NASA/CP—1999-209236 SEL-98-002

Software Engineering Laboratory Series

///v~(y/

s o
A ~

Proceedings of the Twenty-Third Annual ()t 0)
Software Engineering Workshop |

Compiled by:
Goddard Space Flight Center

Proceedings of a workshop held

at the Goddard Space Flight Center
Greenbelt, Maryland

December 2-3, 1998

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

June 1999

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information {STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to
the NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These
results are published by NASA in the NASA STI
Report Series, which includes the following
report types:

* TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of
peer-reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

* TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

* CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

* CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

* SPECIAL PUBLICATION. Scientific, techni-
cal, or historical information from NASA
programs, projects, and mission, often con-
cerned with subjects having substantial public
interest.

» TECHNICAL TRANSLATION.
English-language translations of foreign scien-
tific and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creat-
ing custom thesauri, building customized data-
bases, organizing and publishing research results . . .
even providing videos.

For more information about the NASA STI Pro-
gram Office, see the following:

* Access the NASA STI Program Home Page at
http://www.sti.nasa.gov/STI-homepage.html

* E-mail your question via the Internet to
help @sti.nasa.gov

* Fax your question to the NASA Access Help
Desk at (301) 621-0134

¢ Telephone the NASA Access Help Desk at
(301) 621-0390

* Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

The views and findings expressed
herein are those of the authors and
presenters and do not necessarily
represent the views, estimates, or
policies of the SEL. All material
herein is reprinted as submitted by
authors and presenters, who are
solely responsible for compliance
with any relevant copyright, patent,
or other proprietary restrictions.

Available from:

NASA Center for AeroSpace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161

Price Code: A17 Price Code: A10

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSF C) and created
to investigate the effectiveness of software engineering technologies when applied to the
development of applications software. The SEL was created in 1976 and has three primary
organizational members:

NASA/GSFC, Information Systems Center
The University of Maryland, Department of Computer Science
Computer Sciences Corporation, Development and Sustaining Engineering Organization

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effects of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful development practices. The activities,
findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series, a continuing series of reports that includes this document.

Documents from the Software Engineering Laboratory Series can be obtained via the SEL
homepage at:

http://sel.gsfc.nasa.gov/

or by writing to:
Systems Integration and Engineering Branch
Code 581
Goddard Space Flight Center
Greenbelt, Maryland 20771

CONTENTS

Fage

Materials for each session include the viewgraphs
presented at the workshop and a supporting paper
submitted for inclusion in these Proceedings.

Opening

Welcoming and Al Diaz Introduction (see Preface to H. Kea paper in Session 1).
M. Szczur, NASA/Goddard

Key Note Address (not available)
A. Diaz, Director of NASA/Goddard

Session 1: The Software Engineering Laboratory — Discussant: H. Kea,
NASA/Goddard

Coddards New lntegrated Approactk to [77
H. Kea, NASA/Goddard

Baselining the New GSFC Information Systems Center: the Foundation for Feryfiable

Software Process lmprovement
- A. Parra, D. Schultz, J. Boger, and S. Condon, Computer Sciences Corporation,

V. Basili, R. Webby, M. Morisio, D. Yakimovich, and J. Carver, University of
Maryland, S. Kraft and J. Lubelczyk, NASA/Goddard

Using Experiments fo Build a Body of Knowledee

-~ V. Basili, University of Maryland

Session 2: Experimentation — Discussant: R. Webby, University of Maryland

Culrure Conflicts in Software £ngineering Technology Transfer
D. Wallace, National Institute Of Standards and Technology, and M. Zelkowitz,
University Of Maryland

An ddgpration of Experimental Design ro Emprrical Falidation of Sofiware
Engineering Theories
N. Juristo and A. Moreno, Universidad Politecnica de Madrid

LDisciplined Sofiware Engineering: Fxtending Enterprise Engineering Architectures
10 Support the OO FParadigm
F. Maymir-Ducharme, Lockheed Martin

CONTENTS (cont’d)

Session 3: Inspections — Discussant: G. Abshire, Computer Sciences Corporation

X ., National Sofiware Qrality Experiment: A Lesson in Measurement- 7992 - 7997
" D. O'Neill, Independent Consultant
X . Princples of Successiil So/tware bispections
: D. Beeson, Ki Solutions Consulting, and T. Olson, World-Class Quality
X Capture-Recaprure - Models, Methods, and the Realiyy

/ ﬁ J. Ekros and A. Subotic, Linkoeping University
. §essi0n 4: Fault Prediction — Discussant: M. Zelkowitz, University of Maryland

X Jo ’if'of/ware Lyolution and the Fault Process

C " A.Nikora, Jet Propulsion Laboratory, and J. Munson, University of Idaho
M

X w 7ﬂ/€gfd/[hg Formal Methods Into Soffware Q@ff/ddé/?/'g/ Analysis
J. Knight and L. Nakano, University of Virginia

X - / | An Adaplive Software Reliability Prediction Approact
(_ '/Z/ M. Yin, L. James, S. Keene, R. Arellano, and J. Peterson, Raytheon Systems
Company

Key Note Address (not available)

The Fatal Flaw

s T i .
v L. Peterson, Math/Computers Editor for Strence News

Session 5: Verification & Validation — Discussant: J. Lubelczyk, NASA/Goddard

.

X ﬁj /'l/aa’e/ Checking Vergication and Validation at JPL and the NASA Larrmont [V&V
7 Facilny
N F. Schneider, Jet Propulsion Laboratory, S. Easterbrook, NASA IV&V F acility,
J. Callahan and T. Montgomery, West Virginia University

X / . Using Model Checking ro Falidate A7 Planner Domain Models
2N Penix, C. Pecheur, and K. Havelund, NASA Ames Research Center
X - P&V of a Spacecrafi 's Autonomous Planner througt Fitended Automation

/77 M. Feather and B. Smith, Jet Propulsion Laboratory

—

X / _ Lerforming FVerification and Validation in Reuse-Based Software Engineering
[/, Addy, NASA/WVU Software Research Laboratory

Session 6: Embedded Systems and Safety Critical Systems — Discussant: S. Kraft,
NASA/Goddard

X o Defining and Falidating Embedded Ce omputer Sofiware Requirements Using the £CS,
D OTPM and 1PFA
J. Manley, University of Pittsburg

CONTENTS (cont’d)

Using Automaric Code Generation In the Atirtude Control FIght Sofiware

- Engmeering Frocess

D. McComas, J. O'Donnell, Jr., and S. Andrews, NASA/Goddard

i Determing Software (Safery) Levels for Safetv Critical Systenms
M. Yin and D. Tamanaha, Raytheon Systems Company

Appendix A — Workshop Attendees

Appendix B — Standard Bibliography of SEL Literature

Session 1. The Software Engineering Laboratory

Godaard’s New lntegrated Approach to 777
H. Kea, NASA/Goddard

Baselining the New GSFC lnformation Systems Center:
the Foundation for Fersfiable Software Process lmprovement
A. Parra, D. Schultz, J. Boger, and S. Condon, Computer Sciences Corporation,
V. Basili, R. Webby, M. Morisio, D. Yakimovich, and J. Carver,
University of Maryland,
S. Kraft and J. Lubelczyk, NASA/Goddard

