before the

linear flutter boundary speed. Indeed, some theoretical papers (Refss. [6], [7]. [8], [9], [10], [11])

have highlighted the possibility, under suitable initial conditions, of finite amplitude limit-cycle

oscillations prior to the onset of the exponentially growing linear flutter. Such a phenomenon

is well depicted by amplit, ude versus velocity bifurcation plots: tile bifurcation curve shows a
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turaiag point that reverses the sub-critical Hopf bifurcation into a supercritical-like shape. From

a physical point of view, this may be described in terms of the dependence of the flutter boundary

upon1 the initial conditions (the case of interest is that of an airfoil elastically costrained by a soft

torsional spring). For such a phenomenon, known as 'explosive' or 'violent', an estimate of flutter

boundary can be achieved by exploring the bifurcation diagram of steady-state motion amplitudes

versus flow speed. This shows a sub-critical Hopf bifurcation which exhibits a turning point at

a velocity lower than the flutter speed, determining a 'knee' in the bifurcation diagram. From

an aeronautical point of view, this phenomenon indicates that the linear flutter speed is not at

all a safe prediction - a more detailed (nonlinear) analysis must be addressed to compute this

new limit. In the present case. a fifth-order method is needed to describe, at least approximately,

the stability properties of the system. A methodology for analyzing fifth-order nonlinearities is
presented.

2 Normal Forms Method

The objective of this section is to present an elementary introduction to the normal form method

for the study of nonlinear dynamical systems (for more details about the present application of

normal forms method to aeroelastic systems, see [12], where the general theory well explained

in [1], [13], [14] and [15] is considered). The implementation of the method in the case of alge-

braic nonlinearities is examined in this section, whereas the application to fifth-order analysis of

nonlinear aeroelastic systems with cubic nonlinearities is considered in Sect. 3.

The normal form method is based on the idea that a nonlinear system can be simplified by a

coordinate transformation. This goal is achieved by two different steps: first, by reducing the

number of equation by applying the center manifold theorem and second, by eliminating in the

reduced equation the nonlinear terms that do not contribute significantly to the solution: such a

selection of the nonlinear terms is performed by introducing the "resonance condition". Consider

a dynamical system of the type

5:= = Ax + f(x, (1)

where A is a diagonal matrix, f(x) = _ f(_)(x) + _2 f(3)(x ) +... with f(m)(x) denoting a generic

polynomial of degree m and e is a perturbation parameter _. The solution is given in terms of an

asymptotic expansion of the type (near-identity)

x = L/(y,e) = y + eu (2) + e2u (3) +... + O(e M+I) (2)

Using Eq. 2, Eq. 1 is transformed into (see below)

jt = _(y,_) = Ay + g(y, c) + 0(_ M+l) (3)

where the vector of nonlinear terms g(y, e) includes the so-called resonant terms, which satisfy
the associated resonance condition

Ai -- )_?l -- Aj_ -- ...-- ,_j,_ = 0 (4)

where i, jL,...,j,_ = 1,...,.V+ 1 and m is the order of the nonlinear term considered. Therefore,

if the resonant condition, which must be evaluated for each algebraic nonlinear term of Eq. 1, is

LThe parameter _ may be eliminated by setting ex = _; it is introduced here in order to facilitate the analysis

o[" the order of magnitude in the contest of asymptotic expansions.
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satisfi,.'d, the corresponding nonlinear term must be included in the resonance equation, Eq. 3; if it

is not satisfied, the nonlinear term contributes to the expression of the near-identity transformation

given by Eq. 2. Substituting Ert. 2 into Eq. 1 we obtain

[I + Du(y, ¢)] jz = .T(y + u(y, ¢), _) (5)

Taking into account the final form of transformed equations (see Eq. 3) and substituting this into

Eq. 5, the resultant equation is

_(y, e) = F(y + u(y, ¢), e) - Du(y, ¢)6(y, ¢) (6)

Separating in .T, _ the linear parts from the nonlinear ones and rearranging the previous equation

yields

g(y,¢) = f(y,e) + Au(y, ¢)- Du(y, ¢)Ay- Du(y, e)g(y, ¢) (7)

It is possible to re-write the previous equation as

Du(y, _)Ay - Au(y, ¢) = f(y, ¢) - Du(y, ¢)g(y, ¢) - g(y, a-) (8)

This equation is called the 'homological equation', and must be solved in the unknowns terms of

near-identity transformation terms u (2), u (a), ... for each order in ¢. The solution of this equation

is obtained immediately, by taking into account that

Du (q)(y, c)Ay - Au (q)(y, ¢) = -Eu (q)(y, ¢) (9)

where E = [Eik] = [(Ai - Aj_ - Aj2 -... - Aj,_)6ik] to yield

Eu(q)(y, e) = F(q)(y, E) - g(q)(y, e) (10)

where F (q)(y, _) = f(q) (y, ¢) - Du (q)(y, ¢)g(q)(y, _). Finally, one may choose g(q) to eliminate all the

term in F(q)(y, ¢) for which Ek_ = 0. This leaves -Eu = _'(q)(y, e) (where _'(q)(y, e) includes the

remaining terms). Hence, each element of the vector u (q) is given by u(kq) = -T'(q)/Ekk. Note that

when the resonance condition is satisfied, the solution of the homological equation is undetermined

and the simpler choice is to set u(_q) = O.

3 Amplitude and Frequency of Limit-Cycle-Oscillations

In the present section, particular attention is devoted to show:

the existence of a velocity range, less than the linear flutter speed, such that the onset of

LCO (Limit Cycle Oscillations) is possible for sufficiently large initial conditions;

the dependence of the shape of the bifurcation diagram ('knee' or 'pitchfork') from the

position of the elastic center:

the possibility to foresee analytically this dynamic behavior using a fifth-order asymptotic

method.
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Typical section model used is given in Appendix A. The coefficients considered in this ca.se are

_,= 100 x,, =0.25 g,= 1.2 r_=0.5 an=variable (11)

and the pitching moment is M(a) = ce + '3a a a. By a root-locus stability analysis, flutter speed

and fiequency are respectively UL = 4.937 and COL= 0.255 as shown in Fig. 3. In Fig. 4 the

numerical LCO amplitudes in pitch are given in the neighborhood of UL and for some values

of alL, with & = 1.2, > = 100_ z,_ = 0.25, r_ = 0.5 and /3_ = -50. These LCO amplitudes

(both stable and unstable) are computed with a modified Shooting Method routine to save time,

disregarding the transient state and providing also the LCO period and the Floquet multipliers.

Different values of ah correspond to various position of the elastic center along the chord; it is

apparent how the shape of the bifurcation diagram changes with ah: for ah -_ 0.48 the 'knee'

at the turning point disappears, and the bifurcation turns itself from a sub-critical one into a

super-critical one. The difference between these two types of Hopf bifurcations can be explained

considering the flutter boundaries that are qualitatively depicted in Fig. 2; the arrows show how

the amplitudes of the LCOs increase or decrease according to different initial conditions in a more

complex manner than in the 'pitchfork' case: collecting these results is possible to split the state

space into different regions called basin of attraction, that are in general N-dimensional (only

plane sections are usually given).

This fact may be more evident on examining a typical time series of a and _ from numerical

integration of Eq. 1 by a forth-order Runge-Kutta method for the speed value U = 4.932: transient

state moves toward different steady state solution depending on given initial conditions (Figs. 5

and 6).

The stability of these LCO can be analyzed by means of the Floquet theory, whose results are

partially shown in Fig. 7 in terms of Floquet multipliers moduli; when someone of these N

multipliers gets out of the unit circle, the corresponding LCO becomes unstable. In Fig. 7, the

multipliers whose modulus approaches unity are shown in the neighborhood of the linear flutter

speed: the upper branch refers to the unstable limit cycle which starts in the bifurcation point

(modulus larger than unity), while the lower branch refers to the stable limit cycle in which the

unstable one turns in at turning point.

It is interesting also to point out the difference between linear and nonlinear stability regions in

the plane of parameters U and ah, as shown by Fig. 8. As long as the elastic center nears to

the center of mass, linear and nonlinear boundaries lead to different lower flutter speed for the

onset of flutter oscillations, because of the presence of the turning point whose abscissa (in the

corresponding bifurcation plot) is reported in Fig. 8.

As outlined before, a nonlinear stability analysis has been developed by the normal forms method.

In Fig. 9 third-order and fifth-order approximations of numerical simulation data are drawn in

order to show how the third-order approximation does not succeed in describing at least qualita-

tively the 'knee-type' bifurcations. It is possible to note that fifth-order approximation leads to

better results also for supercritical bifurcations for ah values less than 0.48.

The poor agreement shown in Fig. 9 between the numerical and the 'analytically determined'

minimum flutter speed suggests that fifth-order approximations are not sufficiently accurate in

the neighborhood of the Hopf bifurcation. This is only partially true: first it is important to keep

in mind that the error grows not with U but with the curvilinear abscissa along _he bifurcation

curve, as well pointed out by other perturbation techniques (e.g.. the Multiple Time Scale Method,

see [12] for more details); second, the normal forms method has been applied under the center

tmmi[bld hypothesis, that prescribes that only tile critical modes (and the associated generalized
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coordinates) worth considering. In tile case of a 'knee' bifurcation, as shown in Fig. 10, this

hypoth(_sis is already violated for small values of U - UL.

More informations about the system nonlinear behavior may be known by determining the fre-

quencies of LCO. Such frequencies depend upon the velocity as well. For velocities less than

the linear flutter one UL, the modes corresponding to eigenvalues close to the imaginary axis

are more effective in driving the solution than the larger damped ones, so that the frequency of

oscillation is mainly given by the imaginary part of the corresponding eigenvalues. Beyond the

linear flutter speed, in general the frequency of LCO depend on the velocity in a different manner

than the imaginary part of the eigenvalues, as it is shown in 11. These numerical frequencies are

approximated by the normal form method in Fig. 12.

A Model Equations

Consider a two-degree-of-freedom airfoil, elastically constrained by a torsional spring, oscillating

in pitch and plunge. Using standard notations, the plunging deflection is denoted by h, positive

in the downward direction, and c_ is the pitch angle about the elastic axis, positive with nose up.

The elastic axis is located at a distance ah b from the mid-chord, while the mass center is located

at a distance zo b from the elastic axis. Both distances are positive when measured towards the

trailing edge of the airfoil. The aeroelastic equations of motion for linear springs are derived by

Fung [16]. For nonlinear restoring forces such as those for cubic springs in both pitch and plunge,

they are given by Alighanbari et al. [6] as follows

(i2)

(13)

where { = h/b is the non-dimensional plunge displacement of the elastic axis, ro is the radius of

gyration about the elastic axis, Q and _'_ are the viscous damping coefficients in plunge and pitch,

respectively; note that M(a) is the overall expression of the torsional spring moment, including

the linear part. In Eqs. 12 and 13, U is defined as U = V/b_o and & is given by & = a_Uw_ where

a_ and aJ_ are the uncoupled plunging and pitching modes natural frequencies, and the'denotes

differentiation with respect to the non-dimensional time 7" defined as 7 = V t/b In Eqs. 12 and 13,

p(r) and r(_-) are the lift and pitching moment, respectively. For the incompressible flow, Fung

[16] gives the following expressions for p(r) and r(7)

2f0"p(r)-- i/x@" - ah& + d) + ; ¢(r - (r)_3/4(a)da

I 2 "

with ¢?_/4(r) = _(r) + and(r) + a(r) and ah = 1/2(1 - ah), where the Wagner function is

approximated by O(T) = 1 - a e -b" -c e -d" and the constants a, b, c and d are given by Jones [17].

Because of the existence of the integral term in the expression of aerodynamic forces, classical

methods to investigate stability properties of dynamical systems do not work: for example, the

system stability near equilibrium points cannot be analyzed readily since most of the available
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methods for nonlinear dynamical systems are developed for ordinary differential equations. In

order to eliminate the integral term, a new variable is defined as

u(T)= ¢(_ - o)_3/4(_)d_ (14)

Tile aim of successive algebraic manipulations in the Laplace domain (all the equations are

Laplace-Transformed) is to re-write this relationship as a differential equation in the unknown

function u(t). In the following, transformed terms will be denoted by -, while with the letter's' is

denoted the Laplace variable e. The Jones approximation of the Wagner function in the Laplace

domain is

1 a c
_( .....S)=s s+b s+[t

while the Laplace transform ofu is 5(s) = _(s) s _3/4(s, y), where _3/4($, y) = 8_(8, y)"[-3ahS(S, y)"_'-

5(S, y). After some algebraic manipulation, the rational approximation of Theodorsen function is

where it is possible to note the existence of third order derivatives of a and _, with

elo=b+d; en=bd; e12=b+d-bc-ad; e13=l-a-c

At this point, the equation of motion are Laplace transformed and re-written as

el s2_+ e2 s25 ÷ e3 s_--k e4 s5 + e5 _---- -u

e6 s2 _ + e7 s 2 5 + e8 s 5 + e9 M(a) = el4 7_ (16)

with coefficients

1 1 1
e_= 3(1 + u) e2 = ._(-_ + u_) e_= _'<_u e, =

e_= 5u e_= -_ + ,_ _ = g + _ + u_ e_= _ + 2u<oL_U

e_=_(y ) _,= 1+ 2_

Expliciting the higher order derivatives

S2_ _---a41_--_a43_-[-a44s_"_-a45s5-[-f4/'_/'(Of)

where

(17)

and substituting Eq. 17 in the Eq. 15, with the aim of eliminating the second and third derivatives

of a and _, it is possible in the end to obtain the differential equation for u explicited respect to

the tfigher order derivative.

(18)

-'Note that the same procedure cml be developed in the time domain, but the use of differentia[ calculus makes
the things less clear
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e5_7 8.7 -+- e2et4 e3e7
a4l - a43 _- a44

_le7 - e6e2 ere7 - e6e2 ele7 - _6e2

e4e7 - e2e8 e5e6 e6-{.-elel4
a,;5 ---- a51 = as:l --

ele 7 - e6e 2 eie7 -- e6e 2 _le7 -- e6e 2

e3e6 ele 8 - e4e 6 e2e9
a54 = a55-'- f4 =

A __

ete7-e6e2

ele9

ele 7 -- 86e 2

ele7 -- e6e2 e[e7 -- e6e2

Denoting with M' the derivative respect to the variable a of the term M(a) and introducing the
coefficients

a61 :- 0,41[e12 -b e13(a44 -at-0,54)] q- 0,51[e12 + e13(I + a45 Jr-a55)]

a62 = ell

a63 = -<1 + 0,4_[e,2+ <_(a4, + a_4)]+ _3[_12+ <_(1 + a,_ + a_)]

a_ = e_ + e12+ a_[el_+ <_(a_ + 0,_)]+ a_[e_ + <3(l + a_ + _)]
a66 = e13(a43 + a53) - elo

A = A[<: + <_(a_ + 0,_)]+ £[<: + <_(1+ a,s + a_)]
f7 = ela(A+A)

The inverse Laplace transform may be applied to Eqs. 17 and 18, yielding a system of three second-

order differential equation, which may be easily re-written in the first-order linearly-diagonal form

± = Ax + f(x) by using standard techniques.
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1. Introduction

In dynamic response investigations of aircraft structures, classical theories assume linear

aerodynamics and linear structures, so that the a_roelastic equations can be reduced to a

set of linear equations that can be readily solved. However, in many instances, linear aero-

dynamics give insufficiently accurate results. For example, when the airspeed approaches

transonic Mach numbers, linear theory fails to detect the transonic dip and other phenomena

associated with the presence of shock waves. Aircraft structures also can have nonlinearities

that affect not only the flutter speed, but also the characteristics of the dynamical response.

Hence, to obtain a better understanding of the physical and mathematical aspect of non-

linear aeroelasticity, recent research[l l] has been directed towards the study of these two

types of nonlinearities.

Lee et. a1.[8-10] studied a two-degree-of-freedom aeroelastic system with a structural

nonlinearity represented by a cubic restoring spring force. When the system is subject to

an external forcing term with driving frequency w, Lee et. al. derived analytical formulae

that provide amplitude-frequency relationships for the pitch and plunge motion, respectively.

However, for a self-excited system (i.e. in the absence of external forcing term), the reference

frequency w is not known, and the motion can not be determined from the amplitude-

frequency relationships they derived. Several procedures were discussed in [9] to estimate

the frequency value w for the self-excited system, but the results were not satisfactory

except when the velocity U* is very close to the linear flutter speed U_. To overcome this

limitation in Lee et. al.[9] analysis, we apply the centre manifold theory of Cart[l] and

the principal of normal form[13], to derive a frequency relation for self-excited motion of a

two-degree-of-freedom nonlinear system. Using the frequency equation and the amplitude-

frequency relationships, limit cycle oscillation (LCO) for self-excited system can be predicted

analytically.

*This work is supported by the National Sciences and Engineering Research Council of Canada

1Research Student, email: lliu@vega.math.ualberta.ca
2Professor

3Principal Research Officer
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2. Model formulation

The mathematical model presented in this paper is based on a coupled system of non-

linear integro-differential equations. The governing equations are derived for a two-degree-

of-freedom motion of an airfoil oscillating in pitch and in plunge. The plunging deflection is

denoted by h, positive in the downward direction, a is the pitch angle about the elastic axis,

positive with the nose up. The elastic axis is located at a distance ahb from the midchord

while the mass centre is located at a distance x,_b from the elastic axis. Both distances

axe positive when measured towards the trailing edge of the airfoil. The notations used are

shown in Fig. 1. The aeroelastic equations of motion have been derived by Fung[2]. The

equations which include the structure nonlinearities with subsonic aerodynamics are written

as follows[8]:

52 , 52 2 1 P(r)b

¢' + xo_"+ 2¢eb-:_+ (F) G(_)= - --;eL(r) + mU-----_
Q(r) (1)

x-!f " a" 1 , 1 2 ='--_CM(r) +
r2. + + 2¢_-j:a + ('_-7) M(c_) 7r#% mU2r2_

where _ = h/b is the nondimensional displacement and the ' denotes differentiation with

respect to the nondimensional time r defined as r = Ut/b. U* is a nondimensional velocity

defined as U* - U/bwa, and 52 is given by 52 = we/w. , where w e and w_ are the uncoupled

plunging and pitching modes natural frequencies, respectively. Q and _a are the damping

ratios, ro is the radius of gyration about the elastic axis. G(_) and M(c_) are the nonlinear

plunge and pitch stiffness terms, respectively. CL(r) and CM(7") are the lift and pitch-

ing moment coefficients, respectively. For incompressible flow, Fung[2] gives the following

expressions for CL(r) and CM(r) :

1

CL(7") =Ir(¢"- ahc_" -{-(x') + 27r{a(0) + ¢'(0) + (_- ah)ex'(0)}¢(v)

1 ah)_"(_))d_+ 27r f0_¢(r- a)(a'(a) + _"(a) + (-_ -

1 1

c.(r)=_(_+ ._){_(o)+ ¢(o)+ (_- _)_'(o)}¢(_)

1 __ + (21 _ ah)a"(a)}da+ =(_ + _)/. ¢(_ - _){_'(_) + ¢"(_)
7r 1 _ , Ir ,,

+ _ah(¢' -- ah_") -- (_ -- ah)_ --

where the Wagner function ¢(_-) is given by

¢(_) = 1 - ¢,_-_'_- ¢2e-_

and the constants ¢1 = 0.165, ¢2 = 0.335, el = 0.0455, and _2 = 0.3 are obtained from

Jones[5]. P(r) and Q(r) are the externally applied forces and moments, respectively.

To eliminate the integral terms in the integro-differential equations given in (1), Lee et.

al.[8] introduced four new variables:

/: /:
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][ ]0"
The system (1) can then be rewritten in a genera1 form containing only differential operators

as:

Co_" + cla" + c2_' + Cza' + c4_ + c5_ + cowl + c7w2 + CsW3

5J 2
+ + (-5:)

(2)
do_" ÷ dla" ÷ d2a' + dsa A- d4_' -4- ds_ ÷ dswl ÷ dT.w2 ÷ dsw3

+ d9w4 + (_-=.)2M(c0 = g(r)

The coefficients co, cl, ...c9, do, dl, ...d9 are given in appendix A of Ref[ll]. f(r) and g(v) axe

functions depending on initial conditions, Wagner function and the forcing terms, namely,

e(r)bf('r) - ((1/2--ah)V_(O) + _(0))(¢leXe -_'_ + ¢2_2e -_=_) .4. mU----'-T,

g(v) = (1.4.2ah)f( Q(7-)
- "' +

By introducing a variable vector X = (xl,x2, ...Xs) T with xl = a, x2 = a', xs = _, x4 = _',

zs = Wx, xs = w2, xr = ws, and xs = w4, the coupled equations given in (2) can be written

as a set of eight first order ordinary differential equations X' = f(X, r). In this paper, we

assume that there is no external forcing, i.e. Q(r) = P(r) = 0 in (1). For large values of r

when transients axe damped out and steady solutions are obtained, f(r) = 0 and g(r) = O.

Thus, the system can be expressed as X' = f(X), i.e.,

'Xl -- X2

X_ -- a21xl .4. a22x2 .4. a23x3 "4- a24x4 .4. a25x5 -I- a26x6 .4. a27x7

+a2sxs + j(do( c,, 2 x_-) G(3) - co('_-.)2M(x,))

X_ = X 4 .

X_1 ---- a41Xl .4. a42x2 .4. a4sx3 .4. a44x4 .4. a4sxs .4. a4sxs .4. aa_x7

÷a4sxs .4. j(c,('_.. )2M(Xl) - dl(_..)_G(xs)) (3)

X_ -- Xl -- _lX5

X_ = X 1 -- E2X6

!
X 7 -- X3 -- _lX7

?
X8 -- X3 -- _228

The expressions for j, a21, ..., ass, a41, ..., a48 are given in Chapter 5 of Refill].

In this paper, the structual nonlinearities are represented by cubic functions M(cr) and

G(_), such that

M(a) = _,a + _3cr 3 (4)

where f_l and _3 are constants. A Similar expression for G(_) in the plunge degree of freedom

can be written by replacing a with _.
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3. Centre manifold and normal form

Following the analysis presented by Lee, Jiang & Wong[9], the bifurcation parameter is

associated with U °, and the bifurcation value is U_,, which is the value of the linear flutter

speed. To study the dynamic response of the system, we introduce a perturbation parameter

such that I/U" = (1 -_)/U_,. Introducing this expression into (3), an autonomous system

with the bifurcation parameter is obtained, i.e, X' = f(X; 5). The equilibrium points are

then evaluated from f(X; 5) = 0. Without lose of generality, we assume the origin to be

the equilibrium point. The original system (3) can now be rewritten as:

X' = A . X + _B . X + (1 - _)2F(X)

(7=0
(5)

The matrix A is an 8 x 8 Jacobian matrix evaluated at the equilibrium point and the

bifurcation value (i.e. $ = 0). A has one pair of purely imaginary eigenvalue A1 = iwo,

A1 = --iwo, one pair of complex eigenvalue with negative real part, )_2 = b + ic, _2 = b - ic,

azad four negative real eigenvalues A3, A,, As, As. The second and the third terms of equation

(5) axe nonlinear in X and _, and the expressions for B and F are given in Refill].

To apply the center manifold theory, we first transform system (5) to a standard form.

A transformation matrix P is obtained from the eigenspace of A, such that

p-1.A.p=
0 ,12 :=J'

b c 0 0 0 0

-c b 0 0 0 0

0 0 Aa 0 0 0

0 0 0 A4 0 0

0 0 0 0 As 0

0 0 0 0 0 As

_,.

0 w0 )Jl=
-w0 0

y2,...,ys) T, system (5) becomes:Introducing a new variable, Y = p-1 . X=(yl,

(6)y,= j. y_5(p-1. B. P)Y + (1 _8)2p-, . F(P. Y)

_'--0

The dynamic response of system (6), which is in 9-dimensions, can be investigated through

an invariant two-dimensional system. This is achieved by applying the centre manifold

theorygivenbyCarr[1]. LetJa= ( J1 O)0 0 ' YA = (yl, y2, _)r, Ys = (Y3, _4, Ys, Y6,YT,

ys) :r, system (6) can be rewritten as

(7)Y_ = J3. YA+ FA(Y_,YB)
Y$ = J2 Ys + FB(Y_,YB)

where FA and Fs are nonlinear functions of YA and Ys starting from the second order terms

while the first order terms have already been included in the first part associated with YA
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and YB. From the centre manifold theorem given by Carr[1], there exists a centre manifold

H for (6). The important consequence is that the solution of the second system given in

(7) can be expressed as YB = H(YA). Hence, the flow of (7) near the equilibrium point

is governed by Y_ = J3" YA + FA(YA,H(YA)), which is a 3-dimensional system.However,

the exact expression of the function H is often impossible to obtain. Following another

important result given by Cart[l], the centre manifold H can now be approximated to any

desired degree of accuracy. Assuming the polynomial approximation of the centre manifold

H is denoted by ¢ = (Ca, ¢4, ca, Cs, ¢7, ¢8) T, in which:

¢,(y1,Y2,5) = hily15 + hi2Y25 + hiay_ + h_4y_ + h_552 + hisyly2 (8)

i = 3, 4, 5, 6, 7, 8

where h31, h32, ..., has, h41, ..., ..., has are constants to be determined from using the

centre manifold theory. Substituting (8) into the second system of (7): ¢'(YA) • Y._ =

J2"O(YA)+ FB(YA, O(YA)), and applying the first system of (7) to replace Y]: O'(YA)'(Ja"

YA + FA(YA, ¢(YA))) = J2 " ¢(YA) + FB(YA, ¢(YA)), we equate the coefficients associated

with y15, ysb, y_, yg, 6 s, and ylys to obtain a system of 36 algebraic equations with ha1,

h3s, ..., hss as variables. These equations can be solved by a computer program such as

Maple[4]. Extension to a higher order center manifold is straightforward, but the algebra

becomes considerably much more complex.

Once the expression of the center manifold is obtained, the original system will be

reduced to a three dimensional system on the center manifold. Since the solution of the

reduced system will not be exactly indentical to YA, we denote the corresponding solutions

for yl and ys by ul and u2, respectively. Regarding 5 as a parameter, the system is reduced

to two dimensions:

,.,;.= + 5)
LOOU2

= + g2(ul,u2,6)

where gl and gs contain the nonlinear terms as functions of ul, u2 and 5.

(9)

An important

result in the application of the centre manifold theorem is that the asymptotic behavior

of the solutions near the equilibrium point and the bifurcation value of the original eight

dimensional system can now be studied by analyzing the reduced two dimensional system

given in (9).

To simplify equation (9) for symbolic computations, we rewrite the system as:

with

u'= u + F(U) (10)

B= bsl(5) b22(5) ' F(U)= .fs( l, s, 5)

where U = (ul, us) T. The first term B. U is the linear part for Ul, us, and the second term

F(U) is the nonlinear part for ul, us.
Now let the transformation matrices:

1 (
N P

\/hi2+ + - b11)2
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NP-1 = _/b_2+w2 + (a-bl_)2 ( -a+b'lb12ww b12 )0 "

where _ = ½(b_ + b,_), w = x/b_b2_ - b,2b.z_ - a s. By introducing a new variable Y =

NP-' . U, Y = (yl, y2) T, U = (ul,u2) T, system (10) can be transformed into the standard
form:

y, = j. y + Np-1 . F(NP. Y)

i°e°

(11)
y_ = wyl + aY2 + F_(yl, Y2, (5)

where F1, F2 are nonlinear terms of Yl and y2 , a and w are related to the parameter (5.

The complex form of system (11) can be written as:

Z' - AZ + h(Z, 2)

where A((5) = a(_)+iw(_), Z = yl +iy2, h(Z, 2)includes nonlinearities of Z and 2 starting

from the second order terms.

By the principle of normal form, we now introduce the near identity transformation:

z = v + g(y,

where V is a new variable, and g includes the second and the third order nonlinearities of

V and V. The normal form of the system (10) can be expressed as:

V' = AV + F21V2V

where F21 is a complex number whose value is related to (_.

Taking a((5)= Re(F2,) and b((_)= Ira(F21), we express Y = r(r). e°(*), and write the

normal form in polar coordinates as:

v_ - cxr + ar 30' = w + br 2

Expanding the coefficients a, w a and b at (5 = 0, the above system becomes:

'= _(0)_r + a(0)r _ = r(_(0)_ + a(0)r _)O' = ._(0) + d_(O)(5 + b(O)r 2 = (oJ(0) + &(0)$) + b(O)r 2 (12)

Note that the prime denotes derivatives with respect to r and the dot denotes derivatives

with respect to _. The stability of the fixed point and the periodic orbit can be analyzed.

Furthermore, the frequency of the limit cycle oscillations can be predicted from a frequency

equation given by:

b(0)&(0))$ (13)
w -wo + (&(0) a(0)
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The az-nplitude of the motion of the original system can be predicted from the reduced

system on the center manifold. However, due to errors introduced in approximating the

centre manifold, the predicted amplitude value may not be sufficiently accurate. For an

autonomous system, Lee et al.[9] derived the following amplitude-frequency relationship

using the standard perturbation method:

r 2 = A(w)R 2
(14)

where R and r denote the amplitude for pitch and plunge motion, respectively, fl, f2 and A

are functions of w and the aerodynamic parameters, and they are defined in Ref[9]. Together

with the frequency equation given in (13), the amplitude of the limit cycle oscillation can

be predicted.

4. Case studies and discussion

To illustrate the accuracy of the analytical formulae given in equations (13) and (14) in

predicting the frequency and amplitude of limit cycle oscillations, we consider the following

two examples. In both cases, the analytical predictions are compared with solutions obtained

by using the Runge-Kutta fourth-order numerical time integration scheme applied to the

system (3).

In the first example, we investigate the aeroelastic system with only a cubic structural

nonlinearity in the pitch degree of freedom, i.e., M(a) = a + 3a 3, G(_) = _. The elastic

axis of the airfoil is placed at the 1/4 chord point (i.e. ah = --1/2), the other coefficients in

system (3) are given by # = 100, x_ = 1/4, Q = _ = 0, r_ = 0.5, and 5: is varied.

Since _o = Q = 0, it is more convenient to define the bifurcation parazneter _ as

1/(U*) 2 = (1- $)/(UL) 2. This will simplify the algebraic computations, while achieving the

same result as that of using _ as 1/U* = (1 - $)/U_. For different &, the bifurcation value

U_ is different, thus results in different frequency equations.

For the system parameters used, U_ = 6.28509 for _ = 0.2. The approximate centre

manifold is given by:

! ¢3 = -2.278662600y, $ - 2.932984813y2

¢4 = 5.389063673yi _ - 3.395569702y2

¢5 = -2.576198739yl _ + 0.5470484684y25

¢6 = -0.03759292923y, $ + 0.05243761634y2

q_r = 0.01137223245y15- 0.01813461435y2_

Cs = - 7.328109745y1_ + 0.4092693894y_

Substituting y3 = ¢3, y4 = ¢4, ys = ¢5, y8 = ¢8, y7 = ¢7, ys = Cs into the first two equations

of (7), a governing system of equations for yl and y2 is obtained. Note that by replacing

yi using the above expressions given in ¢{, for i = 3,4,5,6, 7,8, the solution for system (7)

can be approximated by explicit functions in terms of y,, y2 and 6. However, yl, y2 are no
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longer exactly identical to those defined in the original system (6), hence we denote yl and

yz by ul and us. Therefore,

u 1' = -.08404421373u2 - .0050021860455ul + .022980152615u2

+.000001060912229u_ -.O0001078496711u_u2 + .07708383842_2ul

+.00003654575512ulu_ -.00004127944026u_ -.0650846606252u2

u2r = .08404421392ul - .1034553702_ul + .32103453635u2

+.00002847473453u_ -.0002894669955u_u2 + .3223789845_2ul

+.0009808829109ulu_ -.001107934352u_ - 1.28147395052u2

Transform this reduced system into a standard form, rewritting the standard form in com-

plex form, and introducing the near identity transformation, we obtain the normal form.

Applying Taylor expansion to the coefficients of the normal form expressions in polar coor-

dinates, the coefficients in Eq.(12) are given by:

w(O) =Wo = 0.08404421382

&(O) = - 0.06321776140

=0.1580161751
a(0) = - 0.0002233463476

b(0) =0.00007505815011

By analyzing system (12) with these results, we can verify that when (f < 0, the equilibrium

point is asymptotically stable, which means that for U* < U?., all motions will finally decay

to zero amplitude. For 5 > 0, the equilibrium point becomes unstable. However, there is a

stable periodic orbit with a frequency w = 0.0840 - 0.0101(i when 5_ = 0.2.

For different values of _, and using the same procedure, we derived the corresponding

frequency relation which depends on the bifurcation parameter d_(or the ratio 7 = U*/U_,)

as shown in Table 1. Numerical simulations using Runge-Kutta scheme were carried out to

compare with the analytical predictions.

Table 1. The frequency relationship with the bifurcation parameter

7= v'/v;..

0.2

0.4

0.6

0.8

1.0

0.0840 - 0.0101 *

0.1192 - 0.0333 *

0.1730 - 0.0616 *

0.2244 - 0.0823 *

0.2522 - 0.0702 *

0.0739 + 0.0101/72

0.0859 + 0.0333/72

0.1114 + 0.0616/72

0.1421 + 0.0823/72

0.1820 + 0.0702/72

uL
6.28509

5.23376

4.40100

4.11454

4.33559

In Figs 2(a) and 2(b), we display the frequency and the amplitude for pitch motion

that are predicted using the analytical formulae (13) and (14) when _=0.2. These results

are compared with numerical simulations, and it is shown that excellent agreement in both

frequency and amplitude of the limit cycle oscillations is obtained.

In the second example, we consider an aeroelastic system with cubic structural nonlin-

earities in both pitch and plunge. Here, M(a) = a + flaot 3 and G(_) = _ + fl¢_3, where
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j3_ = 40 and _e = 0.1. The other coefficients are the same as defined in the previous example

with _ varying. For different ¢0, with the corresponding bifurcation value U_, the frequency

relations with the bifurcation parameter 6 = 1 - (U_/U*) 2 are obtained. In the derivation

of the frequency equation for a fixed value of _, we can show that when either _ or fie is

zero, the nonlinear coefficients do not affect the resulting frequency. When both coefficients

fl_ and fie are presence but fl_ >> _e, then the frequency relations is not sensitive to the

values of fl_ and fie. Hence, for the example considered here where/5_ = 40 and fie = 0.1,

the frequency equations for a given _ are almost the same as those reported in Table 1.

However, the corresponding amplitudes give by Eq.(14) are dependent upon the nonlinear

coefficients flo and/3e. In Figs (3a) and (3b), we display the frequency and the amplitude

for the pitch motion for _ = 0.2. These results show that the agreement with numerical

simulation is excellent.
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WING STRUCTURES USING

SELF-SENSING ACTIVE CONSTRAINED LAYER DAMPING

Jeng-Jong Ro and Ehab Elsaadawy

Aerospace Engineering Dept.

Old Dominion University

Norfolk, VA 23529

jY3o ?

ABSTRACT

Active Constrained Layer Damping (ACLD) treatment has been used successfully for

controlling the vibration of various flexible structures. The treatment provides an effective

means for augmenting the simplicity and reliability of passive damping with the low weight and

high efficiency of active controls to attain high damping characteristics over broad frequency

bands. In this study, a self-sensing configuration of the ACLD treatment is utilized to

simultaneously suppress the bending and torsional vibrations of plates and flutter control of a

plate-wing structure. The treatment considered ensures collocation of the sensor/actuator pairs in

order to guarantee stable operation.

First part of this study, a three-layer network of the Self-sensing Active Constrained

Layer Damping (SACLD) treatment is used to control multi-modes of vibration of a flexible

aluminum plate (0.264m x 0.127m x 4.826E-4m ) which is mounted in a cantilevered

arrangement. Two ACLD patches (0.264m x 0.0635m) with self-sensing polyvinylidine fluoride

(PVDF) actuators oriented by (14°/-14 °) configuration are treated on one side of plate. The

theoretical characteristics of the multi-layer treatment are presented in this paper and compared

with the experimental performance.

Secondly, the concept of vibration control using SACLD/plate is implemented to perform

the flutter suppression experimentally. The experimental demonstration of flutter control of the

SACLD/plate-wing structure is performed in the Low Speed wind Tunnel (LST) at Aerospace

Department at ODU. Simple linear control with self-sensing strain and strain rate feedback is

utilized to study the performance of the SACLD/plate in flutter control.

1. INTRODUCTION

The ACLD treatment combines the attractive attributes of both the passive and active

controls to achieve optimal vibration damping. In general, the ACLD system includes several

elements: a piezoelectric element as the active constraining layer, a viscoelastic element as the

constrained shear layer, a sensor sensing the vibration and a feedback controller as shown in

Figure (1). The effectiveness of ACLD treatments and its high rate of energy dissipation as

compared to conventional constrained layer damping are attributed to the enhanced shear strain
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of the viscoelastic layer which is produced by extension/contraction of the piezo-actuators TM.

Such characteristics make the ACLD treatment provide a practical means for controlling the

vibration of massive structures with the currently available piezoelectric actuators without the

need for excessively large actuation voltages.

I
Bl_Ym

_¢" Ni I _. _'_ rl,d_ --,,_

_I,A_II ... '::_;:':';:' _ II'IIIZ_"II'IC'tlIIg

I

Figure (1) - Schematic drawing of Active Constrained Layer Damping (ACLD) treatment.

A new type of Self-sensing Active Constrained Layer Damping (SACLD) which

combines the ACLD configurations with self-sensing polyvinylidine fluoride (PVDF) actuators

was developed by Yellin and Shen 5. The actuator and the sensor are combined into a single

element called a self-sensing actuator. The self-sensing PVDF actuators have the advantage of

being truly collocated compared to separated sensor and actuator in close proximity. Collocated

control has been shown to have many advantages relating to the closed-loop stability. Goh and

Caughey 6 demonstrated that without considering the dynamic characteristics of sensors and

actuators, the collocated control structures are unconditionally stable at all frequencies.

Several researchers have studied the applications of the self-sensing piezoelectric

actuators. Dosch, et al. 7 developed a self-sensing technique to actively damp the vibration in a

cantilever beam with rate feedback control and positive position feedback control. In their study,

a simple analog bridge circuit was developed to implement the self-sensing actuator for

measuring either strain or rate of strain in the actuator. Anderson and Hagood 8 investigated

several important issues related to the modeling and implementation of a self-sensing

piezoelectric actuator. The study showed that small change in the bridge circuit impedance

would significantly alter the open-loop zeros and degrade the closed-loop system performance.

It emphasized that the critical step in designing the bridge circuit is an impedance match between

the self-sensing piezoelectric element and a reference impedance. Vipperman and Clock 9

presented a LMS-based adaptive algorithm implemented on a digital signal processor. The

algorithm is used to compensate for the mismatch between the self-sensing piezoelectric element

and a reference impedance in the bridge circuit.

The first section of the current study, the first bending and torsional modes of a

cantilevered plate are controlled with a SACLD treatment. The plate is fully treated with two

patches of SACLD with (-14/14 ) oriented PVDF actuators. The two self-sensing PVDF

actuators act as two independent actuating units in order to control either the bending or torsional

mode. A bridge circuit is setup to implement the self-sensing actuator for measuring either strain

or rate of strain in the PVDF actuator. The reference capacitors are carefully tuned to match the

impedance of PVDF actuators. The finite element model of the SACLD treated plate is utilized
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to predictthe effectivenessof the self-sensingPVDF actuators. The theoreticalpredictionsare
verifiedwith experimentalresults.

Fluttercan bedefinedasthe dynamicinstability of an elasticbody immersedin an air-
stream. Theflutter of plate-wingstructureis dominatedby first bendingandtorsionalmodesof
vibrationof structures.Flutter often leadsto a catastrophicstructuralfailure; therefore,a flutter
suppressionsystemis alwaysrequiredto improvetheflutter performanceandto enhanceservice
life of the aero-stmctures 1°-13. The flutter control mechanics of SACLD treated plate-wing

structures can be described in the following. Firstly, a SACLD/plate-wing structure can be

utilized to suppress the flutter by actively controlling the coupling between first bending and

torsional modes of vibration. Secondly, the flutter suppression is achieved by passively

increasing the structural damping of plate-wing system with SACLD treatment.

This paper is organized in five sections. In Section 1, a brief introduction is given. In

Section 2, a finite element model of SACLD-treated plate is developed. The performance of the

SACLD-treated plates is presented in Section 3 along with comparison with the theoretical

prediction. Section 4 experimentally demonstrates the effectiveness of flutter control of

SACLD/plate-wing structures. Section 5 summarizes the conclusions of the present study.

2. FINITE ELEMENT MODELING

A finite element model is presented in this section to describe the dynamics of plates

treated with SACLD. Figure (2) shows a schematic drawing of the SACLD treatments of the

sandwiched plate which is divided into N finite elements. It is assumed that the shear strains in

the piezo-electric layers and in the base plate are negligible. The transverse displacement, w, of

all points on any cross section of the sandwiched plate are considered to be the same. The

damping layers are assumed to be linearly viscoelastic with their constitutive equations described

by the complex shear modulus approach such that G2=G2'+jrlG2'. In addition, the top

piezoelectric layer, the viscoelastic core and the base plate are considered to be perfectly bonded

together.

The elements of treated plate are considered two-dimensional elements bounded by four

nodal points. Each node has seven degrees of freedom to describe the longitudinal

displacements ul and vl of the constraining layer, u3 and v3 of the base plate, the transverse

displacement w and the slopes W,x and W,y of the deflection line. The deflection vector {5} can
be written as:

{5} = {ul,v,,u;,v,w,w ,w }'

:[{N,}{N2} {N,}{N,}
(1)

where {5 e} is the nodal deflection vector, {N1}, {N2}, {N3}, {N4}, {N5}, {Ns},x, and {Ns},y are

the spatial interpolating vectors corresponding to ul, Vl, u3, v3, w, W,x, and W,y respectively.

Subscripts ,x and ,y denote spatial derivatives with respect to x and y, respectively.
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Figure (2) - Schematic drawing of a plate with SACLD patch.

Consider the following energy functional lip for the treated SACLD plate system:

lip = fv(U- T_ + W, + W_)dV, (2)

where U is the strain energy, TK is the kinetic energy, We is the work done by external forces, Wc

is the work done by the control forces and moments and V is the volume of the plate.

Minimizing the plate energy functional using classical variational methods such that

{Ol'Ip/b{_" }}= 0 leads to the following finite element equation:

[MI,{S'}+[K], }={Fo (3)

In the above equation [K]i, [M]i, and {Fc}i, are the plate stiffness matrix, mass matrix and piezo-

electric forces and moments 1, respectively. Equation (3) describes the dynamics/control of a

single SACLD treated plate element in a matrix form. Assembly of the corresponding stiffness

and mass matrices for the different elements and applying the proper boundary conditions yields

the overall stiffness and mass matrices for the entire SACLD/plate system. The resulting

eigenvalue problem is then utilized as a basis for optimizing the dynamic characteristics of the

open-loop system (i.e. the Passive Constrained Layer Damping treatment (PCLD)) and the

closed-loop system (i.e. the Self-sensing Active Constrained Layer Damping treatment).

3. PERFORMANCE OF VIBRATION CONTROL OF THE SACLD TREATED PLATES

In this section, the experimental investigation of the performance of the SACLD/plate

system is reported. Also comparisons between the predictions of the finite element model and

the experimental results are presented. The theoretical predictions of the first bending and

torsional modal frequencies and modal damping ratios of a cantilevered SACLD treated plate are

determined when using PCLD and SACLD treatments with a proportional and derivative
controller.
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3.1 Experimental setup

Figure (3) shows a schematic drawing of the experimental set-up and the associated finite

element mesh along with the boundary conditions used in this study. The plate is divided into

1 lx7 grid with 60 SACLD/plate elements having 490 active degrees of freedom. The set-up

includes an aluminum rectangular plate which is fully treated with two SACLD patches. The

geometry of the plate is 0.264m long, 0.127m wide and 0.4826mm thick. It is mounted in a

cantilevered configuration. The material properties and thickness of piezo-electric material layer

(part number:l-1003702-8NiA1, AMP Sensors Inc., Valley Forge, PA) and the viscoelastic layer

(DYAD 606, Soundcoat, Dear Park, NY) are listed in Table (1). An acoustic exciter is utilized

to excite the system with multi-sine sweep. The sweep frequency range is selected to be from 1

Hz to 30 Hz in order to excite both the first bending and torsional modes. A laser sensor (Model

MQ, Aeromat Corp., NJ) is used to measure the bending and torsional vibrations of the treated

plate at node 77 as shown in Figure (3). The signal of the laser sensor is sent to a spectrum

analyzer to determine the frequency content and the amplitude of vibration. As shown in Figure

(3), two surface-bounded self-sensing PVDF actuators are oriented by 14" and -14 ° with respect

to the nodal line of first torsional vibration of the plate. The orientation angle is determined by

the width-to-length ratio of the SACLD patches. With such an arrangement, the two halves of

SACLD can be utilized to detect the bending and torsional modes of vibration of the plate. With

two anti-symmetric sensor/actuator pairs, the sensed signals are in-phase for bending vibration

and out-of-phase for torsional vibration. Thus, active control of bending vibration can be

achieved by feeding back the two in-phase signals to the two PVDF actuators. Similarly, active

control of torsional vibration can be accomplished by feeding back the two out-of-phase signals

to the two PVDF actuators, respectively. The desired control action is then obtained by sending

the output signals to two bridge circuits respectively. The bridge circuits are used to subtract the

effect due to the applied control voltage from the PVDF actuator's output signal, leaving only the

signal resulting from the piezoelectric strain or rate of strain. A reference capacitor is used to

match the capacitance of PVDF element. The output signals from the bridge circuit are sent to

high voltage amplifier as the control voltage. Design details of the bridge circuits are given by
Dosch and Inman 7.

It is worth mentioning that controlling the bending and torsional modes of vibration can

be achieved by two independent controllers with the two properly-oriented SACLD patches.

When the plate is subjected to bending modes, the piezoelectric sensor signals are in-phase and

so are the two piezoelectric control forces. Hence, the y components of control forces will be

eliminated. This arrangement will significantly reduce the control spillover to the torsional

modes when the bending modes are controlled. Similarly, when the plate is subjected to

torsional modes of vibration, the two piezoelectric sensor signals are out-of-phase and so are the

two piezoelectric control forces. Accordingly, the x components of the control forces will be

eliminated reducing the control spillover to the bending modes.

3.2 Experimental Results

Figure (4-a) shows a plot of the normalized experimental amplitudes of vibration of the

plate for different strain feedback control gains. According to Figure (4), amplitude attenuations

of the first bending mode of 75.30%, 92.365% and 96.69% are obtained for control gains of 250,
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600, and 1300, respectively. The correspondingattenuationsof the first torsional mode are
21.3%, 21.12% and 35.05% for control gains of 250, 600 and 1300, respectively. Such
attenuationsarenormalizedwith respectto the amplitudeof vibrationof uncontrolledplate, i.e.
plate with PCLD treatment. Themaximumcontrol voltagesare42.7volt, 55.2volt and93.1volt
for controlgainsof 250,600 and1300,respectively.

Figure(3) - Schematicdrawingof theexperimentalset-upandassociatedfinite elementmesh

Table(1) - Physicalandgeometricalpropertiesof the SACLD treatment

Layer
I

Viscoelastic

Thickness(m)

5.08x10 4

Density(Kg/m 3)
II

1104

Modulus(MPa)

30**

PVDF 28x10 -6 1780 2500*

* Young's modulus ** Shear modulus

Figure (4-b) displays the vibration amplitudes for different strain rate feedback gains.

The corresponding experimental attenuations of the vibration amplitude of fundamental bending

mode obtained are 60.8%, 84.55% and 91.56% for control gains of 250, 600, and 1300,

respectively. The corresponding attenuations for the torsional mode are 53.78%, 73.99% and

84.07% for the same set of control gains. The maximum control voltages are 43.7volt, 59.2volt

and 82.1volt for control gains of 250, 600 and 1300, respectively.

It is clear that increasing the control gain has resulted in improving the attenuations of the

plate vibration. It is evident that the SACLD treatment has produced a significant attenuation of

both bending and torsional modes of vibrations simultaneously as compared to the attenuations

produced by conventional PCLD treatments.
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Figure (4) - Vibration amplitudes of the SACLD-treated plate for different control gains with

(a) strain feedback (b) strain rate feedback.

Figures (5) and (6) present comparisons between the theoretical and experimental natural

frequencies and the loss factor for different control gains. Close agreement between theory and

experiment is evident. Note also that increasing the control gain has resulted in increasing the

damping ratio for SACLD treatments. The comparisons emphasize the effectiveness of the
SACLD treatment in acquiring the large damping ratio to simultaneously attenuate both the

bending and the torsional structural vibrations.
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4. PERFORMANCE OF FLUTTER CONTROL OF THE SACLD TREATED PLATES

The test facility used in the experimental demonstration of the effectiveness of

SACLD/plate-wing structures in flutter suppression is the ODU low-speed wind tunnel. The

tunnel is of the closed-return type, fan driven and has a test section of 1.2192m (wide) by

0.9144m (high) by 2.4384m (long). The lower bound of the speed range is 10 rn/sec, which is

set by the fan stability while the upper bound, set by the maximum driven power, is 55 m/sec. A

Virtual Instrument (VI) was designed and built using LabView (National Instrument) to enable

performing the measurements of the flow velocity in the test section. The experimental setup as

shown in Figure (3) is installed vertically in the test section of the tunnel. The response at node

77 is measured by the B&K laser velocity transducer type 3544.

Figures (7-a, b) present the frequency response at node 77 for three different strain and

strain rate feedback control gains, Kp, d = 0, 75 and 300, respectively, The flow speed is aet at

22.93 m/sec which corresponds to the critical flutter speed of SACLD/plate-wing without control

(PCLD). According to Figure (7-a), the flutter suppression is 93% for Kp = 75 with averaged

control voltage 87V. The flutter can be completely suppressed for Kp = 300 with averaged

control voltage 340V. Given that the strain rate feedback control is not effective in the low

frequency range, the flutter suppressions are 23.6% and 82.23% for I_= 75 and 300,

respectively.

Figure (8) shows the critical flutter speed for untreated plate, PCLD/plate and

SACLD/plate with Kp, d = 75, 150 and 300, respectively. According to Figure (8), the critical

flutter speed can be increased from 22.46 m/sec for untreated plate to 28.28 rn/sec for

SACLD/plate with Kp=300. It corresponds to 25.91% increase in flutter speed. Thus, Figures

(7) and (8) clearly demonstrate the effectiveness of the flutter control of SACLD/plate-wing

structures.
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5. SUMMARY

This paper has presented theoretical and experimental comparisons between the

frequency and damping characteristics of plates treated with SACLD in vibration control. The

dynamic characteristics of the treated plates are determined for different proportional and

derivative control gains. The fundamental issues governing the performance of this class of

smart structures have been introduced and modeled using finite element method. The accuracy

of the developed finite element model has been validated experimentally. The effectiveness of

the SACLD treatment for simultaneous attenuation of both bending and torsional modes of

vibration of the plates has also been clearly demonstrated. The results obtained indicate that the

SACLD treatments have produced significant attenuation of the structural vibration as compared
to conventional PCLD.

The developed experimental techniques with relatively simple, linear feedback control

have been successfully used to suppress flutter as presented in this paper. The performance of

SACLD/plate in flutter suppression is experimentally demonstrated for strain feedback and strain
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rate feedback with different levels of control gains. The results show that the flutter response

can be completely suppressed and the flutter speed can be significantly increased. Much higher

flutter speeds might be obtained by selecting an appropriate control law and optimal gains.

Although this study has focused on the control of plate-wing like structures using fully treated

SACLD with a simple linear controller, optimal design, control and placement of partial SACLD

treatments for more complex structures are natural extension of the present study.
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ABSTRACT

Several analytical and experimental studies clearly demonstrate that piezoelectric materials (piezoelectrics) can be

used as actuators to actively control vibratory response, including aeroelastic response. However, two important

issues in using piezoelectrics as actuators for active control are: 1) the potentially large amount of power required to

operate the actuators, and 2) the complexities involved with active control (added hardware, control law design, and

implementation). Active or passive damping augmentation using shunted piezoelectrics may provide a viable

alternative. This approach requires only simple electrical circuitry and very little or no electrical power. The current

study examines the feasibility of using shunted piezoelectrics to reduce aeroelastic response using a typical-section

representation of a wing and piezoelectrics shunted with a parallel resistor and inductor. The aeroelastic analysis

shows that shunted piezoelectrics can effectively reduce aeroelastic response below flutter and may provide a simple,

low-power method of subcritical aeroelastic control.

1. INTRODUCTION

Over the last decade, smart material-based actuation systems (or "smart devices") have been studied as potential

alternatives to the use of conventional control mechanisms for controlling aeroelastic response. The use of smart

devices introduces a unique facet in controlling dynamic aeroelastic response: the use of structural forces, as opposed

to aerodynamic forces, for control. The ability to effectively and efficiently control structural response via internal

structural forces or dampers may allow aircraft designers to take advantage of the inherent flexibility in air vehicles to

create more efficient structural designs that may also improve flight performance. Ultimately, the use of smart

devices can be used in combination with conventional aerodynamic control surfaces to allow for many new active

and/or passive aeroelastic control approaches.

Due to their 20 KHz bandwidth and effectiveness in strain actuation, piezoelectric materials used as actuators have

been the smart device of choice for aeroelastic control applications. Numerous studies have shown that piezoelectric

actuators can be used to control structural and aeroelastic response. References 1 - 3 provide comprehensive

overviews of work in aeroelastic control using piezoelectric and other smart materials-based actuators. In particular,

the research described in references 4, 5, and 6 were instrumental not only in demonstrating the benefits of using

piezoelectric actuators for active aeroelastic control, but also in addressing some of the many realistic issues

associated with applying piezoelectric actuators to large and full-scale structures. Two critical issues in using

piezoelectrics as actuators for active control are the potentially large amount of power required to operate the

actuators and the complexities of active control. For example, reference 7 states that the power required to control a

structure using piezoelectric patch actuators is a function of the voltage squared. Since high voltages (i.e., 200 volts)

and a large number of piezoelectric actuators are typically required to control vibration on large structures, the

amount of power required can be considerable. Secondly, active control approaches using smart or conventional

actuators generally have the additional complexities of a control law, substantial additional hardware, and possible,

unplanned instabilities caused by the control law.

One potential alternative is damping augmentation using shunted piezoelectrics. This approach allows for active or

passive damping augmentation, yet cannot cause instability. Furthermore, shunted piezoelectrics use little to no

power and are simple to apply; the only necessary hardware is the piezoelectrics themselves and simple electric

circuitry using resistors and inductors. The present research examines the feasibility of using shunted piezoelectrics

(shunted by a parallel resistor and inductor) to reduce aeroelastic response at speeds below flutter. A typical-section
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representation of a wing is used and the shunted piezoelectrics are represented as a damped vibration absorber placed

on the elastic axis of the wing. The analytical approach taken in the current work is an extrapolation of existing

analytical methods, which primarily focus on application of shunted piezoelectrics to simple beams and plates. As

such, following background information, this report first documents the application of shunted piezoelectrics to a

simple one-dimensional structure and discusses the constraints and assumptions made in the existing analytical

methods. Following this, the aeroelastic equations of motion axe derived for a two degree-of-freedom typical wing

section with shunted piezoelectrics placed on the elastic axis. Using this aeroelastic model, the response of the

typical section to external forcing functions is shown at several airspeeds. Observations as to the response reduction

are provided and the potential impact on future air vehicle designs are discussed. All derivations in the current

document are summarized to save space. A more detailed analysis can be found in reference 8.

2. BACKGROUND

A number of studies have been conducted on the behavior of electric circuits used for shunting. 9-24 In particular,

reference 9 presents a derivation of the effective mechanical impedance for a piezoelectric shunted by an arbitrary

circuit. This work focused on resistive and series resistor, inductor, and capacitor (RLC) circuits and forms the basis

for the present work. In addition, references 18 and 19 discuss the parallel RLC shunt circuit and follow the

methodology of reference 9 to develop an associated analytical model; these references are also used for the current

work. Furthermore, in reference 20, Wu shows experimental results using parallel RLC circuits to add damping to

multiple modes.

The foregoing research efforts clearly demonstrate the effectiveness of using shunted piezoelectrics to reduce

vibration amplitudes. Reference 21 presents a good discussion of the some of the practical limitations and some

analytical models. In addition, reference 22 provides a comparison of the use of piezoelectrics for damping

augmentation versus constrained layer damping. Application of shunted piezoelectrics to a variety of areas has been

considered (although not all results have been published) including vibration suppression and acoustic damping on

flight vehicles, space structures 23, and machinery. In some cases, simple scale-model experiments have been

conducted. Although many researchers have demonstrated the viability of shunted piezoelectrics in laboratory

experiments with much success, commercial or full-scale demonstrations are limited. As mentioned earlier, the

current work seeks to analytically examine the feasibility of using piezoelectrics, shunted via a parallel resistor and

inductor, to reduce aeroelastic response. The analysis allows numerous observations and conclusions; however, final

application in an aircraft wing or tail will certainly require considerable additional research and, of course,

experimental studies.

A parallel RLC shunt circuit was chosen for the current study because it is much more effective than a resistive shunt

circuit and it is easier to tune than a series RLC shunt circuit. In practice, use of a parallel or series RLC shunt

circuits usually requires a simulated inductor. Without the simulated inductor, large and heavy inductors would be
required to shunt the average-sized piezoelectric. 18 Reference 12 shows that lightweight, compact, simulated

inductors can be created using operational amplifiers and resistors. Furthermore, use of a simulated inductor enables

active shunting wherein the shunt circuit is actively "tuned" as the host structure changes. More discussion of tuning

the shunt circuit is provided subsequently. The analysis for the current feasibility study begins with the piezoelectric

constitutive relations, which are augmented to include the effects of the parallel RLC shunt circuit.

2.1 Piezoelectric constitutive relations

The piezoelectric constitutive equations, assuming linearity and uniaxial loading are well documented. Addition of

the shunt circuit is accomplished by augmenting the electrical impedance in the constitutive equations with that of a

parallel RLC electrical circuit. For the current study, conventional, one-way electro-mechanical coupling was

employed such that the coupled (open-circuit) compliance with the addition of the shunt circuit is:
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OC SH I_X OC PZT _ 'S2RLC S+_'L +R

st,' _s)=s,,' [(l- (l)k,,_)(_L+R)+ _2_C _

coupling coefficient, k31, simplicity kij --d SCT_iThe electro-mechanical is used for where: _j/_' and e is the dielectric

constant. 25 In equation 1, the follow definitions were used: _"is the Laplace variable, C S is capacitance at constant

strain, R is resistance, and L is inductance. The compliance shown in equation 1 will be used to represent the

compliance of the shunted piezoelectric in the subsequent equations of motion. Recall that uniaxial loading of the

piezoelectric was assumed; as such, equation I only reflects the compliance in extension (the "I" direction in Figure

1).

3. SHUNTED PIEZOELECTRICS APPLIED TO A GENERIC HOST STRUCTURE

3.1 Description of the analytical model

Application of shunted piezoelectrics to a generic host structure is considered to form a basis for the more complex

aeroelastic studies that will be examined next. Moreover, application to a generic structure allows for clear

examination oft he general characteristics of shunted piezoelectrics and examination of the implications of the

assumptions and constraints employed in the current analytical methods. The analytical methods presented in

references 9 and 18 were primarily followed with a few noted exceptions.

The equation of motion for a generic host structure with a surface-bonded piezoelectric, as shown in Figure 2, is

developed based on the following assumptions:

1) The thickness and length of the piezoelectric are small compared to that of the host structure.

2) The inertial effects of the piezoelectric are negligible.

3) The piezoelectric is poled in the "3" direction and only displacement in the "1" direction is considered. This

assumption is consistent with the assumption of uniaxial loading on the piezoelectric.

4) An external shunt circuit consisting of a resistor and inductor connected in parallel is attached to the electrodes of

the piezoeleclric creating a parallel resistor-inductor-capacitor electric circuit.

The "1" direction of the piezoelectric is perpendicular to the bending node lines of the host slructure, such that

the shunted piezoelectric acts primarily to reducing bending response. Thus, torsion vibration modes are largely

unaffected by the damping characteristics of the shunted piezoelectric and are not represented in the equation of
motion.

Damping in the host structure is negligible.

5)

6)

Considering the bending degree of freedom only, the equation of motion in terms of Laplace transforms and the

mechanical impedance of the host structure with shunted piezoelectrics is:

Zsv'_s(s')= ms_S " + Ksr_ + Z_z_(_" ) (2)
S

The mass of the piezoelectric can easily be included in the equations of motion by adding the term mpzr_". However,

as mentioned in the assumptions above, this term is normally not necessary since the inertial characteristics of the

piezoelectric are negligible for most applications. The mechanical impedance of a shunted piezoelectric can be
modeled as:

Z,z,_T(_.)= KpzT(_')= T,(_).A, = A,
OC,SH_'-S, ('_)-L, "F.L, .s,, (s) (3)

where the extensional stiffness of the piezoelectric in the 'T' direction is used (see Figure 1). There are a few

important observations concerning the use of the extensional stiffness of the piezoelectric. Though the extensional

stiffness of the piezoelectric is considerable (piezoelectric materials have a Young's Modulus on the order of

aluminum), that stiffness does not significantly affect the response of the host structure primarily because the

piezoelectrics are short and thin compared to the host structure. Thus, the effect of this stiffness on the response of

555



the host structure is negligible unless numerous piezoelectrics are used. In addition, it is important to remember that

the above equations were developed assuming a simple, lumped-parameter system. To obtain the best results using

this idealization, use of experimentally-measured values for the natural frequency of the host structure are required.

Alternatively, a more rigorous definition of piezoelectric stiffness can be used, an example of which is derived in
reference 26.

Referring again to equation 3, the open-circuit compliance of the shunted piezoelectric (from equation 1) must be

incorporated. Thus, including the mechanical impedance of the shunted piezoelectric into the equation of motion

(equation 2) yields:

Z,_sh(_') = ms=g + (Ksr_ +KSCr) _(K_T 1 k,,a(s-'RLC s)
_. _ )(_.=RLCS+_.L+R) (4)

where: KSCT= A,/(L,s_c) andK_T = Al/(L,s_)aretheshort-circuitand open-circuitsfiffnessesof thepiezoelectric,

respectively.Note that, scKvzr isthestiffnessofthepiezoelectricwithoutany externalelectricalstimulus(i.e.,shunt

circuitorcontrollaw input).Then, itfollowsthatthenormalizedresponseofthehoststructureresponseis:

X(_') -(G 2 - f2=)+i2_G

The following dimensional and nondimensional terms are used for simplification: X_ (g) = F(_')/Ks= ;

_0sca = (Ks= + K scr )/ms= ; coocz = (Ks= + K _ )/msrR; K,,' = (¢ooc =-¢Osc =)/¢zsc2 (which is the generalized electro-

mechanical coupling coefficient); %= = 1/(LCS); ; = 1/(2RCS%c); _' =m_=/,osc =;and, G =c0/msc. Furthermore,

based on the above terms, the inductance in the shunt circuit is defined as: L = 1/(COsc=f_2Cs). Likewise, the resistance

is defined as: R = 1/(2msc;CS).

Several important observations can be made regarding the above nondimensional parameters. First, the short-circuit

natural frequency, ¢oSC, is the natural frequency of the system without any external electric stimulus. Thus, for the

model considered, o_SC represents the bending natural frequency of the structure including the stiffness of the

piezoelectric but not the effects of the shunt circuit. Second, the generalized electro-mechanical coupling coefficient,

K3z, is the ratio of the short-circuit modal stiffness of the piezoelectric to the total system modal stiffness. As such,

K3_ is proportional to the fraction of system modal strain energy that is converted to electric energy by the open-

circuit piezoelectric, and thus, is a measure of the shunted piezoelectric's influence on the system.9 Clearly, this

influence is ultimately determined by how well the piezoelectric is bonded to the host structure. More accurate

representation of the characteristics of the adhesive used to bond the piezoelectrics may require a higher fidelity

representation of this coupling coefficient. However, experimental results show that the above representation is
typically suitable. 19 The final nondimensional parameter to note is the damping ratio, _. The definition for _ used

herein differs from that currently published in the literature. The damping ratio used above is the mechanical analog

of the damping ratio of a parallel RLC electric circuit. Previous references (e.g., 9, 13, 16, 18, 19, and 20) use

= RCS%c, which is appropriate for a series resistor-inductor-capacitor shunt circuit but not for a parallel circuit

such as the one used in the current work. Note that Wu (in references 18 and 19) also uses a parallel circuit and

obtains the same function for normalized amplitude as shown in equation 5 using different terminology. In particular,

he defines damping ratio as _ = RCSc0sc . Either definition of damping ratio (Wu's 18,19 or the one used herein) is

acceptable as long as it is used consistently. Quantitative comparisons with results from previous derivations will be
shown in the next section.

3.2 Failure scenarios

Equation 5 can be used to determine the response of the host structure for various values of resistance, inductance and

capacitance (piezoelectrics). As will be discussed in the next section, accurately selecting the shunt circuit
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parameters is critical to obtaining optimal response reduction. Before optimum conditions of the shunt circuit are

examined, it is informative to examine the response of the host structure for extreme conditions of the shunt circuit.

One such condition is complete failure, or a disconnection, of the shunt electric components (the resistor and

inductor). In this case, the piezoelectric merely adds a small amount of stiffness to the host structure and dissipates a

little strain energy. Though the piezoelectrics considered herein are assumed to be massless, inclusion of the mass of

the piezoelectrics typically has negligible effects on the dynamic response of the host structure.

The other extreme condition is a shunt circuit with values of resistance and inductance that are extremely different

from the values needed for optimum response reduction. This condition raises the question: Can the addition of the
shunt circuit to the piezoelectric cause an increase in the response of the host structure, or even cause an instability in

the structure? Two characteristics of the shunt circuit prevent this from occurring: 1) the shunt circuit has no external

energy source, such as a voltage or current source; and 2) the resistor in the circuit will always dissipate energy.

Thus, use of a shunted piezoelectric will be a fail-safe system for the vast majority of applications. The only way in

which adding shunted piezoeleetrics (that are not also being used as actuators) to a structure can worsen the dynamic

response of the structure is if the weight of the piezoelectrics is considerable, and if the piezoelectrics are placed far

from the structure's center of gravity. In this case, the piezoelectrics (regardless of the tuning of or the existence of

the shunt circuit) will act as an unbalanced mass on the structure. Practically speaking, if the weight of the

piezoelectrics used is significant enough to cause this type of complication, then piezoelectrics are most likely not to

be the best choice for reducing structural response. However, as mentioned above, a condition exists, between the

two extremes discussed, that yields optimal response reduction of the host structure.

3.3 Damped vibration absorber analogy

Adjusting or tuning the shunt circuit to obtain optimal response reduction is greatly simplified by using the "tuning"

techniques developed for damped vibration absorbers. These techniques apply because shunted piezoelectrics can

essentially be modeled as damped vibration absorbers (DVA). This analogy becomes clear by examining the

nondimensional or normalized response of a lumped mass system with an attached damped vibration absorber as

shown in Figure 3 and described using equation 6. The DVA is represented by mass, m2, stiffness, k2, and damping,

c2; the host structure is represented by mass, m 1, and stiffness, kl.

The nondimensional response of the system shown in Figure 3 is:

x1(_) _ x,('_)_ -(Ge-J"2e)+i2_G

-_ - -_4O'G' -(G' - 1XG: -_')] -i2(G(G' -1 + MG: ) (6>

, k I , k, °9"2 G" ¢°2 - me c,where: co;" =_, co,'=----=-'., _O2 =.__=_,, =_, , M ---, cc = 2mz¢o;, ( =--=-". Note that Italics are used to
r./l ; tn 2 (.oI (1)1 ° 1911 C c

describe the damped vibration absorber system to distinguish it from the other equations used in this report.

Examination of equation 6 reveals many similarities to equation 5. The only two differences in the equations are: 1)

the squared generalized electro-mechanical coupling coefficient, K3_2, of equation 5 is analogous to the Ms"_2 term in

equation 6; and 2) equation 6 contains the term i2_¢ZG 3, which does not exist in equation 5, and no simple analog is

obvious. However, the overall behavior of the normalized amplitude in equation 6 is still maintained when the term

i2_,IG 3 is removed. Thus, the normalized response of a host structure with attached shunted piezoelectrics (defmed

in equation 5) is very similar to the normalized response of a simple, lumped-parameter spring mass with an attached

damped vibration absorber (defined in equation 6).

As with any analogy, however, there are limitations to the use of the above mentioned analogy of a damped vibration

absorber to shunted piezoeleetrics. For very large and very small damping ratios, _, the analogy between the damped

vibration absorber and shunted piezoelectrics is not appropriate because neither condition can be realistically attained

by the shunted piezoelectric. At these conditions, the term i2_MG 3 becomes significant in the damped vibration
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absorber. Very large damping ratios (i.e., _ approaching infinity) simulate the two masses in Figure 3 being locked
together such that their relative displacement is zero and thus, no work is done by the damping force. For the shunted

piezoelectric, this condition equates to an "infinite" stiffness in the piezoelectric such there is no displacement in the

piezoelectric. The above case of an "infinite" stiffness piezoelectric is not realistic. On the other hand, very small

damping ratios signify that the damping force is near zero and very little, if any, energy dissipation takes place. For

some conditions of m 2 and k2 and with (2 = 0 in the damped vibration absorber, this means that the presence of the

damped vibration absorber can further amplify the motion of the host structure, particularly if the host structure has

damping. Since the piezoelectric material has inherent damping, the piezoelectric will always dissipate some energy

from the motion of the host structure regardless of the existence of, or the components in, the shunt circuit.

Furthermore, since the shunt circuit described herein can not supply voltage to the piezoelectric (and thus, create an

actuator) and the resistor in the shunt circuit always dissipates some energy from the piezoelectric, the case of zero

damping is unrealistic for a shunted piezoelectric. Moreover, cases of near zero damping ratios must be carefully

examined to ensure realism. Also, note that since the shunted piezoelectrics were considered massless for the current

study, the above scenario is precluded for the results herein.

3.4 Tuning the shunt circuit

As with the shunted piezoelectric circuit, appropriate tuning is required for the damped vibration absorber to reduce

the response of the host structure most effectively. Tuning requires adjusting the parameters .(2 and ( for both the

damped vibration absorber and the shunted piezoelectric circuit. The same methodology used to tune a damped

vibration absorber can be applied to tune a shunted piezoelectric circuit since the two systems perform similarly. This

tuning methodology is described in several references (see e.g., references 27, 28, and 29). An abbreviated summary

(shown below) of one method to tune a damped vibration absorber (DVA) is applied to tuning the shunt circuit.

Tuning is accomplished using equation 5 in combination with Figure 4. Figure 4 depicts nondimensional response of

the host structure, with shunted piezoelectrics as described in equation 5, plotted using several values of damping

ratio and an untuned value of frequency ratio, _=0.9466. The first step in tuning is to find the optimal frequency

ratio _opt. Use of _opt ensures the electrical natural frequency of the shunt circuit is tuned to create an electrical
antiresonance (infinite electrical impedance) at the frequency of the structural mode of interest. Graphically, using

_opt equates to making the two "peaks" of the response of the host structure with shunted piezoelectrics the same
height (see Figure 4).

Finding £)opt begins with identifying the nondimensional frequencies, G 1 and G2, corresponding to points A and B
in Figure 4. Note that all curves pass through points A and B regardless of the value of damping ratio. GI and G2

are defined: GI,22 = I _-4-K31/_/2. The second step is to force the nondimensional amplitudes at points A and B in

Figure 4 to be equal and solve for the optimal (tuned) frequency ratio _opt:

_opt 2 = 1-K312/2

Using the above frequency ratio, the inductance for the shunt circuit can he obtained. The optimal inductance is:

Lopt = 1/(OSC2_opt2C S)

(7)

(8)

Next, the optimal damping ratio must be found; this enables optimum energy dissipation through the resistor at the

optimal frequency. Thus, optimal damping ratio is a function of optimal frequency ratio. Graphically, use of the

optimal damping ratio ensures the two, level peaks of the response are at their lowest value. Thus, to find _-_opt,the

optimal frequency, _opt, is used and the slope at points A or B is set to zero. Optimal damping ratio can then be
written as:

r_°_ 4 I_+ Lt " 2 21+ _/_-)j K3, 2-_K3, 2+21+ ._-;j
(9)
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This expression for optimal damping ratio differs from that shown in previous references for two reasons: 1) damping

ratio is defined differently in the current text, as mentioned earlier; and 2) the procedure used in the present work to

find optimal damping ratio differs from previous references. For example, using _ = RCS_0sc, Wu defines optimal

damping ratio as ;_ = I/(2_-K_,) in reference 18. A numerical example will be used to examine the accuracy of both

definitions subsequently. Note that the magnitude of the damping ratio shown in equation 9 can be used to obtain the

resistance value for the shunt circuit. The optimal (tuned) resistance in the shunt electric circuit is:

Ropt = 1/(2C0scCS _opt ) (10)

Hence, using equations 8 and 10, the inductance and resistance of the shunt circuit can be tuned for optimal response

reduction for a given value of capacitance in the piezoelectric, CS. For active control using the shunt circuit, the

inductance and resistance would be actively adjusted as the host structure changes. For passive control, the shunt

circuit would be tuned for the condition of interest and the resistance and inductance would not be updated as the host

structure changes.

damping:

3.5 Analytical validation and limitations of the tuning methodology

The validity of the derivations for optimal frequency and damping ratio can be determined by using a simple

example. First, the peak nondimensional amplitude of the host structure's response at the optimum condition is at

frequencies, G 1 and G2, which are the locations of points A and B. To find this amplitude, the simplest form of the

equation for nondimensional amplitude may be used since the amplitude at these frequencies is independent of

1
_. Thus, the peak nondimensional amplitude at optimum response reduction is:

(11)
o,= 3-7

Note that equation 11 was obtained without using any tuning parameters and thus can be used to check the validity of

the results using the tuning parameters.

As an example, assume a host structure with shunted piezoelectrics where K31 = 0.12, which is a typical value. The

response of this host structure at untuned values is shown in Figure 4. Figure 4 shows the response of the host

structure using the optimal frequency ratio, as calculated using equation 7, and using the magnitude of the optimal

damping ratio, as calculated using equation 9. The peak nondimensional amplitude of the response using the

calculated tuning parameters is: 11.79. Using equation 11, the peak response at optimum response reduction is:

(X(s')/Xst (s')]G1 = 11.79 which indicates the accuracy of the derivations herein.

As a comparison, the definitions used in current literature can also be examined. The optimum frequency ratio used

herein is the same as that in current literature; however, the definition of damping ratio and the derivation of optimal

damping ratio differs. Using the definition for damping ratio as specified in current literature and using the

corresponding optimum damping ratio definedas _ = 1/(2_K3, )in reference 18, yields a peak nondimensional

amplitude of 12.19 for the same example. Thus, both definitions of damping ratio can be used to obtain the optimum

values; however, for the simple lumped-parameter system considered, a more accurate calculation for optimum

tuning parameters is possible using the derivations developed herein.

It is crucial to recall that the preceding tuning methodology was developed following the methodology used to tune a

damped vibration absorber (shown in Figure 3), where the host structure (represented by m 1 and kl) does not have

damping (c I = 0). When the host structure has damping, two important characteristics of the response become

apparent. First, with damping in the host structure, it is very difficult to derive closed-form solutions for .Oop t and
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(opt as was done previously, primarily because two unique points such as A and B no longer exist. However, as
mentioned in reference 13, the above tuning techniques may still be used reliably for structures that have small

damping. These tuning techniques can be used by either neglecting the damping in the host structure and solving the

above equations or by accounting for the damping using an iterative computational procedure. Both techniques

should yield similar answers for .(-2opt and (opt because the tuning parameters are not highly a function of the
damping that exists in the host structure. Reference 30 provides an alternative technique for tuning a system that has

small damping.

The second important characteristic of the response when the host structure has damping is that the effectiveness of

the shunted piezoelectric (and likewise the damped vibration absorber) is strongly dependent on the damping of the

host structure. Increased damping in the host structures results in decreased effectiveness of the shunted piezoelectric

because the shunted piezoelectric is primarily adding damping to the host structure. The larger the damping inherent

in the system, the less the percentage of total system damping the shunted piezoelectric can add.