Using Lxperiments 1o Burld a Body of Knowledpe
V. Basili, University of Maryland


~~~~~~~

e ‘%?

.;f%;,;.a; p RS ';;ﬁ} |
formation Systems Center

GODDARD’S NEW APPROACH TO
INFORMATION TECHNOLOGY

The Information Systems Center
An Overview

The 23" Annual Software Engineering
Workshop

December 2-3, 1994

By Howard E. Kea




PREFACE
By Martha Szczur

Welcome and Al Diaz Introduction

23rd GSFC Software Engineering Workshop

December 2, 1998

Hi, I’'m Marti Szczur, the Chief of the Information Systems Center, which is one of the organizations
within the Applied Engineering & Technology Directorate (AETD).

Since last year’s workshop, Goddard has undergone a significant reorganization. AETD is one of two new
directorates, made up of over 1300 Goddard engineers, including computer science professionals. The
engineers are matrixed or assigned to flight projects, science directorate activities and/or advanced
technology tasks. ISC is one of the engineering groups within AETD, and as the name implies, the
Information System Center is heavily vested in all aspects of software (from design, development, testing,
validation, integration, maintenance, and including assessment of existing software products.)

The software is applied to a broad spectrum of mission and science systems ... from command & control
of the spacecraft (both on-board and on the ground) to planning/scheduling, guidance & navigation
systems, communication support, to the processing, archival, & distribution and analysis of science data
... Software is one of the key business products within the I1SC.

And thus, my interest in software engineering is extremely high. In fact, the Software Engineering Lab,
the group hosting this workshop, resides within the ISC, and I am a strong supporter of the research they
conduct. I'm also interested in their expanding their software engineering knowledge and influence across
Goddard, as well as NASA. Because of my vested interest in SE as a computer science discipline, it is

. . . . ,rd .
quite a privilege for me to be opening this 23~ Software Engineering workshop.
I’d like to mention a recent exercise at Goddard, which involved looking ahead to the year 2003 and
defining the type of work and missions in which we would be involved. And, the future missions identified
have increasing software complexity, such as
- operation of multiple spacecraft and constellations
- distributed sensing systems
- increased on-board science processing and autonomous operations

- higher volume/higher rate of science data to process, manage, archive and distribute

- collaborative, distributed engineering and science computing environments to improve formulation and
implementation of missions, as well as to foster collaborative scientific discovery.

To meet these software challenges, It is critical that advancements in software engineering be made.
Today, the software industry has not been overly successful in consistently developing software systems
that are within budget or on time or which meet all the requirements.

For example, in a Standish Group’s 1994 study*, based on an evaluation of 8330 industry software
projects, only 16% were actually successful in being on-time, in budget and meeting all originally-specified
requirements,

A staggering 53% were “challenged”. On an average, they were (1) 189% over budget, (2) had time
overruns of 222% and (3) only 61% of originally specified requirements were met.



The other 31% of the software projects were canceled somewhere during development.

Thus, with the increase of NASA mission’s dependency on software and the increase in its’ complexity, a
focus on producing quality software, and thus software engineering, I feel, becomes a critical necessity.

And, it is many of you in this room who will move us in a direction to enable a time when we can develop
software systems which are bug-free, reusable, delivered on schedule and within cost while meeting all
requirements...on a consistent basis.

Many of the presentations over the next two days pertain to advances and lessons learned which are directly
related to the software engineering challenges we face. Ilook forward to listening and learning from the
diverse collection of international experts represented here today.

I have the privilege this morning to be introducing, Al Diaz, who is the Director of Goddard Space Flight
Center.

We are very lucky at GSFC because Al, I believe more than any other Center Director to date, has an
appreciation of the critical role software ... and in particular QUALITY software ... plays in the success of
Goddard’s missions, and he recognizes its increasing role in the future.

So, with pleasure, I welcome Al and thank him for agreeing to take time from his incredibly busy schedule

d
to open the 23r Software Engineering Workshop.

* NOTE: The Standish Group International, Inc. is a market research and advisory firm specializing in
mission-critical software and electronic commerce. Information about this study can be found on their web
site: http://www.standishgroup.com Go to the option titled “Chaos Report.”




BACKGROUND

The Goddard Space Flight Center (GSFC) Strategic Implementation Plan (SIP) was published in January
1997. Since the plan was published several centerwide activities have been initiated. One in particular
known as “Project Goddard” is responsible for one of the most significant changes that have occurred in
Goddard’s history. This was the reorganization of Codes 500 and 700. The reorganization [Reference 1]
was the result of much planning that began with an assessment of the external environment and the writing
of Goddard’s SIP followed by definition of macro level processes from which an organization that could
support those processes was derived. In today’s environment, performance, cost and schedule are three
critical elements to the successful execution of a program. The requirements have become an integral
factor throughout the development process making it necessary for close customer involvement. The
reorganization was primarily structured to more effectively focus engineering talent into teams drawn from
the different disciplines. This would facilitate being able to provide products and services which support
mission needs aligned with customer requirements.

INFORMATION SYSTEMS CENTER

The ISC was created as part of the Goddard reorganization and was located within the Applied Engineering
and Technology (AET) Directorate. Why create an ISC? The creation of ISC was to (1) focus expertise
and leadership in information system development. (2)Promote organizational collaboration, partnerships,
and resource sharing. (3)Stimulate design /development of seamless end-to-end flight and ground systems.
(4) Enable flexibility to effectively support many simultaneous projects by improved access to critical mass
of discipline expertise. (5)Enhance career growth and opportunities including multi-disciplinary
opportunities and (6) to improve communications among information system professionals. Figure 1, is an
Organizational Chart of Goddard after the reorganization showing AETD and System, Technology, and
Advanced Concepts (STAAC) as new organizations.

. o
GSFC - after reorganization e Ko
Soddard Space Flight Centey it

DIRECTOR: .t Diaz
DEPUTY DIRECTOR:  B. Townsend

ASSOCIATE DIRECTOR ASSOCIATE DIRECTOR
SPACE SCIENCES
PROGRAM
2 Hrastar M. Kics
M. Kicz
OFFICE OF HUMAN CFO
¢ Tulip
J Simpson N Abell. Deputy
f NEW I I I
EARTH SCIENCES SYSTEMS TECHNOLOGY MANAGEMENT FUGHT PROJECTS
& ADVANCED OPERATIONS
V. Salomonson CONCEPTS J. Moore
D Zukor, Deputy § S Faster Vacant, Deputy
QO Figueroa Facart, Deputy )
M. Ryschiewitsch, Deputy
APPLIED OFFICE OF FLIGHT SUBORBITAL &
SPACE SCIENCES ENGINEERING & ASSURANCE UMNIVERSITY CLASS
TECHNOLOGY PROJECT OPERATIONS
S Holt ¢ Vanek
Vacant, Deputy B Keegan W Denoon, Deputy A Torres
Figure 1.



Figure 2. Shows the AETD Organization, the Director is Brian Keegan.

AETD ORGANIZATION e
Gocdard Spaca Flight Center
AET DIRECTORATE
Director Briun Keegan
CODE
500 Deputy: Dolly Perking
Associate: Krista Paquin
BUSINESS
MANAGEMENT OFFICE
Code §01
Chiet: Alda Simpson
Associate: Grettchen Burton
[ |
MECHANICAL SYSTEMS ELECTRICAL SYSTEMS INFORMATION SYSTEMS
CENTER CENTER CENTER
Code 540 Code 560 Code 580
Chicf Ed Powers Chief 14cting): Bob Kichak Chicf: Marti Szezur
Associare: Steve Brodeur Associate: Bob Kichak Assnciate Joe Hennessy
Associate: TBD Associate: Dennis Andrucyk Assocrate: Doug McCuistion
INSTRUMENT GUIDANCE, NAVIGATION
TECHNOLOGY CENTER & CONTROL CENTER
Code 550 Code 570
Chief. Jim Mason Chief: Frank Bauer
Assocrate: Carolyn Krebs Associate: Marty Frederick
3

Figure 2.

There are five Engineering Centers within the AETD which are equivalent to Division level organizations.
Each of these engineering centers is focused on a particular engineering discipline. The ISC (Code 580) is
the engineering center focused on software engineering and computer science. The ISC mission is
[Reference 2] “to provide high value information systems products and services and to advance information
technologies, which are aligned with customer needs.” The ISC organization is shown in Figure 3 below.

ISC has 8 Branches in which each Branch is focused on critical software engineering domains that cover
the full lifecycle phase of a mission. Table 1, represents each of the Branches in the ISC and highlights
their major functional areas, products and services, customers and projects supported. More detailed
information can be found at the ISC Website, http://www.isc.nasa.gov. ISC is predominantly a matrix
organization in that many of the Branch personnel 581, 584, 586 are co-located with the project offices.
The process in which personnel are assigned is accomplished annually when the projects submit Statements
of Work (SOW) to the ISC for services. Personnel with the necessary skills and experience are then
assigned to the project from 1 to several years dependent on the duration of the project.




580 / Information Systems Center Branch Structure

Branch

Functional Area/Products

Services

Customer Projects/Org

581/ Syslems Integration and
Engincering
Lestve Bovee, Howard Kea,

Murgoras Candfiold

End-to-cnd data systems
engineering of ISC mission
systems development activitics.

Mission dircctors, ground sys/flight
ops management, sys. eng., flight prep
support, SW eng, Sys I&T, AO prep

EOSDIS. HST. STAAC. NGST,
MAP. IMAGE. TRACE, POES,
AGS, on-orbit missions

582/ Flight Software
Elvine Shell, Rav Whulev, Lisa Shears

Embedded spacecraft, instrument
and hardware component
softwares; FSW testbeds

End-to-end FSW development;
simulation siw; spacecraft
sustaining cngineering

HST. MAP, TRMM. EO-1.
SMEX. SMEX-lite, SPARTAN.
EOS AM. 'Chem, GLAS,
XRS XDS, POES, NGST, XTE,
EUVE. GRO

583 / Mission Applications
Henry: Murray, Scott Green

Off-line mission data systems
{c.g., Command man., s/c mission
and science P&S, GN&C, NCC

Sys. eng.& implementation, COTs
application, testbeds for concept
proofiprotolyping in ops environment

NCC SPSR, 157, EO-1, EOS
AMI, HST, TRACE, €930,
IMAGE SOC

584 / Realtime Softwarce
Engincering

Bark Parr. Jay Putman. John
Donohue

Real-time ground mission data
systems for 1&T and on-orbit ops
{c.g.. s/c command & conirol,
launch and tracking services)

Sys. eng.& implementation, COTs
application, simulators, testbeds for
concept proof/prototyping in ops cnv.

HST. WFF, ISTP, IMAGE.
MAP. SMEX. TRACE,WIRE,
EO-1, 187, HITCHHIKER,
SPARTAN, EOS. NGST

385 / Computing Environments
and Tcchnology
Howard FErsertke, Steve Naus

Tools and services in support of
information management

Hands-on sys admin., network
manage., businessisupport tool
develop, WWW application

EOSDIS, IFMP, (630, C930.
HST, WSC, (250, C430, HST

586 / Science Data Systems
Marv Ann Esfundiari. Mary Reph

Scicnce data systems including
data processing, archival,
distribution, analysis & info man.

Sys. eng.& implementation, COTs
application & integration, testbeds,
Tototyping

FOSDIS. LS7. TRACE. TRMM
HST

587 / Advanced Data
Management and Analysis
M Estandiari (Acting). Jim Byrnes

Advanced concept development
for archival, retrieval, display,
dissemination of science data

Next-gen req. development, testbed tor
sys evaluation, prototype products

FAST. NEAR. WIND,
ULYSSES. €632, C686, C694,
€930, 0922

588,/Advanced Architeetures &
Autonomy
Doug MeCuistion (Actingy. Julie Breed)

Technology R&D focused on
space-ground automation sys. and
advanced architectures

Sys. eng & implementation, human-
computer eng., technology cvaluations,
concept prototypes, sw eng. methods

Table 1.

NCC. STAAC, SOMO, Code
SM. EOSDIS, MIDEX. NGST

The ISC has 4 simple but very critical Strategic Goals to achieve in the next 5 years:

1. Advance leading-edge information systems technology.

2. Clearly define the scope of ISC business, and deliver high value products and services that satisfy
customer needs.

3. Build a diverse, talented, innovative, energized, internationally recognized, workforce of employees
and managers.

4. Establish open, flexible, collaborative relationships with customers and partners.

These strategic goals are aligned with the Goddard Strategic Goals.

Role of the Software Engineering Laboratory in ISC

n

Given the external drivers such as “Agenda for Change “ which promulgated the creation of the ISC, the
SEL has an opportunity to leverage its capabilities to help the ISC meet its strategic goals and objectives.
There are several areas where the SEL can be an enabler for software process improvement:[Reference 3]:

e Build an improvement organization within the ISC that will increase the competency of its software
engineering professionals, thereby increasing the quality of Goddard software systems.
Model and characterize software systems in use on the ground and onboard spacecraft.
Transfer and help tailor proven development and maintenance technologies to new domains, internal
and external to GSFC.

As a result of Goddard’s organizational changes, a new vision and mission statement and new goals and
objectives have been established for the SEL. Over the past several months a series of workshops had been



conducted with the SEL Director’s to outline and define the new direction for the SEL and still maintain its
heritage over the past 20 plus years. The SEL’s new Vision and Mission statement shown in Figure 3,
emphasizes continuous software process improvement.

Software Engineering Laboratory Vision:

To be internationally recognized as a leader for applied research in Evolutionary
Software Engineering Process Improvement.

Software Engineering Laboratory Mission:

“Serve as a World Class Laboratory dedicated to evolutionary software
engineering process improvement and serve as a clearinghouse within GSFC for
software engineering best practices. And to foster the development of highly skilled
software engineers in the 1SC and in GSFC and contractor community through
continued education and training of software development practices and