In the next section, a two-degree-of-freedom aeroelastic model (with aerodynamic and structural damping) will be

used in place of a generic host structure. All preceding derivations are applicable to this model, as will be discussed

subsequently.

4. SHUNTED PIEZOELECTRICS APPLIED TO AN AEROELASTIC WING

4.1 Description of the analytical model

In this section, a simple two degree-of-freedom aeroelastic model is used to examine the feasibility of using shunted

piezoelectrics to reduce aeroelastic response (see Figure 5). This type of model (analogous to the typical section

models described in references 31 and) is useful in explaining the fundamental mechanisms of aeroelasticity. In the

typical section model used herein, the shunted piezoelectrics were modeled as a damped vibration absorber, as shown

in Figure 5. The aeroelastic equations of motion are first developed using the characteristics of the damped vibration

absorber. Then, the terms representing the shunted piezoelectric are substituted in the equations of motion in place of

the damped vibration absorber terms. In the model depicted in Figure 5, the mass, m 2, stiffness, K2, and damping,

C2, represent the damped vibration absorber, which is located at the elastic axis. The absorber is oriented to move in

the "h" direction (wing bending or plunging of the elastic axis). Twist about the elastic axis is represented by the

torsion (or pitching) degree-of-freedom, "0".

In this simplified idealization, the piezoelectrics are oriented to reduce the wing bending response due to the vertical

motion of the damped vibration absorber. Vertical motion of the damped vibration absorber results in bending forces

being applied to the wing section. Orienting the shunted piezoelectrics to affect bending response corresponds to

orienting the "1" direction of the piezoelectric (see Figure 1) parallel to the elastic axis of the wing and, thus,

perpendicular to the nodelines of the primary bending modes. A graphical depiction of this orientation is shown in

Figure 6. This figure shows a very simplified depiction of a potential application of shunted piezoelectrics to reduce

wing bending response. For actual application, the shunted piezoelectrics should be placed in the regions of highest

strain for the modes of interest. More discussion of issues related to applying shunted piezoelectrics is provided

subsequently. To affect torsion response on an orthotropic wing, the piezoelectrics shown in Figure 6 would be

rotated 90". However, a more complex model than the one shown in Figure 6 would be required to accurately

examine the effects of shunted piezoelectrics oriented in such a manner since a "rotating" damped vibration absorber,

or something similar, would have to be modeled. For the current study, only the effects of shunted piezoelectrics on

bending response is considered.

4.2 Aeroelastie equations of motion with a damped vibration absorber

The dimensional aeroelastic equations of motion of the typical section model used with the damped vibration

absorber were reduced, for simplicity, to include only the plunging and pitching aeroelastic equations of motion. This
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simplificationisaccomplishedbysubstitutingthecharacteristicsof thedampedvibrationabsorberfromtheabsorber
equationof motionintotheplungingandpitchingaeroelasticequationsof motion.Nondimensionalizationof the
equationsof motionisattainedbymultiplyingthroughby1/(m,_o_h2),whereC0h2=Kh/mw is theuncoupledplunging
naturalfrequencyof thewing. It is importanttonotethat,inmostaeroelasticderivations,theequationsof motionare
nondimensionalizedbymultiplyingthroughby1/(m.,rc02). However,in thepresentstudy,nondimensionalization
using1/(m,,%2)" enablesdirectcomparisonbetweentheaeroelasticequationsof motionwithshuntedpiezoelectrics
andtheequationof motionderivedearlierfor shuntedpiezoelectricsappliedto agenerichoststructure.The

followingnondimensionalparameterswereusedin thenondimensionalaeroelasticequationsof motion:r_2= I_ .
m,,b2 '

Ks , 2 032co2 . G2 m, m2 . C2 The nondimensional
c%2 =m.K°i_' °_s2 = --'ms f22 = "---'i-'(oh =-"5-,cob• _t - m_ ; M = _,mw Cc = 2m2Oh " and, _ = --.Co

aeroelastic equations of motion can thus be written:

-(Gs-f_2) +i2' G la) ).h _G2lx.+__ll_=0

(12)

Structural damping, g, is approximated assuming small damping forces that are opposite in phase to velocity and

directly proportional to the elastic restoring force. In addition, simple harmonic motion is assumed thus, the degrees

of freedom and aerodynamic lift and pitching moment can be written:

h = he i't , 0 = Oei®t, x s = _2 ei_'t, L A = LA ¢i°t , M A = M^e i°t where the barred terms (i.e., h) represent the amplitude

and phase angle of each term.

The aerodynamic lift and pitching moment were developed using Theodorsen's exact aerodynamic solution. 31-33

Thus, the aerodynamic lift and pitching moment are defined:

L^ = -_pb3coSLhh- _pb_ro2(L=-(¢* a_h _
03)

In the above equations, Lh, Let, Mh, and Ma, are functions of Theodorsen's function, C(k), where k is the reduced

frequency defined as: k = ob/V. Note that Theodorsen's representation of the aerodynamic forces includes

aerodynamic damping. To simplify the aerodynamic lift and pitching moment equations, the following substitutions

are used: rn_,, = npb2; L0 = L_ _(t+ a)Lh ; M__= M h -(_-+ a)L h ;and, M 0 = M, -({ + aXL _ + Mh)+ (_-+ a)SL, •
b

Equation 12 represent the pitch and plunge equations of motion of a typical wing section with a damped vibration

absorber placed on the elastic axis (shown in Figure 5). Notice that in examining equation 13, it is apparent that the

only differences between the aeroelastic equations of motion derived above and the equation describing the lumped

parameter system in Figure 3 (equation 6) are the addition of the aerodynamic forces and the torsional characterisitics

of the wing. As discussed earlier, the damped vibration absorber can be used to represent shunted piezoelectrics with

two important modifications to the nondimensional equations of motion. These are: 1) substituting the squared

generalized electro-mechanical coupling coefficient, K3_2, for the Mr22 terms; and 2) removing the terms containing

i2Y_AMG3.
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4.3Aeroelasticequations of motion with shunted piezoelectrics

Making the aforementioned modifications to the aeroelastic equations of motion yields:

(14)

I-G2( x'_ +-_II_-IG2( r_: + M°1-°-_22 r_2(X+ig°)l_=0_tj (oh

These equations can also be simply written as:

Note that the electrical properties of the shunted piezoelectric are represented by using the nondimensional terms

defined previously for a generic host structure with shunted piezoelectrics (see equation 5)" _ = 1/(2RCSmh ),

n 2 = OE2/Oh 2 , [312 = (OOC2--%2)/C0h2 . In these equations the identity, Osc ; %, has been introduced since the

short circuit natural frequency, mSC, is the natural frequency of the wing including piezoelectrics without any
external electrical stimulus such as a shunt circuit. In addition, it follows that the inductance and resistance are
defined:

L= I/(OhZf22C s) R= I//(2o, cS)_[) (I 6)

Using equation 14, the effectiveness of the shunted piezoelectrics to reduce aeroelastic response can be examined.

Optimal reduction in aeroelastic response can be obtained by using the tuning methodologies discussed previously.

In the next section, computer simulations of the typical model used herein is employed to examine the effectiveness

of the shunted piezoelectrics to reduce aeroelastic response at subcritical speeds (speeds below flutter). Examination

of the impact of shunted piezoelectrics on flutter values was beyond the scope of the current work.

5. COMPUTER SIMULATIONS

5.1 Flutter analysis to establish the stability boundary

To examine the effectiveness of the shunted piezoelectrics, analytical simulations of the typical section model

described above were developed using MATLAB.34 The following parameters were used for all of the subsequent

analyses: 1_= 40, r=2 = 0.6, x= = 0.15, a = -0.25, b = 3 ft. Two aeroelastic models were examined. For each model,

the aeroelastic response with and without structural damping (gh and go) was considered. Initially, a flutter analysis

of each aeroelastic model without the shunted piezoelectrics was conducted to establish the stability boundary and to

select the subcritical speeds for the response reduction simulations. Removing the effect of the shunted piezoelectrics

in the flutter analysis was accomplished by setting: M=f_=_=0. Two different flutter analysis methods were used to

verify the final flutter values for each model; both methods yielded approximately the same flutter values for each

model. The k method (also called American method) and the P-k (or British method) were employed. Table 1

summarizes the parameters used for the models and their calculated flutter speeds and frequencies.
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TableI Parametersfor aeroelasticmodelsusedin computersimulationsandflutter values
Model Flutter speed Flutter frequency

name COh c°0 gh go (ft/sec) (rad/sec)
J i i,i

la 12 40 0.0 0.0 517 28.3

lb 12 40 0.03 0.03 537 26.9

2a 20 40 0.0 0.0 I 446 31.3

2b 20 40 0.03 0.03 t 464 30.1

5.2 Forced response analysis

The effectiveness of the shunted piezoelectrics to reduce response was examined at five subcritical velocities. The

velocities used for models la and lb were 100, 200, 280, 330, and 380 ft/sec. The velocities used for models 2a and

2b were 70, 150, 220, 285, and 330 if/see. The velocities were chosen by considering that, for a typical airplane, the

maximum dive speed is usually 20% less than the flutter speed and the maximum cruise speed is typically 20% less

than the maximum dive speed. For example, maximum cruise speed for model la would be approximately 330 ft/sec.

In choosing the other velocities, three values of velocity below the maximum cruise speed were considered to

encompass the wide range of speeds a typical airplane might experience in its flight envelope. One velocity above

the maximum cruise speed was also considered to explore response reduction at speeds outside the typical flight

envelope.

Effectiveness of the shunted piezoelectrics at the aforementioned speeds was examined by studying the response of

the typical section models to sinusoidal forcing functions, P (plunge force) and T (torsion moment). Assuming

simple harmonic motion, P and T can be written: P = Poei*t and T = Toe_' . These forcing functions were first

nondimensionalized using the same quantities used in equation 13 to obtain: Po = Po/(row% :)and io = To/(m,,0_ h: )"

TO further simplify the simulation results, the plunging and pitching responses were normalized by static deflections.

The static plunging and pitching deflections are given by: _ P° and O_ b: : : The resulting normalized
b b o_ r_

responses are:

hs=-_-= A % _ 2 I " (17)

from equation 15.

In addition, the following values for plunging and pitching deflections were used for all of the models examined:

h_ = 0.75 feet, .'.Po = 0.75 and O_ = 2* .'. i o = 2.09. The normalized wing responses given in equation 17 will be used

throughout the remaining analyses. The subcritical response of the aeroelastic models, with and without the shunted

piezoelectrics, will be examined considering a linear sweep of the frequency of the forcing functions from 9 rad/sec

to 45 rad/sec. Furthermore, as discussed previously, since the shunted piezoelectrics considered herein were oriented

to reduce plunging (bending) response, the model used is not sufficient for a reliable, quantitative analysis of pitching

(torsion) response reduction. Thus, only the normalized plunge response will be emphasized in the computer
simulations.

5.3 Tuning the shunt circuit to reduce aeroelastic response

With the typical section properties and forcing function parameters fixed, the only remaining parameters are those

relating to the shunted piezoelectries, namely K3z, £1, and _. As mentioned previously, the generalized electro-
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mechanical coupling coefficient, K3], is primarily a function of how well the piezoelectrics are bonded to the host

slructure. Assuming that all piezoelectrics used in the current study were bonded using currently available bonding

materials and techniques, one (typical) value of K3] was used for all of the analyses: K3, = 0.12.

As shown earlier, the frequency ratio, f), and the damping ratio, _, are the two critical parameters that determine the

effectiveness of the shunted piezoelectrics. These quantifies determine the value of capacitance (the piezoelectrics),

resistance, and inductance in the shunt circuit and can be tuned to optimize the vibration reduction of the host

structure. However, the wing used herein includes both aerodynamic damping and structural damping. The

methodology shown earlier for tuning the shunt circuit can be applied to systems with damping by either: 1)

neglecting the damping that exists in the host structure and solving for the optimal frequency and damping ratio; or 2)

using an iterative computational procedure where the damping in the host structure is included as the tuning

parameters are found. As mentioned previously, both methods should yield similar results. The former method is not

desirable for the aeroelastic system since excluding the aerodynamic damping to seek closed-form solutions for

optimum frequency and damping ratio would lead to inaccuracies in the calculation of the aeroelastic response. Thus,

the latter approach of using a simple, computer-based iterative procedure was implemented. Table 2 summarizes the

optimal values found for each model using a computational, iterative procedure.

Table 2 Optimal frequency

Model name

la

lb

Velocity

2a

and damping ratios

2b

(ft/sec) f2opt _-_opt
i

.0776100 .9906

200 1.0046 .0848

280 1.0170 .0932

330

380

1.0233

3.0122

.9894100

.0974

.0251

.0793

200 1.0032 .0868

280 1.0158 .0938

330 1.0234 .0986

.9801

380

70 .0730

150 .9895 .0766

200 .9987 .0793

285 1.0224 .0853

1.0406330

70 .9792

.0898

.0750

150 .9884 .0783

200 .9977 .0809

285 1.0219 .0868

330 1.0414 .0914

In examining Table 2, note that except at 380 ft/sec for models la and lb, the variation in optimum frequency ratio

with airspeed is not significant. This is due to the small variation in the plunge natural frequency with airspeed,

which is an indicator that a passive shunt circuit might be effective in reducing plunge response. In addition, an

approximate verification of the values in Table 2 can be made by comparing with the values obtained using the

empirical solutions for optimal frequency and damping ratio derived earlier for a generic smacture. Recall that the

only difference between the previous development using a generic structure and the current development using a
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wing is the addition of a coupled, torsional degree-of-freedom and aerodynamics on the wing. Using equations 7 and

9, the optimal frequency ratio and the magnitude of the optimal damping ratio are 0.996 and 0.0725, respectively.

These values are very close to the values in Table 2 except at 380 ft./see for models la and Ib. The optimal damping

ratio at this airspeed is very low, which may indicate that the damped vibration absorber analogy is no longer valid at

this airspeed for this wing. More discussion on the significance of the above optimal tuning results will be given after

an examination of the response reduction results in the next section.

5.4 Results of forced response analysis

The responses of the wing models were calculated with and without shunted piezoelectrics at each airspeed. Sample

plots of the bending response at 200 ft/sec for model la is shown in Figure 7 and for model 2a in Figure 8. As

expected, these plots closely resemble the plots shown in Figure 4 of the shunted piezoelectrics applied to a generic

host structure. In both cases, the shunted piezoelectric creates a "double hump" in the magnitude of the response and,

consequently, two 90 ° drop-offs in the phase. Also, note that in Figures 7 and 8 the response is plotted using the

optimal tuning values as well as the non-optimal tuning values for another airspeed. Although use of the optimal

tuning values clearly yields the best response reduction, use of the non-optimal tuning values yields considerable

response reduction as well. Using plots such as these for each airspeed, the percent reduction in the peak plunging

response using the shunted piezoelectrics can be calculated. Overall, the shunted piezoelectrics were very effective in

reducing the plunge response of the typical section models considered; a 10% to 70% reduction was calculated for the

range of airspeeds considered, except at 380 ft/sec for models la and lb.

In general, the effectiveness of the shunted piezoelectrics is largely a function of the percent of inherent aeroelastic

damping the shunted system can add using the optimum frequency and damping ratios. That is, the more damping

that already exists in the aeroelastic system, the less effective the shunted piezoelectric. This characteristic is

displayed in the results in several ways:

1) The overall decrease in the effectiveness of the shunted piezoelectrics with airspeed for all of the models.

2) The overall decrease in effectiveness with added inherent structural damping, go and gh- This is evident by

comparing the responses of model la with model lb, and comparing responses of model 2a with model 2b.

3) The general increase in effectiveness for models 2a and 2b as compared to models la and lb.

In examining the first item above, note that a common characteristic of aeroelastic systems is small damping at low

airspeeds and increased damping with airspeed. For the mode that goes unstable, this characteristic is followed by a
reverse in the damping trend near the flutter speed, toward zero damping at flutter. 31 Thus, the overall decrease in

the effectiveness of the shunted piezoelectric with increased airspeed is due to the increased inherent aerodynamic

damping with airspeed. Figure 9 shows this trend clearly. In this figure, the results for the models with and without

structural damping are plotted for actively shunted piezoelectrics. Thus, the only damping present for the models

without s_uctural damping (models la and 2a) is due to the aerodynamics and the shunted piezoelectric.

The second item in the list above addresses the impact of adding inherent structural damping, go and gh- In
comparing the responses in Figure 9, note that the only difference of the "b" models over the "a" models is the

addition of inherent structural damping, go and gh (see Table 1). This additional damping reduces the response for

the "b" models at all airspeeds, and thus results in the shunted piezoelectrics being less effective for the "b" models.

Although the reduction in effectiveness was not considerable for the models considered, the impact of inherent

structural damping cannot be ignored since this quantity can vary significantly for aeroelastic structures.

The last item in the list above addresses the comparison between models la and lb with models 2a and 2b. Overall,

the plunge responses of models 2a and 2b were less damped than models la and lb, resulting in the shunted

piezoelectrics being more effective on models 2a and 2b. This is not surprising considering that models 2a and 2b are

generally less stable than models la and lb, as is evident by examining their flutter characteristics and comparing the

responses shown in Figures 9 and 10.
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Another important issue in examining the results is the impact of using non-optimum frequency and damping ratios.

As mentioned previously, passive use of the shunt circuit would imply tuning the circuit for one condition and using

these tuning values for the entire flight envelope. To simulate this in the current study, it was assumed that the shunt

circuit would be tuned for the maximum cruise condition and these optimum (tuning) values would be used at the

other speeds. The passive shunt circuit was less effective than the active shunt circuit at every airspeed except the

maximum cruise speed. This characteristic is shown in Figure 10 where the response with an active shunt circuit is

compared with that of a passive shunt circuit. The effectiveness of the passive shunt circuit depends primarily upon

the variation of plunge natural frequency. Thus, at velocities far from the maximum cruise condition, the impact of

using off-tuned values was most significant (as much as a 20% drop in effectiveness). On the other hand, considering

the simplicity of a passive shunt circuit and that this circuit is still 80% as effective as the active circuit at worst

conditions, the passive shunt circuit may be a desirable approach for some aeroelastic applications.

The reduction of the pitch response due to the shunted piezoelectrics was essentially negligible, as anticipated;

approximately 0.2% reduction for models la and lb and 1.5% reduction for models 2a and 2b. As with the

reductions in plunge responses, the reductions in pitch response increased slightly as the natural frequency of the

shunt circuit got closer to the natural pitch frequency.

Lastly, V=380 if/see for models la and lb represents a unique case. At this condition only, the plunge due to pitch

response (the flutter mode) dominates the overall plunge response. At this speed, the shunt circuit was tuned for the

plunge due to pitch mode as opposed to the plunge natural mode (see Table 2). However, recall that the shunted

piezoelectrics were oriented to reduce plunge response only. Thus, examination of the effectiveness of the shunted

piezoelectrics on the plunge due to pitch response is probably beyond the realistic usability of the simple lumped

parameter idealization used. Correspondingly, the response at this speed was significantly different from the

responses at the other speeds where the shunt circuit was tuned for the plunge natural mode. For example, the

response was uncharacteristically very sensitive to variations in frequency and damping ratios; thus, tuning at this

speed was quite difficult. Recall that the responses of models la and lb were calculated using the same optimal

frequency and damping ratio because, structural damping typically does not significantly affect these values.

However, the addition of structural damping resulted in the shunted piezoelectrics being significantly off-tuned for

model lb. Moreover, in reviewing Table 2, note that the damping ratio for V=380 ft/sec is very low. As mentioned

previously, simulation of the shunted piezoelectric at very low damping ratios using a damped vibration absorber

analogy may be inaccurate. Thus, further investigation of the behavior of the typical section with shunted

piezoelectrics for coupled modes with low damping ratio is required before reliable conclusions can be reached for
these conditions.

Overall, the shunted piezoelectrics were very effective in reducing plunge response using both a passive and active
shunt circuit. At the unique condition of V=380 ft/sec for models la and lb, the effect of the shunted piezoelectrics is

uncertain and requires further investigation. At all other speeds, the shunted piezoelectrics reduced the response of

all modes, although the impact on pitch modes was not significant due to the orientation of the shunted piezoelectrics

for the current study.

6. APPLICATION ISSUES AND RECOMMENDATIONS FOR FUTURE WORK

The preceding analysis examined the application of shunted piezoelectrics to a simple two-degree-of-freedom model

of an aeroelastic system. While this analysis clearly shows that shunted piezoelectrics can reduce aeroelastic

response, considerable additional research is required before shunted piezoelectrics can be applied to realistic air

vehicles for aeroelastic response reduction. This research includes developing improved analytical models and

experimental validation. Limited (unpublished) data on the use of shunted piezoelectrics on air vehicles is available.

Wind-tunnel tests are tentatively planned to further assess using shunted piezoeleetries for aeroelastic response

reduction. In an actual application, shunted piezoelectrics will likely be most effective if they are designed into the
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structure, as opposed to being used as a retrofit. To effectively design shunted piezoelectrics into a structure the

following considerations must be addressed: maximize the strain energy transfer from the host structure to the

piezoelectric and maintain structural integrity. These objectives can often have conflicting requirements. To achieve

the first objective, for example, the piezoelectrics are placed in the high-strain regions of the host structure as

indicated by examination of the mode shapes of interest. However, piezoelectric materials, as compared to traditional

load-carrying materials, have an lesser load-carrying capability.24 Thus, piezoelectric materials should not be relied

upon as critical load-carrying structural components and thus must be carefully designed into the host structure,

These design considerations are also applicable to applications where piezoelectrics are used as actuators.

Sensing equipment is also necessary to use shunted piezoelectrics. The frequency of the mode of interest on the host

structure and the natural frequency of the shunt circuit must be accurately measured to tune the shunt circuit. For

active shunting, sensing must be continuous. For passive shunting, sensing equipment is only needed in the initial

tuning of the shunt circuit.

Another important issue that must be addressed for realistic aeroelastic application is ensuring the robustness the

shunted piezoelectrics as the natural frequency of the air vehicle varies. To address the issue of varying natural

frequencies on the host structure, some researchers have examined "self-tuning" shunt circuits to retune the circuits

as the natural frequency of the host structure varies. 14, 15 These self-tuning circuits (or active shunting) behave like

an active control system: given an input (the short circuit natural frequency, c0SC), an active control law determines

the optimal frequency and damping ratios needed to optimally reduce the response. Alternatively, if modal response

in a specific portion of the flight envelope is of most importance, the shunt circuit can be tuned a priori for the flight

condition of interest and shunted piezoelectrics can be used passively. In this application, the shunted piezoelectrics

still dissipate energy at conditions other than the one of interest; however, the shunted piezoelectrics are most

effective at the flight condition for which they were tuned. Another method to consider is designing the shunted

piezoelectric to reduce response in more than one mode simultaneously. This method, examined in references 13, 16,

and 20, may prove to be very useful for air vehicles that have multiple modes contributing to an unacceptably large

response. The above approaches have the added advantage of accomodating the variation of piezoelectric

capacitance with voltage.

Finally, in general, increasing the damping in a structure has the primary effect of reducing vibration amplitudes at

resonances. This can lead to reduced displacements, stresses, fatigue and noise. In addition, references 9 and 35 and

observe that damping can also add robustness and stability to marginally-stable active control systems which, in turn,

can reduce the chance of spillover that can destabilize a system. Thus, shunting a piezoelectric and actuating it using

a control law may provide a highly robust and very effective vibration control approach.

7. CONCLUSIONS

The feasibility of using shunted piezoelectrics to reduce aeroelastic response at speeds below flutter was examined

via analysis. The piezoelectrics used in this study were shunted using a parallel resistor and inductor. Examination

of this shunt circuit applied to a generic host structure was first studied to assess the general characteristics of this

application and the limitations of the current analytical methods. These developments were used as a basis for

applying shunted piezoelectrics to a typical-section aeroelastic model. Using Theodorsen aerodynamics, the response

of two aeroelastic models to sinusoidal forcing functions was examined to study the effectiveness of using shunted

piezoelectrics to reduce aeroelastic response. These results demonstrate that shunted piezoelectrics can significantly

reduce aeroelastic response; for example, reductions of up to 70% in plunging response were realized. The

effectiveness of the shunted piezoelectrics was found to be a strong function of the inherent structural and

aerodynamic damping. Thus, this application may not be effective for highly damped structures. However, for

lightly damped structures, shunted piezoelectrics provide a simple, low-power, fail-safe vibration suppression

mechanism. Follow-on studies are planned to explore developing higher fidelity models and to validate the results

via wind-tunnel testing.

567



ACKNOWLEDGEMENTS
The author would like to acknowledge the invaluable discussions with Drs. Chuh Mei, Donald Kunz, Ray Kvaternik,

Robert Bennett, Jim Wu, and Ms. Jennifer Heeg.

REFERENCES

1 Weisshaar, T.A., "Aeroservoelastic Control with Active Materials- Progress and Promise," CEAS International

Forum on Aeroelasticity and Structural Dynamics, Manchester UK, June 1995.

2 Crowe, C. R. and Sater, J. M., "Smart Aircraft Structures," Future Aerospace Technology in the Service of the

Alliance, Vol. 1: Affordable Combat Aircraft, AGARD Conference Proceedings 600, pp. A20-1 to A20-15, Paris,
France, 1997.

3 Loewy, R.G., "Recent Developments in Smart Structures with Aeronautical Applications," Journal of Smart

Materials and Structures, Vol. 5, October 1997, pp. 11-41.

4 Hopkins, M.A., Henderson, D.A., Moses, R.W., Findlay, D., Voracek, D.F., Spangler, R.L., RyaU, T., and Zimcik,

D., "Active Vibration Suppression Systems Applied to Twin Tail Buffeting," Proceedings of SPIEls 5th Annual

Symposium on Smart Structures and Materials, Paper No. 3326-05, San Diego, CA, March I-5, 1998.
5 Moses, R.W., "Active Vertical Tail Buffeting Alleviation on a Twin-Tail Fighter Configuration in a Wind Tunnel,"

Proceedings of the CEAS International Forum on Aeroelasticity and Structural Dynamics 1997, Rome, Italy, 1997.

5 Pinkerton, Jennifer L. and Moses, Robert W., "A Feasibility Study To Control Airfoil Shape Using THUNDER",

NASA TM-4767, November 1997.

6 McGowan, A. R., Heeg, J., and Lake, R.C., "Results of Wind-Tunnel Testing From the Piezoelectric Aeroelastic

Response Tailoring Investigation," Proceedings of the 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics and Materials Conference, Salt Lake City, UT, April 1996.

7 Brennan, M. C. and McGowan, A. R., "Piezoelectric Power Requirements for Active Control," Proceedings of the

SPIE's 4th Annual Symposium on Smart Structures and Materials, Mathematics and Control in Smart Structures

Conference, Paper 3039-69, March 1997.

8 McGowan, A. R., "A Feasibility Study of Using Shunted Piezoelectric Piezoelectrics to Reduce Aeroelastic,"

SPIE's 6th Annual Symposium on Smart Structures and Materials, Industrial and Commercial Applications

Conference, Newport Beach, CA Paper number 3674-20, March1999.

9 Agnes, G.S., "Active/Passive Piezoelectric Vibration Suppression," Proceedings of the 1994 SPIE Smart Structures

and Materials, Passive Damping Conference, Orlando, FL, Vol. 2193, Feb. 14-16, 1994, pp. 24-34.

10 Hagood, N.W., IV, and yon Flotow, A.H., "Damping of Structural Vibrations with Piezoelectric Materials and

Passive Electrical Networks," Journal of Sound and Vibration, Vol. 146, No. 2, 1991, pp. 243-268.
11 Forward, R. L., "Electronic Damping of Vibrations in Optical Structures," Journal of Applied Optics, Vol. 18, No.

5, March 1979, pp. 690-697.

12 Edberg, D.L., Bicos, A.S., and Fetcher, J.S., "On Piezoelectric Energy Conversion for Electronic Passive Damping

Enhancement," Proceedings of Damping '91, San Diego, CA, Paper GBA-1, Feb. 1991.

13 Hollkamp, J.J., "Multimodal Passive Vibration Suppression with Piezoelectrics," Proceedings of the 34th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and AIAA/ASME

Adaptive Structures Forum, La Jolla, CA, Apr. 19-22, 1993, Paper number: AIAA 93-1683-CP, pp. 3227-3237.
14 Hollkamp, J.J., and Starchville, T.F., "A Self-Tuning Piezoelectric Vibration Absorber," Proceedings of the

A/AA/ASME Adaptive Structures Forum, Hilton Head, SC, Apr. 21-22, 1994, pp. 521-529.
15 Wang, K.W., Yu, W.K., and Lai, J.S., "Parametric Control of Structural Vibrations via Piezoelectric Materials Shunted with Adaptive

Circuits," Proceedings of the Conference on Smart Structures and Materials 1994: Mathematics and Control in Smart Structures," Orlando, FL,

Vol. 2192, Feb. 14-16, 1994, pp. 120-131.

16 Agnes, G. S., "Development of a modal model for simultaneous active and passive piezoelectric vibration

suppression." Journal of Intelligent Material Systems and Structures, Vol. 6(4), 1995, pp. 482-487.

568



17 Yarlagadda, S., Lesieutre, G.A., Yoshikawa, S., and Witham, J., "Resistively Shunted Piezocomposites for Passive

Vibration Damping," AIAA Paper No. A96-27071 06-39, Proceedings of the AIAA/ASME/AHS Adaptive Structures

Forum, Salt Lake City, UT, Apr. 18-19, 1996, pp. 217-227.
18 Wu, S., "Piezoelectric Shunts with a Parallel R-L Circuit for Structural Damping and Vibration Control,"

Proceedings of SPIE's Symposium on Smart Materials and Structures, Vol 2720, March 1996, pp. 259-269.

19 Wu, S., and Bicos, A.S., "Structural Vibration Damping Experiments Using Improved Piezoelectric Shunts,"

Proceedings of the SPIE's 5 th Annual Symposium on Smart Structures and Materials, Passive Damping and

Isolation Conference, San Diego, CA, Vol. 3405, Mar. 3-4, 1997, pp. 40-50.

20 Wu, S.Y., "Method for Multiple Mode Shunt Damping of Structural Vibration Using a Single PZT Transducer,"

Proceedings of SPIE's 6th Annual Symposium on Smart Structures and Materials, Vol. 3327, March 1998.

21 Smith, C.A., and Anderson, E.H., "Passive Damping by Smart Materials: Analysis and Practical Limitations,"

Proceedings of the Smart Structures and Materials Symposium, Passive Damping and Isolation Conference, Vol.

2445, San Diego, CA, Mar 1-2, 1995, pp. 136-148.

22 Hollkamp, J.£, and Gordon, R.W., "An Experimental Comparison of Piezoelectric and Constrained Layer

Damping," Proceedings of the Smart Structures and Materials Symposium, Passive Damping and Isolation

Conference, Paper No. A95-37751 10-39, San Diego, CA, Vol. 2445, Mar. 1-2, 1995, pp.123-133.
23 Hagood, N.W., IVI Aldrich, J.B., and von Flotow, A.H., "Design of Passive Piezoelectric Damping for Space

Structures," Final Report, NASA CR 4625, September 1994.

24 Agnes, G.S., and Inman, D.J., "Nonlinear Piezoelectric Vibration Absorbers," Journal of Smart Materials and

Structures, Vol. 5, Issue 5, Oct. 1996, pp. 704-714.
25 IEEE Standard on Piezoelectricity, Standard 176-1987, 1987, New York, NY.

26 Crawley, E.F., and DeLuis, J., "Use of Piezoelectric Actuators as Elements of Intelligent Structures," AIAA

Journal, Vol. 25, No. 10, 1987, pp. 1373-1385.
27 Den Hartog, J.P., Mechanical Vibrations, Fourth Edition, McGraw-Hill Book Company, Ine, New York, New

York, 1956.

28 Ormondroyd, J., and Den Hartog, J.P., "The Theory of the Dynamic Vibration Absorber," May 1928, Transactions

of the ASME, APM-50--7, pp. 9-22.

29 Timoshenko, S., and Young, D.H., Vibrations Problems in Engineering, Third Edition, D. Van Nostrand

Company, Inc., Princeton, New Jersey, 1955.
30 Hunt, J. B., Dynamic Vibration Absorbers, Mechanical Engineering Publications, Ltd., London, England, 1979.

31 Bisplinghoff, R.L., Ashley, H., and Halfman, R.L., Aeroelasticity, Addison-Wesley Publishing Company, Inc.,

Reading, Massachusetts, 1955.

32 Ftmg, Y.C., An Introduction to the Theory of Aeroelasticity, Dover Publications, Inc., New York, 1969.

33 Theodorsen, T., "General Theory of Aerodynamic Instability and the Mechanism of Flutter," NACA Rrt 496,
1935.

34 Using MATLAB, The Mathworks, Inc., 1997.

35 Ashley, H. Edberg, D., "On the Virtues and Prospects for Passive Damping in Large Space Structures,"

Proceeding of Damping '86, AFWAL-TR-86-3059, Vol. 1, May 1986.

569



?iezoelectric, Kvrr

/ 1

_ Host Slructure, msr_, Ks _f__>21

F|

m 2

k 2 c 2

k 1

x 2

,x I

Figure 1. Typical

piezoelectric

element

Figure 2. Generic host structure with a

shunted piezoelectric
Figure 3. A damped vibration

absorber attached to a host

structure

60

40

00'.85

100

0 -

-100

a #

# •

I I I I I

0.9 0.95 1 1.05 1.1 1.15
(3 (Frequency Ratio)

t _ i | ' |

0.85 0.9 0.95 1 i.05 1.1 1.15
G (Frequency Ratio)

Omega = .96; Zeta=0.04
Omega tuned =.99; Zeta=0.2
Omega tuned=.99; Zeta tuned=O.075

Figure 4. Response of host structure with attached

shunted piezoelectrics

_h E
i

m

"---x_b_J.J - -

iq

Figure 5. Typical section model

Piezoelectric

h Wing tip
h = Wing bending (vertical motion of the

elastic axis)

Figure 6. Example applications of shunted

piezoelectrics on a wing

570



4 I I L 1 , I 1

I ....... Without shunted pi_rics

:'_ _ With sh_lated piezoelectries optimized at V=200 ft/sec

3.5 / ! ..... W'_b ._lmt_l pi_zoet_trles optimized al V=330 fi/se¢

i !
3

o 2.5

? 2!

"_ 1.5

1

0.5

I0 15 20 25 30 35 40

Frequency, radiam/second

6

•_ 5
#- 4

45

10 _1

9 _

8 -

I ................' Wizho_t shumed piezoe/e_vi_ '

With shunted piezoeleelries optimized at V=200 f'dsec [..

....... W th shunted piczoe _rics opt nnz_d at V=2S5 _see /

10 15 20 25 30 35 40 45

Freq_cy, radia_second

150

100

50

-_ 0
I#

-50 '":.

-I00

-150

I0 15 20 2'5 30 35 40 45

Frequency, radians/second

Figure 7. Nondimensional plunge response for model
la at 200 ft/sec

80
e_
o

70
p

.-= 60

._ 50

" 40
e-

_ 30
o

-_ 20

_ 10

_ 0

---4.--- Model 2a (no
structural damping)

- .._ - Model 2b (3%

structural damping)

_ Model I a (no

X slruetural damping)

• _ - -)14, - Model lb (3%

•... _ _ slructural damping)

I I I I | I I

100 200 300 400

Velocity, ft/sec
Figure 9. Effects of struetul;al damping using models

that are aetively shunted

150

100L

50L

0

-50

-100

-150

I I Ilb 1; zo 25 3o
Frequency, radians/se¢ond

I
I

I

I

L_
I I I

35 40 45

Figure 8. Nondimensional plunge response for model
2a at 200 R/sec

_J ----I---- Model 2a - Active Shunting I

80 _O- --Model 2a -Passive ShuntingI
_ 70 _ Model I a- Active Shunting
,_ --_- --Mode/la - Passive Shunting

P 60

_. so X

_40
._=
e-,

"= 30
o
-i

0._

0 I | I I I I I |

0 100 200 300 400

Velocitg, ft/sec

Figure 10. Effects of active versus passive shunting

using models with no structural damping

571





A Comparison Study of the Performance of a Saturation Absorber
and Classical Vibration Control Methods

Hanafy M. Omar, Graduate Research Assistant
Donald Kunz, Associate Professor .... _) _%

Department of Aerospace Engineering

Old Dominion University ___ _)'_ J d_) _/
Norfolk, VA 23529-0247

/
Introduction

The saturation absorber is an application of the saturation phenomenon as a vibration

suppression device. The saturation phenomenon occurs in autoparametric, multi-degree-of-

freedom systems, if the natural frequencies of the absorbers and the plants are commensurable

(cop = 2coc, 3coc ,...). To control the vibratory response of a plant with a single degree of freedom,

a second-order absorber is introduced and coupled to the plant with quadratically nonlinear

terms. When the plant is forced at its resonant frequency and the magnitude of the response

reaches its saturation level, the nonlinear coupling forms an energy bridge between the plant and

the absorber.

The objective of the research described in this paper is to quantify the performance of the

saturation control (response, the required control authority, robustness to the plant parameter

variation), as compared with the performance of classical controllers, such as velocity feedback,

and nonlinear controllers like the Fuzzy Logic Controller (FLC). This comparison will serve to

identify the advantages and the disadvantages of saturation control, especially regarding the

control authority required to suppress the response of a vibrating system. In addition, a

parametric study of the nonlinear coupling parameters will result in guidelines for obtaining the

desired absorber performance. A comprehensive understanding of the role of each parameter on

the response of the system is also given.

Structural Modeling

The structural model used to perform the comparison is a uniform cantilever beam actuated by

two patches ofpiezoceramic material. The configuration is similar to that described in Refs. 1

and 2, except that the non-homogeneity due to the existence of the actuator has been taken into

consideration (Fig. 1). For the purposes of this research, only the first mode of the cantilever

beam is being controlled.

X2

"l_--- X j---._ Piezoceramic Xs

I ÷

.... T
V T Controller

!
I

X

Figure 1. Beam Model
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For the piezoceramic actuator, when a voltage is applied in the z direction of the piezoelectric
material, the strain resulted in the x direction will be

d31V

ep_ = hp (1)

where Vis the applied voltage and d31 is the piezoelectric material constant. However, it is

assumed that the actuator is bonded to the beam, which serves as a constraint on its deformation.

Assuming that the strain distribution is linear, as a result of Kirchoff's hypothesis [3], the

induced moment distribution (rex) in the beam beneath the actuator is given by

m_(x) = E1Co (2)

where

3Epd3, (hp + 2h_)(V(t)_ - V2 (t))
C o =

4(h b + 3hp)(Eph_ + Ebh_)

The equation of motion of the beam is then

(3)

d2W(x,t) ___oT/V(x,t) ---rdz d2W(x't)]=F(x,t)+ EIC(6'(x-x,)-6'(x-x2)as a 2 a +(El(x) :2 x . (4)

where W(x) is the derivative of the Dirac delta function with respect to x. To solve this equation,

considering that the beam is nonhomogenous, the Rayleigh-Ritz method is used.

n

W(x,t)= _" q_,(x)qi(t ) (5)
i=l

Where ¢_ are the mode shapes of the uniform cantilever beam. Then,

[m_i](t)}+[c]{o(t)}+[k]{q(t)}=[Q(t)]+[F(t)] (6)

where

m,.=f +

_:_ a2¢,(x) a%(x) _, a_¢,(x) a%(x)kjj' = dx: dx 2 dx + Eplp dx z dx 2 dx (7)

Q_(t)=Co(EbI b + Eplp)--£- cos( )-cos( )

The state-space model of the uncoupled system can be determined, and the damping matrix [c]

can be obtained experimentally by measuring the damping of each mode.

The dimensions and the properties of the beam and the piezoceramic used in this research for

numerical simulation are shown in Table 1.
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Table 1. Beam and Piezoceramic Dimensions and Properties

B ealTl

Piezoceramic

Length

16 in

1.81 in

Width

1.5 in

1.31 in

Thickness

0.04 in

0.01 in

Density

2700 kg/m 3

7600 kg/m 3

Young' s
Modulus

70 GPa

Piezoelectric

constant

63 Gpa

-476"10 1_ m/V

Saturation Absorber

Internal Resonance (IR) has been the subject of extensive research. It began from adding

physical supplementary system to the primary one. Haxton et aL [4] and Hatwal et al. [5] added.

a pendulum to the mass-spring-damper system, and concluded that the pendulum can work as a

passive vibration absorber. Golnarghi [6] used the phenomenon as an active absorber by adding

a slider, the motion of which makes nonlinear quadratic and cubic coupling with the primary

system, to control the vibration of a cantilever beam. Tuer et al. [7] used a pendulum actuated

by a dc motor to do the same task. This enables the designer to change the frequency and the

damping of the absorber easily. It was found that the stronger the nonlinear coupling between

the system the more energy can be transferred between them.

In Refs. 8 and 9, the supplementary, physical system was replaced by computer software to

generate the oscillator and the nonlinear coupling. Oueini et al. [ 10] replaced the software by a

solid state electronic circuit to emulate a second-order oscillator and the non-linear coupling

needed for the IR. The plant used was a dc motor undergoing free vibration. A parametric study

was performed, and two energy dissipation methods (DEM) were studied to prevent energy from

returning to the plant from the absorber. This was accomplished by changing the time at which

the damping was added to the absorber.

Control of forced vibration using IR on a dc motor and using an electronic oscillator was

investigated by Oueini and Nayfeh [11 ]. The method was extended to multi-degree-of-freedom-

systems, and demonstrated for the forced vibration of a cantilever beam [ 1,2]. The vibration

modes of this system could be easily uncoupled, and it was shown that each mode could be

controlled as a single-degree-of-freedom system. The absorber parameters for both applications

were determined by trial and error. Pal et al. [ 12] also implemented saturation control using a

digital computer and applied it to a cantilever beam.

Since analytical solutions using perturbation methods for single-degree-of-freedom systems were

performed in Ref. 11 and for uncoupled multi-degree-of-freedom systems in Refs. 1, 2 and 12,

there appears to be little need to develop an analytical solution herein. Thus, the focus from this

point on will be on the study of the absorber parameters, and the comparison of saturation
control with the other control methods.

A numerical simulation was performed by MATLAB using Simulink. The first mode is excited

by applying harmonic force with a frequency equal to the first mode natural frequency. The

absorber is modeled as a quadratic differential equation.

2
//i +2_cj2_u_ +2_ui =a_ujW(x_) i=1,2 .... m (8)
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where m is the number of the controlled modes. (ci and 2i are the damping and frequency of the

absorber, respectively. W(xs) is the beam modal displacement measured at location xs. The

control voltage sent to the piezoelectric material is

m

Vo = _-'y, uf (9)
i=1

Only the first mode will be excited and controlled in this investigation, so let m =1. The

equations of the first mode and its corresponding absorber can be written as

Plant: 0 + 2_:c°,0 + c°,2r/= f cos(f2t) + yu 2 (10)

Absorber: //+ 2_2cu + A_u = ct rlW (x _) (11)

The performance of the absorber depends on the values of a and 7, and also the initial

conditions of the absorber and the plant. It has been shown that the quadratic coupling creates a

mechanism by which each absorber influences only the mode with which is internally resonant

[1,2]. The magnitude of the steady-state response of the coupled plant and absorber can be
obtained from Ref. 2.

1

11Beam steady-state magnitude: A b _, _ + + 2")2 (12)

1

Absorber steady-state magnitude: Ac -_ _-y

where

(13)

A'_lr(°'+r)-_¢c'F'_l'u(°'+r)+_cr'a_(°"-2Ac)'2 r_f_-co. (14)

and o-is a detuning parameter which measures the nearness of the absorber natural frequency to

twice the natural frequency of the plant, r is another detuning parameter, which measures the

nearness of the frequency of the excitation force to the resonant frequency. It is evident that

magnitude of the system response at steady-state does not depend on the magnitude of the

exciting force. This magnitude can be small, if the damping of the absorber and the detuning

parameters equal zero (i.e., the system is at resonance and the condition of internal resonance is

satisfied).

The following sections expand on the discussion in Ref. 1 of the effect of the saturation control

parameters on the transition response of the plant. Let a, y and f be the nominal values for

a, yandf respectively. For this discussion, the damping of the absorber is set to zero, and the

absorber is activated 10 seconds after the excitation is first applied.

Effect of changing a

In Fig. 2, the response of the beam looks somewhat like a decaying response with a beat. The

responses using smaller and larger values of a are shown in Figs. 3 and 4, respectively. It can be

seen that decreasing a from its nominal value reduces the number and frequency of the beats, but
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increases the lag between the time when the absorber is turned on and the initial change in the

system response. Increasing a decreases the lag, but increases the number, frequency and the

amplitude of the beats. The steady-state response and the corresponding control action are the

same for all values of (z.
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Effect of changing y

The effect of modifying 7'is shown in Figs. 5-7. Changes in the value of 7'has little effect on the

magnitude and frequency of the beat-like responses. However, the lag between the absorber

activation and its effect on the plant response is seen to decrease. In addition, the time required

to reach a steady-state response decreases slightly, due to the decrease in the response lag. The 7'
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is too large, the initial response of the beam will increase slightly (Fig. 7). Again, the steady-

state response of the beam is the same, as is the control action.
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Effect of changing the initial condition of the absorber.

Simulations showed that saturation control can work with any initial value greater than zero. As

the initial value increases, the response to the absorber being turned on will be more rapid (Fig.

8). However, if the initial value is too large, the beam response will increase initially when the
absorber is turned on.
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Effect of changing the magnitude of the forcing function.

The simulations showed that as the forcing function increases, the system responds in a manner

similar to the case of increasing a. Ifbothfand a are very large, the system could become

unstable. Therefore, to assure that the system is stable for large values off a should be

decreased. Physically, the increase in a causes an increase in the magnitude of the absorber

forcing function. Whenfis large, the response of the beam will be large, which also results in an

increase in the magnitude of the absorber forcing function.

PD Controller

The PD controller is a member of the family of classical PID controllers, which are widely used

in industrial control processes because of its simple structure and robust performance in a wide

range of operating conditions. The PD and the optimal feedback controller are also used in active

vibration control [ 13,14].

The classical PD controller used herein has the form

v = KpW(x_) + KaW(x s) (15)

If the system is represented as a single degree of freedom, the magnitude of the steady-state

response of the system can be determined from

Af
Ab(f2 ) = (16)

_/(co 2 + Ks , _ _"_2) 4" (2_C0_ + Ka) 2

where A is a constant. It is clear from Eq. (16) that increasing the PD gains (Kp, Kd) decreases the

magnitude of the steady-state system response, which is independent from the forcing frequency.

There are many methods that can be used to determine the optimal gains, but obtaining optimal

gains is not the objective of this investigation. It is the effect of the gains on the beam response

for this type of controller that is being determined.

The simulations using different values of the derivative and proportional gains are shown in Figs.

9-11. Note that as the proportional gain increases, the steady-state response as well as the initial

control action increases. The same observation is valid for the derivative gain. Thus, the steady-

state response cannot be decreased without increasing the initial control action. In a practical
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application, a low-pass filter is needed which may distort the phase of the signal and lead to bad

output from the controller (which depends on the phase). Using different gains in each stage of a

multistage controller can solve this problem, but the controller will be nonlinear.
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Fuzzy Logic Controller (FLC)

The FLC is based on the work of Zadah [15]. Fuzzy logic is a generalization of Boolean logic.

The state of a variable is not one or zero but rather a degree of membership. This gives fuzzy

logic the ability to deal with imprecise information, which is found in most processes. FLC is a

set of linguistic rules which governs the relationship between the system response and the
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controlleroutput.Researchin FLC by Mamdani[16] andhis studentsstartedby applyingFLC to
asteamengine.Many researchapplicationsweretried ondifferent processes.This research
concludedthatfuzzy control canwork well for ill-definedsystemsin which a deterministic
mathematicalmodelcannot beobtained. It alsohasgoodperformanceandis more robustif it is
designedwell [17].

Thefirst applicationof FLC onstructuralvibrationswasdoneby TsouksandVanladingham.
Theyproposeda controllerwith 49 rules.Theserulescanbeconsideredasa PDcontrollerin a
fuzzy shape.Kwak et al. [ 18] reduced these rules to only four. That research considered only

free vibration. Forced vibration control using FLC is discussed in Ref. 19. The vibration was

first suppressed using optimal control, by minimizing the displacement using a linear

programming technique. The algorithm was then converted to fuzzy rules to form the FLC.

There is currently no theory for determining the stability of a FLC, and the rules are determined

from the engineering judgment or the experience of the designer. The phase plane and the idea

of the switching surface with a boundary layer [18] can be used to derive the fuzzy rules. The

switching surface is defined as

s = pW(x,) + (17)

Due to the switching delay and chattering problem along the switching surface, a boundary layer

is added to smooth the control discontinuity. Those rules can be written as

Ifabs(di) is ZO then fi-; is ZO

Ifabs(di) is PS then h', is PS

If abs(di) is PM then _-; is PM

If abs(di) is PB then K; is PB

where d is the normal distance from the nominal point to the switching surface

d= s;/ffl+'82 (18)

ZO = Zero, PS = Positive Small, PM = Positive Medium, PB = Positive Big. The membership

function of these terms are shown in Fig. 12.

B

Abs(d) and u

Figure 12. Fuzzy logic membership functions for d and u

The control action is given by
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u i = -a sgn(di ) defuzz(_ i ) (19)

Defuzz is known as the defuzzification process by which the fuzzy variable (control action) is

converted to a crisp value suitable to be directed to the physical system.

The FLC can be considered to be a PD controller with variable gains, so it can overcome the

disadvantage of the PD controller. The responses of the system with different parameters of the

FLC are shown in Figs. 13-14. Note that the same steady-state response is obtained with smaller

initial control action, as compared with the PD controller.
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Conclusions and Recommendations

The saturation absorber possesses the characteristic that the controlled steady-state response is

always small, whatever the values of its parameters. The parameters can, however, be used to

shape the plant transition response between the time that the absorber is turned on and a steady-

state response is reached. The following guidelines can be used:

The smoothness of the transition response can be improved by decreasing a. However,

decreasing a introduces a lag between the initiation of the absorber and the initial response of

the plant.
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• The lag between the initiation of the absorber and the initial response of the plant can be

decreased by increasing 7. Within limits, the increase in 7"has little effect on the smoothness

of the transition response.

• Increases in the initial value of the absorber have a similar effect to increases in g. If either

becomes too large, there will be an initial increase in the plant response before it starts to
decrease.

A comparison of the three methods of control show the following:

• Saturation control achieves the smallest steady-state response with the least control output,

but is limited by the frequency requirements placed on the plant, absorber, and forcing
function. The PD and the fuzzy logic controllers have no such limitations.

• The large gains required by the PD controller in order to achieve a small steady-state

response results in a requirement for large control outputs. In a design environment, this

translates into the need for a larger power supply.

• Fuzzy logic controllers can overcome some of the problems of the PD controller, but

selection of the gains and definition of rules are difficult.

It was observed that the PD controller with fixed gains requires large gains to get a small

controlled steady-state response. Because of these gains, the initial control output is very large.

The fuzzy logic controller avoids this problem by the proper choice of gains and rules. Applying

this concept to saturation control, it might be possible to use fuzzy logic to control the saturation

parameters and improve the transition response.
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Abstract

In this paper, a technique for creating structural dynamic models directly from

experimental data is proposed. The method is based on having a finite element model

with prescribed geometry for nodes and beams and using the artificial intelligence

optimisation tool of genetic algorithms. The aim is then to create an optimal model by

selecting mass and stiffness properties such that the resulting model gives the best

approximation to the real data. Such a process has been the subject of a number of

earlier papers by the author and in this paper, results are presented for the creation

of a complete aircraft model with symmetric boundary conditions based on actual

ground vibration test data.

Introduction

Mathematical modelling of complex systems inevitably requires assumptions and

idealisations (eg. a representation of the structural dynamic model of an F/A-18 is

shown in Figure 1.

Figure 1. Finite element model for structural dynamic analysis of an F/A -18;
such a model is a considerable idealisation of the actual structure that is shown

on the port wing.

As the system becomes more complex, these assumptions typically lead to a model

with poor predictive capabilities: this is the case with finite element modelling of
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aircraft structures for dynamic analyses. Such a finite element model is developed

when the aircraft is in the design stage; when built, the aircraft is then subjected to a

ground vibration test (GVT) and the finite element model is typically a poor predictor
of the true result.

The question that must then be addressed is: How should the model then be developed

to better reflect the true behaviour of the structure? A process that has been proposed

by this author in previous publications, and is further developed in this paper,

involves throwing away the initial model and developing a new model based on the

GVT data. The basis of this procedure involves using the artificial intelligence

optimisation tool of genetic algorithms to create an optimal finite element model

(FEM), where optimal is defined as the model that gives the best correlation with the

experimentally determined transfer function. Previous work has demonstrated how

such processes can be used on the relatively simple models representing an aircraft

tailplane and a truss structure based on true experimental data (Dunn, 1996). These

two models were similar in that they involved relatively few unknowns. The

complexity of such optimisations, however, grows rapidly with the number of

unknowns. For traditional optimisation techniques, this growth in complexity

typically involves an exponential growth in processing time as the number of

unknown parameters grows. Such a process has been demonstrated for a full aircraft
structure using simulated experimental data for a General Dynamics F-I 11C (Dunn,

1998a).

In this paper, the technique of using genetic algorithms to create an optimal structural

dynamic model for a CF - 18 will be demonstrated. The ground vibration test data

used were collected by Bombardier inc. (Canadair) for the Canadian Forces and have

been forwarded to the Australian Department of Defence for the purpose of creating

an optimal finite element model. Details of how such a technique can lead to a unique,
or minimum order, model will be discussed.

Genetic Algorithms

Some introductory reading focussing on the philosophy of genetic algorithms (GAs)

can be found in Holland (1992) and Forrest (1993). A good introduction to the

technical aspects of GAs can be found in Goldberg (1989).

The idea for genetic algorithms came about from a realisation that, according to the

concepts of evolution by natural selection, nature finds relatively optimal solutions in

a naive way to the problem of how to exist on earth. That is, natural evolution does

not occur by looking ahead and attempting to determine which features will improve

the fitness of a species, but rather tries out different features and those which prove

beneficial are preferentially selected. This preferential selection, through an increased

likelihood of mating, leads to a higher probability that a fit individual's genes will be

spread throughout the species over subsequent generations. The observation that the

forces of nature are really the impetus behind a massive highly non-linear

optimisation routine led workers to consider whether mimicking natural evolution on

computers could be used to solve the relatively much more simple problems which

arise in human endeavours: this led to the creation of genetic algorithms.
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Genetic algorithms are based on starting with a randomly generated population of
individual possible solutions scattered over a pre-determined search space (the region

in which the answer is thought to lie). Each population member will be composed of n

parameters, each of which is to be optimised, forming an n-dimensional search space.

The relative fitness of each population member is determined and a stochastic

selection process biased towards the fitter individuals is used to select parents for

mating. In mating, attributes of the parents are mixed to form offspring which may, or

may not, be fitter than one or both of the parents. In forming offspring, occasional

random mutations can occur which also have the possibility of leading to a fitter

individual. The process of selection, mating and mutation is repeated over a number

of generations to allow the solution to evolve towards the optimum.

Experimental Data

The gathering of the experimental data was described in a pets.comm, by M.

Dickinson of Canadair Inc. A ground vibration test was performed on a CF-18 with

wing tip stores and two different 20001b class stores under each wing by Canadair Inc.

for the Canadian Forces at the Aerospace Test Engineering Establishment (AETE),

Cold Lake, Alberta. The aircraft was sitting on its undercarriage with reduced tyre

pressures. For wing and store excitation, two shakers were used as symmetric or anti-

symmetric pairs and for fuselage excitation, a single shaker was used; in all, 16 shaker

config'urations were used. The aircraft was instrumented with 85 accelerometers. For

the analysis used here, three of the shaker configurations and data from 57

accelerometers were used. The shaker and accelerometer locations are shown in Fig.

2. All of the recorded data were not used in order to keep processing times tractable.

Also, only the data from the shakers being used to excite symmetric modes have been

analysed here, so the resulting model has symmetric boundary conditions.

 load input

Aaccelerometer

Fig. 2 showing load inputs and accelerometers for data used in analysis

(note: loads and accelerometers were placed symmetrically, though

only those on one side of the aircraft are shown).
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For each of the three load inputs Used, the transfer functions of the accelerometers

shown were processed (eg. averaging port+starboard+fore+aft for wing heave and

similarly for the wing pitch, but with differencing the fore and aft accelerations and

allowing for the distance between the accelerometers). Examples of the resulting

transfer functions are shown in Fig. 3.

2'5

_s

'i
;I

le

Fig. 3. Examples of transfer functions used. The circles indicate

points to be used in determining the cost function in the

model optimisation process.

The transfer functions shown in Fig. 3. are: 1. wing tip heave due to wing load; 2.

wing tip torsion due to wing load; 3. inboard store pitch due to store load, and; 4.

fuselage nose heave due to fuselage load. These are just a very few examples; results

from all accelerometers were used in the optimisation process for each of the three
load cases.

Model Optimisation Process

The fundamental approach used here to create optimised mathematical models for the

structural dynamics of aircraft structures is to determine an optimal set of finite

element properties which will give a minimum error between measured frequency

response functions, and those predicted by the model as described in eqn. l.

min (e(/.z, K'))= __, _. [.',.i (/z, 1¢1 -ly, Jll (l )
j=l t=l
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wherethecost functionE, theerrorbetweenmodelpredictionandmeasurement,is
definedasa functionof themassandstiffnessproperties,,u and x respectively, t; is

determined for the model frequency response function, y,.j (,/t, x), at the ith frequency

and jth freedom, and the corresponding experimental measurements, y" This/.j"

concept is illustrated for a simulatedjth freedom in Fig. 4.

.o

e-,

c-

O

E

Fig. 4. Schematic depicting the use of a frequency response function in the
evaluation of e as used in Equation (1).

In carrying out this optimisation, all of the mass and stiffness properties required for

the description of the model are considered to be unknown. The number of properties

to be estimated is typically large and many will have a high degree of interaction; in

other words, such a process is typically a high-order, highly non-linear optimisation

problem. Genetic algorithms can be very useful in solving such problems, and for the
specific case of structural dynamic model estimation, have been shown to be far more

efficient than more traditional optimisation processes (Dunn, 1998b).

The FEM is prescribed in its geometry (ie. the nodes are fixed in space), but the

physical properties required to describe the mass and stiffness properties are allowed

to fall anywhere within a large search space. Stiffness properties may be allowed to

range over a number of orders of magnitude, (eg. beam bending stiffnesses may vary
from l06 to 101°Nm2). Masses can require up to seven properties to be fully defined:

offset from the node in each of the axis directions, mass, rotational inertias about each
of the thee axis directions.

Towards a Minimum Order Model.

In determining the nature of the FEM to be developed for aircraft structural dynamic

analyses, it is typical that an overly complex model is developed (complexity here can
be defined as the number of properties required to describe the model). In such cases,

the following procedure can be carried out:

Run the optimisation procedure - in this case a GA - a number of times such that

there are a number of results where the better cost functions (eqn. I) are very

similar and the model predictions give a satisfactory representation of the
experimental data;
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• compare the properties found for these results;

• where this comparison shows little variation, assume the property is being

determined uniquely;

• where the comparison shows a great deal of variation for a similar cost function,
assume that either the property is not required, or that the property and one or

more of its neighbours can be combined into one;

• repeat this process until all parameters appear to be defined uniquely and the

model still gives a satisfactory representation of the data.

Described above is the process to be followed in the typical case where the original

model is too complex, the opposite process where the model is insufficiently complex
is discussed and demonstrated in Dunn (1998c).

Results

As discussed previously, the genetic algorithm is run a number of times and the

results examined for uniqueness; this process is best illustrated by examining the

results for the wing bending and torsion stiffness as the optimisation proceeds.

10_I_ 10'I

1010 101°

;t °10 i 10 B

10;' 10:'

_ar_M_ _ On) sparse I_m (in)

Fig. 5. Optimisation results for wing with 7 bending and 7 torsion stiffness elements -

the gap at -160in. represents the wingfold which is modelled with springs.

(The shaded figure represents the vertical wing bending stiffness elements for the
result with the best cost function).

In Fig. 5, each line represents the bending stiffness and torsional stiffness distribution

found for a separate completed genetic algorithm run, each of which had very similar
final cost functions (as defined in eqn. l). The results are clearly non-unique in that

they exhibit a large degree of scatter whilst having very similar correlation with the

experimental data, as defined by the cost function in eqn(1). The solution to this is to
reduce the complexity of the model until a more unique solution is found. The next

step in this process is demonstrated in Fig. 6 (it should be noted that only the results

for the wing stiffness properties are shown, the actual reduction in model complexity

also affects wing inertial properties and fuselage properties).
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Fig. 6. Optimisation results for wing with 5 bending and 6 torsion stiffness elements.

The results in Fig. 6 still show a degree of non-uniqueness. Following the same

procedures, the results shown in Fig. 7 were finally settled upon.
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Fig. 7. Optimisation results for wing with 4 bending and 5 torsion stiffness elements.

22O

The final form of the complete model is shown in Fig. 8.

Fig. 8. Form of the final CF-18 symmetric finite element model.
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Some examples of the correlation between the experimental and model results are

presented in the forcing point transfer functions in Figs 9,10,11 & 12 (in all of theses

figures, the dashed line represents the model results and the circles are the points used
in the cost function evaluation).
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Fig. 9. Fuselage nose response due to
fuselage load.
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Fig. 11. Wing tip heave due to wing tip
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load.

Discussion

The results shown in Figs. 9 - 12 for the model depicted in Fig. 8 show very good

agreement between experimental and model responses. There are some features in the

region >15Hz that are not very well represented, but it is hoped that further work of

the type discussed below will help to address such issues. Irrespective of the region

that is not modelled as well as the rest of the frequency range, the agreement is much

better than would be expected from the more typical highly complex models.

A feature which is immediately evident in Figs. 9 - 12 is that the peak response in the

model predictions is always much greater than that found for the actual structure. The

reason for this is simply the existence of damping in the actual structure which is not
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present at all in the mathematical model. The reason damping has not been included is

because these sorts of finite element models typically do not include damping. The

main reason for this is that quantifying the damping for the numerous damping

elements that would be required would be a very difficult process. The methods

outlined here, however, would allow such damping elements to be quantified and this
will be the subject of further work.

Another area of further work involves increasing the generality of the model by

moving away from the requirement that the geometry of the model be prescribed

beforehand. For example, it would be desirable to allow the location of the wing

torque-box elements to also be subject to the optimisation procedure. The

modification to allow this is simply one of further increasing complexity in the

optimisation procedure (though not the resulting model)and presents no conceptual
difficulties.

Conclusion

In this paper, it has been demonstrated how the optimisation tool of genetic

algorithms can be used to create an optimal structural dynamic finite element model

for a complete aircraft structure. This has been demonstrated for a symmetric model

of a CF-18 using actual ground vibration test data. A significant component of

deriving such a model involves defining the model complexity such that the most

simple, and unique, model is defined; the process behind this has been presented and

an example of how this was done for wing stiffness properties has been shown. How

this work can be further developed has also been briefly discussed.
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A new approach of the transient flow conditions (simul_leous transitory behaviour of thermal load and fluid velocity) is

proposed in the nonlinear panel flutter analysis. Applying proper aeroelastic theories (yon Karman elasticity, piston
aerodynamic theory) and fatigue life estimation (Heywood's approach) tile results comqnn differences in failure predictions,

compared with the classical approach (case of constant flow and kinetic heating parameters). This study demonstrates the
sensitivity of the aerothennoelastic system to the transitory hypersonic flow conditions: the pattern of the motion changes

in amplitude even when modifying the increasing slope of the thermal and flow parameters that govern the motion, but

maintaining the same steady state values. The panel behaves like a chaotic system and needs to be carefully investigated for
a reliable design.

INTRODUCTION

The design of the re-entry space vehicles and high-speed aircraft structures requires special

attention to the nonlinear thermoelastic and aerodynamic instabilities. The phenomenon depends on the

structural configurations and flow conditions acting over this kind of mechanical systems. Thus, the

dynamic aeroelastic instability of a wing structure (called wing flutter) involves a critical dynamic

pressure (which corresponds to a limiting speed), growing an explosive failure due to an exponential

increasing of the amplitudes. In this case, it is sufficiently to use a linear model by searching for the

solution of the associated eigenvalue problem.

Panelflutter describes self-excited oscillations of

an external panel of a flight vehicle when exposed z' A

to supersonic or hypersonic airflow (Fig.l). The U®

phenomenon has received resurgent interest due to

the development of aircraft and missiles at

supersonic speed. The earliest reported structural x

failures that can be attributed to panel flutter were

the failure of the 60-70 early German rockets

during the World War IIk Also, most recently,

after the flight tests of the F- 117A stealth fighter, Fig. 1 Skew of the panel configuration

cracks were found in about half of the laminated

composite skin panels (which had to bi_ redesigned and stiffened) 2. A linear analysis of the panel flutter

could offer incomplete or erroneous information: critical dynamic pressure, frequency of vibration, and

mode shape at the instability can be determined, but usually this yields no direct information about

panel deflection and stresses.

Two successive stages can distinguish this problem: panel flutter analysis and failure prediction,

respectively. Each of these problems has been gradually studied by previous authors.

"Research Sciemist, mcmber AIAA

""Professor, Departmcnt of Aeronautical & Space Enginecring
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The studiesof panel flutter beganduring the Sixties.The Dowell's article3 contains classical

solutions of nonlinear isotropic panel flutter found through the use of Galerkin's method in the spatial

domain and subsequent numerical integration. The first application of the finite element method (FEM)

to study the linear panel flutter was due to Olson 4. Then, extensions of the FEM were reported into

nonlinear oscillations of 2D-isotropic panels (Me:), and 3D-rectangular and triangular isotropic plates

(Mei and Wang 6, and Han and YangT). Analysis of composite plates, control and suppression of

nonlinear panel flutter were given by Mei et all 8"9"1°'11.12.The high-order FE model presented in this

paper has already been used in classical analysis _3and in advanced studies of the transitory phenomena

of hypersonic flow-field 14

Though in flutter experiments it has been observed that many panels failed before the steady

state flutter motion were reached, no significant studies have been directed towards failure

mechanisms. However, at least two are readily identifiable and have occurred in practice:

-if the stress amplitude due to flutter exceeds the yield stress of the plate material ove_: a substantial

portion of the structure, then catastrophic or rapid failure occurs;

-on the other hand, if the stresses are relatively small, then fatigue or longue-time failure may occur.

From a knowledge of stress amplitude and frequency of the oscillation, an estimation of the

fatigue life can be done, based on the maximum cycle stress together with the stress cycles to failure

and material data. Recently, Xue & Mei l_ solved the influence of temperature and dynamic pressures

on panel fatigue life for a two-dimensional nonlinear. The endurance and failure of a general nonlinear

aerothermoelastic model were also reported 16by using the presented model.

GOVERNING EQUATIONS

The stresses arisen in an isotropic Hookean plate subjected to uniform temperature difference AT

can be written as the sum of the tension created by the stretching of the plate due to bending and the

thermal applied in-plane load:

E vt_] Ev)c_T

- = + O-v)
E

(1)

The yon Karman nonlinear strain-displacement relations for a plate element undergoing both extension

and bending at any point z is a sum of membrane and change of curvature strain components:

_+ l(o_v) 2 02w 32w
_ _ "Ex.,O --7t¥) *a< *a:-

2t,<,>) --r

o_ + 051 c)w Ow 2z O2W 02w

&ay

(2)
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Combining the above two relations, the general normal stresses state can be represented by three

significant components:

(i) nonlinear stretching stress:

(ii) pure bending stress:

(iii) thermal stress:

_'="=(757r) _+ _-t_7J

E
(3)

a2xx

a2yy

E F 02w"

02w"
(4)

We note that a general formulation in terms of thermal effect should include the complete expression

of the temperature change:

zxr = _T(x, y, z, t) (6)

meaning fully unsteady nonuniform temperature distribution. The classical approach in nonlinear panel

flutter theory usually took into account a constant temperature distribution. Xue and Mei w extended

the study to the ease of nonuniform distribution over the panel surface and into the panel thickness,

respectively. This paper will extend also the analysis to the case of a particular unsteady temperature
distribution:

AT = AT(t) (7)

having the pattern of a transitory behaviour until a stagnation temperature change between panel and

its supports is reached.
The tensions:

h/2 h/2 h/2

N:: fo=e=;N.: f o>_=;N. : fo._=
-h/2 -hi2 -hi2

(8)

are used to express the strain energy as a sum of pure bending and stretching components:

D o_w +'2 .2_<_,_@2+20-v,,:--¢ _ + _ 1_<_
(9)
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(10)

The governing equation of the general model is obtained through the application of the Hamilton's
principle:

f (6T-6U + 6W)dt=O (11)

and becomes:

02w 32w 32w

D2_w-Nx Ox2 Ny--_+m'-_"+ Apa =APs
(12)

where Aps is the transversal static aerodynamic pressure. For the aerodynamic terms we will consider

the simplest approximation of the aerodynamic forces valid for the domain of hypersonic velocities
(first order piston theory):

= v. (13)

We chose this popular aerodynamic approximation because we are interested in an accurate prediction
at high Mach numbers. Moreover, Bailie and McFeely _s have shown that their results in panel flutter

analysis obtained using a full unsteady hypersonic theory agree very closely with the results of this
approximate theory.

FAILURE PREDICTION PROCEDURE

The fatigue life estimation can be obtained by using the Heywood's approach (as Xue and
Mei t7 analysed for two-dimensional panels). The method is based on the expression of the alternating

stress (_a as: 3o

oo= +tO-Ao)]
where:

1+ 0.045¢_t
A° = 1+ 0.003 In 4 ;n = log(N); 7 =

l+fCr, n

(14)

(15)

2a_

18

1 I I I
_lk -o- AT/ATCZ" 0

-_- ATZAT_" 1
"_ -o- AT/ATcr ,. 2

elk -,- &T/ ATcz",. 3
%

,%
%.

-.'16

14 t I

1°o 1 :z--a4s (; "1 a 9 _o
1.,og(l_ ,I_-no.of cTclcs

Fig.2 Heywoods's ox-N curve

We denote o"t the ultimate tensile strength of the material, crm the mean stress and N is the number

cycles to failure. The mean stresses correspond to various temperature changes related to the critical
temperature change. Eq.(14) can be used to estimate the fatigue characteristic of panel knowing any

three of the parameters o"a, crm ,N or cra and solving for the fourth parameter. The fatigue life

estimation (N-no. of cycles) is found from ox-N curves (as they are shown in Fig.2 -case of a simply
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supported square panel having thickness/length ratio h/a=O.O05, ATcr=l.344°C), knowing the

alternanting stress ora (max. values of Oxx) and the mean stress am equal to the thermal stress Cr3xx.

FINITE ELEMENT FORMULATION

The finite element idealisation is based on

the Argyris' natural elastic theory t9 of the strains
and stresses along the natural directions of a
triangular finite element. The natural stresses state

having the components a_,atj,cr v along the three
sides of the triangle (see Fig3a) is equivalent to
the classical Cartesian stresses vector. This natural
stress state can be considered as an effect of the

equivalent system of natural nodal forces shown in

Fig.3b. The modelling procedure consists of the
Argyris' high-order triangular finite elements
TUBA6 and TRIM6 (fully compatible elements
for the out-of-plane and, respectively in-plane
displacements, based on the natural geometry
concept).

)_ " W, tt. W,. Wzrr

_,--'-'_,_ 7o (2) _ _.._,, w_--

a)

Fig.3 Natural stresses (a)

and (b) equivalent nodal forces

(lj

,,ii:!/t,, \,Q

.... .2 j

Fig.4 TUBA6 -natural directions and dofs Fig.5 TRJM6 -natural dot's

Two nets of identical topology and material properties create the finite elements model: one

composed of fifth order (six nodes) triangular plate TUBA 6 elements (Fig.4). The 21 degrees of

freedom of this element consist of displacement, all first and second derivatives at the vertices -for

satisfying the continuity condition in curvature- and the normal derivative in the middle-points of the

edges; the other composed of a second order triangular membrane elements (Fig.5) with 12 degrees of

freedom per element, having no flexural stiffness and carrying loads by axial and central shear forces.

The FE formulation of the general equation (12) can be expressed in a non-dimensional form which

includes separately the plate and membrane terms (denoted by the subscripts "b" and "m"):

oT !l o oD°l+o' M°,.JL-J +v_L°' oiL+°j

([:::][.,+o.oo].,z" + 0' K°. + )<°.b
+ K°t,b

01 ).rOj=[Poe°]
(16)
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M,B,A and K are the global mass, aerodynamic damping, aerodynamic influence, and linear stiffness

matrices, respectively; Kg is the geometric stiffness due to thermal forces; K 1, K 2 are the nonlinear

stiffness matrices that depend linearly and quadratically on element plate "rb" and membrane "rm"

displacements, respectively; Ps is the externally applied out-of-plane load (static pressure). The

Dowell's non-dimensional parameters, obtained by using plate rigidity D, mass per square meter m,

and geometrical characteristics (panel length a, and thickness/I):

"c=t [ D ;W=h;_r p**U2a 3 =_;o.x Nxo a2 Apsa 4,,,,,, = ;8 = F ;P"- -fig (17)

have the advantage of expressing the various results in a most compact form and establishing scaling

laws to extrapolate results for other physical situations.

TRANSIENT HYPERSONIC FLOW EFFECTS

We consider that the transient hypersonic flow conditions consist of changes in dynamic

pressures and kinetic heating. In Doweli's notation the dynamic pressure _," is related to Math number

M., panel geometry and material properties (Young's modulus E, length/thickness ratio a/h), as well as

to the characteristics of the altitude of flight (air density 19. and speed of sound). The typical trajectory

of a hypersonic vehicle can be considered as in Fig.6. Also, the accelerations (as transient changes of

velocities) have significant influence on dynamic pressure. This is exemplified in the Table 1 (from

ref? °) showing the flight characteristics that correspond to a metallic panel substructure. Thus, it can

be considered that the dynamic pressures evolves as a function with an increasing slope, until the

steady level is reached.

Flight time Altitude

(see) (Km)

1000 85.34

1500 73.15

2000 47.24

Math

No.

25

22

9

x Io __._._._._ - _2000

_n / I_0
0 ........................ 1000 ...................

o o_ _ _ 2 2_ 3 0 2 4 6 8 I0

Table 1 Fig.6 Typical trajectory

of a hypersonic vehicle

Fig.7 Transient kinetic heating
of a wing leading edge

Thermal buckling load (arising when the kinetic heating of the panel surface yields a

temperature difference between the panel and its fixed edges) is the second parameter that governs the

aerothermoelastic behaviour. Under the conditions of the hypersonic flow, the kinetic heating is a

complex phenomenon determined by using standard compressible flow and shock relations. We

exemplify a transient simulation of a wing leading edge with Fig.6, presenting the kinetic heating of a

wing leading edge 21, simulated from 1000 °K initial condition in the Math 15 flowfield at H=30.54

Km (material: advanced diboride ceramic, p=5238.09 Kg/m3). In the case of the square panel having

completely restrained edges against in-plane motions, the in-plane stress resultants due to the

temperature change between panel and its supports are equal:
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Eh r(t)
=Ny = (18)

l--v

and could be related to the critical buckling conditions ATe, by the relation:

ax(t)_AT(t)

2Z_2 ATer

Applying non-dimensional time parameter "r, the

variation of the temperature change can be assumed as

having the same pattern as the transient kinetic heating:

increasing values (over a time span xz) until a

stagnation temperature difference ATj is reached. The

functions showed in Fig.8 are simple approximations

for the real phenomena in hypersonic flow.