methodologies.”

Mission Objectives:

1) To study, research and roll out products from our best practices and
methodologies.

2) To provide useable and applicable products aligned with customer needs.

3) To increase visibility, size and scope.

4) To partner with other software engineering organizations.

5) To serve as clearinghouse within ISC/GSFC for Software Engineering process
improvement information.

6) To educate the software engineering community on software engineering best
practices.

7) To identify resources for funds.

8) To develop quickie products e.g. “reusable abstractions” and modularize SEL
documents into a handbook format.

9) To develop strategies for rolling out practices to customers and immersing
customers in the process.

Figure 3

The current base of SEL activities include: management of databases and producing monthly reports,
development of WEB based forms to eliminate file transfer, maintenance of SEL Library and development
of Software Engineering Courses. Current research topics include Meta-process, Baseline Process and
Core Metrics development. Short term and long term goals for the SEL have been established. They are:

SEL Short-term Goals:

1)} Software Engineering Workshop

2) Complete ISC baseline study

3) Update SEL webpage

4) Develop customer focus teams

5) Increase GSFC visibility and interaction

SEL Long-term Goals:

1) Develop a full Software engineering training development program

2) Assist the ISC in obtaining CMM level 2 & 3

3) Establish partnerships with other software Engineering process improvement organizations




Figure 4 shows the relationship of the SEL with ISC. Under the new SEL structure, the ISC Branches and
Teams would work more closely with the SEL in defining current processes and developing improved
processes. The SEL analysts’ role would expand to encompass end-to-end systems development processes,
from requirements definition through maintenance and operations. In addition, new metrics will be
developed that include the complete lifecycle of the end-to-end systems development process. An example
of software technology products supporting the end-to-end mission system is shown in Figure 5.

Nadp Example ISC Technology in KC"‘“
Goddard Space Flight Center the End'tO‘end MISSIO" DAY
Science
Satellites

|- NGST Adaptive Scheduling
! - Real-time Weather Assessment
f for Remote Sensing Spacecraft

Data Archives

Science PI's [u
*
@ ‘/!/.HsTNZK Data Warehousing\\
- Remote Instrument Control R telv-Located
- NGST Scientist’s Expert Fgmo € y-b oca ePI P
Assistant emberor T | - SMEX GDS & Automation

{ i
. i
e i - Mission Ops Automation §
{ - Java-based Remote i

; Command & Control i

i

H

-

- S/C Emergency Response System

| - TRACE Automation & ]
| Remote Notification

i Remote Instrument Control ! .

Figure 5.

As a result of the expanded responsibilities, the SEL has already begun to baseline the ISC Branch’s
products and services and software development processes and team products. This effort will establish a
basis for measuring the impact of software process improvement measures that are implemented within the
ISC. SEL is also in the process of developing a series of lectures and courses that focus on the Software
Engineering Process incorporating the CMM philosophy. The SEL will also play a key role in helping the
ISC to achieve CMM levels 2 & 3 and the presence of the SEL in ISC also provides the potential to
ultimately achieve CMM levels 4 &3.

In summary, the 23 year history of the SEL has proven that long term focus on continuous improvement
can reduce costs and produce a better product. The SEL, as a research organization must continuously
adopt to the changing environment in which it exists. Expanding the scope and support activities of the
SEL will present a great challenge, however, it will position the ISC to be able to improve Goddard’s future
systems development efforts.



References:

(1) Keegan, B. “Applied Engineering & Technology Directorate (AETD) 500,” AETD Newsletter, NASA
Goddard Space Flight Center, August 1998,

(2) ISC Management Team, “ISC Retreat Report”, St. Michaels, MD, March 1998,

(3) Pajerski, R. and V. Basili, “The SEL Adapts to Meet Changing Times,” Proceedings of the 22™
Annual Software Engineering Workshop, Greenbelt, MD, December 1997,

(4) Szczur, M., “Information Systems Center (ISC) Overview Briefing”, NASA Goddard Space Flight
Center, May 1998.

(5) Kea, H, “Software Engineering Laboratory Overview,” NASA Goddard Space Flight Center,
September 1998



866T ‘S-7 "29Q
doysyopn bulissuibug
9/1eMUOS |enuuy piSz ay |
MIIAIDAQD Uy
19]U9) SWISAS uonew.IojuT ay |

; ;w

11 0 r_umoi_n_n_< >>mz S,E !m_u_uoo




004 PUe 00§
S9p0)) JO uoijeziuebloal ay3 40} SISauU3D)

",p4eppon 133[01d,, se ydns pajeniul
Uo9( o9ABY SallIAIOR oPIMID]UaD |BIDAIS

/66T Aenuer ul paysiignd sem (dIS)
ueld uopejuawaldwi 21ba1ens Gn_mwv

193ud) Jubi4 mumn_m Em_u_uow s .r_

19]U2;) SUWIJISAS U




s.Center,

10N

C

organiza




-matiori Systems.center,

tion

(C
™
<

{ T




(6¢) 9Q< ) s
) NYOUOC] UYOf SIRDLS sl
padxg) duny ydoy Ty R AR Sy Sy

SUIDY) HONSIND)I A sho(] LIBIPUE)S Uuy AaRy Aa) Ay OUS AU

(1) L8s
SouLAE] wip SNEN DA kS ey PO NEY 1R
LIZIPURJSS] UUY AARA ISI] PACAOY ERITORITIRIN TN PANOL |

e N S i . b 8 ARLINA] SIUDH dN0g N8I

(D saybnH Ja19d
‘ABojouyoa] 1o} Jueisissy

P

8¢




LSON XHAHA SIASOTINS
POy "OWOS "OVVLS "IN

spopat “3ud ws “sadoroad 1daduod
suonENEAd SHojouydan su sndwon

-urwiny “uoneudwopdwl 3y Fud s

SANIINYDIT PAdUTAPE
puL “$<$ UONTWOINE punosg-aoeds
UO PAsNIO] (133 A50jouydd |,

PO LIS HOLSIL O] SHO(]
AOUOY
W SAUMIIYILY PIIULAPY YR

O 086D
T6OY TURO) TTEOD TSIISSATH
NI AVIN LISV

s1anpoad ad10104d HONENEAD 1S
101 PagIsal udoaAdp "bat udd-1NoN

21 OUDIIS JO UONLUTLUISSIP
R VTSI RIS AV ITRMUEIN
wawdoaaap daouod pasueapy

SOULLNY LI (SHI [ DIPUDS Ty
SIS|BUY PUR WUATRUT]Y
PIN(] PAUTAPY /RS

1SH

INIALL IOV LSTTSIASO

surdaoload
“SpagIsal tuoneasaul 3 uonedtdde
SO ‘uonvudwadw 3 BUd TSAS

UBL OJUL 3 SISS[BUR UOANYLASIP
‘[earyare ‘Furssadsord viep
SUIPN|OUL SWUISAS LIEP UG

2N NADJ\ LIIPURIS Y L]
SURIERCR TG IR ITETRINENIINY

ISH 0D T0£T) IS TLSH
€6 7090 "IN TSIASO!

uonearidde mmm "dofaadp
[001 1oddns ssauisng ageue
YIOAVDU TUIWPE SAS UO-SpUBH

JudwdSeURWL UORULIOJUL
10 1oddns ul $2014198 pUE S[OO |,

SHPN ARG .bv\\.bu.f.\,ﬂ\ \H:g.::\\
Bojouydd | pue
sjuawitodiau sunndwo ) - <Ry

LSHONSOTNVIAMVIS
NI LR TLS T -0
ST TIDVIL XHINS TdVIN
CIDVINL LS LA CLSH

“aua sdo ur durdiotoadeoad 1dasuod
10§ spaqisal ‘sdojefnus ‘uoneaijdde

-

S 100 “uoneiudwaidwl W sud SLY

(S2011105 TUIYDRI] pUE Youne]
“|041U0D 2 PUBLILLOD J/s “§'2)

sdo 11q10-u0 pue ] 39| 10J SWASAS -
RIEP LOISSIW PUNOIS dW-{edy -

D WG]

N:\NQ\» :3:::,\ :4\ :‘\A\ \::N
:::u. CT,:L

ALY OG dWi ey [ +]¢

DOS HDVINI
0C6) THIVUL TLSH TTIAY
SO -0 LST USdS JIN

TUSWUOIA U0 SA0 U1 ouldAIo104djo0Id
1d2ou02 10 $paqisd ‘uonedijdde
s 1O ‘uonuuawdfduwi 2 3ud "sAg

DON DPND 'S¥d ‘3pualos pue
UOISSIL D/S ““uetd puEwo.) “B

SWRISAS BIEP UOISSIU DU 110

WD) JJOI§ RLIALY AUIL]
sueijeaddy uotssIn / €8¢

OMD AN
LN CTSDN STO 'SUX SN
QYD WY N INY SOT
NVIUVAS H-XHINS TXHINS
‘1-07 TWINYL ‘dVIN “1SH

FULI2OUITUD TUIUIRISNS
Jes220eds (/s uonenuis
quawdoaadp M S pus-01-puy

éuﬁme MS m&g&o@

SUOISS UL UQHO-U0 "§DY
S0 TIVIL TIDVINTD dVIN
LSON TOVVLS TESHSIASO]

doid OV " 11 fﬁ Jud M “aoddns
daad 1By ~Sud 's8s udwaSeuew sdo
WYF11/S S punoss “$10192.41p UOISSTA

108 :ﬁmﬁa [onap stk
oam:: Uﬁ 10 c;:uowmm

mm_ si] ,CEE 4 DY J1oys Al
@._wgaom ﬁw:w m 788

23] \:B.xcmw ..wu..@m .ﬁ?md
Buupauiduy

8a0/s193fo.a Jowoysn)

SIIAIAG

21NJONIS YOURAY 19)UI)) SUIISAS uone




"S3DIAIBS pue sjonpo.d jJo AIBAIPP dAIIDBYO
pue I19jsueu} /uoisnjul Abojouyda) buijqeus ‘sassadoud pappe
-anjeA quaniyje ‘oaisuodsal yym ssauisng e »jij sajelado HS]

*Joadsal jenjnw pue 3sn.aj uo paseq pue aAleloqe]jod
‘a1q1xayj ‘uado aue siawolsnd yyum sdiysuonejad s,0SI

"S9JIAIDS pue
sjonpoud ‘suoin|os pajudLio-12WOo)ISNd ‘DAI}RAOUUI SIBAIPRP DST
"S12WO03SND [euoijnlisul
Hoddns 03} se1bojouyda} uoijew.iojul padueApe 10} pue 3dudIds
oeds pue yjieg ul s12wWo3isnd s,pieppoo o) Abojouyoa}
uoljeuwriojul @bpa-builind 1oy Juiod €20} pue Japea| a2yl S DSI
‘sanijioe)
pue sjoo} juswdojaaap Ja1w4d pue ~m?_m>>m pue u:mEn_c_gm_u
‘Buluie.) ‘suonowoud 3qIPaLd pue Jiey [JUBUCIIAUD HIOM
buluiea] ‘ajqixa|y e buipinoid adioyd jo taAojdwd ayy si 2SI .
; ‘siobeuew
pue mww>o_n_Em JO dd.10pI0M _umNEmoum._ Ajjeu

UOISSIA ncm co_m N m




Slaulied pue siawolsnd

Uum sdiysuonea. anneloqe|j0d 31gixa|4 ‘uado ysijgeis3
| ‘siebeuewl

pue saaAojdws Jo s210y10m ‘paziuboda. Ajleuoneussyu
‘pazibisus ‘sAneAOUUl ‘pajUD|R) ‘9SI9AIP B pling

‘Spasu

13WO0ISNd AJsies jeyy seoIAIas pue spnpoud anjeA ybiy
19AIIBP pue ‘ssauisng DST Jo adods auyy sulep Al1es|)

*‘ABojouUyYD3] SWISAS uonew.ojul sbps-buipes| agueapy

0} 91e A3U} S1eBA § IXBU BUY Ul SABIYDE 0]
S|eo9 21633e.S [eond Aisa Ing ojdwis b sey DSI E

I91U2) SWISAS UONeLL




"SUOISSIW YSYN
a3} Joddns 03 pasn a1emijos ayl buiuieyulew pue
buip|ing 10} 3jqisuodsal 1010e.qU0D Jofew ay] Se DS e

pue ‘uonejuswiiadxs pue ssa00.4d
2JeM1JOS Ul S3dadU0D PadURApPe JO SNJ0J dUJ S AN *

‘SWIANSAS 31eMY0S JURAJ|DI BU)
JO ||e jo Jabeuew pue 4asn a3yl se 4g4/D4SH/VSYN ®

19|04 A9Y e buiAe|d suoneziueblo
943 JO yoes yum ‘(DSD) uonelodio) saouaids Jendwo)d

pue ‘(lNN) puejAlel Jo Alisisaiun ayy ‘D4SD/VSYN
US9M1aq pawlio) sem diystauped v ,ﬁﬁ:noﬁ pue

SS920.4d 91eM0os ||etano ayy buinoidwi pue mcicﬂm‘_ws un
Jo 9sodind ay3 10J 9/6T Ul UEmmb Sem ._mm m:

113)U27) SWIS.




. Sa1bojopoyiaw pue saoioeld Juswdojsasp 91PM]JOS

JO Bulurely pue uonednpa panunuod ybnoayy ANUNWWOD
10J0BIJUOD pue D4SH ul pue DST ay) ul siaulbua 21emyyos
Pa1IXs Alybiy Jo Juswdolaasp ay) 493504 03 puy *sadnoeld
1599 burissuibua a1emyos 10) H4SH ulyIMm asnoybuniesd

e Se 9AISS pue Juswaaoidwil ssao0.4d buliesuibus

91eM}OS AleuonnjoAs 03 pajedipap Alojeloqe sse

PHOM B Se 2AIS,, TUOISSIN AI0JBIOGeT bUMSoUIbUg S1eMjos

JuswAoldw] ssad04d buliasuibuy mx_@stom \Cmco;:_o@
Ul ydueoasal paljdde uoj 1apea| e se paziuboda. >=mcopmc3.8:_
9( 0] TUOISIA AIOJeI0qe] oc:mmc_ocm Em\stom




JusWdo|aAap
SJLII9|Al 910D pue SS300.d auljaseg ‘ssa20.4d-e1aln

2pN|ouUl $21d0] Ydodeasal Jualing
'S9S1N0D) bulissuibug 21em1os JO JusWdoaAlp
Aleldiq 73S JO aoueuquiewl

~ Jajsuen
3|l4 1eUlWlD 0} SWI0) paseq gaM JO JuawdojpAsp

s110da.
Ajyauow buipnpolad pue saseqelep JO ucmEmmmcmE

:9pN|oul SaNIAIDe 73S JO mmmn_ Emt:u m; ._.

[9]U2) SWIAISE




19]Us) ARAI SaWy Ylim
uolnjeloge||o) ul wetboud asnay HST 1oddng

uondessju] pue AJ|IGISIA D4SD 8seaudu]
S9S1N0D Aep T 10ys dojanac
Swea) Snd0J JawWoisnd n_o_m>mm
mmman_m \'@1epdn
uljaseg umH Em_n_Eou

doysyIopn mc:mm:_mcm 21eM]]

511107 STIoIsAS Hopediomy




93019,) SWDISAS

suoneziuebio JuswaAoldw
SS900.d bunisauibuy a1emos
19410 yum sdiysisuned ysijqeis3

€ 13 ¢ SIPAI] ININD
ansind 0} DST 10} S}jauaq 23ebiISOAU]

weboud .EmEn_o_m>m. butures )
burieauibug aiemyos ||nJ e m_o_m>wo

S|e0o wJay-buo



'D4SD 0] |eulaIxXa pue |eutaul ‘sulewop
M3U 03 Salbojouyda) soueujuIBW pue
JuswdojoAsp uaaoad Jojie) djay pue Jajsued |

*}jeJdaoeds pieoquo pue punotb ayj uo asn
Ul SWIS)SAS 91eMJ0S 9z14330R1RYD puk |9PO|A

.mEBm\»m

S) JO >uc8mn_Eou a3 9sea.nul 1M EE Umﬁﬁ.
°U3 UIgIMm uoneziuebio EmEm>oEE_ ue U__:my

121U3;) SWISAS WO




[013U0D JUBWINIISU| BJOWDY -

walsAg asuodsay Aouabiswig 9/g - UOHEJHION Sjouiay
[04}UO0D R pUBWIWOD ® Uoljewoiny 30vyl -
9]0WaY paseq-eAe -
uonewolny sdo UuoiIssi - -
uonjewoiny ® sdo X3S - Id 10 JaquIB)y | O =

pajeso-Ajgjoway

juelsIssy
Hadx3 s 3s1jualdg 1SON -
[O4JUO0 D JUBWINIISU| BJOWdY -

>

Buisnoyaiepn eyed MZA/LSH - \v

/px
_ I \ m;n_mocm_ow
s8AIY0IY Ble(]

yesoaoedg Buisuag ajoway 103
JUBLISSISSY 19YJRIN Dll}-|Eay
Buiinpayss aandepy LSON

7, sey||eres

aoUsI0g

3|0y UOISSIN PU3-01-pus




ABojouydd | pue spudtuuosAuz] Sunndwo )

g
0

ULIDAUITUY]
AILNJOS WY

NURINNNR B 1Hg|
RRITRIRIS

suoday] sapiaoig
AJ01150day se saAIeg
BJB(J SOAIYIIY PUB §193[[0))
$9SSI00.IJ SIUIWINIO(]

SSOM0U

suonedddy $$A20) . C o e ; ; , m«,,, QUIT ST AT IV
Nestddy ,w 0l | JOHERE : paunny SISA[RUY

QG I paugd =
UOISSIA] | Pouuod PUE JUSWITRURA]
§ . $9s59001d saurjay L / GIed padurApy

: SISAJeuUe SULI0JIo]
SaIpnys Su3iso(g

=3

SULIDOUITUY 29 uoneISauy swalsig




Baselining the New GSFC
Information Systems Center:
The Foundation for Verifiable
Software Process Improvement

A. Parra, D. Schultz, J. Boger, S. Condon,
cSC
R. Webby, M. Morisio, D. Yakimovich,
J. Carver, M. Stark,
University of Maryland
V. Basili,
Fraunhofer Center Maryland and University of Maryland
S. Kraft,
NASA/GSFC

Abstract

This paper describes a study performed at the Information System Center (ISC) in NASA
Goddard Space Flight Center. The ISC was set up in 1998 as a core competence center in
information technology. The study aims at characterizing people, processes and products of the
new center, to provide a basis for proposing improvement actions and comparing the center
before and after these actions have been performed. The paper presents the ISC, goals and
methods of the study, results and suggestions for improvement, through the branch-level portion
of this baselining effort.

Introduction

At the beginning of 1998, a major reorganization of software engineering functions took place
within the NASA Goddard Space Flight Center. A new “Information Systems Center” (ISC) was
created with the objective of concentrating and consolidating Goddard’s Information Technology
(IT) capabilities into one organizational unit.

Within the aegis of this new organization, sits the Software Engineering Laboratory (SEL) [1,7],
a twenty-three years old consortium of process and product improvement specialists from three
organizations: NASA Goddard itself, the University of Maryland and Computer Sciences
Corporation. The SEL had previously focused most of its efforts within the Flight Dynamics
Division (FDD), performing process and product improvement studies and software engineering
experiments. With the reorganization of software activities at Goddard, its scope now expands to
the entire 1SC. Therefore there was a need to better understand the wider context that the SEL
now found itself within.



Consequently, a “baseline” study was initiated by the SEL in April 1998. The aim of the baseline
was to characterize or profile the ISC in terms of its people, processes and products. Each branch
and many teams within the ISC were studied for the purpose of completing an initial baseline
study. We emphasize the word “initial” to indicate that this study is not a detailed baseline in the
sense of capturing extensive focussed data about one aspect of the ISC’s operations. Rather it is a
baseline that will provide an overall high-level profile of the new organization.

Many previous baselines have been conducted within the FDD, as well as at the level of Goddard
Code 500 [4], Goddard as a whole [5] and NASA as a whole [6]. The questionnaires developed
by the baselining team were heavily based on these earlier studies to enable comparison. Where
practical, this paper will compare data from ISC with earlier studies.

This paper documents preliminary data and observations that the SEL has made in baselining the
ISC. The ultimate goals of the baselining study are to identify areas for process and product
improvement of benefit to Goddard, as well as interesting and novel research areas to pursue.
This paper will begin by elaborating upon the goals of the study. It will continue by describing
the methods adopted (and their constraints), the data collected, and the preliminary results of the
work. The paper concludes with some recommendations for ISC and suggestions for future work
for the SEL.

The ISC
Quoting from the ISC home page [8]:

“The Information Systems Center (ISC) is an innovative center of expertise in the implementation of
seamless, end-to-end information systems in support of NASA programs and projects, and
specifically the GSFC Earth Science, Space Science and Technology focus areas. The ISC provides
leadership and vision in identifying and sponsoring new and emerging information systems
technologies.”

The ISC is organized in eight branches, each with a unique function. Refer to Figure 1for the
organization structure of ISC and Table 1 for the associated products and services. The meaning
of boxes line styles will be explained later. The work is organized in various manners: within
these branches exist teams that are producing software products and services, there are personnel
(and sometimes teams) matrixed to other ISC branches or other Codes at GSFC, and there are
cross-branch teams that serve all the ISC with representation from the branches. The detailed
organizational structure is explained in [3].

Certain terminology (noted in Italics) is used in this environment and in this paper, especially
terminology related to organizational structure. Basic organizational structure is broken down
from highest level to lowest, GSFC is divided into 9 directorates, including the Applied
Engineering and Technology Directorate (AETD), within that there are 5 Centers, including the
Information Systems Center, within that the eight branches mentioned above, within those
branches, teams of individuals supporting projects, such as the Earth Observing System (EOS).
Sometimes a person or persons is matrixed from one organizational entity to another, so that one
group manages the work, while the person(s) maintains their original organizational alliances.



Code 580
Information Systems Center

I | I I : I | I I
Code 581 || Codes82 || Code583 || Codess4 || Code85 || Codesgs || Code367 || Code 588
Systems Flight Mission Real-Time | | Computing | | Science Adv. Data Adv.
Integration & Software Applications Software Environments Data Management | | Architectures
Engineering Engineering | | &Technology Systems & Analysis | | & Automation

Figure 1 - Organizational Structure of the ISC

Branch Code

Branch Name

Products/Services

581 Systems Integration and End-to-end data systems engineering of
Engineering 1SC mission systems development
activities
582 Flight Software Embedded software products for on-
board data handling; management and
control of flight hardware
583 Mission Applications Off-line mission data systems
{command management, spacecraft
mission planning and scheduling,
science planning, etc.)
584 Real-Time Software Tools and services in support of
Engineering information management. Real-time
ground mission data systems for 1&T
and on-orbit ops (e.g., s/c command
and control, launch, and tracking
services)
585 Computing Environments Tools and services in support of
and Technology information management. Hands-on
system administration, network
management, WWW applications
586 Science Data Systems Data processing, archival distribution,
analysis and information management
for science data systems
587 Advanced Data Advanced concept development for
Management and Analysis archival, retrieval, display, and
dissemination of science data
588 Advanced Architectures Technology R&D focused on space-

and Automation

ground automation systems and
advanced architectures

Table 1. Products and Services of the ISC Branches




Goals for Baselining

The major objective of the baselining study is to gain an understanding of the ISC as to allow us
to identify areas for process and product improvement. The philosophy behind the effort is to
characterize and understand the new organization before attempting to introduce any new
technology or process improvements. From the understanding, we seek to find a basis to assess
improvements, which can then be packaged for wider integration into the business. Figure 2
highlights the role of baselining (the bottom rectangle) in the broader context of process and
product improvement according to the Experience Factory paradigm [1].

PACKAGE

Integrate the improvement into your business

» Update standards
+ Refine training
+ Tailor process based on experiments

Iterate ///////’—’

ASSESS

Select/define, implement, & evaluate an improvement locally,
Goals « Will particular reading techniques improve quality?

* Will OOT lead to higher reuse?
UNDERSTAND « Will a different testing technique reduce costs?

Gather, sift, and analyze data to build baselines

* Identify software characteristics
» Characterize process used
« Define goals

EXAMPLES

TIME >

Figure 2 - Role of Baselines in Process and Product Improvement

Methods Used

The following methods, already used in the COTS Study [9], were used.

First, a number of questions and measures have been developed, starting from the high level
goals and using the Goal Question Metric (GQM) approach [2], to collect information about
ISC’s processes, products and people. They gather both quantitative and qualitative information
— some of the data are numeric and highly factual (e.g. staff numbers), whereas other data
represent informed opinion (e.g., expectations of future change). The aim is to be able to
characterize the software products, processes and people within the organization, with adequate
qualitative context to meaningfully interpret the hard quantitative data.

Questions and measures have then been organized in a questionnaire and a structured interview
[10]. The interview being constrained to no more than 30 — 45 minutes covered the qualitative
data. The questionnaire was devoted to quantitative data that were less subject to interpretation.



To enforce consistency, guides for filling questionnaires and performing interviews were
developed too [10].

After validating these tools with pilots, they were used to collect data from branch heads and
team leaders. The process was the following.

During the interview, the Interviewer asks questions following the outline of the Interview
Guide. The Scribe takes notes and employs a tape recorder, if acceptable to the Interviewee, to
aid in preparation of the interview report. The Interviewee is told that the result of the interview
is the interview report, which will not be considered final until the Interviewee had read and
approved it. At the end of the interview the Scribe may ask some clarification questions. The
Interviewer gives a copy of the Questionnaire, which asks questions of a detailed, numeric nature
that don't lend themselves well to open-ended, face-to-face discussion to the Interviewee, and
requests that the Questionnaire be completed within two weeks.

After the interview, the Scribe prepares an interview report, consisting of brief summaries of the
Interviewee's responses to the questions on the standard Interview Guide. The Interviewer
reviews the notes. Once reviewed they are sent to the Interviewee for concurrence. At this stage
of the process, the interview report is considered approved. Tape recordings were not kept as the
approved interview report serves as the result of the interview.

At the end of the initial interview, the Interviewer schedules a follow-up interview. The purpose
of the follow-up is to go over the questionnaire that the interviewee has completed, and resolve
any items where either the questions weren't clear to the interviewee, or the responses are unclear
to the interviewer.

About the data

The baseline study collects data at two levels within the ISC: the branch and team levels. The
current status of the study is that we have completed the branch data collection and analysis, and
are currently finalizing the team-level data collection and the team-level analysis is in progress.
Therefore this paper will only report on the results from the branch-level data.

The branch-level data were collected from the management of each branch. Our aim at the
branch-level data collection stage was to build an overall characterization of the organization,
with a wide range of factors (e.g. process, people, and product) considered. The intent is that we
will perform more detailed baselines on specific factors in a subsequent study, as and when more
accuracy is required.

The consequence is that the data reported in this paper have varying degrees of reliability. In
some cases, they are actual data (e.g. head count). In other cases, they may be derived data. For
example, a question asking how much effort was spent on software maintenance versus
development was sometimes answered by managers going through their roster and counting how
many people did maintenance versus development. In other cases, the data may represent only
“guesstimates”. Sometimes we asked questions seeking data that they do not collect, so they had
to estimate. In all cases, we are dealing with a new organization, so there is not a body of
historical data, or even established data collection procedures in many cases.

As we analyze the data, we will report on the expected reliability.



Findings

Domains

Figure 3 presents a depiction of sample application domains in the ISC, in contrast to the more
focused domains of the FDD. Whereas the FDD was primarily concerned with attitude, orbit and
mission planning applications, the ISC must now be concerned with such diverse pursuits as
science data visualization and embedded flight software. The new ISC is a much more
heterogeneous organization than the FDD, so the need to understand the context of the data
collected is paramount. Direct comparison of branch to branch will be meaningless without an
appreciation of the context within which the data were collected.

Figure 3. Sample Application Domains in ISC and FDD

Domains and organization

As mentioned above, the Information Systems Center is organizated into eight branches. Figure
1 shows the basic organizational structure of the ISC. We have found that several branches
appear to have a functional domain focus (e.g. flight software), specifically these are 582, 583,
584 and 586, designated in Figure 1 with double borders. Those are contrasted with branches
that deal primarily with technology domains (e.g. advanced architectures), specifically 585,587
and 588. Code 581 is probably neither in the technology nor functional camp, they deal primarily
with the management of systems integration activities, this uniqueness is indicated in Figure 1
with a dashed border.



Matrixing and projects common to branches

In the questionnaire, branch management were asked to list the projects with which their branch
was involved. Figure 4 presents the common projects by branch. These are larger projects such
as the Hubble Space Telescope (HST) or Landsat-7, where several branches are involved.
Another question was the number of staff belonging to the branch but working outside it (or
matrixed). On average, 63% of ISC staff is matrixed. Both facts above suggest that the
organisation by branches is in some sense virtual, while the projects rather than the branches
control the process. This was also confirmed by comments from branch managers. An
implication of this for the SEL is that to introduce any process improvement, it would appear
necessary to consider how to influence the project to adopt the new technology.

581 582 583 584G S84W 585 586 587 588
HST ® ® ®

SMEX

EOS

EQO-1

ISTP ® o
mpg @
Landsat7 o

JSWITCH. e

ULDB

Figure 4 - Common Projects by Branch

Characterization of branches

Figure 5 presents the variation in staff numbers by branch. The total number of civil servants in
ISC is 249, based on an aggregation of the questionnaire data. This total has been verified by a
check against the overall ISC roster. The total number of contractors in ISC is over 308 — the
exact number is difficult to determine because some branches were unable to specify their exact
number of contractors’,

'Staffing Numbers - The count of civil servants and subcontractors working for a branch or team is not unique, as
they can report to an entity (say the team) but be paid by another (another team or branch or project). Most
interviewees did not have both data, and reported the best estimate they had. An effort to collect the most accurate
data is underway and will be reported in the ISC Baselining final report.



Staffing

(see note on staffing numbers)

100 +—— —— 1 |[dContractor Staff
B In-House Staff

Number of
employees 80

581 582 583 584W 584G 585 586 587 688 Average

Branch

Figure 5 - Staff Numbers by Branch

Most notable here is that there is one very large branch (582), more than 2/3’s of its personnel
are contractors; one very small branch (587), with no contractors whatsoever; and the rest are
mid-sized.

It is worthwhile to compare these figures to the SEL’s 1992 baseline of Code 500 [4]. Code 500
at that time contained responsibility for most of the same functional and technology domains that
the ISC contains today. Code 500, however, did not employ all of the GSFC software personnel
working in these functional and technology domains; the Engineering Directorate (Code 700)
employed some of them. On the other side of the balance sheet, however, we must note that
some of the 1992 employees of Code 500 were analysts and other “non-software” types. These
personnel were largely transferred to “Centers” other than the ISC in the recent GSFC
reorganization. With these differences between the Code 500 of 1992 and the ISC of today kept
in mind, let us proceed. In the 1992 baseline of code 500, it was found that approximately 1,600
of 5,000 staff (including contractors) were performing software-related functions (development,
maintenance, etc). The FDD had 700 staff, of which 250 were in software. This comparison (see
Figure 6) indicates that the ISC has approximately twice as many IT-related staff as FDD.
However, they are significantly smaller in size than were the code 500 software people in 1992.



. e )

ilesoftwarestaff
tSoftwa'estaff

Code 500 FDD- ISC -
-1992 1992 1998

Figure 6 — Code 500, FDD and ISC staff

Branch management was also asked to estimate effort distribution within three categories:
Development, Maintenance and Other. The results for this question are shown in Figure 7. The
average is weighted for head-counts in the respective branches. Notable contrasts here are 581°s