AT

AT_

(19)

Z-_

;(,

'tl _3

Fig.8 Pattern of transitory functions

'E

RESULTS

A stress analysis of the fluttering panel is based on the identification of the dynamic response
from which the characteristics of the oscillations (amplitude and frequency) are extracted to perform
the fatigue life estimation. It is known that the non-linear structural effect consists in the in-plane

stretching stresses induced by the large amplitudes of the out-of-plane motion. Since the tension
increases at higher and higher deflections and remains positive for any sign of the amplitude, a limited
aeroelastic response (limit cycle flutter-Fig.9, case of a simply supported square panel, h/a=O.O1)
arises at supercritical dynamic pressures. This means that the limit-cycle oscillations (LCO) of the
flutter phenomenon are fatigue cycles, due to the total induced alternating stress 6_ expressed as sum

of the components: nonlinear stretching stress 6_xx, pure-bending stress 62xx, and thermal stress 63_x.
As the classical map of stability boundaries (Fig.10) shows, the dynamic behaviour becomes more

complex under certain combinations of dynamic pressures and thermal buckling loads: the limit cycle
motion domain is extended at large temperature change AT, as well as chaotic motions arise for
moderate temperature and dynamic pressure conditions.

ilb

0"

-. \>

O,

W ' " I

• @9

¥ "" i- ;

: t

0

Fig.9 Limit-cycle oscillations of the panel 0V=800, cr_/2n'=O)

7OO
;Lrr l)

0

._ X ,,_U - limitcycleflutti_

\ I It,cotmditudu /
_'_ "" 08 10 1.2ffic/h_ ,_,'U 0.4 0.6 " "

' I L___---
- C_at_,_ _ _ "---r I

- III. _able

0 1 2 3 4

I *_a_load _-- --c_x_Tt 2= _TIz_T_

Fig. 10 Map of the aero-fl_ennoelsatic stability
boundaries (simply supported panel)
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The critical cases are related to the limit-cycle oscillations and chaotic behaviour. The classical

dynamic stress analysis uses especially curves of the maximum amplitude plotted in the LCO domain

of the map of aeroelastic stability boundaries. In other words, under the conditions of a certain pair of

values of the dynamic pressure and thermal load (acting as constant parameters in the nonlinear aero-

therrnoelastic system), a unique pair of LCO amplitude and frequency of oscillation characterizes the

limit-cycle motion. So, there are completely defined the parameters for the fatigue analysis within

Heywood's theory the maximum limit-cycle deformed shape determines the corresponding alternating

stress distribution and the failure prediction can be estimated (in life hours) by extracting the number

of cycles to failure from the Heywood's diagram.

More interesting results arise when taking into account the effects of transient hypersonic flow

conditions. Thus, changing only the slope of the dynamic pressure function in transition to the same

steady value (;Lr=500) and under the same thermal condition (transient heating at AT/ATe--2.5), the

dynamic responses change their steady-state amplitudes and patterns (Fig.1 l: buckled ---> chaos

-->limit-cycle flutter, Fig.12: buckled -->limit-cycle flutter). Other patterns (buckled --> chaos

--> buckled) have also been found by varying the transient change of the same parameters.

1.11

"1_0 • M • • 10 18 14 lg 10 in It, IN mR JiB 80

• 1 I I I '1 1

o_ I I I I I I .I,

£

'_i ] J ! [ | [ ] ! [ i I [ r [

..... ,
a .-k .....

 -i--- - tlltI IItI1TIIIII IHIlItWI 
i '

" • 2 s, 4; • JO 1| 14 lq; _ll 30 _ J4 se mR _O

8.. ' t [ ! _ ', ; _ _ I I | jr

Fig. 11 Transient behaviour (AT/AT,_=2.5, _.r=500)

at moderate change in dynamic pressure

Fig. 12 Transient behaviour (AT/AT,_=2.5., k'=500)

at rapid change in dynamic pressure

The dynamic stress analysis can be performed using directly the finite element dofs (all

combinations of the first and second order derivatives of the displacements) in the relations of the von

Karman nonlinear elastic theory (eqs 3, 4, 5). The Crxx stresses distribution corresponding to the

steady-state domain of Fig.ll is presented (Fig.13) in the section x=a/2 which is the most

representative in a strength analysis. All components are alternating stresses (having the frequency of

the limit cycle oscillation), except the thermal stress o'_ that is constant. It can be seen that the

nonlinear stretching stress o'j= plays a significant role in location of the maximum total stress _=. By

comparison to this case, a similar analysis (Fig. 14) is performed by taking into account the case of a

rapid transition in thermal and dynamic pressure conditions (shown in Fig. 12). In this case the values

of the stress components are smaller, corresponding to smaller limit cycle flutter amplitude, though the

stationary conditions are the same as in the previous case (AT/AT,_=2.5, _/=500). As a consequence,

the corresponding fatigue analysis through Heywood's theory (Fig.2) gives different results: a limited

life of about 104 cycles (in dimensionless time) in the first case and an unlimited life in the second

case, though the classical analysis states that in the LCO domain the motion is uniquely determined in

amplitude and frequency at certain parameters AT/AT_ and _.r.
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The sensitivity of the nonlinear system exhibiting changeable patterns of the aerothermoelastic

response when exposed to transient thermal and velocity effects could determine another interesting

case. Thus, investigations into the flutter domain of the map of the aeroelastic boundaries showed also

a local phenomenon of exponential increasing amplitudes at certain transitory conditions (Fig. 16). In

other circumstances, this behaviour does not arise (Fig. 15).
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"1 " -- ........ "I-- ...... _ i i 3@_,_.i'--'-_,,,,I _ ......._....... ._- .....,- *:_--7- ...... i-----,_-------* -I--. . -......,......-7......-- ............,-..t,_--I "-- ..... -T'....... _ -1 1--- o • • . ,. . . =

_r 7"

Fig 15 Transient behaviour (ATIAT,_=2., k'=600)
at rapid change in dynamic pressure

Fig. 16 Transient behaviour (AT/AT,_=2., X'_O0)
at moderate change in dynamic pressure

In this case, even if the limit-cycle amplitudes of the steady-state domain are smaller than the previous

studied case (and consequently do not involve a failure by fatigue), conditions of a local damage

during the explosive phenomenon could appear due to the larger displacements that could exceed the

ultimate strain of material. Then the catastrophic failure can be accelerated by the periodic motion at

smaller amplitudes of the flutter motion. Also, another phenomenon can not be neglected: the rapid

buckling that precedes the limit-cycle behaviour in almost cases of the transitory conditions. Due to the

large amplitudes which change very fast, the behaviour is like a shock and can cause damages.

CONCLUSIONS

This study demonstrate the sensitivity of the aerothermoelastic system to the transitory

hypersonic flow conditions: the pattern of the motion changes in amplitude even when modifying the
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increasingslopeof the parametersthat govern the motion (thermal forces and dynamic pressures), but

maintaining the same steady state values. The panel behaves like chaotic system.

Applying proper theories for elastic (yon Karman) and aerodynamic (piston theory) model, and

the Heywood's approach for fatigue life estimation, the results confirm differences in stress

predictions, compared with the classical approach (case of constant flow and kinetic heating

parameters).

The engineers and designers of the high speed aircra_ structures could find new information

about the failure mechanism of panels, searching not only for the fatigue analysis of limit-cycle flutter

solutions (involving certain frequencies and maximum cyclic stresses in LCO domain), but also taking

into account the possibility of a fast failure during a rapid buckling phenomenon, or a long term failure

due to the irregularly oscillations as an effect of the transient conditions.
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An airfoil in supersonic flow, having deformable nonlinear supports, is an

aeroelastic system for which various types of instability, bifurcations and regular or

chaotic motions can appear (see [5 - 9]),
The airfoil has three degrees of freedom - that is, plunge displacement, angle

of pitch and angle of flap deflection. The stiffness force and moments for all those

motions are assumed to be nonlinear ones [2, 3]).
The airfoil is subjected to the pressure difference produced by its motion in

supersonic flow. Stability and bifurcations occurring in the system, limit cycles of

self-excited vibrations and regions of regular or chaotic motions have been

investigated. The effect of some parameters of the system on the course of linear
and nonlinear vibrations has been studied.

1. Introduction

Recently some investigations of nonlinear vibrations of aeroelastic systems
have been made in which regular and chaotic motions were studied [6 - 9].

In the present paper nonlinear vibrations of an airfoil with a trailing edge flap
in supersonic flow are considered (Fig. 1). The airfoil has three degrees of freedom,

where z, = zc(t ) is plunge displacement, cz = cz(t) is angle of pitch and 13= 13(0 is

angle of flap deflection. The airfoil suspension is assumed to be nonlinear and the
stiffness force and the moments for airfoil motions are nonlinear functions.

Uo>Qo

W

6

X

Fig. 1. Sketch of the airfoil
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The airfoil is subjected to the pressure difference caused by its motion in the
gas stream having unperturbed velocity U0 > an, where a0 is sound velocity of the

flowing gas.
The airfoil is assumed to be a thin and plane nondeformable structure (Fig. 1).

The pressure difference acting upon the airfoil can be determined by making use of
the potential theory of unsteady supersonic flow [1 - 4].

Finally, we obtain a set of three nonlinear differential equations describing the

motion of the system under consideration, which enables us to study linear and
nonlinear flutter of the airfoil with the trailing edge flap in supersonic flow, where

bifurcations and regular or chaotic vibrations can appear.

2. Equations of Motion

Equations of airfoil motion can be written in the form [2, 3]

dZz dZf3
m,,_-S,, dza"_"-Sf dt 2 -Q= +1:,,

d Zcz d Zz , d__zI=--_T--So--_+(I z +(xf -xc)S z) =Q,_ +M= (2.1)

dZ_5 dZ a dZ z ,

lf"_-+(lf +(xf -x,)Sf )-'_-Sy dt 2 -QI_ +Ms

where mo,S°,Io are mass, static moment and moment of inertia, respectively, per

unit span of the complete airfoil (moments S° and 1o are taken in relation to the axis

xc of airfoil suspension Fig.l), Ss , I s are static moment and moment of inertia of

the flap (taken in relation to the axis xlof flap rotation Fig.l).

P..= P.(zo) = -k:o(z° +

M= = M= (ct) = -ka0(et + k,,ct 3) (2.2)

M_ = Mp (13) = -k_o(p + k_tj3 3)

represent nonlinear stiffness force and moments for airfoil and flap motions, while

Q:, Q,_ and Q_ are aerodynamic force and moments produced by the airfoil motion in

supersonic flow
I I 1

Q. = f Apak-, Q,,=fz_o(xc-x)dr.; Q_= _z_p(xf-x)dx (2.3)
0 0 .g'f

The pressure difference _, can be determined making use of the potential

theory of unsteady supersonic flow [1, 3, 4]
_,P = P, - P, = _P, + _P2 (2.4)

where

OW owl2p°U° IU -_- + (1 - _-) --_- (2.5)----V-L °
is the linear part of the pressure difference [9] and

It" = M z - 1; M = Uo > 1 (2.6)
ao

p,. M are density and Mach number of unperturbed flow, while

W = W(x,t) = z. + (x(x, - x) + 13(xI. - x)H(x - xj. ) (2.7)
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is displacement of the airfoil surface (Fig.l) and H(x) is Heaviside's function.

Nonlinear, the second order part of the pressure difference can be obtained in the
form HI

=- +1)U0-g-÷-_-J - (_-_)Uo-_-_ 0-g +_-; -_ 0,J

where K is the ratio of specific heats.

Aerodynamic force and moments (2.3) acting upon the airfoil can be
determined for linear approximation making use of (2.5) and (2.7)

- - c - 13_-;LI (2.9)o g

[ -,}
Q, = t_p,(xl-x)dx= P"U°2/'Z's_+I3.+ X- 21Z.II_.oz +

_,: la

- _t _ (2.1

where _'i = 7

and I I is flap chord.

(2.12)

The problem of airfoil vibrations will be considered in a dimensionless form

assuming that the displacement z c is referred to the chord l of airfoil and time t to

//1/= ,where

_a= k/_0 •

_Io' k._=o = k_ (2.13)
_.. = ; O) f_ "_ If

are natural frequencies of linearized uncoupled vibrations of the airfoil and its flap
under study. Equations of motion (2.1) will be transformed making use of Eqs. (2.2),
(2.9) - (2.11) and we can obtain

dZz d%c dZf3

d--T-e, dz z -elm-- I _z 2 + ;(;..(z +k.,z3)=?,r2. (eL+ k rf_)+

(d: dct _'"; _1 (2.14)
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d2ct e_ dZz

dx 2 r_ _2

where

Z_ S a

x=o_t ; z= 1 " e° tool

_o x. 1 _ S: . 2_ I:
=-7--'2; e: m:l' r] m:lZ,

(2.15)

(2.16)

m/..

ref-too" lfc=[l:+(x:-x')Sf]/I°; e:c=]+(x:-x,)_; _y=x,/l (2.17)

1: 2PoUo212 /co= (1 _-T) ¢o: _2_'f = T; _' - Uk_o 8 = a---o-_L- ; x.. = -7; x_ =-£ L, = t'k.,' (.t)_t 0)_' " "

Equations (2.14) - (2.16) together with relations (2.17) will be applied to the analysis
of airfoil vibrations. In those equations, the coefficient 1', defines the reduced

dynamic pressure of supersonic flow, which is the decisive factor for self-excitation

of the system, 1,_6 is the coefficient of aerodynamic damping, G0 is the

dimensionless distance of the airfoil suspension axis (elastic axis) from the mid-

chord point and Z_ determines the ratio of natural frequencies for angles of pitch

and flap deflection, which has also the essential effect on the course of vibrations.

3. Analysis of Stability

At the beginning Eqs. (2.14)-(2.16) will be linearized assuming that

k., = k_,, = k_, = 0 (3.1)

and the solution of Eqs. (2.14)-(2.16), (3.1) can be found in the form

Z(Z) = zoe _ ; a(_) = ao e'_ ; I_(x) = Po e'_ (3.2)

On substituting (3.2) into Eqs. (2.14)-(2.16), (3.1), a set of algebraic equations

is obtained from which the equation of frequencies can be found

a = a,, (a._:. - a.a.) - a. (a,_a. - a,_a,:) + a,, (a,:a. - a,,a..) = o (3 3)

where

a,, =X.. -P= +ipg,6r); a,2 =p=eo -y,r) +ip'y,<Sr=:{o;

, __ . .r, 1 2 . =p2 ea
a_ = p-e:.ra: -ytr_k: -tp_tSr ,- Tk:., a n r--_-+iF,(:5_o;

a22= _-p2 -1':,o +_m,a(_,2o+_); a:_=_,_/(_/-_o)-p2//o. +im,a_.,_;

p z e--_-- ,py , _ -] k ':. ; a 3, =1' t _ - p Ze.t-c + ipy l --_ff w ,.3
a3! = r_
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Equation (3.3) enables us to investigate stability of the system under study. In

a general case, we can obtain from Eq. (3.3) complex eigenvalues of Eqs. (2.14)-
(2.16), (3.1)

p = q -i_ (3.5)

for stable (e < O) or unstable (s > O) vibrations, depending on _,, 8, _o, 7.n and

other parameters of the system. From Eq. (3.3) we can also find critical parameters

of self-excited (flutter) vibrations

_,, = .f,_.; p = q = oc,; _ = 0 (3.6)

or divergence of the system

71 = 71d_; p=O (3.7)

Equations (3.6) define the Hopf bifurcation limit and Eqs. (3.7) - the

divergence bifurcation limit for the system under study [5].

4. Numerical Analysis of Stability and Nonlinear Vibrations of the Airfoil

Numerical calculations of stability parameters (3.6) and

carried out for the following data

Z.-= 0.2,eo = 0325; r=_ = 0.12; _: = 0.1; ;_:= 0.2; r: = O.OI;

[:=0.1; e:=0;0,1; 8=0,001;0.1; _c=0.4+0.8; _=0+I0

(3.7) have been

_: = 0.8;
(4.1)

Nonlinear airfoil vibrations have been investigated for (4.1) and

k=l = 0; k=_ = kB1 = 20 (4.2)

For nonlinear vibrationsjwe have also included torsional free-play in the
deflection of flap, which is acting together with nonlinear stiffness moment

M_ = M_(13) of (2.2), (4.2). The amplitude of free-play is taken

= 0.05 (4.3)

The range of parameters applied in this investigation enabled us to study regular
and chaotic limit cycle vibrations. In Fig.2 diagrams of critical parameters _:_,_, o=,

versus _ are presented for _, = 0.4 + 0.8, _ = 0.001 and balanced flap:e: = O. In

Fig.3 similar diagrams and 1',_ are shown for unbalanced flap, e I = 0.1.

It can be seen that the sensitivity of the system to flutter vibrations increases

for _ --) 0.8- that is, for back position of elastic axis_,and critical frequency decreases

in this case.

For balanced flap (Fig.2) we can see interesting irregularities for 7,_ = l and

X,_ < 0.2 (Fig.2c).

In the next figures results of numerical analysis of nonlinear airfoil vibrations
are shown, where phase plane plots, time histories and power spectrum density

plots P are presented for ,-(t), a('c) and 13(z).

In Fig.4, we have asymptotically stable vibrations for V.,_= 0.4; X.n = 0.9;

_/_ = 13 and in Fig.5 we see quasi-periodic limit cycle vibrations for

_,_ = 0.4; 7._ = 0.9; 7, = 2.0.
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In Figs.6 and 7 chaotic limit cycle vibrations are shown for

_ = 0.8; ;_ = _,, = 2,0, without free-play (Fig.6) and with free-play (Fig.7).

It can be seen that near flutter limit _,,=. regular quasi-periodic motions occur

(Fig.5) and for greater values of 1'_ chaotic motions are developing. The most

developed chaotic motion can be seen for back position of the elastic axis and free-

..play flap deflection (Fig.7).
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Abstract

Buffeting is an aeroelastic phenomenon occurring

at high angles of attack that plagues high

performance aircraft, especially those with twin

vertical tails. Previous wind-tunnel and flight tests
were conducted to characterize the buffet loads on

the vertical tails by measuring surface pressures,

bending moments, and accelerations. Following

these tests, buffeting responses were computed

using the measured buffet pressures and compared

to the measured buffeting responses. The
calculated results did not match the measured data

because the assumed spatial correlation of the

buffet pressures was not correct. A better

understanding of the partial (spatial) correlation of

the differential buffet pressures on the tail was

necessary to improve the buffeting predictions.

Several wind-tunnel investigations were
conducted for this purpose. When compared, the

results of these tests show that the partial

correlation scales with flight conditions. One of

the remaining questions is whether the wind-

tunnel data is consistent with flight data.

Presented herein, cross-spectra and coherence

functions calculated from pressures that were

measured on the High Alpha Research Vehicle

(HARV) indicate that the partial correlation of the
buffet pressures in flight agrees with the partial
correlation observed in the wind tunnel.

Background

For high performance aircraft at high angles of

attack, vortices emanating from wing/fuselage

leading edge extensions (LEX) burst at some

flight conditions, immersing the vertical tails in

their wake, as shown in Figure 1 for the F/A-18.

The resulting buffeting of the vertical tails are a

concern from airframe fatigue and maintenance

points of view. A summary of previous wind-

tunnel zs and flight tests 2.5._3conducted to quantify
fin buffet on the F/A-18 follows.

Figure 1. Flow Visualization of Leading Edge
Extension (LEX) Vortex Burst,

30 Degrees Angle of Attack

Industry_ Test

The spectral nature of the unsteady differential
(inboard surface minus outboard surface)

pressures on the F/A-18 vertical tail caused by a
burst LEX vortex are well documented _. As

illustrated in Reference 1, the power spectral

densities and root mean square (rms) values of the

differential pressures vary with flight speed, angle

of attack (AOA), dynamic pressure, and tail

position. The worst case buffet condition, defined

by the highest rms values of differential pressure

at design limit load, occurs on the F/A-18 aircraft

at a dynamic pressure of 340 pounds per square

foot (psf) and 32 degrees angle of attack. Other

findings of Reference 1 were that the rms value of

the differential pressure varies linearly with

dynamic pressure, and that Strouhal (proportional
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to reduced frequency) scaling provides a means

for comparing model and flight spectral data.
Also, the highest rms values of differential

pressure occur at stations closest to the leading
edge while the lowest rms values occur near the

trailing edge with a gradual change in rms values

between these two regions of the tail. Another

conclusion from this investigation was that the

unsteady differential pressures were considered

fully correlated (spatially in phase) since the

pressures measured at five stations did not

indicate a significant phase shift.

Canadian Measurements

/
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///
INBOARD SURFACE / / t

o-'°/ Iil r
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Figure 2. Peak Correlation Contours (msec) of the

Fin Unsteady Pressure Signals, Starboard-Side

Rigid Tail, 6% F/A-18 Model, M=0.6,

35 Degrees AOA

(From Reference 2)

After the research of Reference 1, wind-tunnel

tests of a 6% rigid F/A-18 model were conducted

to investigate the spatial characteristics of the

unsteady surface pressures on the tail 2. Contour

plots of the time delays of the unsteady pressures
on each surface at Mach 0.6 were constructed

using cross-correlation analyses of the measured

unsteady pressures. As shown in Figure 2 for the

two surfaces of the starboard-side fin, the contours

above mid-span for inboard and outboard surfaces

are quite different. It is in this region that the

differential pressures contribute most to buffeting
due to their distance from the root attachment at

the fuselage. Therefore, the spatial characteristics

of the unsteady differential pressures that

contribute most to buffeting are unclear.

Prior Buffeting Predictions

Because of the perceived complexity in

transcribing partially-correlated unsteady

pressures into the analyses of buffet and buffeting,

the differential pressures on the tail have been

assumed to be in phase (fully correlated) at any
given time 35. These analyses do not estimate the

buffet loads accurately, and it was concluded that

an understanding of the spatial correlation of the

pressures is a key to successful buffet load

prediction and should be the subject of more
research.

Full-Scale Wind-Tunnel Test

To learn more about the spatial correlation, a full-

scale F/A-18 was tested in a wind tunnel _-9at high

angles of attack at a maximum speed of M=0.15.

Plots of the magnitudes and phase delays of the

unsteady differential pressures at two stream-wise

stations were constructed using cross-spectral

analyses of the unsteady pressures measured on

each tail surface at two different angles of attack
(20 degrees and 32 degrees). The results shown in

Figure 3a and 3b represent, respectively, harmless
and worst case buffet conditions for the F/A-18.

As shown in the Figures, the phase steadily

decreases with increasing frequency. This trend is

consistent for both angles of attack and indicates

that the differential pressures acting on the tail are

not in phase and therefore are not fully correlated.
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However,therelationshipof flight conditionson
pressurecorrelationwasnot clearlyunderstood
fromtheseresults.Therefore,scaledmodeltests8.
10-12

were conducted in the Transonic Dynamics

Tunnel (TDT) where this relationship was
determined, as summarized below.

The purpose of this paper is to evaluate whether

the spatial correlation of the buffet pressures on an

F/A-18 fin in flight agrees with the spatial
correlation observed on a 1/6-scale F/A-18 fin in
the TDT.
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Figure 3. Cross-Spectral Density and Coherence
Functions Between the Differential Pressures

Near the Leading-Edge Tip and the

Trailing-Edge Tip, Full-Scale Tail, M=0.15,

(From Reference 6)

.0

Scaled Wind-Tunnel Measurements

Figure 4. 1/6-Scale F/A-18 Model Mounted in the

Transonic Dynamics Tunnel

/
2 10 11 ._

13 14

Figure 5. Pressure Transducer Stations, 1/6-Scale
Flexible Tail

To better understand the pressure correlation

during buffet, an available 1/6-scale, sting-
mounted, F-18 wind'-tunnel model, shown in

Figure 4, was modified and tested in the Transonic

Dynamics Tunnel (TDT) at the NASA Langley

Research Center as part of the ACROBAT

(Actively Controlled Response Of Buffet-

Affected Tails) program 8. Surface pressures were

measured for scaled flight conditions at high

angles of attack on rigid and flexible tails. Using

the transducer spread shown in Figure 5, cross-

correlation and cross-spectral analyses 9 were
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performed for identifying any consistent spatial
characteristics of the unsteady differential

pressures.

Cross-correlation and cross-spectral density

(CSD) functions of the unsteady differential

pressures on the flexible tail are shown in Figures

6 and 7, respectively, and compared to results of

References 2 and 6, shown in Figures 2 and 3,

respectively ,_2. These comparisons show that the

time and phase delays of the unsteady differential

pressures scale with wind-tunnel speed. In fact,

the unsteady differential pressures were found to

resemble waves that move along the tail, as

indicated by the non-zero time delays. So, one

remaining question was the correlation of the

wind-tunnel data with flight measurements.
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Figure 6. Cross-Correlation Functions Between
Differential Pressures at Stations on Flexible Tail,

1/6-Scale F/A-18 Model, 34 Degrees AOA
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Figure 7. CSD Functions Between Differential
Pressures at Stations on Flexible Tail, 1/6-Scale

F/A-18 Model, 34 Degrees AOA

Flight Test Results

Pressures on the surfaces of the starboard vertical

tail of the HARV, shown in Figure 1, were

measured at various flight conditions using a

sampling rate of 320 Hz. Referring to the HARV

fin shown in Figure 8, the even numbers represent

pressure transducers on the shown surface
(notation KS) while the odd numbers represent
transducers on the hidden surface (notation KP).

Therefore, the differential pressure computed for

the station located at 85% span and 90% chord

would be designated "KP31-KS32". This notation

is used consistently herein for reporting the

differential pressures on the HARV fin.
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CSD functions of the unsteady differential

pressures at Mach 0.3 and 30 degrees angle of

attack were computed from the digitized time

histories of 43 seconds in length using a block size

of 2048 with 75% overlapping and a rectangular
window.

90% 70% 45% 10%

._5%

l ...... ..... ..........
i ..........................

Figure 8. Location of Pressure Transducer on
Starboard Vertical Tail, HARV
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Figure 9b. CSD Function Between Differential

Pressures, Station K.P25-KS26 with Respect to
KP29-KS30", on HARV, Mach 0.3,

30 Degrees AOA, LEX Fence Off
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Figure 9c. CSD Function Between Differential

Pressures, Station KP25-KS26 with Respect to
KP31-KS32, on HARV, Mach 0.3,

30 Degrees AOA, LEX Fence Off

The magnitude and phase of the CSD functions,

plotted in Figure 9, illustrate the spatial features of

the differential pressures along the 85% span line.

Based on the location of the peak magnitude in the

upper plots in Figures 9a, 9b and 9c, the dominant
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frequency component of the buffet pressures at

these locations is approximately 11.25 Hz. In

fact, the overall shape of the curve shown in all

three magnitude plots are quite similar except for
the relative scale in the vertical direction. The

magnitudes of the CSD functions decrease with

increase in distance between stations moving aft.

This effect is expected since the rms of the

differential pressures is generally highest at the

stations near the leading edge and generally

lowest near the stations near the trailing edge.

The value of phase between stations is conversely

affected by distance. As shown in Figure 9, the

value of the phase at the dominant frequency of

11.25 Hz is different in each of the lower plots.

For instance, in Figure 9a, the phase at 11.25 Hz is

approximately 27 degrees while, in Figure 9b, the

phase is approximately 45 degrees, and while in

Figure 9c, the phase is approximately 64 degrees.

With reference to the 85% span-line in Figure 8,

the pressure wave, represented by the CSD in

Figure 9a, traveled 35% of the chord while the

pressure wave, represented by the CSD in Figure

9b, traveled 60% of the chord length. Therefore,

the phase increases with increases in distance

between stations. Furthermore, this relationship

appears to be linear.

As a check of linearity, the phase, shown in Figure

9a, is computed for the pair of differential

pressure transducers K.F25-KS26 and KP27-KS28

which are 1.54 feet apart. At 30 degrees AOA,

the velocity of the streamlines in the vicinity of

the tail will be less than the flight speed of Mach

0.3 (330 feet per second). In Reference 12, the

velocity near the tail is shown to be approximately

70% of the free stream value. Therefore, using

Equation i, where "f' is the frequency of interest
(11.25 Hz in this case), "d" is the distance

between stations, and "LP' is the velocity of the

streamline near the 85% span line, the phase at

11.25 Hz is computed as 27 degrees, which agrees

well with the value shown in Figure 9a. Similarly,

the phase may be computed for other pressure

transducer pairs. Equation 1 may be simplified

further by introducing the Strouhal number,

defined by Equation 2, and canceling like terms,

to yield Equation 3.

d
¢(rad) = o9. t = 2_f- m (I)

U

fd
n = -- (2)

U

180
(deg) = ¢ (rad)._ = 360 n (3)

7/

Since dispersion (break down of eddies into

higher harmonics) and dissipation (.energy loss)

are expected in this highly turbulent flow near the

tail, the pressure wave is expected to deform as it

travels along the tail _2. Therefore, the magnitude

of the partial correlation of the differential

pressures at two stations is expected to drop as the

distance between these two pressure stations

increases. The coherence function provides a tool

for assessing this drop in correlation. In Figure

10, coherence functions are computed, with

respect to KP25-KS26, for the differential

pressures at selected stations along the 85% span

line for Mach 0.3, 30 degrees AOA.
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Figure 10a. Coherence Function Between

Differential Pressures on HARV,

Along 85% Span Line,

Station KP27-KS28 with Respect to KP25-KS26,

Mach 0.3, 30 Degrees AOA, LEX Fence Off
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Figure 10b. Coherence Function Between
Differential Pressures on HARV,
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Figure 1 la. Coherence Function Between
Differential Pressures on HARV,

Along 10% Chord Line,

Station KP19-KS20 with Respect to KP25-KS26,

Mach 0.3, 30 Degrees AOA, LEX Fence Off
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Figure 10c. Coherence Function Between
Differential Pressures on HARV,

Along 85% Span Line,
Station KP31-KS32 with Respect to KP25-KS26,

Mach 0.3, 30 Degrees AOA, LEX Fence Off

Figure 1 lb. Coherence Function Between
Differential Pressures on HARV,

Along 10% Chord Line,
Station KPI3-KS14 with Respect to KP25-KS26,

Mach 0.3, 30 Degrees AOA, LEX Fence Off
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Figure 12. Coherence Function Between

Differential Pressures on HARV,

Well Separated Stations,

Station KP11-KS12 with Respect to KP25-KS26,

Mach 0.3, 30 Degrees AOA, LEX Fence Off

In Figure 10a, the maximum value of the

coherence is 0.97 (out of a possible 1.0) at 11.25

Hz, the dominant frequency in the pressure wave
form. The values of the coherence for other

frequency components in the pressure wave are
less than 0.97. This feature indicates that some

dispersion of the frequency components is

occurring as the wave moves along the tail. For
instance, if the values of the coherence for all

frequency components are unity, then no

dispersion occurs in the wave as it moves along

the tail. Conversely, if the values of the coherence

for all frequency components get smaller as the
distance between stations increases, then all

frequency components in the wave are dispersing
as a function of distance. The latter case is the

nature of the unsteady differential pressures that

occur on the vertical tails during buffet caused by
LEX vortex burst.

As the pressure wave moves aft along the 85%

span line, the maximum value in the coherence

function falls from 0.97, shown in Figure 10a, to

0.91, shown in Figure 10b, to 0.79, shown in

Figure 10c. Therefore, some dispersion and

possibly some dissipation are occurring along a
chord line. For the 10% chord line, the maximum

value in the coherence functions are 0.934, shown

in Figure lla, and 0.91, shown in Figure lib.

Therefore, more dispersion occurs along a

constant span line than along a constant chord
line. The smallest maximum values of the

coherence functions occur for stations that are

farthest apart, as seen in Figure 12, where the
maximum value is 0.75. Therefore, the worst

coherence occurs between the most separated
stations.

Comparison of Flight Results With
Scaled Wind-Tunnel Results

Diff P at Station 3 / Diff P at Station 1
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Figure 13. Cross-Spectral Density Function
Between Differential Pressures,

1/6-Scale F/A-18 Model,

Along Constant Span Line,

Station 3 with Respect to Station 1,

Mach 0.6 (Simulated), 34 Degrees AOA

Based on Strouhal scaling, the CSD functions,

shown in Figure 7, that were computed for

pressures measured in the TDT on a l/6-scale

F/A-18 vertical tail at Mach 0.1 (110 feet per

second) at 34 degrees AOA, are representative of

an F/A-18 at Mach 0.6 (660 feet per second) at 34

degrees AOA. Shown in Equation 1, a doubling

of flight speed will reduce the phase shift by 50%,

and from Reference 1, a doubling of the flight
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speed will also double the frequency value at

which the peak magnitude of the CSD occurs.

This latter effect can be seen also in Equation 2

when maintaining a constant value of n.

Therefore, since the two effects cancel each other

in this case, a direct comparison of the phase

value at the peak magnitude of the CSD function

is possible between wind-tunnel results for the
l/6-scale F/A-18 model and the results of the

HARV at Mach 0.3.
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Figure 14. Coherence Function Between

Differential Pressures,

1/6-Scale F/A-18 Model,

Station 4 with Respect to Station 5,

Mach 0.6 (Simulated), 34 Degrees AOA
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In Figure 13, the CSD plot shows that the phase

between the differential pressure at Station 3 with

respect to Station 1 on the 1/6-scale F/A-18

vertical tail at 34 degrees AOA is approximately

46 degrees. For similar conditions and stations on

the HARV, the phase is approximately 45 degrees,

as shown in Figure 9b.

Coherence functions were computed for selected
stations on the 1/6-scale F/A-18 flexible vertical

tail for comparing coherence functions computed

for the HARV. Shown in Figure 14, the
maximum value of the coherence function

between stations 4 and 5 on the l/6-scale F/A-18

vertical tail (see Figure 5) is 0.844. This value of

0.844 agrees well with the values of the coherence

functions, shown in Figures 10b (0.91) and 10c

(0.79), for similar stations on the HARV vertical

tail (see Figure 8). For an additional comparison,
the coherence function between two of the most

separated stations on the l/6-scale F/A-18 flexible

vertical tail was computed, as shown in Figure 15.
The maximum value of the coherence between

stations 3 and 13 on the 1/6-scale F/A-18 vertical

tail (see Figure 5) is 0.625. This value is less than
but not too different from the maximum value of

0.75 for the coherence function, shown in Figure

12, between stations that are similarly separated in

terms of percent chord and percent span.

Therefore, the level of dispersion occurring on the

fins of the 1/6-scale model and the HARV agree
well.

Conclusions

CSD and coherence functions were presented for

indicating the partial (spatial) correlation that
occurs on the vertical tail of the F/A-18

configuration during LEX vortex burst. The

unsteady buffet pressures that are caused by LEX

vortex burst during high angle of attack

maneuvers on the F/A-18 (HARV) are not fully

correlated as previously assumed. In fact, the

local Strouhal number may be used to relate the

phase shift of the unsteady buffet pressures among
stations on the vertical tail.

The magnitude of the CSD functions presented
herein indicates that the vortex disturbance
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reduces as it travels along the tail. In agreement

with this finding, the magnitudes of the coherence
functions illustrate that the correlation of the

unsteady pressures is affected by the distance
between the stations. One issue that surfaces from

this finding is the role, if any, that the vertical tail

plays in affecting the spatial correlation and

dispersion of the unsteady buffet pressures.

As shown herein, the results presented for the

HARV agree well with the partial correlation of

the buffet differential pressures measured on a
1/6-scale F/A-18 model tested in the TDT.

Comparisons between the l/6-scale F/A-18 data

and the F/A-18 (HARV) data consistently

illustrate the partial correlation of the differential

pressures that occur on the vertical tail during

LEX vortex burst at high angles of attack.
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TWIN-TAIL BUFFET SIMULATION USING A MULTI-DISCIPLINARY

COMPUTING ENVIRONMENT (MDICE)

Essam F. Sheta, John M. Siegel, Jr., Freddy N. Goios and Vincent J. Harrand

CFD Research Corporation, Huntsville, AL 35805

ABSTRACT

The current paper presents a state-of-the-art

approach for .performing efficient multi-disci-

plinary simulations. A Multi-Disciplinary Com-

puting Environment (MDICE) is presented and
validated with a twin-tail buffet simulation of a

generic fighter aircraft. MDICE is an object-ori-

ented computing environment which allows sev-

eral analysis modules to run and communicate
with each other over a distributed network of

computers. In a buffet condition, the leading-

edge vortices of a delta wing break down pro-

ducing an unsteady turbulent flow which empen-

nages on the surfaces of the tails, causing severe

premature structural fatigue. The application of

MDICE to the twin-tail buffet problem involves

four types of modular functionality: a fluid-

dynamics module, a fluid-structure interfacing

technique, a structural dynamics module, and

grid motion technique. The configuration model

is pitched at a wide range of angles of attack at

Mach and Reynolds numbers of 0.4 and 1.25

million, respectively. The computational results

are in very good agreement with the experimen-
tal data.

INTRODUCTION

The Multi-Disciplinary Computing Environment

(MDICE) has been developed by CFD Research

Corporation in collaboration with AFRL and

NASA Glenn Research Center. MDICE provides

an environment in which several engineering

analysis programs run concurrently and coopera-

tively to perform a multi-disciplinary design,

analysis, or optimization problem. Using

MDICE, engineers are able to couple inherently

dissimilar disciplines and programs from a vari-

ety of sources, performing distinct tasks such as

geometry modeling, grid generation, CFD-struc-

rural analysis, controls, and post processing into

a single software system. Besides CFDRC's own

engineering analysis codes, a large number of

commercial, US Government and public domain

codes have already been integrated into the

MDICE environment. Examples of the third

party codes are Pro-Engineer, Unigraphics,

CATIA, MSC-NASTRAN, Cobalt (AFRL),

NPARC (NASA LeRC), ADPAC (NASA

LeRC), Split-flow (Lockheed Martin), GCNS

(Northrop Grumman), etc. An MDICE develop-
ers toolkit is available so that the end user can

easily include his own application modules with

this environment. For more information, see

http://www.cfdrc.com, select 'Products', then
select 'MDICE'.

The current paper presents a state-of-the-art

multi-disciplinary application of MDICE to the

twin-tail buffet problem of fighter aircraft. These

fighter aircraft maneuver at high angle of attack

causing the flow to separate from the sharp lead-

ing edges of the wing or leading-edge extension

(LEX), as the case of F/A-18 fighter. At some

flight conditions, the leading-edge vortices break

down before reaching the vertical twin tail which

get bathed in a wake of highly turbulent, swirl-

ing flow. The vortex-breakdown flow produces

unsteady, unbalanced loads on the vertical tails.

This, in turn, produces severe buffet on the tails

and has led to their premature fatigue failure.

Several experimental investigations have been

conducted to examine various aspects of this

phenomenon [1-4]. These experiments showed
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that the vortical flow breaksdown aheadof the

vertical tails at angles of attack of 25° and
higher. The buffet responsesoccur in the first
bending mode, increases with increasing
dynamicpressureandis largerat M=0.3 thanat
higher Math numbers.Washburnet al [5] con-
ducted an extensiveexperimental investigation
of the problem. They showedthat the aerody-
namic loads were more sensitiveto the chord-
wise tail location than its spanwiselocation.As
the tails weremovedlaterally toward thevortex
core, thebuffeting responseand excitationwere
reduced.Recently,Mosesand Ashley [6] con-
ductedanextensivewind tunnel testson arefur-
bished16%,rigid, full-spanmodelof theF/A- 18
A/B aircraft with three flexible and two rigid
vertical tails. These tests have shown that the

time and phase lags of the unsteady pressure dif-
ferentials are functions of the distance between

the measuring stations and the transport velocity,

and tail flexibility does not appear to affect the

time or phase delays of the unsteady differential

pressures.

Kandil, Sheta and Massey [7] studied the buffet

response of twin-tail model in turbulent flow

over wide range of angles of attack. The compu-

tational results were in good quantitative agree-

ment with the experimental data of Washburn et

al. [5]. Recently, Sheta, Kandil and Yang [8]

studied the effect of tangential leading-edge

blowing (TLEB) and flow suction from the vor-

tex cores along the vortex path (FSVC) on twin-

tail buffet alleviation. The investigation con-

eluded that FSVC in position with large volu-

metric flow rate provided the best buffet control.

In a very recent paper by Sheta and Kandil [9],

the effects of dynamic rolling maneuvers of the

configuration model on twin tail buffet response

were investigated. The model was forced to roll

dynamically around the symmetry axis by a con-

stant amplitude of 4 ° and reduced frequency of

rt and 2r_. The unsteady aerodynamic loads

have never reached to a complete periodicity due

to the irregular deflection motion of the left and

right tails. Increasing the reduced frequency has

led to higher buffet loads, higher frequencies of

loads, and higher excitation peaks in the loads

spectra. However, it also has led to lower bend-

ing and torsion deflections and accelerations

than those at lower reduced frequency.

MDICE ARCHITECTURE

MDICE is a distributed object oriented environ-

ment which is made up of several major compo-

nents. The first component in MDICE is a

central controlling process that provides network

and application control, serves as an object

repository, carries out remote procedure calls,
and coordinates the execution of the several

application programs via MDICE specific script

language. The second component is a collection

of libraries, each containing a set of functions

callable by the application programs. These

libraries provide low level communication and

control functions that are hidden from the appli-

cation programs, as well as more visible func-

tionality such as object creation and

manipulation, interpolation of flow data along

interfaces, and safe dynamic memory allocation

services. Finally, the environment also encom-

passes a comprehensive set of MDICE compli-

ant application programs. MDICE provides

capabilities for parallel execution of participat-

ing application programs and has a full Fortran
interface for those codes written in Fortran 77 or

90, C, in addition to C++.

The MDICE Graphical User Interface includes

facilities for control the application. Figure 1

shows the control panel used to set up and con-

trol a simulation with some of MDICE compli-

ant modules. The application modules are

selected; for each module, the computer on

which the program is to be run is chosen. Other

information is provided, such as specifying a

directory to run each module and any command

line arguments the module might require. Once

the simulation has been set up, it is run and con-

trolled by MDICE using a simple script. The
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MDICE script contains all the conveniences

found in most common script languages. In addi-

tion, MDICE script supports remote procedure

calls and parallel execution of the application

modules. These remote procedure calls are the

mechanism by which MDICE controls the exe-

cution and synchronization of the participating

applications. Each application posts a set of
available functions and subroutines. These func-

tion are invoked from MDICE script, but are

executed by the application program who posted

the function.

There are many advantages to the MDICE

approach. Using this environment one can avoid

giant monolithic codes that attempt to provide

all needed services in a single large computer

program. Such large programs are difficult to

develop and maintain and by their nature cannot

contain up-to-date technology. The MDICE

allows the reuse of existing, state-of-the-art

codes that have been validated. The flexibility of

exchanging one application program for another

enables each engineer to select and apply the

technology best suited to the task at hand. Effi-

ciency is achieved by utilizing a parallel distrib-

uted network of computers. Extensibility is

provided by allowing additional engineering

programs and disciplines to be added without

modifying or breaking the modules or disci-

plines already in the environment. For more

details of MDICE architecture, see Kingsley et

al [10].

MULTI-DISCIPLINARY AEROELASTIC

APPLICATION OF TWIN-TAlL BUFFET

VIA MDICE

The application of MDICE computing environ-

ment to the aeroelastic twin-tail buffet problem

involves four types of modular functionality: a

fluid-dynamics module, a fluid-structure and

fluid-fluid interfacing technique, a structural

dynamics module, and grid motion technique.

Next, the particular set of analysis modules used

for twin-tail buffet simulation is presented.

Fluid-Dynamics Modules

The fluid-dynamics analysis module used for the

current study is CFD-FASTRAN (CFD Research

Corporation). CFD-FASTRAN is a state-of-the-

m full Navier-Stokes flow solver for modeling

compressible, turbulent flow problems using

structured and/or unstructured grids. The

solution of full Navier-Stokes equations is

crucial for this problem to account accurately for

the massive three-dimensional .separations,

vortex breakdown and vorticity evolution,

convection and shedding, and strong fluid-

structure interaction. CFD-FASTRAN employs

an upwind scheme with Roe's flux-difference

splitting or Van-Leer's flux-vector splitting for

spatial differencing. Temporal differencing is

done using Runge-Kutta scheme, point-implicit

scheme or a fully-implicit scheme. Turbulent
models in CFD-FASTRAN include Baldwin-

Lomax, k-e, and k-co models. CFD-FASTRAN

also provides the state-of-the-art for modeling

flow problems with multiple moving bodies

using Chimera overset gridding methodology

coupled with a 6DOF model. The current

simulation used fully-implicit scheme with

Roe's flux-difference splitting.

Other fluid-dynamics analysis modules currently

integrated into the MDICE environment include

CFD-ACE (CFD Research Corporation),

ADPAC (NASA), SPLITFLOW (Lockheed

Martin), NPARC (NPARC Alliance), COBALT

(AFRL), GCNS (Northrop Grumman), WIND

(Boeing), NISTAR, NASTAR, and CORSAIR

(Pratt&Whitney).

Structural-Dynamics Module

The current structural-dynamics modules, which

are MDICE compliant, include the nonlinear

FEM code MSC/NASTRAN, and the CFDRC's

FEM code FEMSTRESS with capabilities for

various linear structural simulation (LSS)

models, such as influence coefficient, modal
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analysis, and beam models. In the current

analysis, the linear beam model of FEMSTRESS

is used. The vertical tails are modeled as

cantilevered beams fixed at the root. The tail

bending and torsional deflections occur about an

elastic axis that is displaced from the inertial

axis. The equations for the bending deflection,

w, and the torsion deflection, 0, are given by

-_--_[El(z)-_-_w(z, t + m(z)-_-_w(z, t)
az k az at

a 2

+ m(z)xo(z)_20(z , t) = N(z, t) (1)

3 3 a2

-_z[Gj(z)__O(z ' t)] - m(z)xo(z)_t2 w(z, t)

32

-Io(z)_t2 0(z, t) = -M(z, t) (2)

where z is the vertical distance from the tail-root

fixed support, El(z) and GJ(z) are the bending

and torsional stiffness of the tail section, m(z) is

the mass per unit length, I0 is the mass moment

of inertia per unit length about the elastic axis, x o

is the distance between the elastic axis and the

inertia axis, N and M are the normal force and

twisting moment per unit length. The geometric

and natural boundary conditions on w and 0 are

given by

w(0, t) = 0_-_w(0, t) = 0 (3)

a2 alE a2 t--_-_w(h,t) = "_z l(h) w(h,t = 0 (4)a= j

0(0, t) = S0(h, t) = 0 (5)
Oz

The equations are transformed into a set of cou-

pled second-order ODE using Galerkin method

and modal analysis. The resulting aeroelastic

equations are solved using filth-order accurate

Runge-Kutta scheme. Details of the aeroelastic

equations and their solution procedure are pre-

sented by Sheta [ 11 ].

Fluid-Structure Interaction Technology

The Fluid-Structure interface algorithm is used

to project the forces and moments from the fluid

flow to the flexible-body structure and to

feedback the aeroelastic deflections of the

structure to the flow field. The interfacing is

formulated in the most general sense for

maximum flexibility. There are no inherent

assumptions that the fluids grid is matched with

the structure grid, either through different mesh

densities, mesh architecture, or through physical

separation between the interfaces as seen with

thick shell finite-element models. The current

simulation uses a conservative and consistent

interface, adapted from Brown [ 12].

Conservative interfaces aim to conserve the

forces and moments in the interpolation process

between the two grids. In this case, the sum of

all forces and moments on the fluid interface is

equivalent to the sum of all forces and moments
on the structure interface.

E ]_ fluid = E _solid

fluid faces solid nodes

EJ_fluid'-__solid

fluid faces solid nodes

(6)

(7)

Consistency or virtual work conservation is also

provided by requiting that the virtual work

performed by the solid interface is equivalent to

the virtual work performed by the fluid interface.

E Wfl uid = E Ws°lid

fluid faces solid nodes

(8)

Wfluid = P fluid * A_cente r (9)

Wsolid = Psolid "A._+ I_soli d ,,_solid (10)
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Theaboveequationsapplyonly to thedegreesof
freedom of the structure-dynamicsequations.
MDICE environment contains many types of
function-matchinginterfaces and conservative
interfaces techniques. For more details, see
Siegeletal [13].

Communication Between Modules

Communication between the modules is

controlled by the user from within the MDICE

graphical user interface. The user specifies the

modules that will be used for a particular

simulation, the necessary input files for each

module, the platforms upon which each module

will run (each module can be run on a different

computer) and other input parameters. The user

then executes a short script in the graphical user

interface which explicitly specifies the

synchronization between the modules. For

example, the user could specify that the flow

solver should iterate 10 times, then interpolate

fluid pressures to solid forces, then solve 1

iteration on the structural analysis, then loop.

Interpolation is invoked automatically, using

transfinite interpolation functions, when a fluid-

structure interface is exchanged between

application programs.

Generic Fighter Aircraft

In the current study, a generic model of fighter

aircraft is chosen to study the twin-tail buffet.

The configuration model consists of a 76°-swept

back, sharp-edged delta wing of aspect ratio of

one and dynamically scaled, flexible, .swept-back

twin tail of aspect ratio of 1.4, shaped after

Washburn et al [5]. The vertical tails are oriented

normal to the upper surface of the delta wing and

have a leading-edge sweep of 62.5 °. The separa-

tion distance between the twin-tail is 78% of the

wing span, see Figure 2. Each tail is modeled as

a single aluminum spar and balsa wood cover-

ing, as shown in Figure 3. The aluminum spar

has a taper ratio of 0.3 and is constructed from

6061-T6 alloy. The balsa-wood covering has a

taper ratio of 0.23 and aspect ratio of 1.4. The

details of the configuration model and material

properties are discussed in details in Sheta [ 11 ].

The computational grid used in this study is a

multi-block H-H grid structure consisting of 10

blocks, C°-continuous, with a total size of

450,000 grid points. The delta-wing/twin-tail

configuration is statically pitched at wide range

of angles of attack at Mach number of 0.4 and

Reynolds number of 1.25x 106.

RESULTS AND DISCUSSION

Figure 4 shows side-view and front-view snap-

shots of the total pressure iso-surfaces over the

configuration model at different angles of attack.

The figure shows that at AOA=26 ° the leading-

edge vortices break down aft the twin tail. How-

ever, as the angle of attack increases, the vortex-

breakdown flow moves upstream ahead of the
twin tail. This is the reason behind the increase

of the buffet responses at angles of attack higher

than 25, as observed in many experimental work.

The figure also shows increase in the size of the
breakdown bubbles with the increase of the

angle of attack. Figure 5 shows MDICE

aeroelastic twin-tail buffet simulation of generic

fighter aircraft. The MDICE script is shown in

the background of the figure. A snapshot of the

total pressure iso-surfaces over the configuration

model at 34 ° angle of attack is shown in the fig-

ure. Also shown are the histories of the bending

and torsional displacements of the right-tail tip

and right-tail root bending moment. These

images are graphically displayed in conjunction
with MDICE GUI and can be invoked from

MDICE as s separate display modules.

Aeroelastic Results

Figure 6 shows the history of the root bending

moment of the right tail at different angles of

attack. Positive moments correspond to an out-

ward force on the tail. At AOA=26 deg., there is
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no apparent variation in the root bending
moment. This is because of the absence of vor-

tex breakdown flow in front of the twin tail, as

shown in Figure 4. As the angle of attack

increases, the root bending moment increases

due to the upstream motion of the vortex break-

down flow which causes the unsteady dynamic

loads on the tails.

Figure 7 shows the histories of the bending and

torsion deflections of the left and fight tail tips at

different angles of attack. The figure shows that

increase the angle of attack has led to an increase

in both the bending and torsion deflections. The

frequency of the torsion deflections is more than

twice the frequency of the bending deflections,

in agreement with the experimental observa-

tions. The figure also shows a slight phase lag in

the bending deflections with the increase of the

angle of attack. The right and left tails have the

same level of deflection. However, they are mov-

ing to the outboard direction in asymmetric man-

her due to the irregular vibrations of the left and

fight tails. Figure 8 shows the histories of the

right-tail-tip bending and torsion accelerations at

different angles of attack. The frequency of the

bending accelerations is almost the same as that

of the torsion accelerations. The bending and

torsion accelerations are also increasing with the

increase of the angle of attack. However, the

bending acceleration is maximum at AOA=34 °.

Figure 9 shows the RMS buffet pressure and

RMS surface pressures at the five transducers

(shown in Figure 3) of the inner and outer sur-

faces of the fight tail. The buffet pressure is

defined as the instantaneous differential pressure

across the tail surface, and it is normalized by

the free-stream dynamic pressure. The buffet

pressures show sharp increase after 26 ° angle of

attack. The sharp increase in the buffet pressures

corresponded with the vortex breakdown posi-

tion crossing the trailing edge. The RMS buffet

pressures were a strong function of transducer

location and locations 4 and 5 yielded the great-

est levels. In the experimental data of Washburn,

location 4 yielded the greatest level. The surface

pressure fluctuations were sensitive to the tail

side and transducer location. Generally, the inner

surface R.MS pressure levels were larger than

those of the outer surface, in agreement with the

experimental observations of Washburn et al [5].

The lowest RMS pressure levels were observed
at transducer location 2. This location corre-

sponds to the transducer furthest from the tail

leading edge. In the experimental data of Wash-

bum, locations 2 and 5 show the lowest levels.

Vafidafion

Figure 10 shows the mean and RMS values of

the right-tail root bending moment coefficients

as a function of the angle of attack. The experi-

mental data of Washburn et al [5] are also shown

in the figure. The computed results agree well

with the experimental data. At an angle of attack

higher than 25, the RMS of the root bending

moment increases with the increase of the angle

of attack due to the upstream motion of the vor-

tex breakdown flow in front of the twin tails, as

shown in Figure 4.

Figure 11 shows the variation of the first two

dominant non-dimensional frequencies (nfreq_d

= f d * b / U) of the tip transducer versus the

angle of attack. The experimental data of Wash-

burn et al [5] is also shown in the figure. The

results are in very good agreement with the

experimental data. The frequency peaks shift to

a lower frequency as the angle of attack

increases. The first two frequency peaks are

moderately close to each other, which indicate

that the pressure field contains energy over a nar-

row frequency band. This is in agreement with

the observations of Washburn [5] and Martin and

Thompson [14].

CONCLUSION

The MDICE Multi-Disciplinary Computing

Environment was successfully used and vali-
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dated for the fluid-structure interaction problem

of twin-tail buffet. A good comparison with

experimental data was achieved. A sharp

increase in the buffet pressures was observed as

the vortex breakdown crossed the wing trailing

edge. The frequency of the torsion deflections

was almost twice that of the bending deflections.

Future applications will involve using the non-

linear FE code (MSC/NASTRAN) to model dif-

ferent nonlinear transient aeroelastic

phenomena. The integration of MSC/NAS-

TRAN with high-end full Navier-Stokes flow

solvers by means of a conservative/consistent

fluid-structure interfacing mechanism is impera-

tive to model the nonlinear behavior of such

nonlinear phenomena.
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_OST

Figure 1: Application control panel of MDICE showing some of the compliant computer anal-

ysis modules

o.,_

7,1¢
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X/c -o,;,t 0 38

Figure 3: A schematic view of the tail construc-

tion and dimensions showing the pres-
sure transducers locations.
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AOA=26 deg.

AOA=30 deg.

AOA=34 deg.

AOA=38 deg.

Static Pressure

Figure 4: Side-view and front-view snapshots of the total pressure iso-surfaces and the break-
down of the leading-edge vortex cores at different angles of attack. Delta-wing/Flexi-

ble twin tail model.
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Figure 5: Multi-Disciplinary Computing Environment (MDICE) aeroelastic twin-tail buffet simu-

lation of generic fighter aircraft, iX=34 °, M = 0.4, Re = 1.25x106.

Root Bending Moment VS. Time (Right tail)

o

o.o
0.00

......... _ ............ L ..... L .......... _ .....

0.02 O.O¢ime (s_.O6 0.08 O.10

Figure 6: Effect of angle of attack on the history of the right-tail root bending moment. M = 0.4,

Re = 1.25x106.
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Figure 7: Effect of angle of attack on the history of tail-tip bending and torsion deflections of the

right and lefL tails. M = 0.4, Re = 1.25x 106.
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Figure 8: Effect of angle of attack on the history of right-tail-tip bending and torsion accelera-

tions. M = 0.4, Re = 1.25x106.
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Figure 9: RMS buffet pressures and RMS surface pressures at the five transducers locations of
the inner and outer surfaces of the fight tail.
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ADAPTIVE SUCTION AND BLOWING FOR

TWIN-TAIL BUFFET CONTROL

Osama A.Kandilland Zhi Yang 2

Aerospace Engineering Department

Old Dominion University, Norfolk, VA 23529

ABSTRACT

Adaptive active flow control for twin-tail buffet alleviation is investigated. The concept behind this

technique is to place control ports on the tail outer and inner surfaces with flow suction or blowing

applied through these ports in order to minimize the pressure difference across the tail. The suction or

blowing volume flow rate from each port is proportional to the pressure difference across the tail at

this location. A parametric study of the effects of the number and location of these ports on the buffet

response is carried out. The computational model consists of a sharp-edged delta wing of aspect ratio

one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem

is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid

deformation, using a dynamic multi-block grid structure. The computational model is pitched at 30°

angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million,

respectively. The model is investigated for the inboard position of the twin tails, which corresponds to

a separation distance between the twin tails of 33% of the wing span. Comparison of the time history

and power spectral density responses of the tails for various distributions of the control ports are

presented and discussed.

INTRODUCTION

The maneuver capabilities of the F/A-18 fighter aircraft are achieved through the combination of a

leading-edge extension (LEX) with a delta wing and the use of twin vertical tails. The LEX maintains

lift at high angles of attack by generating a pair of vortices that trail aft over the top of the aircraft. The

vortex entrains air over the vertical tails to maintain stability of the aircraft. At some flight conditions,

the vortices emanating from the highly swept LEX of the delta wing breakdown before reaching the

vertical tails, which get bathed in a wake of unsteady highly-turbulent, swirling flow. This flow

produces severe buffet of the tails and has led to their premature fatigue failure. Applying active flow

control and/or active structural control could alleviate this problem. In _is paper we address active

flow control methods.

The twin-tail buffet response was predicted and analyzed recently by the senior author and his co-

workers. Kandil, Sheta and Massey 1 studied the buffet response of twin-tail model in turbulent flow

over wide range of angles of attack. The computational results were in good quantitative agreement
2 3

with the experimental data of Washburn et al. In a recent paper by Kandil and Sheta, the effects of

Professor, Eminent Scholar and Department Chair, Associate Fellow AIAA

2 Ph.D. Graduate Research Assistant, Member AIAA
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using coupled and uncoupled bending-torsion aeroelastic equations on the twin-tail buffet response

were also investigated.

The main objective of active flow control methods is to modify the flow field in the region of the

twin tail. Unsteady vortex breakdown of the leading-edge vortex cores develops upstream of the twin

tail and moves downstream in close proximity to the twin tail. This highly unsteady vortex-breakdown

flow produces unsteady differential pressure on each tail forcing it to oscillate through wide ranges of

amplitudes and frequencies, which eventually result into a tail fatigue failure. Hence, flow control

methods should be designed in such a way as to move the vortex breakdown location downstream

behind the twin tail and displace the vortex core path away from the twin tail. These flow control

methods are expected to produce these objectives over the whole ranges of angle of attack and Mach

number during the configuration maneuverability. Moreover, these control methods should not

produce adverse effects on the aerodynamic performance of the configuration. Obviously, this is a

challenging multidisciplinary, time-dependent, control problem.

The approach that we had adopted to deal with this complex problem was to break it up into a step-

by-step investigation of simple and combined flow control methods 4. The first method, which we

investigated, was the tangential leading edge blowing (TLEB) _. The second method was the flow

suction along the vortex cores (FSVC). In the TLEB method, an air jet was blown tangential to the

delta wing surface along its whole leading edge. The volume flow rate of this jet was varied linearly

along the wing leading edge. The control effect of this method was modifying the path of the leading-

edge vortex core, moving it closer to the tail and intersecting it. This vortex path modification

increased the aerodynamic damping of the tail, and hence it damped its forced oscillation. An

additional effect of this method was the increase of the vortex core axial momentum, which in turn

moved the vortex breakdown location further downstream. In the FSVC method, flow suction was

applied along the leading-edge vortex core in order to remove the low-level axial momentum flow

from the vortex-breakdown region. This flow control method increased the axial momentum of the

vortex flow and moved the vortex breakdown further downstream.

It has been shown that the TLEB method moved the vortex breakdown location downstream and

the leading-edge vortices laterally toward the twin tail. The TLEB control produced lower tail root

bending and twisting moments as well as lower torsion deflection and acceleration than those of the

no-control case. However, the bending deflection and acceleration were higher than those of the no-

control case. In the FSVC method (out position location), it has been shown that the vortex-breakdown

size has been reduced and was moved in the downstream direction. It also reduced the tail bending

deflection and has also shown some initial reduction of the tail root twisting moment. However, the

root bending moment, bending and torsion accelerations and torsion deflection of the tail were higher

than those of the no-control case. Next, the TLEB and FSVC (out position) methods were combined

and applied simultaneously to the same configuration. The results of this case have shown that no

improvement was achieved in comparison with those results that were obtained with each method

being applied separately.

Further investigation of the FSVC method has shown that moving the suction tubes in the spanwise

direction toward the tail location produced favorable aeroelastic control. This control is called The

FSVC (in position) method. The results of this case have shown additional reduction in the tail root

bending and twisting moments, its tip bending and torsion accelerations and its tip torsion deflection

than those of the no-control case. Increasing the suction volumetric flow rate produced further
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reduction in the tail aeroelasticresponses. Next, the axial orientation of the FSVC method was

investigated 6. The direction of suction tubes was tilted to the right at an angle of + 10 deg. or to the

left at an angle of- 10 deg. with respect to an observer looking in the upstream direction. The best

control results were obtained with the suction tubes tilted at -10 deg.

In this paper adaptive suction and blowing flow control is applied through ports which are located on

the tail outer and inner surfaces. The suction or blowing volume flow rate is proportional to the

pressure difference across the tail at the corresponding port location. A parametric study of the effects

of the number and location of these control ports is presented.

HIGHLIGHTS OF THE FORMULATION AND COMPUTATIONAL SCHEMES

The formulation of the problem consists of three sets of governing equations along with certain

initial and boundary conditions. The first set is the unsteady, compressible, full Navier-Stokes (NS)

equations. The second set consists of the aeroelastic equations for bending and torsion modes. The tail

bending and torsion deflections occur about an elastic axis that is displaced from the inertial axis. The

third set consists of equations for moving the grid according to the tail deflections. In these equations,

the tail bending displacement, w,.j.,, and the tail twist angle, 0r.j.,, are interpolated through cosine

functions. Details of these sets of equations are given in Ref. 3.

The first step in this multidisciplinary problem is to solve for the fluid flow problem keeping the

twin tail rigid. The NS equations are solved using the implicit, flux-difference-splitting finite-volume

scheme. The grid speed is set equal to zero in this step. This step provides the initial flow field

conditions along with the pressure difference across the tails. The pressure difference is used to

generate the normal force and twisting moment per unit length of each tail. Next, the aeroelastic

equations are solved sequentially along with the other two sets of equations, to obtain the bending and

torsion deflections of each tail, w,.j._, and 0,.j. k . The grid displacement equations are then used to

compute the new grid coordinates. In the NS equations, the metric coefficients of the coordinate

Jacobian matrix are updated as well as the grid speed. At each time step, the computational cycle

consisting of the NS solver, the aeroelastic equation solver, and the grid displacement solver is

repeated. This solution is called the "No Control" solution. Next, the adaptive flow control is applied

starting with the initial flow field conditions, which are obtained with the twin tail kept rigid. The

suction or blowing volume flow rate is proportional to the instantaneous pressure difference across the

tail at the location of the port. If the pressure on the outer tail surface is greater than the pressure on the

inner tail surface, suction volume flow rate is applied at the outer port and an equal volume of blowing

flow rate is applied at the corresponding inner port. Figure 1 shows different arrangements for active

flow control ports on the tail. They are referred to as _Acells, 1/3 cells and 3/4 cells.

COMPUTATIONAL APPLICATIONS

Twin Tail-Delta Wing Configuration:

The twin tail-delta wing configuration consists of a 76° swept back, sharp-edged delta wing

(aspect ratio of one) and dynamically scaled flexible twin tail similar to those used by Washburn et.
AlL The vertical tails are oriented normal to the upper surface of the delta wing and have a centerline
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sweepof 53.5°. Eachtail ismadeof asingleAluminumsparandBalsawoodcovering.TheAluminum
sparhasa taperratio of 0.3 anda constantthicknessof 0.001736.TheAluminum sparis constructed
from 6061-T6 alloy with density, p, modulii of elasticity and rigidity, E and G of 2693 kg./m -_,

6.896x10 l° N/m e and 2.5925x10 l° N/m 2, respectively. The Balsa wood covering has a taper ratio of

0.23 and aspect ratio of 1.4. The Balsa thickness decreases gradually from 0.0211 at the tail root to

0.0111 at the tail midspan and then constant thickness of 0.0111 is maintained to up the tail tip. The

tail cross section is a semi-diamond shape with bevel angle of 20 ° . The Balsa density, modulii of

elasticity and rigidity, E and G, are 179.7 kg/m _, 6.896x108 N/m 2 and 2.5925x 108 N/m 2, respectively.

The tails are thought of to be magnetically suspended, and the tail apex is positioned at x/c = 1.0, as

measured from the wing apex. The configuration is statically pitched at 30° angle of attack. The

freestream Mach number and Reynolds number are 0.3 and 1.25 x 106 , respectively. A multi-block grid

consisting of 4 blocks is used for the solution of the problem. The first block is O-H grid for the wing

and upstream region, with tOlx50x54 grid points in the wrap around, normal and axial directions,

respectively. The second block is H-H grid for the inboard region of the twin tail, with 15× 50 × 13 grid

points in the wrap around, normal and axial directions, respectively. The third block is H-H grid for the

outboard region of the twin tail, with 87x50x13 grid points in the wrap around, normal and axial

directions, respectively. The fourth block is O-H grid for the downstream region of the twin tail, with

101 × 50 x 25 grid points in the wrap around, normal and axial directions, respectively. The grid topology

of the twin tail-delta wing configuration is shown in Ref. 6.

Flow Field Results of Adaptive Flow Control:

Figure 2 shows a snap shot of the flow field results with no control at r = 19 after allowing the

tails to move and interact with the flow. The figure shows a top view of the vortex cores total pressure
isosurfaces. Breakdown of the vortex cores is observed to occur at 64% chord station.

Figures 3-5 show the flow field results for the adaptive flow control when all the cells have

control ports .The top view figure of vortex cores, Fig. 3, shows that the vortex breakdown location has

moved downstream to the 70% chord station and the bubble size decreased substantially, Fig.4. Figure

5 shows that the vortex cores are smaller than those of the no-control case. Figures 6-8 show the flow

field results for the adaptive flow control when 3A of the cells have control ports. The results show a
small increase in the size of the vortex breakdown bubble.

Load and Aeroelastic Results of Adaptive Flow Control:

Figure 9 shows the distribution histories of bending deflection, w, rotation angle deflection, 0,

normal force, N, and twisting moment, M, versus the tail height, z for the 3/4 cells adaptive control.

Each figure shows the distribution every dimensionless time unit after the adaptive flow control is

applied. These curves are labeled as A, B, ... etc. It is observed that the bending deflections are in the

first mode shape only, and the rotation angle deflections are also in the first mode shape only. For the

no-control case, three mode shapes were observed for the bending and rotation angle deflections.

These values are substantially lower than those of the no-control case, particularly for the rotation

angle deflections. On the other hand, the maximum normal forces and twisting moments have been

decreased by 80% in comparison with those of the no-control case.
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Figures10-13showcomparisonsof thetimehistoryof the rootbendingmoment,theroot twisting
moment,their power spectraldensitiesand the time history of the tip bending and rotation angle
accelerationsandtheir power spectraldensitiesfor differentadaptiveflow control andthe no-control
case.It is observedthat thebestadaptiveflow control is achievedwith the all cells and¾ cells cases.
Thepowerspectralcurvesshowthat goodto excellent control resultsarealso obtainedusingthe 1/3
and¼cellscases.

CONCLUDING REMARKS

The fundamental issue of twin-tail buffet alleviation was addressed using adaptive flow control.

The concept behind this technique is to place control ports on the tail outer and inner surfaces and

apply flow suction or blowing through these ports. The suction or blowing volume flow rate from each

port is proportional to the pressure difference across the tail at the location of the port. It has been

shown that the all cells and ¾ cells adaptive control are very effective in moving the vortex breakdown

downstream and substantially reducing the root bending and twisting moments and the tip bending and
rotation accelerations as well.
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Figure 1: Schematic view showing the arrangement for Active Control cells.
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Figure 2: Top view showing the vortex core total pressure iso-surface. No-control case at r = 19, M= = 0.3, o_= 30°, R,
= 1.25x 106. (Inboard twin-tail position).
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Figure 3: Top view showing the vortex core total pressure iso-surface. Active Control (all cells) case at _-= 11, M= =
0.3, _ = 30°, Re = 1.25x106. (Inboard twin-tail position).
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Figure 4: Total pressure contours on a ray vertical plane passing through the wing leading-edge vortex. Active Control
(all cells) case at 1"= 11, M= = 0.3, _ = 30 °, Re = 1.25x106. (Inboard twin-tail position).

0.5

0.4!

0.3

Z

0.2

0.1

0

Total Pressure, X=] .096

os_l_ o.(_.-s o_olor o71_ o.731oee o.?slss

-0.4 -0.2 0 0,2 0,4

Y

0,5

0.4

0.3

Z

0.2

0.1

0

S _.amlincs, X=1.096

-0.4 -0.2 0 0.2 0.4

Y

Figure 5: Snap shots of total pressure contours and instantaneous streamlines on cross plane, x = 1.096. Active Control
(all cells) case at 7- = 19, M_ = 0.3, tz = 30 °, P_ = 1.25>:106. (Inboard twin-tail position).
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Iso-surface, Total Pressure = .69
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Figure 6: Top view showin6g the vortex core total pressure iso-surface. Active Control (3/4 cells) case at r = 11, M,< =
0.3, _ = 30 °, Re = 1.25xi0. (Inboard twin-tail position).
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Figure 7: Total pressure contours on a ray vertical plane passing through the wing leading-edge vortex. Active Control
o 6

(3/4 cells) case at r = 1 I, M= = 0.3, _ = 30, Re = 1.25x10. (Inboard twin-tail position).
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Figure 8: Snap shots of total pressure contours and instantaneous streamlines on cross plane, x = 1.096. Active Control

(3/4 cells) case at r = I 1, M_ = 0.3, _ = 30*, Re = 1.25x106. (Inboard twin-tail position).

646



Distribution of Bending Deflection
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Figure 9: Distribution of bending deflection, rotation angle, normal force and twisting moment along the tail span.

Active Control (3/4 cells) case at _"= 11, Ms = 0.3, a = 30 °, Re = 1.25×106. (Inboard twin-tail position).
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Figure 10: Effect of Active Control on the history of right tail root bending moment and twisting moment coefficients

for uncoupled bending-torsion modes. M,, = 0.3, a = 30 °, R_ = 1.25x 106.(Inboard twin-tail position).
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0.1 I

W

-0.1

Tip Bending Deflection Acceleration History
150

0%1 O0

5O

0

-50

-100

Tip Rotation Angle Acceleration History

tL i

" ' if,,v I
-- ActiveCo°tro,-',celts' I -200.......... Active Control, 3/4 cells [

..... Active Control, 1/3 cells [ -250
............... Active Control. 1/4 cells I

- : NoCoTol.... , I .300
5 10 0

I;

, '

•
-- Active Control, all cells

.......... ActiveControl,3/4cells

..... ActiveControl.I/3cells

..............ActiveControl,I/4cells

-- No Control

i i i r I i _ i i I i

5 10
1;

Figure 12: Effect of Active Control on the history of right tail tip bending and torsion accelerations for uncoupled
bending and torsion modes. Air== 0.3, c_ = 30 °, R_ = 1.25x 106.(Inboard twin-tail position).

..%0.016

r_ 0.012

0.008

Tip Bending Acceleration Power Spectral Density

0.004

Tip Rotation Acceleration Power Spectral Density
40

-- Active Control, all cells
.......... Active Control, 3/4 cells

..... Active Control, [/3 cells
!................ Active Control, 1/4 cells
" No Control

!'i'!I
i ,

_ , •
5
n

35

30

25

20

15

10

5

o_

-- Active Control, all cells

.......... Active Control. 3/4 cells

..... Active Control, 1/3 cells

............... Active Control, 1/4 cells

---- No Control

O0 10 5
n

10

Figure 13: Effect of Active Control on power spectral density of right tail tip bending and torsion accelerations for

uncoupled bending and torsion modes. M= = 0.3, cz = 30 °, Re = 1.25×106.(Inboard twin-tail position).
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One of the problems facing the aircraft community is landing gear dynamics, especially shimmy and

brake-induced vibration. Although neither shimmy nor brake-induced vibrations are usually catastrophic,

they can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and

passenger discomfort. Recently, NASA has initiated an effort to increase the safety of air travel by

reducing the number of accidents by a factor of five in ten years. This safety initiative has spurred an

increased interest in improving landing gear design to minimize shimmy and brake-induced vibration that

are still largely misunderstood phenomena. In order to increase the understanding of these problems, a

literature survey was performed. The major focus of the paper is to summarize work documented from the

last ten years to highlight the latest efforts in solving these vibration problems. Older publications are

included to understand the longevity of the problem and the findings from earlier researchers. The literature

survey revealed a variety of analyses, testing, modeling, and simulation of aircraft landing gear.

Experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing

gear are also reported. This paper presents an overview of the problem documented in the references

together with a history of landing gear dynamic problems and solutions. Based on the assessment of this

survey, recommendations of the most critically needed enhancements to the state of the art are given.

Problem Definition

Landing gear vibration includes self-induced oscillations referred to as shimmy and brake-induced

vibration. Shimmy may be caused by a number of conditions such as low torsional stiffness, excessive

freeplay in the gear, wheel imbalance, or worn parts. Brake-induced vibration includes conditions known

as gear walk, squeal and chatter which are caused by the characteristics of friction between the brake

rotating and nonrotating parts. Squeal refers to the high frequency rotational oscillation of the brake stator

assembly whereas chatter and gear walk refer to the low frequency fore and aft motion of the gear.

Shimmy

History and Background

It is generally acknowledged that the fundamental contributions to understanding shimmy were

made by the French whereas the Germans were responsible for much of the subsequent systematic

development. In France and Germany shimmy was regarded as a problem that should be dealt with early in

the design stages. In the United States, the general tendency was to fix a problem after it had occurred. The

U.S. literature is quite extensive but was not considered to be representative of a systematic development.

There were also significant contributions from other countries, including Russia whose papers did not begin

to appear in the literature until the 1930's. (Ref. 1)

The ftrst fundamental contributions toward understanding the shimmy phenomenon emerged from

the automobile industry in France around 1920. Of particular significance was that given by Broulhiet
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publishedin 1925.(Ref. 2) His observationson the role of tire mechanicson shimmy behaviorarestiU
followed today. While Broulhiet concentratedhis attention on the tire, Sensaudde Lavaud (Ref.3)
formulated the first fundamental shimmy theory. His theory incorporated a rigid tire that disregarded any

effect of ground forces on the tire. Fromm (Ref. 4) also studied wheel shimmy in automobiles and

recognized the similarities between the wheel vibration problems in automobiles and aircraft. He was one of

the first to identify the vertical elasticity of the tire as the main contribution to the vertical displacement of

the vehicle. His earlier investigations on rolling slip of deformable wheels led him to study the effect of

sideslip or yaw of the rolling wheel due to lateral forces. Fromm's studies of lateral forces acting on the

wheels led to the realization that these forces were coupled with the shimmy oscillation through the moment

of the forces about the longitudinal axis. Either damping or build-up of the initial disturbance would occur

depending upon the phase shift between the coupled motions. Von Schlippe and Dietrich (Ref. 5) made

significant progress in def'ming the yaw angle and the swivel angle as arbitrary functions of time. Their fire

concept was simplified as a thin band with lateral elasticity leading to simple expressions for the forces and

moments. This eventually became known as the String Theory.