large amount of “other” activity — as a systems integration management branch they do hardly
any software development themselves. Also notable is 584 (Goddard real-time software)’s large
maintenance effort relative to development effort, and 586 (science data systems)’s large
development effort relative to maintenance.

In comparison with the code 500 baseline, maintenance effort in the code 500 was a lower
proportion of total effort (24%) as opposed to ISC’s 35% of effort devoted to maintenance. This
is probably explained by the smaller amount of legacy code that the ISC is responsible for
maintaining, in comparison to code 500.

Figure 8 turns our focus on software development effort alone, broken into the activities
‘requirements analysis’, ‘design’, ‘coding’, ‘testing’ and ‘other’. It is apparent that at this macro
process level, there is relatively little difference between ISC’s average development effort
distribution and that of the 1992 FDD. The ISC do a little more requirements, but that is the only
major difference. Again, we should stress that these data are management estimates, not the
actual recorded effort for each employee. In some cases, managers used heuristics such as
counting the number of testers in the organization to come up with the proportion of testing
being done. But did this then account for developers’ unit testing? We do not know.



100%

90%

80%

70%

60%

50%

40%

30%

20% +¢

10%

0%

581 582 583 584w 584 585 586 587 588 Average

Branch

Development@Maintenance OOther l

Figure 7 - Overall Effort by Branch

100% ~- -

80% A

80% A

40%

20% A

0% 4

T T T T T u T T v T
581 582 583 584W 584 585 586 588 Average FOOD

Branch

FRequiremenlsAnalysns mDesign mCoding Tesling Domeﬂ

Figure 8 - Development Effort by Branch

One possible interpretation of this data is that organizations that are more outwardly focused,
have had to put more effort into the requirements stage (and hence proportionally less in other
areas). Code 585 (science data systems) is an example of this — much of their work is for the
science community as a whole, a fairly diverse and remotely located user population. Code 583



(mission applications) has a much more defined user base and develops software such as oft-line
mission scheduling systems that can be precisely specified more easily up-front.

Some further observations about process, product and knowledge levels. Note that all branch
averages are weighted by the number of staff in the branch.

The percent of branches (including contractors) using “defined, written, advocated
software processes” varied from 10-95%, with an average of 45%

The percent of branches (including contractors) using “software standards” ranged from
0-95%, with an average of 57%

The number of COTS products used varied from 2-10 with an average of 5.1. Note that
these figures are probably deflated due to some branches listing “DBMSs”, or “lots” in
response to this question.

Overall the use of C++, Java and Ada for new development is increasing, relative to
Assembly, Fortran and C. 12 languages are used across ISC as a whole.

The most significant causes of errors in operational software were (in the following order
of importance): ‘changing requirements’, ‘missing requirements’, ‘misinterpreted
requirements’, ‘coding errors’, ‘interfaces’, ‘design errors’ and ‘environment problems’.

Most branches consider themselves well-informed about ‘prototyping’, ‘object-oriented
technology’, ‘inspections/walkthroughs’, and ‘COTS Integration’

Most branches consider themselves to have relatively little knowledge about ‘formal
methods’ and ‘defect causal analysis’, except 586 science data systems

Most branches consider themselves to have relatively little knowledge about ‘information
hiding’ except 584W real-time systems (Wallops)

All branches consider themselves to have relatively little knowledge about ‘Cleanroom
techniques’.

Only three branches produce ‘lessons learned’ documents at the end of a project.
Interestingly, one of these (584W) also produce a document called ‘a day in the life’
which serves to portray a typical day’s activities for a developer. This is considered
useful for training purposes.

In the process improvement area, several of the branches have ongoing activities:

Code 581 is funding this ISC baselining study, and is also leading the ISO 9000 ISC
certification. It is also pursuing an effort to define a core metrics set with the SEL and
Code 300.

Code 582 is encouraging reuse of both flight software and ground simulators, is looking
into additional opportunities for automatic code generation, and is pursuing the use of
COTS.

Code 583 has implemented the CORE TEAM approach, which is a type of process
improvement, and some parts of the branch are involved in some level of data collection.



e Codes 584 and 587 are currently defining their processes, as a prelude to improving them.
Code 584 expressed a desire to define a multi-level process structure, to facilitate
modularization of processes.

e Code 585, although it has not initiated a formal process improvement program, is using
guidelines in certain areas. The Code 585 personnel prefer to use guidelines, rather than
standards, because of the greater flexibility that guidelines provide.

e Code 586 is engaged in process management activities, including implementation of ISO
9001.

e Code 588, for the most part, has not initiated any process improvement activities; they
are, however, currently working on a Technology Management Plan that is oriented
toward 1SO 9000. Code 588 is also trying to move the designation of their ultimate
customer organization earlier in the process of making a system operational.

Analysis and further activities

The 1SC is a new organization that supports many of the key projects at NASA Goddard. 1t is
divided into management, technology and functional branches that represent a wide variety of
technical and functional domains. Here we try to summarize the main results of the baselining
effort and their implications for further SEL activities.

Diversity

The preliminary results of this baseline show that each branch is very different in terms of
personnel, process and product characteristics. The variations in effort distribution, languages
used, and products developed by the different branches provide surface indications of the
diversity among the branches. The implications are that it will not be possible to apply the same
models for cost and quality to each branch, as we could do to some extent within the more
homogeneous FDD. To understand how cost and quality relate, we must study them in the
context of each branch, team and/or project. Then, each model must be constructed and
calibrated to the given context in question. The development of different models however is not
the only challenge; these models must be capable of integration so that aggregated information
can be meaningfully provided for the whole of ISC.

The NASA Core Software Metrics Initiative

The SEL and GSFC/NASA’s Software Assurance Technology Center (SATC) [11] are currently
pursuing an initiative to define and implement a core set of software metrics, common to the
whole of NASA. For well over a year these two GSFC organizations have been working
together to define a core set of metrics.

The baselining has confirmed that there is an essential need for core metrics within the ISC. Due
to the diversity of the ISC, branches, teams and projects use different reporting units for metrics
such as product size, effort and defects. The core metrics initiative defines a set of metrics
capable of being used in different contexts, yet capable of providing a common abstraction level
to allow aggregation at the ISC level. This is essential not only for monitoring purposes, but also
for the model building needs mentioned above.

12



At this time, a draft version of the Core Metrics set, developed by the SEL and SATC, is
currently under review by the NASA Software Working Group. At the time this paper is written
the SATC and SEL web pages do not specifically call out the Core Metrics, in future that
information should be assessable through SATC and SEL web pages [11,12]. An experiment
within the ISC to validate these Core Metrics would serve both the NASA Core Metric Initiative
and the ISC’s proactive drive toward process and product awareness and improvement.

Matrixing

The ISC is organized in branches and teams, but branch and team staff work, at 63% on average,
on projects outside the scope of ISC, managed and funded by NASA Codes other than 500. In
particular, 95% of the staff belonging to Code 582 is matrixed outside ISC.  This is not
surprising, as the ISC is meant to offer IT services to all of GSFC and NASA. However, a
number of issues are raised.

e System and software engineering. Many projects where matrixed staff works are system
projects where software is only a part. The system issues (processes, technologies,
interfaces) should be taken into account in software processes too.

e Ownership of processes and rights to modify. When projects are funded and ruled outside
ISC, ISC may or may not be free to decide on processes, standards, and organizations to
be used.

e Diffusion of information. Matrixed personnel could physically work outside ISC, with
increased difficulties in communication and diffusion of information about the SEL and
technology transfer or software process improvement projects.

The SEL could try to understand in more depth these issues with further studies. However, it
seems that, for the purposes of assessment, characterization, and model building, the team and
the projects are the more suitable units to be considered. This implies that, as projects and teams
are volatile, with a life span of months, measures and models should be highly versatile and
adaptive.

Also, the concept of Experience Factory, defined and used by the SEL in the past years, could
need some adaptation. Several levels of experience, and several levels of learning loops, can be
identified: at the individual, team, branch and ISC levels.

Finally, if projects and teams are volatile, and branches are virtual, individual persons are the
most stable and valuable resources to base process and product improvement on. Approaches
such as Watt Humphrey’s Personal Software Process (PSP) could be used and adapted to the ISC
context. Specifically, the PSP does not consider sharing experiences and improvements with
peers, and should be extended in this direction to integrate concepts from the Experience
Factory.

CoTs

All branches report the use of COTS. The SEL should support teams and branches in COTS
related activities: evaluation and selection, testing and certification, interaction with producer,
documentation and diffusion of information. The SEL’s experience in COTS processes will be
of benefit to the ISC and the diversity of the ISC offers opportunities for case studies to further

13



validate the COTS process model [9]. This study concluded with recommendations for further
work to build cost models, risk analysis, and process models. Since, COTS remains a buzzword
with different meanings for different people. Another action for the SEL is the definition of a set
of terms and classification tools for the different concepts and artifacts currently considered
under the umbrella term COTS.

Finally, COTS should be considered in the broader context of reuse and related technological
and organizational issues: domain analysis and engineering, product line engineering, reusable
libraries, frameworks, design patterns, mechanisms and standards (Com, Corba, Active-X, Java
RMLI, Java beans, etc.).

Internal technology transfer

There would seem to be opportunities for greater synergies within ISC to do internal technology
transfer so that the advanced technologies and research efforts of branches 585, 587 and 588 are
successfully transitioned into practice in branches 582, 583, 584 and 586.

The past work of the SEL within Goddard has shown the need to understand, assess and package
technology to insure its successful introduction. Possibly the SEL in code 581 can play a role in
furthering a controlled and systematic transfer of this technology to the functional branches, as
well as helping insure that the advanced technology branches work in relevant areas amenable to
future technology transfer.

The SEL could assist by defining a methodology to evaluate if and how a technology
successfully applied in one context (branch, team, project) can be transferred to another context.

Reuse and frameworks

Several products in ISC are developed and mantained for years and possibly customised in
different versions. The overall cost of a product during the complete service cycle can be
decreased by technologies such as architecture and framework-based reuse. For example Code
582 (flight software) is exploring this road by developing a new architectural design for on-board
shuttle navigation control.

The SEL could offer support to organize, measure and document such efforts with two main
goals. Promote the success of the reuse effort inside a branch. And acquire methodological
experience to replicate the same effort in other branches (see also the Internal Technology
Transfer subsection).

Requirements instability

Requirements, and specifically requirements instability, are a common source of problems for
ISC teams. Several lines of intervention are available for the SEL:

¢ Experimentation with novel techniques for requirements capture and management.

e Adaptation of and experimentation with of techniques for early detection of defects in
requirements, such as requirement reading techniques.

o Adaptation of and experimentation with new lifecycles for early verification of
requirements, such as prototyping, iterative lifecycles, joint application development.

14



Acknowledgements

This work was funded by NASA grant NCC-5170, and the following NASA Contracts: CNMOS
and CSOC.

References

[1] V. R. Basili, G. Caldiera, F. McGarry, R. Pajerski, G. Page, S. Waligora, The Software
Engineering Laboratory - an Operational Software Experience Factory, International Conference
on Software Engineering, May, 1992, pp. 370-381.

[2] R. Basili, H. D. Rombach, The TAME Project: Towards Improvement-Oriented Software
Environments, IEEE Transactions on Software Engineering, vol. SE-14, no.6, June 1983.

[3] Kea H., Goddard’s New Integrated Approach to Information Technology, 23™ Software
Engineering Workshop, Nasa/GFSC, December 1998.

[4] NASA, Profile of Software Within Code 500 at Goddard Space Flight Center, Technical
report RO1-92, 1992.

[5] NASA, Profile of Software at the Goddard Space Flight Center, Technical report RPT-002-
94, June 1994,

[6] NASA, Profile of Software at NASA, Technical report RPT-93, December 1993.

[7] NASA, An Overview of the Software Engineering Lab, Technical report SEL-94-005,
December 1994.

[8] NASA/ISC, The ISC home page, http://isc.gsfc.nasa.gov/default.htm.