Some of the earliest investigations of shimmy problems in aircraft took place at Wright Field in

Dayton, Ohio. In 1944 (Ref. 6) initial taxi testing of a fighter aircraft (Me 309) exhibited severe shimmy of

the nose gear. Design of new piston shimmy dampers in coordination with landing gear manufacturers

eliminated shimmy entirely for this aircraft. Other efforts at Wright Field (Ref. 7) included analysis

development and validation by test. One such effort utilized a steel drum to perform studies on various

airplane tires to correlate lateral deformation and lateral tractive force to banking angle and lateral-load

force. In 1950, even though the shimmy problem had been studied for many years it was still a very

common occurrence in automobiles, trailers, and aircraft. Physical control of shimmy was available in

hardware such as shimmy dampers, but little was known about the cause of shimmy. Wright Air

Development Center (WADC) started a program in 1951 to study the problem of shimmy and to learn the

deficiencies of earlier efforts to combat the problem. The program included the development of a theory of

shimmy, computer studies, experimental research on a laboratory model, and full scale testing. Even though

earlier efforts traced the shimmy problem to the mechanical properties of the pneumatic fire, it was during

this study that Moreland (Ref. 8) theorized that the tire support flexibility was a more important

consideration than the fire mechanics. He contended that a shimmy theory based on the elastic properties of

the fire alone was insufficient and that torsional and lateral rigidities, the wheel moment of inertia, and the

weight of the strut were also critical in defining system stability. (Ref. 9) Only a fairly complete model of

the structure including the fire properties could properly evaluate the stability of the system.

During the 1970's many investigators attributed landing gear vibration to wheel and tire

imperfections and road surface roughness. References 10 and 11 found that when the frequency of the

normal load oscillation was approximately twice the shimmy frequency, a decrease in the shimmy stability

would occur. This loss of stability was primarily due to the variations of tire parameters with normal load.

Other investigations found that shimmy motion was large when the frequency of wheel shimmy was close

to the frequency of the wheel rotation. This resonance occurred at a particular forward velocity that was a

function of the trail of the system. Studies concluded that braking forces tended to increase stability and

that traction forces decreased stability even though these effects are small. By 1980 gear designs were

having to adapt to increasing gross weight of the aircraft, increasing aircraft flexibility, higher ground roll

speeds, and substandard landing fields. By now it was apparent that in order to fully understand the

shimmy problem it was necessary to account for airframe flexibility and the coupling between the gear and

airframe, and to weigh the effects of free play in gear components and damping devices on the system.

There were many new areas of landing gear design that had emerged and needed attention. For example,

ground simulators were being developed for pilot evaluation of steering capabilities that created a need for
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accuratemathematicalmodelsand flight testing for simulator verification. Structural and system testing

were performed both during and after the design stage to substantiate the strength and performance of the

gear. Tire braking and cornering data were practically non-existent during this time and oversimplification

of many system parameters made for inaccurate models. Shimmy damping requirements often conflicted

with good high-speed directional control. Composite carbon brakes were introduced and anti-skid systems

were being used to optimize the braking performance and prevent skids and tire blowouts. Air-over-oil

shock struts typically provided shock absorption where the damping was a function of the shock strut

stroke. (Ref. 12)

Airframe Flexibility Effects

In references 8 and 9 Moreland characterizes shimmy by defining the relationship between a single

non-dimensional quantity called the inertia ratio and the dynamics of the airframe. In most cases he

studied, when the simplest systems were stable, the higher order systems were not less stable. To precisely

describe the system and the shimmy phenomena, the mathematical model required 5 degrees of freedom:

fire deflection, swivel angle, strut deflection, damper-linkage strain, and airframe motion. Comparisons of

various systems were made with and without fire elasticity. The stability of the gear was influenced by 15

system parameters that were brought together in the shimmy analysis by a seventh order characteristic

equation of the model. Routh's stability criterion was applied to the equation to study the effects of

changing gear parameters on the stability of the gear. Plots of dimensionless quantities such as velocity

ratio, damping ratio, mass ratio, trail ratio, and inertia ratio defined the stability boundaries.

In 1960 at NASA Langley Research Center a simple experimental model of an aircraft was used to

study the effects of gear and airframe variables on nose landing gear shimmy behavior. (Ref. 13) A

dynamically scaled skeleton model of an aircraft with a single main skid and castering wheel was towed on

a moving belt runway at constant speed. The simplicity and size of the model made it relatively easy to

vary model parameters for different configurations. This enabled evaluation of the gear through repeated

observations of the model's response to varying conditions. Nose wheel steering and forms of shimmy

damping were shown to have a stabilizing effect when the wheel was at an angle to the direction of motion.

Another study of the role of airframe dynamics in shimmy analysis is described in reference 14. This report

describes the theoretical and experimental study of the F-101 and F-104 nose landing gear shimmy. The

dynamic response characteristics of the airplane fuselage were simulated during these tests with a

mechanical fixture attached to an overhead platform that served as a mounting structure for landing gear.

Frequency response characteristics were obtained experimentally by applying a periodic input to the

fuselage at the nose gear station and recording the resultant bending and torsional motions. A graphical

technique was used to fit the theoretical frequency response data to the experimental data to determine the

parameters of the simulator from the transfer functions. Fuselage simulators were then designed and used

to test the F-101 and F-104 aircraft systems.

Reference 15 presents an analytical method to determine the random' vibration response of a flexible

aircraft caused by runway irregularities transmitted through the main gear struts. The runway profile is

represented as a stationary Gaussian random process. The statistical or power spectral approach yields only

an average or root mean square value of the response. This method is useful for estimating fatigue effects

in airframes and landing gear and has value for investigating the effect of parameter variations in the

average sense. The major drawback of this approach is that in order for the probability distribution to be

independent of the position along the length of the runway, the profile has to have the same degree of

roughness at all points which is usually not the case. In 1976 a simplified model of the longitudinal

vibration of a landing gear strut during landing and spin-up of the wheel was developed. The influence of
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the lateral forces on the rotating wheels during landing was studied while accounting for the interface

between the strut and airframe. (Ref. 16) The elastic forces produced in the strut were calculated from

landing gear and aircraft fuselage modes.

There have been recent efforts to approach the landing gear shimmy problem as a "flexible landing

gear interaction with flexible aircraft" problem as in reference 17. This paper presents their approach to

integrating the flexible properties of the aircraft into the shimmy investigation of nose landing gear during

the development phase of a fighter aircraft. Taxi tests of the prototype indicated a severe shimmy oscillation

at a frequency of 25.7 Hz. After considering several potential fLxes, it was found that increasing the

pressure level in the nose gear tire removed the oscillation. Higher order models of landing gear legs were

used to include all the features that are needed to represent the interactions with other subsystems during

ground roll and landing simulations. The most important parameters in this shimmy investigation were the

relaxation length or length of the ground contact area of the tire and the damping (friction) of the .piston

against the cylinder. The elastic fuselage modes were not considered to be important if the leg mode

frequencies were well separated from the aircraft mode frequencies.

Role of Tire Theories

As previously mentioned, tire mechanics are intimately related to the shimmy problem. Tire models

were very difficult to define due to the influence of the ground forces on tire behavior. Since the problem of

shimmy and serf-excited vibration of landing gear has existed for such a long time, many theories on the

elastic deformation of tires had been proposed. There was much controversy over the advantages and

disadvantages of these theories due to erroneous conclusions presented in previous papers on tire mechanics

and shimmy. (Ref. 18) The tire theories were categorized into two basic groups. (Ref. 19) The major

difference between the two groups is the number of coordinates used to describe the tire deformation. The

first group yielded the simplest theory because there was no tangible model. The tire was taken into

account by considering its kinematical behavior in the overall system. This group includes Moreland's

point contact theory that assumed the interaction between the ground and the tire could be treated as a

single point. (Ref. 8) This theory accounts for the effect of side force on the yaw angle of the tire and a

time delay between the application of the side force and the steady state yaw. (Ref. 18) The second group

utilizes a physical model of the tire. The most renowned example of this group is the string model. (Ref. 5)

In this theory, the tire is approximated by an elastic string stretched around the outer edge of the wheel and

attached by elastic springs. The elastic restoring effect of the tire is based on a linear principle that the

deviation from the original swivel angle is proportional to the lateral deflection of the tire. The tire force

and moment are found by integrating the infinitesimal effects of the deformations. (Ref. 18) This theory

assumes pure rolling of the tire. Pacejka (Ref. 20) improved this approximation by using multiple stretched

strings to simulate the width of the fire and nonstationary properties of the rolling tire are included. Most

theories are linear which meant only small perturbations and no sliding in the contact area of the tire are

addressed. These methods are considered to be effective for low frequency applications. Pacejka's method

is particularly applicable to vibration problems of steering and suspension systems of vehicles at high speed

and frequency. Simple equations are derived that relate inertial forces to dynamic displacements and

external ground forces to static displacements of the tire center plane. His analytical results compared well

with experimental data.

In 1957 Smiley (Ref. 21) developed a summary theory that combined many features of the existing

theories and included comparisons with experimental data. The summary theory is a minor modification of

the basic theory of Von Schlippe and Dietrich (Ref. 5) that includes filling of the tire in more detail while

omitting Pacejka's refmements necessary for wide tires. The kinematic relations of the lateral deflection of
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the tire ground-contact center point with the corresponding wheel coordinates of lateral deflection, swivel

angle, and tilt angle are given for a rolling tire. Information about tire distortion is utilized in the derivation

of these kinematic relations. Equations for the forces and moments on the wheel together with the

kinematic relations establish the equations of motion for a rolling wheel. The theory was not validated for

full-scale conditions and there was no reliable method at that time to predict the elastic characteristics of

tires that were needed for shimmy analysis. Discrepancies were contributed to tire hysteresis effects and

other nonlinear influences however, there were no strong indicators that nonlinear theory was necessary to

predict stability boundaries. References 18 and 19 provide comparisons of the two basic theories from a

validation standpoint as well as from computational and clarity aspects. It was found that both of these

fundamental linear theories predicted shimmy characteristics of landing gear systems if the input parameters

were properly chosen.

Brake-induced Vibration

Technological advances in aircraft led to smaller brakes with more energy to dissipate, lighter shock

struts with higher strength materials, and increased flexibility all of which increased the likelihood of

vibrations of landing gear due to braking action. Brake-induced vibrations in landing gear may be induced

for several reasons. The self-excitation of modes due to negative damping arises from variations in the

coefficient of friction with instantaneous slip velocity. Forced oscillations are due to irregularities in the

friction surfaces. Self-excited whirl vibration is caused by eccentricity of rotating and non-rotating brake

parts. The Information Report on brake dynamics of the SAE Committee A5 in 1997 (Ref. 22) categorized

these landing gear dynamic vibration problems. A uniform method of classifying brake characteristics was

given in terms of coefficient of friction, dynamic variation of friction coefficient, wear variation, and torque

versus pressure characteristics. Self-excitation may be induced by large variations in the stiffness of brake

components, poorly phased feedback in the anti-skid system, and tire lock-up corresponding to maximum

drag. Solutions to these vibration problems included provision of basic aircraft parametric data from

airframe manufacturers for analysis and testing. Data collection from flight testing is needed for skid

control on wet and dry surfaces at shimmy speeds. Brake history and frequency and amplitude of vibration

are desirable in order to characterize a pattern.

One of the early investigations on brake vibration was reported in reference 23 where a study of

landing gear vibration due to brake chatter and squeal during taxi and landing was performed. The report

contains both experimental (static, dynamic, and taxi tests) and theoretical studies explaining the basic

phenomena and pointing out the important design considerations. Static tests were conducted to determine

parameters such as weight and mass moments of inertia, damping ratios, and spring rates that were needed

for analytical studies. Dynamic tests included brake and strut dynamometer testing that measured drag

loads, brake pressure, wheel speed, side force, fore and aft motion of the axle, and angular acceleration of

the axle. Taxi tests involved a number of relatively uncontrollable variables which is why it is difficult to

achieve the same results with the dynamometer tests. Systems of individual masses, springs, and dampers

were used to represent the landing gear to aid in studying the effects of friction characteristics of the brake

on the dynamic stability of the gear. Only linear solutions were considered in this report, however, it was
recommended that non-linear friction characteristics be included in future theoretical studies. The

dynamometer tests revealed a connection between the chatter frequencies and the wheel rotation.

Theoretically, decreases in chatter amplitudes were noticed for increases in strut damping, rolling radius,

and total mass. Another effort to study landing gear chatter and brake squeal vibrations was at the Naval

Research Laboratory during the development of a digital program to simulate the DC-9 aircraft main gear

slowing to a stop. (Ref. 24) The analytical model represented the fore and aft motion of the gear with
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accompanying rotationalmotion at the gear axle. Comparison of computed responses and measured data

indicatedreasonable simulation accuracy. The analysis showed that brake torque was the primary

contributorto chatterand squealvibration. Increasingthe brake torque in combination with diminishing

brake rotorto statorangular velocityinstigatedthe vibration.This functioneffectivelyproduced a negative

damping thatsustainedor increasedthe vibrationamplitudes. Attenuationmethods included using a mix in

the brake liningthatensured a flatbrake torque function. Vibration absorbers were also suggested cvcn

though an excessiveweight penaltyexistedforchattervibrationabsorbers.

At Wright PattersonAFB dynamometer testswere performed to simulatenormal serviceconditions

experienced by the brake on the T-38A aircraftfor the purpose of investigatingthe brake characteristics

(Ref. 25). Brake torque, hydraulicpressure,dynamometer flywheel speed, and testwheel speed were

measured during dynamometer testsperformed on a B. F. Goodrich 2-727 brake assembly atthreedifferent

decelerationand brake initiationspeeds to determine the kineticfrictionand relativerubbing velocities.

The experimental data and the analysisboth indicatedthatthe system was stable. Dynamometer test

temperatureswere used toinvestigatethe temperatureresponse of the brake rotorand statorduring braking.

A comparison to the analyticalmodel showed good reliabilityfor predictingrubbing surfacetemperatures.

Predictingthese temperatures accuratelyis advantageous to designersdue to the potentialfor strutchatter

and metallurgicaldesign criteria.All testswere conducted on new brakes,however, itwas suggested that

these testsand analyses should alsobe performed on worn brakes to observe any differencesin the results.

More recentinvestigationsemphasized the effectof the variationof frictioncoefficientwith slipvelocity

between rotorsand statorsas inreference26. This reportalsogives an overview of the stabilityand modal

interactionscaused by nonlinear negative damping at the brake frictioninterface.It was emphasized in

reference 27 that the braking system should be analyzed as a global system rather than as separate

components duc to the coupling between the parts.Nonlinear modeling of aircraftlanding gear brakc whirl

and squealwas discussedin references28-30. These studiesfound thatsystem stabilitycould be alteredby

changes in the brake frictioncoefficient,pressure,stiffness,geometry, and variousbrake design parameters.

Modeling and Simulation

Traditionally the emphasis in analytical prediction capability was on landing impact loads since

these were considered to be the largest that the aircraft would experience. The oscillatory loads from

taxiing were deemed as secondary. The emphasis eventually included the requirement to more accurately

model the gear to improve the dynamic response predictions. The state-of-the-art in modeling techniques

for landing gear prior to 1980 was summarized in reference 31. There was a need for experimental

verification of the details of the gas compression process and determination of the parameters that affect

this process such as hydraulic fluid compressibility, fluid-gas mixing, and deformation of the gear chamber.

The orifice coefficients were considered extremely important for calculating the response of the gear and

very accurate procedures were needed to determine these values for hydraulic damping. Since the orifice

flow is highly unsteady, problems arose when steady flow hydraulic force models were used in taxi

simulations. Most models included friction as dry or Coulomb friction but frictional forces were sometimes

left out of the analysis because a good method for measuring these forces was not known. Normal forces

on the bearings that create friction forces were dependent on the gear geometry and the wheel loading. For

flexible models where the deformation of the gear was included in the analysis, determination of the normal

forces became very complex. The tire was modeled as a simple spring (linear and nonlinear) with point

contact with the ground and linear viscous damping. Tire stiffness was represented by static load deflection

curves either provided from experiment or manufacturer. The tire interface with the ground and the
geometry of the tire footprint was an area that needed more attention. Numerical simulations could be used

654



with some confidence to predict fatigue and peak loads if the analysis had been evaluated with taxi or drop

test data. Modeling and simulation efforts over the past ten years have become fairly sophisticated as input

data has been carefully scrutinized and experiments are conducted to validate models. Efforts to model

nonlinearities such as damping and friction characteristics were becoming more prevalent. Several

examples of modeling gear systems are given below.

In reference 32 an analysis of fatigue of light aircraft landing gear using random properties and

surface profiles was developed. The system was modeled as a linear, 1 DOF nonstationary vibrating system

referred to as a random parametric vibration problem that uses a recently developed random matrix method.

Reference 33 is a follow up to the work described in reference 3 with nonstationary damping and random

nonstationary loads included. The random matrix method was shown to be better suited for this type of

problem than a hybrid Monte Carlo technique. In reference 34 modeling and parameter identification of

single degree of freedom structural systems are investigated. Experiments were conducted to measure the

free response of these structural systems and the measurements were used to formulate system models and

parameters. Models include a linear, damped oscillator and a nonlinear shock strut with and without

friction forces. Results showed that it is possible to model and identify a physical structure such as a

damped oscillator with damping effects. Comparisons between the response predicted by the model and the

response measured experimentally agreed for the first few seconds of motion but then deteriorated in later

stages. This was due in part to ill-conditioning of the equations even though experimental measurements

were used to identify the model parameters of the system. Models developed in references 35-39 include

the effects of linkage dynamics, damper mounting characteristics, Coulomb friction, nonlinear tire, air

spring, oleo damping forces, torsional freeplay, and spring hardening effects of bending and torsional
stiffness.

An example of non-linear modeling involved an A-6 Intruder nose gear. The model included

nonlinear effects in the pneumatic air spring, stick-slip friction, velocity squared damping, geometry

governed discharge coefficients, and tire model. Analytical results were in excellent agreement with test

data that was acquired at NASA Langley Research Center. (Ref. 40) Reference 41 describes linear and

nonlinear analysis methods applied to investigate the shimmy of a simple nose gear model The nonlinear

shimmy model consisted of torsional dynamics of the gear, the forces, moments, and lateral elasticity of the

tire using elastic string theory. Results showed that the occurrence of shimmy increases with increasing

velocity, lower torsional damping, and increasing vertical force. The numerical simulation results confm'a

the stability of the linear system and provided additional information concerning the nonlinear regions.

Reference 42 is an example of a model that includes an error feedback control law for anti-skid braking

simulation used in determining the effects of structural parameters on gear walk instability. The effect of

longitudinal stiffness of the tire, the vertical damping of the tire, and the inclination angle of the strut on

gear walk stability were investigated.

There were also efforts to study and compare modeling techniques. Reference 43 developed

simulations and analyses of conventional oleo-pneumatic landing gear during taxi and landing impact.

Simplification of the model and the effect of certain element omissions on the model fidelity were pointed

out. For example, constant spring and damping coefficients will not provide a realistic simulation effect.

The hydraulic force is a function of metering pin and strut closure and therefore cannot be represented by a

single force closure rate. This curve is different for acceleration and deceleration phases. Reference 44

gives a review of two landing gear shimmy models demonstrating the use of the Moreland tire model and

the Von Schlippe-Dietrich tire model. The models were used to perform a parametric study of the effect of

numerical variation of several input parameters on the stability of the gear. A comparison is made of the

analytical results to experimental data showing good agreement of the limit cycle oscillation frequency.

Both analyses were considered to be successful in determining the stability characteristics of landing gear.
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The results suggested that dynamic modeling of the gear would significantly improve the accuracy of the

analytical predictions. It was discovered that the spring stiffness values were stability critical parameters

and if the fuselage flexibility effects are not taken into account, the measured values of the stiffness

parameters may be in error by as much as 3 times the actual values.

General-purpose computer programs were also being developed to model complete landing gear

systems. An example of this type of modeling is described in reference 45 where the Dynamic Analysis

and Design System (DADS) program is used to model the response of two types of landing gear on

damaged and repaired runways during landing, taxiing, and take off. Both the cantilevered and the

articulated models included nonlinear effects such as the hydraulic orifice damping, pneumatic air spring,

bearing friction forces in the strut, and a tire-load deflection curve. These models could be used as stand

alone gear on a runway surface or combined together to simulate an entire aircraft. The dynamic analysis

and simulation show results such as strut loads and stroke for different runway profiles. The plots indicate

stick motion of the strut and the animation capability in DADS gives an advantageous view of the response

of the gear roiling over a runway.

Finite Element Modeling

Finite element modeling has become a useful tool for studying dynamic stability issues of landing

gear. Reference 27 describes Finite element modeling of the whirl and squeal modes of landing gear and

braking systems. Correlation between the analysis and various system component tests as well as the

performance of the complete model and actual system during operation are performed. Models include

landing gear, wheels, brakes, and tires. Design sensitivity studies are also used to evaluate component

changes during the design process. A feasibility study of computing nonlinear finite element simulations of

whirl and squeal dynamics is discussed in reference 28. DYNA3D is an explicit f'mite element code that

uses the central difference method to integrate the equations of motion in time. The model includes the

aircraft inertia and tire flexibility effects without adding extensive computational expense. Advantages of

using this method over more commonly used linear complex finite element analysis are evident in the

nonlinear transient analysis capability, the ability to model nonlinear stiffness and damping effects of

hydraulic fluid, modeling whirl and squeal instabilities with negative damping, and provision for modeling

a sliding interface.

Software Development

Reference 46 uses a library of components based on finite element methods which range from

beams and springs to very specific landing gear elements such as shock absorbers, actuators, flexible

sliders, and flexible wheel elements. Customization of elements is also available through user defined

elements. Results presented include simulation of a drop test, taxh'ng on repaired runway, tire burst during

rollout, and shimmy of a two-wheeled cantilever gear. Reference 47 developed a very comprehensive

landing gear model and simulation software capability that integrates landing gear and braking systems with

an aircraft for the purpose of parametric design. The software can be used during the conceptual design

stage or to evaluate proposed modifications for an existing configuration. All phases of aircraft landing

gear dynamics have been included to a fairly high level of detail including take-off, landing, steering, and

taxiing. Also flexibility of the strut and bogie were modeled. The software is composed of modules that

correspond to different subsystems or components such that a wide range of configurations can be modeled

from a single landing gear strut to a whole aircraft with multiple gear. The software has the capability of

modeling the aircraft as a flexible body that may be important in configurations that have more than two

656



main gear across the fuselage. A finite element model is used for the strut component of the gear. Since the

frequencies and mode shapes change as the gear is extended or compressed the model is evaluated at several

different positions and interpolated in between. A modal reduction routine is used for removing unwanted

modes in order to preserve the efficiency of the software. The oleo, bogie, brakes and wheels, braking

servo, steering actuation, control systems, tires, and runway profile are also included in the model. The

software has been validated with test data and an example of a drop test is given in the paper.

Sensitivity Analysis and System Studies

With the development of more accurate models for analyzing gear vibration problems, system

sensitivity studies became feasible and valuable in the design and evaluation of landing gear dynamics. Ref

14 describes a sensitivity study of several service variables on the dynamic stability of the F-101 and F-104

landing gear systems. Among the studies are the effects of wear, manufacturing tolerances, and normal

maintenance procedures on the nominal gear. These studies were helpful in determining if optimum

performance of the gear could be achieved by changing the values of the nominal service variables. Also, it

was important to establish guidelines that stated if any deviations in these service variables from their

nominal values would be detrimental to the performance of the aircraft. Torsional free play of the F-104

gear was found to have the most profound effect on the stability of the gear, particularly for fully extended

operation. Tire unbalance reduced the dynamic stability of the gear when adverse values of other service

variables were present such as air in the steer-damp unit or excessive torsional free play. For the F-101

gear, tire unbalance was shown to have a severe effect on the stability. Reference 48 describes an analytical

method of determining the sensitivity of various parameters of the landing gear and the braking system on

the landing gear dynamics during landing. The differential equations of motion of an 11 degree of freedom

system in generalized coordinates are written using Lagrange equations which are solved with variations of

the parameters. During the design modifications of the F-15 reported in reference 49, landing gear shimmy

tests were performed using a dynamometer facility and prototype landing gear. Several instances of shimmy

were encountered during testing and the results indicated that shimmy speed was a function of strut

torsional free play. Nonlinear analyses showed the sensitivity of shimmy speed to changes in tire

parameter values and frictional coefficients. The sensitivity analysis reported in reference 50 showed that

forward speed, vertical velocity, pitch attitude, and damping coefficients of the landing gear have the

largest effect on the g loads at touchdown. The nonlinear model described in reference 37 varied system

parameters to study the dynamic behavior of a dual wheel nose-gear system. The study included

parameters such as wheel span and cant angle, mass of the torque arms and its relative position to the shock

strut, torque arm stiffness, damper stiffness, wheel size and mass, and tire vertical and lateral stiffness.

Messier-Dowty has studied shimmy phenomena in order to improve the prediction of the dynamic

behavior of landing gear systems. In reference 51 they have developed several models with many input

parameters, particularly non-linear parameters and made comparisons to test data. Simulations show

sensitivities of shimmy stability to variations in these parameters and reinforce the need for taking

nonlinearities into account. The effects of longitudinal tire stiffness, vertical damping, and inclination

angle of the strut on gear walk stability are investigated in reference 42. The analytical model was

developed to study the behavior of main landing gear during taxi and braking. The model includes an error

feedback conlrol law for anti-skid braking simulation. In Reference 52 system studies were performed for

landing impact and taxi for three types of dual-chamber shock struts to aid in the selection process when

designing landing gear for different applications. The strut behavior was calculated for the design energy

conditions of a transport aircraft. No validation of the equations and results was performed. Reference 53

gives an example of a shock strut model for an articulated landing gear that was used for the purpose of
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comparing different linkage system configurations. Linkage mechanisms are important for achieving

mechanical advantages and other improvements in weight, reduced friction, and steering. The strut model

included hydraulic damping and pneumatic spring forces, but seal and bearing friction were neglected

during landing conditions. The tire model was relatively simple having empirical coefficients obtained

from static testing. The simulation also included aerodynamics, engine model, and ground effects.

Reference 54 developed a numerical to study the advantages and disadvantages of decreasing the initial

charge pressure of the air-oil chamber in the strut. The analysis was performed with and without the effects

of the relaxation properties of the tire which influences the maximum load point in the lower part of the

strut but does not affect the upper part of strut or fuselage. The advantage of shortening the strut did not

outweigh the disadvantage of increasing the stiffness of the strut both caused by "soft-lrflling ''.

Testing and Validation

The literature was reviewed for examples of testing for verification of analytical models, accurate

parameter identification for input into analytical models, and determining the stability of gear designs.

Reference 55 describes analytical and experimental studies of shimmy for the DASH 7 and DASH 8 aircraft

to understand nose gear shimmy and to aid in the development of analysis methods for predicting shimmy.

Shimmy occun'ed during service of the DASH 7 nose gear and was predicted during the design of the

DASH 8 main gear. Aircraft ground testing of a DASH 7 nose gear investigated variables such as free-play

in the scissors, effects of spin-up transient oscillations, and time-delay steering mechanism. The analysis

model used represents backlash, bearing friction, scissors stiffness and free play, and fuselage torsional

stiffness and free play. The frequencies predicted were 20% higher than the values measured and was

attributed to mass and stiffness modeling inaccuracies. Effects of free play and mass balance on stability

were investigated. The main landing gear of the DASH 8 was prone to shimmy due to its long flexible

design. Analytical results showed that increasing torsional stiffness and side bending stiffness of the gear

would increase stability. Mechanical trail was increased to the maximum to improve stability also. The

DASH 7 nose landing gear shimmy problem was contained at the expense of increased maintenance cost,

pilot workload, and in some cases airplane weight. In the case of the DASH 8, all 400 airplanes in service

are shimmy free but at the expense of increased time and effort to establish the final design with a weight

penalty.

There are different approaches to testing landing gear. Test results may therefore differ as discussed

in reference 56. Large differences still exist between dynamometer and airplane test results. Although it is

possible to predict the dynamometer results with an analytical model of the dynamometer test setup ff the

dynamics of the overhead rig are included, the dynamometer predicts much more stable behavior than the

actual landing gear on the aircraft. The lack of complete simulation of the torsional squeal modes

interaction with the rest of the landing gear structm'e, and the lack of simulation of low frequency modes

can result in significant differences between the stability of important modes in the lab as compared to the

actual aircraft. Another large difference between the dynamometer and the aircraft landing gear is the

modal density in the low frequency range between 0 and 50 Hz. For the example discussed in the reference

the main landing gear had fifteen modes in this range where the simulator of the gear had only two. The

lack of simulation of the low frequency modes of the landing gear system can result in significant

differences between the stability of important modes in the laboratory as compared to the aircraft. The

author states that a simulator of this type can be used to predict airplane performance only if it is used in

conjunction with a detailed analytical model of the complete landing gear system. Reference 57 gives a

brief overview of a 1993 NASA test program to study aircraft nose gear shimmy. The parameters were

torsional stiffness, torsional freeplay, wheel balancing, and worn parts. Steerable nose wheels were
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particularly susceptible to shimmy problems. Test results of the Shuttle nose landing gear compared with

that of a steel dynamometer showed little difference except in the case of a simulated flat tire test. This test

was shown to be significant only in the dynamometer data. Basically vertical load had little effect on

maximum steering collar rotation, maximum axle acceleration and maximum wheel swivel acceleration for

the shuttle nose gear tests which also conf'n'med earlier dynamometer data that shimmy did not appear to be

a problem. Reference 58 describes methodology to measure nose landing gear shimmy parameters using T-

46 static test article and static force-deflection measurements. The shimmy stiffness and torsional ffeeplay

parameters were then input into a shimmy analysis that incorporated the Moreland tire model. Stability was

predicted over a speed range of 20 to 140 knots. The prediction was validated through taxi tests of the T-

46. In reference 59 a mathematical model was developed to analyze the stability of the F-28 and other

similar gear and then validated through ground vibration tests and aircraft taxi tests. It was found that this

gear was basically unstable. An examination of the modes of the gear model found that the torsional-yaw

mode had negative damping for velocities above 70 m/s at a .25 m vertical deflection of the shock absorber.

A shimmy damper was included at the apex of the torque links that proved to be stabilizing in the analysis

as well as subsequent flight tests. Eventually experimental testing in landing gear systems and components

was performed to determine critical input parameters for improving analytical methods. Taxi tests of the

airplane were not conducive to developmental work on the gear or for broad investigations of the effects of

system parameters, therefore laboratory tests were the most cost-effective way to investigate the stability of

the gear.

Stability characteristics have been examined in the laboratory over the complete range of speed,

vertical load, and service parameter changes. Reference 60 examines several major differences between

laboratory tests and airplane tests. The mounting structure to which the landing gear is attached affects the

frequency and damping. The curvature of the flywheel surface affects the rolling dynamics of the tire such

as cornering power, relaxation length, and tire lateral spring rate. The melted rubber on the flywheel

surface will change the friction between the tire and the flywheel surface causing the gear to be more stable

than the actual. Landing gear exhibit non-linear characteristics such as friction and damping that are

dependent on the level of excitation. Lab testing usually involves gear in new condition that is non-typical

of actual landing gear systems. Because of these differences, the predictions are carried out by an

experimentally verified analysis rather than directly from lab test results. Reference 60 describes one such

effort to examine shimmy instability analytically during the design stages and by experimental testing. The

critical input parameters for the analytical study were flexibility coefficients, damping and steering

characteristics, fuselage frequency response, frictional torques, deadband values, and tire parameters which

were determined in lab tests. Correlation between the lab tests and the analysis was very good. The

complete landing gear was then tested either in laboratory simulation or taxi tests on the actual airplane.

Assessment and Recommendations for Future Work

Significant improvements in analytical predictions can be made if gear and tire parameters such as

stiffness, damping, and friction are known as functions of load on the gear or aircraft ground speed. (Ref.

61) Obtaining these parameters can be very labor intensive. Some landing gear dynamicists are of the

opinion that there is a need for standardized analytical modeling capabilities that are comprehensive and

accurate but not cumbersome or computer intensive. These tools should be versatile enough to handle

different types of gear as well as wheel/tire configurations and should be well maintained and documented.

A database of predictions of aircraft contributions to the gear parameters would eliminate the need for labor
intensive measurements on the aircraft. The need for a better understanding of damping and friction in the

gear still exists today. Reference 62 gives an overview of the needs for improvements in analytical

659



modeling and testing. They contend that simulation models can be used in parametric studies to improve

shimmy stability of gear designs, however, a total assessment of the system stability requires analyzing the

entire operating range of the aircraft and can be difficult to obtain in this manner. In the open literature

they found few publications that dealt with model simulations having significant impact on landing gear

design. Still simulation can provide a less expensive alternative to full scale testing. Test findings indicate

that torsional freeplay tends to destabilize the system whereas friction forces have a stabilizing effect.

Separation of lateral and torsional frequencies through lateral and torsional stiffness modifications, adding

negative or large positive mechanical trail, mass balance applied to the wheel axle, steering systems, and

shimmy dampers are all methods for improving shimmy stability according to the references cited. Worn

parts, tire wear, and tire inflation also adversely affect shimmy stability.

Landing dynamics issues have been the focus of the Aircraft Landing Dynamics Facility (ALDF) at

NASA Langley Research Center since its inception in 1956. Landing gear vibration could be studied

further in this facility. In January 1998 a workshop was held at NASA Langley where the aircraft landing

gear community was invited to discuss vibration problems. Landing gear and tire manufacturers,

commercial airline and general aviation personnel, FAA, and WPAFB were in attendance. The overall

consensus was that analytical tools were available to predict shimmy and brake-induced vibration, but there

was a need for accurate tire characterization to provide input for the models. They requested an update to

the NASA Technical Report R-64 cataloging mechanical properties of aircraft tires including dynamic

properties of radial and advanced bias-ply tires. Since the data for the original R-64 document were

acquired at the ALDF it seemed appropriate to perform the update activity there as well. The test plan and

schedule has been initiated and testing is projected to start in the summer of 1999.

Concluding Remarks

In order to increase understanding of landing gear shimmy and brake-induced vibration problems, a

literature survey on landing gear dynamics was performed. The major focus of the paper was to summarize

work documented from the last ten years to highlight the latest efforts in solving these vibration problems.

Older publications are included to understand the longevity of the problem and the findings from earlier

researchers. The literature survey revealed a variety of analyses, testing, modeling, and simulation of

aircraft landing gear. Experimental validation and characterization of shimmy and brake-induced vibration

of aircraft landing gear were also reported. This paper presented an overview of the problem documented

in the references together with a history of landing gear dynamic problems and solutions. Based on the

assessment of this survey, recommendations of the most critically needed enhancements to the state of the

art were given.
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Actively Landing Gear For Alrcratt Vlv at'o Reduction
Lucas G. Horta, Robert H. Daugherty, and Veloria J. Martinson

Abstract

Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible

fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an

analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled

landing gears. A facility has been developed to test various active landing gear control concepts and their

performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply
electronically controlled by servo valves. An analytical model of the gear is presented including modifications to

actuate the gear externally and test data is used to validate the model. The control design is described and closed-

loop test and analysis comparisons are presented.

1. Introduction

Long, slender, flexible fuselage configurations, especially those with a long overhang from the nose gear

to the cockpit, are susceptible to ground-induced vibration problems, particularly those produced by

operating over long-period, low-amplitude elevation disturbances on runways. Although in-flight vibrations

are also a concern, the work discussed herein will address the mitigation of vibrations transmitted from the

ground to the aircraft fuselage. The mitigation is accomplished by embedding a control system directly into

the landing gear.

This paper presents results from an activity at NASA investigating three aspects of actively controlled

landing gear; analytical modeling, control system design, and experimental validation. This work is aimed

at improving the fidelity of analytical models to the point where they can be used for control design;

experimental demonstration of various control philosophies, and to develop an experimental facility that

permits development of realistic concepts that can be transitioned to commercial applications.

Development of landing gear analysis dates back to the late fifties j'2. Work has included numerical

simulation techniques and experimental measurements to validate the various computer programs. A

significant volume of the work available in the literature deals with military aircraft requiring accurate

prediction of taxi loads over repaired, bomb-damaged runways 3-6. A computer simulation program named

HAVE BOUNCE 6 was developed to simulate the dynamic response of military aircraft over bomb damaged

runways. To validate the computer code, model validation was performed at the Aircraft Ground Induced

Loads Excitation (AGILE) 7 test facility at Wright-Patterson Air Force Base. Recently, attention has focused

on ride quality during taxi, takeoff and landing 8'9. A simulation program, developed by Stirling

Dynamics 8'9, is a good example of new simulation capabilities.

Since the primary design driver in landing gear design is impact loading, landing gear are typically tuned

passively for impact loading upon landing. Ross and Edson 1°'11 are among the first to consider an actively

controlled landing gear to reduce landing loads. Their work led to the actively control landing gear concept

described in this paper. Ross and Edson demonstrated the benefits of using an actively controlled landing

gear system to reduce impact loads upon landing and while traversing bombed damage runways. Work by

Freymann 12demonstrated analytically and experimentally the benefits of actively controlled landing gears in

reducing landing loads and vibrations under various runway profiles. Daniels 13 presented analysis and test

results for an A6 intruder landing gear system. This paper discusses an extension of the work in reference

13 to incorporate active controls. An A6-Intruder landing gear was used in the laboratory because it was

readily available. Necessary modifications to the gear are described along with the facility used in the

experimental validation phase.

665



2. Analytical Model
To extend the work by Ross and Edson l°, this research discusses an independent development of a

mathematical model of a main landing gear. The nonlinear equations of motion were developed for a

telescoping main gear modified with an external hydraulic system for actuation and control of the gear.

Specific details of the landing gear were taken from technical drawings supplied by the Crrumman Company.

Figure 1 shows a schematic of a landing gear used in the development of the equations of motion. This

schematic is representative of a general telescoping-type main landing gear. The model includes the

aerodynamic lift on the airplane L, the mass of the airplane's fuselage lumped with the mass of the main

cylinder as M_, and the mass of the piston lumped with the mass of the tire as M L . The inertial position of

the upper mass is Xwg with zero value when the gear is fully extended and the tire just touching the ground.

From this same configuration X a is the position of the lower mass taken as zero at the axle of the tire. When

the gear is compressed, Xo measures the deflection of the tire to an inertial reference ground input U(t).

Part of the upper cylinder chamber is filled with compressed nitrogen to provide the system with a spring.

The cross sectional area of the upper chamber is denoted by A_ and the corresponding pressure is P,.

Likewise, the lower chamber has cross sectional area denoted A L and a corresponding pressure PL-

Hydraulic fluid moves between the upper and lower chamber through an orifice plate with a hole of

diameter Dop. A tapered pin attached to the piston, known as a metering pin, is used to obstruct the flow

and effectively vary the orifice diameter as the pin moves through the orifice. The pin diameter is a function

of X and is denoted as Dp,, (X s ). Hydraulic fluid reaches the snubber chamber through several orifices of

diameter Ds. In the snubber chamber, the annulus area is denoted by A R and the pressure is Ps. The

diameter of the piston is Dp. The figure denotes entry/exit ports in the upper and lower chambers for the

exchange of hydraulic fluid used by the active control system. Tire spring and damping coefficients are

denoted byK t and Ct.

Figure 2 shows the forces acting on the upper mass. Balancing the forces acting on the upper mass

yields the following equation:

M,,JC,,g = M,,g- L- P,,A o - PL(AL - Ao)+ PsAR - f
(1)

=F,-f
where F_ is a newly defined term in Eq. (1), g is the gravitational acceleration, f is friction force between the

piston and the cylinder wall, and all other terms were described previously. This equation assumes that the

hydraulic fluid pressure in the upper cylinder is identical to the nitrogen pressure. Also, in this

development, the variable A o , the main orifice area, reflects the fact that the metering pin is included, i.e. it

is a variable cross-sectional area depending on stroke of the piston.

Figure 3 shows the forces acting on the piston. Summing the forces on the lower mass (piston) the force

balance equation is:

.,u,&= +eL(A,-As)-e,(AR-As)-F,+f
(:2)

=F2+f

where _ is a newly defined in Eq. (2). F_ is the force that is transmitted through the tire from the ground and

has the form:



wherethetire force is definedasalinear fimctionof tire stiffnessanddamping.Thetire stiffnessand
dampingcoefficients are obtained by linearizing the behavior of the tire about its nominal operating point.

Since all the pressures are functions of stroke, a more convenient coordinate to use is stroke. Defining the

stroke coordinate as X s = Xwg - X_, Eqs. (1) and (2) can be written as

ML My/M) f (3)Mz._s = rL///M F_-F2-(I+

The discussion so far relates forces F_and F 2to corresponding pressures. The pressures are functions of the

displacements and velocities of the landing gear components. Details of derivations relating chamber

pressures, forces, and actuation commands to landing gear motion are discussed in reference 14, but a few

key expressions are included here for completeness. The expression governing hydraulic fluid flow into the

landing gear system is

Q; =-Ccxc_PH,gh - PL xc <0 (4)

where Q; is flow into the landing gear system, Cc is an experimentally determined orifice discharge

coefficient, x_ is the control command, PH,gh is the high pressure value, and PL is the lower chamber

internal pressure. A typical expression relating pressures to stroke is

x <0 (5)
where E_ includes all the main orifice parameters. Equation (5) is an algebraic equation for PL that needs to

be solved for each value of X, during the numerical simulation. In the following, a description of a general

approach for control design is presented.

3. Control System Design

To control the motion of the landing gear, hydraulic fluid from auxiliary tanks is used in conjunction

with electronically controlled valves to actuate the gear. The goal for control design is to minimize

disturbance propagation from the ground into the fuselage. To aid the discussion on control design

methodology, consider a linearized representation of the landing gear and servo valves transformed using

Laplace's transform into G(s). Using feedback control, as indicated in figure 4, one can design a controller

k(s) to command the servo valves.

Define r(s) as an arbitrary input reference signal, d(s) as an unknown external disturbance, y(s) as the

controlled response, and m(s) as sensor noise. After some block diagram manipulation, the controlled

response is given by:

y(s) = (1 + G(s)k(s)) -_ [d(s) + G(s)k(s)r(s) - G(s)k(s)m(s)] (4)

The factor 1 + G(s)k(s) is the output return difference and multiplies every term in the right hand side of

the equation. To minimize the effects of the disturbance d(s) on the response, the factor multiplying the

disturbance term d(s) must be made small, i.e. the return difference must be large (i.e. G(s)k(s) >> 1 ) in the

frequency range of interest. Since G(s) is fixed, the control designer's task is to maximize the return

difference value by adjusting k(s) while maintaining the stability of the system. To ensure a stable design,

Nyquist criterion is used for this single-input single-output problem. Since the landing gear behavior is

highly non-linear one must examine bounds of variations in the system dynamics to ensure a stable design.

Nyquist criterion was computed experimentally to assess stability and gain margins of the design. Although
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applicationof thesetechniquesto nonlinearsystemsis limited, theyprovidetremendousinsight into design
philosophyandstability analysis.

4. Experimental Facility

Figure 5 shows an A6 Intruder main landing gear installed underneath a drop carriage in the standard

vertical position. A connecting plate was fabricated to allow for normal mounting of the gear to the plate,

and the plate was then rigidly connected to the drop carriage. The drop carriage is a truss-structure that

weighs about 4.5 tons and allows unrestrained vertical motion. The drop carriage rests on the landing gear.

This mass simulates the rigid portion of the aircraft mass carded by the gear. Once the gear is loaded, a

shaker table is used to input forces into the gear. Hydraulic lift cylinders, powered by a hydraulic pump, are

used to lift the drop carriage and unload the landing gear. Once the landing gear has been lifted, the ability

exists to lock the landing gear in that position with hydraulic valves.

The hydraulic shaker table was built specifically for the task of testing landing gears. The specifications

included the capability to perform a one-inch step bump in 2 milliseconds while bearing 12,000 Ibm. Input

waveforms such as 1-cos(x), sin(x), trapezoidal with user-selected rise time, and a saw-tooth wave-form are

all accurately reproduced by the shaker table. General profiles using runway elevation versus time data are

also reproduced well for low frequencies. The shaker table is capable of applying dynamic forces of up to

12,000 lbf. on the test mass and allows actuator movement of 6 inches.

The landing gear was modified in a number of ways. Two electro-hydraulic servo valves were attached

to the outside of the landing gear on flat areas that had been machined on the outer cylinder of the landing

gear. One valve was located above the orifice plate of the landing gear (in the upper chamber), and the other

valve was located below the orifice plate (in the lower chamber). Holes were machined into the landing

gear so that the valves could transfer pressurized hydraulic fluid either into or out of the desired chamber.

Both valves were designed to have flow rates of at least 26 gallons per minute (gpm) at 600 PSI with a

response approaching 100 Hz. A high-pressure accumulator was mounted on the upper mass (drop carriage)

and kept charged to a pressure approximately twice that of the static, loaded charge pressure in the landing

gear. A low-pressure accumulator was also installed so that when desired, pressurized hydraulic fluid in the

landing gear could be directed there, reducing the transient back-pressure that would tend to restrict the

outward flow of hydraulic fluid. The low-pressure accumulator was maintained at essentially atmospheric

pressure. Ultimately, the low-pressure accumulator was attached to an atmospheric pressure reservoir where

the pump used to supply the high-pressure accumulator was located. The system was thus pressure-balanced

evenly around the nominal static, loaded charge pressure of the landing gear, permitting roughly equal flow

rates into or out of the landing gear at similar servo command levels.

The piston head of the landing gear was also modified. Normally, a landing gear such as this has a

snubber chamber that is designed to limit the speed of piston extension to prevent a significant "bottoming

out" shock on the landing gear components such as might occur after a catapult during an aircraft carder

launch. Thus, normally the hydraulic damping characteristics of the landing gear vary depending on the

direction of piston travel. In this experiment, it was desirable to remove the "snubber" effect so that the

damping behavior was more even in both directions. To that end, a ring mounted directly under the piston

head, which normally acts as a directional valve and restricts hydraulic fluid motion in one direction, was

modified by drilling additional holes in it so that it provided equal flow past it regardless of the direction of

hydraulic fluid motion. These changes were accurately reflected in the modeling of the landing gear for

analytical purposes.
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Thetop of the landinggearwasmodifiedslightly to acceptahigh-strengthsiteglass.This siteglass
allowedavisual indicationof theproperservicinglevelof hydraulicfluid prior to beingpressurizedwith
nitrogen,andsaveda significantmount of time in pre-testoperations.

Thelandinggearwasinstrumentedto providethenecessaryinformationfor modelvalidation. There
weretwo accelerometers,oneplacedat theuppermassandthesecondoneatthe lower mass.Two relative
displacementtransducerswerealsoused,oneto locatetheuppermasswith respectto afixed positionon the
carriageandoneto measuretherelativepositionbetweentheupperandlowermassesof the landinggear.
Two pressuretransducerswereusedto verify somebasicmodelassumptions,mainly thatthehydraulicfluid
andthegasdonot mix to anysignificantdegreeafterinitial shaking.Onepressuretransducerwaslocated
just outsidethechargeport of theuppercylinder,andtheotherwasembeddedin thepistonhead. Vertical
loadwasinferredby measuringbendingmomentsinducedbythetire usinga straingageon thewheelaxle.

5. Test Results and Model Validation

The following section discusses experimental results from tests conducted on the landing gear system.

First, the servo loop dynamics and electronics were characterized and are compared with theanalytical

model. Second, the simulation model which was constructed using a commercially available software is

described. Finally, test results for various open-loop and closed-loop cases are presented.

5.1 Numerical Solution of Equations of Motion

The fundamental equations presented in Section 2 along with key expressions discussed in Ref. 14 were

programmed and numerically integrated using Simulink/Matlab 15 computer simulation program. Two types

of tests were conducted as part of the analytical model validation; parameter estimation tests for

characterization of the servo loop dynamics and system tests to compare overall behavior of the landing gear

when operating. In the following sections test and analysis results are discussed.

5.2 Servo Loop Dynamic Characterization

Figure 6 presents a plot of hydraulic fluid flow rate as a function of servo command. These data were

measured by removing nitrogen from the unrestrained landing gear and computing flow rates by measuring

piston stroke rates as a result of discrete servo commands. Tests were then conducted with the piston

restrained from moving to characterize the servo loop dynamics with minimum interference from piston

motion. The slope of the measured flow rate versus command gives the product C c_, where AP is the

pressure difference between the supply or return and the strut internal pressure. Using these results, the

servo effective discharge coefficient was calculated to be C c = 1.0765 x 10 -_ . To compare simulated

chamber pressures to test, a test was conducted using a sinusoidal sweep from 0.5 Hz to 10 Hz. Input

voltages from test were input into the simulation and the computed frequency response for upper chamber

pressure to servo command is shown in figure 7. Test results are depicted using a solid line and simulation

with a dashed line. Lower chamber tests results (not shown) are similar but with slightly more phase delay

between commands and internal pressure variations. The initial pressure in the chamber was recorded as

350 PSI, the initial stroke was 10.3 inches, and the high pressure accumulator pressure was 750 PSI. The

nitrogen level was estimated to be 4.78 inches. The upper curve in figure 7 shows the magnitude ratio of

upper pressure to input voltage as a function of frequency, whereas the lower curve shows a phase

comparison. This transfer function represents the servo valve hydraulic system response at the conditions

mentioned previously.
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53 Landing Gear Dynamic Characterization and Model Validation

Runway elevations and servo command voltages were the two inputs used to characterize the landing

gear. Since the system is highly nonlinear, sine sweeps were the main form of excitation. Time simulations

were performed using Simulink.

Since the simulation is nonlinear, initial conditions for the different parameters have to be set properly or

time integration will fail. Conditions such as upper mass position and velocity, piston stroke, stroke rate,

upper chamber pressure, and nitrogen level must all be specified. In the initial design, two sensors were

used to control the motion of the landing gear; piston stroke and upper mass acceleration. Since the axle

load signal from the strain gage is proportional to the upper mass acceleration, the strain gage output was

used for later tests. The axle-mounted strain gages had the additional benefit of being relatively "quiet" and

avoided the more dynamic nature of acceleration measurements on stiff structures such as those observed

using the upper mass accelerometer.

The controller used for all the closed-loop tests was synthesized with the aid of an experimentally

determined Nyquist diagram. To compensate for phase lag of the servo valves and hydraulic system, a lead-

lag compensator was used to add about 10 degrees of lead at 1.5 Hz. Direct axle load feedback with a loop

gain of 1 volt/6731 lbf. was used for all the closed-loop test results shown.

Shaker head position, servo-input command, piston position, upper mass position, internal pressures,

and acceleration responses are compared to simulation results in figure 8. Solid lines correspond to test and

dashed lines are simulation results. The input runway elevation is a sinusoid with amplitude of 0.75 inches

at a frequency of 1.5 Hz. Piston position feedback is always used to maintain inter-chamber leakage

through the servo valve from depleting the hydraulic fluid in the strut. This control loop is toggled on and

off during an experiment. Data shown in figure 8 had the acceleration feedback loop turned on after 14

seconds. The upper mass position is reduced to 25 % of the uncontrolled position after the axle load

feedback loop is turned on. Drift after the initiation of control in the stroke and upper mass position

histories in figure 8 could be attributed, in part, to a continuous decrease in the control system hydraulic

supply pressure. All simulation results assume a constant control system hydraulic supply pressure. To

experimentally minimize the effect of reduced control system hydraulic supply pressure, long duration tests

were interrupted periodically to allow for the recovery of system hydraulic pressure. Discrepancies in stroke

levels between test and simulation are not well understood.

Friction played a key role in unrestrained tests performed with this testbed. To illustrate the problem,

figure 9 shows a frequency response function of the upper accelerometer to servo command. Note that the

landing gear locks-up above 0.7 Hz due to friction. Control authority is lost beyond 0.7 Hz due to high

friction levels, about 2000 lbf. statically and 400 lbf. dynamically. This static friction level causes a

condition in which pressure versus stroke equilibrium can be in error by as much as plus or minus 45 psi.

Also important is the use of nitrogen in the upper chamber. Nitrogen serves as a soft cushion for 10ad

transfer through the landing gear. In the absence of nitrogen the stoat is full of hydraulic fluid, which is

incompressible, and therefore small amounts of hydraulic fluid into or out of the strut causes large changes

in the internal pressures. Since the servo hydraulic has a limited supply of external hydraulic fluid, the

absence of nitrogen allows for longer test time and higher forces in the system but requires higher pressures

for the external supply.

Controlled tests like the one shown in figure 8 can only be performed at discrete frequencies with the

capabilities of the existing hydraulic system. To test the frequency range between 0.1 Hz to 4 Hz, a

spectrum analyzer was set for a sine-sweep and the test was conducted over a long period of time, stopping

periodically to allow for the hydraulic system to be re-supplied. Open and closed-loop results from this test
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are shown in figure 10. Note that in this test the shaker table was used as the input disturbance and provided

enough energy to prevent the system from locking up below 1.2 Hz. Feedback from position and axle load

signals were used in the control system to attenuate responses between 1.5 and 3.5 Hz. The maximum

amplitude reduction is a factor of 4.4 at 1.4 Hz with reductions beyond 3.5 Hz of about 20%. Using the

strain gage sensor to measure axle load provides a cleaner signal for feedback and reduces the risk of high

frequency instabilities in the feedback loop. Note that in the ideal case with the control system fully

charged, a gain optimized for a single frequency, and controlling the system at its natural frequency,

amplitude reductions of a factor of 10 have been observed.

6. Summary

Equations of motion for a telescoping landing gear system have been developed incorporating an

external servo-hydraulic system which allows for landing gear actuation. The electronic servo hydraulic

system model combined the electronic and hydraulic dynamics in one relatively simple formulation. A

number of aspects of actively controlled landing gear design have been demonstrated in this study. Fuselage

vibration reduction levels by a factor of 4 have been demonstrated along with some of the fundamental

limitations of implementing such systems in landing gear design. High friction levels hindered the ability to

achieve higher performance without a major re-design of the landing gear. However, even modest vibration

reductions may translate into reductions in landing gear loads and therefore aircraft structural weight.
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ABSTRACT

Some background information is given together with the scope and objectives of a 5-year, Joint

Winter Runway Friction Measurement Program between the National Aeronautics & Space

Administration (NASA), Transport Canada (TC), and the Federal Aviation Administration

(FAA). Participants recently completed the fourth winter season of testing. The primary

objective of this effort is to perform instrumented aircraft and ground vehicle tests aimed at

identifying a common number that all the different ground vehicle devices would report. This

number, denoted the International Runway Friction Index (IRFI) will be related to all types of

aircraft stopping performance. The range of test equipment, the test sites, test results and

accomplishments, the extent of the substantial friction database compiled, and future test plans
will be described.

Several related studies have also been implemented including the effects of contaminant type on

aircraft impingement drag and the effectiveness of various runway and aircraft de-icing chemical

types and application rates. New equipment and techniques to measure surface frictional

properties are also described. The status of an international friction index calibration device for

use in ensuring accuracy of ground vehicle friction measurements will also be discussed. NASA

considers the success of this joint program critical in terms of ensuring adequate ground handling

capability in adverse weather conditions for future aircraft being designed and developed as well

as improving the safety of current aircraft ground operations.

INTRODUCTION

Improving aviation safety has long been one of the principal goals of NASA, Transport Canada

and the Federal Aviation Administration. With global aviation safety as one of NASA's three

pillars or thrusts for research activities, the announced metrics of "five fold reduction in

commercial transport fatal accident rates within 10 years and a ten fold reduction within 20

years" were deemed achievable. In today's economic climate, aviation industries are committed

to affordable, cost-effective technology for improved safety and profitability. Hand in hand with
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this outlook, government'agencies such as the FAA, NASA and Transport Canada, are partnering

to share cost, expertise and facilities to achieve program objectives in a timely and acceptable

manner with industry's guidance. The Joint Winter Runway Friction Measurement Program will

contribute significantly towards meeting these one and two decade metrics by providing better

tools for airport operators to use and more accurate and reliable runway friction data for pilots in

making their "go/no go" decisions during operations in adverse weather conditions.

Inconsistent, inaccurate reporting of winter runway conditions to pilots has contributed to a

disproportionate number of ground handling accidents as shown in Figure 1. This recent Boeing

survey of commercial jet transport landing/taxi accidents indicates that over a 35 year period

(1958-93), many accident events occurred on wet/icy runways with aircraft going off the end or

side of the runway. An obvious step in the solution of these ground handling accidents is to

standardize and harmonize ground friction measuring vehicle values to provide the pilot with

uniform and reliable runway condition information that is independent of the type of measuring
device. :

One objective of this program includes harmonizing friction measurements obtained with a

variety of ground test vehicles (13 thus far) on a wide range of winter runway conditions.

Accurately relating these harmonized vehicle friction measurements to aircraft braking

performance is also a goal of this program. To ensure the accuracy of these different devices

including a new RUNAR trailer and an Airfield Surface Friction Tester (ASFT), the American

Society for Testing and Materials E 17 Committee has formed a task group to design an

international friction index calibration tester with completion of prototype next year. A variety

of instrumented test aircraft have been involved since testing in this 5-year program started in

January 1996. During the course of conducting the aircraft test runs, a determination has been

made on the magnitude of runway contaminant-produced drag on aircraft takeoff performance.

The general test schedule for the joint program is given in Figure 2 and it is hoped that a sixth

instrumented aircraft, preferably a wide-body type, will participate in the fifth winter season of

testing. The United States Air Force as well as two civil transport aircraft manufacturers have

been approached to provide or support such wide-body aircraft testing.

BACKGROUND AND SCOPE

This study is being led by NASA and Transport Canada with support from the Canadian

National Research Council (NRC) and the FAA. Also participating are organizations and

equipment manufacturers, both aircraft and ground vehicle, from North America, Europe and

several Scandinavian countries. A variety of instrumented test aircraft and ground friction

measuring vehicles have been used at different test sites in the U.S., Canada and elsewhere. The

NASA Langley B-737 transport and an NRC Dassault Falcon-20 aircraft were used during

January and March 1996 at the Jack Garland Airport in North Bay, Ontario. Seven ground

friction measuring devices from six different countries collected comparable friction data for

several winter runway conditions including solid ice, dry loose snow and compacted snow. In

the January-March 1997 winter season, similar tests were performed at North Bay with an FAA

B-727 transport, the NRC Falcon-20 and a De Havilland Dash-8 aircraft together with 13 ground

friction measuring devices. Data obtained during these investigations helped define the

methodology for an International Runway Friction Index (IRFI) to harmonize the friction
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measurementsobtainedwith thedifferentgroundtestvehicles. In theJanuary-February1998
winter season,additionaldatawerecollectedat NorthBay, ON with theFalcon-20andDash-8
aircraft,togetherwith 11differentgroundtestvehicles,to further refine theIRFI methodology
andto establisha CanadianRunwayFriction Index (CRFI) to beusedby pilots to determinetheir
aircraft stoppingdistanceundercompactedsnowandiceconditionsfrom ElectronicRecording
Deceleration(ERD) readings.In March 1998,severaldifferentgroundfriction measuring
devicesparticipatedin conductingnearly800testrunsundercompactedsnow- andice-covered
surfaceconditionsat anew testtrack facility locatedatGardermoenAirport nearOslo, Norway.
During theJanuary-March1999winter season,Falcon-20aircraft andgroundvehicledatawas
collectedat NorthBay, NASA B-757 aircraft andgroundvehicledatawascollectedat anew test
site,SawyerAirbase,Gwinn,MI andadditionalgroundvehicle (9 different devices)obtained
friction dataat theGarderrnoentesttrack site in Oslo,Norway. Datafrom thesetestswereused
to furtherrefineandimprovetheIRFI methodology.It is interestingto notethat undersimilar
runwayconditionsatthesethreedifferent testsites,friction datafrom groundvehiclestestedat
all threesiteswereir/ closeagreementandIRFI methodologywasfurther substantiated.Thejoint
programfriction databasecollectedduring testingin 1996-99includesnearly 400 instrumented
aircraft testrunsandmorethan8000groundvehiclerunsunderbareanddry, rain andartificially
wet, artificially flooded, looseandcompactedsnow,smoothandroughice, sandedand
chemically-treatedice,andslush.Fiveweeksof NASA Aircraft Tire/RunwayFriction Workshop
data(1994-98)havebeencombinedwith datafrom thirteenweeksof winter testingat North
Bay, ON (1996-99),oneweekat SawyerAirbase,Gwinn, MI (1999)andtwo weeksat 0slo,
Norway (1998-99). References1to 11providedocumentationof the 1996-98test results
obtainedwith instrumentedaircraftandgroundfriction measuringvehicles.

Futuretestingwith otheraircraft typessuchastheB-777or A320 aircraft and with new or
improvedgroundtestvehicleswill furthervalidatetheIRFI methodologyandhelp identify an
Aircraft Friction Index (AFI) to harmonizedifferentaircraftbraking friction performanceto the
IRFI. Dissemination,acceptanceandimplementationof thesetestresultsby theaviation
communityis expectedthroughtheguidanceandassistanceof severalorganizationsincluding
theFAA, theInternationalCivil Aviation Authority (ICAO), the AmericanSocietyfor Testing
andMaterials(ASTM), theJointAviation Authority (JAA), theInternationalFederationof Air
Line Pilots (IFALPA), theU.S.andCanadianAir Line PilotsAssociation(ALPA andCALPA)
andtheAir TransportAssociation(ATA). Theoverall resultsfrom thisprogramareexpectedto
increaseaircraftgroundoperationalsafetyaswell asthecapacityof airports andmay alsobe
applicableto vehicularsafetywherewinter conditionsaresevere.

PRELIMINARY TEST RESULTS

Figure 3 shows four friction data comparisons between ground vehicles on six different runway

conditions which varied from bare and dry (high values) to ice-covered (low values). The

devices each operatedwith a fixed-slip value which varied from 12 to 100 percent with zero

percent equal to a free rolling and 100 percent equal to a locked-wheel skid. The NASA

Instrumented Tire Test Vehicle (ITTV) is used in comparisons with the ERD, the Surface

Friction Tester (SFT), the IMAG trailer and the GripTester trailer. These comparisons of actual
measured friction values obtained with different test vehicle and tire combinations are considered
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quite good. The relative agreement, expressed by the "r squared" values with 1 being perfect

agreement, in each of the four comparisons is nearly 0.92 on an average.

Figure 4 shows range of fricdon values obtained with a Norwegian variable slip trailer device

(RUNAR) on several similar runway surface conditions. It should be noted that not only do the

overall values of friction change with the different surface conditions, but the percent slip at the

peak friction and the slope after the peak are also functions of the surface conditions. One can

also conclude from this data that as the peak friction magnitude decreases, the difference

between individual ground test vehicle measurements would also decrease. This has been

observed in comparing data under different runway conditions obtained at all three test sites.

Figure 5 shows a comparison between the friction values measured in 1996 by the instrumented

Falcon-20 aircraft and the ERD ground vehicle during testing on several different snow- and ice-

covered runway conditions. The comparison in actual aircraft and ERD measurements is not as

close as between the ERD and 1TTV (r squared of 0.841 vs. 0.924) but that is to be expected

because of differences in test tire slip ranges (100 percent for ERD, 15 to 20 percent for aircraft)
and tire contact areas.

Figure 6 shows the effect of speed on the instrumented B-737 aircraft braking friction data. For

the variety of runway conditions listed, the friction range varies from 0.5 under dry conditions

down to 0.07 for patchy thin ice. A decrease in friction with speed is noted for the wet conditions

whereas an increase is shown for dry loose snow (2 - 3 in. in depth), which may be attributed to

a change in temperature during the test run series. The lower depth loose snow conditions and

the patchy thin ice showed little effect of speed on the measured friction values. This trend was

still evident after removing the contaminant drag values from the snow covered runway data. As

expected, the patchy thin ice produced the lowest aircraft braking friction measurements which

were obtained at a constant below-freezing temperature. Along with tire temperature, tire load or

contact area has been found to be a significant factor in the level of friction developed by a given

vehicle and/or aircraft on snow- and ice-covered runway conditions. Ground speed, on the other

hand, does not have the influence on friction values developed on these winter runway

conditions that it has under wet pavement conditions.

Figure 7 shows the effect of contaminant drag on the B-737 aircraft deceleration values with

speed for three different snow-covered runway conditions. The contaminant drag values were a

combination of the displaced contaminant drag by the aircraft tires together with that developed

from impingement onto the aircraft. For these nonbraldng tests, the aircraft was operated in the

takeoff configuration. In general, the deceleration values increase with increased speed and

contaminant depth as expected. The specific gravity of the base snow contaminant varied

between 0.5 and 0.6. Similar data trends were found during nonbraking test run series with the

Falcon-20, the Dash-8 and the B-727 aircraft.

FUTURE PLANS

More testing with the Falcon-20 and Dash-8 aircraft are planned for the 1999-00 winter seasons

in North Bay, ON and additional testing with NASA Langley's instrumented B-757 aircraft will

be conducted at Sawyer Airbase, Gwinn, Michigan. At least six of the ground friction measuring

devices will participate in these tests at North Bay and Gwinn, MI and also in tests planned for

the Gardermoen Airport test track facility near Oslo, Norway. Further participation of the FAA's
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B-727 aircraft is expected.Efforts arealsoongoing to get a wide-body aircraft, i.e. B-777 or

Airbus 320 to participate in the 2000 winter season at Sawyer Airbase, MI. The United States Air

Force has also been approached relative to use of an instrumented C-17 or C-130J transport

aircraft in the testing. More ground vehicle tests evaluating friction, texture and pavement

roughness are planned during the Sixth Annual NASA Tire/Runway Friction Workshop at

Wallops Flight Facility, VA, May 10-14, 1999. In the fall, a 2-3 day international conference is

planned with site and dates yet to be determined, to review all the joint program data and

findings with the aviation community and get their guidance and recommendations for next

year' s program activities. The year 2000 marks the fifth and final year of the program.

CONCLUDING REMARKS

In the four years of testing aircraft and ground vehicles in the joint program, a substantial friction

database has been established. Both an International Runway Friction Index (IRFI) and a

Canadian Runway Friction Index (CRFI) have been identified from ground vehicle and aircraft

friction data measurements. Data analysis is underway to improve the harmonization of ground

vehicle friction measurements and determine a suitable Aircraft Friction Index (AFI), based on

calculated aircraft stopping distances using IRFI, that pilots could use in making their "go/no go"

decisions. Although next year marks the end of this ambitious 5-year program, discussions have

taken place between the various participating government organizations and the International

Civil Aviation Organization (ICAO) on extending this 5-year period to include differeni aircraft

types and conditions. More aircraft and ground vehicle data are needed for the slush covered

runway conditions and manufacturers and airlines are interested in reverse thrust performance

data. Aircraft braking performance and contaminant drag measurements at speeds from 120 to

170 knots have also been identified as part of future aircraft test run matrices together with

monitoring aircraft wheel brake torque variations during braking efforts.

.

.
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C) CORRELATION OF IMAG AND I'VFV
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RUNAR TRAILER FRICTION VARIATION WITH PERCENT SLIP FOR

DIFFERENT RUNWAY CONDITIONS

North Bay, ON and NASA Wallops; 65 km/hr (40 mph)
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NASA B-737 AIRCRAFT BRAKING PERFOR_LANCE

Landing Configuration; North Bay, Ontario; R/W 8/26; March 1996

NASA Wallops_Flight. Facility; R/W 4/22; Angu_ 1996
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APPLICATION OF DIRECT SEARCH METHOD TO AEROELASTIC

TAILORING OF AN ARROWWlNG CONFIGURATION
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Abstract. A computer code for areoelastic

tailoring Of an arrow wing supersonic cruise

configuration is developed. A direct search

method is employed to find the optimum fiber

orientation angles and thickness distributions of

the upper and lower skin panels of the wing box

for the minimum weight design under the

multiple constraints. The static strength,

symmetric and antisymmetric flutter velocities are

taken into account at the same time as the

constraints. The code is applied to atypical arrow

wing configuration to demonstrate its capabilities.

Key words: Aeroelasticity, SST, Arrow wing,

Aeroelastic tailoring, Composite,

Optimization

1. Introduction

The flutter characteristics, especially in the

transonic regime, playthe critical role in structural

design of an arrow wing supersonic cruise

configuration 1). For example, the design studies

performed by Turner and Grande 2) of the early

Boeing Supersonic Transport (SST) Model 969-

512B disclosed that the strength designed

configuration does not meet the flutter

requirement and an unrealistically high mass

penalty was expected to achieve the flutter

clearance(1.2VD--.259 m/sEAS at M=0.90 which

was initially set. In order to improve the flutter

characteristics of an arrow wing configuration

without mass penalty, the application of the

aeroelastic tailoring technology might be one of

the most promising approaches. However, its

effectiveness for the arrow wing configuration

has not yet been well examined, though it has

been shown that it ishighly effective forths high

aspect-ratio transport type wings 3)'_5)

In order to perform the trend study on the

effectiveness of the aeroelastic tailoring for the

structural design of an arrow wing supersonic

cruise configuration, apretiminary design code is
developed. In the present code, a direct search

method (the Complex Method 5), 6)), which does

not depend on the derivatives of the objective

and constraint functions, is employed to find the

optimum fiber orientation angles and the

thickness distributions of the upper and lower

skin panels and the thickness of the spar and rib

materialsof the wing box for the minimum weight

design under the multiple constraints. One of
the characteristics of the code is that it can treat

the static strength, the symmetric/antisymmetric

flutter velocities and the minimum gauges at the
same time as the constraints. In the next

sections, the outline of the code and the results

obtained by applying the present code to a

typical arrow wing configuration will be

presented.

2. The Outllne of the Optimum Design
Code

In order to perform the aeroelastictailoring, we

need several analysis codes as the elements of

the optimization code. For the strength and

vibration analyses, the in-house Finite Element

Method (FEM) code is developed since we
should know the fine-details of the FEM code to

develop the aeroelastic optimization code by

combining it with the aeroelastic analysis code.

The in-house FEM code, in which the membrane

elements are employed, is specialized to an

arbitrary arrow wing configuration. That is, only a

few paremeters can generate, automaticaJly, the

FEMgrids for the wing box of an arbitrary double

delta type wing planform. For aeroelastic

analyses, the modal approach is taken by using

the symmetric/antisymmetric natural vibration
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modes (16 mode shapes including rigid body

modes are employed) ol0_ained by the FEM

code. The unsteady aerodynamic forces are

calculated by Doublet Lattice Method (DLM) 7)

code in which the 100 panels (10 chordwise by

tO spanwise) are employed. In order that the

aeroelastic analysis code is integrated effectively

in the optimization code, the

symmetric/antisymmetricflutter velocities should

be calculated automatically

As to the optimization algorithm, the Complex

Method_ which is originally proposed by Box6) is

employed. Applicability of the complex method

to the aeroalastictailodng of the high aspect-ratio

transport type wings are extensively examined in

Ref. 5. The complex method can handle multiple

(inequality type) constraints without recourse to

gradients, According to our experiences 5) in the

aeroelastictaitoring study of the high aspect-ratio

transport type wings, the complex method is very

effective and robust in finding the optimum fiber

orientation angles and the thickness distributions

of the upper/lower skin panels of the wing box,

while the deficiency of the method isthat the rate

of convergence of the objective function

degrades rapidly with ircreasing number of

design variabk_. Therefore, it is indispensable

to reduce the number of design variables as small

as possible when we apply the complex method

to the aeroelastlotailoring. (See Refs. (5), (6), (8)

for the detailed procedure of the complex

method.)

In Fig. 1, the planform of the arrow wing model,

for which the present design study is performed,

is shown. (The further details of the model

specification will be given in the next section,)

The hatched part of the planform shown in Fig. 1

indicates the wing box location. Fig. 2 shows the

arrangement of ribs and spars, and it also shows

the FEM grids on the upper and lower skin

panels. The total 670 triangular elements are

used for the present FEM analyses. In order to

reduce the number of the design variables in the

optimization process, the upper/lower skin

panels are divided into 7 blocks for each panels,

respectively, as shown in Fig. 3, and the
thickness of the skin within each block is

assumed to be the same. It is also assumed that

the laminate construction of the upper/lower skin

panels is symmetric and the thickness of each

layer having different fiber onentation angle isthe
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sameforeachother.Astothesparsandribs,the
severalelementswhichseems to be sensitive to

the static strength and stiffness are selected as

the design variables as shown later. In addition to

this, the laminate constructions of the spars and

ribs are assumed to be quasi-isotropic.

Thus, the following 25 design variables are

selected:

(a)The thickness of each block of the

upper/lower skin panels (the number of

design variable: 7x2=14)

(b) The fiber orientation angles of the

upper/lower skin panels (2)

(c) The thickness of the fore- and hind-spars of

the inroad wing (2)

(d) The thickness of the fore- and hind-spars of

the outboad wing (2)

(e)The thicknessofthe sparsotherthan (c)and

(d)(_)

(f) The thickness of the rib atthe span station

where the inboed engine is located (1)

(g)The thickness of the rib atthe span station

where the outboard engine is located (1)

(h) The thickness of the rib atthe tip station of the

wing box (1)

(i) The thickness of the rib other than (f), (g) and

(h)(1)

Although the total 25 design variables

mentioned above is employed for the present

study, the design variables up to 34 (the

maximum number of blocks up to 10 for each

upper/lower skin panels and the maximum

number of fiber orientation angle up to 5) can be

taken in the present optimization code.

The objective function is the structural weight

of the wing box, namely, the total sum of the

weights of the upper/lower skin panels, spar
matertaJsand ribs.

The constraints are the static strength, the

symmetric/antisymmetric flutter velocities and the

minimum gauges for the upper/lower skin panels,
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the spars and ribs.Tasi-Wu failurecriterion9) is

employed toidentifythe structuralfailure.

3. Results and Discussions

As an example of the application of the present

optimization code, the design study has been

performed of an arrow wing configuration shown

in Fig. 1. The length of the root chord is 50.4 m

and the semispan length is 18.9 m. The leading

edge sweep angles of the inner and outer wings

are 74 ° and 60 ° , respectively. The full-span

wing area is about 830 m2 and the aspect ratio is

1.61. The airfoil section is 3 percent thick

circular-arc. The engine mass is assumed to be

6,500 Kg for each of the four engines. The

engines are expressed by the concentrated

masses at the locations indicated in Fig. 1. For

the full fuel condition, which is the most criticaJfor

flutter, 200,000 Kg of the fuel mass is assumed.

The maximum gross take-off mass is assumed to

be 374,500 Kg. Therefore the zero fuel mass

becomes 174,500 Kg. The structural materiaJs

used in the present study is Graphite/PEEK

(APC2), whose material properties are EL=134

GPa, ET=8.90 GPa, VLT=0.28, and GLT=5.10

GPa.
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The minimum weight design is performed

under the following design conditions (inequality

constraints):

a) Static Strength

The strength requirement isto sustain 2.5g

load of the maximum take off gross weight which

corresponds with 9.175x106 N. This static load

canbe realized at M=0.90 and ¢z=5,1 °, The load

distributions calculated by using DLM is applied

at each node point of the FEM grid.

b) Rutter Velocity Requirement

The symmetric/antisyrnmetric flutter velocities

should dear 1.2 VD=259 m/s EA$ at M=0.90.

c) Minimum Gauges

Since the laminate construction of the

upper/lower skin panels of the present model is

assumed to be (P1:50%; 1_2:50%)s where Pl and

I]2 are the fiber orientation angles (design

variables), the minimum gauge for the

upper/tower skin panels is taken to be 0.52 ram.

As to the minimum guage for the spars and dbs,
1.04 mm is assumed since the laminate

constructions of them arequasi-isotropic.

In Fig. 4, the convergence histories of the wing

box structural weight (the objective function), the

strength ratio R, the symmetric (VF2) and

antisymmetric (VF3) flutter velocities during

optimization process are plotted. The value of

the wing box weight has converged to 12.148

ton after 158 iterations. As seen from the figure,

the strength ratio R has reached to 1.0 at the

optimum point, while the flutter velocities at the

optimum point are VF2--387 mls EAS and

VF"-3=388 m/s F_AS, that are considerably higher

than 1.2 VD=259 mls EAS. This fact suggests

that the structure obtained by the present

optimum design is strength critical rather than
flutter critical.

The total wing box structural weight of 12.148

ton is composed from 3.656 ton of the

upper/tower skin panels, 6.604 ton of the spar

matedalsand 1.888 ton of the ribs. The optimum

fiber orientation angles and the thickness

distributions of the upper/tower skin panels are

shown in Fig. 5. The 12.148 ton of the wing box
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Fig. 5 Fiber Orientation Angles and Thickness Distributions of Upper/Lower Skin Panels

structural weight obtained by the present

optimum design is about 19% reduction of the

corresponding wing box structural weight of our

previous design 10), which was obtained by the

trial and error design under the same design
conditions.

In Figs. 6a and 6b, the symmetric and

antisymmetric natural vibration mode shapes and

frequencies of the present optimized structure

are shown, respectively. It should be noted that

the first three modes are the rigid body modes,

namely, fl=f2=f3=0 and that only the elastic

modes areshown in the figures.

As already mentioned, the structural weight

reduction attained by the present optimization is

about 19 % compared with our previous trial and

error design. When we notice that the present
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optimized model is strength critical rather than
flutter critical, it could be said that the aeroelastic

tailoring might be more effective than the present

example if we apply the present code to the

arrow wing model which is flutter critical rather

than strength critical.

4. Concluding Remarks

A preliminary design code for aeroelastic

tailoring of an arrow wing supersonic cruise

configuration has been developed. A direct

search method, which does not depend on the

derivatives of the objective and constraint

functions, is employed to find the optimum fiber

orientation angles and thickness distributions of

the upper and lower skin panels, and to find the

optimum thickness of the spar and rib materialsof
the wing box structure for the minimum weight

design under the multiple constraints. The static
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Fig. 6 NaturalVibrationMode Shapes and Frequencies of Optimum Designed Structure

strength, symmetric and antisymmetric flutter
velocitiesaretaken into account atthe sametime
as the constraints. The code is applied to a
typical arrow wing configuration to demonstrate
its capabilities. It has been shown that the 19%
reductionof the structural weight can be attained
by the optimizationcompared with our previous
trial and error design obtained under the same
design conditions.
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ABSTRACT

This paper investigates the effect that varying the orientation ct of a [90+ct/0+od+45+ct/-45+tX]s lay-up has

on the flutter and divergence behaviour of a uniform fiat composite beam, in both swept and unswept

configurations. Minimum-mass optimization of non-uniform fiat composite beams, with varying

orientation of the same lay-up, is also presented. Results show a reduction in mass of 23% for optimum ot

compared to the baseline a = 0 case. It is also found that the lay-up orientation giving maximum

permissible airspeed for a uniform beam corresponds to the optimum orientation for a non-uniform beam.

Hence, the wing designer may quickly and accurately determine the optimal lay-up orientation by

performing flutter and divergence analyses at a range of values of tx between +90 ° and -90 °. The current

limitations of the technique, concerning strength requirements and manufacturing considerations, are

recognized. Furthermore, some of the designs are shown to be highly imperfection-sensitive.

1. INTRODUCTION

Several studies on the optimization of aeroelastically constrained, composite wings with cantilever end

conditions have been conducted. For example, recent optimizations _'2 have examined the design of non-

uniform, fiat composite beams for frequency, flutter and divergence constraints. During these studies,

variation of the thickness of a generic lay-up with fixed values of ply angles was considered, and an

experimental validation was carried out. Other related work 3-6 has investigated the influence that ply

orientation, sweep angle, wash-in and wash-out, as well as various other parameters, has on flutter speed.

This work showed that modal interchange can significantly alter the flutter speed of a composite wing', and

that for flutter of an unswept composite wing, torsional rigidity and coupled bending-torsional rigidit3? axe

the most influential parameters. It was also found that, contrary to traditional thinking, wash-out can be

beneficial from a flutter point of view 6. A recent independent study 7 has examined the effect of both ply

angle variation and the position of lumped masses on flutter speed for uniform thickness wind tunnel

*Placement student at the University of Bath. Now at French Institute for Advanced Mechanical

Engineering, Campus des Cezeaux, B.P. 265, 63175 Aubiere Cedex, France.
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models. Here, the principal findings were that small variations in thickness can have a significant effect on

flutter speed, and that practical application of optimization should allow for uncertainties in the

aerodynamic and structural models.

For all of the above studies in which ply angle has been varied, the lay-up has been constructed from either

unidirectional material [0 °] or woven [0/90]s material. Also, the wing structure has previously consisted of

a fiat composite beam of uniform thickness. The current paper describes the effect that varying the

orientation ¢t of a [90+ot/0+ed+45+ct/-45+Ct]s lay-up has on the flutter and divergence speeds of such

uniform beams which are both unswept and swept back, where the effect of such variation is to alter the

influence of each layer on the beam rigidities. Following this, the design optimization of non-uniform

beams with varying orientation of the same lay-up, is considered. These studies have led to the

development of a strategy, the aim of which is to guide the designer using a quick and accurate conceptual

model to determine the best lay-up orientation, i.e. the orientation that will give the minimum mass whilst

satisfying flutter and divergence speed constraints. Such a strategy is very efficient compared to a complete

optimization study for each possible lay-up orientation. The work also provides information on the effect of

imperfections in lay-up orientation, which may be of interest to composite manufacturers.

2. Analysis and optimization

2.1 Wing model

The wing model used in this study has previously been presented 1'2. It consists of 10 uniform beam

elements, where each element has a lay-up of [90+cd0+tx/+45+(x/-45+Ct]s, a length of 0.04 m and a width of

0.08 m, see Fig. 1. The lay-up orientation tz is defined as the angle that the 0 ° fibres are inclined to the y-

axis of the beam. (Note that for a swept wing the y-axis is the centroidal axis of the beam.) The composite

material properties are given in Table 1 and the structural beam is enclosed in a NACA 0015 aerofoil of

(unswept) chord 0.195 m. The mid-chord position of this aerofoil is positioned 0.04 m in front of the beam

centre.

• _ h ', _ 3 Parameter Value

Ej 165.0 GPa

E2 8.8 GPa

G12 5.0 GPa

o12 0.30

, P 1550 kg/m 3

Fig. 1: Unswept wing model with coordinate

system. 0 shows the direction of both

positive lay-up orientation and

positive ply angle.

Table 1: Material properties of carbon

fibre�epoxy composite.
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It is assumed that each element obeys the following differential equations:

d2 h K o3// ...(1)
M=-EI--_+ 4"

T = GJ dg - K d2h
4' 4"2 ...(2)

where M is the bending moment, T is torque, h is vertical displacement and qJ is torsional displacement.

d2h

Hence _4" is the rate of change of twist along the beam and -_ is the curvature of the beam. The bending,

torsional and coupled bending-torsional rigidities, EI, GJ and K respectively, are constant for each element

and have been derived 8 from the [D] matrix produced by classical laminate analysis, i.e.

D_2D1_

Ol I

...(3)

where b is the width of the element. The coupled bending-torsional rigidity K may be either positive or

negative. For positive K the wing will twist leading edge down when it is bent upwards, i.e. the wing will

wash-out, whereas negative K will cause the wing to twist leading edge up (wash-in) when it is bent

upwards, see Fig. 1.

2.2 Free vibration and aeroelastic analysis

The Dynamic Stiffness Method (DSM) is used to carry out free vibration analysis for the non-uniform

composite beam 9 by idealizing it as a series of uniform beam elements. The dynamic stiffness matrix

represents an exact continuous model of the element and so the major difference between this method and

the Finite Element Methods (FEM), is that FEM approximates displacements with shape functions to obtain

separate mass and stiffness matrices. To improve the accuracy, FE methods often require more elements,

whereas the DSM is independent of the number of elements used.

Aeroelastic analysis is carried out using the program CALFUN t°. Here, the dynamic stiffness matrix and

aerodynamic matrix are expressed in terms of generalised co-ordinates; the generalised dynamic stiffness

matrix being obtained by diagonalising the dynamic stiffness matrix using normal modes. The generalised

aerodynamic matrix is obtained by applying the principle of virtual work, using strip theory based on

Theodorsen expressions u and the normal modes obtained from the dynamic stiffness matrix. (In the results

that follow the first six normal modes of the wing are used.) An accurate value of the flutter speed Vf and

flutter frequency can be found using the V-g method and the divergence speed V d is obtained by considering

it as a static (zero frequency) instability problem.
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2.3 Optimization

During optimization, the beam is divided into 5 element groups of length and width 0.08 m, see Fig. 1. The

thickness of each of the (90 ° + co), (0 ° + ct), (45 ° + oQ, and (-45 ° + or) layers within each group is allowed

to vary within the limits of 0.125 mm and 2.0 mm. To find a minimum-mass wing design that satisfies

aeroelastic constraints, a sequential quadratic programming strategy (SQP) combined with the modified

methods of feasible directions (MMFD) optimizer contained in the optimization package DOT _2is used.

The minimum acceptable flutter and divergence speeds for this beam are set to 36.91 and 37.91 m/s,

respectively, these being the values used in the previous study 2 in which lay-up orientation was not varied.

3. Results

3.1 Parametric study for uniform thickness beam

The analysis of a uniform thickness beam model for varying lay-up orientation co, where each of the 8 layers

within the [90+a/0+a/+45+a./-45+a]s lay-up has the same thickness, is firstly considered. Figure 2 shows

the variation of the rigidities El, GJ and K against a where the values of rigidity have been normalized

against the El value for ct = 0 °. It can be seen that when ct = 0 ° the beam has a small amount of positive K,

since of the two layers of diagonal plies, the +45 ° layer is positioned outermost. As expected, maximum

values of GJ occur at around a values of+49 # and -50 ° whereas cc = + 90 ° gives maximum El. It can also

be seen that maximum value of positive (negative) K occurs at around a = -64 ° (¢x = +66 °) and that K is
zero when c_ is around +42 ° and -43 °.

3.1.1 Unswept wing

Figure 3 shows the variation of flutter and divergence speed with varying a for an unswept wing. Here, as

in Figs. 4 and 5, airspeed has been normalized against the flutter speed found when ct = 0 °. In Fig. 3,

maximum flutter speed occurs at around cz = 52 °, which from Fig. 2, corresponds to a large value of G J, low

EI and a small amount of negative K. It is also evident that divergence speed approaches infinity for

maximum values of positive K. Peak values on the flutter and divergence envelope shown in the figure
occur at ct values ofaround +41 ° and --45 °.

All the calculations described above did not account for any offset x= between the mass axis and the elastic

axis of the beam, which in this case is taken as the beam eentroidal axis. Thus a further study to evaluate the

influence of the offset on the flutter speed was carried out. Figure 4 shows the variation of flutter speeds

against ot for different values ofx_, where positive x_ means that the mass axis is in front of the elastic axis.

The figure shows that, as expected, flutter speed is reduced when the mass axis is positioned behind the

elastic axis, which is usually the case for most practical wings. This can be explained by considering the lift

of a wing due to local changes in angle of attack. A mass axis in front of the elastic axis tends to lower this

angle and hence attenuates the flutter phenomenon, although a mass axis behind the elastic axis tends to

increase the angle and hence amplify flutter. It is interesting to see that the offset has little influence on the

shape of the curves. Minimum and maximum values are obtained for similar values of o_ to the zero offset

case. Hence, the offset would not significantly change the optimum o_, and only the x_ = 0 case is considered
henceforth.
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3.1.2 Swept wing

When the wing model is swept back 20 °, the flutter and divergence results of Fig. 5 are obtained. As

expected, the regions in which divergence is critical are reduced compared with the unswept case. These

regions are confined to the range {x = 60 to 90 °, and around ct = -20 °. From Fig. 2, these regions have low

values of GJ and negative K. The flutter/divergence boundary maximum now occurs when flutter speed

reaches a maximum, i.e. at around ct = 60 °. This corresponds to relatively high values of both GJ and

negative K.
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3.2 Optimization of non-uniform thickness beam

3.2.1 Unswept wing

Initially, the unswept beam was optimized for a range ofct values, see Fig. 6. Each point in the figure gives

the optimum mass produced by a single optimization run for a single ct value, taking on average 4 CPU

hours on an Silicon Graphics O2 (175 MHz/R10,000) workstation. The relationship between this figure and

the flutter/divergence boundary of Fig. 3 is clearly apparent. For instance, the optimum (minimum-mass)

values of cc in Fig. 6, occurring at around +42 ° and -45 ° correspond to maximum points in Fig. 3. These

optimum designs show a 23% reduction in mass compared to the tx = 0 case. Furthermore, values of tx

which produce high minimum-mass designs (a values of around -20 ° and 75 °) correspond to minimum

points on the flutter and divergence boundary of Fig. 3.

The ct = 0 ° optimum design for zero sweep (f2 = 0°), which was obtained previously 2, and the a = 45 °

optimum design are compared in Table 2. It earl be seen that the (-45*+ or) layer is thickest for the ¢x= 0 °

optimum whilst for the a = 450 optimum the (0 ° + a) layer is thickest. In the latter case, the (0 ° + o_) layer

is torsionally more efficient than the a = 0 °, (-45 ° + a) layer, as a result of being located further from the

centre of the beam. Hence, although the torsional rigidity of both designs is similar, see Fig. 7(b), the a =

45 ° mass is considerably lower. Figure 7(a) shows that, as a result of the position of 0 ° fibres in the a = 0 °

design, its bending rigidity is high when compared with the ct = 45 ° design. This will result in reduced

separation between first bending and first torsional natural frequencies giving reduced flutter speed. Hence

the required minimum flutter speed is achieved for the a = 0 ° ease by a comparatively large value of

positive coupled bending-torsional rigidity, see Fig. 7(c), causing the wing to wash-out. This effect reduces

the coupling between aerodynamic forces (acting at quarter chord) and the torsional centre of the wing.

Table 2 shows that for the a = 0 ° optimum both the (90 ° + a) and (00 + a) layers are at their lower bound.

Although this bound may be thought of as representing the practical constraints of strength and lay-up

stability which are not considered here, an additional optimization with a lower bound of 0.001 mm was

performed to investigate the effect of allowing the optimizer to remove this material altogether. This gave

an optimum mass of 81.39 g, which is still around 10% heavier than the a = 45 ° optimum. Hence the

advantage associated with the inclusion of a as a design variable would appear to be confirmed.

3.2.2 Swept wing

A similar study, performed for the wing with 20 ° sweep, also confirmed that the optimum value of ct

corresponds to the ct producing maximum airspeed values on the flutter/divergence boundaries of Fig. 5.

Hence, optimization results for the optimum orientation, a = 60 °, are givefi in Table 2 and the associated

rigidities are plotted in Fig. 7. It can be seen that the optimum design in this case has negative coupled

bending-torsional rigidity, see Fig. 7(c), causing the wing to wash-in.

In order to check the sensitivity of the above _ = 20 °, a = 60 ° optimum design to small changes in a which

may arise from manufacturing imperfections, the optimum design was re-analyzed with c_ values of 55 ° and

65 °. This analysis gave, respectively, flutter speeds of 36.76 and 35.39 m/s and divergence speeds of
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(degrees) ia (degrees)

vf (m/s)
vd (m/s)

Thicknesses (ram)

(90 ° + (_) Layer"
1

Element 2

Group: 3
4

5

(0 ° + ct) Layer :
I

Element 2

Group: 3
4
5

(45 ° + ct) Layer.

11
Element 2!

Group: 31
4 I

51
(-45 ° + or) Layer

I

Element 2

Group: 3
4

5

Total Mass (g)

0.0 0.0 20.0

0.0 45.0 60.0

36.91 37.10 36.91

37.94 37.89 37.89

0.125 0.125 0.125
0.125 0.125 0.134
0.125 0.125 0.204

0.125 0.125 0.198

0.125 0.125 0.125

0.125 0.432 0.230

0.125 0.411 0.263

0.125 0.374 0.262

0.125 0.309 0.203

0.125 0.132 0.125

0.271 0.183 0.285
0.292 0.173 0.244

0.287 0.144 0.183

0.248 0.126 0.137

0.160 0.125 0.125

0.548 0.126 0.237

0.507 0.126 0.210
0.452 0.126 0.171
0.383 0.126 0.137

0.254 0.125 0.125

92.3 72.7 73.8

Table 2: Optimum thicknesses for unswept (.('2 =

0 9 and swept (f2 = 20 9 wings with

different values of lay-up orientation a.
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114.88 and 25.35 m/s. Hence the divergence speed of the optimum is very sensitive to imperfection, which

can be explained by the very steep variation in divergence speed at a values of around 60 ° in Fig. 5.

4. Conclusions and future work

The results described above show the variation of flutter and divergence speeds of a uniform composite

wing with lay-up [90+odO+ot/+45+a/-45+a]s when subject to variations in lay-up orientation a. Following

this, optimum non-uniform beam designs have been obtained for both swept and unswept wings for varying

values of el. At the conceptual structural design stage a wing designer cannot afford to run a series of

optimization runs to cover the full range of ot between +90 ° and -90 ° in order to find the optimum or. Hence

it is anticipated that the proposed strategy, in which the lay-up orientation giving maximum airspeed on the

flutter/divergence boundary for a uniform wing is found to correspond to the optimum ct for non-uniform

wings, would be very advantageous. Furthermore, this method of finding the optimum ot typically takes

only 5% of the CPU time required for a single optimization nan.

It is obviously important to consider the practicality of the above optimization results, particularly from a

manufacturing point of view. It has been shown that the optimum designs may be sensitive to small

changes (imperfections) in a. Furthermore, any continuous optima would need to be converted to a discrete

number of layers as has been done previously 2. This may be difficult, if not impossible, considering the

small range of thicknesses in some cases. However, the aim of the paper is to show the potential benefit

associated with design involving variable lay-up orientation.

For practical application of the proposed strategy there would be a need to adapt it to be able to deal with

the design of a wing box structure and to handle strength constraints. This could be achieved via the

extension of an existing wing box optimization program 13.

Acknowledgement

The authors are grateful for the helpful comments received from Dr M. Lillico (University of Bath).

References:

1. Taylor J.M. and Butler R., "Optimum Design and Validation of Flat Composite Beams Subject to

Frequency Constraints", AIAA J., 1997, Vol. 35, No. 4, pp. 540-545.

2. Taylor .I.M., Butler R. and Harrison C., "Optimisation of Composite Wind-Tunnel Wing Models for

Frequency, Flutter and Divergence", Aeronautical Journal, 103, No. 1020, 1999, pp. 105-111.

3. Georghiades, G.A., Guo, S. J., and Banerjee, J. R., "Flutter Characteristics of Laminated Composite

Wings", AIAA J., Vol. 33, No. 6, 1996, pp.1204-1206.

706



4. Georghiades, G.A., and Banerjee, J. R., "Role of Modal Interchange on the Flutter of Laminated

Composite Wings", JAircraft, Vol. 35, No. l, 1997, pp.157-161.

5. Georghiades, G.A., and Banerjee, J. R., "Flutter Prediction for Composite Wings Using Parametric

Studies", AIAA or., Vol. 35, No. 4, 1997, pp.746-748.

6. Georghiades, G.A., and Banerjee, J. R., "Significance of Wash-Out on the Flutter Characteristics of

Composite Wings", JAircraft, Vol. 35, No. 5, 1998, pp. 823-825.

7. Kuttenkeuler, J. and Ringertz, U., "Aeroelastic Design Optimization and Experimental Verification", J

Aircraft, Vol. 35 No. 3, 1997, pp. 505-507.

8. Weishaar, T.A., and Foist, B.L., "Vibration Tailoring of Advanced Composite Lifting Surfaces", J

Aircraft, Vol. 22, 1985, pp. 254-269.

9. Banerjee, J.R. and Williams, F.W., "Free Vibration of Composite Beams - an Exact Method Using

Symbolic Computation", A/AA J, Vol.32, No. 3, 1995, pp. 636-642.

10. Banerjee, J.R., "Use and Capability of CALFUN - A Program for Calculation of Flutter Speed Using

Normal Modes", ASME International Conference on Modelling and Simulation, Athens, Greece, 1984, Vol.

27-29, pp.121-131.

11. Theodorsen, T., "General Theory of Instability and Mechanisms of Flutter", NACA Tech Report, No.

496, 1934.

12. Vanderplaats Research & Development, Dot User Manual Version 4.20, 1995.

13. Lillico, M., Butler, R., Guo, S. and Banerjee, J.R., "Aeroelastic Optimisation of Composite Wings

Using the Dynamic Stiffness Method", Aeronautical Journal, 101, No. 1002, 1997, pp. 77-86.

707





/XjT s '/7
INFLUENCE OF AEROELASTIC TAILORING IN THE MULTIDISCIPLINARY

DESIGN OF A NEW AIRCRAFT

Dr.-Ing. Roland Kelm
DaimlerChrysler Aerospace Airbus GmbH, Hamburg, Germany
email address: roland.kelm@airbus.dasa.de

Dipl.-Ing. Michael Dugas and Prof. Dipl.-Ing. Rudolf Voit-Nitschmann
BFE Universitiit Stuttgart, Stuttgart, Germany

email address: dugas@ifb-uni.stuttgart.de

email address: rvn@ifb-uni.stuttgart.de

Dipl.-Ing. Michael Grabietz
Ingenieurbiiro Michael Grabietz, Schmallenberg, Germany

email address: michael.grabietz@img-online.de

f

Abstract. This paper discusses ways of determining the effects

of aeroelastic tailoring in the predevelopment phase of wings.

At DaimlerChrysler Aerospace Airbus, the program system

FAME (Fast and Advanced Multidisciplinary Engineering) has

been developed. The part FAME-W deals with the mass prog-

nosis of wings. In order to achieve reliable data within a short

period of time, it is imperative to take into account the elastic

properties of the structure for the determination of the aero-

dynamic loads and for the preliminary dimensioning. Only by

regarding these effects, the FAME-W program has been success-

ful in providing reliable prognoses of wing mass and, of course,
of the occurring loads and deformation. This report describes

the extensions carried out so far which make it possible to inves-

tigate the effects and possibihties of composite wings, as well,

using FAME-W.

1. Introduction

Large primary structural parts made from composite

materials were first used in civil aircraft engineering
in 1982 for the A300 of Airbus Industries. On this air-

craft, the complete vertical tail box which had been
manufactured from aluminium before was replaced by

a corresponding component made from CFRP. There-
by, a saving of 20% in structural weight has been pos-
sible.

The main reason for the increasing use of composite

materials during the subsequent years was the neces-

sity of continuous performance improvement caused

by the tough competitive situation. In 1987, the hori-

zontal stabilizer box of the A320, and in 1994 the

complete empennage of the B777 were next to be

designed using CFRP.

As a consequence of the expanding use of modern

composite materials, however, the development of

metallic materials was consistently continued, as well.

For example, the aluminium alloys 7055 and 2525

were first used on the B777. Due to the improved

strength and damage tolerance properties, the weight

could be reduced by comparison with the aluminium

alloys used before, too.

Apart from the weight aspect, costs and certification

issues play a decisive role in the selection of mate-

rials. The use of CFRP for other primary structural

parts such as the wing box has not been implemented

yet. Preparations for this, however, have been going
on for years at Airbus and Boeing, for example. Fig-

ure 1 shows structural testing of a CFRP test wing

carried out at DaimlerChrysler Aerospace Airbus in

Hamburg.

Figure 1. Testing of CFRP wing box

Besides good specific strength and low density CFRP

offers the possibility to build up anisotropic lami-

nates having properties which cannot be realized by

the use of metallic materials. Thereby the aeroelastic
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behaviour of wings can be altered deliberately, espe-

cially through the development of wing structures

using composites.

The idea of using composite materials to influence

the deformation behaviour of wings dates back to the

year 1980. In those days the divergence problem of

the forward-swept wing was discussed in papers writ-

ten by e.g. Weishaar [12, 13], Piening [10] and Libres-

cu [8]. It is considered to be one possibility to avoid

divergence by varying the fiber orientations in the

laminate in order to shift the elastic axis. By doing

so, Weishaar and Librescu designed the wing struc-

ture in such a way as if the stiffnesses appear to be

solely determined by the upper and lower shell of the

wing, whereas Piening takes into account the webs,

as well, in his box model.

Eastep et al. [2] shows the effects of damaged compos-

ite structures on the divergence speed. For this pur-

pose, he employs a FE model to describe the struc-

ture. The examinations were expanded, e.g. by Lot-
tati, to determine the influences of anisotropic lami-

nates on flutter behaviour [9]. Shirk's publication [11]
gives a comprehensive survey of the possibilities of

aeroelastic tailoring.

The practical implementation of these results has

been carried out mostly on military experimental air-

craft (e.g. the X29 [7]). However, the aspect ratio of
such wings is relatively small (approx. 2-4) compared

with that of large commercial aircraft (7-10). Along

with a growing aspect ratio, the aeroelastic deforma-

tion increases, and thus new possibilities are opening

up for aeroelastic tailoring. The quantitative identifi-

cation of this potential requires a complex multidis-

ciplinary approach.

2. Task definition - Goals

With the coupling of bending and torsional defor-

mation achieved by aeroelastic tailoring, two differ-

ent directions are possible. Bending deformation that

points upward (e.g. due to an increase of the load

factor) can cause both a torsion deformation that is
nose-up and one that is nose-down.

The advantage of a nose-down deformation lies in the

reduction of the aerodynamic angle of attack, which

in turn will cause a reduction of the bending moment

and, thus, a reduction of the weight. With a nose-

up deformation, on the other hand, it is possible to

reduce changes of the wing lift distribution at a back-

swept wing which are occurring during cruise flight

due to the continuously changing aircraft weight. This
results in a reduction of fuel consumption due to an

improved average lift to drag ratio. But, since the
weight reduction achieved with the nose-down defor-

mation, can also lead to less fuel consumption, a spe-
cific analysis is inevitable.

In order to make optimum use of the possibilities of

aeroelastic tailoring, these aspects have to be assessed

as early as in the predevelopment phase of a new

aircraft. This is the only way of taking into account

the resulting repercussions for defining the optimum

aircraft configuration (aspect ratio, sweep, etc.).
At DaimlerChrysler Aerospace Airbus, the develop-
ment of a new aircraft is subdivided into 14 mile-

stones (figure 2). It begins with milestone M0 with

a first three sided view and ends with M14, i.e. the

entry into service. The earlier exact data for the new

configuration can be determined in this chain of pro-

cess, the more effectively the goal of an optimum
development is achieved.

£-,

I:_ d=

ka. .fa ta
o '_ c o

•_. _. _o _ I
e_

Product idea lns_ruc, to /_ First flight

Spec. Go ahead End devel.

authorized Basis ad¢

Figure P. A/C development Phase (milestones)

In the predevelopment phase of a new aircraft, howev-

er, knowledge of numerous influences (dimensioning

load cases, stiffness distribution, etc.) is still rather
limited. Making it even more difficult, the number

of free geometric parameters (wing area, thickness

distribution, etc.) is very large. By coupling bending

and torsional deformation, the dimensioning loads are
effected. These, in turn, require an adaptation of the

required cross sections from which, in turn, new stiff-
nesses and deformation will result.

The solution to this design problem can only be

achieved iteratively and requires the integration of
a multidisciplinary context within a suitable software
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environment.Thesoftwarehasto meetthe following
requirements:

• full applicability in the predevelopment phase

• short computing time

• free modeling of the wing using parametric

geometry

• consideration of any desired laminate structure

• automatic generation of a structural model

• integrated load and deformation calculation

• dimensioning of the primary wing structure

• determination of the stiffness and mass distribu-

tions

• calculation of aerodynamic coefficients of the

elastic wing

At DaimlerChrysler Aerospace Airbus, the software

system FAMe: (Fast and Advanced Multidisciplinary

Engineering) [1, 3, 4, 5] was expanded by a calcu-

lation module to determine the possibilities offered

by aeroelastic tailoring. In this paper, the theoreticM
context as well as the practical results will be intro-
duced.

3. Theory

3.1. FAME-W FAST AND ADVANCED

MULTIDISCIPLINARY ENGINEERING - WING

The program FAME-W used by DASA is a fast-

working tool for the predevelopment of wings. The
work presented here focuses on the extensions for

the design of wings made of composite material. The

deformation couplings can be achieved by symmetri-

cally rotating the laminates in the upper and lower
shell of the wing.

Aerodynamic design

FAME-W Input

Desien DOint {DP):

CI, Mach, weight

planform, airfoils

flying shape

for DP

Initial design

Stiffness and mass --
distribution

Flight performance calculation

Static aeroelasticity

= Influence of flexibility during

the flight mission

=,Control surface effectiveness

m Divergence problem

Dynamic aeroelasticity

• Response problem

• Stability problem (flutter)

Structure dimensioning _ Weights

!
_J Modify stiffness

] and/or mass

Ji 9 shape calculation

t J'g shape I

f
Wing deformation

for DP

f
lW,n0,o s,oroff

Retwist with new

stiffness

_

l
&
I

I

I

Loads loop

(lot each individual load case)

Loads calculation

(stiffness constant)

Wing loads ]

Stiffness calculation

(loads constant)

Wing box stresses]

Figure 3. FAME-W Wing design process
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FAME-Woffers the possibility of being able to eval-

uate very different wing variations very fast and as

early as in the predevelopment phase. By doing so,

the program takes the elastic lift distribution into

account for the determination of the loads. Wing
deformations for different load cases and different

types of deformation occurring during cruise flight
can be determined.

The predesign process within the FAME-W program

can be subdivided into three iteration loops. After

determining a starting solution for the stiffness and

mass distributions, the wing loads are calculated at
constant stiffnesses on the basis of the lift distribu-

tion of the elastic wing. In the next loop, the loads

remain constant, and the stiffnesses are newly calcu-

lated. In order to fulfill the aerodynamic design point,

the jig shape must also be iterated (figure 3). For fur-

ther information on the dimensioning process and the
calculation procedure in FAME-W, please refer to the

bibliography given hereafter [1, 3, 4, 5].

3.2. STRUCTURAL CALCULATION

3.2.1. Deformation calculation

The determination of the beam stiffnesses of the wing
box is based on the equations of stress and strain of

a plane laminate (CLT). For this purpose, only the

smeared stiffnesses are calculated (figure 4).

Wall pancls

carrying

shoar  ,

and normal / -
/

SffesSes O z

/

Stringers carrying Q_N_.normal forces

t y ,u
x , v Bcamsystcm[ x

_z_ _@ and deformations\

M
.2_ Loads at cross section

Figure 4. Wingbox model

The complete (plane) laminate matrices (A,B,D

matrices) are not determined as information about

the laminate stacking sequence is not available at the

predevelopment stage. The general equation for the
stress/strain ratio of the U h individual layer of the

general plane laminate is:

( 11)(011o1 016)( 11)o'22 = Q2, Q22 Q26 _22 (1)

v12 k Q6, Q62 Q66 k 712 k

The smeared stiffness matrix (_ of the laminate,

together with the transformation matrix T, results

from the following equation:

k=l
Qll Q,2 Q16)
Q21 Q22 Q26 T(3k)T. t--_-k

Q61 Q62 Q66 k rges

(2)

If the transverse stress azx = 0 (the stress perpendic-

ular to the beam axis of the wing is small compared

with the longitudinal stress) is neglected, the reduced

stiffness matrix of the structure can be expressed as
follows:

(011- QQ_626 (_16 - _ )
- (3)

Q22 Q22

After introducing the coupled stiffnesses EK_:x and

EK_y the deformation behaviour of a wing with
deformation coupling can be described by the used
beam modell as:

v"] = EI:: u EI_::: EK:::_ -My

O' ] EK_,_ EKe,: G Jr Mt

(4)

3.2.2. Effects of the different laminate variations

In order to achieve the coupling of bending and tor-
sion, the simplest possibility is to rotate the lami-

nates in the upper and lower shell of the wing box
symmetrically. By this, the couplings (coupling stiff-

nesses Qredl6) can be achieved in different ways. So

far, the following variations have been investigated

(figure 5):

• rotation of the entire laminate

• rotation of the 0° layers

• rotation of the 4-45 ° layers

• rotation of the stringers

Good results can be obtained here if the influence of

the rotated stringers is taken into account by intro-
ducing the coupled stiffnesses. In contrast to the
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rotated laminates, the transverse strain has to be

assumed to be negligible (exx = 0) for the reduction

of the stiffness matrix. The expression to calculate the

reduced stiffness matrix of the stringers, according to

Wiedemann [14] is as follows:

/
C08(_) 4 cos(_)3sin(13)
cos(O)3sin(/3) cos(/3)Lsin(t3)2 ) Estr_

(5)
With /3 being the stringer rotation angle and Estrg
representing Young's modulus of the stringer lami-
nate.

Of course, there are further possible ways of produc-

ing a coupling of bending and torsion (e.g. by unbal-

anced laminates). Here we will only discuss the vari-
ations named so far.

16000 _

g° 1

E, = 12.5000MPa

G[, = 6000 MPa _ _-""-

_ --i-- swinger
j smr,,_'r/s.kin-ratio_. 5

Figure 5. Comparison of the coupling stiffness

The effects of warping are neglected in the present

FAME calculations. It is clear and well known through

the work of Weisshaar [12, 13] and Librescu [8] that
warping is influencing the wing deformations, espa-

cially when working with coupled designs. And it is of

course influencing the stress distribution in the wing

box at the root of the wing (higher rear spar load-

ing etc.). But the effect is reduced depending on the

design of the wing fuselage joint. As usually done a

design of the wing joint consists of a center wing box

only carrying the wing bending moments. The wing
root shear forces and torsion moments are transfered

into the fuselage via a wing root rib. In this case

the center wingbox provides additional elasticity to

reduce warping effects.

To validate the FAME-W process the change of span-

wise angle of attack of an Airbus A340-300 in cruise
is calculated. The results of the FAME-W run show

-0.6

0.0 0,2 0.4 0.6 0.8

n[-]

Figure 6. Comparison of flight test and calculation

good agreement in comparison with the flight test

data (figure 6).

3.2.3. Stress Calculation

The analysis of the wing box stress distribution is

based on the elemenary theory of bending, according
to Navier and Bernoulli. The theory states that the

cross sections have to stay plane after deformation.

In the case of an uncoupled but orthotropic wingbox

design the different moduli of elasticity have to be

considered when calculating the wing box stiffnesses.

The stresses in the wing box skin are found by

 z(x,y) = - [[E:]=[EI]. - [e:]L j

[M [EZ].+ M [E
+ ez(X,y) 

+ N Ez(x'y)
lEA]

In case of a cross section with coupling stiffnesses the

equation can be extended as follows:

a_(x, y) = - [.4_M_ + B_:M_ + CzMt] x O_ed:l F-1

+ [AuMz + ByM_: + C_Mt] YQredXl F -1

,yQredll
+ EA (6)

with

Ax = EIxx G.]t - EK_:x 2

B_ = EI_:y G Jr - EIght: EKyu

C_: = -EI_:y G Jr + EKx_: EKuy
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Ay = -EI_:y G Jr - EKzx EKyy

By = - E Iyy G Jr - E Kyy 2

C_ = EIz:_ GJt - EI:_y EK_y

(7)

and

F = GJt(El::x El_y- EI2_y)- EK2vyEI::_

+2 E Ix_ E K,_,: E K_y - E If _:: E luy (8)

The influence of the shear flow on the stress distri-

bution (and vice versa) due to coupling stiffness is

neglected in the current FAME version.

3.2.4. Dimensioning of a CFRP-wing in the

pre-design phase

The dimensioning process for skins and stringers used

by FAME-W to determine the thickness distribution

of the wingbox consists of an equivalent stress crite-

rion which takes into account the open hole residu-
al stresses and the allowed maximum shear stresses.

The maximum normal stress is taken from experi-

mental investigations testing notched specimens [6].

The resulting allowable shear stress is found using the

ZTL-criterion (a_ is assumed to be zero). This leads
to:

This represents a failure ellipse as shown in figure 7.

O'Zz M10_"

_ailure ellipse calculated
"' with the ZTL-vriterion in

"\_ the a_=O plane

failure ellipse
calculated with the

",, results of the

\ experiments
\

Figure 7. Failure criterion

The stringers of the wingbox are designed using a

simple normal stress criterion.

4. Results

The substitution of a metallic structure by an ortho-

tropic composite structure already offers a weight

saving potential. The optimisation of a composite

wing by consequent implementation of aeroelastic

tailoring offers an additional improvement potential.

Since the performance of an aircraft is influenced by

weight and aerodynamic efficiency the results pre-

sented in this chapter include multidisciplinary inter-
actions.

Two different solutions are possible by aeroelastic tai-

loring. The rotation of the laminate and/or stringers

results in a nose up or a nose down twisting of the

leading edge if the wing is bending. This can be used

to create an 'aerodynamic rigid' wing with the shape

of the lift distribution being nearly independent from

the loads. Alternatively a design can be chosen with
reduced loads. Since these are contrary effects which

cannot be achieved simultaneously the best solution

for a typical transport aircraft has to be found by

consequent multidisciplinary analysis.

4.1. BASIC ASSUMPTIONS

The method described in the previous chapters was
used for the assessment of the effects of aeroelastic

tailoring for a typical midrange aircraft (figure 8).

The goal of the performed calculations is the quantifi-

Figure 8. Midrange aircraft

cation of changes of the laminate orientation on the

performance of the considered aircraft. The results

cannot be transfered to each aircraft configuration
since for example the influence of aerodynamic effi-

ciency for a short range aircraft is reduced in relation
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to the influence of the weights. For the generic air-

craft considered here the following design parameters
were defined.

• MTOW 130 tons

• wing area 200 m s

• _cl4 sweep angle 26 °

• range 4400 NM

• wing aspect ratio 9 •Mach 0.80

Even small changes in aircraft weight or aerody-

namics less than 1% accumulate to a large effect in

fuel consumption since a typical transport aircraft

remains in service for more than 25 years. For bet-

ter identification of the potential of aeroelastic tailor-

ing the results in the following chapters are presented

with reference to a conventional aluminium wing.

A laminate lay-up typical for aircraft applications was

used for the calculations. For the orthotropic case a

laminate lay-up of [50/40/10] was selected which indi-
cates that 50% of the fibres were oriented in beam

axis direction, 40% in -t-45 ° orientation and 10% per-

pendicular (90 ° ) to the beam axis. For both, the wing
box skins and the stringers the same laminate lay-up
was chosen.
The rotation of the whole skin laminate showed a

reduced effect on the coupling strength (section 3.2.2)

compared with a rotation of the 0° fibres. Since it
is the goal of this paper is to identify the princi-

pal potential of aeroelastic tailoring only the 0° skin

fibres and for selected ca_es the stringer orientation
were rotated.

35011
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Figure 9. Bending deflection for 2.5g manoeuvre

The torsion deformation of the wing box (figure 10)

shows a completely contrary behaviour. For the pre-

o

r /6F _ OO.layctsrotated=.i0,>

f'

0,0 02 0.4 G6 O.g 1.0

hi-]

4.2. ___FFECTS ON DEFORMATIONS
Figure 10. Torsion deflection for 2.5g manoeuvre

Already the bending deformation of a swept wing

results in a change of the local angle of attack.
Changes in the stiffness distributions (e.g. caused by

change of material or fibre orientation) therefore lead

to an effect on the wing loads. For each change of

the material composition in the following diagrams a

complete dimensioning process for the wing primary

structure was performed.

Figure 9 shows the bending deflection line if the orien-

tation of the 0°-fibres is shifted to positive or negative

angles. The increased deflections of the aluminium

wing correspond to the smaller bending stiffness of

the metallic structure. The nearly constant deflection

lines for the composite designs indicate that the cor-

responding bending stiffnesses show only small sensi-

tivity to the selected range of fibre orientations.

sented 2.5g manoeuvre load case increased torsion
deformations in nose up or down direction depending

on the fibre angle are calculated. This is a direct con-

sequence of the bending/torsion coupling. Since the

bending deformation of the wing is nearly unaffected

by the fibre orientation the change of angle of attack

in spanwise direction (figure 11) is dominated by the
torsion effects. It can be seen that a rotation of the 0°-

fibres to positive angles increases the change of angle
of attack if the wing loading is increased. For a nega-

tive angle of -10 ° the change of angle of attack at the

wing tip is nearly 0 ° compared to about -3 ° for the

orthotropic composite wing or -5.3 ° for the metal-

lic wing. These results demonstrate that with small

angles already a significant influence on the elastic

behaviour of a wing can be achieved.
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Figure 11. Change of angle of attack for 2.5g manoeuvre

4.8. EFFECTS ON WEIGHTS

Based on the assumptions made here the substitu-

tion of the metallic wing primary structure by an

orthotropic composite wing box results in a weight

saving potential of about 20%. Figure 12 shows a

:RI10

,ag

¢-

-2O

lanir_e nxanonm0e [ ° ]

Figure 12. Change of weight due to laminate angle variation

strong effect of the fibre orientation (only 0° fibres

were rotated) on the weight of the primary structure.

A weight minimum can be identified for a fibre angle

of 5° . The weight results show similar behaviour com-

pared with calculations of Lerner [7].

A positive shift angle is corresponding with a nose

down twist of the wing if it is bend upwards. A

decrease of the aerodynamic load is the consequence.

For higher angles the weight is increasing again

although the bending moment distributions (figure

13) show the expected decrease. The clear relation

between loads and weights for orthotropic wing struc-

tures failes for anisotropic designs. The dominating

Figure 1S. Change of bending moment due to laminate varia-
tion

effect which leads to the weight increase for fibre

angles higher respectively lower than 5° is the cor-

responding reduced bending stiffness of the wing

box skins. Consequently the stresses in the stringers

(which were not rotated for this calculation) are grow-
ing. This has to be compensated by an increase of the

required skin thickness and stringer cross section.

Bending/torsion coupling can also be achieved by

rotation of the =k45° layers. According to figure 5 a

negative degree of coupling is following. Therefore the
laminate angle for minimum weight is now shifted to

a negative value of about -7 °. Figure 12 additionally

includes the result for a rotation of the stringers par-

allel to and simultaneously with the 0° fibre angle.

The aeroelastic degree of coupling is inreased. There-
fore the weight plot is compressed since now the same

weight effect compared to the calculation with con-

stant stringer orientation of 0 ° is shifted to smaller

angles.

In the weight calculation the effect of a manoeuvre or

gust load control system (e.g. by aileron deflections)

was not included. If these systems should be includ-

ed in the aircraft design additional investigations will

have to be performed. It can be stated that an 'aero-

dynamic rigid' wing has an improved control surface

effectiveness. This can now result in an advantageous

combination of weight saving potential and aerody-

namic drag reduction (see next section) by intelligent

aeroelastic tailoring.

4.4. EFFECTS ON AERODYNAMICS

For the assessment of the aerodynamics of the lg

cruise as well as the 2.5g manoeuvre load cases have
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to be considered. The resulting 2.5g lift coefficient dis-

tributions for the investigated laminate angles show

ACI values of more than 10% at outer wing sta-

tions (figure 14). Consequently the stall behaviour
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Figure 14. Lift coefficient distribution for 2.5g manoeuvre

of the wing is affected. The disadvantage of the

increased outer wing stall probability is counteracted

by the advantage of improved aileron efficiency and

the improved flutter behaviour for the 'aerodynamic

rigid' wing (negative laminate angles).

Results of the analysis of a lg cruise mission are pre-

sented in figure 15. The ACt distributions represent

If the shape of the lift distribution can be decou-

pled from the wing loading the airfoils can be opti-

mised to a higher degree. Therefore aeroelastic tailor-

ing offers clear advantages with respect to the aerody-

namic drag. The induced drag of the aircraft which is

a direct result of the shape of the lift distribution can

be kept close to its minimum during a cruise mission.

Changes of the lift distribution during a mission

result in an effect on the pitching moment of the air-

craft. This is presented in figure 16 where the pitching

moment coefficient at zero lift CM0 is plotted. The

Figure 16. Zero moment coefficient during lg cruise mission
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Figure 15. Lift coefficient variation during lg cruise mission

the change of the local lift coefficient between the

beginning and the end of the cruise mission. It is
assumed that the C_ of the aircraft is constant during

this mission• As already found for the 2.5g load case

(figure 11) the nearly constant lift coefficient distri-
bution for different wing loadings is a result of the

corresponding stable angle of attack distribution•

disturbances of CMo at the end of the mission are

a result of the tank boundary definition, the defuel-

ing sequence and the following effect on deformations.
The behaviour of CMo has a strong effect on the trim

forces and trim drag. Consequently from the aero-
dynamic point of view the 'aerodynamic rigid' wing

offers significant advantages with respect to drag.

Additionally the wave drag which for an aircraft in

transonic flow regime strongly depends on the aero-
dynamic loading (local C_) can remain constant at a
low level.

Finally the buffet onset behaviour which is included

in the certification requirements of transport aircraft

is improved. The AC_ reserve of the 'aerodynamic

rigid' wing for buffet onset is increased since it is not

reduced by a local Cl increase during a cruise mission.

Generally it can be concluded that aeroelastic tailor-

ing can be equated with a 'passive system' which will

have reduced certification problems compared with

an 'active system' since system failure cases are min-
imized.
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4.5. EFFECTS ON PERFORMANCE

For the assessment of the effects of aeroelastic tailor-

ing on the performance of an aircraft a typical cruise

mission has to be analysed. The effects of weight and

drag e.g. on the fuel consumption have to be inves-

tigated. To quantify" these effects a typical 4000 NM

mission was chosen and the required sensitivities for

the fuel consumption were evaluated. For the param-

eters chosen here a 1% total aircraft drag change can

be set equal to a primary structure weight change of

about 1000 kg at a constant fuel consumption rate.

For the design point which is set to the middle of the

mission minimum induced drag is achieved.

The drag changes during the mission strongly depend

on the laminate lay-up. The average increase of drag

relative to the design point is minimized for the 'aero-

dynamic rigid' wing (-5 ° laminate angle, 0°-layers

and stringers rotated). The orthotropic wing (0 ° lam-

inate angle) has a 600 kg lower wing weight. If the

drag increase for this wing is higher than 0.6% of the
total aircraft drag a performance disadvantage is the

consequence.
The airfoils of the orthotropic wing need more ACz

flexibility. Therefore geometric changes for a tailored

wing (e.g. increased thickness) seem possible. It is
recommended to include the effects of aeroelastic tai-

loring as soon as in the pre-design phase of a new

aircraft when geometric changes of the wing design

can be introduced easily.

5. Conclusions

A method was introduced to include the main effects

of aeroelastic tailoring in the preliminary design

phase of a new aircraft. The calculation procedure
includes the repercussions on weight and aerodynam-

ics. For a typical midrange transport aircraft it could

be shown that by relative small changes of the lam-

inate orientation an 'aerodynamic rigid' wing with a

nearly constant lift distribution during a flight mis-
sion is achievable.

The most practical solution for a high degree of

bending/twist coupling is the simultaneous rotation

of 0°-layers of the laminate and the stringers. The

dimensioning process has to include the effects on

loads as well as the impact on the stiffnesses if the

laminate is rotated. A symmetrical bending stiffness

reduction with a positive or negative laminate rota-
tion is found.

Aeroelastic tailoring can be used either to minimise

wing weight or to improve aerodynamics and con-

trol surface effectiveness. The effects on weights and

aerodynamics have to be carefully evaluated to iden-
tin" the best solution for optimum aircraft perfor-

mance. The large impact of aeroelastic tailoring even

for small laminate rotation angles shows the potential

to influence specific properties of wings of transport
aircraft.
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SYNERGISTIC INTERACTION OF AEROELASTIC TAILORING

AND BOUNDARY MOMENT CONTROL ON AIRCRAFT WING FLUTTER

Frank H. Gern+ and Liviu Librescu*

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0203, USA

SUMMARY f//:

The implications of active feedback control and aeroelastic tailoring on the flutter

instability of straight/swept aircraft wings carrying external stores are discussed. The

stabilizing feedback control is generated by a bending moment acting at the wing tip.

Relating this bending moment with adequately selected kinematic response quantities, a

complex eigenvalue problem is obtained. Its solution yields the closed-loop flutter speed and

frequency of flutter.

The beneficial interaction of active feedback control in conjunction with aeroelastic

tailoring upon the flutter boundary of aircraft wings made-up from advanced composite

materials is emphasized. In addition, the prospects of an extension of the operational

envelope of flight vehicles carrying external stores without weight penalties are revealed.

INTRODUCTION

In recent years, a great deal of work and important achievements in the design and

analysis of feedback control stabilizers applied to mechanical systems prone to instability

have been reached. The great progress in this field is due to the development of new methods

and feedback control mechanisms. Among others, treatments of this problem based upon

stabilizing feedback mechanisms consisting of forces and moments acting along a part of

the boundary of the structure have been developed in a number of recent monographs

(see e.g. Refs. 1 and 2). Such concepts can also be applied towards the structural

control of new generations of aircraft/spacecraft vehicles. In spite of their increasing

maneuverability new generations of supermaneuverable airplanes have to be designed as

to operate safely for all combinations of velocity and load factors compatible with their

flight envelope. However, under special conditions, dramatic degradations of the flutter

and dynamic response characteristics can occur with catastrophic repercussions upon flight

safety.

This is specially the case for advanced aircraft carrying external stores. For such an

aircraft, the classical means of flutter prevention, such as stiffness increase or mass balance

are very expensive and penalize aircraft performance. The standard method of preventing

the occurrence of flutter in the case of aircraft carrying external stores, namely that of

limiting the flight speed, can be disastrous in special flight missions (i.e. during a ground

+ Research Associate, Department of Aerospace and Ocean Engineering

* Professor, Department of Engineering Science and Mechanics
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attack), when the vulnerability of the aircraft dramatically increases.

As a result, an essential issue which must be addressed, even in the early design

stages of advanced fighter-aircraft is the incorporation of appropriate techniques enabling

one to control aeroelastic instabilities of such vehicles. The implementation of pertinent

control techniques must result in the delay of the occurrence of aeroelastic instabilities and

enhancement, without weight penalty, of their static and dynamic response behavior.

One of the possibilities consists of the further integration of advanced composite materials

into the airframe. The directionality property featured by anisotropic composite materials

provides, through the proper selection of the ply-angle scheme, the desired elastic couplings

playing a positive role in this regard (see e.g. Ref. 3). At this point it should be noticed

that the technique refered to as aeroelastic tailoring is passive in its nature in the sense that

once implemented, the structure cannot respond to the variety of environmental .factors, or

to uncertainties in the structural parameters. As a result, the present authors fully agree

with the opinion expressed in Ref. 4, according to which, '%he increased use of composite

materials will not solve all these wing store flutter problems."

A complementary option consists of the implementation of advanced feedback

mechanisms. In a structure featuring such control capabilities, the deflection, bending

moments at the wing root cross-section, natural frequencies, damping, mode shapes can

be tuned as to enhance the vibrational behavior, avoid structural resonance and enhance

aeroelastic response characteristics (see Refs. 5 through 11).

The basic goal of this paper is to implement a combined control methodology based

on both, aeroelastic tailoring and feedback control, enabling one to enhance the flutter

behavior of swept/straight aircraft wings carrying external stores. A solid plate-beam model

incorporating a number of non-classical effects such as transverse shear, warping inhibition,

anisotropy of the constituent materials and, arbitrarily located external stores along the wing

span and chord is used to simulate the wing structure (see Refs. 12 and 13). The study is

confined to the case of the flutter of straight/swept wings of high to moderate aspect ratios

in an incompressible flow.

The active feedback control mechanism used in this paper is based on a bending moment

applied at the wing tip which is coupled, via a prescribed functional relationship, with the

mechanical quantities characterizing the response of the wing. The bending moment can

be generated in various ways. One of the possibilities is based on the converse piezoelectric

effect; consisting of the generation of localized strains (and implicitly of forces) in response

to an applied voltage (see e.g. Refs. 5 through 11 and 14).

For such a case, considering the piezoactuators spread along the entire wing span and

bonded to its top and bottom faces, bending control moments are induced at the wing tip

via out-of-phase activation.

In the present paper, a comprehensive feedback control law is used, including as special

cases acceleration, velocity and displacement feedback control.

As a by-product of this implementation, in the absence of unsteady aerodynamic loads,

the closed-loop eigenfrequencies and induced damping for the considered wing structure, can

be obtained.

In order to solve the complex closed-loop eigenvalue problem, a mathematical

methodology based upon the Extended Galerkin Method was used.

It should be mentioned that earlier investigations on flutter feedback control based

on piezoelectric strain actuation, have been carried out in Refs. 15 through 19, while in
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Ref. 20, a survey-paper on the accomplishments in this area is provided. However, to the

best of authors' knowledge, no analysis involving a comprehensive structural wing model

incorporating anisotropy, transverse shear, warping inhibition and arbitrarily distributed
external stores as well as such an encompassing feedback control methodology as the one

considered in this paper, can be found in the specialized literature.

STRUCTURAL MODELING

The geometric details and notations related to wing and external store configuration

considered in the present study are illustrated in Fig. 1. The case of straight/swept untapered

wings is considered in this study.

The wing structure is idealized as a laminated composite plate beam whose constituent

laminae are characterized by different orthotropicity angles and different material and

thickness properties. Let N be the total number of constituent layers. The interface plane

between the contiguous layers r and r + 1 (where 1 < r < N) is selected as the reference

plane of the composite structure. The points of the reference plane (defined by x3 -- 0) are

referred to a Cartesian system of in-plane coordinates (xl,x2), the upward x3-coordinate

being considered perpendicular to the (xl, x2) plane. The xl and x2 coordinates are referred

to as the chordwise and spanwise coordinates, respectively. Axis x2 (referred here-after to

as the reference axis) is selected to coincide with the midchord line.

The sweep angle (considered positive swept back and negative swept forward) is measured

in the plane of the wing from the direction normal to the airstream to the reference axis.

All geometrical and aerodynamical section parameters are based on sections normal to the

reference axis.

The relevant equations of motion as well as the appropriate boundary conditions are

obtained via Hamilton's Variational Principle and application of generalized function theory

in order to exactly consider the spanwise location and properties of the attached stores. The

energy functional of a composite wing carrying external stores, regarded as a 3-D elastic

system, is expressed as

tl

J =/(Uw - low + Aw - Its + As)dt

to

(1)

In Eq. (1) L/denotes the strain energy/C represents the kinetic energy, and ,4 the potential

energy of body and surface forces, while to and tl are two instants of time. The subscripts

W and S affecting the various quantities appearing in Eq. (1) identify their affiliation to the

wing and externally mounted stores, respectively.

From the stationary condition 5J -- 0, rendering explicitly/g, K: and ,4 and adopting

the Einstein summation convention, one obtains

tl

to r _" [_a

• y
wmg

721



extern_ stores

In Eq. (2), _ denotes the variation operator; _D represents Dirac's distribution, the

superposed dots denote time derivatives; the terms underscored by a tilde represent

prescribedquantities;superscriptis)identifiesthe affiliationof the respectivequantity to the

s-th store;£ and .A4 denote the sectionallift(positiveupward) and sectionalaerodynamic

torque, (positivenose up), respectively,about wing elasticaxis;Ui denote the components

of the 3-D displacement vector; h and 0 are the plunging (positiveupward), and elastic

twistangle (positivenose up), respectively;a0 and a are the stresstensor and stressvector,

respectively;p isthe mass density; r and f_ denote the volume and external surface of the

body, respectively,while Hi denote the components of the body force vector.

As shown in Ref. 21, the 3-D displacement components are represented as:

u1 = zsO(z2;t),
U2 "- zg2(x2; t) -4= x3[f2(x2; t) -_- xlg2(x2; t)],

U3 = h(x2;t) - (Xl - xo)O(x2;t),

(3a- c)

where xo = xo (x2) defines the position of the elastic axis and f2(x2; t), g2(x2; t) and u2(x2; t)

are generalized 1-D displacement components.

For f2 = -h,2 - (xo0),2 and g2 = 0,2, it results that 713 = 723 = 0, which is consistent

with the traditional assumption of the infinite stiffness of the wing structure in transverse

shear (Kirchhoff's Theory).

In the case of a straight wing, the pitching angle 0 (s) of the stores coincides with that

of the wing, angle 0. Having in view the case of wings featuring the sweep angle A, in

order to express the stores' main inertia properties which are in chordwise direction, the 3-D

displacement quantities of the stores have to be referred to the wing coordinate system. This

transformation yields

UI(s )

s)

vJs)

= x30 cos A - u2 sin A - x3(/2 + x192) sin A

= x30 sin A + u2 cos A + x3(f2 + zig2) cos A

= h(xl- xo)[0 cos A-/2 sin A- zig2 sin A]

(4a - c)

Replacement of displacement components as given by Eqs. (3) and (4) in (2) and performing

the indicated mathematical operations, results, in the case of a composite aircraft wing
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carrying external stores, in the following expression (see Refs. 12 and 13):

tl l

to 0

energy functional of the clean composite wing

8

+(x3ii2+(x2+K 2(s) sin 2 A)?2+(xlx2+xlK2(S)_ sin A cos A- E(8)h sin A)Sf2

+Xl(X3_2+(x2+(K 2(s) sin A)?2+XlX2+xlK 2cs) sin A)_2

-K2(8)'_ sin A cos A-E(')h sin A)Sg2

+(-K2(S)12 sin A cos A - xlK2(S)_2 sin A cos A + (x 2 + K2p (s) cos 2 A)_

+EO)h cos 2 A)50+(-E(*)12 sin A-x,Ep(S)_2 sin A+EO)_ cos A+hldh]

kinetic energy of external stores

-b E SO(X2- X_s))[M (s) sin hS f2+XlM (s) sin iSg2-M (s) cos h_fO+£,(*)Sh]
8

• y •

aerodynamic forces acting on external stores

potential energy of external stores

(5)
Herein, E (s) denotes the offset between the center of gravity of the store and the wing elastic

axis, K (s) denotes the pitching radius of gyration of the store about its center of gravity,

while g denotes the gravitational acceleration.

Collecting the terms associated with the respective variations 5u2, 5f2, 692, 50, and 5h,

and having in view that these variations have to be arbitrary and independent, from the

stationary condition 6J = 0 which concerns each instant belonging to the interval [to, tl],

the equations of motion and boundary conditions are obtained.

The equations of motion are:

5 2 A1+ E 5D(x2- +  s?2 + = 0
$

5 f2" A2+_s 5D(x2--x_S)l[-m(8)(x3i_2+(x]+K 20) sin 2 Al?2+(XlX]+XlK 20) sin A)_2

-K2pO)_ sin A cos A-Ep(S)h sin A)M0)sinA + m(')gE(p O) sin A]=O

@2: As+E + (x2 + K 2(*) sin 2 *)?2+(XlX2 +xl K 2(8) sin A)02
8

-K2(8)_ sin A cos A-Ep(S)h sin A)+M (8) sin A+ m(S)gE (s) sin A] = 0
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8

+(_ +Ki(_)_o_A)_+_(')__ A)- _(') _o_A- _(')9_(')_o_A]=0

,h.As+Z:,o(x2-x?)[- m(')(-E_(8)?2sinA-xiEp(s)_2s_nA+_(')__osA+_)
$

+/;(8)+ mO)g ] =0 (6a e)

Herein the coefficients A1 through A5 are recorded in Ref. 21 and consequently, will not be

displayed here. In their expressions the 1-D generalized stress couples and generalized body

forces and mass terms measured per unit wing span appear explicitly and are given by:

{ F(m'n) )i(m,n)(x2)
1
j x F x_ dA (7a- b)

where A denotes the wing cross-section area.

In addition to the equations of motion, the geometrical and statical boundary conditions

at the wing root and tip are obtained. For a cantilevered wing, the boundary conditions at

the root (x2 - 0) are purely geometrical, expressed as:

U2-----U2, f2 : -f2' g2--_g2, 0= 0, h-- h (Sa-e)

In the case of the wing without tip store, the boundary conditions at the wing tip (x2 - l)

are purely statical:
• q,(0,0) _ w(0,0)

'Zt2 _22 -- z-22

rp(O,1) __ .--/.(0,1)
6f2 : "22 -- "_-22

q,(1,1) __ qr(1,1) (9a - e)'92 : _ 22 -- ¢22

60 : T(20,1) _ q.(1,0),23 "- ¢12q'(0'1)-- _-23q'(1'0)

.e(o,0)_ .e(0,o)
(_h : .L23 -- _-23

When consideringa wing tipstore,the boundary conditions at x2 --Ichange to kineticones,

taking intoaccount inertiapropertiesand the aerodynamics of the tip store:

'U2 " T(°2'°)----m<T>(u2+x3"f2+Xl x3 92)

q_(O,l) ___t_(T)[x3_2___(X2._K2(T)8in2i)_2_4_(xixi.__XlK2(T)sin i)g26.f2 " _22 =

'g2: Y(l'l)-xl[ - _'_(T)(x3"2+(X2-_-K2p(T)8in2 A)jb2k'(Xl x2+xl K2`T) 8'n A)g2
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(_6: T1(O,1)_z23q,(1,0)+xoT(O,O)__m(T)[_K2(T)?2 sin A cos A-xl K2p(T) g2 sin A c08 A

"r(0'0) m(T)g --re(T)( E(T) f2 sin A-xlE(T)_2 sin A5h • "23 + = -

In these equations the superscript (T) identifies the quantities associated with the tip store.

In Eqs. (6) and (10) the terms underscored by an interrupted line help to define the

static equilibrium position of the mechanical system carrying external stores. Consequently,

as it can readily be shown, when dealing with the motion about the equilibrium, position

these terms become immaterial. In this connection see Refs. 8 and 9.

Equations (6) through (10) represent the equations governing the aeroelastic equilibrium

of advanced composite aircraft wings laminated of anisotropic layers and incorporating

transverse shear and warping inhibition. In addition, these include arbitrarily distributed

external stores in the wing's spanwise and chordwise directions, as well as the

aerodynamics of the stores. Expressed in terms of the unknown displacement quantities

U2(X2; t), f2(x2; t), g2(x2; t), O(x2; t) and h(x2; t), a tenth order governing system of ordinary

differential equations is obtained.

Upon discarding the influence Of the in-plane components of body forces F (°'°), as well as

in-plane rotatory inertia terms (i.e. terms I(°,°)ii2, I(°J)f2, and I(1J)_2), the displacement

quantity U2(X2;t) can be expressed in terms of f2(x2;t),g2(x2;t),O(x2;t) and h(x2;t),

and thus be eliminated from the system. As a result, the system can be equivalently

reduced to an eighth order differential equation system in terms of the unknowns

f2(x2; t), g2(x2; t), _(x2; t) and h(x2; t). This governing equation system is not recorded here.

CONSTITUTIVE EQUATIONS

The constitutive equations relating the generalized stress couples r-T{_,.,n) with the 1-D

strain measures have been obtained in Ref. 21. In order to study the effects of external stores

in conjunction with aeroelastic tailoring, the composite wing is considered to be made-up

from a finite number N of linearly elastic homogeneous layers, the axes of orthotropy of

each constituent layer being rotated by an angle _ with respect to the geometrical axes.

It is further postulated a perfect bonding between the contiguous layers. In this case, the

three-dimensional constitutive equations are

• _rll "

o'22

a33

023

0"13

•0"12.

0

0

Q12 Q13 0 0 Q16

Q22 Q_3 o o Q26
_23 _ 0 o Q-36
0 0 _. _45 0
o o _45 _ o

.Q16 Q26 Q36 0 0 Q66-

ClI

_22[

E33

"_23

_13

.')'12

(11)
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u

where Qij denote the transformed elastic coefficients associated with the k-th layer in the

coordinate system of the wing structure; ")'ij -- 2eij, i _ j, and eij denote the components of
the strain tensor.

CONTROL LAW AND GENERATION OF THE

WING TIP BENDING MOMENTS.

As previously mentioned, piezoactuators are considered to be spread over the entire

span of the wing and symmetrically bonded to the upper and bottom surfaces. In the

case of external voltages of opposite signs applied in the piezoactuator thickness direction

(out-of-phase activation), it can readily be shown that only the piezoelectrically induced.
,_(0,1) ,_(1,1)

stress couples _ 22 and, 22 survive, being non-zero quantities. Being spatially constant

valued quantities, their contributions to the governing equations is immaterial, while in the

homogeneous variant of boundary conditions, (obtained by discarding the terms underscored

by a tilde sign), these intervene as boundary moments applied at the wing tip. The boundary

conditions at x2 - I expressed in terms of displacement quantities are not displayed here.

Their expressions are displayed in Ref. 17. This is one of the possibilities enabling one to

generate the required bending moments at the wing tip.
,-_,(0,1) ,-_,(1,1)

For feedback control, the bending tip moments -22 and .L22 must be related to one

of the mechanical quantities characterizing the wing response. Consequently, a number of

control laws can be implemented. For the problem at hand, their effectiveness must be

measured by the ability to increase the flutter speed and even to eliminate, without weight

penalties, the possibility of its occurrence.

Herein a combined feedback control law is implemented which concerns each of the
r?,(0,1) ,-?,(I,1)

boundary moments. 22 and _ 22 •

_(0,I)
For the boundary moment control,-22 ,the followingcontrol law isimplemented

(°'1)- kp£, for(x2 t)2 -- --- (12)

r_(1,1)
whereas the boundary moment -22 , associated with the secondary warping effectis

considered to be relatedto the wing response quantitiesas:

_(1,1) _ kw0,2, for (x2 l)2 -- "-- (13)

Herein, kp and Kware the feedback gains in plunging and warping, respectively.

For the kinematic response variables the following representation which fulfills identically

the boundary conditions at the wing root, is used:

j=l

(14)

where rl(-- x2/l) is the dimensionless spanwise coordinate and i(-- x/-_) is the imaginary
unit.
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At the same time, in order to be able to implement different combinations of feedback,

the representation of h and 0 in Eqs. (12) and (13), includes a variable phase shift ¢:

j=l

It can readily be seen that the control laws, Eqs. (12) and (13), considered in conjunction

with (15), include as special cases acceleration, ((I) -- 0) , velocity ((I) = -_/2), and

displacement ((I) = -r) feedback control. Continuous variation of (I) between the extreme

values, (I) = 0 and (I) = -r, yields combinations of these basic control laws. Representations

(14) and (15) are replaced in the Hamilton's functional, Eq. (5), wherefrom a complex closed-

loop eigenvalue problem is obtained whose solution enables one to determine the closed-loop

flutter and frequency.
It should be underlined that within the Extended Galerkin Method (EGM), the non-

fulfillment of static boundary conditions at the wing tip is compensated by the appearance

of associated residual terms in the energy functional. This ensures a great accuracy of flutter

instability predictions. Moreover, application of the EGM enables one to accommodate the

spanwise variability of the geometrical and mechanical characteristics of the wing structure
as well as those associated with the sectional left-curve slope, aerodynamic center location,

etc.

NUMERICAL SIMULATIONS

The performance of aeroelastic tailoring and active feedback control upon the dynamic

aeroelastic response of advanced aircraft wings with or without external stores is underlined

by the following numerical simulations.

The ply-angle _ represents the counterclockwise angle of rotation of the principal axis of

orthotropy x_ of the material with respect to the xl-axis of the structure. In this context, the

wing is considered to be made-up from a graphite-epoxy composite material, whose elastic

properties are:

E1 ----30.106 psi; G12 - 0.45.106 psi; E2 -- 0.75- 106 psi; Gla -- 0.37.106 psi;

v12 = 0.25; p = 14.3- 106 lb sec2/in 4

For this material, the transverse shear flexibility parameter is R = El�G13 = 81.081.

The dynamic aeroelastic instability is analyzed assuming an incompressible airflow. In this

context, a 3-D flutter analysis based on Theodorsen's expression of the unsteady aerodynamic

loads is carried out. Throughout the considered numerical simulations, the wing aspect ratio

is A_ - 6.67.

Figures (2a-c) and (3a-c) depict of the combined effects of feedback plunging gain, phase

shift and ply-angle on the flutter speed parameter (_F -- VF/b Wh) and of frequency flutter

_F( __ WF/Wh) respectively, for a clean unswept wing. The results displayed in these plots

reveal the beneficial influence played by combining the tailoring technique with an active

feedback control.

It can be seen that the effectiveness of the control system highly depends on the ply-

angle orientation of the composite wing, with the maximum increase of the flutter speed
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and flutter frequency being at a ply-angle _a -- 45 °. It is important to note that the control

effectiveness also depends on the phase shift of the feedback signal. The optimum phase

shift also varies with the ply-angle.

Figures 4a and 4b display variations of the flutter speed parameter _F and of the flutter

frequency _F versus the ply-angle for the case of the uncontrolled (Kp = 0) and controlled

(Kp _ 0) straight clean wings. Herein, the displacement feedback control (_ -- -_r) was
used.

The results reveal that the efficiency of the active control strongly depends on the ply-

angle. In this sense, it is readily seen that over a certain range of ply-angles, the active

feedback control is almost inefficent, whereas in the range (25 ° < _ < 50°), the active

control shows to be most efficient. The results of the Fig. 4b also reveal that the range of

over which the active control is more efficient on the flutter frequency is larger than for the

associated flutter speed.

Figures 5a and 5b depict the combined effects of the implementation of plunging and

warping feedback controls with fixed phase shift, on the flutter of a straight wing featuring

a fixed ply-angle _ = 45 °. The results reveal that implementation of both feedback control

strategies results in a significant increase of flutter speed and frequency.

Figures 6a and 6b display the influence of plunging feedback control and aeroelatic

tailoring on flutter speed and frequency, respectively. In this case, an unswept wing carrying

an external store of relative mass #w(- rn_ing store/rn_ng) = 0.5., located at 0.5/on the

reference axis was examined. The results reveal the high efficiency of the implementation of

both techniques towards the enhancement of the flutter response of win_ carrying external
stores.

In Fig. 7, the 3-D plot depicts the variation of AF for a wing of ply angle _ = 45 ° vs. the

sweep angle in the range (-20 ° <__A < 60°). The external store parameters are _?_, = 0.5 and

#w -- 0.5. It is considered that displacement feedback control (¢ --- -_r) was implemented

and ffp is the feedback gain in plunging. In addition to the trend concerning the variaton of

_F with A similar to that reported in Refs. 12 and 13, the results reveal that the increase

of _ffp yields a substantial increase of the flutter speed.

Finally, in Figs. 8a and 8b, the variations of the flutter speed and frequency parameters,

AF and f_F, respectively, for a clean wing characterized by the ply-angle 7_ = 45 ° vs. the

sweep angle A and phase shift ¢ are displayed. The numerical simulation has been obtained

for the case of a fixed value of the feedback gain Kp -- 10, when only the control in plunging
is activated.

The results reveal again the strong influence of the phase shift on both the flutter speed

and frequency. It should be noticed that variation of • influences differently hE and f/F,

in the sense that for the flutter speed, the maximum beneficial influence is played when

displacement feedback is implemented whereas the minimum one, for acceleration feedback

control law. In the case of the flutter frequency, the least influence is excerted when velocity

feedback control is implemented.

CONCLUSION

A comprehensive structural model of aircraft wings built-up from advanced composite
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materials was developed. It incorporates the anisotropy of the materials of constituent

layers, transverse shear flexibility, warping inhibition and a system of arbitrarily distributed

external stores. In addition, an active feedback control capability was included. This model

reveals its efficiency in approaching the flutter problem of complex wing/store configurations

in conjunction with active feedback flutter control and aeroelastic tailoring.

The results supplied here demonstrate in full the synergistic interaction of the application

of both techniques, towards the enhancement of the flutter response of advanced wing

structures carrying external stores, as well as an expansion of the flight envelope without

weight penalties.
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Figs. 2a-c: Flutter speed of the clean wing vs. phase shift • and feedback gain Kp, for
selected values of ply-angle _.
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Figs. 3a-c: Flutter frequency of the clean wing vs. phase shift ¢ and feedback gain Kp, for
selected values of ply-angle qa.
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Figs. 5a,b: Flutter speed and flutter frequency of the composite wing vs. plunging

and warping feedback gains Kp and Kw, respectively. Displacement
feedback control law.
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Figs. 6a,b: Effect of ply-angle, and plunging feedback gain/4p on flutter speed (Fig. 6a)
and frequency (Fig. 6b) for a straight wing carrying an external wing store

(/_w = 0.5) and including transverse shear flexibility, ¢ = -Tr

(the dashed line indicates the uncontrolled clean wing)
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Fig. 7: Effect of sweep angle A and plunging feedback gain Kp on flutter speed

parameter AF = VF/bwh for a wing carrying an external wing store (/_ = 0.5)

and including transverse shear flexibility, ¢ = -r
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Figs. 8a,b: Flutter speed (Fig. 8a) and frequency (Fig. 8b) of the composite wing vs.

plunging feedback .gain phase shift • and wing sweep angle

A (plunging gain Kp = 10.0)
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NON-LINEAR FLUID AND STRUCTURES INTERACTION SIMULATION
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Abstract and their interactions with elastic surfaces. "s me

A dynamic aeroelastic solver is used to simulate several

fluid-structure interactions with highly non-linear flow-

fields. A Beam-Warming, approximate factored algo-

rithm, coupled with a linear, second-order structural

model via subiteration, becomes a fully implicit, second-

order accurate aeroelastic solver. Key issues for accurate

aeroelastic simulation are discussed and highlighted by

examples. These include geometric conservation, tem-

poral synchronization of the fluid and structural state,

full coupling and feedback between the solvers, and
non-linear flow features that drive aeroelastic stability

and require high levels of spatial discretization.

Introduction

Flight vehicles performance and longevity are often iim-
Red because of adverse aeroelastic phenomena. Efforts

to model and to account for these fluid-structure interac-

tions have historically been done with simplified, linear-

ized techniques. More recently, research has been

directed at accounting for the inherent nonlinearities in

flexible flight systems. For particular materials and

under certain loading conditions, structural non-lineari-

ties become significant. In some flight regimes, namely

transonic and separated, it is the fluid loading of the

structure that becomes highly non-linear.

To capture the full range of fluid responses, advanced

modeling techniques, like computational fluid dynamics

(CFD), are required. CFD has matured as a field into a
robust technological capability based on experience sim-

ulating rigid bodies surrounded by static volume grids.
Extending these types of simulations to include elastic

bodies and deforming grids, while not new, is a subject

of ongoing research and development. The fidelity of the

CFD simulation can be selected to capture sufficiently
the non-linear fluid features that drive the elastic

response. Further, the feedback of the structural dynam-
ics to the fluid systems can also be correctly modeled. In

this paper, an analysis methodology is outlined that

includes high fidelity representation of non-linear fluids

*t Research Aerospace Engineer, Computational Sciences Branch,

Aeronautical Sciences Division, *Member AIAA, tAssociate

Fellow AIAA.

This paper is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

has been applied to several configurations that are repre-

sentative of flight vehicles. The results of these

dynamic, aeroelastic simulations yield considerable

insight into the fluid mechanisms that drive the responses

and the modeling requirements to represent them fully.

Aeroelastic simulation is most often performed by cou-

pling separate fluid and structural solvers. Research has

shown the importance of fully synchronizing the two

solutions in time 1. One method of achieving synchroni-

zation is to subiterate the solution, that is, to apply each

solver successively until they converge on a single solu-

tion state at each time step. A subiterated strategy to cou-

pling offers other well-known benefits 2. Subiteration

reduces linearization and factorization error, which for 3-

D Beam-Wanning solvers is a source of stability restric-

tion. Lagged boundary conditions and turbulence

models are also synchronized with subiteration. Finally,

for parallel decomposed or overset configurations, subit-

erations provide a mechanism for communication

between zones that are explicitly linked.

The base flow solver used in this work is a 3-D Beam-

Warming algorithm with Newton-like subiteration. It

has been used extensively to simulate a wide range of

unsteady flow-fields 3 4. Previously 5, it has been

extended to include second-order temporal accuracy,

grid deformation capability, application of the Geomet-

ric Conservation Law 6, and a general, linear second-

order structural solver. Much of the current work is per-

formed using a parallel implementation on overset grids 7

via explicit message passing.

Methodology

In this section, the overall solution methodology is pre-

sented. Topics include the aerodynamic and structural

governing equations and their boundary conditions. The

time integration scheme is outlined along with the inter-

face data exchange, parallel coupling of the solvers, and

grid deformation.
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Governing Eq_uations

Aerodynamic Governing Eo_uations

The aerodynamic governing equations are the unsteady

compressible three-dimensional Navier-Stokes equa-

tions written in nondimensional strong-conservation law

form employing a general time dependent transforma-

tion. The resulting system of governing equations is

expressed as:

+ r -  F,,J

+ _-_. - _._j = S_cL

(1)

With this formulation, the vector of dependent variables

U is given as:

1 I T
"0"= ?v = p,,v,,p',,,he] (2)

All variables have been normalized by freestream values

of velocity and density and by a characteristic length

scale, like wing root chord. For Euler simulations, the

inviscid subset of Equation 1 was solved by neglecting
the viscous fluxes.

The source vector term, SGcz, is a term to enforce the

geometric conservation law for moving meshes. This

term is defined asl:

: +(-5),+74.SOCL La/ (3)

This term vanishes analytically, but not when discrete

representations of the temporal and spatial derivatives

are used. The most straightforward approach of account-

ing for this term is to simply include it in the discrete

governing equations, completely representing the non-

transformed governing equations.