[9]NASA/SEL, SEL COTS Study, Phase 1, Initial Characterization Study report, SEL-98-001,
August 1998.

[10] NASA/SEL, ISC Baselining documentation, http://sel.gsfc.nasa.gov/doc-st/tech-
st/sew23/baselining.htm

[11] NASA/SATC, The SATC home page, http:/satc.gsfc.nasa.gov/
[12] NASA/SEL, The SEL home page, http://sel.gsfc.nasa.gov/




DASD Yery 'S
N S0 11 SIS ‘N TOATED) [ “YIIAOWIINEX “(I ‘OISO ‘Nl “AqQ9M "4 TIISEd "A
0§D ‘uopuo)) S “1a8og [ ‘ZNYIS ‘A ‘Bled 'V

JUIWIAOId U] SSII0IJ d18M)JOS
JQRIJLII A 10J UOnEpPUNO Y I,

J31U3)) SW3ISAS Uojjplio

*mﬂ_ﬂamﬁx i

LA | LY

DASD MIN Y} sutuIpseq



(S661) VSVN Jo djgoid
($661) DASD Jo d[yoid P

(€661) 005 90D DASD Jo dyoid
(] Jo saurjaseq AUBA

SAIPNIS duIfdsey JOLI



sauljaseq pjinq o) ejep azAjeue B ‘YIS ‘Iayjes

SIUAWdAOIAWI dInseaw 01 S[apow dO[oA(J
o S[e03 SUIJI(J e
$59001d pasn $s3201d JZ113108IRY)) »
1onpoxd SOTISLIdIORIBYD AIBMIJOS AJTIIUIP] »

uoneziuedio

®ourjoseg e s ey



sjeob auyaq »
pasn ssadoud azusjoeseyy .
sonsuvloeIeyd aiemyos Ajiuapj «

sauljoseq pjing o} ejep azAjeue pue ‘Yis ‘isyjes

251502 aonpas anbiuyday Bunsa) JUIIYIP € |IIM ANV.LSH3IANN

¢asnal Jaybiy o) pea] LOO IIIM «
¢ fnjenb anoadun sanbiuyosy Huipeaul Jejnoied [JIAA ¢ S|eo9)

Ajje20] Juswanoiduil ue ajenjerd @ quawa|duwi ‘auljoposlds

sjuawiiadxa uo paseq ssao01d iojie] « SSASSY
Buiuted) aujay «

spiepuejs ajepdn » ajelal|

ssauisnq 1noA ojui yuswaroiduwil ayj ajeiboju|

JOVMOVd

JuawdA0IdUI] $S3001J UT saul[ased JO 3]0y

S3TdNVX3



syuamwraAoxdur ssao01d pue jonpoiad sjqensuowap
- S11JOUdq UL} SU0|

DSI Y1 JO Surpuelsiopun 19119q

U@E@E mQOmmE o.:wﬂm
M mw - mwmmﬁmﬂ [88R(a)] to:m
¢ ¢ &

Swiea] 79 sayoueiq s
UOTIBZLID}OBIBYD QUI[ASB( B 90NPOI]




19p1A0Id BIBP UM S)NSAI 29 BIeP AJLIOA
BIEP JZA[RUY
SAITRUUONSAN() —
SMITAIUI PAINONNS —
\V SOPOW OM] UT UOTJBULIOJUT JOUJeD)
wed | —
youerq —
S[9AQ] 0M] J& UOTJBRULIOJUT JYJer) .

Apnys durfaseq DS JO SPOYIRN



OSI 10} S[opotu pIinyg

TUQWIUOIIAUS HST APNIS

Sul[aseq ST ystqnd

SINSAI BIBP [QAJ] Wed) pue yodouelq dredwo))

S1INSAI [OAJ[ Wed) JZA[eue
‘UOTIOBIIXI BIBD [9AJ] wed) d9[dwo)

3ururaseq 2y} 10} sdaig 1XoN



d3en3ue ]

SONIAIIY dIBMIIOS
93es() SLOD
SUIXINRIA

surewo(J uonesrddy

DS1JO ANSISAIQ Y],




surewo( uonedrddy



01

DSI SPISINO PIXLNEIA

ST UTgIIM pOXIIEpy 70%

SUIXLIIBIA

PoxLIIEN
JON




11

surewo(] uonedrddy anbrun
1oddns s1onpoid S 10D SIAL(] \/

sayouriq

[[& SSOJo’ 33esn S 1O AABIH o [~

J

93es(] SLOD,




1eS

t

1v1

Software Act

101J9 Judd12d

12

Test Other

Design Code
B Branch A - 90% dev./ 10% maint.

B Branch B - 50% dev./ 40% maint.

Requirements
Analysis




el

AIEMIJOS MAN dIeM1JoS SunsIxy

+ R

§63)7

BAR[

XIJA 93en3ue]




14!

Joueiq B UIYIIM UOTIN[OAD - XIJA a3en3ue |
S[opowr o[dnnuu - SANIANIR IBM]JOS

SAIpNIS anuUNUO9 ‘anssr juepodwr - 100D
I9Jsuel] 4o, 10J Ayrunyroddo - Surxiney
S[opowr d[dnynur - UTBWO(] 9SIQAI(]

suonedrduwy 29 SUOISN[OU0)) [eNIU]



Sl

SUOTIBZIUBSIO SUIA[OAD UI JIBIZIUI 29 OB O], —
WeRIS0IJ JUAWIA0IAW] SSID0IJ

SIIp§ S.LOD -
S[OPOW 199J9P/UOIIBWIISS 1SO))

QOUALIAAX SuruIfasey uo paseq
snd0,J pasodoig



e
—

2 -t/

Using Experiments to Build a Body of Knowledge

Victor Basili Forrest Shull Filippo Lanubile
Fraunhofer Center Maryland Institute for Advanced Computer Studies Dipartimento di Informatica
and Computer Science Dept. Computer Science Dept. Universita' di Bari
University of Maryland University of Maryland Via Orabona, 4
College Park, MD 20742, USA College Park, MD 20742, USA 70126 Bari, ltalia
basili@cs.umd.edu fshull@cs.umd.edu lanubile@di.uniba.it
Abstract

Experimentation in software engineering is important but difficult. One reason it is so difficult is that there
are a large number of context variables, and so creating a cohesive understanding of experimental results
requires a mechanism for motivating studies and integrating results. This paper argues for the necessity of a
framework for organizing sets of related studies. With such a framework, experiments can be viewed as
part of common families of studies, rather than being isolated events. Common families of studies can
contribute to important and relevant hypotheses that may not be suggested by individual experiments. A
framework also facilitates building knowledge in an incremental manner through the replication of
experiments within families of studies.

Building knowledge in this way requires a community of researchers that can replicate studies, vary context
variables, and build abstract models that represent the common observations about the discipline. This
paper also presents guidelines for lab packages, meant to encourage and support replications, that
encapsulate materials, methods, and experiences concerning software engineering experiments.

1. Introduction

Experimentation in software engineering is necessary. Common wisdom, intuition, speculation and
proofs of concepts are not reliable sources of credible knowledge. On the contrary, progress in any
discipline involves building models that can be tested, through empirical study, to check whether the
current understanding of the field is correct'. Progress comes when what is actually true can be separated
from what is only believed to be true. To accomplish this, the scientific method supports the building of
knowledge through an iterative process of model building, prediction, observation, and analysis. It requires
that no confidence be placed in a theory that has not stood up to rigorous deductive testing [21]. That is,
any scientific theory must be (1) falsifiable, (2) logically consistent, (3) at least as predictive as other
competing theories, and (4) its predictions have been confirmed by observations during tests for
falsification. According to Popper, a theory can only be shown to be false or not yet false; researchers only
become confident in a theory when it has survived numerous attempts made at its falsification. This
paradigm is a necessary step for ensuring that opinion or desire does not influence knowledge.

Experimentation in software engineering is difficult. Carrying out empirical work is complex and time
consuming; this is especially true for software engineering. Unlike manufacturing, we do not build the
same product, over and over, to meet a particular set of specifications. Software is developed and each

! For the purpose of this paper, we use the definitions of some key terms from [15] and [1]. An empirical
study, in a broad sense, is an act or operation for the purpose of discovering something unknown or of
testing a hypothesis, involving an investigator gathering data and performing analysis to determine what the
data mean. This covers various forms of research strategies, including all forms of experiments, qualitative
studies, surveys, and archival analyses. An experiment is a form of empirical study where the researcher
has control over some of the conditions in which the study takes place and control over the independent
variables being studied; an operation carried out under controlled conditions in order to test a hypothesis
against observation. This term thus includes quasi-experiments and pre-experimental designs.

A theory is a possible explanation of some phenomenon. Any theory is made up of a set of hypotheses. A
hypothesis is an educated guess that there exists (1) a (causal) relation among constructs of theoretical
interest; (2) a relation between a construct and observable indicators (how the construct can be observed).
A model is a simplified representation of a system or phenomenon; it may or may not be mathematical or
even formal; it can be a theory.



product is different from the last. So, software artifacts do not provide us with a large set of data points
permitting sufficient statistical power for confirming or rejecting a hypothesis. Unlike physics, most of the
technologies and theories in software engineering are human-based, and so variation in human ability tends
to obscure experimental effects. Human factors tend to increase the costs of experimentation while making
it more difficult to achieve statistical significance.

Abstracting conclusions from empirical studies in software engineering research is difficult. An
important reason why experimentation in software engineering is so hard is that the results of almost any
process depend to a large degree on a potentially large number of relevant context variables. Because of
this, we cannot a priori assume that the results of any study apply outside the specific environment in
which it was run. For isolated studies, even if they are themselves well-run, it is difficult to understand how
widely applicable the results are, and thus to assess the true contribution to the field.

As an example, consider the following study:

e Basili/Reiter. This study was undertaken in 1976 in order to characterize and evaluate the
development processes of development teams using a disciplined methodology. The effects of the
team methodology were contrasted with control groups made up of development teams using an "ad
hoc" development strategy, and with individual developers (also "ad hoc"). Hypotheses were proposed:
that (BR1) a disciplined approach should reduce the average cost and complexity (faults and rework)
of the process and (BR2) the disciplined team should behave more like an individual than a team in
terms of the resulting product. The study addressed these hypotheses by evaluating particular methods
(such as chief programmer teams, top down design, and reviews) as they were applied in a classroom
setting. [7]

This study, like any other, required the experimenters to construct models of the processes studied, models
of effectiveness, and models of the context in which the study was run. Replications that alter key attributes
of these models are then necessary to build up knowledge about whether the results hold under other
conditions. Unfortunately, in software engineering, too many studies tend to be isolated and are not
replicated, either by the same researchers or by others. Basili/Reiter was a rigorous study, but
unfortunately never led to a larger body of work on this subject. The specific experiment was not
replicated, and the applicability of the hypotheses in other contexts was not studied. Thus it was never
investigated whether the results hold, for example:
o for software developers at different levels of experience (the original experiment used university
students);
if development teams are composed differently (the original experiment used only 3-person teams);
e if another disciplined methodology had been used (i.e., were the benefits observed due to the particular
methodology used in the experiment, or would they be observed for any disciplined methodology?).

2. A Motivating Example: Software Reading Techniques

Yet even when replications are run, it's hard to know how to abstract important knowledge without a
framework for relating the studies. To illustrate, we present our work on reading techniques. Reading
techniques are procedural techniques, each aimed at a specific development task, which software
developers can follow in order to obtain the information they need to accomplish that task effectively [2, 3].
We were interested in studying reading techniques in order to determine if beneficial experience and work
practices could be distilled into procedural form, and used effectively on real projects. We felt that reading
techniques were of relevance and value to the software engineering community, since reading software
documents (such as requirements, design, code, etc.) is a key technical activity. Developers are often called
upon to read software documents in order to extract specific information for important software tasks, e.g.
to read a requirements document in order to find defects during an inspection, or an Object-Oriented design
in order to identify reusable components. However, while developers are usually taught how to write
software documents, the skills required for effecting reading are rarely taught and must be built up through
experience. In fact, we felt that research into reading could provide a model for how to effectively write
documents as well: by understanding how readers perform more effectively it may be possible to write
documents in a way that facilitates the task.



However, the concept of reading techniques cannot be studied in isolation. Like any other software process,
reading techniques must be tailored to the environment in which they are run. Our aim in this research was
to generate sets of reading techniques that were procedurally defined, tailorable to the environment, aimed
at accomplishing a particular task, and specific to the particular document and notation on which they
would be applied. This has led a series of studies in which we evaluated the following types of reading
techniques:

e Defect-Based Reading (DBR) focused on defect detection in requirements, where the requirements
were expressed using a state machine notation called SCR [13, 22].

e Perspective-Based Reading (PBR) also focused on defect detection in requirements, but for
requirements expressed in natural language [4, 16].

e Use-Based Reading (UBR) focused on anomaly detection in user interfaces [27].

e Seccond Version of PBR (PBR2) consisted of new techniques that were more procedurally-oriented
versions of the earlier set of PBR techniques. In particular, we made the techniques more specific in all
of their steps [24].

e Scope-Based Reading (SBR) consisted of two reading techniques that were developed for learning
about an Object-Oriented framework in order to reuse it {10, 23].

A framework that makes explicit the different models used in these experiments would have many benefits.
Such a framework would document the key choices made during experimental design, along with their
rationales. The framework could be used to choose a focus for future studies: i.e., help determine the
important attributes of the models used in an experiment, and which should be held constant and which
varied in future studies. The ultimate objective is to build up a unifying theory by creating a list of the
specific hypotheses investigated in an area, and how similar or different they all are.

Using an organizational framework also allows other experimenters to understand where different choices
could have been made in defining models and hypotheses, and raises questions as to their likely outcome.
Because these frameworks provide a mechanism by which different studies can be compared, they help to
organize related studies and to tease out the true effects of both the process being studied and the
environmental variables.

3. The GQM Goal Template as a Tool for Experimentation

Examples of such organizational frameworks do exist in the literature, e.g. [9, 17, 20]. For the purpose of
this paper we find the Goal/Question/Metric (GQM) Goal Template [8] useful. The GQM method was
defined as a mechanism for defining and interpreting a set of operational goals using measurement. It