Aerodynamic Boundary Conditions

For the solid surfaces, a dynamic flow tangency condi-

tion or a dynamic no-slip condition was enforced on the

velocity, as appropriate. The remaining two conditions
are the adiabatic wall condition and dynamic normal mo-

mentum equation, which accounts for the surface accel-

eration on the pressure gradient. Away from the wing, a

quasi-l-D characteristic boundary condition was applied

in the far-field except at the downstream plane where ze-

roth-order extrapolation was used. At planes of symme-

try, zeroth-order extrapolation was also used to

accommodate the oblique intersection of the spanwise

gridlines. Where computational grids overlapped,

boundary conditions were applied using data from neigh-

boring grids via trilinear interpolation s.

Structural Dynamic Governing Equations

In general a second-order, linear structural model cou-

pled with a flow solver can be expressed:

M?i + Dq + Kq = OTF a (4)

where q, M, D, and K are generalized displacement,

mass, damping, and stiffness. F a is the vector of forces

on the aerodynamic grid and oT is the transformation

that maps F a into generalized forces. The model can be

made first order by defining S = [q q] r :

{:,:} (5)

For most cases, finite element structural analysis is used

to simulate the elastic properties of the models and to

generate modal representations of the structural
response. Structural damping was assumed to be zero.

The mode shapes (oT) were matched to the aerodynamic

grid using thin-plate splines from a specialized interpola-

tion program (FASIT, ref. 9).

Fluid-Structure Interface

An important issue is the treatment of the boundaries be-

tween the two disciplines, fluids and structures 1°, The

information exchange should be formulated so that the

coupled system is energy conservative and consistent in

the limit of refinement. As long as the mode shapes are
sufficiently smooth, use of interpolated mode shapes on

the aerodynamic grid maintains fidelity to the original

mode shapes. The fidelity of the modal model to the

original finite-element model is an important, but sepa-
rate issue.

On the principle of reciprocity, the interchange of energy
between the fluid and the structures can be conserved if

the transformation operator (oT, Equation 4) used to

project the loads into generalized space is also used to

map the generalized displacement state into physical
space. For this simulation, the deflections are transferred

in this conservative way. Also, the velocities are formed

from the deflections with identical operators for the fluid

and the structures, thus achieving conservative inter-

change to round-off precision. However, the accelera-

tion term used in the surface pressure boundary condition

is only approximately conservative.
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Time-Intem'ation Scheme

Solutions to equation Equation 1 are obtained numerical-

ly using the implicit approximately-factored finite-dif-

ference algorithm of Beam and Warming 1I, employing a

Newton-like subiteration procedure 2. The numerical al-

gorithm is obtained from Equation 1 by utilizing either a

two- or three-point backward time differencing and lin-

earizing about the solution at subiteration level p. The

choice of first or second-order temporal accuracy is re-

mined in the following iterative approach by specifying

either ¢: =0 or _ = 1/2, respectively. The numerical algo-

rithm is written in approximately-factored, delta form as:

[s-I f_v 1 aF:)7

i _GP
[j-1 + ¢ AtsSn(_U 1 _GvP'_]jj/

j-l (_H t' I _HJ"Y]+ ,,,x,, 8; [_-G- k--deb--0 jjAu

= ._¢iAtsIJ_ 1 ( 1 + *) U p - ( 1 +At 2*) U n + * U n - 1

(6)

where

In Equation 6 all spatial derivatives are approximated by
second-order accurate central differences, and common

forms of both implicit and explicit nonlinear

dissipation l3are employed in order to preserve numerical

stability. The temporal metric derivatives are diseretized

in a manner consistent with the temporal derivative of

the conserved variables in Equation 6.

Structural Time Inte_ation

The subiteration implicit formulation can also be applied

to the structural equations (Equation 5). The resulting
scheme is:

where Y = (_t¢) •

Since the structural equations are cast in iterative form,

successive applications of the solver yield a fully implicit

coupling between the aerodynamic model and the struc-
tural model.

,i l up+ I up
= i-_' ZXU= - (7)

and forp = I, UP=UP.

Here Up is the subiteration approximation to Un+l so that

as p --->,,o, Up --_ U n+l. It should be noted that with this

subiteration approach the right-hand side of Equation 6

represents the numerical approximation to the governing

equation, while the left-hand side vanishes as p ---> _0.

The left-hand side then, may be modified for efficiency

without loss of formal accuracy provided a sufficient

number of subiterates is employed. The numerical proce-

dure has been modified to include diagonalization, fol-

lowing the approach of reference 12. Although the

diagonalized form of the ADI scheme is only first-order

time-accurate, when coupled with subiterations, higher

order time accuracy may be recovered. The numerical
scheme reverts to the standard first-order Beam-Warm-

ing procedure for 9=0, A ts=A t, and p=l.

Figure 1 Fluid-Structure Coupling Message Passing

Strategy

Ternpor_l Coupling in Parallel

For parallel computing platforms, the fluid-structure

coupling problem can include hardware issues.

Although a number of configurations are possible, an

intuitive method is to segregate the fluid and structures

solvers into separate computational node pools 14. This

approach is employed here and specifically, a single

compute node is dedicated to solving the structural equa-

tions and deforming the computational grids. The rest of

the compute nodes are used to decompose the fluid

solver (a representative configuration is illustrated in

Figure 1). The nodes communicate via explicit message
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passing (MPI), with flow nodes exchanging boundm-y
condition information and flow and structures nodes

exchanging surface loads and deformed grids, respec-
tively. In general, only a subset of the flow nodes will
require communication with the structural node, and the
present algorithm allows for any combination of mes-

sage dependency.

Once a hardware and software coupling between the
solvers is established, the next issue is the temporal syn-
chronization of the solutions. The simulations reported
here utilized a serial coupling strategy where the flow
nodes wait for an updated grid before advancing in time.

Gr_t Deformation

A grid deformation method which is suitable for
aeroelastic simulations on overset grids was developed

previously 5. This new strategy is similar to TFI in that it

is an algebraic approach based on redefining the normal
grid lines. However, unlike TFI, this method maintains
the grid quality of the initial mesh near deforming sur-
faces under arbitrary,moderate deflections and rotations.

In addition, a specified region in the far-field may be
held fixed so that the grid overlap regions, and their con-
nectivities, remain unchanged.

Simulation Issues

Most engineering analysis pits competing requirements
of accuracy and efficiency. Sometimes rapid turnaround
is paramount and only the most basic accuracy require-
ments need be met. Other times great expense is taken to
assure the highest standards of accuracy. This paper
focuses on the second scenario and specifically on high-
fidelity, dynamic aeroelastic simulation. Several key
issues that effect the accuracy of a fluid-structure inter-
action analysis will be presented and illuminated by
example. This list is not exhaustive but serves to high-
light critical issues of CFD-hased aeroelastic simulation.

Geometric Conservation

The Geometric Conservation Law (GCL) describes the
requirement to account for errors due to grid motion in
dynamic simulations. There are a number of ways to sat-
isfy a GCL constraint, either approximately or exactly.
An effective method for finite-difference techniques was
outlined in the previous section and used in the work pre-
sented here. The error caused by neglecting the GCL
constraint is case dependent, and while it may be benign,
it can, in the worst extreme, be catastrophic. One exam-
ple that quantifies the effect of GCL is a 2-D panel flutter

study15,presented here.

1

X

//////////////////_

Figure 2 Panel Flutter Configuration
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Figure 3 Impact of GCL under Temporal Refinement

For these computations, a simply-supported plate (see
Figure 2) with thickness to width ratio of.00271 and typ-
ical aluminum material properties is modeled. Standard
atmospheric properties at an altitude of 20,000 feet are
assumed. The computational mesh has 50 equal sueam-
wise intervals over the plate and a minimum vertical

spacing next to the plate of 0.001. In this study, flutter
calculations are initiated by first computing the steady
flow over a rigid plate, and subsequently perturbing the
panel by imposing a small vertical velocity. Results for
an inviscid panel flutter case at Mach number 1.2 and a

mass ratio of 0.1 are presented here.

Calculations were performed using either the first- or

second-order accurate time-marching schemes com-
bined with 3 sub-iterations. The effect of time step on the
computed non-dimensional frequency is shown in

Figure 3 for a wide range of timestep values (0.002 to
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0.08). The first- and second-order time-integration

methods asymptote to the same flutter frequency with

temporal refinement, with the second-order scheme

resulting in an improved convergence behavior.

The effect of the Geometric Conservation Law was also

investigated. As shown in Figure 3, results obtained
without the addition of the GCL correction term

(Exluation 3) asymptote to a different flutter frequency.

In fact, the variation in frequency due to geometric con-

servation errors is found to be more significant than the

changes associated with the order of accuracy of the

time-integration algorithm.

Temporal Synchronization

It is common in aeroelastic analysis to solve the fluid

equations and structural equations separately and

sequentially. While this is the simplest of all approaches,

it results in error due to the lag between the fluid and

structural states. For accurate simulations, the lag error

cannot be ignored, and for some cases refuses to be

ignored. For example, in the panel flutter case men-

tioned previously, if lagging errors were allowed to per-

sist, a long-time numerical instability would result 15.

Several techniques are available to eliminate the lag

error, or more precisely to synchronize the fluid and
structural states. The subiteration method used here is

simple to implement in an existing solver. This method

has a computational overhead, as the solvers are applied

successively at each time step, but for many cases it

allows larger time steps to be taken. The following

example of an elastically mounted cylinder 1 demon-

strates how subiteration can make a simulation more

accurate and more efficient.

The structural model is depicted in Figure 4. The cylin-

der is assumed to be constrained to move by linear

springs and dampers along the vertical and horizontal
directions without rotation. The simulations were com-

puted with freestream conditions of Reynolds number
500, Mach number 0.2, and a mass ratio of 5. The time-

asymptotic solution is a periodic displacement driven by

the alternating vortex shedding of the cylinder.

A temporal refinement study was accomplished compar-

ing Strouhal frequency versus time step. Results for both

first and second order time accurate methods are pre-

sented in Figure 5. The results for the second-order

scheme asymptote quadraticly, implying that second-

order accuracy was realized. The first order scheme pro-

duced a linear convergence rate with the same asymp-

totic Strouhal number of 0.2256. Higher-order temporal

Vco

Figure 4 Elastically Mounted Cylinder Schematic
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Figure 5 Temporal Accuracy of Synchronized and

Lagged Coupling Methods

accuracy could not have been achieved with errors like

lagging errors. The three subiterations employed effec-

tively eliminated the lagging error as well as greatly
reduced the factorization and linearization errors in the

fluid solution, allowing the coupled system to approach

second-order accuracy.

Comparison of the synchronized coupling method to a

traditional lagged structures method was accomplished

by removing the structural solver from the subiteration
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Figure 6 Coupled and Lagged Elastic Response

loop. The convergence curve is also depicted in Figure 5

and is clearly first-order in time. The increase in slope of

the lagged structures convergence curve was attributed

to the linearization, factorization, and lagging errors not

eliminated through subiteration. A comparison between

the second-order coupled scheme and the lagged struc-

tures scheme implies that higher levels of accuracy can

be achieved for this case with less overall computational

expense.

The impact of temporal synchronization is even more

critical when larger time steps are investigated. Figure 6

shows the time history of the vertical displacement of the

cylinder for two different time steps and two different

coupling strategies. For the smaller time step, both

responses are sinusoidal with constant amplitude. The

lag effect in this case only causes a frequency that is

higher. However for the larger time step the results are

much different. The coupled response still accurately

represents the solution behavior that is known to be cor-

rect, while the lagged response undergoes a dramatic

change. The response is no longer sinusoidal and the

amplitude changes over a considerable range. In this

case, lag errors do not merely degrade accuracy but actu-

ally induce a spurious solution.

Spatial Resolution

The computational cost of analysis scales with spatial

resolution, and this induces a natural frugality when it

comes to spatial discretization. However, to achieve

highly accurate simulations of non-linear flow condi-

tions often requires considerable resources. The follow-

ing example of a simple transonic wing flutter case 16

demonstrates the difficulty of achieving grid indepen-

dent results.

Figure 7 C-H Grid Topology for AGARD 445,6

Wing

The configuration to be computed is the AGARD 445.6

weakened wing model. The geometry consists of a wing

with an aspect ratio, AR=1.6525, a taper ratio of 0.6576,

a quarter-chord sweepback angle of 45 degrees and a
NACA65A004 airfoil section in the streamwise direc-

tion. Experimental flutter results as well as a structural

model for the wing using 4 mode shapes are presented in

reference 16. A series of three C-H type grids (see

Figure 7) have been developed for this geometry, with

total number of points ranging from 300,000 to

2,000,000.
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A nondimensional time step At = 0.05 is used for all the

flutter computations, allowing for approximately 800

time steps per cycle of structural oscillation. All simula-

tions arc started from a steady-state, rigid, non-lifting

condition, and then a small velocity perturbation is given

to the first bending mode.

Figure 8 shows the response of the first four modes for
the Mach 0.96 case on the medium mesh for a flutter con-

dition q/qe=l.2 (where qe=61.3 lbf/ft 2 is the experimen-

tal dynamic pressure for flutter). The fast bending mode

appears to be the dominant mode with only the second

mode showing any significant effect of the impulse

applied to the first mode. The growth or d_ay of the first

bending mode is analyzed, therefore, to determine the
flutter location.

Figure 8 Dynamic Response of Structural Modes,
Mach 0.96
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Figure 9 Dynamic Pressure and Frequency of
Flutter, Math 0.96

Dynamic computations of wing flutter are carried out for

the AGARD wing for two Mach numbers, 0.96 and
1.141. Each Mach number case is run for a series of

dynamic pressures to determine the flutter point. Rey-

nolds numbers (based on the wing rootchord) for the two

cases are in the range Re----614500 to 879000. In each
case the flow is assumed turbulent and the Baldwin-

Lomax turbulence model [CITE] is implemented to
account for turbulence effects.

The results of all the computations performed for Mach

0.96 are summarized in Figure 9. In this figure the

amplification factor is defined as the ratio of the magni-

tude of a peak with the magnitude of the previous peak

of corresponding sign. The response frequency is deter-

mined from the period between two successive peaks of

the same sign. A value of amplification factor greater

than 1.0 implies flutter.

From this figure the effects of varying dynamic pressure,

q, and mesh resolution can be clearly seen. As dynamic

pressure is increased the amplification factor grows and

eventually exceeds 1.0 and the wing begins to flutter.

This figure indicates that the effect of improved mesh

resolution is to reduce the computed flutter speed for the

Mach 0.96 case, though grid independence has not yet

been achieved. Inspection of the wing surface pressure

reveals that a shock forms near the tip and is most clearly

resolved only on the finest grid.

The next case computed, Mach 1.141, has proved much

more challenging to reproduce the correct experimental
flutter behavior. Unlike the Mach 0.96 case, this case

has a strong shock that is located outboard, on the aft por-

tion of the wing. The presence of the shock and the cor-

responding shock/boundary-layer interaction makes this

a much more complicated flow condition. Figure 10 dis-

plays the time history of the first four modes for a

dynamic pressure q/qe = 1.8 (where qe = 105.3 lbf/ft2).

As in the Mach 0.96 case, the first mode appears to be the

dominant mode, though the higher modes appear to play
more of a role for Mach 1.141. For this case it is also

necessary to run significantly more cycles than for Math

0.96 before a clear determination of the response is

made.
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effect noted is a strengthening and sharpening of the

shock wave on the wing.

Non-Linear I_,Qw Features

The motivating reason for using CFD techniques for

aeroclastic simulation is to capture non-linear flow fea-

tures. The presence of shock systems and separated flow

can effect the elastic stability of a structure in ways dif-

ficult to predict. An entire class of aeroclastic response,

the limit-cycle oscillation (LCO), depends on some non-

linear mechanism, usually from the fluid loads, to limit

the growth of a classical flutter response 15, as seen in the

following example.

Figure 10 Dynamic Response of the Structural
Modes, Mach 1.141
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Figure 11 Dynamic Pressure and Frequency of
Hurter, Mach 1.141

Figure 11 summarizes the results for the computations at

increasing dynamic pressures on the three meshes. Since
no computation was performed for q/qe = 1,7 on the fine

mesh, the dashed line represents a best estimate of the

shape of the curve for this grid. This figure demonstrates

that the effect of grid resolution is to increase the flutter

speed and frequency for this case. This trend is opposite
from the situation for Mach 0.96. The most significant

47._e.7o

r
I: 11.75 in : I

Figure 12 Thin Plate Wing Planform

For thisLCO study,thesimple,thin-platewing model of

reference19 was chosen. This wing has acroppeddelta

planform cut from a 0.035 inch thicksteelplate(see

Figure12). A computationalgridsystemof eightgrids

totallingabout850,000pointswas used tosimulatethe

unsteadyflowoverthewing. The natureofthestructural

responseisconsideredand detailsof theunsteadyflow-

fieldareindicated.The flow conditionschosen ranged

from 0.869to0.879Mach number. The wing isinitially

at restwith angle of attackof ze_. The structural

responsewas initiatedby impulsivelyaddinga discrete

velocitytothefirstgeneralizeddisplacement.

In order to understand the structural response of the

wing, the time histories of the generalized displacements

are plotted for four different values of dynamic pressure

and shown in Figure 13. The first four modes are shown,

although the fourth and higher modes (not shown) do not

appear to participate significantly in the structural

response.
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Figure 13 Gen. Displacement vs Dynamic Pressure

The dominate response is the first bending mode, a tail

high bending, and it can be seen in all of the responses.
For the lowest value of dynamic pressure (q=2.58 psi)

the modal response does not grow from the initial input

but damps out monotonically. This indicates that the

flutter onset boundary lies at a larger value of dynamic

pressure.

The next two values of dynamic pressure (q=2.78, 2.98

psi) are similar in their modal responses. Initially the

amplitude grows in a manner consistent with classical,
linear flutter. Afterward the amplitude rolls off and set-

ties into a limit cycle oscillation with a single dominant

frequency. The last value of dynamic pressure (q=3.33

psi) is similar, but the amplitude levels have increased to

levels not observed experimentally.

In all the cases, the response initially consists of the first

mode interacting with the second, primary torsion. Tor-

sion lags bending such that it adds energy to the wing and

increases the amplitude of the response, consistent with
linear flutter theory. During this initial phase, the third

mode, which is secondary bending, has a small ampli-

tude and is in opposite phase with primary torsion.

After the amplitude of the response has grown, there is a

change in the third mode. Where it responded at the fun-

damental frequency (-50 Hz) initially, it changes to the

third harmonic of the fundamental frequency (-150 Hz,

which is close to its natural frequency, -130 Hz) and its

amplitude increases rapidly. As the second bending

response grows, the amplitude of first bending decreases.
It can be seen that the interaction of second bending is

stabilizing and balances the destabilizing interaction of

the torsional mode.

Several contour plots have been included to highlight

some of the highly non-linear flow features that are

present during the sustained oscillation. Figure 14

shows the pressure contours on the upper surface of the

wing and Figure 15 shows pressure contours in stream-

wise plane that cuts at 67% of span. In each figure there

are plots from two sequential points in time that illustrate

the flow structure during part of an oscillation.

In Figure 14, the surface shock structure can be seen

strengthening initially and then weakening. From

Figure 15 it can be seen that the shock strengthens and
then lifts off of the surface of the wing as it weakens,

indicating a stalled condition. The roll-up of the tip

vortex can be seen at the top of Figure 14. It is initially

small and coherent, then strengthens and grows, and
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Figure 14 Pressure on the Upper Surface Figure 15 Pressure at 67% Span

finally interacts with the shock structure, becoming dif-
fused.

This large amplitude limit cycle oscillation demonstrates

several important nonlitw, ar mechanisms that may effect

dynamic aeroelastic stability. There is a complex shock

pattern that moves across the wing, a stalled flow region,
and a strong vortex roll-up over the wingtip. Exactly

how these features may interact with each other and with

the structural response of the wing is a research topic

requiring experiment and simulation using the full capa-
bilities of CFD.

Fluid-Structure Couplin_

Sometimes to lessen the complexity of the fluid-structure

interaction problem, a decoupling assumption is

invoked. For an uncoupled analysis, the flow is calcu-

lated for a rigid configuration to provide representative

loads to structural models that are solved separately.

While this can be very expeditious, it may neglect critical
feedback mechanisms between the two solutions. This

potential is highlighted by the following study of a delta

wing with flexible tails 2°.

These solutions were obtained for a 70 degree sweep

delta wing with twin tail configuration at an angle-of-

attack of 23.2 deg and a freeslream Mach number of 0.2

which duplicate the flow conditions of reference 21. The

baseline solution consists of a time step of 0.0005, a

dynamic pressure of 0.41144 lbsdin 9-, a freestream den-

sity of 1.3757x 10 -6 slugs/in 3, vanishing structural damp-

ing, 10 structural modes describing the structural model

and a baseline grid system of 17 grids and almost half a

million points. The dynamic pressure was varied by

holding velocity constant and increasing or decreasing

the freestrearn density. The baseline conditions were

chosen to simulate typical sea-level conditions.

For these conditions, a pair of leeside vortices roll-up

from the edge of the delta wing, undergo a spiral-type

vortex breakdown, and impinge on the tails downstream.

A three-dimensional representation of the wing/tail

flowfield is presented in Figure 16. Crossplane contours

and an isosurface of total pressure are displayed. Fol-

lowing breakdown, the isosurface appears to "wind' in a

direction opposite to that of the rotational sense of the

flow. The complete vortex structure rotates in the same

sense as the flow causing the windings to impact the tail
at different locations over time. Also, the vortex break-
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Figure 16 Crossplane Contours and Isosurface of
Total Pressure over Delta Wing
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Figure 17 Time History of Vortex Position for

Varying Dynamic Pressure

down position moves fore and aft over the delta wing as
a function of time. The areas of reduced pressure pro-

duced by the windings impacting the tail in the lower
outboard and mid inboard regions are apparent in the iso-

surface for this particular instant in time. Impact of the

vortex with the tail precludes any further 'winding' of

the isosurface downstream.

A study was done over a range of dynamic pressures.

The amplitude of the tail response grows as a function of

freestream dynamic pressure causing an increase in the

disturbance propagating forward on the delta wing. The
disturbances result in movement of the vortex break-

down position. Figure 17 shows the change in the vortex

breakdown position time history as a function of

dynamic pressure. The rigid tail vortex breakdown posi-
tion is included as a reference. The qualitative behavior

of the time history for each dynamic pressure considered

is similar for the time period evaluated (four characteris-

tic times), but the fluid-structure coupling is seen to be

important. As the dynamic pressure is increased from

the limiting case (rigid tail), the vortex breakdown posi-
tion moves forward. It is interesting to note that it takes

on the order of two characteristic times for the flexible

tail disturbance to propagate forward and effect the

breakdown position. This feedback between the fluid
and structure would not take place in a load-linearized

or uncoupled analysis.

Condusions

This paper outlined a methodology for simulating non-
linear fluid/structure interactions. A robust unsteady

CFD capability was included that captures viscous

effects, transonic conditions, and separated flow. The

linear structural model, while not complex, was able to

account for the basic structural dynamics of surfaces

loaded in highly non-linear flow regimes. Several appli-

cations of this aeroelastic analysis technique yielded

considerable insight into the critical issues of highly

accurate simulation.

The importance of satisfying the GCL constraint was

noted with an example of the effect of moving mesh

error. Synchronizing the fluid and structural states was
shown to be critical for high accuracy. The subiterating

technique used here allowed for high orders of temporal

accuracy and safeguarded against spurious solutions due

to lagging error. Many non-linear flow features require

high levels of spatial resolution. An example for a wing
flutter case showed that even relatively fine grids may

not achieve grid independent results.

CFD-class aerodynamic modeling is required for many

types of aeroelastic interactions. A study of limit cycle
oscillation indicated that complex shock systems, coher-

ent vortex formations, and massive leading-edge separa-

tion were all present and contributing to a highly non-
linear flow environment. Aeroelastic analysis is best
done with full interaction between the fluid and struc-

tures solvers. For a case of vortical buffeting of a tail, the

structural response had a directed impact on the aerody-
namic flow field that was driving the buffet.
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SUMMARY

A study of the aeroelastic divergence and flutter of swept-aircraft wings made-up from

laminated composite materials featuring nonrigidly bonded interfaces is presented.

Among the goals to be reached, those of capturing and revealing the effects played by

interlaminae bonding imperfections on static and dynamic aeroelastic instabilities, and that

of the incorporation of a feedback control methodology are investigated. Implementation

of a feedback control methodology enabling one: a) to counteract the detrimental effects of

bonding imperfections, and b) to enhance the overall aeroelastic response behavior, is also
considered.

In order to obtain results emphasizing the implications of bonding imperfections, the

aeroelastic problem will be considered in a restricted sense, i.e. for the case when only the

bending degree of freedom is involved. In this context, results addressing the problem of the

influence of interfacial bonding imperfection, and feedback control on static and dynamic

aeroelastic instabilities of swept-aircraft wings are presented, and pertinent conclusions are

outlined.

INTRODUCTION

Over the past two decades advanced composite material systems have been increasingly

used in the design of structural elements of flight vehicles, and is more than sure that this

trend will continue and even intensify in the years ahead. In addition to the well-known

superior features over monolithic materials, the anisotropy and heterogeneous character of

composites provide new degrees of freedom for an optimum design of advanced flight vehicle

structures. In this context, it should be noticed that aeroelastic tailoring of wing structures

composed of advanced composite materials can play a tremendous role in the design of next

generation of space vehicles. The successful design of the experimental sweptforward wing

aircraft X-29, in which the aeroelastic tailoring was used to eliminate the detrimental wash-in

effect, jeopardizing its free flight, demonstrates in full the power of this technology towards

the enhancement and optimization of the aeroelastic behavior of advanced flight vehicles.

Within the entire body of literature devoted to the aeroelasticity of laminated composite

aircraft wings, a perfect bonding between the adjacent constituent laminae, implying

continuous displacement and tractions across these interfaces was postulated. However,

in many cases, this assumption does not always correspond to reality. Indeed, as a result

of environmental and/or fatigue effects, interface bond deteriorations can appear in the
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structure. Needless to say, the interlayer bond damages can have detrimental implications

upon the overall behavior of the structure, involving its static, dynamic and stability

response. The aim of this study is just to investigate the effects of these imperfections

upon the divergence and flutter of laminated composite wing structures.

To this end, a newly developed theory of laminated structures featuring nonrigidly

bonding interfaces will be used (Refs. 1-3). Such a theory can accommodate all the

intermediate cases between the ones of the perfectly bonded and completely debonded

interfaces. Due to the complexity of the associated aeroelastic governing equations resulting

in the case of the inclusion of damaged bonding interfaces, in order to get a measure of their

implications, two special cases will be investigated: a) the divergence in pure bending of

sweptforward wings (see Ref. 4), and b) the pure-bending flutter of sweptback wings (see

Ref. 5). In addition to the possibility of capturing in an easier way the effects of bonding

imperfections, the approach of the bending flutter can provide the most critical instability

conditions which can occur at large wing sweep angles.

As a result, after summarizing the aeroelastic governing system corresponding to the

bending of wing structures composed of laminated composite structures featuring damaged

bonding interfaces, the associated aeroelastic instability problems of swept wings will be

investigated. As a preparatory step, and in order to be reasonably self-contained, the basic

kinematic equations of laminated solid beams featuring damaged interfaces will be displayed.

Moreover, based upon the converse piezoelectric effects, a feedback control capability will

be incorporated, and results concerning the closed-loop divergence and flutter instabilities

experienced by the composite wings featuring interlaminae imperfections will be supplied.

BASIC EQUATIONS FOR BENDING OF LAMINATED COMPOSITE
AIRCRAFT WINGS FEATURING INTERLAMINAE DAMAGES

The case of symmetrically laminated composite cross-ply beams of solid rectangular

cross-section (b x h), consisting of a finite number Af of linearly elastic layers of uniform

thickness h (k) is considered. One assumes that piezoactuator layers are bonded on the top

and bottom faces of the beam, and that are spread over its entire span. In the forthcoming

developments the affiliation of any quantity to the kth layer (k -- 1,--,-_, is identified by the

superscript (k) in brackets placed on the left of the respective quantity.

The points of the beam are referred to an orthogonal Cartesian coordinate system

(x, y, z), where y, z are the cross-section coordinates and x is the spanwise coordinate. (see

Fig. 1) For the sake of convenience, the undeformed bottom plane of the laminate is selected

as the reference plane. The distances along z between the reference plane and the undeformed

upper and bottom faces of the kth layer are denoted by (k)Z+ and (k)Z-, respectively.

It is assumed that the material of each layer of the host structure features orthotropic

properties, the principal axes of orthotropy being parallel at each point to the in-plane

geometrical axes, and that the piezoactuators exhibit transversal-isotropic properties, the

surface of isotropy being parallel to the (x, y) plane. It is also assumed that the direction

of polarization coincides with the z-axis, this implying that _z is the only component of the

electric field considered in the analysis. Under these assumptions, the following stress-strain
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relations hold valid for eachconstituent layer:

°xx = _zx + _pax_ = Qll_xx - _zxE_; °_z = 5xz = 2Q--,_xz, (1)

5zx and 5xx being the mechanical and piezoelectric contributions to the total stress,

respectively. Herein &p is a tracer taking the value 0 or 1, depending on whether the layer

belongs to the host structure or to the piezoactuator layer, respectively.

Qll and Q44(_- Q44) appearing in previous stress-strain relations are the reduced

components of the stiffness tensor, whereas ezx is the reduced piezoelectric constant.

In the light of Eq. (1), 5xx is the only piezoelectrically induced stress and is proportional

to the applied electric field £z, assumed constant through the thickness of piezoactuators.

In order to substantiate the theory of laminated composite plates featuring interlaminar

slips, the following requirements at the interface between two consecutive kth and (k + 1)th

layers have to be fulfilled:

• the condition expressing the continuity of transverse shear stresses

s_zl_=c_)z+= s_lz=(_+,)z- (2)

and

• the condition expressing the interlaminar jump of spanwise displacement at the

interface between two contiguous layers l and l + 1

q)gr =(1+1)U[_=(t+_)z- _(0 U[z=(_)z+ (3)

In addition, the free shear traction condition at the top (i.e. z = h) and bottom (i.e. z - 0)

planes of the beam, expressed as

o,,I0h = 0. (4)

should be fulfilled, where h denotes the laminate thickness.

In developing a displacement field associated with the bending of plate-beam structures

that fulfills the interfacial shear traction continuity requirement and exhibit the interfacial

displacement jump the following representations for the spanwise U and transverse W

displacement components axe postulated (see Refs. 1 and 2)

u(_,z,t) = u(_,_,t) + O(_,z,t) + P(_, z, t), (5_)
w (_, z,t) = _o(_,t). (Sb)

Equation (5b) states that the transverse deflection is uniform throughout the entire laminate

thickness. The three terms intervening in Eq. (5a) are detailed as follows:

The first term
3

_,(x,_,t) = __,_'_,(_)(=,t) (6)
r=O

represents the contribution to the in-plane displacement which is a continuous function of

the beam thickness coordinate z, and with the continuous first derivative across the laminate

thickness. Herein, and in the following developments, index (r) in brackets placed on the

right of a quantity represents its contribution to the development in power series across

the thickness of the respective quantity. This presentation is consistent with the standard

expansion used in the third-order single-layer or smeared laminate plate models.
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The second term
2V'-1

O(x,z,t) = _(k)¢(=,t)(z-(k) Z+)nk (7)
k=l

gives a contribution to the spanwise displacement which is continuous with respect to the

z coordinate, but with discontinuous first derivative at the interfaces between the adjacent

layers. This is the expansion used in the zig-zag multilayered plates models enabling one to

fulfill the continuity of the transverse shear stresses at each layer interface (see, Refs. 6 and

7). Herein 7/k(-- 7/(z--(k) Z+)) is the Heaviside step function and (k)¢(x, t) are yet unknown

functions to be determined by satisfying the continuity conditions, Eq. (2).

Enforcing the continuity of transverse shear stresses at the layer interface, Eq. (2), the

functions (k)¢(x, t) are determined as:

3

(k)¢(X,t) =(k) aw,=+ _(k)a(')u(r) (8)
r----0

Herein (k)a, (k)a(r) are referred to as the, continuity constants that depend only on the

transverse shear mechanical properties of constituent laminae.
These are defined as:

and

k-1

(k)a =(k)A +(k)A __, (q)a (9)
q=l

with

k-1

(k)a(r) --(k)Ar((k)Z+)r-1 +(k)A __,(q)a (r) (10)
q=l

(k) A _(k+l) S44((k+1)Q44 _(k) Q44)

$44 being the transverse shear compliance.

Finally, the third term in Eq. (5a) represented as

At-1

gr(=,z,t) = _ (k)O(x,t)Uk,
k-1

(11)

(12)

represents the jump of the spanwise displacement component across the interfaces featuring

bonding imperfections of the slip type (see, Ref. 8).

For the interlaminar displacement jump (k)_r across the interface z =(k) Z +, we postulate

a linear shear slip law

(k)O(=,z)=(k)_(=,z) (_)s=(=,_) (13)
where z =(k) Z+

Herein (k)?_ > 0, denotes the imperfect bonding constant between the kth and (k+ 1)th

layers.

In addition to the two extreme situations corresponding to: (i) perfect bonding

assumption implying (k)7_ = 0 this, yielding (k)O = O, and (ii) completely debonding
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interfaces, implying (k)Tc = c_ this yielding (k)Sxz -- 0, Eq. (13), covers also, for any finite

postive value of ((k)7_ _ 0, c_) all the intermediate cases of imperfectly bonded interfaces.

This is the approach followed also in the earlier works dealing with bonding imperfections

(see, Refs. 3, 9, and 10). It should be mentioned that using ultrasonic signature,

a great deal of theoretical and experimental work directed toward characterization of
interface imperfections and, implicitly, toward determination of sliding constant (k)_ was

accomplished so far. The reader is referred to Ref. 11 where, in addition to a presentation

of the state-of-the-art on this matter, rich references to the pertinent literature are supplied.

From the studies accomplished so far in this area, it becomes apparent that corresponding

to small values of (k)T_, strong variations in the local and global structural responses can

emerge.
Upon enforcing the absence of shear traction at the top and bottom faces of the beam, Eq.

(4), the following final form of the spanwise displacement compo nent across the thickness

is obtained:

v(x,z,t) =-zw= + Lu(3) (14)

Equations (5b) and (14) supply the final form of the displacement field as used in this

analysis. The expression of L appearing in Eq. (14) is as follows:

H-1

f_. -- "p + _ (k)T_ (k)Q447_,z (15)
k=l

where

( A(3)'_ A f-1= z 2 z A(2)J + _ (klb(3) (z _(k) Z+)7/k (16)
k=l

and

(k)b(3) = (k)a(3)- A(3)-----(k)a(2) (17)
A(2)

whereas A (2) and A (3) are obtainable from A (r) = rh (r-l) + _k..__-i1 (k)a(r) for r= 2 and r =

3, respectively. As a result, the non-zero axial and transverse shear strain components can

be expressed in condensed form as:

2exx = -2zw,xx + 2/:u! 3) (18)

2_xz --/:,zU (3) (19)

With the use of the constitutive equations (1) and of the expr.ession for the transverse

shear strain component Eq.(19), one obtains the following expression for the displacement

jump at the kth upper interface (i.e. at z =(k) Z +,

(k)_ _(k) R (k)Q44 /:,zU(3) (20)

It is worthwhile to note that the only component of the generalized displacement appearing

in (k)_ is the transverse shear rotation u (3).

Consistent with the previously displayed displacement field, the equations of motion

of symmetrically laminated beam featuring interfacial imperfections of the slip type, and
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exposed to transversely distributed load Pz, as derived via the application of Hamilton's

variational principle are:

_,xx = -Pz +,1_,¢2) - m2_,x_+ _0_ + M,xx
S,x - :P = _0fi(_)- #l_,x

At the same time, the variationally consistent boundary conditions are:

w -- _ or /_lfz + #1 _(3) - _n2_,z --/_,z

(21a)

(2_b)

(22)

where the overbars denote prescribed quantities.

In the previously displayed equations the mechanical and piezoelectrically induced stress-

resultants and stress couples are defined as:

(M;S);T= (_xx(z;L);_'xz), (23a)

and

respectively, while the mass quantities per unit wing span are:

(ml, m, ri) = (p(k)zi(1; £;£2)),

(23b)

(24)

P(k) being the mass density of the kth layer. Herein the operator (-.-) identifies the stepwise
integration through the laminate thickness as defined by

._ f(k)z+
( )= _ _¢k)__( ) d_ (25)

k=l

In order to express the governing equations in terms of displacement quantities, the

previously displayed equations of motion and the boundary conditions have to be

supplemented by the constitutive equations. Expressed in terms of displacement quantities
these are:

M -- ._/- __f (26)

= Fu!3z ) - Ew,xx (27)

"-" Hu (a) (28)

where

_I = Eu (_) - Dw,xx
,X

In these equations, the stiffness quantities are defined as follows:

(D; E; F)= (Qll(Z2;ZL;L2)); H= (Q44/:,2z) (29)
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It should be remarked that the effects of sliding imperfections are included in the last three

stiffness quantities as defined in Eqs. (29) and in the last two mass terms appearing in Eq.

(25).

The governing equations in terms of displacement quantities are obtained in a customary

way and are given by:

_ _ _ _(3) ra2ib,xx -4- moib -4- l_,xxEu (3) Dw,xxx= -- -Pz .-b D1 ,x -
_37XX

Fu (3) - EW,zxz - Hu (3) -- 7r0_(3) - #l/b,z
_XX

(3O)

(31)

Assuming that Ez(x, z, t) - Ez(t), i.e. that the applied electrical current is spatially uniform,

under out-of-phase activation, the piezoelectrically induced couple M appearing only as a

boundary moment control at the wing tip, becomes immaterial in the equations of motion.

Assuming the wing clamped at its root (x --- 0) and free at its tip, (x = L), the pertinent

boundary conditions read:
Atx=0:

u (3) - w : w,x - 0 (32a - c)

and at x = L

=T=0; M=M (32e-f)

It should be remarked that the number of boundary conditions prescribed at each edge is

consistent with the sixth order degree of the governing system, Eqs. (30) and (31).

UNSTEADY AERODYNAMICS FOR DIVERGENCE AND FLUTTER IN

BENDING OF SWEPT AIRCRAFT WINGS

In order to put into evidence the implications of interlaminar bonding imperfections

on static and dynamic aeroelastic instability boundaries , and to reduce the problem to a

tractable one, the divergence and flutter in pure bending will be approached.

The instabilities in pure bending can be conceived to occur when the wing torsional

stiffness is very large. In this case, as is well known, the sweptforward wing can experience

divergence instability, while the sweptback wing can experience a rather low flutter speed

(see Ref. 5). These cases will be considered in this analysis.
The angle of sweep, considered positive when the wing is sweptback and negative when

it is sweptforward, is measured in the plane of the wing from the direction normal to the

airstream to the middle axis of the wing.

The solution methodology based on Extended Galerkin Method, enables one to

accommodate any variation of geometrical, mechanical and aerodynamic parameters along

the wing span.

For the approach of the divergence problem, the local lift force is expressed as:

c3CL dw tanA (33a)
Pz(x) = qnc(x) 0o_ dx

where

qn = q cos2 A (33b)

q(=_ PooU2/2) denoting the dynamic pressure.
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For the approach of the flutter in bending, assuming simple harmonic motion, the

unsteady lift force is expressed as:

---_rp_wb{-_Lww+_xLww, }Pz(x,t) 2 3 _ d'_ (34)

where _(= _(x)) has to be considered in the sense of that displayed in Eq. (38a)

Herein Lww and Lw_, denote the dimensionless aerodynamic coefficients expressed as:

Lww- l + b-_

Lww, = [ - . br A] Lww

(35a)

(35b)

where

kn - wb'/Un (36)

and i (= x/-2-1) denotes the imaginary unit.

In addition, b(x) (=-- c(x)/2) and br(-- cr/2) is the local semi-chord and that of the

typical section located at 0.75 L from the wing root cross-section, respectively; C(kn)(-

F(kn) + iG(kn) is the Theordorsen's function, assumed not to vary along the wing span.

Notice that all the geometrical and aerodynamical quantities are measured in the cross-

sections normal to the spanwise coordinate of the actual sweptwing.

Since the Theodorsen's function is an intricate transcendental function, a highly accurate

approximation of it has been used. Its expression can be found in Ref 12.

THE CONTROL LAW

In order to counteract the damaging effects of interracial bonding imperfections and

enhance the divergence and flutter instabilities, a feedback control law relating the applied

electric field £z to the mechanical quantities characterizing the beam's response, has to be

implemented.

The control via a boundary moment acting at the beam tip is a methodology

mathematically substantiated (see Ref 13), and proved to be efficient, among others towards

the control of the dynamic response of cantilevered beams to transient loads (see Ref. 14)

Herein, the feedback moment control law is adopted, this implying the following relationship

between the piezoelectrically induced bending moment at the beam tip and the elastic

restoring bending moment at the wing root

_VI(L,t)= Km_I(O,t) (37)

where Km stands for the corresponding feedback gain. Use of Eq. (37) in the boundary

condition, at the beam tip, and solution of the eigenvalue problems resulting from

consideration of Eqs. (30) and (31) specialized for the static case) in conjunction with

Eq. (33), for the divergence problem, and with Eqs. (34) and (35), for the flutter problem,

yield the closed-loop divergence speed and the closed-loop frequency and flutter speed.
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It should be mentioned, that in addition to this control law, other ones,as the velocity
and accelerationfeedbackcontrol laws, or combinations of thesecan be implemented. In
variouscontexts,suchcontrol methodologieshavebeenconsideredin Refs. (15 through 17).

SOLUTION METHODOLOGY

In order to discretize the problem and obtain the correspondingeigenvalueproblems,
the generalizeddisplacementu (3) (x, t) and w (x, t) are expressed in terms of combinations of

trial functions selected as to fulfill identically all the kinematic boundary conditions.

As a result, for the flutter problem these representations are:

J

[_(3)(x,t);w(x,t)] = Z[Gj(_); wi(x)]e_', (38a)
j=l

whereas for the divergence problem are

J

[_(3)(x);w(_)]= E[cj(_); wj(_)]. (38b)
j=l

In order to satisfy exactly the kinematic boundary conditions at the beam root x -- 0,

Wj are selected as the Williams' polynomials

wj(x) = 1 (J + 3)_ (1- _+3L _j , (39)

whereas Gj are selected as Gj = Wj,x.
In addition, for the flutter problem, the time dependence of all field variables, i.e. of

the unsteady lift, electric current, etc. is considered to be harmonic one, i.e. for any generic

time dependent quantity F(x, t) one assumes the following time dependence

F(=,t) = Y(=)e_t. (40)

Replacing the representations given by Eq. (38), together with that resulting for the boudary

moment f//, Eq. (37), and the specific expressions of lift loads directly in Hamilton's

functional, a closed-loop complex eigenvalue for the flutter problem, and a real one, for

the divergence problem are obtained.
In order to determine the flutter conditions, the eigenfrequency w should be a real-

valued quantity, whereas for the divergence instability, the eigenvalue A defined in terms of

the reduced speed as
A = qn cOCL/O_ tan A (41)

should be a postive real quantity. For the case of the divergence in bending this condition

can be fulfilled only for sweptforward wings implying A -+ -A.

It should be emphasized that the Extended Galerkin Method used here to obtain the

eigenvalue problems compensates the non-fulfilment of the boundary conditions at the wing

tip, by incorporation of residual terms obtained from the non-fulfilment of these boundary

conditions.
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The open (i.e. the non-activated) and closed-loop (i.e. the activated) flutterand

divergence response characteristicsof a composite laminated wing, as influenced by the

bonding imperfections are investigated.

The host structure isa three-layered(0o/90o/0°) symmetric cross-plybeam. At the top

and bottom of the beam, there are mounted thin piezoactuator layers,uniformly spread over

itsspan and subjected to an out-of-phase activation,thisresultingin a bending moment

control M(L, t) applied at the beam tip.The material propertiesof the host structure are:

Er./ET = 25, GLT/Er = 0.5, a /Er = 0.2, vLT = 0.25,

E being the Young's modulus, G the shear modulus, and v Poisson's ratio, where subscripts

L and T denote the directions parallel and normal to the fibers, respectively.

As is evident, the main interest here is to emphasize the implications of the interlaminar

bonding imperfections on the instability response behavior and on the way enabling one to

enhance the response by using the feedback control methodology. Herein the characteristics

of the top and bottom piezoactuator layers used in the numerical analysis are those used in

Ref. (18) and correspond to the PVF-2 with a thickness of 40#m.

Throughout the numerical illustrations, the sliding constants representing the degree of

bonding imperfectons at the kth interface, are used in dimensionless form as

(k) R _. (k)T_h
ET (42)

Unless otherwise stated, (k)R is assumed to be the same at all interfaces and indicated

as R. Also notice that the feedback gain is used in normalized form as

1

ICm =Km ETh2 L (43)

In Figs. 2 and 3, there are displayed plots of the variation of the divergence speed parameter

"_Div VS. chord ratio C( =- CT/CR), for the activated and unactivated wing, and for selected

values of the damage parameter R, including the undamaged case as well. The results

reveal: a) the deleterious effect of bonding imperfections, b) the fact that divergence speed

diminishes with the increase of the chord parameter C, c) that the incorporation of the

feedback control yields an increase of the divergence speed, and d) that the sensitivity of the

divergence instability to bonding imperfection is larger for the activated wing than for its

unactivated counterpart.

In Figs. 4 and 5, the effect of the relative thickness of the wing L/h, coupled with that

of bonding imperfections upon the divergence instability for the activated and unactivated

wing, respectively, are displayed.

The results reveal that the increase of L/h coupled with that of R yields a decrease

of ADiv. In addition, the conclusions c) and d) related with the effect of the piezoelectric

actuation previously presented, remain valid in this case, as well.

As revealed in Figs. 6 and 7, the increase of the ratio EL/ET of in-plane Young's

moduli, where ET is held fixed, results also in an increase of the divergence speed. Moreover,

Fig. 7 reveals that the piezoelectric activation coupled with the increase of EL/ET results

in a significant increase of ADiv, which counteracts the detrimental effect of bonding

imperfections.
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Finally, in Figs. 8 and 9, the nomalized flutter speed of laminated damaged wing, for the

unactivated and activated wing scenarios, respectively, versus the sweep angle, is displayed.

The results reveal the power of the feedback control technology to increase the flutter speed,

specially at high sweep angles, where the minimum flutter speed occurs. On the other hand,

the results reveal that the wing is more sensitive to the interlaminar damages in the region of

sweep angles where the flutter is very high, and less sensitive in that region of sweep angles

where the flutter speed is low. In spite of this, even in that region, the effect of the feedback

control does not appear to be negligeable, and so, it can play an significant role towards

counteracting the effect of interfacial imperfections.

Herein the impact of incorporation of a dynamic feedback control methodology upon the

enhancement of flutter instability of aircraft wings was not investigated. Adoption of such

a control strategy is likely to play a more powerful role in this context.

Conclusion

In this paper several issues related with the implications of interfacial damages upon

the divergence and flutter instabilities in pure-bending of swept aircraft wings, and with

those involving the incorporation of a feedback control methodology have been addressed.

Although the results concern only a specialized case of aeroelastic instability, a number

of trends, which can play a postive role towards the reliable aeroelastic design of advanced

aircraft wings composed of laminated composite materials, have been emphasized. Although

obtained in a specialized context, it is believed that the results of this work will be extended

as to investiage this problem in a context which would include the bending-twist degrees of

freedom for both wing divergence and flutter instabilities.
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In 1973 Hough studied the slow convergence of the Vortex-Lattice Method

(VLM) as the number of spanwise divisions (strips) is increased. Specifically,

the lift curve slope of a lifting surface was shown to decrease significantly as the

resolution of the lattice was increased, converging to the "true" value only with

relatively fine spanwise divisions. Impressive improvements in the converged

results were achieved when equally spaced divisions of the lifting surface were

inset from the tip by a fraction of the strip width. Hough demonstrated the

improvement via the tip inset on a number of wing planforms at a constant

angle of attack.

Hough's argument was based on an elliptical lift distribution which is a

reasonable assumption in the steady, symmetric case. The present paper

investigates also cases where elliptical lift distributions are not expected,

specifically, the antisymmetric motion of rolling, elastic motions, and oscillatory

motions with high reduced frequencies. The beneficial effect of the tip inset is

observed in all cases investigated

Keywords: Doublet, Lattice, Unsteady Aerodynamics, Convergence

1. Introduction

Following a suggestion ofRubbert 1 that equally spaced divisions on a lifting surface should be inset

from the tip by a fraction d (0<d<l) of the strip width, Hough 2,3 has demonstrated impressive

improvement in the estimation of lift curve slope (CL_) of a wing without using an inordinate

number of spanwise strips, specifically for d = %. The tip inset concept is illustrated in Figure 1,

and some of Hough's convergence results for CL_ are shown in Figure 2.

Hough's recommendation of d = _Awas based on an analysis of an elliptical lift distribution which

is typical of a steady symmetrical aerodynamic loading. It is the purpose of this paper to investigate
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the convergence improvement that can be obtained by applying the tip inset correction to the

oscillatory Doublet-Lattice Method (DLM, which reduces to the VLM in the steady case) for

conditions in which elliptical lift distributions are not expected.

The tip correction is implemented by reducing the effective span of the wing (the span that is

actually paneled with Doublet-Lattice boxes) by the factor NS/(NS+d), where NS is the number of

spanwise strips, and d is the tip inset factor (typically ¼). The lack of an aerodynamic panel on the

most outboard tip of the wing has the effect of driving the tip loading toward the correct value of

zero. Since the DLM assumes constant loading (spanwise) within a box, it requires a very high

resolution to capture the correct wingtip load distribution, and the DLM will typically over-predict

the tip loading, and in the steady, symmetric case, the DLM results approach the correct results
from above as the resolution is refined.

2. Results

Rectanl_ular Win2s: Two wings pitching about their midchords at a Mach number of M=0.80 are

studied. The first wing has aspect ratio of AR=2. It is divided into various numbers of spanwise

strips (NS), and various numbers of chordwise boxes (NC) such that the maximum box aspect ratio

is less than 8.0. The value of NC necessary for convergence depends on the reduced frequency

kr=c0c/2V, where co is the angular frequency (rad/sec), c is the reference chord (c = 1.0 for the

rectangular wings), and V is the freestream velocity. The guideline ofRef. 5 recommends 50 boxes

per wavelength 3,, where _, = _zc/k_.

The steady lift curve slope Ct_ and the roll damping coefficient Cip are obtained from the DLM at

kr=0.001. Oscillatory results are obtained for kr=0.1, 0.5, 1.0, and 2.0. The results for the aspect

ratio 2 wing are presented in Figures 3 and 4. Figure 3 shows the results for the symmetric case (lift

curve slope), and Figure 4 shows the antisymmetric (roll damping coefficient) results. Figures 3

and 4 present the real parts on the left and the imaginary parts on the right. The solid lines are the

results with the tip correction applied, and the dashed lines are the results without the tip correction.

The data are plotted as functions of the reciprocal of the number of spanwise strips, so that

extrapolation of 1/NS to zero should provide converged results. The steady case (based on

kr=0.001) is shown at the tops of the figures, with results for increasing reduced frequencies shown

below. As the reduced frequency is increased, more chordwise boxes are required to satisfy the

requirement of 50 boxes per wavelength. The figures only present data that satisfy the requirement.

Perusing Figure 3 from top to bottom, we make the following observations in the symmetric case.

The top graph is the steady case and the convergence with the tip correction behaves as Hough has

shown 2"3. The next two graphs below are for k_=0.1 and good convergence with the tip correction is

found for the real part and significant improvement is seen in the imaginary part. The next two

graphs are for k_=0.5 and some dependence on the number of chordwise boxes appears, but both

real and imaginary parts are improved with the tip correction over the results without it. Similar

behavior is seen in the remaining graphs for kr=l.0 and 2.0: There is some dependence on the

number of chordwise boxes, and the tip correction improves the results but moreso in the real part

than the imaginary part.

Figure 4 is similar to Figure 3 but for the antisymmetric case. The top graph is the steady damping-

in-roll coefficient. Again, as in the symmetric case, the tip correction leads to converged results

almost independent of the number of spanwise strips. Below the steady case is the damping-in-roll
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coefficient at kr=0.1. Both real and imaginary parts are improved with the tip correction. Both real

and imaginary parts are improved with the tip correction also at kr=0.5. At the higher reduced

frequencies of k_=l.0 and 2.0, the damping-in-roll coefficient exhibits some dependence on the

number of chordwise boxes, but this dependence is less than that seen above in the symmetric case

and the tip correction leads to better results.

The second wing has an aspect ratio of 7.0. As in the AR=2.0 case, the wing was analyzed in both

symmetric and antisymmetric oscillatory rigid body motion. The results are presented in Tables 1

and 2. Table 1 contains the symmetric results, and Table 2 presents the results of the antisymmetric

analysis. A tabular presentation of these results is made to give the reader a different perspective on

the data from the graphical format (Note that tabulated results of the data for the figures in this

paper are available from the authors). Blank entries in the tables indicate that the combination of

NC and k_ do not satisfy the wavelength requirement.

The results in Tables 1 and 2 for the aspect ratio 7.0 rectangular wing are similar to the results

plotted in Figures 3 and 4 for the aspect ratio 2.0 rectangular wing. The steady lift curve slope in

Table 1 (found at kr=0.001) is again found to be reasonably constant with the number of spanwise

strips when the tip correction is made. At k_=0.1, the oscillatory lift curve slope computed with the

tip correction is also fairly constant with the number of strips. At kr=0.5, the real parts with the tip

correction are again insensitive to the number of spanwise strips, but there is some dependence of

the imaginary parts on the number of chordwise boxes. Also, the variation in the imaginary parts is

about the same whether or not the tip correction is made. At kr=1.0 and 2.0, the real parts are again

improved with the tip correction, but the imaginary parts are not significantly affected by it. As in

the aspect ratio 2.0 results, a dependence on the number of chordwise boxes is observed.

In Table 2, the antisymmetric results follow the pattern of the symmetric case. The steady

damping-in-roll coefficient is much improved by the tip correction. At all of the higher reduced

frequencies, it is the real parts that are improved by the tip correction. At the low reduced

frequency kr=0.1, the tip correction improved the imaginary parts, especially for a small number of

chordwise boxes (NC=10 and 20), but at the high frequencies, the tip correction does not have much

effect on the imaginary parts.

LANN Wing: In order to investigate the convergence behavior of aeroelastic generalized forces as

the box resolution is refined, a model with realistic elastic vibration modes is required. These

generalized forces are extremely important in flutter and aeroservoelastic analysis. The LANN

wing 6, which was chosen for this study, is a well-published sample case representative of a high

aspect ratio transport wing, and is complete with elastic modal data. The wing has an aspect ratio of

7.9, a taper ratio of 0.40, and a leading edge sweep of 27.5 degrees. The first bending and first

torsion mode shapes of the LANN wing are shown in Figure 5.

The unsteady generalized aerodynamic forces for the two mode shapes shown in Figure 5 were

computed at reduced frequencies of k_=0.01, 0.5,. 1.0, and 2.0 for varying numbers of spanwise

strips and chordwise boxes. The number of spanwise strips varied from 5 to 20, and the number of

chordwise boxes varied from 5 to 25. Figure 6 shows the Generalized Aerodynamic Force

coefficient (GAF) in first wing bending in a similar format to that used for the rectangular wing

results discussed above. The top pair of graphs in Figure 6 show the real and imaginary parts of the

GAF in first wing bending at a reduced frequency ofkr=0.01. As seen in the rigid symmetric and

antisymmetric results for the rectangular wings, the generalized aerodynamic forces at this low
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reduced frequency are rendered almost independent of the number of spanwise strips through the

use of the tip correction. This observation applies to both the real and imaginary parts. The next set

of graphs in Figure 6 show the results for a reduced frequency of k_=0.5. Again, the convergence of

the results is improved dramatically through the use of the tip correction. Note that there is some

dependence of the real part of the GAF on the number of chordwise boxes. The next two pairs of

graphs show the results for reduced frequencies ofk_=l.0 and 2.0. In each case, the real part of the

GAF is either slightly improved or unaffected by the application of the tip correction, while the

imaginary part is not significantly improved. In fact, at k_=2.0, it appears that the tip correction

offers a slight reduction in convergence properties. However, this is more than offset by the

dramatic improvements seen in the other conditions.

Figure 7 shows the results for the first torsion mode of the LANN wing. In this case, the effect of

the tip inset correction is much smaller. The real parts of the GAF's at all reduced frequencies are

slightly improved, while the convergence of the imaginary parts is slightly reduced. The overall

result is that the tip correction is not an obvious improvement in this case, but it is clearly not

detrimental to convergence.

3. Concluding Remarks

The foregoing discussions of the results for the three configurations may be summarized as follows.

In general, the tip inset correction improves the convergence by decreasing the sensitivity of the

results to the number of spanwise strips. This is observed for both symmetric and antisymmetric

rigid body motions of rectangular wings in both the steady and oscillatory cases up to a reduced

frequency of 2.0. It is also observed in the case of oscillatory symmetric elastic modes of a swept,

tapered wing representative of a subsonic transport.

The observations above are general, but some specific features may be pointed out. The

improvement in the steady lift curve slope is observed again as Hough has shown before 2,3. A

comparable improvement in the steady roll damping coefficient is found here. However, as the

frequency increases, the effectiveness of the correction is somewhat reduced. The tip inset

correction also appears to be more effective in improving the real part of the unsteady aerodynamic

forces than the imaginary part (although the benefits to the imaginary part are substantial in most

cases).

There is sufficient benefit to the tip inset correction in all cases studied to make the

recommendation that it be used routinely, particularly since the correction is so easily made. Only

the case of equal width spanwise strips has been considered. Other spanwise distributions of strip

width require further investigation.
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No Tip Correction

NS kr=0.001 kr=0.1 kr--0.5 kr=l.0 k_=2.0

5 6.553 5.892-0.769i 4.882+0.325i

10 6.358 5.735-0.733i 4.814+0.268i

20 6.255 5.651-0.711i 4.753+0.270i

NS !_=0.001

5 6.117

10 6.139

20 6.145

Tip Correction

kr=0.1 kr=0.5

5.545-0.670i 4.637+0.322i

5.561-0.683i 4.688+0.271i

5.564-0.686i 4.689+0.272i

k¢=l.0 kr2.0

Table l(a): Symmetric (lift curve slope) convergence behavior for aspect ratio 7.0 rectangular

wing with 10 Chordwise Boxes

NS kr=0.001

9 6.381

15

20

6.290

6.255

NS kr=0.001

9 6.138

15 6.144

20 6.145

No Tip Correction

kr=0.1 kr=0.5

5.755-0.741i 4.845+0.240i

5.681-0.727i 4.815+0.205i

5.653-0.720i 4.800+0.196i

Tip Correction

k¢=0.1 kr=0.5

5.561-0.686i 4.706+0.243i

5.565-0.693i 4.730+0.208i

5.566-0.695i 4.736+0.198i

kr=l.0

5.021+0.814i

4.979+0.725i

4.958+0.702i

k_--l.0

4.885+0.795i

4.897+0.718i

4.896+0.698i

kr=2.0

kr=2.0

Table l(b): Symmetric (lift curve slope) convergence behavior for aspect ratio 7.0 rectangular

wing with 20 Chordwise Boxes
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NS
No Tip Correction

kr=0.1 kv---0.5 kr=2.0
14 6.300 5.690-0.729i 4.824+0.199i 4.991+0.714i

20 6.255 5.654-0.722i 4.809+0.181i 4.968+0.669i

25 6.234 5.637-0.719i 4.801+0.174i 4.956+0.652i

k_=0.001 k_=l.0

NS kr=0.001

14 6.143

20 6.145

25 6.146

Table l(c):

Tip Correction

kr=0.1 kr=0.5

5.565-0.693i 4.733+0.202i

5.567-0.697i 4.745+0.183i

5.567-0.699i 4.750+0.176i

kr=l.0 kr=2.0

4.903+0.705i

4.906+0.665i

4.907+0.649i

Symmetric (lift curve slope) convergence behavior for aspect ratio 7.0 rectangular

wing with 30 Chordwise Boxes

No Tip Correction

NS kr---0.001 i_=0.1

18 6.267 5.663-0.725i

25 6.234 5.637-0.720i

30 6.220 5.626-0.717i

kr--0.5 k_=l.0 kr=2.0

4.815+0.181i 4.977+0.672i 5.913+0.728i

4.805+0.167i 4.960+0.638i 5.907+0.660i

4.799+0.162i 4.952+0.626i 5.902+0.636i

Tip Correction

NS k_=0.001 kr=0.1

6.145 5.566-0.697i

6.146 5.567-0.699i

18

25

30 6.147

Table l(d):

5.568-0.701i

kr=0.5 kr=l.0 k_=2.0

4.745+0.184i 4.909+0.666i 5.831+0.717i

4.753+0.170i 4.910+0.635i 5.848+0.654i

4.756+0.164i 4.911+0.624i 5.853+0.632i

Symmetric (lift curve slope) convergence behavior for aspect ratio 7.0 rectangular

wing with 40 Chordwise Boxes

NS _=0.001

No Tip Correction

k_=0.1 k_--0.5
5.646-0.722i 4.810+0.170i k_=l.04.967+0.645i

k¢=2.0

22 6.245 5.914+0.671i

30 6.220 5.626-0.718i 4.801+0.159i 4.954+0.619i 5.908+0.617i

35 6.209 5.618-0.716i 4.797+0.155i 4.948+0.610i 5.905+0.599i

NS kr=0.001

Tip Correction

kr---0.1 kr=0.5 kr=l.0 k_=2.0

22 6.146 5.567-0.699i 4.752+0.173i 4.911+0.641i 5.847+0.663i

30 6.147 5.568-0.701i 4.758+0.161i 4.913+0.616i 5.859+0.613i

35 6.147 5.568-0.702i 4.760+0.157i 4.913+0.608i 5.863+0.595i

Table l(e): Symmetric (lift curve slope) convergence behavior for aspect ratio 7.0 rectangular

wing with 50 Chordwise Boxes
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No Tip Correction
NS kr=0.001 kr=0.1 kr=0.5 k_--1.0 kr=2.0
5 -0.6763 -0.6753-0.0112i -0.6639-0.0549i

10 -0.6312 -0.6308-0.0135i -0.6314-0.0555i

20 -0.6062 -0.6061-0.0143i -0.6097-0.0573i

NS

5

10

2O

kr=0.001

-0.5646

Tip Correction
kr=0.1 kr=0.5

-0.5753-0.0146i -0.5703-0.0549i

-0.5760 -0.5760-0.0148i -0.5845-0.0557i

-0.5789 -0.5789-0.0150i -0.5864-0.0573i

Table 2(a):

k_l.O kr=2.0

Antisymmetric (roll damping) convergence behavior for aspect ratio 7.0

rectangular wing with 10 Chordwise Boxes

NS kr=0.001

9 -0.6366

15 -0.6148

20 -0.6064

NS k_=0.001

5 -0.5751

10 -0.5782

20 -0.5790

Table 2(b):

No Tip Correction

kr=0.1 kr=0.5
-0.6363-0.0131i -0.6385-0.0525i

-0.6148-0.0138i -0.6226-0.0510i

-0.6064-0.0140i -0.6160-0.0507i

Tip Correction

k_=0.1 kr=0.5

k_=l.0 k¢=2.0

k_---1.0 k_=2.0

-0.5753-0.0146i -0.5862-0.0528i

-0.5785-0.o146i -o.5913-0.0513i

-0.5793-0.0146i -0.5925-0.0510i

Antisymmetric (roll damping) convergence behavior for aspect ratio 7.0

rectangular wing with 20 Chordwise Boxes

NS

14

20

25

kr=0.001

No Tip Correction

kr=O. 1 kr=0.5
-0.6172 -0.6172-0.0137i -0.6251-0.0504i

-0.6064 -0.6065-0.0139i -0.6172-0.0493i

-0.6012 -0.6015-0.0140i -0.6132-0.0489i

kr=l.0
-0.6243-0.1265i

-0.6153-0.1223i

-0.6109-0.1206i

kr=2.0

NS

14

20

25

Table 2(c):

Tip Correction

kr--0.1 kr=0.5kr=0.001 kr=l.0 kr=2.0
-0.5780 -0.5783-0.0146i -0.5916-0.0507i -0.5906-0.1208i

-0.5790 -0.5918-0.1185i

-0.5794 -0.5921-0.1176i

Antisymmetric (roll damping) convergence behavior for aspect ratio 7.0

rectangular wing with 30 Chordwise Boxes

-0.5794-0.0145i -0.5937-0.0496i

-0.5798-0.0145i -0.5945-0.0492i
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NS kr=O.O01

30

No Tip Correction

k_=0.1 kr=0.5 kr=l.0 kr=2.0

18 -0.6092 -0.6093-0.0138i -0.6196-0.0492i -0.6181-0.1227i -0.7314-0.2080i

25 -0.6012 -0.6015-0.0140i -0.6137-0.0484i -0.6115-0.U94i -0.7250-0.2011i

-0.5977 -0.5980-0.0140i -0.6110-0.0481i -0.6086-0.1181i -0.7219-0.1986i

NS k_=0.001

18 -0.5788

25 -0.5794

-0.579630

Table 2(d):

Tip Correction

k_=0.1 k_=0.5
-0.5791-0.0145i -0.5935-0.0496i

-0.5798-0.0145i -0.5950-0.0487i

-0.5800-0.0145i -0.5954-0.0483i

k¢=l.0 k¢=2.0
-0.5920-0.1184i -0.7011-0.2002i

-0.5927-0.1164i 4). 7032-0.1958i

-0.5929-0.1156i -0.7.037-0.1942i

Antisymmetric (roll damping) convergence behavior for aspect ratio 7.0

rectangular wing with 40 Chordwise Boxes

No Tip Correction

NS k_-0.001 kr=0.1

22 -0.6040 -0.6043-0.0139i

30 -0.5977 -0.5981-0.0140i

35 -0.5952 -0.5956-0.0141i

kr=0.5 kr--1.0 kr=2.0
-0.6160-0.0484i -0.6141-0.1201i -0.7281-0.2024i

-0.6113-0.0478i -0.6089-0.1174i -0.7231-0.1968i

-0.6094-0.0475i -0.6068-0.1165i -0.7209-0.1948i

Tip Correction

NS k¢=0.001 kr=0.1
22 -0.5792 -0.5796-0.0145i

30 -0.5796 -0.5800-0.0144i

35 -0.5797 -0.5802-0.0144i

Table 2(e):

kr=0.5 kr=l.0 kr--2.0

-0.5947-0.0488i -0.5927-0.1166i -0.7033-0.1962i

-0.5957-0.0480i -0.5932-0.1150i -0.7049-0.1924i

-0.5960-0.0477i -0.5934-0.1144i -0.7053-0.191 li

Antisymmetric (roll damping) convergence behavior for aspect ratio 7.0

rectangular wing with 50 Chordwise Boxes

t ! I [

Y

Paneled in DLM Model

_-- dxAy
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Figure 1: Tip Inset Illustration.
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Figure 5: LANN Wing: First Bendingand Torsion Mode Shapes.
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configuration is shown vs. reduced frequency.
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ABSTRACT

The aeroelastic equations of motion governing a hypersonic vehicle in free flight are de-

rived. The equations of motion for a translating and rotating flexible body using Lagrange's

equations in terms of quasi-coordinates are presented. These equations are simplified for the

case of a vehicle with pitch and plunge rigid body degrees of freedom and small elastic dis-

placements. The displacements are approximated by a truncated series of the unrestrained

mode shapes, which are obtained using equivalent plate theory. Subsequently, the nonlinear

equations of motion are linearized about the trim state, which is obtained using a rigid body

trim model and steady hypersonic aerodynamics. The appropriate flutter derivatives are cal-

culated from piston theory. Results describing mode shapes, trim behavior, and aeroelastic

stability of a generic hypersonic vehicle are presented.

NOMENCLATURE

A

A

aoo

c(e)
G
Cft, Cfr

D

D(O)

Area

Flutter boundary eigenproblem matrix

Free stream sound velocity

Orthogonal rotation matrix from the inertial axes to the body axes

Pressure coefficient

Chord length of fin tip and root, respectively

Domain of integration of the flexible body

Transformation matrix relating the time derivatives of the Euler angles to

the angular velocity vector
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df

de

eT

F

g
h b

I

J

jo

j2:_, j_oy,

YS,

K

£:

L

L
L
l

M

M

M g

Moo

m

rh

rT_

Arm

fi

0

P

p, q, r

Pl

Pu

P_

Q

q

q_

;i
qx, qy, qz,
q_',, q,_

Distance from vehicle c.g. to leading edge of canted fin root chord

Distance from vehicle c.g. to aerodynamic center of elevon
'_.." .

Thrust eccentricity

Nonconservative force vector, expressed in body axes

Vector of distributed generalized forces

Acceleration of gravity

Depth distribution of equivalent plate trapezoidal segment

Identity matrix

Matrix of mass moments of inertia of the deformed body

Matrix of mass moments of inertia of the undeformed body

Mass moments of intertia of the undeformed body

Nondimensionalized mass moment of inertia for the undeformed
2oro

hypersonic vehicle,
Stiffness matrix

Matrix of structural operators on u

Lagrangian of the hybrid system, written as a function of generalized
coordinates

Lagrangian of the hybrid system, written as a function of quasi-coordinates
Trim lift

length

Moment component in the y direction of the body axes

Mach number at which flutter occurs

Moment vector written in terms of components along the body axes
Generalized mass matrix

Free-stream mach number

Mass of the flexible body

nondimensionalized mass of the hypersonic vehicle, 2m
P_Atllb

Mass per unit area

Number of normal modes in truncated series

Unit normal

Origin of the body axes

Arbitrary point on flexible body

Angular velocity components referred to body axes, in x,y, and z

directions respectively
Pressure on lower surface

Pressure on upper surface

Free-stream pressure

Vector of discrete generalized forces

Vector of generalized forces used in modal expansion method

Vector of generalized coordinates

Free-stream dynamic pressure

Nondimensionalized pitch rate,

Vectors of the unknown power series coefficients for Uxo, uyo, Uzo, _z, (_,
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Ro

rp

sf
T

t

tk

i
U

uo
U_

U

no

V

Vo

V

Up

Vp

X,Z

XI, Yr, ZI

x, y, z
z_x

respectively

Position vector of origin of body axes with respect to the inertial axes

Ro, but with components given with respect to unit vectors of the inertial

axes

Position vector of typical point P in the undeformed configuration with

respect to the body axes

Position vector of typical point P in the deformed body with respect to

the inertial axes

Span of canted fin

Kinetic energy

Time

Thickness distribution of kth layer of equivalent plate trapezoidal segment

cover skin

Nondimensional time, _
llb

Strain energy

Strain energy density

Free-stream velocity

Vector of elastic displacements

Vector of elastic displacements of the reference surface

Potential energy

Potential energy due to gravity

Velocity of origin of body axes, in body axis components

Time derivative of u with respect to a reference frame attached to the

body axes

effective piston velocity

Velocity vector of typical point P in the deformed body with respect to

the inertial axes

Components of F in the x and z directions of the body axes, respectively

Inertial axes

Body axes

vector of degrees of freedom for linearized model of the generic hypersonic

vehicle

initial curvature of vehicle upper(u) or lower(l) surface

Camber distribution of equivalent plate trapezoidal segment

Oz

%

a()
£T

_k

Greek Symbols

Angle of attack

Specific heat

Climb angle

Variational symbol

Kronecker delta function

Elevon deflection

Perturbed quantity

Inclination of the thrust vector

Modal damping of the k'th mode
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rl

7) Nra + i

rl

0

0/

¢,e,¢
Cx, Cy, ¢..,

(I) k

P
Og

_dk

&k

()
()'
()

@
()
(),b
()s
()e
(),

Spanwise local coordinate of equivalent plate trapezoidal segment

Nondimensionalized modal coordinate, r/i(i = 1, Nm) -_
• .. , , llb

Nondimensionalized modal coordinate, _N._+i(i -- 1, , Nm),
• • • go z

Vector of generalized coordinates used in modal expansion

Streamwise local coordinate of equivalent plate trapezoidal segment

3 × 1 Matrix of Euler angles

Angle of the X33 fins, measured from horizontal

Euler angles, elements of O

Vectors of power series terms for the approximating polynomials of

U=o, U_o, Uzo, (I)x, _, respectively
k'th normal mode

Modal matrix

Rotations due to transverse shear in the xz and yz planes respectively

Vehicle density

Angular velocity

Natural frequency of k'th normal mode

Nondimensionalized natural frequency,
Vo.

Special Symbols

Derivative with respect to time

Derivative with respect to spatial coordinate

Indicates energy density of variable or nondimensionalized quantity,

depending on context.

Skew symmetric matrix
Trimmed value

Quantity with respect to the lifting body only

Quantity with respect to the canted fins only

Quantity with respect to the elevon only

Quantity with respect to the total vehicle

INTRODUCTION

Recent efforts aimed at designing prototype hypersonic vehicles, such as the NASA/Lockheed

X33 reusable launch vehicle (RLV) and the NASA Hyper-X program, reflect the need for re-

liable, low cost flight vehicles capable of sustained hypersonic flight. However, the aeroelastic

characteristics and the fundemental aeroelastic behavior of this class of vehicles is not well

understood, and experimental verification of such behavior using dynamically scaled aeroe-

lastic models in the hypersonic speed regime is not feasible. Due to the stringent minimum

weight requirements of such a design, the vehicle structure will be quite flexible. Further-

more, the requirements of the flight profile, which specifies a large Mach number variation in

the range of 0 < M_ < 12, also introduces severe aerodynamic heating, which couples the
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thermal and aeroelastic problem into an aerothermoelastic problem, which is quite difficult

to handle.

Previous studies in this area have focused primarily on two classes of problems: the local-

ized phenomenon of panel flutter and the aeroelastic behavior of the vehicle in the transonic

regime, where experimental wind tunnel studies indicated potential aeroelastic problems 1-4

Hypersonic panel flutter has been studied by a number of researchers, focusing on important

effects such as aerodynamic heating _, composite structure 6,_, nonlinear structural model s,

and initial panel curvature 9. Approaches to the solution of the governing equations include

the global Galerkin method 10 and the finite element method 11

An aeroelastic analysis of the entire vehicle in free flight in the hypersonic regime requires

the formulation of the governing equations of motion for an unrestrained flexible vehicle. A

general discussion of the governing equations of motion for unrestrained flight vehicles can be

found in the text by Bisplinghoff, Ashley, and Halfmann le and the series of papers by Milne

13,14 Application to hypersonic vehicles has been studied by Schmidt, et. al. 15,16 where the

primary emphasis has been on stability and control. A novel approach to the determination

of the governing equations of motion of a flexible body using quasi-coordinates has been

presented by Meirovitch 17. The method of quasi-coordinates, which is discussed later in

this paper, is an effective and labor-saving procedure for obtaining the governing equations

for flexible structures involving rigid body and flexible degrees of freedom.

When representing the dynamics of a flexible aerospace vehicle, several alternatives exist.

One can develop a finite element model for a vehicle, which usually involves a large number

of degrees of freedom. The finite element degrees of freedom can be reduced by calculating a

limited number of free vibration modes and using a normal mode transformation. An alter-

native to the finite element method is the equivalent plate theory, which produces significant

savings in both computational time and model set-up effort while retaining acceptable mod-

eling accuracy is. Recently, equivalent plate theory has received renewed attention and its

modeling capabilities have been expanded so that it is now capable of representing complex

aerospace vehicle structural configurations 19-21 Such enhancements include the ability to

model asymmetric fin cross-sections, out-of-plane fin segments, internal web and spar struc-

tures including transverse shear effects, thermal stresses, and general boundary conditions,

as well as the ability to specify multiple trapezoidal segments and multiple sets of assumed

displacement functions. In this study, equivalent plate theory is employed to calculate the

free vibration modes of the unrestrained vehicle using the ELAPS code.

While the studies mentioned' in this section have contributed to the understanding of

hypersonic vehicle aeroelastic behavior, the fundamental question of coupling between rigid

body dynamics and aeroelastic behavior has not been explored in detail, and the effect of

the trim state on aeroelastic behavior is also not well understood. This paper has several

objectives: (1) Present a derivation of the unrestrained aeroelastic equations of motion for

a generic hypersonic vehicle resembling the X-33 configuration, (2) Use the formulation to

determine the trim state of the flexible vehicle, (3) Develop a methodology for calculating

the aeroelastic stability boundaries for this class of vehicles, including the effect of trim state

and rigid body dynamics, (4) Calculate the mode shapes for a typical generic unrestrained

vehicle and use them in aeroelastic stability calculations.
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EQUATIONS OF MOTION OF UNRESTRAINED
VEHICLE

The derivation of the equations of motion for the unrestrained generic hypersonic vehicle

is based upon Lagrange's equations of motion in terms of quasi-coordinates following the

approach described in t7

Lagrange's Equations for Quasi-Coordinates

The motivation for using quasi-coordinates arises from the fact that Lagrange's equations

in terms of generalized coordinates are difficult to apply because a transformation from body

axes to inertial axes must be performed, producing complicated expressions for the kinetic

energy. The rotational kinetic energy is most compactly written down in terms of the

components of angular velocity of the body which are time derivatives of quasi-coordinates.

Quasi-coordinates are defined in terms of their time derivatives. Specifically, these time

derivatives are defined as nonintegrable linear combinations of the generalized velocities.

Because the time derivatives are nonintegrable, the quasi-coordinate itself is undefined.

The Lagrangian for an unrestrained flexible body, often called a hybrid system, may be
written in the functional form ir

L = L(qi,(h, uj, izj, u},u;,...,u_P),t) (1)

where qi(t)(i = 1, 2,... , m) are the generalized coordinates governing rigid body motion and

uj(P, t)(j = 1, 2,... , n) are the distributed coordinates of elastic deflections at point P on

the body. Lagrange's equations may then be written in symbolic vector form as

d--t 0q - Q (2a)

o(0,) -::,-_,,°¢o_*5 b-_ -o_+_. +_u=p (25)

where £ is an n x n matrix of structural operators and the following notation has been used:

oL [oL 0L oL]Oq : _' Oq2'" o0mJ (3)

The other derivatives of scalars with respect to vectors that appear in Eqs.(2) are to be

interpreted similarly. Appropriate boundary conditions for the elastic deflections must be

appended to Eqs.2 for a properly posed initial-boundary value problem.

The coordinate systems needed to describe the translating and rotating elastic body are

shown in Fig. 1. The body axes translate and rotate with the body, though they are not

necessarily attached to a specific material point in the body. Possible choices for the body

axes include attached axes, mean axes, and principal axes t3. Attached axes are attached to
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a specific material point in the body, mean axes are oriented such that no linear or angular

momentum is generated by the flexible motion, and principal axes are oriented such that

they are the principal axes of the deforming body at all times. Mean axes are used in this

study, as described later in the paper.

Natural choices for the generalized coordinates of the translating and rotating elastic body

are the components of the position vector of the body axes origin referred to inertial axes,

and the Euler angles, O = [¢, 0, @IT shown in Fig. 2. Time derivatives of these generalized

coordinates are denoted by the symbols, Rio and O, respectively. The Lagrangian has a

simpler form when written in terms of time derivatives of the position vector referred to

body axes and the angular velocity vector of the body axes, when compared to its form in

terms of the time derivatives of these generalized coordinates. The transformations required

to write Lagrange's equations in terms of the former set of coordinates are given by 17

Vo = C(O)R I (4a)

o., = D(O)O (4b)

where C(O) is

C

cOc¢ cOs¢ -sO ]

sCsOc¢ - c¢s¢ sCsOs¢ + cOc¢ s¢cO JcCsOc¢ + sCs¢ cCsOs¢ - s¢c¢ c¢c0

and D(O) is

D(O)
1 0 -sO

0 c¢ s¢cO
0 -s¢ c¢c0

(6)

and 's' and 'c' are abbreviations for 'sin' and 'cos', respectively. Examination of Eqs.(4)

shows that the components of both Vo and w meet the definition of time derivatives of

quasi-coordinates stated earlier, that is, both are given as nonintegrable linear combinations

of the generalized velocities.

After considerable algebraic manipulation, it can be shown that when using Eqs.(4),

Lagrange's equations (Eqs.(2)) may be rewritten in terms of time derivatives of the quasi-

coordinates as

+  ovo c?-ff,° - F (7a)

d (0L_ - 0L ~0L 0L
_-_ \/_ + Vo_--£ + w_--_ - (DT)-I_--_ -- M (7b)

d--t - 0"---u+ _ + £:u = _" (7c)

where F and M are nonconservative force and torque vectors, respectively, written in terms

of components along the body axes and the displacements u are subject to appropriate
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boundary conditions. Note the notation

0 -- az ay

az 0 --az

--% a_ 0

(8)

where a = [a_, ay, az] T is a 3 x 1 vector and fi is used to denote the 3 x 3 skew-symmetric

matrix formed from a. Also the bar above the Lagrangian indicates that it is to be expressed

in terms of time derivatives of quasi-coordinates.

The equations for a translating and rotating flexible body may be completed by substi-

tuting appropriate expressions for the Lagrangian into Eqs. (4). Using the geometry given in

Fig. 1, the position and velocity of material point P can be written as

rp -- ao 3- r + u (9a)

Vp = R o + ¢,_ X (r + u) + v (9b)

and expressions for the kinetic and potential energy may be obtained. When small elastic

deformations are assumed, the displacements are expressed as a sum of unrestrained normal

modes

g_tt

u(r,t) = E Ok(r)r/k(t) = Orl (10)
k----1

where the modes satisfy the orthogonality relations given by

¢_ • ¢jpdV = M_6z._ (11)

where M/g is the i'th generalized mass. This orthogonality property holds for both the rigid

body and flexible modes.

Simplification of the kinetic energy expression can be obtained by employing mean axes

with the origin at the center of gravity of the deformed vehicle as the body axes. Mean

axes reduce the inertial coupling between the rigid and flexible equations of motion. Mean

axes are chosen such that, at every instant, the linear and angular momenta of the relative

motion with respect to the body axes are identically zero, which leads to the relations 13

ypUdV = 0 (12)

vPr X udV = 0 (13)

Using Eqs. (9)-(11) and employing mean axes, the kinetic energy expression becomes

1 T 1 1/D[2rTCoTco¢_ 7T -- _mV ov o + (adTJ°t._ + _ p

+ffT '_T _T (,"_I] dD + l iTTMgi 7 (14)
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where M g is a Nmx Nm diagonal matrix with the k'th diagonal element equal to the

generalized mass

The potential energy is written

M_ = /DP_TCkdD (15)

U = _rtTKgr/ (16)

where K g is a Nm x Nm diagonal matrix with the k'th diagonal element equal to

K_ 2 9--_ tdkM _

where wk is the natural frequency corresponding to the k'th normal mode.

potential energy due to gravity is written as

y_ = -mgno'_

(17)

Finally, the

(18)

Substituting Eqs.(14),(16),and (18) into Eqs.(7) yields the following nonlinear equations of

motion

ay_
mVo = mgo_ - CKfiT + F

I.I

J°d_ = -¢_J°w + M

Mg_ + cg¢/+ (K g - f pe_T_TG)_ dD)rl =
30

/D PrT (oT (o_ dD+

(19a)

(19b)

(19c)

This study focuses on the longitudinal dynamics of a symmetric vehicle in horizontal

flight. The fact that pure longitudinal motion cannot give rise to any lateral motion for such

a configuration, even for large values of the motion variables, permits the lateral motion

variables to be eliminated from Eqs.(19a) and (19b), resulting in the following rigid body

equations of motion

m(Vo_ + qVoz) = X - mgsin_ (20a)

m(Voz - qVox) = Z + m9 cos 0 (20b)

J_y0 = M (20c)

The equation governing the elastic motion remains unchanged.

Trim State of the Vehicle

Aeroelastic stability boundaries are obtained from dynamic equations linearized about a

static trim state. Lateral trim is assumed to be satisfied and decoupled from the longitudinal

trim state. Longitudinal trim is obtained for level, ascending or descending flight by using

elevons located at the trailing edge of the lifting body, as shown in Fig 3(a). The trim state
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of the vehicleinvolves threeprimary quantities: &, _e,and f'. These quantities are depicted

in Fig. 3(a), which shows the hypersonic vehicle in climb at an angle, 7c, which is equal to

the Euler angle, _.

Four sets of axes are used to describe the vehicle. The first set is an inertial axis system,

X_, YI, Zr, attached to a flat earth. The second set is a stability axis system, xs, ys, z_, located

at the vehicle CG and initially aligned with the equilibrium flight velocity, Vo- It is obtained

from the inertial axes by locating them at the vehicle center of mass and rotating about YI

by the angle, _c + A0, where A0 = 0 in the trim state. The third is a body axis system,

Xb, Yb, Zb, obtained by rotating the stability axes about y_ by the trim angle of attack, 5,

which aligns the xb axis with the zero lift line (Z.L.L.). The fourth system is the xbi, yb_, z_

body axis (shown in Fig. 4), obtained from the xb, yb, zb system by shifting the axes origin

to the junction of the right fin trailing edge and the main lifting body and rotating about xb

by the fin inclination angle, 8/, which directs the y_ axis outward along the right fin. This

additional system is needed to represent the aerodynamic loads on the canted fin surfaces.

The net aerodynamic force acting on the vehicle is given by the lift, L, and the drag,

D, also shown in Fig. 3(a). Alternatively, the net aerodynamic force may be resolved into

components, 1_, normal to the zero lift line, and .A, parallel to the zero lift line; or components,

2 a and ._a, directed along the stability axes, zs and xs, respectively. Because the xs-axis is

initially oriented in the direction of Vo, 2_ equals the trim lift, L, and ._ equals the trim

drag, [). However, if the vehicle is perturbed from the trim state the forces 2_ and X_ will

differ from L and D, respectively.

In order to account for the effect of thrust on the trim state, a general case is considered

where the thrust has an eccentricity, eT, and can be inclined by an angle, £T, relative to the

vehicle zero lift line, as shown in Fig. 5.

Force and moment equilibrium conditions in the vertical plane, with respect to the sta-

bility axes, are:

_'_ --- 0 (21a)

ZM . = 0 (21c)

Using Figs. 3(a) and 5 and dividing the forces by 1 - 2-_pooV_,xA_ and the moments by 1 - 2

the nondimensional trim equations for the rigid vehicle are obtained:

where

C_ cos(er + 5) - CD,_ = Cw sin ff_ (22a)

C_ R sin(eT + &) + Ci_ R = Cwcos#c (225)

Cl_ia + C:i'aeT = 0 (22c)

CL R = La __ = _ D_ C_ R= _°

C_R = _R Cw = '_
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The steady aerodynamic loads are obtained by treating the vehicle as a rigid flat plate.

For flow in the hypersonic regime, which is highly nonlinear, the aerodynamic loads may be

approximated using modified newtonian theory 22, which states that the pressure coefficient

is given by: 2a

f c,m_.tv=] vo/_ <° (23)
t 0 Vo.fi_> 0

where Cm. _ is the maximum value of the pressure coefficient, evaluated at a stagnation point

behind a normal shock wave, i.e.,

]
C, ma,, 7M_ L\--_ o_] \2_/M7_--2/+ 1

Note from Eq.(23) that the pressure is assumed to be equal to the free stream pressure on

those parts of the body for which Vo • fl > 0. These parts of the body are said to lie in the

aerodynamic shadow.

The lift, drag, and moment are obtained by integrating the pressure over the fuselage,

canted fins, and elevon separately, and summing each contribution:

L = cos&if A A_lb(xs,ys) dxsdys+ 2cosOfcos6L[ f A_f(xbi,ybi) dxbidybi
_b d J AI

J ,] A

b = sinai S A A',b(Ys, zs) dysdzs _ 2c°sOf sin _ i f A A,f(Yb_,Zb_) dybidZbi

tb Y

+ sin(a + 5e) _i ._, Ap_(y_, z_) dy_dz_ (25b)

-<':i/.,."..<,,.,,,.>,..<,,,.+,coso,ii.,z.>..,..,z.
+L,d, (25c)

Nondimensionalizing Eqs.(25) by dividing the lift and drag by 1 - 2gpo_V_ At and the moment by
1 -2
7pooV o Atltb, then using Eqs.(23) results in

_ Alb
-- + 2 sin 2 _ cos & cos 3 Of A�+

C L = Cpm_,, sin 2 _ cos o_At At

".]sin2(a + _) cos(_ + _)&t

ca = c,.,.. {sin__ F_
Atllb L 24

..]+ sin3(& + _e)_t t

]_,_w_ + 7(4 - d}- c},- 2dsc:.)_ -

(26a)

(26b)
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sin 2 5_cos a Of 2(df + ch. + c/t) Af _
lib At 1 (I 2_ sa)s IAtllb -_(s4 2 3

(26c)

where

Sl --- 2(lib--elf)_'tb , S2 = Ilb -- cf,.- df

S3 = cS' 84 -- c-L
s/ ' s/

The trim state is calculated by solving Eqs. (22) with the aerodynamic loads given by Eqs. (26)

using a nonlinear rootfinding routine.

Linearization of Equations of Motion

The quantities in Eqs. (20) can be expressed as the sum of a steady state trim value and

a time dependent small perturbation, indicated by the symbol A preceeding the quantity,

thus

x_(t) = 2_ + :,x,(t), z,(t) = 2, + Az,(t),

vow(t)= _'o,+ A_o_(t), voz(t)= Avo,(t)
q = _Xq, o(t) = _ + Ao(t), ¢(t) = o
_k(t) = _ + A_Tk

M_(t)= ._, + aM_(t),

(27a)

(27b)

(27c)

(27d)

Note that since the vehicle was trimmed by referencing forces and moments to the stabil-

ity axes, the subscript 's' has been added to these terms to indicate that they are to be

interpreted as components taken along the stability axes. The various vehicle axes which

were previously discussed are shown for the vehicle in perturbed flight in Fig. 3b. Also,

because a linear structural model is used for the vehicle, coupling between the steady state

deflections due to the trim forces, Ok, and the perturbed motion variables is neglected. The

linear structural model is justified because generic hypersonic vehicles can be asssumed to

be relatively stiff.

Substitution of the expressions for the perturbed motion variables into the nonlinear

longitudinal equations of motion, and subsequent elimination of all higher order terms, results

in the linearized equations

rnAi_o= = -rag cos 0A0 + AX_ (28a)

rnAi3o_ = rnVo=Aq - m 9 sin 0A0 + AZs (28b)

J;yAq = AM_ (28c)

A0 = Aq (28d)

AiTk "k- 2_kWkAilk + u:_A_k = A(_k

M_ k = 1,...,Arm (28e)
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Further simplification of the linearizedequationsis obtainedby recognizingthat coupling
betweenthe rigid body and elasticdegreesof freedomwill only involve the short period mode.
Coupling is assumedto benegligiblebetweenthe longperiod (phugoid) modeand the elastic
degreesof freedomdue to the largeseparationin the natural frequencies.Furthermore, the
perturbation in forward speed,Avo_,has a negligible effecton the short period mode, for
typical flight vehicles (ref.22,p.231). Thus, AVo_= 0 and the equation governing Avo_ is

discarded. The rigid body equations of motion after this simplification are:

mAi:oz = mVozAq + AZs (29a)

J_yA( 1 = AM_ (29b)

The force and moment perturbations, AZs and AMs, are expressed in terms of partial

derivatives with respect to the degrees of freedom. Equations (28e), (29a), and (29b) are

rewritten below in terms of these dimensional flutter derivatives:

mAiJoz = ZvozAvoz + (ml/o_ + Zq)Aq + Z,nA_71 +... + ZrlNm/_?']Nrn +

Z_I ArlN,,.,+ 1 +... + Z_N,., ArI2N,.,, + Z,h A5 e (30)

= Mvoz AVoz + mqAq + M,71Arh +... + M, TN_/_T]N m "_

M,_A_TN,_+I +'" + MiTNmA_72N_ + M6,ASe (31)

g • : Nm ^

Nrr, ^

+ E,=_(Qk_,_- 2_,_M,_,_k_)/',,7,,,,,,+, k = (32)
1,... ,Nm

A//k = Ar/N,,+k

where the equation governing the elastic deflections is written in first order form.

It is convenient to work with the linearized equations of motion in nondimensional

form. Equations (30-32) may be rendered nondimensional by dividing by the quantities
1 -2 1 -2 1 -2

-_p_Vo_At , respectively. The resulting nondimensional equa-_P_ Vo_Atllb, and_ p_ Vo_At ,
tions are

Nrn

_V_/',o_ = C_ + (,_ + C_) _'0+ _ {Cz,,,A_+ C_,_N_,+_}
i=l

+C_ A5 e (33a)

N_n

i=l

+Cm_(_ (33b)

Nm

^9 ^ __ ^2 ^9

l=l

D_A_)_ = /k_N_+k, k = 1,... ,Nm

(33c)

(33d)
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where the various nondimensional quantities are given by

Th -- 2rn 23"o ^ 2M ,gpo_Aa,b' ];°v-_ t=Y-_! D_()=_ (), M_ =-----_-|_b _ PaoAt|lb _

and the flutter derivatives are related to their dimensional counterparts as

1

Zvo. = _pcc_xAtCz_

1

Zq = _p_tZo_Atl_bCzq

/41b

1

Z_, = _po_fJo_AtCz,_,

Z_ = _p_V_xAtCz_

(34)

(35a)

(355)

(35c)

(35d)

(35e)

1

M,_o_ = -_poo VoxAtl,bCmc_ (35f)

1

Mq = _po_xAtl_bCm q (35g)

M,7, = _po_¢oe_dtCm,7, (35h)

1

M,_, = 5pccVo_Atl_bC,_,), (35i)

M_. = _p_V2_AtllbC,_e_ (35j)

m

C2k.o_ = -_po_ V,,_AtCQk,_ (35k)

1

Qk_ = -_Po_ fZo_AtllbCQkq (351)

1 -2

O,k,_ = _lbP_ V_,,AtCQk,7, (35m)

1

(_k_, = -_p_o ?oxAtCQko, (35n)

Stability Derivatives of the Vehicle

Previous studies 9 have indicated that piston theory is a suitable tool for generating

unsteady aerodynamic loads for exploratory studies at high Mach numbers, and therefore it

is used as the basis for deriving the aerodynamic loads. The local pressure on the vehicle

surface due to combined rigid body motion and structural deformation is

p_ = pocaoovp + p_ (36)
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where vp is the velocity of a fluid particle on the surface of the vehicle in the direction normal

to the surface.

The hypersonic vehicle considered here has three principal types of lifting surfaces: a

clipped delta-shaped lifting body, two canted fins, and an elevon. The flutter derivatives

of the entire vehicle are obtained by combining the individual contributions. From Fig. 6,

the velocities of fluid particles on the upper and lower surfaces of the clipped delta-shaped

lifting body are given by (assuming Vo:_ >> Voz):

= Vo_ cos (_ \ Oxb + Oxb ] - itz + xbq - Voz cos

= -Voz cos _ \ OXb + -'_Xb] + itz -- Xbq + Voz cos (_

(37a)

(37b)

The net pressure is the sum of the trimmed pressure and the change in pressure due to

the small perturbations in the rigid body and flexible degrees of freedom. This change in

pressure is given by

Aps = pooaooAvp (38)

where Avp is the portion of vp due to the perturbed motion.

Vox cos _ OAuz Aitz + xAq - cos 6_AVo_
Ox

-Vox cos OAuz
_'--O--ff-x + Ait_ - xAq + cos _Avoz

(39a)

(39b)

Substitution of Eqs.(39) into Eq.(38) gives the net pressure difference between the upper

and lower surfaces due to the perturbed motion:

OAu_ )Aft{ - Apls = 2p_a_ Vo_ cos _ - Au_ + xAq - cos &AVo_ (40)
Oz

Using Eq.(10) for the elastic displacement and Eq.(40) for the net pressure, the aerody-

namic force in the zb-direction on the main lifting body may be written as:

A Zlb,b = fA (Ap_ -- Apts) dAzb
tb

-- _ dAtb Arh - 2pooaoo
i=1 lb i=1 Zb

+ 2p_aoo fA Xb dAtb Aq - 2p_a_A_b cos 6_Avo_
Ib

We require the force component along the zs-axis, which is given by

AZtb = AZzb,bcos a
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Nrn Nm

i----I i=1

(42)

The contributions of the lifting body to the Z flutter derivatives are

fa 0_¢Ztb,,, = 2poeaccF/o_ cos 2 (_ ,b -_x dAtb (43a)

Ztbo, = --2p_aoocos6fA ¢_ dAtb (43b)
1b

Zlbq = 2p,_a_¢ cos 6_fA Z dAlb (43c)
lb

Zlb_oz = -- 2p_a_Azb COS2_ (43d)

The contribution of the main lifting body to the pitching moment flutter derivatives may

be evaluated in a similar manner. Using Eqs.(10) and (40), the pitching moment contributed

by the clipped delta-shaped lifting body may be expressed as

AMlb = -- fA (Ap_ -- Apls)XbdA,b
lb

(44)

Substitution of Eqs.(10) and (40) into Eq.(44) yields the contributions of the lifting body to

the pitching moment flutter derivatives

fA 0¢_Mtb,, = - 2p_a_ Vox cos_ ,b -'_xb Xb ddtb (45a)

Mlb_, = 2p_a_ / _Xb dAzb (45b)
J AIb

Mtb, -- --2p_a_ fA =_ dAtb (45c)
lb

Mlb_oz = 2pooa_ COS_ f Xb dAlb (45d)
J Alb

The final set of flutter derivatives to be calculated are those associated with the gener-

alized forces, Qi. These forces are determined by examining the expression for the virtual

work done by a virtual elastic displacement over an arbitrary surface area, A.

6W
= fA(AP'_ -- Apls)6uzdA

Nm

dA

= E QiSr/, (46)
i=1
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From Eq.(46), with A = Alb, the contribution of the main lifting body to (_i is

Q_ib = f (Ap_ - ApZs) a2z dAub (47)
JA lb

Substituting Eq.(40) into Eq.(47) and expanding yields the contributions of the lifting body

to the elastic generalized force derivatives:

zOe;Q[b,J ---- 2p°°a_tZ°zc°s6 ¢' _Xb dAlb (48a)
Ib

^ lb fAQ% = -2pooac¢ (_(_; dAlb (485)
lb

= ¢ xbeA,b (48c)
lb

^,b [ z
Qi,o, = -2pooaoo cos 6t. ¢9i dAtb (48d)

J Atb

The contribution of the canted fins to the flutter derivatives is obtained in a similar

manner. The velocities of fluid particles on the upper and lower surfaces of the fin due to

the perturbed motion are given by

C_Uz ,

Av_ (x) = Vox cos & Ox' itz, + xAq cos 0f - Avo_ cos (_ cos 0f (49a)

OUz'

Ave(x) = --tZo_COS&--0--_x, + i_z, - xAqcosOl + Avo_cos(_cos0f (495)

where an additional primed coordinate system for the fin has been introduced, as shown in

Fig 4. Substitution of Eqs.(49) into Eq.(38) gives the net pressure difference between the

upper and lower surfaces of the fin due to the perturbed motion:

Ap_ -- Apt = 2poca¢_ i5"o_:cos _ Ox' iZz, + xAq cos Oy -- Avoz cos _ cos 01 (50)

The net aerodynamic force in the z,-direction on the two fins is given by

= 2cos_cos_f ; (Ap_- Apls) dA I (51)AZ l
JA l

where the contributions from each fin can be summed because both the vehicle and the

motion are symmetric. Substituting Eq.(50) into Eq.(51) yields the following contribution

of the two canted fins to the Z flutter derivatives:

4cosOypooa_Zo_ _ A _ 0¢_' fA,_ i=I _ dA_rli - 4 cos Ofpooaoo ,_

+4 cos 20lpooaoo fA X dAwSq - 4 COS20fp_aooAwSvo_

Nm

¢i dAjh
i=l

(52)
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Examining Eq.(52), the contribution of the fins to the Z flutter derivatives are found to be

zf,, = 4 cos 0f cos 2 &p_ao,,Vo_ fA OCz'_ dA I (53a)

zi_ _ = -4 cos 01 cos 6_p_aoo fA ¢( dAf (53b)
!

zlq = 4 cos 2 01 cos _zp_a_ _ z dA I (53c)
f

Zi_o_ = -4cos 2 01 cos 2 _o_a_Af (53d)

The contribution of the canted fins to the pitching moment is given by

AMI = -2c°s0I/A X(/kPu- APts) dAf (54)
f

Since Eq.(54) differs from Eq.(51) only by the factor cos5 outside the integral and the

factor -x inside the integral, the M I flutter derivatives may be obtained from the Z I flutter

derivatives by dividing by cos _, multiplying the integrands by the factor -x, and carrying

out the required integrations.

Mf_, = -4 cos Of cos _pooaooVo_ f 0¢(
J Af X-_X _ dAf (55a)

MI_ ' = 4 cos Ofp_a_ _A x¢( dA I (55b)
]

MI_ = -4 coQ Ofpooaoo fA x2 dAl (55c)
I

MI_o_ = 4 cos 2 0.r cos _p_a_ f4 x dA! (55d)
f

Using the principle of virtual work in a manner similar to Eq.(46), the contribution of

the canted fins to Qi is given by

Q{ = 2f - (56)
JA I

Comparison of Eq.(56) to Eq.(47) and Eq.(50) to Eq.(40) indicates that the Q_ flutter

derivatives may be obtained from the Q_b flutter derivatives by referring the mode shapes to

the primed (fin) coordinate system and multiplying the derivatives with respect to q and vo_

by cos 01 .

0¢$'
QI% = 4p_aooVo_cosO_ f& O(--_-ff-x_ dA!

I

(57a)

(57b)
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= 4cosO:p a f  (zdAf (57c)
JA/

Qifo_ = -4cosOfp_aoocos& f _Z' dAf (57d)
JAy

Using the same procedure with which the flutter derivatives of the lifting body and canted

fins were calculated, the contribution of the rigid elevon to the flutter derivatives is found to

be:

AZe_o: = -2p_a_ cos2(_ + 5e)A_ (58a)

AZ_Aq = --2p_ao_ cos((_ + 3e)cosSedeAe (58b)

AMe_o_ = -2pooa_cos(_ + 5_) cosSedeAe (58c)

- 2 (58d)AM_,,q = -2p_a_ cos 25_deAe

Note that since the elevon is assumed to be rigid, all of the flutter derivatives involving

elastic deflection are zero. In particular, the effect of the deformation of the main lifting

body on the perturbation aerodynamic forces experienced by the elevon is assumed to be

negligible.

The overall flutter derivatives of the entire vehicle can be written as a combination

of the individual components for which the flutter derivatives have been evaluated in the

preceeding parts of this section. Using Eqs.(43,45,48,53,55,57,58) and nondimensionalizing

the derivatives using Eqs.(35), the flutter derivatives for the entire vehicle are given by

4cos2 _ { (Azb_ (A]) (A_) cos2(_ + 5_)} (59a)Cz,_ - M_ \AtJ +2 _ cos 20f+ _ cos

4co o COS(_

Czq MooAtllb x dAlb + 2 cos 2 O/ x dAy A_d_ cos 5_ + _ (59b)- , - ]

- M_At _ dAub + 2 cos 0/ _ dAi (59c)
tb f

Cz,_ - 4c°s_(fAM_At ,b¢_dA_b+2C°sOffa/¢(dAf) (59d)

Cmot

Cmq

4coso(L /a ,ecos'O+ e )-- M_Atllb x dAlb + 2 cos 2 01 x dAf - A_de cos - (60a)
Zb f COS O_

-- M_Atl_ b dAtb + 2 cos 2 0i dA I +
lb f

Cm,7, - 4 cos _ O¢_x dAlb + 2 cos 01 " x dAI (60c)
MooAt _b Ox

Cm_i = MooAtltb ,b

795



4coso )CQ_o = -_tl--_,_ ¢_dA_b + 2cos0f Ct' dAI (61a)
tb f

CQkq - MooA,llb _b J AI

¢08 - M_At ¢_ dAlb + 2 ¢_' dA I (61c)
tb f

CQk'i_ - MccAt z_ s

Structural Dynamic Model Based on Equivalent Plate Approach

The configuration selected for the generic hypersonic vehicle resembles the X33 RLV, as

shown in Fig. 7. The initial structural model consists of isotropic equivalent plate segments

and nonstructural masses for the canted fins, clipped delta-shaped main lifting body, fuel,

and payload. The mass and stiffness properties of the equivalent plate model are determined

by matching the calculated mode shapes and frequencies to those obtained from a detailed

NASTRAN model of the empty vehicle 24. This simple configuration was chosen to facili-

tate methodology developement. However a more complex model, which includes curved,

laminated composite cover skins and complex internal structure, is also under development.

The solution of the governing equations of motion for the unrestrained vehicle requires

the determination of the normal modes and frequencies of the unrestrained (or free-free)

vehicle. The equivalent plate code, ELAPS, is used to model the vehicle and compute the

unrestrained mode shapes. A concise description of the equivalent plate model is provided

for completeness.

In equivalent plate theory, the vehicle planform geometry is divided into multiple trape-

zoidal segments with cross-sectional geometry specified by the analyst in the form of poly-

nomial series in the global coordinates, x and y:

m n

i=0 j=0

n

i=0 j=0

m rt

i=0 j=0

(62)

where the physical description of the quantities used in Eq.(62) is shown in Fig.

displacement field for the equivalent plate is assumed to be of the form

OUzo

ux = Uxo- Z'-"_-x + z_z

8. The

(63a)
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uy = u_o- z--_y + z_y (63b)

Uz = Uzo (63c)

where u_o, Uyo, and Uzo are the middle surface displacements in the x, y, and z directions,

respectively, and _, _y are additional degrees of freedom that are necessary for transverse

shear deformation modeling. The reference surface displacements and transverse shear ro-

tations are approximated by polynomial displacement functions as

T T
U_o = _bxqx, Uyo = _byqy, Uzo -- CTqz (64a)

_ = _bT qox, _ = q_Tyqvy (64b)

where ¢,,, qx are (expressions for Cy - qcy are similar)

= [1,x,x2,..., y, ,xIyJ] (65a)
qT = [q_oo, qxlo, q_o," • • , q_0_, qx_,, q_l," " • , q_IJ]

(655)

In Eq. (65b), qx -q_y are the unknown generalized coordinates, obtained from the solution

of the global system of equations.

Equations (63) with Eqs.(64-65) comprise a displacement system. Out-of-plane sections,

such as the canted fins on the X33, are accomodated by defining an additional displacement

system for the section and connecting the displacement systems with stiff springs to ensure

displacement compatibility. Boundary conditions may be enforced either by using springs

or by setting the appropriate coefficients in the assumed displacement function to zero.

For example, zero transverse slope in the y-direction at y = 0 may be enforced by setting

q_o_ - qz_ to zero. Taking advantage of symmetry, the vehicle shown in Fig. 7 is modeled

in ELAPS by defining only the right half plane, with boundary conditions enforced at the

vehicle centerline as follows. To calculate the symmetric modes, the following quantities are

set equal to zero: -_y (x, 0), Uyo(X, 0), -_(x, 0), °o-_ (x, 0), Cy(x, 0).

Contribution of each structural component (cover skins, ribs, spars, etc...) to the global

stiffness and mass matrices is obtained from the strain and kinetic energy expressions for the

component, expressed in terms of the assumed displacement functions, Eqs (63). The global

mass and stiffness matrices are assembled from the contributions of each structural compo-

nent, and the natural modes and frequencies of the unrestrained vehicle are then obtained

by solving the linear eigenvalue problem. For a comprehensive discussion of equivalent plate

theory and recent enhancements, see references _9,20. Mode shapes and frequencies based on

this approach are presented in the results section.

STABILITY BOUNDARY COMPUTATION

The stability boundaries for the generic hypersonic vehicle are determined from the eigen-

problem generated from the governing equations of motion. Therefore, the equations of

motion, Eqs.(33) are rewritten in matrix form:
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where

D_Ax =
Ar I Arf

Ax = A 2_x (66)

ax = (67)

and the sub-matrices of the partitioned matrix, A, are given in Appendix I. Solutions to

Eqs.(66) can be written as

Ax = _e _ (68)

which produce the eigenvalue problem from which the aeroelastic stability boundaries are

obtained

(A-AI)_ = 0 (69)

The eigenvalues, An = (n + iwn, must be calculated in an iterative manner. Starting at low

values of the flight speed, Vow, the eigenvalues are computed, and the process is repeated

until the real part of any particular eigenvalue becomes zero. At each iteration, the trim

state is calculated using the current value of Vox. This process is repeated at a number of

altitudes representing the operational envelope of the vehicle.

RESULTS

Baseline Configuration and Mode Shapes

The baseline hypersonic vehicle configuration chosen for this study has the following

properties. The vehicle has a length of 65 ft. and a width of 65 ft. (lib and w in Fig.

7, respectively). The vehicle is made of aluminum and has a structural weight of 73,000

lbs. Fuel weight at takeoff is 210,000 lbs. Four fuel configurations were studied: the empty

vehicle, 10% fuel, 50% fuel, and 100% fuel. Natural frequencies for each configuration were

computed using ELAPS and are shown in Table 1. As mentioned, the model was tuned to

approximately match the frequencies with those from a detailed NASTRAN model.

The first four unrestrained flexible mode shapes for the empty vehicle are shown in

Fig. 10. A perspective view of the undeformed configuration is shown in Fig. 9 to aid in

visualization of the mode shapes. The mode shapes in Fig. 10 were calculated for a vehicle

configuration which differs slightly from the one used to calculate the results in this study,
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but the mode shapes of both vehicles are qualitatively similar. The first flexible mode shape,

labeled 'mode 7' in Fig. 10 due to the six rigid body modes, is a symmetric mode composed

of bending and twisting of the rear fins with no appreciable deformation of the fuselage.

The second flexible mode is an antisymmetric mode affecting similar areas of the vehicle.

The third flexible mode is a symmetric full vehicle mode composed of longitudinal fuselage

bending as well as fin bending and twisting. The fourth flexible mode is an antisymmetric

full vehicle mode composed of fuselage and fin twisting. Higher modes are also composed of

both fin modes and full vehicle modes, but involve increasingly complex deformations.

Trim Results and Flutter Boundaries

Typical trim curves for the generic hypersonic vehicle are given in Fig. 11 for the four

different fuel configurations. The trim angles are quite small at large Mach. numbers; this

is due to the large aerodynamic forces at these flight conditions. Effect of the c.g. location

on the trim state is shown for the 100% fuel case in Figs.12 and 13. In these figures, x is the

c.g. location measured from the vehicle nose and is given as a fraction of total vehicle length.

The angle of attack decreases as the c.g. moves rearward but the elevon angle increases to

large values due to the need to balance the increasing contribution to the moment from the

main lifting body.

The flutter boundaries for the baseline vehicle configuration with four fuel conditions as

well as a half-stiffness model with two fuel conditions are shown in Fig. 14. The flutter Mach

number is very high for the altitudes at which the vehicle will fly in the hypersonic regime.

For example, at 100,000 ft., Mc = 160 for the empty vehicle. The fully fueled vehicle is less

stable, and flutter begins at around Mc = 140. If the stiffness is reduced by a factor of two,

Mc decreases significantly. For the empty and fully fueled vehicles, it decreases to 86 and

68 respectively. The reduced stiffness model has practical importance due to the fact that

the X33, which the generic hypersonic vehicle is modeled after, is a half-scale prototype of

the Venture Star vehicle. Since the X33 is geometrically scaled, the Venture Star may be

significantly more flexible than the X33 and the effect of reduced stiffness on the stability

boundaries of such a vehicle can be pronounced. The effect of c.g. location on the flutter

boundaries is shown in Fig. 15 for the half stiffness/100% fuel configuration. Moving the

c.g. rearward initially reduces the stability but between xcg = .65 and xcg = .7 the stability

begins to increase. Interestingly, the curves for these two values of xcg cross at an altitude of

about 35,000 ft. More research will be performed to determine the reason for this behavior.

Figure 16 contains typical frequency and damping curves. It can be seen that the flutter

is due to strong coupling between modes 1 and 3. Mode 1 is primarily a wing-bending mode

and mode 3 is a more complex mode that involves deformation of the complete vehicle,

including significant wing twist. The behavior closely resembles the classic bending-torsion

flutter. The frequencies of the two modes begin to coalesce and the damping of Mode 3

increases to zero at the critical Mach number while the damping of mode 1 continues to

decrease. Note that this calculation was carried out under contrived conditions, since the

altitude was assumed to be at sea level.
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CONCLUDING REMARKS

A procedure for calculating the aeroelastic stability boundaries of an unrestrained generic

hypersonic vehicle is presented in the paper. The formulation and solution procedure are

general, and the most limiting assumption is the decoupling between the longitudinal and

lateral dynamics of the vehicle. Thus, it is applicable to any generic hypersonic vehicle.

The second limitation in the paper is associated with the aerodynamic theory used, namely

piston theory. Preliminary results 9 have indicated that, for generic hypersonic vehicles, the

unsteady aerodynamic loads may require the solution of the Navier Stokes equations, possibly

with some simplifying assumptions, and the coupling of the aeroelastic problem with the heat

transfer problem, thereby leading to a complete aerothermoelastic problem• Obviously, this

approach was deemed to be too complicated for the trend type study conducted here.

The results presented in this paper lead to a number of useful conclusions. The X-33 type

vehicle appears to have wide aeroelastic stability margins at hypersonic speeds, since flutter

at the high altitudes occurs at very high Mach numbers• However, the flutter boundaries

are quite sensitive to the trim state and the C.G. locations.

Reduced stiffness configurations, having half the stiffness of the baseline configuration

have significantly lower stability margins. Since the X-33 is a geometrically scaled version of

the Venture Star, it is conceivable that the full-scale vehicle would be much more flexible,

and therefore it would be subject to considerable aeroelastic constraints. Thus aeroelastic

effects will have to be carefully addressed in the design of the full-scale vehicle.

APPENDIX I

The components of the sub-matrices of matrix A in Eq.(66) are given below:

c__Ar = c__

Ar f ---

Th

J_u

At_ =

M_v._

J_ (2X2)

•-- ]

... ]• . • _

Mf

(2XNm)

(2xNm)

(N_ x2)

(70)

(71)

(72)

(73)

8{)0



A_f =

nff -

CQ1Ttl ^

"'"
...

...
Mg Pi9

Nra Nm

M_ lf/Ig2

CQ Nm _1 CQ N,n '}2

(Nm x Nm)

C Q 1 rIN vn

_tf

M_

CQ Nrn "qNrn -- (_J2Nm

(Nm × Nm)

•.. CCh_Nz__

• .. CQ2@Nj3]_

xt_
• o

CQ N m i_ Nrn

"'" I(4_,,, -- 2_N"_N"

(74)

(75)
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mode no. empty 10% fuel 50% fuel 100% fuel

1 5.21 5.17 5.1 5.01

2 5.53 5.43 5.23 5.12

3 11.1 9.8 7.05 5.61

4 12.46 11.34 8.48 6.78

5 13.48 12.93 10.1 8.07

6 13.91 13.51 10.71 8.67

Table 1: Natural frequencies (Hz) calculated from ELAPS
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mode 8: front view

mode 9: perspective view

Figure 10: First four flexible modes of vehicle
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Abs_ct

The self-sustained coupling of structural responses with
transonic flow state transitions at the nose of launch

vehicle payload fairings can be analyzed by solving the

nonlinear system equation of motion based on the force-

response relationship and the periodicity condition. The

traditional analysis approach for this phenomenon,

however, lineaiizes the equation of motion by convert-

ing the alternating flow forces into an aerodynamic

damping term and defines a stability criterion as the

response amplitude that yields zero net system damping.

This work clarifies the relationship between the new and

traditional methods, and compares results and conclu-

sions. The feasibility of modifying a launch vehicle

buffet analysis (of random fluctuations caused by turbu-

lent flow) to include aeroelastic coupling effects is also

explored. The aerodynamic stiffness and damping terms
formulated are consistent with trends observed in wind

tunnel test data. It is shown, however, that the modified

buffet analysis approach can be inaccurate, particularly

when the aeroelastic coupling contribution does not

dominate the system response.

AF =

[c'] =
F =

{F(t)}=

[I1 =

M =

n =

q(t) =

{q(t)} =

=

S

T =

{x(t)} =

Z =

At =

Nomenclature

dynamic amplification factor, dimensionless

modal damping matrix, N-sire

external force, N

vector of system external forces, N

modal mass matrix (identity matrix), kg

Mach number, dimensionless

normalized aerodynamic stiffness (single
mode), dimensionless
normalized aerodynamic damping (single

mode, dimensionless
generalized displacement (single mode), m

vector of generalized displacements, m

relative measure of aeroelastic coupling con-

tribution to total response, dimensionless

signal strength, dimensionless

period, s
vector of physical displacements, m

generalized translation normalized with re-

spect to a static value, dimensionless

time required for flow state change, s

Copyright © 1999 by The Aerospace Corporation. Published by
NASA with permission.

= structural damping, dimensionless

_/ = aerodynamic stiffness (single mode), rad2/s 2

_/ = aerodynamic damping (single mode), rad/s

0 = rotation, deg

= forcevariation, dimensionless
= modal value (single mode), 1/kg

[_] = modes matrix, dimensionless

CO = undamped circular natural frequency, rad/s

[_£] = modal stiffness matrix, N/m

Subscripts

a = aeroelastic coupling

b = buffeting
cr = critical

e = excitation

f = physical force application points

i = bending mode number
n = nose

r = rotation

rms = root mean square
St = StatiC

t = total (or effective)
to = freestleam state

Introduction

During transonic flight the flow at the cone cylinder

junction of launch vehicle payload failings can alternate

between separated and attached states (Chevalier & Rob-

ertson 1963; Rohertson & Chevalier 1963). Schlieren

photographs from Rohertson & Chevalier (1963) am

reproduced in Figure 1. A flow state change on the lee-

ward side of the payload fairing model (with a 25-deg

nose cone angle) is evident when the angle of attack

equals two degrees. Because the pressure profiles for the
sefm'ated and attached states are different, the flow state

changes impose an exciting force on the launch vehicle.

Investigations of self-sustained coupling of this force

with launch vehicle elastic responses have been con-

ducted using three different approaches. Computational

fluid dynamics has been used in conjunction with struc-

tural dynamic models to predict the launch vehicle be-
havior (Chert & Dotson 1999). This approach is purely

analytic but is computationally intensive and limited by

the accuracy of the transonic aerodynamic formulation.

The other two methods are more tractable for analysis

of this phenomenon and use experimental data to quan-

tify the pressure distributions on the payload fairing.
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The force variation is idealized, and the flow alternations

are triggered when the deflection angle reaches a critical

value. Ericsson (1967), in the first of these two

serniempirical methods, assumed that the flow state

changes instantaneously after an implicit time lag and

that the alternations occur on only one side of the pay-

load fairing. More recently, Dotson et al. (1998a) as-

sumed that the flow state changes linearly during an

explicit time lag, as shown in Fig. 2, and that the alter-

nations occur on both sides of the payload fairing. One-

sided and instantaneous flow state changes can also be

analyzed using the techniques employed by Dotson et

al. (1998a).

term, corresponding to harmonic response at the vehicle

bending mode frequency. The limit cycle amplitude for

bounded system responses was then defined as the value

that corresponds to zero net system damping. Dotson et
al. (1998a) established the steady-state behavior of the

launch vehicle using analysis techniques for nonhar-

monic periodic excitation. The amplitude of the limit

cycle oscillation and the response frequency were pre-

dicted directly without deriving an aerodynamic damping
term.

I oaOm.m_Q _

qbmml_oO

T
e

t r
I
5

I

a) zero-deg angle of attack

b) two-deg angle of attack

Fig. 1 Schlieren photographs of flow state changes observed in
wind tunnel tests for M. = 0.89. Reproduced with permis-
sion of Arnold Engineering Development Center.

Ericsson (1967) linearized the equation of motion by
converting the forces resulting from the flow alterna-

tions into an assumed equivalent aerodynamic damping

Fig. 2 Schematic of one cycle of steady-state coupled force and

response in present theory. (_) normalized force varia-

lion _, ; (.... ) payload fairing rotation.

Serf-sustained oscillations for the Titan IV launch

vehicle were evaluated by Dotson et aL (1998b), and it

was shown that the responses and loads can be more

than an order of magnitude smaller than those predicted

by the Ericsson (1967) stability criterion. It was, fur-

thermore, shown that the differences in predicted results

between the two methodologies can be traced to the

value of the time lag defined explicitly by Dotson et al.
(1998a) and implicitly by Ericsson (1967). There are

two major implications of this finding: first, Ericsson's

(1967) stability criterion is misleading because a finite

limit cycle amplitude always exists for structurally-

damped launch vehicles; second, a reasonable estimate

of the magnitude of the time lag is critical to prevent

overprediction of the launch vehicle responses and corre-

sponding loads. This overprediction can have highly

undesirable programmatic impacts, such as vehicle ro-

design and launch "no-go" decisions due to low thresh-
olds on measured winds.

Even though it is unnecessary to define an aerody-

narnic damping term to determine the limit cycle ampli-

tude for launch vehicle aereelastic coupling, it is com-

mon in a variety of flow-induced vibration problems to

equate self-sustained oscillation with a change in the
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system damping for one or more of the system modes.

For example, the "galloping" of ice-laden cables and the

vortex-induced oscillation of stacks are civil engineering
problems that have been thus analyzed (Dowell 1995).

In aeronautical engineering, the torsional response of

wings in transonic flow has been expressed as a reduc-

tion in net system damping flow (Mabey 1989). Indeed,

launch vehicle aeroelastic coupling belongs, along with

transonic wing torsion and aircraft control surface

"buzz," in the class of single degree-of-freedom prob-

lems involving feedback between transonic shock-wave

motion and structural responses. Experimental and em-

pirical solutions are typically used for these problems

because the aerodynamic nonlinearities are significant

(Dowell 1995).

Equations of motion presented by Ericsson (1967)

imply that an extended analysis of launch vehicle re-

sponses caused by buffeting (i.e., by random fluctua-

tions associated with turbulent flow) can be conducted

using modified bending mode stiffness and damping

values to account for aeroelastic coupling effects. Buffet

forcing functions have broad-band spectra, and buffeting

analyses include numerous system modes for accurate

response and load predictions. Hence, in a modified buf-

fet approach, the stiffness and damping values would be

altered for the bending mode speculated to experience

aeroelastic coupling, and the response analysis would be

conducted for the linear multi degree-of-freedom system.

Application of this analysis approach does not appear to
have been demonstrated for launch vehicle aeroelastic

coupling. It is interesting to note, however, that proce-

dures have been developed for the prediction of bridge
flutter including buffeting effects (Dowdl 1995).

The feasibility of a modified launch vehicle buffet

analysis is investigated herein. It is shown that a buffet
analysis without aeroelastic coupling effects must be

conducted prior to calculating the modified stiffness and

damping values, and that the bending mode response

from a modified buffet analysis can be inaccurate. The

derivations of the system damping (and ancillary stiff-

ness) effects nevertheless place launch vehicle aeroelas-

tic coupling in the context of other flow-induced vibra-

tion problems. Analytical results are provided using

Titan IV system parameters.

Analysis Appro8ch

The equations of motion for the coupled system are

[l]{_(t)} + [C*]{q(t)} + [o92]{q(t)} = [_O]_{F(t)} (1)

in which

{x(t)} = [O]{q(t)} (2)

In a rigorous treatment of the transonic system re-

sponses, the vector {F(t)} would include time-consistent

forces induced by buffeting, gusts, control system pa-

rameters, static aeroelasticity, and maneuvering, as well

as those caused by aeroelastic coupling (Fleming 1994).

However, because it is impossible to predict the ampli-
tudes and phasing of the forces that will occur during

the actual flight, a rigorous prelaunch analytical treat-

ment is untenable (Kabe 1998). In practice, equation (1)

is broken up into constituent airloads events that axe

analyzed separately and treated statistically (Fleming

1994). The mean and dispersed values for each of the

dynamic load components are predicted, and total loads

are computed using a combination equation that yields

values for a specified probability of nonexceedance dur-

ing flight (Macheske et al. 1993). In the present analy-

sis, the vector {F(t)} includes predictions of external

forces induced by aeroelastic coupling and buffeting but,

for the sake of simplicity, neglects those caused by

other transonic loads phenomena.

Equation (1) can be simplified if it assumed that the
alternating flow forces couple with a single bending

mode, and that aeroelastic coupling for each of the lower
bending modes can be analyzed independently. Dotson et

al. (1998b)investigated this assumption through tran-

sient analysis of a fully coupled launch vehicle dynamic

model and showed it to be accet_table, provided that the

frequencies of the higher-order components in the

Fourier series expansion of the alternating flow forces

are not very close to the frequencies of system modes in

the plane of the excitation. Extracting from equation (I)

the modal equation that best represents the ith system

bending mode yields

2

Yl,.,(t) + 2_'f-o_0,.,(t) + o_q,._(t) = ]_ ¢_.iF,.i(q,., )
j=l

k=l

(3)

The modal values in equation (3) correspond to the
points in the launch vehicle model at which the discrete

force histories are applied. The first term on the right

hand side of equation (3) represents the generalized force

history for aeroelastic cbupling. The two force resul-

tants in this summation are defined by pressure profiles

for the alternating flow states and are described in further

detail by Dotson et al. (1998a). The alternating flow

forces are a function of the generalized displacement q,.i

because the changes in flow state occur when the deflec-

tion angle of the payload fairing nose cone equals a
critical value, as shown in Figure 2. Dotson et al.

(1998a) proved using energy principles that the general-

ized aeroelastic coupling force must be out of phase
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with the vehicle response to induce limit cycle oscilla-
tion.

For the Titan IV at Mach 0.8, the amplitudes Fa.i and

Fa.2 equal 6.7 and 26.2 kN, respectively (Dotson et al.
1998a). The corresponding generalized force history is

in phase with the vehicle response, such that the flow

state changes cannot induce limit cycle oscillation for

this vehicle. Herein, the signs of the force resultants are

artificially reversed so that the generalized force history

is out of phase with the vehicle response, and Titan IV

modal data can be used to analyze aeroelastic coupling

with buffeting. The fundamental pitch bending mode for

a Titan IV mission with a 26.2 m-long payload fairing

was selected for the present study. The frequency

damping of this mode equal 1.27 Hz and 0.71 percent,

respectively.

The maximum static value of the generalized response

for aeroelastic coupling is defined by

qst = (`0-2 [(_lFa.l + _2Fa.2] (4)

The value from equation (4) is not constant because the

magnitude and location of the force resultants vary with

respect to Mach number. If the maximum value of equa-

tion (4) during the transonic region is used, normaliza-

tion of equation (3) with respect to equation (4) yields

_,(t) + 2_'a_ _t(t) + to2z,(t) = ¢o2 _,(z,,t)

in which

_.(z..t) = s_o(z.)+_,(t)

The subscript i has been dropped for convenience. The
flow state changes initiate when the response equals

z., = O,r/l*,..Iq,,

analyses to be presented it is (justifiably) assumed that

maximum aeroelastic coupling occurs at Mach 0.8.

1.2

0.8

0.4

-0.4

-0.8

Fig. 3

-1.2
0 4 8 12 16 20

Time history of normalized Titan IV buffet generalized
force for fundamental pitch bending mode.

The Titan IV buffet generalized force during transonic

flight is shown in Figure 3. Ninety eight [m in equa-

tion (3)] buffet forcing functions with frequency content

up to 50 Hz are applied to all components of the Titan
IV vehicle. These buffet forces are based on wind tunnel

(5) test data but include modifications to ensure conserva-
tive response predictions relative to observed flight data.

The maximum value of the buffeting noise in Figure 3

exceeds unity, the amplitude of the aeroelastic coupling

force variation shown in Figure 2. However, the time
(6) history is dominated by frequency components in the

10-20 I-Iz range, and the amplitude of the content around

the frequency of the vehicle fundamental bending mode

is relatively low. Indeed, it will be shown that aeroelas-

tic coupling dominates the Titan IV bending response at
(7) Mach 0.8 and 0.9.

The range of the scalar s in equation (6) is 0 < s < 1,

such that s = 0 corresponds to the absence of flow state

transitions, and s= 1 corresponds to the maximum con-

tribution of aeroelastic coupling to the total system

response. When buffeting is ignored, equation (5) re-

duces to the nonlinear equation analyzed by Dotson et

al. (1998a). The buffeting term, therefore, acts as noise

superimposed on the force variation shown in Figure 2.

The value of s changes as the vehicle flies through
the early transonic regime; it begins with s=O, increases

to s= 1 at the maximum aeroelastic coupling time, and

finally returns to s = 0 near Mach 1. Therefore, the sig-

nal-to-noise ratio generally increases, then decreases,

with respect to Mach number and time. In the Titan IV

Aeroelastic Coupling Response

Before developing the modified buffet analysis approach,

it is necessary to summarize some key results from

Dotson etaL (1998a). The characteristic equation for the

period of the aeroelastic coupling response based on a

nonharmonic trial function is given by

= (8)

The steady-state response can be approximated by a

harmonic solution that yields the relationship

Te/T i = (1 + 4_'/_) -1/2 (9)
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Fig. 4 Phase plane diagram from simulation with f= 1.27_ _'= 0.71%, and At= 7 ms. (_) with buffeting; (.... ) without buffeting.

It can be shown that equation (9) is valid for all critical

nose deflection angles. The harmonic approximation

leads to the dynamic amplification factor

AF =2 (Atl_T_)cos[sin-'(z<.,(_T/_))12] (10)

For zero critical deflection, equation (10) reduces to

AF = 2(_r/;T_) (11)

By comparison, for At<<T, the nonharmonic trial func-
tion leads to

AF = sec(to T,/ 4) - I (12)

in which the ratio Te/T_ is established from equation

(8). The harmonic approximation always underestimates

the response amplitude, and its accuracy depends on the

salient ratio At/_ T_ (Dotson et al. 1998a).

Numerical Simulations

It is assumed that the buffeting noise plotted in Figure
3 is valid for all transonic Mach numbers and is unaf-

fected by local angle of attack changes caused by the

vehicle bending mode response. The buffeting event,

therefore, is treated strictly as a function of time. This

is the approach used by the launch vehicle community

for dynamic analysis of launch vehicle loads induced by

buffeting.

The simulation computer algorithm presented by

Dotson et al. (1998a) was modified to include buffeting
noise. The modified code is used /mrcin to assess the

effect of buffeting on the aeroelastic coupling response

and to validate equations for the effective system fie-

quency and damping. At each time step, the buffet force
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_b is added to the aeroelasdc coupling force s_o [see

equation (6)]. Because buffeting affects the system re-

sponse, the function _ differs from that without buffet-
ing. The aeroelastic coupling force is taken to be out-of-

phase with the response as required for self-sustained
oscillation. The computer code solves equation (5)

given initial displacement and velocity values. Conver-

gence of the solution is verified by reducing the integra-

tion time step and repeating the analysis.

Figure 4a shows the phase plane diagram for the Ti-

m IV parameters without buffeting noise. The initial

conditions for this simulation are given by zero velocity

and displacement equal to the limit cycle amplitude
without buffeting, 2.7. Figure 4b shows the effect of

buffeting when s= 1, i.e., when the aeroelastic coupling
contribution is a maximum. It can be concluded from

Figures 4a and 4b that the inclusion of buffeting noise

prevents the system response from attaining a true limit

cycle. However, the aeroelastic coupling contribution is

large enough for this example that the deviations from

the limit cycle state are small and the response is qua-

siperiodic.

The phase plane diagrams for numerical simulation

with s=0.5 and s=0.2 are shown in Figures 4(= and 4d,

respectively. Because the system displacement is nor-

realized with respect to the maximum aeroelastic con-
tribution, the initial condition z(0) and critical deflection

z_, are scaled by s. Figure 4c shows that s < 1 increases

the relative deviation from the aeroelastic coupling con-
tribution. Figure 4<1shows that when the value of s is

small enough, the system response cannot be described

as a simple deviation from the aeroelastic coupling

limit cycle state.

Modified Buffet Analysis

Sen_tion of Response Contributions

To assess the effects of aeroelastic coupling in combina-

don with buffeting, it is assumed that equation (5) can

be split into constituents such that

_°(t) + 2509 _°(t) + 092Zo(t) = 0) 2_a(Zo) (13)

_b(t) + 25a1 zb(t) + 092zb(t) = 092eb(t) (14)

in which

z,(t) = sz.(t)+ zb(t) (15a)

_,(t) = s_a(t)+ _n(t) (15b)

_,(t) = S_.o(t) + _b(t) (15e)

The subscript-a terms are defined by aeroelastic coupling
without buffeting, while the subscript-b terms are do-

fined by buffeting without aeroelastic coupling.

Equation (15) is approximate because response super-

position is valid only for linear systems. But the ap-

proximation is acceptable if the buffet contribution does

not significantly alter the time points at which the sys-

tem response reaches the critical value for changes in

the alternating flow forces. In this case, the aercelastic

coupling contribution is close to that without buffeting.

Equation (15), therefore, is most useful when the signal

strength s is large. As the value of s decreases, the aero-

elastic coupling force variation becomes affected by the

buffeting noise and the accuracy of the approximation
diminishes.

Conversion of Alternating Flow Forces

Converting the aeroelastic coupling force variation in

equation (13) into equivalent aerodynamic stiffness mxl

damping terms yields

_°(t)+(2509+//)_(t) +(092 +)l)zo(t) = 0 (16)

Equation (16) can also be expressed as

Eo(t)+209 (5+ri) _o(t) +092(I.+n) z,(t) = 0 (17)

The terms n and h modify the system stiffness and

damping, respectively. Equation (17) yields the conven-

tional differential equation for a single degree-of-freedom

linear system

_o(t) + 25o09a_°(t) + O_Zo(t) = 0 (18)

when the effective frequency and damping are defined by

09° = 09 _/l+n (19a)

Co= (5 (19b)

and the aerodynamic stiffness and damping terms n and

h are assumed to be constant. The aeroelastic coupling

response must now originate from specified initial con-

ditions because the forcing function no longer appears

in the equation of motion.

Dotson et al. (1998a) used energy principles to prove,
and numerical simulations to validate, that when the

force caused by the alternating flow states opposes the

response and the initial conditions are larger than known

critical values, strueturallyMamped systems always at-

tain a stable limit cycle. Only for the unrealistic case in

which 5-0 will the system response diverge, i.e., be-
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come unbounded and fail to attain a limiting amplitude.

The effective damping constant (o, therefore, ultimately

equals zero, which leads to the identity

h -= -5 (20)

Dotson et al. (1998a) further showed that if the initial

conditions in the phase plane lie outside of the limit

cycle, the transient response diminishes, implying that

the net system damping is initially positive. Similarly,

if the initial conditions lie inside of the limit cycle but

are larger than known critical values, the transient re-

sponse increases, implying that the net system damping

is initially negative.

A single value of the effective damping constant _,

therefore, cannot model the nonlinear response for all
time t, unless the initial conditions conform exactly to

the limit cycle state. This ease is assumed herein for the

modified buffet analysis. Fortunately, the limit cycle
state is of most interest: if the initial conditions lie

outside of the limit cycle, the final response state is

more benign than the initial one; similarly, if the initial

conditions lie inside of the limit cycle, the final ampli-

tude is greater and is given by the limit cycle response.

1.6

1.2

0.8

0.4 -

,,_1 f,, ,i,,_,1,,, ,i,,,

0 1 2 3 4 5

aver i

Fig. 5 Normalized aerodynamic stiffness. (--) nonharmonic
solution; (.... ) harmonic approximation.

The conversion of the periodic alternating flow forces

into an aerodynamic damping term for the limit cycle

state is constrained by equation (20). It is evident from

equation (19a) that the aerodynamic stiffness term is
similarly constrained by

n - (co./co) _- 1 (21)

Figure 5 illustrates equation (21) with values of T,/T_

that satisfy equation (8). As the salient ratio At i F Ti

increases, the modification introduced by the stiffness

term n diminishes to zero, and the system frequency

tends to that of the bending mode.

Using equations (9) and (21), it can be shown that the

harmonic approximation yields

2 -1

n = - D (22)

This expression is compared in Figure 5 with the non-

harmonic solution. The agreement is reasonable, par-

ticularly for the higher values of At/_T_.

For _- 0, equation (18) has a steady-state harmonic

as its solution. The aeroelastic coupling response then

is implicitly harmonic when the step-like forcing func-

tions are converted into constant aerodynamic stiffness

and damping terms. It can be shown that when the al-

ternating flow forces are converted formally, the aerody-

namic stiffness and damping terms are time dependent.
It can be concluded that conversion of the forces into

constant values is inherently less accurate than nonhar-

monic analysis. The magnitude of the discrepancy ds-

pends on the value of At/_Ti.

Combination of Response Contributions

The equation of motion for the total system response

can now be reformulated by summing equations (14)

and (18) with the scalar s and _'o- 0, such that

_,(t) + 2_co[_,(t)-s_,(t)]+co2[Z,(t)+nszo(t)]

= co2 _(t) (23)

Equation (23) is still unsuitable because it requires

aeroelastic coupling displacement and velocity histories.
Unless the time dependence of the aeroelastic coupling

contribution is removed, there is no benefit in using

equation (23), which is approximate, rather than the

exact formulation given by equation (5). In other words,

constant stiffness and damping coefficients that account

for the aeroelastie coupling effects are required if a modi-

fied buffet analysis is sought. To this end, a relative

measure 91 of the aeroelastic coupling and total re-

sponses must be introduced such that

:_t(t) + 2_'co [1- s 91(_o/_,)] _,(t)+

C02[1+ nsgi(z<,/Z,)] z,(t) = co: _b(t) (24)
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The computation of 9_ is subjective. One possible

method uses the root-mean-square (rms) values of the

aeroelastic coupling and buffet time histories such that

_,(t) + 25to (I - s za._s/z,._s) _,(t) +

to2(l+nszo._s/zt.m_) z,(t) = 092 _b(t) (25)

Equation (25) can be written in the conventional form

for a single degree-of-freedom linear system

_,(t) + 2_,o_,i,(t)+ to_,z,Ct) = co,_ _;(t) (26)

in which

14- rts Za.mas/Zt,ms

(27a)

to, = to 4 1+ nsz,._s/z,._, (27b)

_(t) = _b(t) (27c)
1+ nszo._/Zr._,,

Aeroelastic coupling modifies the system stiffness and

damping terms but the solution of equation (26) will,

nevertheless, fail to account for the limit cycle oscilla-

tion unless appropriate initial conditions are specified.

Recall that buffeting noise is assumed to be independ-

ent of the system response and, hence, strictly a func-

tion of time. In this case, the aeroelastic coupling and

buffeting responses are uncorrelated, and the rms value

of the total response can be approximated by

Z,r_ 4 (SZo,_) = = (28a)• = , 4- Zb.rras

In order to implement equation (26), it is necessary

to: 1) define rms values of the steady-state aeroelastic

coupling displacement and velocity; 2) conduct a wan-
sient buffet analysis without aeroelastic coupling ef-

fects; 3) compute the rms value of the buffet displace-

ment and velocity; 4) calculate the stiffness, damping,

and force modifications using equation (27); and finally,

5) repeat the buffet transient analysis with the modified

parameters.

Several features of equation (26) should be noted.

First, as the aeroelastic coupling or buffet responses

diminish, equation (26) reduces to equations (14) and

(18) with (a- 0, respectively. Second, the modified

damping value defined by equation (27a) is always non-
negative and has the range 0 _<5, < 5- Third, as a conse-

quence, the aeroelastic coupling component, introduced
through the initial conditions, generally decreases over

the analysis duration. And finally, the value s first in-
creases, then decreases, as the launch vehicle flies

through the transonic region such that the effective fre-

quency and damping vary with Maeh number.

Time histories computed using the Titan IV parame-

ters and the modified buffet approach show that the sin-

gle degree-of-freedom linear response is in good agree-

ment with the nonlinear simulated response when the

value of s is large but tends to overpredict the response

amplitude for small s values.

General Assessment of Aeroelastic Coupling Effects

Trends in the effective frequency and damping are best

illustrated using the harmonic approximation of the

aeroelastic coupling response given by equations (9) enzl

(10). In this case, the aeroelastic coupling rms values

can be expressed in closed form as

zo.,_ =_ (At/( T,.) cos [sin-'(z_,(_T//At))/2] (29a)

cos[sin-'(z¢,((Ti/At))/2] (29b)

The operand of the arcsine function in equation (29)

cannot exceed unity. A limit cycle, therefore, exists in

the harmonic approximation only for 0 < Z_r< At/5 Ti.

Dotson et al. (1998a) showed that this limiting value is

in reasonable agreement with that for the nonharmonic

solution and that the response spirals in the phase plane

to a state of rest for larger values of z_.

The curves of frequency as a function of s shown in

Figure 6a were constructed using the modified buffet

analysis with the Titan IV parameters and the harmonic
approximation for aeroelastic coupling. Three values of

At/F T; and the range of z_, for limit cycle oscillation

are illustrated. Since the values of _ and Ti are known

for the Titan IV (0.71 percent and 0.79 s, respectively),

the curves actually reflect variations in the time lag. For

example, AtI(Ti=I corresponds to At=5.5 ms. Simi-

larly, z,, can be explicitly evaluated, and AtI_T_ = 1 cor-

responds to 0,=0.05 °. Figure 6a indicates that aeroelas-

tic coupling only modestly increases the effective sys-

tem frequency, particularly for large values of AtI(T_.

As aeroelastic coupling decreases relative to buffeting

(i.e., as the value of s decreases), the system frequency

tends to the natural frequency of the bending mode.
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Correspondingcurvesofeffectivesystemdampingare
showninFigure6b.In contrastto theeffectivesystem
frequency,the effectivesystemdampingdepends
s_onglyon theaeroelasticcouplingsignalstrength.A
modestcontributionfrom aeroelasticcoupling(i.e.,
smallvalueof s) can lead to a significant drop in the

total system damping, even for relatively small values

of the time lag. This large reduction in system damping

is supported by wind tunnel test data (Ericsson & Red-

ing 1986). Figures 6a and 6b, furthermore, show that

increasing the size of the time lag reduces the effect on

system frequency, but exacerbates the effect on system

damping. Finally, provided aeroelastic coupling occurs
(i.e., 0 <Zcr<At/(Ti), the value of the normalized criti-

cal nose cone deflection for the flow state changes

[equation (7)] has a minor effect on frequency and damp-

ing, particularly for large values of At/(T/.

Dotson et al. (1998a)computed force resultants Fo.I

and Fa._ for the Titan IV when M. = 0.8 and 0.9. The
hypothetical limit cycle amplitude for Math 0.8 is

larger because the force resultants for Mach 0.9 shift

further aft from the payload fairing nose, and the magni-
tude of their summation decreases. It is assumed herein

that s = 1 at M, =0.8, i.e., that limit cycle oscillation

during the transonic regime is maximized at Mach 0.8.
It can be shown that the force resultants for M, = 0.9

then lead to s = 0.7. These s values and Figure 6 indi-

cate that there is little change in effective system fre-

quency or damping over the range 0.8 < M, <0.9.

Random Decrement Stiffness and Damping Values

Predicted effective system stiffness and damping values

are shown in Figure 7 for the Titan IV example with At

--7 ms and no dead zones in the force variation (see Fig-

ure 2). Values from application of the Random Decre-

ment technique (Ibrahim 1977) to the simulation time
histories are included in Figure 7 for comparison. Ran-

dom Decrement averages the random excitation (induced,

in this case, by buffeting) out of the total system re-

sponse, yielding the homogeneous response from which

effective stiffness and damping values can be estimated.

The bars in Figure 7 represent uncertainty in the Ran-
dom Decrement estimates and were established by con-

ducting sensitivity studies with the technique's parame-

ters. Random Decrement is relatively insensitive to

these parameters for large values of s. However, the

amplitude of the aeroelastic coupling response is
roughly equal to that for buffeting when 0.2 < s _< 0.4,

and the Random Decrement result varies significantly in

this range depending on the parameters chosen.

Figure 7 shows that the trends in the stiffness and

damping estimates from the modified buffet analysis and

Random Decrement are similar. The effective system

damping from equation (27a), however, is lower than

that estimated by Random Decrement.
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1
0

O#O0 1
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• .e--_ ........

u 2
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a) System frequency

1

0.8
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0.4

0.2

0 0.2 0.4 0.6 0.8

"s

b) System damping

Fig. 6 Aeroelastie coupling effects as a function of signal
strength. (--) z,, = 0; ( .... ) z,, = At/_/'_.

The accuracy of the Random Decrement results can be
assessed because the buffeting force is known. Time

histories computed using the Random Decrement stiff-

ness and damping estimates show that the single degree-

of-freedom linear response is correctly phased but that

the nonlinear response amplitude is significantly under-

predicted. Recall that the modified buffet analysis tends

to overpredict the response amplitude for small s values.

Responses computed by trial-and-error variation of the

constant damping value generally yield the best agree-
ment when ff,/_ is between the modified buffet and

Random Decrement values shown in Figure 7b. For

example, _,1_=0.11% yields agreement when s =0.5. It
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can be concluded that schemes that use averaged stiff-

ness and damping values to model the nonlinear equa-
tion of motion may be heuristic but inaccurate.

[.25 ' ' ' r ' ' ' I ' ' ' F ' ' ' I ' ' '
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1.2

1.15

1.1
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0.2 0.4 0.6 0.8
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System frequency
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0.4

0.2

i = t l ] i F i i , [ , . .

0.2 0.4 0.6 0.8

$

b) System d=nping

Fig. 7 Comparison el analytic ,and derived estimates. (--)
modified buffet analysis; ( I ) range of Random Decre-
ment estimates; ( • ) midpoint of range.

Conclusions

The theory presented by Dotson et al. (1998a) provides

straightforward closed-form equations for the prediction

of limit cycle oscillation from aeroelastic coupling,

based strictly on the idealized force-response coupling

relationship and periodicity condition. This theory can
be used to derive constant aerodynamic stiffness and

damping values in the system equation of motion, and
the characteristics of these derived values are consistent

with trends observed in transonic wind tunnel test data.

The conversion of alternating flow forces into aeaxiy-

namic stiffness and damping terms, however, introduces

a harmonic approximation that underestimates the re-

sponse amplitude. More important, the use of similar

terms, modified to include buffet effects, in an analysis

intended to account comprehensively for aeroelastic

coupling and buffeting can lead to errors in response
phasing and amplitude. The largest errors occur when

the aeroelastic coupling contribution to the total system
response is not dominant.
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Abstract

Two critical issues in model updating are deciding how a finite element model should be parameterised and

estimating the unknown parameters from the resulting ill-conditioned equations. A lack of understanding of

these issues will lead to updated models without physical meaning. This paper outlines the authors' approach

to parameterisation, using physical, geometric and generic element parameters. It also applies useful methods

of regularisation, namely parameter constraints, the singular value decomposition, 'L' curves and cross

validation to model updating.

1. Introduction

Finite element model updating has become a viable approach to increase the correlation between the dynamic

response of a structure and the predictions from a model. In model updating parameters of the model are

adjusted to reduce a penalty function based on residuals between a measurement set and the corresponding

model predictions. Typical measurements include the modal model (natural frequencies and mode shapes) and

the frequency response functions. The choice of penalty function, and also the optimisation approach, has been

the subject of much research and are well covered by the authors' survey paper (Mottershead and Friswell

1993), book (Friswell and Mottershead 1995) and special issue of Mechanical Systems and Signal Processing

(Mottershead and Friswell 1998). This paper considers the issues of how to parameterise a finite element

model and how to regularise the resulting estimation equations to obtain a well-conditioned solution. These are

critical issues in model updating.

2. Parameterisation of the Finite Element Model

Parameterisation is a key issue in finite element model updating. It is important that the chosen parameters

should be able to clarify the ambiguity of the model, and in that case it is necessary for the model output to be

sensitive to the parameters. Usually elements in the mass and stiffness matrices perform very poorly as

candidate parameters, and this is one reason why the direct methods of model updating are not favoured

(Friswell and Mottershead 1995). One reason for this poor performance is that the stiffness matrix element

values are dominated by the high frequency modes, whereas the low frequency modes are measured. Element

parameters, such as the flexural rigidity of a beam element, may be used provided there is some justification as

to why the element properties should be in error. Mottershead et aI. (1996) used geometric parameters, such as

beam offsets, for the updating of mechanical joints and boundary conditions. Gladwell and Ahmadian (1995)

and Ahmadian, Gladwell and Ismail (1997) demonstrated the effectiveness of parameterising the modes at the

element level, and used both geometric parameters and element-modal parameters (i.e. the so-called generic

element method) to update mechanical joints. The following subsections will concentrate on the modelling of

joints, since these are often the most difficult areas of a structure to model.

821



2.1. Physical and Geometric Parameters

There are a number of physical parameters of a joint that could be updated. A beam with a flange welded as a

'T' joint, shown in figure 1, will be taken as an example. The beam part was of length 0.4 m and cross-section

70 mm × 12 mm. The flange area was 110 mmx 70 and the thickness of the flange was 6 mm. Pairs of bolt

holes, of diameter 12 mm and 40 mm apart, were drilled 25 mm from the edge of the longer part of the flange

and 15 mm from the edge of the longer pa_ of the flange, as shown in figure 1. Only vibration in a single plane

was considered. The resonances of the structure are lightly damped and well separated, making natural

frequency identification and mode shape pairing straightforward.

T

o o LT
40mm

70mm

70 mm

Figure 1. Modelling of the welded joint

of the rigid area were lumped at node c.

The beam structure was modelled with cubic

beam elements for the transverse motion and

linear bar extension elements. The nodes

possess axial and transverse translation

degrees of freedom together with a rotation

in the same plane. The beam was represented

by eight elements, each of the flanges was

represented by five elements, and nodes were
located to coincide with the bolt holes. The

shaded area is considered rigid and is

enforced by a constraint matrix linking nodes

a, b and c. Only the degrees of freedom

corresponding to node c are independent and
included in the model. The mass and inertia

One approach to updating this joint is to alter the beam stiffness of the elements closest to the joint. Although

this often gives good results, the model error is not localised at the joint, but spread through the updated

elements. Flexibility may be introduced into the rigid area by using discrete translational and rotary springs

between nodes a, b and c. Mottershead et al. (1996) showed that for typical joints the structure's response is

insensitive to the stiffness of these discrete springs, and such insensitivity causes great problems for the

updating algorithms. A powerful alternative is to update geometric parameters, for example the offset of nodes

b and c from node a, denoted
Natural Frequencies (Hz)

Free-Free

Measured 324 823 1243 1975 3022 3898 56

Initial 318 813 1212 1940 2976 3833 55

Updated 325 827 1235 1978 3023 3897 56

Table 1. Natural frequencies for the welded joint in the beam

by o_ and 13 in figure 1. The

Clamped-Free offset parameters have a

354 986 1523 physical meaning with regard

349 972 1504 to stiffness updating: the

356 989 1525 shaded (rigid) region in

figure 1 can be considered to

expand or contract depending

upon whether the offset dimensions are extended or

reduced by updating. The offset dimensions are

assumed to only affect the stiffness matrix and the mass

matrix is unaffected. A third parameter, the variation in

the thickness of the beam and flange was used to allow

for a global shift in all the modelled natural frequencies.

The beam was tested twice: under free-free conditions

_x(mm) 13(mm) Thickness

Change (%)

Initial 6.0 3.0

Updated 6,4 3.0 -3.2

Table 2. Updated parameters for the welded joint
in the beam
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and clamped at the flanges. Updating was carried out using both sets of natural frequency data, using a

sensitivity based approach (Mottershead et al. 1996). Table 1 shows the measured, and the initial and updated

analytical natural frequencies, and table 2 shows the initial and updated parameter values. The natural

frequencies are much improved after updating. The beam thickness only changes by about 3%, which is within

the tolerance that the thickness of the beams was measured.

2.2. Generic Parameters

Gladwell and Ahmadian (1995) and Ahmadian, Gladwell and Ismail (1997) introduced the generic element

approach. The method depends on the eigenvalue decomposition of stiffness and mass matrices at the element

level, or substructure masses and stiffnesses typically at a joint. The joint would then be updated by adjusting a

set of parameters related to its own eigenvalues and eigenvectors. It would be possible for example to update

parameters related to the bending behaviour in a particular mode of a joint whilst retaining the original stiffness

of the other modes. Model correction using submodel coefficients or physical parameters (such as Young's

modulus or the thickness of a beam) can be restrictive and may lead to converged models whose physical

interpretation does not match the real structure. The generic element approach is equivalent to modifying the

coefficients in the element shape-function equations but not the order of the shape functions. Generic elements

are based on the element (or substructure) free-free modes but other co-ordinate systems are possible of course,

and might have advantages for particular updating problems.