represents a top-down systematic approach for tailoring and integrating goals with models of software
processes, products, and quality perspectives, based upon the specific needs of a project and organization.

The GQM goal template is a tool that can be used to articulate the purpose of any study. It ties together the
important models, and provides a basis against which the appropriateness of a study's specific hypotheses,
and dependent and independent variables, may be evaluated. There are five parameters in a GQM goal
template:
o object of study: a process, product or any other experience model
o purpose: to characterize (what is it?), evaluate (is it good?), predict (can I estimate something in
the future?), control (can I manipulate events?), improve (can | improve events?)
e focus: model aimed at viewing the aspect of the object of study that is of interest, e.g., reliability
of the product, defect detection/prevention capability of the process, accuracy of the cost model
o point of view: e.g., the perspective of the person needing the information, e.g., in theory testing the
point of view is usually the researcher trying to gain some knowledge
e context- models aimed at describing environment in which the measurement is taken

For example, the goal of the Basili/Reiter study, previously described, might be instantiated as:
To analyze the development processes of a 1) disciplined-methodology team approach, 2) ad hoc team
approach, and 3) ad hoc individual approach
for the purpose of characterization and evaluation



with respect to cost and complexity (faults and rework) of the process
from the point of view of the developer and project manager
in the context of an advanced university classroom

Due to the nature of software engineering research, instantiated goals tend to show certain similarities. The
purpose of studies is often evaluation; that is, researchers tend to study software technologies in order to
assess their effect on development. For our purposes, the point of view can be considered to be that of the
researcher or knowledge-builder. While studies can be run from the point of view of the project manager,
i.e. requiring some immediate feedback as to effects on effort and schedule, published studies have usually
undergone additional, post-hoc analysis.

The remaining fields in the template require the construction of more complicated models, but still show
some similarities. The object of study is often (but not always) a process; researchers are often concerned
with evaluating whether or not a particular development process represents an improvement to the way
software is built. (E.g.: Does Object-Oriented Analysis lead to an improved implementation? Does an
investment in reviews lead to less buggy, more reliable systems? Does reuse allow quality systems to be
built more cheaply?) When the object of study is a process, the focus of the evaluation is the process’ effect.
The experimenter may measure its effect on a product, that is, whether the process leads to some desired
attribute in a software work product. Or, the experimenter may attempt to capture its effect on people, e.g.
whether practitioners were comfortable executing the process or found it tedious and infeasible. Finally, the
context field should include a large number of environmental variables and therefore tends to exhibit the
most variability. Studies may be run on students or experts; under time constraints, or not; in well-
understood application domains, or in cutting-edge areas. There are numerous such variables that may
influence the results of applying a technique.

For the remainder of this paper, we will illustrate our conclusions by concentrating on studies that
investigate process characteristics with respect to their effects on products. A GQM template for this class
of studies is:
Analyze processes to evaluate their effectiveness on a product from the point of view of the
knowledge builder in the context of (a particular variable set).

For particular studies in this class, constructing a complete GQM template requires making explicit the
process (object of study), the effect on the product (focus), and context models in the experiment. Making
these models explicit is necessary in order to understand the conditions under which the experimental
results hold.

For example, consider the GQM templates for the list of reading technique experiments described in the

previous section. There are many ways of classifying processes, but we might first classify processes by

scope as:

¢  Techniques (processes that can be followed to accomplish some specific task),

e Methods® (processes augmented with information concerning when and how the process should be
applied),

e Life Cycle Models (processes which describe the entire software development process).

Each of these categories could be subdivided in turn. The set of techniques, for example, could be classified

based on the specific task as: Reading, Testing, Designing, and so on. We have found it helpful to think of

the range of values as organized in a hierarchical fashion, in which more general values are found at the top

of the tree, and each level of the tree represents a new level of detail. (Figure 1)

Selecting a particular type of process for study, our GQM template then becomes:
Analyze reading techniques to evaluate their effectiveness on a product from the point of view of
the knowledge builder in the context of a particular variable set

? The definitions of "technique” and "method" are adapted from [5].



Process

Life Cycle Model Method Technique
Walk-
Waterfall spiral . . . Inspection Through - Reading Testing

Figure 1: A portion of the hierarchy of possible values for describing software

processes.

The reading technique experiments were concerned with studying the effect of the reading technique on a
product. So, the model of focus needs to specify both how effectiveness is to be measured and the product
on which the evaluation is performed.We find it useful to divide the set of effectiveness measures into
analysis and construction measures, based on whether the goal of the process is to analyze intrinsic
properties of a document or to use it in building a new system. Each of these categories can be further
broken down into more specific types of process goals, for which different effectiveness measures may
apply (Fig. 2). For example, the effectiveness of a process for performing maintenance can be evaluated by
how that process effects the cost of making a change to the system. The effectiveness of a process for
detecting defects in a document can be measured by the number of faults it helps find. Of course, many
more measures exist than will fit into Figure 2. For instance, rather than measure the number of faults a
defect detection process yields, it might be more appropriate to measure the number of errors’, or the
amount of effort required, among other things.

Effectiveness

Analysis Construction
Defect A :
Usability N Reuse Maintenance
Detection
# of 4§ of 4 of Cost of Cost of Cost of
faults errors ancmalies finding integrating making a
detected detected detected components components change

Figure 2: A portion of the hierarchy of possible values for
describing the effectiveness of software processes

Similarly, a software document can be classified according to the model of a software system it contains (a
relatively well-defined set) and further subdivided into the specific notations that may be used (Fig.3). The
main purpose of organizing the possible values hierarchically is to organize a conception of the problem
space that can be used by others for classifying their own experiments. The actual criteria used are
somewhat subjective; naturally there are multiple criteria for classifying processes, effectiveness measures,
and software documents, but we have selected just those that have contributed to our conception of reading
techniques.

3 Here we are using the terms "faults” and "errors" according to the IEEE standard definitions [14], in
which "fault" refers to defects appearing in some artifact while "error” refers to an underlying human
misconception that may be translated into faults.



Document

Requirements Design Code S
1 D /E\
Natura s¢Rr o a;a low pje . o Struetured 00 o
Language Diagrams Oriented

Figure 3: A portion of the hierarchy of possible values for describing software

documents.

Thus a GQM template for the PBR experiment could be:
Analyze reading techniques to evaluate their ability to detect defects in a Requirements Document
written in English from the point of view of the knowledge builder in the context of a particular
variable set .

A GQM goal is not meant to be a definitive description, but reflects the interests and priorities of the
experimenter. If we were to study the process model for the reading techniques in each experiment in more
detail, we would see that each technique is tailored to a specific task (e.g., analysis or construction, etc.)
and to a specific document. This is what characterizes the reading techniques and distinguishes them from
one another. Thus the process goals used to classify measures of effectiveness in Figure 2 can be easily
adapted to describe the processes themselves (Figure 4). The distinction between analysis and construction
process goals can apply directly to processes. That is, we hypothesize that analysis tasks differ sufficiently
from construction tasks that, along with differences in the way they may be evaluated for effectiveness,
there may also be different guidelines used in their construction. Thus figures 2 and 3 can also be
mechanisms for identifying process model attributes. They should be accounted for in the process model as
well as the effect on process.

Process Goal

Analysis Construction

Defect Usability e Reuse Maintenance

Detection

Figure 4: A portion of the hierarchy of possible values for describing the goal of

a software engineering process.

Thus we can say that we are:
analyzing a reading technique for the purpose of evaluating its ability to detect defects in a natural
language requirements document

or we can say that we are:
analyzing a reading technique ailored to defect detection in natural language requirements for the
purpose of evaluation.

It depends on whether we are emphasizing the definition of the process or of its effectiveness.

In linking goal templates to hypotheses, we can think of the process model (object of study) as the
independent variable, the effect on product (focus) as the dependent variable, and the context variables as
the variables that exist in the environment of the experiment. The differences or similarities between
experimental hypotheses can then be described in terms of these hierarchies of possible values. For
example, consider the studies of DBR and PBR. In both cases, the process model was focused on the same



task (defect detection); although the notation differed, both were also focused on the same document
(requirements). If all other attributes for process, product, and context models were held constant, we could
begin to think of hypotheses at a higher level of abstraction. That is, instead of the hypothesis:
Subjects using a reading technique tailored to defect detection in natural language
requirements are more effective than subjects using ad hoc techniques for this task
The following hypothesis might be more useful:
Subjects using reading techniques tailored to defect detection in requirements are more
effective than subjects using ad hoc techniques for this task.
The difference between these hypotheses is that the focus of the study is described at a higher level of
abstraction for the second hypothesis (requirements) than for the first (natural language requirements).

This difference in abstraction makes the second hypothesis more difficult to test. In fact, probably no single
study could ever give us overwhelming evidence as to its validity, or lack thereof. Testing the second
hypothesis would require some idea of what types of requirements notation are of interest to practitioners.
Building up a convincing body of evidence requires the combined analysis of multiple studies of specific
reading techniques for defect detection in requirements. But the effort required to formulate the hypothesis
and begin building a body of evidence helps advance the field of software engineering. At best, the
evidence can lead to the growth of a body of knowledge, containing basic and important theories
underlying some aspect of the field. At worst, the effort spent in specifying the models forces us to think
more deeply about the relevant ways of characterizing software engineering models that we, as researchers,
are implicitly constructing anyway.

The above discussion should not be taken to imply that the attributes identified in Figures 1 through 4 are
the only ones that are important, or for which hierarchies of possible values exist. To choose another
example, in specifying the model of the context it is almost always important to characterize the experience
of the subjects of the experiment. The most appropriate way of characterizing experience depends on many
things; two possibilities are proposed in Figure 5.

Experience

Students Professicnals

Experience

Never used Learned Applied Applied Applied
process process in a process on process on 2- process on >3
before class one project 3 projects projects

Figure 5: Two possible value hierarchies for measuring subject experience.

The trees shown in Figure 5 present two different ways of characterizing experience. The first is a simpler
way of characterizing the attribute that distinguishes only between subjects who are still learning software
engineering principles versus those who have applied them on real projects. The second hierarchy attempts
to place finer distinctions on the amount of experience a subject has applying a particular process. Each
may be appropriate to different circumstances.[FS1]

4. Replicating Experiments

In preceding sections of this paper, we have tried to raise several reasons why families of replicated
experiments are necessary for building up bodies of knowledge about hypotheses. Another reason for
running replications is that they can increase the amount of confidence in results by addressing certain
threats to validity: Internal validity defines the degree of confidence in a cause-effect relationship between
factors of interest and the observed results, while external validity defines the extent to which the



conclusions from the experimental context can be generalized to the context specified in the research
hypothesis [11]. In this section, we discuss replications in more detail and look at the practical
considerations that result.

Our primary strategy for supporting replications in practice has been the creation of lab packages, which
collect information on an experiment such as the cxperimental design, the artifacts and processes used in
the experiment, the methods used during the experimental analysis, and the motivation behind the key