The mass matrix of a substructure, such as a joint, is assumed to be correct. The substructure stiffness matrix

may be decomposed as

KS = VoAo vT (1)

where A 0 and V 0 are the eigenvalues and unit normalised eigenvectors (mode shapes) of the stiffness

matrix. The corrected eigenvectors are assumed to be obtained by a transformation of these eigenvectors and

the eigenvalues are also varied. With 3 strain modes, for example, the substructure stiffness matrix is

3 4 5
@ • •

•2

1

K11 K12

K s" = V0/ K22

Lsym

6 7

• 13 •

• • • •

12 11 10 9

Figure 2. The frame structure. Out of plane vibration is
considered

K23 . (2)

K33

The six terms Kll ..... K33 are available for

updating. If only the diagonal terms, namely

KlI,K22,K33 , are changed then this amounts to

changing the natural frequencies of the

substructure strain modes, while keeping the

mode shapes unaltered. These generic parameters

have a meaning in terms of the interaction

between the physical modes, which is especially

important if substructures are related through
constraints.

As an example, consider the out of plane

vibration of the frame structure shown in figure 2.
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Frame FE Model

Connecting
I Element I 1 ]

'L' Joint

_] 'T' Joint

Figure 3. Element types for the frame example

Figure 3 shows the substructure types for the

frame, namely a connecting element and the 'L'

and 'T' shaped joints. Although each of these

substructures could be updated using generic

parameters, generic parameters relating to elements

will be updated here. Figure 3 also shows the 5

elements that will be used in the updating. Each of

the beam/bar elements has 3 rigid body modes and

3 strain modes. The number of parameters in the

frame example is large. Just considering elements

adjacent to the joints gives 14 elements, each with

6 generic parameters. Updating these 72

parameters produces ill-conditioned equations that

require regularisation. Hence this example will be

used later to demonstrate the regularisation
methods.

2.3. Equivalent Models

Occasionally part of the structure is so ill-defined that no finite element model can be constructed with

confidence. A common example are welded joints in frames and in structures such as automobile bodies. The

example considered here is the rubber seal which provides the connection between a vehicle window and the

car-body structure. The seal has a complicated cross-sectional shape into which the window glass and the steel

sheet are pressed to form the joint. Furthermore it is important to model the seal accurately because vibration of

the window has a strong influence on the acoustics of the passenger compartment. In such cases there seems to

be no reasonable alternative to direct parameter estimation.

The glass and the body panels are regularly modelled with plate elements having 3 degrees-of-freedom at each

node. Thus, the equivalent rubber seal (ERS) element should have the same degrees-of-freedom at each node.

In its most general form the element is chosen to have 4 nodes and 12 degrees of freedom. The tests on the seal

were performed with a very stiff foundation that was assumed to be rigid in the model. Although this is not the

configuration in which the seal operates in the vehicle, Ahmadian, Mottershead and Friswell (1997) showed

that by using the various physical constraints and the symmetry of the element, the model of the seal may be

derived from measurements on the rigid foundation.

////////////////////

ax J7
Figure 4. The rubber seal equivalent element

Figure 4 shows the model of seal in the

experimental configuration. Essentially there

are two unknown parameters, denoted k w and

k s , that relate to a distributed bending and

torsional stiffness per unit length. By ensuring

that the displacement function within the seal

matches the cubic displacement function along

the edge of the plate, and assuming that the

torsional and bending motions decouple,
enables the stiffness matrix of the seal to be
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calculated.Thebendingstiffnessmatrixhasthesameform asthemassmatrix of thestandardEuler-Bemoulli
beamelementbecausethestiffnessis assumedto bedistributed.

In theexperimenttheglasswasrectangular(whichis not typicalof a carwindow) but therubbersealwasof
thetypeusedin modemvehicles.Thesealwasmountedin a rigid frame.Theglassplate(of dimension0.5m
x 0.8 m x 0.0025 m) was modelled with a mesh of 5 x 8 plate elements, which was sufficient to eliminate the

discretisation error in the first 10 modes of
Mode Measured Predicted Predicted

5x8 mesh 10x 16 mesh

1

2

3

4

5

6

7

8

9

10

30.39

65.17

111.21

118.84

139.94

181.27

184.23

229.91

234.91

263.68

33.79

65.54

112.14

114.98

140.39

183.63

187.30

236.25

252.61

262.55

33.76

65.49

112.01

114.92

140.28

183.52

187.38

235.70

252.94

261.95

Table 3. Measured and identified natural frequencies

(Hz) for the equivalent rubber seal

vibration. The rubber seal was modelled by using

26 elastic support elements. The parameters k w

and k s were obtained by minimising the error

between the measured natural frequencies and the

finite element prediction and the results are given

in Table 3. The greatest error occurs in the first

natural frequency and has been attributed to the

dynamics of the experimental rig which is

supposed to provide a rigid boundary constraint

but behaves like a rigid body mode at very low

frequencies because of its large mass. Almost
identical results were obtained when the mesh

was refined to 10 x 16, as shown in Table 3.

Mode Measured Predicted Predicted

5x 8 mesh lOx 16 mesh

1

2

3

4

5

6

7

8

9

10

29.61

60.42

98.89

106.23

120.14

155.39

164.13

209.26

228.44

233.90

32.71

59.63

101.69

104.19

126.34

165.56

167.22

211.14

223.94

232.87

32.69

59.62

101.61

104.23

126.38

165.65

167.61

210.64

224.77

232.50

Table 4. Measured and predicted natural frequencies

(Hz) for the equivalent rubber seal with a steel plate

When the glass was replaced by a steel plate new

measurements were obtained, and these were

compared to predictions from the previously

identified models, but with the plate elements

given the properties of steel. The results, shown

in Table 4, indicate that the identified seal

parameters have physical meaning, otherwise the

excellent agreement between the measured and

predicted results is unlikely to have been

achieved. The agreement shows that the
discretisation error in the rubber seal model has

the same order or is smaller than that in the plate

element.

3. Regularisation

The treatment of ill-conditioned, noisy systems of equations is a problem central to finite element model

updating (Ahmadian et al., 1998, gave further details). Such equations often arise in the correction of finite

element models by using vibration measurements. The regularisation problem centres around the linear

equation,

A0=b (3)

where 0 is a vector of the m parameter changes we wish to deten-nine, and b is a vector of n residual quantities

derived from the measured data and the current estimate of the model. In model updating the relationship
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between the measured output (for example, natural frequencies, mode shapes, or the frequency response

function) is generally non-linear. In this case the problem is linearised using a Taylor series expansion and

iteration performed until convergence. When b is contaminated with additive, independent random noise with

zero mean, it is well known that the least-squares solution, 0_, is unique and unbiased provided that

rank(A) = m. When A is close to being rank deficient then small levels of noise may lead to a large deviation

in the estimated parameters from its exact value. The solution is said to be unstable and (3) is ill-conditioned

A different problem occurs when m > n so that (3) is under-determined and there are an infinite number of

solutions. The Moore-Penrose pseudo-inverse provides the solution of minimum norm, as does singular value

decomposition (SVD). For the case when rank(A)= r < min(m,n), the SVD will again result in the minimum

norm solution. This is a form of regularisation which has been widely applied in the model updating

community. Unfortunately minimum norm solutions rarely lead to physically meaningful updated parameters.

3.1. Side Constraints

Model updating often leads to an ill-conditioned parameter estimation problem, and an effective form of

regularisation is to place constraints on the parameters. This could be that the deviation between the parameters

of the updated and the initial model are minimised, or differences between parameters could be minimised. For

example, in a frame structure a number of 'T' joints may exist that are nominally identical. Due to

manufacturing tolerances the parameters of these joints will be slightly different, although these differences

should be small. Therefore a side constraint is placed on the parameters, so that both the residual and the

differences between nominally identical parameters are minimised. Thus if (3) generates the residual, the

parameter is sought which minimises the quadratic cost function,

J(0)-IIA0-bll=+X=llC0-dll= (4)

for some matrix C, vector d and regularisation parameter A. The regularisation parameter is chosen to give a

suitable balance between the residual and the side constraint. For example, if there were only two parameters,

which were nominally equal, then

C=[1 -1] d={O} (5)

Minimising (4) is equivalent to minimising the residual of

(6)

Equation (6) then replaces (3), although with the significant difference that (6) is generally over-determined,

whereas (3) if often under-determined. The constraints should be chosen to satisfy Morozov's
I-A'7

complementation condition, rank/_/= m.
Lt:J

3.2. The Singular Value Decomposition

The singular value decomposition (SVD) of A may be written in the form,

m

A = U_V T = EcIiui VT

i=l

(7)
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where U=[u 1 u2...Un] and V=[v I v2...vm] are n×n and m×m orthogonal matrices and

Z=diag(_l,cr2 ..... (_m), where the singular values, (_i, ale arranged in descending order

(_1 _ _2 _.-. _ t_m )" Ill ill-posed problems two commonly occurring characteristics of the singular values

have been observed; the singular values decay steadily to zero with no particular gap in the spectrum, and the

left and right singular vectors u i and v i tend to have more sign changes in their elements as the index i

increases.

The solution for the parameters using the SVD is

0 = _u/Tb vi. (8)

i=1 ffi

Thus the high frequency components (corresponding to low singular values) have only a small contribution to

A but a large contribution to the estimated parameters. Equation (8) shows the noise will be amplified when

a i < u/rb, and this may be used to decide where to truncate the singular values. If A does not contain noise

then the singular values will decay to zero whereas the u/rb terms will decay to the noise level.

The standard SVD is incapable of taking account of the side constraint, as this requires the generalised SVD.

Thus, in (6) A and C are decomposed simultaneously. The regularisation parameter, )_, has the effect of

damping the effect of the lower singular values (lower than about _,) and thus smoothing the solution. It is also

possible for the generalised SVD to truncate the solution and retain only a limited number of singular values,

equivalent to truncating the series in (8) (Ahmadian et al., 1998).

3.3. 'L' Curves

One way of obtaining the optimum value of the regularisation parameter in the presence of correlated noise is

to define an upper bound for the side constraint and minimise the residue, or alternatively to set a limit for the

residue and minimise the deviation from the side constraint. Of course the success of this approach is highly

dependent on the physical insight of the analyst in determining the allowable constraint violation or

measurement error (residue magnitude).

A different approach is to plot the norm of the side constraint, Ilc0- ll, against the norm of the residue,

A 0-b I , obtained by minimising the penalty function (4) for different values of _,. Hansen (1992) showed

that the norm of the side constraint is a monotonically decreasing function of the norm of the residue. He

pointed out that for a reasonable signal-to-noise ratio and the satisfaction of the Picard condition, the curve is

approximately vertical for )_<_om, and soon becomes a horizontal line when )_>)_ot,t, with a comer near the

optimal regularisation parameter _opt. The curve is called the 'L'-curve because of this behaviour. The

optimum value of the regularisation parameter, _,om, corresponds to the point with maximum curvature at the

comer of the log-log plot of the 'L'-curve. This point represents a balance between confidence in the

measurements and the analyst's intuition.

3.4. Cross-Validation

The idea of cross-validation is to maximise the predictability of the model by choice of the regularisation

parameter _,. A predictability test can be arranged by omitting one data point, b_, at a time and determining the
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bestparameterestimateusingtheother data points, by minimising (4). Then for each of the estimates, predict

the missing data and find the value of _ that on average predicts the bk best, in the sense of minimising the
cross-validation function

n bVo( ):! & (9)
n k=l

where b'k (9_) is the estimate of bk obtained from the remaining data. This is the method of cross-validation.

A rotational invariant version of ordinary cross validation, called generalised cross-validation (GCV), has been

developed which is essentially a weighted version of the ordinary cross validation. Ahmadian et al. 1998 give

the background and further details. The GCV function may be conveniently computed via the generalised

SVD. Furthermore, the GCV based on the solution from the truncated generalised SVD may be computed.

3.5. An Example of Regularisation

The regularisation methods were tested on the frame shown in figure 2. The frame was made from 25.4 mm

square section aluminium tubing with 2.38 mm wall thickness. The frame was 584 mm long and 279 mm

wide, and contained 4 'L' shaped welded joints and 2 'T' joints that are difficult to model. Experimental data

was obtained using standard hammer impact testing procedures on the freely suspended frame. The natural

frequencies for the first 5 out-of-plane bending modes were identified, together with the corresponding mode

shapes at the 13 locations shown in figure 2. Table 5 lists the measured natural frequencies.

Mode

1 226.8

2 275.2

3 537.4

4 861.5

5 974.8

Natural Frequency ,(Hz)

InitialMeasured

269.5

287.7

615.0

928.7

1071.3

Updated

221.0

270.8

536.6

861.8

972.9

Table 5. Natural frequencies for the frame

example

A finite element model was constructed to model the

out-of-plane bending vibration of the frame. Each short

beam was split into 4 elements and the longer beams

split into 8 elements, giving a total of 28 beam/bar

elements. Each of the 27 nodes had 3 degrees of

freedom, producing a finite element model with 81

degrees of freedom. The beam parts of the elements

were Euler-Bemoulli beams, and the torsional

contribution to the dynamics was also modelled. Table

5 lists the first 5 natural frequencies obtained from this

model. Although there is some error in the natural

frequencies, the mode shape correlation (determined by the Modal Assurance Criterion) was very good. The

measured modes were expanded using dynamic expansion to the full set of degrees of freedom of the finite
element model.

The model of the frame was updated using generic parameters, described earlier. The elements were split into 5

types shown in figure 3; namely, connecting elements, 2 types relating to each side of the 'L' joint, and 2

elements of the 'T' joints. Each element group has an associated set of 6 parameters per element, giving a total

of 168 parameter in 30 groups. Parameters within each group are assumed to be nominally equal, and this gives

the contraint matrix, C. The values within two of the parameter groups are not changed since these parameters

would make the stiffness matrices of connecting elements different if the elements were rotated by 180 °. Many

models of the structure may be created, and this model is not necessarily optimum, but it will serve to

demonstrate the methods outlined in this paper.
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The residual minimised in this example is given by

J(0)= y I [-602M + K(0)]Oi 2+ Wfnhog i,/rK(0),i - 0_2 2 (10)
i=1

where to i and I_i are the i th measured natural frequency and expanded mode shape (normalised with respect

to the analytical mass matrix), nmode is the number of modes measured, and only the stiffness matrix is a

function of the vector of generic parameters 0. The first term minimises the error in the eigenvalue equation.

Worthog is a weighting factor for the error in the stiffness orthogonality, and essentially weights the natural

frequency error. In this example, there are 405 equations (81 degrees of freedom for 5 modes) from the error in

the eigenvalue equation, and a further 5 equations from the stiffness orthogonality. Thus n=410, and m=140.

The orthogonality weighting factor, Worthog, together with the regulation parameter, X, may both be changed

and the norms of the residual and constraint plotted to give a surface rather than the standard 'L' curve. Instead,

for this example, a number of 'L' curves were plotted for different values of Worthos, and engineering

judgement used to assess when the natural frequencies were given sufficient weight.

i

norm of residual

Figure 5. The 'L' curve for the frame example

"_ l0 s
t,.

3,

t i i

104 106 l0 s

regularisation parameter

Figure 7. The generalised cross validation function

for the frame example
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q3 30

% 20
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Figure 6. The 'L' curve for the frame example based
on the truncated SVD
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Figure 8. The generalised cross validation function

for the frame example based on the truncated SVD
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Figures 5 shows the 'L' curve as the regularisation parameter, _., is changed. There is a comer at a value of _. of

approximately 3x10 s. Using the truncated SVD approach gives a similar 'L' curve, shown in figure 6, and

shows that approximately 30 singular values should be retained. Using the generalised cross validation

function gives a defined minimum at 2.8x105 (figure 7), which is close to the value given by the 'L' curve. The

updated natural frequencies based on the value for the regularisation parameter are shown in table 5. Finally

figure 8 shows the generalised cross validation based on the truncated SVD, having a minimum at 44 singular

values, although this minimum is not particularly marked.

5. Conclusion

This paper has outlined the authors' philosophy in dealing with two of the major issues in model updating,

namely how to parameterise a structure and how to regularise the equations required to estimate the parameter

values. Parameters should be chosen which have physical meaning, but are also able to model the errors in the

finite element model. Geometric parameters, generic elements and equivalent models were shown to have good

features for model updating. Regularisation based on physical considerations lead to updated models with

physical meaning. Constraints on the parameters, such as minimising the difference between nominally

identical parameters, works very well. One difficulty with this approach is determining the relative weight

given to the constraints, and this paper proposed a number of approaches to determine this regularisation

parameter. A number of physical examples using experimental data have been described to show the

effectiveness of the proposed approaches.
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Optimal System Realization in Frequency Domain
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Abstract

Several approaches are presented to identify an experimental system model directly from

frequency response data. The formulation begins with a matrix-fraction description as the

model structure. Frequency weighting such as exponential weighting is introduced to solve a

weighted least-squares problem to obtain the coefficient matrices for the matrix-fraction de-

scription. A multi-variable state-space model can then be formed using the coefficient matrices

of the matrix-fraction description. An approach is introduced to fine-tune the model using non-

linear programming methods to minimize the desired cost function. The method deals with

the model in the real Schur or modal form and reassigns a subset of system poles using a

nonlinear optimizer. At every optimization step, the input and output influence matrices are

refined through least-squares procedures. The proposed approaches are used to identify an

analytical model for a NASA testbed from experimental data.

1 Introduction

One major objective of system identification is to provide mathematical models for dynamics and
control analysis and designs. However, models of systems can have various forms, such as transfer
functions, differential or difference equations, and state-space equations. A frequency-domain state-
space identification method [1 - 5] provides a state-space model of a linear system from frequency
response data.

The method called the State-Space Frequency Domain (SSFD) identification algorithm [2] can
estimate Markov parameters (pulse response) from the frequency response function (FRF) without

window distortion when an arbitrary frequency weighting is used to shape the estimation error.
The method uses a rational matrix fraction description (the ratio of a matrix polynomial and a
monic scalar polynomial denominator) to curve-fit the frequency data and compute the Markov
parameters from FRF. The curve-fitting problem must be solved either by nonlinear optimization
techniques or by linear approximate algorithms with several iterations. To obtain the state-space
models from the Markov parameters, the Eigensystem Realization Algorithm (ERA) or its variant
ERA/DC is used [5].

Frequency domain methods presented in Refs. [3, 4, 5] start with identifying a left matrix-
fraction description (LMFD) of the transfer function matrix. The advantage of using the LMFD,
as an intermediate model between the data and the desired final state-space model, is that from
frequency response data to the LMFD is a linear least-squares problem, which is easy to solve.

*Principal Scientist, Structural Dynamics Branch, (j. juaag_larc .nasa.gov)
t Senior Aerospace Engineer, Guidance and Control Branch, (p. g. maghami©laxc, nasa. gov )
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This method works quite well when the frequency response data are fairly accurate; however, it

might yield unstable, erroneous models ff the data contains too much distortion and/or error. Data
distortion in the frequency domain is caused by a number of factors; limited sampling frequency,
filters to remove noise, and lack of periodicity. This data distortion often causes unstable modes to

be present in the identified system model. An improved method was introduced in Ref. [6] to deal
with the problem when data distortion is present. The idea is to stabilize or remove the unstable
modes before expanding the matrix-fraction description (MFD) into the Markov parameters (pulse
responses). This approach avoids introducing unstable modes while still maintaining the frequency
response close to the data.

In this paper, exponential frequency weighting [2, 7] is used to solve a weighted least-squares
problem for the LMFD coefficient matrices. A multi-variable state-space model is then realized

from the LMFD coefficient matrices. To improve the identified model, nonlinear programming
methods [8] are used to fine-tune the model parameters. A formulation is introduced in this paper
for parameter optimization. This formulation deals with system realizations in the real Schur or
modal forms, and uses a subset of system poles for parameter optimization. At every optimization
step, the input and output influence matrices are refined through least-squares procedures. Two

additional formulations for parameter optimization have also been developed. The first formulation
uses a general system realization, and utilizes nonlinear programming along with an eigenvalue
assignment [9- 11] technique to adjust a subset of system poles. The second formulation deals with
system realizations in the real Schur or modal forms, and uses a subset of system poles, as well as
some coefficients to adjust the columns (rows) of the input (output) influence matrix for parameter
optimization. These formulations are not presented here due to space limitations, however, full
details on the two approaches is provided in Ref. [12]. Experimental data from a NASA testbed
with fifteen inputs and fourteen outputs are used with a total of two hundreds and ten transfer
functions to demonstrate the concepts proposed in this paper.

2 Weighted Least-Squares Method

Given the system frequency response function G(zk) at the frequency point zk, consider the left
matrix-fraction

G(zk) = _-l(Zk)_(Zk) (1)
where

_(zk) = _m+ _lz; 1+... + _;z; p (2)

Z(zk) = _o+ Ziz-;_+... + Zpz-#_ (3)
are matrix polynomials with Im being an identity matrix of order m. The matrix ai is an m x m

real square matrix and each/3i is an m x r real rectangular matrix. The factorization in Eq. (1)
is not unique. For convenience and simplicity, one can choose the order of both polynomials to be
equal to p.

Pre-multiplying Eq. (1) by a(zk) produces

_(z,,)C(z,,) = Z(z,O (4)

which can be rearranged into

G(zk) = -alG(zk)z[ 1 ..... apG(zk)z[p

+ Zo+ ZIz; _+"" + Zpzi" (5)

or

G(z_) = egk (6)
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wherethe matrix 6),of dimensionm × [p(m+r) +r], and the matrix G_, of dimension [p(m+r) +r] x r,
are defined as

G(zk)z;1

G(zk)zF
A

I_zf 1
...

I_zf_

(8)

Here, I_ is an r x r identity matrix. With G(Zk) and zf 1 known, Eq. (5) or (6) is a linear equation.

Because G(zk) is known at zk = eJ , (k = 1,..., g), there are g equations available.
The parameter matrix O in Eq. (6) is a real matrix whereas G(z_) and gk are both complex

matrices. Thus Eq. (6) is a complex matrix equation with a total of g complex equations. Let us
define

Gk = [Real(G(zk)) Imag(G(zk))] and Ck = [Real(gk) Imag(gk)] (9)

Equation (6) may be rewritten as

¢_ = eCk (10)

Equation (10) is a real matrix equation consisting of 2g linear equations for computing the parameter

matrix e. The matrix Gk at the frequency point k is an m x 2r matrix, whereas gk is a [p(m +

r) + r] x 2r matrix.
Often, experimental data from a completed test is available which allows all calculations to

be performed at once. A batch version is presented in this section. Stacking the 2£ equations in
Eq. (10) yields

O=Og (Ii)

where

= ...
= ...

To solve Eq. (11), let us first define a weighted cost function to be minimized as

(12)

t

J(e,l) = _ w_-' IIeG___-6,_, I1_ (i3)
i----1

where 0 < w < 1 is a forgetting factor weighting the frequency data. The data at the lowest
frequency point is given unit weight, but data that is k frequency points higher is weighted by

w k. The method is commonly called exponential forgetting• The cost function defined in Eq. (13)
is motivated by the fact that accelerometers are commonly used as the measurement device in
structural testing. The corresponding frequency response functions have better response levels in the
high frequency range. Identifying lower frequency information in the presence of measurement noise

becomes a problem. One way to solve this problem is to weight more the lower frequency region. On
the other hand, displacement sensors have better response capability for the low frequency region.
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For this case,the forgetting factor may beswitchedto weight the high frequencyregionmore than
the lower frequencyregion. The form of Eq. (13) is unchangedexceptfor the index g- i is replaced
by i. The least-squares solution for O, from Eq. (13), is given by

where

~ ~T - ~T -1= Ggl [Gg_] (14)

gw= [go w¢1 .'. w'g_ ] (15)

The subscript w associated with _w indicates that the forgetting factor w is inserted into _ with
an appropriate power at each frequency point.

The weighting w _ at the frequency point g can be quite small depending on the length g of the

data and the choice of the forgetting factor w. Fox example, w _ ._ 4.3 x 10 -5 with g - 1000 and

w = 0.99. Unless the amplitudes of those frequencies near the highest frequency are in the order of
10 -5, their contribution to the identification process may become negligible. Using accelerometers,
the ratio of the highest frequency to the lowest frequency can be as high as 103 to 105 . For this

case, the forgetting factor used in Eq. (15) is indeed a good weighting technique to perform a better
low-frequency identification.

On the other hand, one may prefer to have freedom of choosing a weighting factor. A slight
modification of Eq. (15) will provide such freedom, i.e.,

g_= [g0 wig1 ... wick] (16)

The quantities wl, w_,..., wt, can be all independent. They may be randomly or specifically chosen.
Some obvious choices include

1
Wk = e -lO(1-k)/_, Wk = k' wk = _-_; k = 1, 2,...,

For the case where the low frequency resolution is better than the high frequency resolution, the
weighting must be reversed.

Substituting Eq. (16) in Eq. (11) and solving for the parameter e that minimizes the following
cost function,

l

J(O, X: w, II0¢,- (17)
i=1

yields results similar to Eq. (14) except for the weighting factor.
In the next section, optimization-based approaches to further improve the least-square solution

are discussed.

3 Nonlinear Optimization

Another approach to enhance the identified model is to use nonlinear programming to tune the
model parameters obtained from the solution to Eq. (11). Once the solution, represented by the
parameter matrix O, is computed using Eq. (14), a state-space realization is determined. The
state-space realization can be in any canonical form such as Schur form, modal form, Jordan form,
observable form, etc. A formulation is introduced in this paper for parameter optimization. This
formulation deals with system realizations in the real Schur or modal forms, and uses a subset
of system poles for parameter optimization. The input and output influence matrices are refined
through least-squares procedures at every optimization step.

As mentioned earlier, two additional formulations for parameter optimization have also been
developed. The first formulation uses a general system realization, and utilizes nonlinear program-
ming along with an eigenvalue assignment technique to adjust a subset of system poles. The second
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formulation deals with system realizations in the real Schur or modal forms, and uses a subset of
system poles, as well as some coefficients to adjust the columns (rows) of the input (output) influ-
ence matrix for parameter optimization. These formulations are not presented here due to space
limitations, however, full details on the two approaches is provided in Ref. [12].

The details of the proposed parameter optimization approach for least-squares solution refine-
ment is presented next. This method starts with selecting a subset of system poles as optimization
parameters to minimize the error between the experimental and the identified transfer functions
over a frequency range of interest. The optimizer reassigns the system poles, which reside on the
diagonal elements or 2 x 2 block diagonal partitions of the state matrix. At each optimization
step, corrections are made to the input matrix B, the output matrix C, and the direct transmission
matrix D, through two least-squares solutions.

An optimization problem is presented below for improving the match between identified and

experimental transfer functions. Let (A, B0, Co, Do) represent an initial realization for the identified
system, and parameterize the input and output influence matrices as follows,

(Ss) -_B=B0&+NBoR,=[B0 N.] Re (18)

C=ScCo+RcNco=(Sc Rc)[ C° ] --Nco = QcC (19)

where the columns of NBo represent a set of basis vectors in the null space of B0, the rows of Nco
represent a set of basis vectors in the null space of Co, and QB, defined in terms of SB and RB, and
Qc, defined in terms of Sc and Rc, are the appropriate coefficient matrices. These coefficients are
determined, at each optimization step, by solving least-squares-based corrections of the absolute
error norm. The optimization problem is given as:

Minimize Jl"

J1 = Ila(zk)- 0(zk)llF
over

blkdiag(A)

subject to
]A(blkdiag(A))] < 1

The complex matrix G(zk) represents a system realization given by

(20)

O(zk) = C(zkIn - A)-IB + D (21)

The constraint on the modulus of A(blkdiag(A)) guarantees the stability of the identified system,
and can be omitted if stability is not of concern. At each optimization step, as a new state matrix A
is defined, corrections are performed to the B and D matrices via a least-squares solution, followed
by corrections to the C and D matrices. These solutions are defined as follows.

First, let G(zk) -- G(zk) - D, and repartition the nd X (mx r) transfer function matrix, G(zk),

columnwise, such that each column of the repartitioned (rid X m) x r matrix, G_oz, is associated

with an input. Define _(z_) = Co(zkI,, - A)-I-B, repartition _(Zk) similar to G_oz to obtain _o1,
and define the absolute error function as

e -- Gcoz - GcozQB (22)

Now, solve for QB, in a least-squares sense, to obtain

^T _- 1 ^T= (G zGo )- G ozC ol (23)

835



Once, QB is computed, then D is computed as

D- # (G(zk) - Co(zjn - A)-IB) (24)

where #( ) denotes the mean over frequency points.

To compute Qc, first define -C(zk) = G(zk) - D, and repartition the na x (m × r) transfer

function matrix, G(zk), rowwise, such that each row of the repartitioned m x (ha × r) matrix, G---_o_,

is associated with an output. Define -_(zk) = -C(zkIn- A)-IB, repartition _(zk) similar to G, ow to

obtain G,o_, and define the error function as

e = G,.,_ - QcG,._ (25)

Now, solve for Qc, in a least-squares sense, to obtain

^T ^ __AT 1
Vc = G_o_C_(-G_o_G_)- (26)

Once, Qc is computed, then D is recomputed as

D = p (C(z_) - C(z_I, - A)-IB) (27)

The number of poles that can be used as design parameters in the optimization is arbitrary. One
can use all the poles in the system, or just a few, for example, the real poles of the system. If one
starts the optimization with a system realization from the least-squares solution of Eq. (14), then
it is very likely that the complex poles of the identified system, representing resonant peaks in the
frequency response plots, match the experimental results well, and hence need not be manipulated
any further. In such a case, real poles of the system and unstable poles, real or complex, are the
best candidates for design optimization. However, one could conceivably use the modulus of all
complex poles, which determine the damping associated with each mode, as design parameters as
well.

One of the problems with nonlinear programming is the tendency of the solution to converge
to a local minimum. The problem becomes more aggravated as the number of design parameters
increases. One way to deal with this problem is to restart the optimization from another set of
design points in the neighborhood of the last optimal design. Another way of avoiding this problem
is to introduce an additional constraint requiring that the cost function be less than a desired value,
i.e.,

g _< Jd (28)

This constraint would move many of the local minima to the infeasible region, thereby avoiding
them.

The cost function in Eq. (20), which is the Frobenius norm of the error in the transfer functions
(experimental and identified), is dominated by the peaks (resonants) of the transfer functions.
Hence, optimization with Eq. (20) works well in reducing the errors at or around those peaks,
or wherever the transfer function magnitude is significant, but it may not do much in reducing
the errors elsewhere, e.g., zeros. In fact, the errors around the valleys might become worst. A
more equitable trade between the errors for peaks and valleys can be obtained by considering a
complementary optimization problem, wherein a norm of the relative error is optimized instead of

the absolute error given in F-xt. (20). Details of this optimization problem are provided in Ref. [12].

4 Applications

This section describes the application of the proposed techniques to the system identification for
the PARTI wind-tunnel model [13], a laboratory test structure at NASA Langley. The model is
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a five-foot long, high aspect ratio wing designedto flutter at low speedsto simplify aerodynamic
analysesand wind-tunnel testing. The fully assembledsemi-spanmodel is shown in Fig. 1. The
model has a total of 72 actuators bonded to both sidesof the plate. Each actuator contains two
stacks of two 0.01 inch piezoelectricpatches. The 72 actuators are hardwired to actuate in 15
different groups. The 15groupingswerechosensuch that eachgroup primarily affectsone of the
first three natural modes.Eachgroup canbe consideredasone input, becauseall the actuators in
the group usethe samesignal. The piezoelectricpatcheswereonly usedfor actuation; ten strain
gagesand four accelerometerswereusedassensors.As a result, therearea total of 15inputs and 14
outputs. Due to spacelimitations, only a few of the resultsare presentedhere. A full presentation
and discussionof the resultsaregiven in Ref. [12].

4.1 Weighted Least-Squares Solution

In the first application, the transfer function from input No. 1 to all outputs is considered for

identification. With signals from 14 sensor outputs (m = 14), input No. 1 (r = 1), and 10th
order polynomials (p = 10) used in the matrix-fraction expansion (see Eqs. (1)-(3)), a weighted
least-squares solution was first obtained from Eq. (14), using an exponential weighting function,
given as

w k; k=0,1,...,g

Here, k = 0 refers to the zero frequency component of the FRF often known as the direct current
(DC) term in electrical engineering, and w was chosen at 0.98. By adjusting the value of w one may
emphasize the low frequencies or the higher frequencies. Values of w less than 1 would emphasize the
lower end of the frequency spectrum. Here, w was set to 0.98, to emphasize the range of frequency
from 0 to 25 Hz. The weighted least-squares solution resulted in an identified model of order 140,
which included 4 unstable poles. However, since the actual testbed is stable, it is desired to obtain
a stable identified model. Truncating the unstable states yielded a 136-order state-space realization
of the system. Magnitude and phase FRF plots for output No. 7 are shown in Fig.2.

Comparison of the plots indicates an excellent agreement between the experimental FRF (solid
line) and the identified FRF (dashed line), particularly around the peaks of the FRF or where the
gain values are significant. However, discrepancies can be observed around some of the zeros as
well as where the gain values are small. This should be expected because the least-squares problem
is dominated by the peaks and large gain values. Further inspection of these plots also indicates
that the agreement between the experimental and identified results is better in the 0-25 Hz range.
The Frobenius norm of the error between the experimental and identified transfer functions was
computed at 90.128, the majority of which is due to the differences between two FRFs at DC
frequency. In fact, since the DC gain values are quite large, particularly in some output channels,
they tend to dominate the rest of the FRF in a least-squaxes solution. Keep in mind that the
DC gain values may not be accurate due to the use of accelerometers and their insensitivity at
very low frequencies, drift problems that hampers accurate measurements, and lack of sufficient
data. Therefore, in this case, it is reasonable to de-emphasize the DC values by assigning a zero
value to the corresponding weighting function, such that the DC weight is set to zero. The FRF
plots, using the modified weighting/unction, axe shown in Fig. 2 as dashed-dotted lines. This
figure indicates moderate improvements in various frequency ranges. 'The Frobenius norm of the
error between the experimental and identified transfer functions was computed to be 90.134, a
very minor change from the previous results. Comparing, the norm of the error for all frequency
points except DC, shows that the error went down from 0.241 to 0.223, which quantifies the better
match by using the modified weighting function. In order to show the effectiveness of the modified
exponential weighting, a polynomial with p = 3 is used in the matrix-fraction description. The
weighted least-squares solution resulted in a stable identified model of order 40. Figure 3 illustrate
the stable least-squaxes solutions for the nominal and modified exponential weightings for output
No. 7. These figures clearly demonstrate the advantage of modified exponential weighting for this
problem. In fact, the Frobenius norm of the error between the experimental and identified transfer
functions dropped from 12.035 to 0.3021, a significant improvement.
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4.2 Further Enhancements: Nonlinear Programming

To demonstrate the potential of the nonlinear programming approaches to further enhance the
least-squares solution, the parameter optimization approach, posed in Eq. (20), is applied to an
identified model for the PARTI testbed, obtained from a least-squares solution. In this optimization,
the Frobenius norm of the absolute error is minimized while adjusting the eigenvalues of the state
matrix, subject to stability constraints. Moreover, the optimization included corrections to the B
and D matrices, followed by corrections to the C and D matrices, at each functional evaluation
(see Eq. (23)-(24) and (26)-(27)). The 6 design variables used in the optimization were the values
of the real poles of the system. The optimization included 7 constraints, the first six to guarantee
the stability of the systems as the poles were reassigned, and a constraint on the value of the error
norm to avoid undesirable local minima. The initial design used in the optimization was taken from
a stable least-squares solution with modified exponential weighting, i.e., zero DC weighting. The
optimization reduced the norm of the absolute error from the initial value of 0.250 to 0.197, which
is over 20% reduction. Plots, comparing the FRF matrices for the experimental, nominal, and

optimal results are provided in Fig. 4, for output No. 7. The identified model (via optimization)
agrees very well with the experimental data.

All the identification results obtained so far were based on the 14 FRFs from the first input to
all 14 outputs. Now, let us consider the FRFs from all 15 inputs to all 14 outputs for identification.
With the signals from all 14 sensor outputs (m = 14) and all 15 inputs (r = 15), and 3rd order
polynomials (2 = 3) used in the matrix-fraction expansion(see Eqs. (1)-(3)), a weighted least square
solution was first obtained from Eq. (14). Similar to the previous cases, an exponential weighting
function was used, with parameter w chosen at 0.98 to emphasize the range of low frequencies. In
addition, the DC weight was set to zero. The Frobenius norm of the error between the experimental
and identified FRFs was computed at 246.855, the majority of which is due to a discrepancy between
two FRFs at the DC frequency, i.e., zero frequency. The Frobenius norm of the absolute error, for
all frequency points except the DC, was computed to be 1.721. For the purpose of illustration,
plots for the experimental and realized FRFs are depicted in Fig. 5, for output No. 7 with input
No. 1, and in Fig.6, for the same output with input No. 8. The experimental transfer functions
are shown as solid lines and the transfer functions, obtained via direct least square, as dashed lines.
These figures indicate moderate to good agreement between the transfer functions in low frequencies
ranges, particularly, around the peaks or high gain areas of the transfer functions.

Now consider the least-squares optimization approach presented in Eq. (20) for the 15 inputs and
14 output case. The initial design used in the optimization was the stable least-squares solution with
modified exponential weighting. This realization had 14 real poles, whose locations were used as
design variables in the optimization, i.e., there were 14 design variables. The optimization included
15 constraints, the first 14 to guarantee the stability of the systems as the poles were reassigned,
and the last constraint on the value of the error norm to avoid convergence to undesirable local
minima. The optimization reduced the norm of the error from the initial value of 1.165 to 1.090,
about a 6.5% reduction. Plots, comparing for the experimental (solid line), nominal (dashed line),
and optimal transfer function (dashed-dotted line) are provided in Figs. 5 and 6. It is observed that
the identified model (obtained via optimization) performs well, although only 3rd order polynomials
were used in the matrix fraction description to match a 15 input by 14 output transfer function.
Comparing Fig. 5 and Fig. 4, which correspond to the same input and output channels, confirms
the good level of correlation obtained following the optimization-based approach.

5 Concluding Remarks

Several techniques have been presented to identify an experimental system model directly from
frequency response data. The techniques used a matrix-fraction description (MFD) to describe the
identified system. The MFD coefficients were obtained from the solution of a weighted least-squares
problem. Frequency weighting concepts were introduced in order to emphasize a frequency range
of interest. An optimization-based method was introduced to fine-tune the experimentally realized
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models. The method adjusts a subset of the system poles to improve the identified model. The
input and output influence matrices are computed at every optimization step through least-squares
procedure. These techniques were applied to data from PARTI wind tunnel model, a laboratory
testbed at NASA Langley Research Center. The benefits of the optimization-based refinement tech-
nique as well as frequency weighting techniques were demonstrated. It was shown that with optimal
fine-tuning and proper choice of frequency weighting a 40th order system realization could provide
almost the same level of model fit as a full-order 136th order model. The numerical computation of
the gradients may require a large number of functional evaluation, which would be costly in a com-
putational sense. Alternatively, one may attempt to obtain analytical expressions for the gradients,
and perhaps second-order partial derivatives, to improve computational efficiency and accuracy.
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IDENTIFICATION OF A NON-PROPORTIONALLY DAMPED TRUSS STRUCTURE

Steven Naylor I. Jan R. Wright and Jonathan E. Cooper-, -' -(_2_ -3 /,

ABSTRACT _._gc:_/,.fro _/.j "_,

In this paper, an extension of the force appropriation approach used for identifying the dynamic [ ""

characteristics of non-proportionally damped structures is applied to a 3 bay cantilevered truss structure

with damped struts. The Resonant Decay method involves exciting each mode of a structure using an

appropriated excitation vector and then removing the excitation such that any modes coupled by damping

forces will respond. A Least Squares curve fit is employed in modal space in order to identify the modal

damping matrix. Three configurations are considered.

1. INTRODUCTION

The identification of accurate dynamic models of structures from experimental data is of considerable

importance in predicting the response to forcing functions and in permitting damage to be detected. In

particular, there is a growing interest in identifying damping models for non-proportionally damped

structures (i.e. where damping is not proportional to a linear combination of mass and stiffness).

Identification of damping is notoriously inaccurate.

The normal mode testing approach has a number of advantages (Cooper and Wright, 1997) and permits

undamped normal modes of a structure to be excited directly using a vector of appropriated forces,

determined using some force appropriation method (Nash, 1991). Undamped normal modes for a non-

proportionally damped structure may also be identified, whereas nearly all classical curve fitting methods

yield damped (complex) modes of vibration for such systems. One approach to estimating the modal

damping matrix (Rades, 1981) uses complex energy but damping estimates are inaccurate when modes

are not well tuned (Naylor, 1998). An alternative Resonant Decay method (Naylor et al, 1998) uses a

short "burst" excitation of each mode of interest with the appropriated force vector applied at the

undamped natural frequency. This burst will cause a response in other modes, significantly coupled by

damping forces, as the mode of interest decays. A curve fit is then performed in modal space to yield the

modal damping matrix.

One motivation for identification of damping is that it is a parameter that is very sensitive to changes

occurring in a structure due to damage of any sort and also the parameter that has a major influence on

dynamic response. In this paper, the application of the Resonant Decay method to a 3 bay truss structure

will be evaluated experimentally. This structure was the subject of a study (Smith et al, 1997) into the
identification of damage. Whilst the identification of the modal damping matrix does not lead directly to

identification of individual damping elements in a structure, a Genetic Algorithm approach may be used

to seek discrete damping values that match the modal damping matrix identified (Naylor. 1998). The RD

method is arguably powerful for continuous type structures where damping is distributed and a modal

model is more appropriate.

2. THEORY

2.1 Force Appropriation

; Arvin Cheswick Research and Development. Preston, Lanes. UK (ex University of Manchester)
: Dynamics and Aeroelasticity Research Group. Manchester School of Engineering, University of Manchester. Manchester UK
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Force Appropriation is the name given to the process of determining, from a measured Frequency

Response Function (FRF) matrix, the undamped natural frequency and monophase force veetor for

excitation of each normal mode of a structure. The "phase resonance" condition is sought, such that all
responses are in monophase and in quadrature with the excitation. The Modified MMIF (Multivariate

Mode Indicator Function) method (Nash, 1991) was used for this work and is based upon an eigenvalue
formulation involving the FRF matrix. Once the frequency and force vector are obtained, the mode can be

"tuned", i.e. it is excited and measured in isolation of all other modes. This foree appropriation approach
is quite different to the phase separation philosophy in which a model is typieally fitted to the FRF matrix
in order to obtain the damped (complex) modes of the structure.

For proportionally damped structures, the mode of interest may be excited over a band of frequencies
because here the force vector is chosen to excite only the mode of interest and to do no work in the other

modes. However, for non-proportionally damped structures, the excitation force vector is chosen so as to

counteract any damping coupling forces and a single mode may still be excited at, but only at, the
undamped natural frequency.

2.2 Identification of Non-Proportionally Damped Systems using the Resonant Decay (RD) method

Consider the equations of motion expressed in modal space

[M]{ ,b } + [C]{ p } + [K]{p} = {Q} (I)

where [M], [C] and [K] are the modal mass, damping and stiffness matrices, {Q} is the modal force

vector and {p} is the modal displacement vector. It is well known that {Q} = [#It {f} and {y} = [¢_] {p},
where {y} and {f} are the physical response and force vectors and [_] is the modal matrix.

The modal mass and stiffness matrices are diagonal. The modal damping matrix is only diagonal if the
damping is proportional but in the general case of non-proportional damping, there will be non-zero off-

diagonal terms where two or more modes are coupled by damping forces. In practice, only a subset of the

off-diagonal terms will be significant in magnitude and most are likely to be negligible. The critical
coupling terms tend to be those between modes which are close in frequency.

The idea of the Resonant Decay method (Naylor et al, 1998) is to excite a mode of interest via the force

appropriation process and then to remove the excitation. The mode of interest will then obviously decay

but any other modes that are significantly coupled to it by damping forces will respond during this decay

because the force vector counteracting the coupling terms will have disappeared. The damping coupling

terms may then be estimated by fitting a modal model to the response. This process has also been referred
to as "burst appropriation" because the excitation is applied in a burst.

Consider as an example the burst excitation of the jth mode, coupled to, typically, the kth mode by
damping forces. The modal equation for the jth mode will then be

M u _6j + Cti hi + Cik Pk + Kjj pj = Qi (2")

where the subscripts refer to elements in the relevant modal vectors or matrices. If it is assumed that the

modal matrix [#] is known from the initial force appropriation process, then the modal force Qi may be
estimated from {f} and the modal responses pj and pk estimated from {y}. Provided the modal velocities

and accelerations may also be estimated, then a Least Squares fit may be performed on equation (2) using
excitation and response sampled values. This will lead to an estimate of the unknown modal mass,

stiffness and damping terms for the jth mode, as well as the cross coupling term Cik. This procedure is
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then repeated for each mode of interest, so yielding a full set of modal parameters including the modal

damping matrix. Some coupling criterion (Naylor et al, 1998) can be employed in order to indicate which

cross coupling terms should be included in the curve fit. It may also be assumed that the damping matrix

is symmetric (i.e. reciprocity holds) and this modifies the curve fit. The identification may be viewed as

an extension of the basic force appropriation process used in normal mode tuning.

It should be noted that. even though the voltage applied to the exciters may be switched off after the burst,

the actual applied force will not immediately become zero and needs to be included in the fit. In practice,

only the acceleration is measured so that integration will be required to yield velocity and displacement.

By choosing the burst excitation and acquisition window length carefully, the excitation and response

signals will start and end at a zero value so that there will be no leakage if the integration is performed in

the frequency domain.

3. TRUSS STRUCTURE

In this paper, the identification approach is applied to a 3 bay truss

structure, previously used for damage location studies (Smith et ai, 1997)

and loaned by McDonnell Douglas Aerospace and the University of

Kentucky. The basic truss is shown in Figure I, having basic struts and 4

visco-elastically damped struts that allow the damping configuration to be

controlled. The truss is cantilevered vertically upwards from its base

(nodes !.2.3 and 4). supported on a bed-plate, and exhibits beam-like

behaviour for the first three modes, two bending and one torsional; higher

bending modes are obscured by local strut modes. Accelerometers

(PCB336A) were positioned in the x and y directions at nodes 5-16. The
three exciters were attached to the structure at node 9 in the x direction

and nodes 11 and 12 in the -y direction via stinger rods and force gauges

(PCB208B). A separate frame was used to support each exciter in a

pendulum arrangement, so that the only coupling between the exciters and

the truss was via the stingers. The excitation and data acquisition were

controlled by an HP700 computer and LMS-DIFA SCADAS front end
with LMS software. The program for performing the burst excitation was

written in LMS-UPA. a user programming language. MATLAB was used
to perform the curve fits in modal space.

4. RESULTS
Figure 1 Truss Configuration

4.1 Original Build- No Damped Strut

As an initial check, the basic structure with no damped struts (assumed to be proportionally damped) was

tested and compared to results obtained earlier (Smith et al, 1997). Linearity and reciprocity checks were

performed and indicated linear behaviour over the frequency range of interest (20-150 Hz). A 24 by 3

FRF matrix was estimated, the MMIF method applied to obtain force vectors and natural frequencies and

the modes tuned. The first three tuned modes were of high quality, with little phase scatter (indicator

function >0.99. where pure phase resonance has a value of 1.00). The mode shapes were used to construct
the modal matrix. A curve fit was carried out using the Frequency Domain Direct Parameter Identification

(FDPI) method, though results from the Polyreference method were very similar. The frequencies agreed

well with previous results as shown in Table I below. Damping results differed somewhat, probably due

to different boundary conditions and identification approaches; an impact test was used previously and

this is not usually as reliable an approach for damping estimation.
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TheResonantDecaymethodwasthenappliedusingtheforcevectorsandfrequenciesobtainedfromthe
MMIF method.Theacquisitiontimewas2.048sandthesamplingratewas2000Hz(i.e.4096pointsand
at least16pointspercycleon thesinewaveLTheburstoccupied50% of the acquisition window. Note

that the start and end of the burst sine wave were tapered in order to minimise transients. The modal

forces and velocity responses for Mode I are shown in Figure 2. A modal force is present in all three

modes which is rather surprising for a proportionally damped structure where modal force would be

expected to exist only in mode I. This occurs because there is in fact an inadequate number of exciters

present for perfect force appropriation (Naylor, 1998). Had 4 exciters been used then this would not have

occurred. However, the tuning is obviously effective as there is no significant response in modes 2 and 3

during the near steady-state "tuned" portion of the response (around 0.75 s). This is because, even with

fewer exciters than is ideal, the modes are well enough separated for this not to matter. During the decay

part of the burst, there is no significant response in modes 2 and 3, as expected for a proportionally

damped structUre. The process was repeated for the other two modes. A curve fit in modal space was

performed for each of modes 1-3, with no cross coupling terms included. Using the diagonal modal

damping matrix identified, the corresponding modal damping values were obtained. These are presented
in Table !. The results are very similar to those obtained from the classical FDPI curve fit which was

encouraging.

Smith et al FDPI RD method

Frequency Damping (%) Frequency Damping Frequency Damping

(Hz) (Hz) (%) (Hz) (%)
Mode I 62.81 0.87 62.27 1.51 62.26 1.57

Mode 2 73.50 1.31 73.81 2.69 73.49 2.73

Mode3 121,80 0,36 119.I5 0, ll 118,87 0,15

Table I Comparison of Frequencies and Damping Values for Original Build

(a)

Mode Time

6.m

"1

Time

to6

Figure 2 Modal Forces and Velocities for Excitation of Mode I - Original Build
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4.2 Original Build - Localised Damping

in the earlier study of the truss (Smith et al, 1997). vertical struts in the first (root) or second bay were

replaced with I, 2 or 4 damped struts to affect mode I alone, mode 2 alone or both modes I and 2. This

was possible because the first two bending mode shapes were spatially orthogonal, i.e. bending occurred

along the directions of the diagonals of the truss footprint (nodes 1-4 for mode I and 2-3 for mode 2).

Tests were then performed for these nominal test cases and also for damage configurations simulated by

removing a particular strut (not a damped one).

Whether any of these configurations are actually non-proportionally damped is an interesting question.

Consider the case where damped struts are inserted between nodes I-5 and 4-8, so affecting mode 1 alone.

When the truss vibrates in mode 2, then the spatial orthogonality of this mode means that there will be

zero or very small strains (and hence forces) in the dampers because they lie essentially on the neutral axis

of bending in mode 2. Thus, by definition, there is little or no damping coupling. The same argument

occurs for the other 2 strut, and indeed for the 4 strut, configuration. Even when a vertical strut is

removed, there will be no damping coupling because the orthogonal nature of the two modes will not

change. Only removal of a horizontal strut will affect the orthogonality and introduce small couplings.

Thus it is considered that the previous configurations are essentially proportionally damped. This feature

would not be the case for a more advanced truss structure where the basic mode shapes would be more

complicated.

Figure 3 Modal Velocities for Excitation of Mode 1 - Original Build + Localised Damping

Smith et al FDPI RD method

Frequency Damping (%) Frequency Damping Frequency Damping
(Hz) (Hz) (%) (Hz) (%)

Mode ! 69,37 3.12 67.77 4.07 67.74 3.97

Mode 2 76.94 2.16 77.93 4.53 77.44 4.41

Mode 3 121.80 0.39 119.37 0.14 119.17 0.14

Table 2 Comparison of Frequencies and Damping Values for Original Build + Localised Damping

In order to illustrate this point, a configuration where all the vertical struts in the first bay were replaced

with damped struts was tested in the same way as for the original build. The modes were again tuned to a

high quality (indicator function >0.99). The RD approach gave similar quality results and a sample set of
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modal velocity responses for mode I are shown in Figure 3: it is clear that there is no damping coupling,

confirming that this structure configuration is proportionally damped. The frequency and damping results

are shown in Table 2 and show similar levels of agreement to those obtained earlier. The frequencies for

modes I and 2 are higher, because of the increased stiffness of the damped struts whereas the torsion
mode frequency is essentially unchanged because the vertical struts have little effect on this mode. As

expected, the damping values are also higher but again there is good agreement between the FDPI and RD

approaches.

4.3 Modified Build

In order to test the ability of the RD method to identify a non-proportionally damped structure, a modified

configuration was sought. Removal of a vertical strut will affect one of the bending modes, but not

introduce damping non-proportionality, whereas a horizontal strut will mainly influence the torsional

mode, though -this effect is small. However, removal of a diagonal strut should have a significant effect .

on the modal characteristics of the whole structure. After some initial trials, a modified build was chosen,

with diagonal struts removed between nodes 3-8, ! 1-13 and 6-10: damped struts were inserted between

nodes 1-5, 3-7, 4-8 and 7-1 I. The idea was to destroy the regularity of the structure so as to introduce

non-proportional damping.

(a)
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Figure 4 Variation of MMIF Eigenvalues with Frequency (a) Original and (b) Modified Build

The modified build case was tested as before. The use of the MMIF method for obtaining force vectors

indicated that some damping non-proportionality was present by observing the variation of the MMIF

eigenvalues with frequency. Figures 4a and b show the eigenvalues for the original build (with dampers)

and the modified build. In both cases, the primary eigenvalues drop to very near zero at each undamped

natural frequency. However, the secondary eigenvalue drops noticeably in between the first two modes

for the modified build and this is a characteristic of non-proportional damping (Holmes, 1996). Once

again, high quality normal modes were tuned (indicator function >0.99) and the first two mode shapes are

shown in Figures 5a and b. These are no longer as simple as they were before and are not spatially

orthogonal. The FDPI method was used to curve fit the FRF matrix and the resulting modes showed some

degree of complexity as expected.
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Figure 5 Mode Shapes for Modes ! and 2 - Modified Build

The RD method was used as before. Figure 6 shows the modal velocity for the exc)tation of mode 1. It

can now be seen that some responses in mode 2 are present away from the steady-state condition, because

the modal coupling forces are not counteracted by the excitation vector. A similar result occurs for mode

2, with mode I responding. However, for mode 3, there are no cross couplings. Thus there is evidence of

damping coupling between modes 1 and 2. A curve fit was performed with (i) no couplings allowed for

and (ii) with mode 1/2 coupling terms included. The modal damping matrix for the second case is shown

in Table 3. It may be seen that the two off diagonal terms are very similar in magnitude, which should be

the case for a linear structure and is a good indicator of the quality of the identification since each value

was obtained from a different test and analysis. These coupling terms are also of similar magnitude to the

diagonal terms.

.. ........ ,, .- . 1. ,.,.

_0. O6 : .

2.8 ! i ,. i

1.m i ")
o.s

Mode "1 o Time

Figure 6 Modal Velocities for Excitation of Mode 1 - Modified Build

149.1 32.2 0

31.3 42.6 0

0 0 41.6

Table 3 Modal Damping Matrix for Modified Build

The frequency and damping results are shown in Table 4. The frequency values are much lower than

before because of the struts removed. Where no coupling was included, modal damping values may be
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deducedasbefore.However,whenthecrosscouplingtermswereestimated,acomplexmodeeigenvalue
analysiswasperformedin order to obtain comparative damping values: these are the values quoted in the

table. Damping values are of similar magnitude to those found earlier, except that the torsion mode

damping is considerably larger.

FDPI RD method No coupling RD method Coupling

Frequency Damping Frequency Damping (%) Frequency Damping

(Hz) (%) (Hz) (Hz) (%)

Mode I 43.83 4.68 43.19 3.18 43.19 4.2 !

Mode 2 54.23 4.08 53.73 5.54 53.73 4.39

Mode 3 9 I. 19 2.67 90.98 2.88 90.98 2.88

Table 4 Comparison of Frequencies and Damping Values for Modified Build

In order to validate the coupled model, the response of the modal model to a chirp excitation applied at

one position was obtained and compared to the equivalent response measured experimentally. The chirp

was applied over the frequency range 35-60 Hz with a linear sweep rate. The range encompassed the first

two modes. Figure 7 shows a sample comparison of acceleration responses at position 5 for the uncoupled

and coupled models. It is clear that the inclusion of the mode 1/2 coupling term significantly improves the

ability of the model to replicate the measured response. Ignoring the coupling introduces nearly a factor of
2 error.

/_c_Ileratlon Chirp Relponse et PoIItlon 5 ((diag.)

10 . ! _ ! : ! !

..... i _ _1 • • . 41 _...... ' _ _ : ......... : ......... : ....... , • -

w_ ...... - - _- i1"
; • I iI| i I || ¢ ; " - " " j'

o 0.1 0,2 o._ 0.4 0.5 O.e 0.7 O.a o.9
Time [m]

_celerltlon Chirp ReIponIe at PoIitlon 5 (<=ouplod)

1o _ , ; _ ! , ! . -- ...............

0 O. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 O.O 1
Time [11

Figure 7 Comparison of Acceleration Responses to Chirp Excitation - Structure and Identified Model

(a) Diagonal Modal Damping Matrix and (b) Coupled Modal Damping Matrix

5. CONCLUSION

The Resonance Decay Method has been applied to several configurations of a truss structure. The method

uses an appropriated excitation vector applied in a burst to drive a mode of interest at resonance and then

allow it to decay, so that any modes coupled to it by damping forces can respond. A curve fit of the

response in modal space yields a modal model. Results compared well to those from a curve fit to the
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FRF matrix and the method was able to identify a modal damping matrix for a non-proportionally damped

configuration of the truss by including cross coupling terms in the identification.
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Abstract

A wavelet analysis on the output signal of a nonlinear systems in the neighbourhood of a Hopf

bifurcation (i.e., a limit-cycle oscillation) has been performed to point out the linear and nonlinear

signatures of the system. Indeed, this kind of nonlinear behaviour is characterised not only by a

simple harmonic oscillation in developed steady-state condition, but also by an initial transitory phase
with a complex time evolution of the spectral signal content. Both of issues could be described in

an analytical way via a singular perturbation analysis but they could be also directly analyzed by a

signal-processing tool via wavelet analysis (Continuous Wavelet Transform, CWT): this is obtained
using the wavelet capability in describing efficiently the time evolution of the spectrum of the signal

(i.e., a nonlinear "signature" of a Hopf bifurcation). The novelty of the paper constists of applying
the wavelet theoretical tool in the behavior description of a wing experiencing a limit cycle.

1 Introduction

The identification methods based on wavelet transforms have shown several advantages in the aeroelastic

analysis with respect to the standard ones above all for the de-noising effects included to the method: in

Refs. [1] and [2] an overview of flight-test data analysis using wavelets for aeroelastic system identification

and de-noising was shown; the wavelet tools have been also used for the modal parameters identification

of linear structural-dynamical systems in Refs. [3] and [4]; moreover, in reference to the class of aeroelas-

tic problems, in Refs. [5] and [6] the evaluation of the stability margin with respect to a given parameter

(e.g., the flight speed) based on measured data was presented to be as a relevant issue. Nevertheless,

for both system identification and stability-margins identification, the transient nature of the inflight

aeroelastic dynamics (intermittency, modulation, nonperiodicity, nonstationariness, time-variance and

nonlinearity in the data) seems to show the standard Fourier analysis to be inadeguate. Because of these

reasons, time-scale analyses have recently been developed in this field, having these tools more suitable

features to the mentioned problems with respect to the classical methods of signal processing analysis.

Specifically, wavelets are waveforms that, once correlated to the signal, allow one to localize in time and

frequency the signal energetic content with arbitrary high resolution in time at high frequencies and arbi-

trary high frequency resolution at low frequencies: in this way, one can identify the features of the signal

localized or spread both in time and frequency. Assuming that the transient of the energetic content of

the output signal is generally a very relevant signature of systems (e.g., consider the impulse response

for linear systems), one may realize the wavelet capabilities for the identification of the main features of

linear and nonlinear systems and, in particular, their stability margins.

In Reference [7] the description offered by the wavelet analysis for system responses (used for the identifi-

cation of linear mechanical systems and applied in Ref. [6] for the stability-margin estimate of nonlinear

system) has been studied interpreting the obtained results via a singular perturbation analysis, Ref. [8].

To achieve this goal, a wavelet analysis of the response - to initial conditions - of nonlinear systems in the

neighbourhood of a Hopf bifurcation (i. e., limit cycle behaviour) will be examined with the support of the

analytical predictions given by a singular perturbation method: one-parameter autonomous dynamical
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systems, with algebraic nonlinearities and admitting trivial steady-state solution, will be considered. The

parameter will be denoted by #, and the analyses will be performed in the neighbourhood of its critical

value/z0, for which the linear analysis predicts the transition from stable to unstable behaviour. Then,

it is assumed that for # < P0, the steady-state solution x = 0 is linearly stable, in the sense that all the

eigenvalues of the perturbation matrix around x -- 0 have a negative real part; moreover, it is assumed

that, at p = P0, the system experiences a Hopf bifurcation in the sense that one (and only one) pair of

complex conjugate eigenvalues crosses the imaginary axis (Ref. [9]). As emphasized in most of the paper

in the field of nonlinear aeroelasticity (see Ref. [10] for a recent and rich review on the subject), this

mathematical description is physically performed by most of the aeroelastic systems in the neighbourhood

of their critical stability margin: in this case, # is typically the flight speed Uoo, the instability connected

with the Hopf bifurcation is flutter, and then P0 is referred to as the flutter speed (Uoov). The analytical

solution for the transient and steady-state behaviour will be expressed by using an asymptotic-expansion

obtained in Ref. [11] through a singular-perturbation method.

In the Section 2 we will analyze the general analytical solutions available by the singular perturbation

analysis in the/mighbourhood of a Hopf bifurcation and referring to Ref. [7] for the details. In the same

Section we will give an outlook on the Continuous Wavelet Transforms (CWT) and we will establish a

theoretical connection between the analytical predictions (by the singular perturbation analysis) and the

results obtained by a CWT analysis of the time response. In the Section 3 we present an aeroelastic

application to a six-mode wing experiencing a limit cycle (which is the novelty of this paper).

2 Theoretical basis

Let us consider a general nonlinear system represented in the state space by:

= A(p)z 4- f(z,_u) (1)

where z E R/v" (Ns is the state-space dimension)

of the system, f the nonlinear part (without loss

only), and p is a parameter. Let us suppose that

system is stable (all of the eigenvalues of A have

the system is unstable (there is at least one real

with positive real part). Considering, for the sake of simplicity, only cubic nonlinearities, one has:

f(z,p)=l_cn, qr(p)ZpZqZr } • (2)
I,p,q,r= 1

where c_.apqr(f_ ) is a Ns × N$ × Ns × Ns nonlinear-coefficient matrix. In the next Subsection, the general
solution for the above system in the neighbourhood of a Hopf bifurcation has been presented in details

in Ref. [7], next, the basic concepts of the CWT analysis and the theoretical relationship between this

two different point of views will be presented in Subsection 2.2.

is the state-space vector, A represents the linear part

of generality, we will consider algebraic nonlinearities

if p < P0, the trivial solution of the linear part of the

negative real part), while if/_ > P0 the linear part of

eigenvalue or a complex conjugate pair of eigenvalues

2.1 Hopf Bifurcation via Singular Perturbation Analysis (SPA)

The system given by Equation I has been considered in the neighbourhood of a limit cycle solution (i.e.,

for _ --_/J0)- Calling _ = [p - P01 a small-perturbation parameter, we have p -- in0 ± E, where the plus

(minus) holds for post-critical (pre-critical) response. We will also suppose that for p = P0 a couple (and

only one) ofeigenvalues of the matrix A have real part equal to zero (say)it, 2 -_ 4-jW0) while the remaining

eigenvalues are still stable. Calling A0 = A(p0), A1 = 0A/Op]_=_0, one has, A(p) = A0 ±tAt + O(_2),

while chirr(p) = c-,_twr(P0) + 0(_). Considering

z = Ux (3)
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where U is the eigenvector matrix of A0 (we assume that in the first two columns of U there are the

eigenvectors u (t), u (2) corresponding to the critical eigenvalues At,2), Equation 1 becomes:

= A0x -_-g -_" c_J sxs "_" Z "fJPq rxpxqxr (4)
p,q,r= [

where A0 is the diagonal matrix containing the Ao eigenvalues and

O/iS :-_--

Thus, considering the above Equations, the SPA gives the solution ([14, 11, 9, 7])

(
n=3 m=Nc+l

( N, __us _v, ..,_us
I _ (_js ;jpqr

+Evf_U_a--_IAs-_JYS+" p,q,r=E1 )_" + _q + _r--)_JYPYqYr
(6)

where

,,0)- (1) _ 1/2

A1 = --__PR (1),_(1), (1) t (1), (1), ln(A,)+_1 °
Z+ke2_ )tj _z= 7i Pk 17k )+tTr 17n )

(7)

where k, _0 depend on the initial conditions and:

_(I) := _(_)+jf_l) _--.--jwo :_ E cql = --jwo :F e'v(1)TAtu (1) (8)

= --EV (1)T Cjpqr %(U(1)*U(1)U(1)pq r -_- U(1)U(1)*U(1)pq r -_" U( 1)U(1)U(1)*_p q r ] (0)

(p,q,r=l

whereas a_ s, a_, "_j_r, and "Y_qr are suitable selections of ajs and _fjp_.. Note that the contribution of

the real (stable) eigenvalues has been also included (see Ref. [12]; for a higher order analysis considering

only the critical mode of vibration but using higher order terms, see Ref. [13]). Note also that the

limit-cycle solution may be stable if (see Ref. [14]), although the linear part of the system is unstable,

_(_) < 0 (i.e. p > _u0), the nonlinear part of the system is stable, -_) > 0: i.e., if _(_) < 0 and _(_) > 0

are both satisfied, a stable limit cycle may be observed in the post-critical response of the system. This

case is interesting in an aeroelastic point of view because it represents a benign (nonlinear) flutter, i.e.,

a stable limit cycle oscillation.

2.2 Continuous Wavelet Transform vs SPA

In order to overcome Fourier transform limits (e.g., the impossibility to analyze signals whose spectral

characteristics are strongly time-dependent) (Refs. [15], [16]), in the last decade a new method, based on

wavelets, has been developed. The wavelets are particular waveforms that, correlated to the signal, are

able to show and identify its features with arbitrary frequency resolution at low frequencies and arbitrary

time resolution at high frequencies (Ref. [17]). The Continous Wavelet Transform T_aVx of the signal

x(t) is defined as (Ref. [17]):

(TWaVx)(a, r):= _ _ x(t)_/2 dt (10)
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where a is the so called scaling parameter, r is the localization parameter and ¢(t) is called mother

wavelet. The previous transform has been performed for all the applications presented in this paper

using the MATLAB Wavelet Toolbox, Ref. [16]. The set of wavelets Ca,r is obtained by streching or

compressing the mother wavelet by the scaling parameter and localizing it by the parameter r. Then,
one has:

1¢ (ii)

The mother wavelet used in the present paper is the Morlet Wavelet (Ref. [17]) defined by:

2 .

¢(t) = e-_e J_°t (12)

Specifically, in order to obtain real CWT functions we consider only the real part of the Morlet mother

wavelet, with Fourier Transform given by (note that as ¢ is real and the considerd signal are also real;

then the CWT function given by Equation 10 is real too):

_(to) = _/-_ (e-_(_-o.'o}2 ..t_ e-½(a'+.'o)_ ) (i3)

where the symbol Adenotes the Fourier transform. This mother wavelet was chosen because it generates

wavelets Ca,_ having sinusoidal waveforms with gaussian envelope in the time-domain and ganssian shape

in the frequency-domain: therefore, these wavelets are similar, from a functional point of view, to vibration

signals (and then, suitable to be correlated with these kind of signals) and in the meanwhile they are

localized in time (see the gnussian time function in Equation 12) and frequency (see Equation 13). The

Continuous Wavelet Transform (CWT) of a signal may be represented in a time-scale plane, but on a

time-frequency plane as well. As a matter of fact, the relation between frequency f and scale a is:

_0 _0
=_ -- (14)

a 2_I =

where w is the angular frequency corresponding to the scale a. The previous equation allows one to map

the time-scale plane in a time-frequency plane.

It is necessary to find a formula able to reconstruct the time signal by its CWT because an inverse CWT

may not exist for certain wavelet type (Ref. [17]): this reconstruction formula could also be used to find
the Frequency Response Functions (FRF) of a linear system, or to identify the linear part of nonlinear

systems. This can be carried out in a least-square sense because the wavelets set given by Equation I1 is
not a set of orthogonal functions. In order to obtain that, one applies the Fourier transform to Equation

10 from the domain r to the domain _ obtaining:

_°_x(a, _) = V_(_)e(_) (15)

where _:(_) is the Fourier transform (from the time domain) of the signal and 'l;_'2Vx( a, ff_) is the Fourier

transform of the CWT of the signal performed in the domain of the localization parameter r. Thus, as

_'n'_x(a,_) and ¢ are known functions, one can obtain (in a least-square sense) i:(_); then, applying

the inverse of the Fourier transform (from the domain _ to the domain t), one can find the reconstructed

signal x(t). Indeed, from a numerical point of view, the Equation 15 may be written for several values of

the scaling parameter a, and the system of equation could then be solved in a least-square sense:

_(_) =
_o,(_,)} r¢,,_:(_) /r ir

] _,,_(,;,) [ ,L, (_,)1
• / _;_':(_)/ (16)/

L,_,,. (_) L,_,,,,.:(,:,);
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where _a, = vd_(aiw) (i = 1..M) and M the number of sampled values of a. Note that this least

square procedure may be noise filtering (Ref. [7]): this is due to the fact that the system of Equations

16 was .solved in a least-square sense, i.e., averaging the equations corresponding to different values of a.

Next, we shall show how the Continuous Wavelet Transform (CWT) offers the possibility to identify the

time-varying frequencies wi and the amplitudes Ai (i = 1..No) of a nonlinear system in a Hopf bifurcation

(see previous section). From Equation 6 we see that the terms of order vFE oscillate with the frequencies:

"- at = 1 + ke2X_ )t

:= --_ ---- 1 + ke 23_t}t

(17)

n=3,..,Nc (18)

O_ra =0 m=Nc+l,..,Ns (19)co,,(t) .- at

From Equations 17 and 18 we observe that the frequencies in the neighbourhood of the eigenvalues with

non-zero imaginary part vary during the transient response. Thus, it is necessary to consider both the

time- and the frequency-information (i.e., time-scale or time-frequency decompositions of the signal) if

one wants to identify the nonlinear nature of these systems. Estending the result linear systems, in Ref.

[7] it was shown the the relationship between TwaVyz(at, r) and the amplitude A1 (see Eq. 6), when

At, wt are slowly varying functions, is

71"0)0
(20)

where az is the scale correspondent to coz- On the other hand, if An, con and log A1 (see Eq. 18) are

slowly varying:

]TWa'Jyn(an,'r)l "" t _/_--°An(r) n = 3,..,No (21)
V /'COn

Thus, the envelopes of the CWT logarithmic cross sections, taken at the scales correspondent to the

nonlinear-characteristic frequencies, are proportional to the energy associated to that particular frequency

and predicted by using the singular perturbation method. Equations 20 and 21 hold both for the pre- and

post-critical behaviour. Besides identifying the amplitude AI, we may also identify the system's stability

margins through pre-critical (/_ </-to) simulations or tests. As a matter of fact, taking the logarithm of

Equation 7, we have:

1 /3(R) 1 (1+ --(:'t'logA, = log - log ke-- ) (22)

. o(i)I
In pre-critical conditions j3(_ ) > 0, then, if kePa >> 1, we obtain:

i. _rcoo K__(_) t (23)
log lTWa_yl(a,, T)[ __ _ tog _ + log At(t)

Thus, the slope q_ of the logarithm plot of the CWT cross-sections is analytically given by the coefficient

f/L I) and then proportional to e (from Equation 8). By identifying qt through several tests at different

pre-criticai values of #, the CWT allows one to identify the system stability margin 1_0.
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3 Application to a 3-D Aeroelastic System

In order to show the practical advantages given by the methods showrl, a test on a real complex model

has been performed. The model considered is a transport aircraft wing whose geometrical and structural

characteristics for the linear part of the model are presented in Ref. [7]: the linear part of the model

has been obtained using a modal description (6 modes) for the structural dynamics and the Finite-State

Aerodynamics for the unsteady aerodynamics (see [18] for details): then, the model can be represented

in the state space by

= A(Voo)z + cf(z) (24)

with z T = {qT[_ilr} where q and/l are the Lagrangian variables and r the aerodynamic vector given

by the FSA modeling; f(z) is given by f(z) = l_,p,q,r=l c_pqrZpZqZr., with c_2 = c_33a = Cto 222 =

c10 333 = 0.5, Cs_2 = cs_s = l, clt 2_ =cll _33 = 0.1, el2 222 = c12 333 = 0.01, and c_mrr = 0 in all the

other cases.l The coefficients cn_- where chosen in order to have structural stabilizing nonlinear terms,

whose most important part was given by the weakly damped modes. By varying the coefficient c it is

possible m obtain several models with weak (low values of c) or strong (high values of c) nonlinearities.

In the following results three cases have been considered: the linear (c = 0), a weakly nonlinear (c = 10),

and a strongly nonlinear (c = 20) one. The cases considered have been tested for different values of the

flight speed and for different values of the Signal-to-Noise Ratio. The noise is introducted on the generic

output signal x(t) by considering xnoise(t) = x(t)(1 + Jln(t)) + 52m(t), where n(t), re(t) are white noises

with gaussian probability distribution and zero mean value; the SNR is regulated through the coefficients

5t,_2. In Figures 1, 2 the systems responses are shown in the two cases of a pre-critical test and of a
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Figure 1: Pre-critical response of the models con- Figure 2: Post-critical response of the models con-

sidered, sidered.

post-critical test. As the figure shows, in post critical conditions after the transitory phase the systems

performs a limit cycle solution whose amplitude is larger for the weakly nonlinear system (being the

structural nonlinearities stabilizing). Figure 3 shows the pre-critical response of the weakly nonlinear

system for two diffrent values of the SNR, then considered for the stability margin (Uoor) estimation. As

already shown in the previous Section, after the signal has been recorded it is necessary to analyze the

CWT sections to identify the natural frequencies and their time evolution. Figure 4 shows that, even if

aNote that the modeling of the nonlinear contribution does not correspond to any actual physical model; nevertheless
any other arbitrary choice does not change the meaning of the obtained results.
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the initial conditions were chose such as to excite all the natural modes, after a short time the most part

of the energy is obviously associated to the critical mode. From the figure it may be observed that while

for pre crical conditions the frequency corresponding to the maximum energy is fro= = 3.SHz, while for

post critical conditions fmax = 2.2Hz. This was due to the behaviour of the linear model considered.

As a matter of fact, it has been discovered that this model have, as Uoo approaches Uoor two natural

modes with a very low damping. The first corresponds to the critical mode, but the second one is already

dominant at Uoo = 1.05UooF. This causes the dynamic of the system to be similar to a 2 DOF system

as shown in Fig. 5 that depicts the CWT of the response for pre-critical and post-critical conditions.

Analyzing the evolution with time of the signal energetic content it is clearly apparent that while the

mode at fa = 3.5Hz is dominant for Uoo < UooF, for Uoo > Uoov the mode at fn = 2.2Hz becomes

dominant. Considering the CWT cross-sections ( corresponding to th etwo frequencies identified) as

shown in Figure 6, it is possible to evaluate the damping of the critical mode in pre-critical condition

using the following robust estimate: in Figure 7 the semi-logarithmic envelopes of the CWT cross

sections are shown for different SNR at several flight speds. As predicted by Eq.23, the slope ¢ decreases

as Uoo approaches Uoo_. In Table 1 the estimate CTooFof the system stability margin is shown. The

SNR UooF _(%)
+oo 243 I.i%

I0 dB 235 -1.9%

5 dB 233 -3.1%

Table 1: Stability margin estimates:
SNR = +oodB).

SYSTEM

Linear

Weak Nordin.

Strong Nonlin.

242 0.7%

243 I.I%

244 1.6%

SNR influence (on left) and nonlinearities influence (on right;

estimation has been performed by a linear interpolation of the values of _bfor different speeds. Obviously,

as the SNR decreases the estimation become worse, but remains acceptable even if for very low SNR for

the reasons mentioned in the previous section. In Figure 8 the semi-logarithmic envelopes of the CWT

cross sections are shown for the three model considered at several flight speds. In Table 1 the estimate

U'oo_ of the system stability margin is shown for different levels of nonlinearities.
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Figure 6: CWT pre-critical (f = 3.5Hz) and post-critical (f = 2.2Hz) cross-sections.
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