design decisions. Our hope has been that the existence of such packages would simplify the process of
replicating an experiment and hence encourage more replications in the discipline. Several replications
have been carried out in this manner and have contributed to a growing body of knowledge on reading
techniques.

4.1. Types of Replications

Since we consider that replications may be undertaken for various reasons, we have found it useful to
enumerate the various reasons, each of which has its own requirements for the lab package. In our view the
types of replications that need to be supported can be grouped into 3 major categories:

1. Replications that do not vary any research hypothesis. Replications of this type vary none of the
dependent or independent variables of the original experiment.

1.1. Strict replications (i.e. replications that duplicate as accurately as possible the original
experiment). These replications are necessary 1o increase confidence in the validity of the
experiment. They demonstrate that the results from the original experiment are repeatable, and
have been reported accurately by the original experimenters.

1.2. Replications that vary the manner in which the experiment is run. These studies seek to
increase our confidence in experimental results by addressing the same problem as previous
experiments, but altering the details of the experiment so that certain internal threats to validity
are addressed. For example, a replication may vary the order of activities to avoid the possibility
that results depend not on the process used, but on the order in which activities in the experiment
are completed.

The attempt to compensate for threats to internal validity may also lead to other types of changes.
For example, a process may be modified so that the researchers can assess the amount of process
conformance of subjects. Although the aim of the change may have been to address internal
validity, the new process should be evaluated in order to understand whether unanticipated effects
on process effectiveness have resulted. Thus such a replication would fall into the second major
category, discussed below.

2. Replications that vary the research hypotheses. Replications of this type vary attributes of the
process, product, and context models but remain at the same level of specificity as the original
experiment.

2.1. Replications that vary variables intrinsic to the object of study (i.e. independent variables).
These replications investigate what aspects of the process are important by systematically varying
intrinsic properties of the process and examining the results. This type of experiment requires the
process to be supplied in sufficient detail that changes can be made. This implies that the original
experimenters must provide the rationales for the design decisions made as well as the finished
product. For example, researchers may question whether the specificity at which the process is
described affects the results of applying the process. In this sense, the study of PBR2 may be seen
as a replication of the study of PBR, in which the level of specificity of the process was varied
but all other attributes of the process model remained the same.

2.2. Replications that vary variables intrinsic to the focus of the evaluation (i.e. dependent
variables). Replications of this type may vary the ways in which effectiveness is measured, in
order to understand for what dimensions of a task a process results in the most gain. For example,
a replication might choose another effectiveness measure from those listed in Figure 2,
investigating whether a defect detection process is more beneficial for finding errors than faults.



Other aspects of the focus model might be varied instead, e.g. a process might be evaluated on a
document of the same type but different notation to see if it is equally effective (see Figure 3).

2.3. Replications that vary context variables in the environment in which the solution is
evaluated. These studies can identify potentially important environmental factors that affect the
results of the process under investigation and thus help understand its external validity. For
example, replications may be run using the same process and product models as the original
experiment but on professionals instead of students (see Figure 5) to see if the same results are
obtained.

3. Replications that extend the theory. These replications help determine the limits to the effectiveness
of a process, by making large changes to the process, product, and/or context models to see if basic
principles still hold. We discussed replications in the previous category as replacing the value of some
variable (e.g. document on which the process was applied, Figure 3) with another, equally specific
value (e.g. SCR requirements instead of English-language requirements). Replications in this category,
however, can be thought of as replacing an attribute of a process, product, or context model with a
value at a higher level of abstraction (i.e. from a higher level in the hierarchy). Again using Figure 3,
researchers may choose to study whether a type of process is applicable to requirements documents in
general, rather than limiting their scope to a specific kind. The type of hypotheses associated with such
replications was discussed in section 3.

4.2 Implications for Lab Package Design

In software engineering research, there has been a movement toward the reuse of physical artifacts and
concrete processes between experiments. This is indeed a useful beginning. The cost of an experiment is
greatly increased if the preparation of multiple artifacts is necessary. Creating artifacts which are
representative of those used in real development projects is difficult and time consuming. Reusing artifacts
can thus reduce the time and cost needed for experimentation. A more significant benefit is that reuse
allows the opportunity to build up knowledge about the actual use of particular, non-trivial artifacts in
practice. Thus replications (and experimentation in general) could be facilitated if there were repositories
of reusable artifacts of different types (e.g. requirements) which have a history of reuse and which,
therefore, are well understood. (A model for such repositories could be the repository of system
architectures [12], where the relevant attributes of each design in the repository are known and described.)

A first step towards this goal is the construction of web-based laboratory packages. At the most basic level,
these packages allow an independent experimenter to download experimental materials, either for reuse or
for better understanding. In this way, these packages support strict replications (as defined in section 4.1),
which require that the processes and artifacts used in the original experiment be made available to
independent researchers.

However, web-based lab packages should be designed to support more sophisticated types of replications
as well. For example, packages should assist other experimenters in understanding and addressing the
threats to validity in order to support replications that vary some aspects of the experimental setup. Due to
the constraints imposed by the setting in which software engineering research is conducted, it is almost
never possible to rule out every single threat to validity. Choosing the “least bad” set of threats given the
goal of the experiment is necessary. Lab packages need to acknowledge this fact and make the analysis of
the constraints and the threats to validity explicit, so that other studies may use different experimental
designs (that may have other threats to validity of their own) to rule out these threats.

Replications that seek to vary the detailed hypotheses have additional requirements if the lab package is to
support them as well. For example, in order for other experimenters to effectively vary attributes of the
object of study, the original process must be explained in sufficient detail that other researchers can draw
their own conclusions about key variables. Since it is unreasonable to expect the original experimenters to
determine all of the key variables a priori, lab packages must provide rationales for key experimental
context decisions so that other experimentalists can determine feasible points of variation of interest to
themselves. Similarly, lab packages must specify context variables in sufficient detail that feasible changes



to the environment can be identified and hypotheses made about their effects on the results.

Finally, in order to build up a body of knowledge about software engineering theories, researchers should
know which experiments have been run that offer related results. Therefore, lab packages for related
experiments should be linked, in order to collect different experiments that address different areas of the
problem space, and contribute evidence relevant to basic theories. The web is an ideal medium for such
packages since links can be added dynamically, pointing to new, related lab packages as they become
available. Thus it is to be hoped that lab packages are “living documents” that are changed and updated to
reflect our current understanding of the experiments they describe.

Lab packages have been our preferred method for facilitating the abstraction of results and experiences
from series of well-designed studies. Interested readers are referred to existing examples of lab packages:
[25, 26]. By collecting detailed information and results on specific experiments, they summarize our
knowledge about specific processes. They record the design and analysis methods used and may suggest
new ones. Additionally, by linking related studies they can help experimenters understand what factors do
or do not impact effectiveness.

4.3. The Experimental Community

A group of researchers, from both industry and academia, has been organized since 1993 for the purpose of
facilitating the replication of experiments. The group is called ISERN, the International Software
Engineering Research Network, and includes members in North America, Europe, Asia, and Australia.
ISERN members publish common technical reports, exchange visitors, and organize annual meetings to
share experiences on software engineering experimentation’. They have begun replicating experiments to
better understanding the success factors of inspection and reading.

The Empirical Software Engineering journal has also helped build an experimental community by
providing a forum for publishing descriptions of empirical studies and their replications. An especially
noteworthy aspect of the journal is that it is open to publishing replicated studies that, while rigorously
planned and analyzed, yield unexpected results that did not confirm the original study. Although it has
traditionally been difficult to publish such “unsuccessful” studies in the software engineering literature, this
knowledge must be made available if the community is to build a complete and unbiased body of
knowledge concerning software technologies.

5. Conclusions

The above discussion leads us to propose that the following criteria are necessary before we can begin to

build up comprehensive bodies of knowledge in areas of software engineering:

1. Hypotheses that are of interest to the software engineering community and are written in a context that
allow for a well defined experiment;

2. Context variables, suggested by the hypotheses, that can be changed to allow for variation of the
experimental design (to make up for validity threats) and the context of experimentation;

3. A sufficient amount of information so that the experiment can be replicated and built upon; and

4. A community of researchers that understand experimentation, the need for replication, and are willing
to collaborate and replicate.

With respect to the Basili/Reiter study introduced in section 1, we can note that while it satisfied criteria |
and 3, it failed with respect to criteria 2 and 4. It was not suggested by the authors that other researchers
might vary the design or manipulate the processes or criteria used for evaluation (although the analysis of
the data was varied in a later study [6]). Nor was there a community of researchers willing to analyze the
hypotheses even if suggestions for replication had been made.

In contrast, the set of experiments on reading, discussed in a working group at the 1997 annual meeting of

4 More information is available at the URL http://wwwagse.informatik.uni-ki.de/ISERN/isern.html

10



ISERN [18], is an example that we have built up a body of knowledge by independent researchers working
on different parts of the problem and exposing their conclusions to different plausible rival hypotheses. We
have shown in this paper that experimental constraints in software engineering research make it very
difficult, and even impossible, to design a perfect single study. In order to rule out the threats to validity, it
is more realistic to rely on the "parsimony" concept rather than being frustrated because of trying to
completely remove them. This appeal to parsimony is based on the assumption that the evidence for an
experimental effect is more credible if that effect can be observed in numerous and independent
experiments each with different threats to validity [11].

A second conclusion is that empirical research must be a collaborative activity because of the huge number
of problems, variables, and issues to consider. This complexity can be faced with extensive brainstorming,
carefully designing complementary studies that provide coverage of the problem and solution space, and
reciprocal verification.

It is our contention that interesting and relevant hypotheses can be identified and investigated effectively if
empirical work is organized in the form of families of related experiments. In this paper, we have raised
several reasons why such families are necessary:

e To investigate the effects of alternative values for important attributes of the experimental models;

e To vary the strategy with which detailed hypotheses are investigated;

e To make up for certain threats to validity that often arise in realistically designed experiments.

Discussion within the experimental community is also needed to address other issues, such as what
constitutes an “acceptable” level of confidence in the hypotheses that we address as a community. By
running carefully designed replications, we can address threats to validity in specific experiments and
accumulate evidence about hypotheses. However, we are unaware of any useful and specific guidelines
that concern the amount of evidence that must be accumulated before conclusions can confidently be drawn
from a set of related experiments, in spite of the existence of specific threats. More discussion within the
empirical software engineering community as to what constitutes a sufficient body of credible knowledge
would be of benefit.

Building up a body of knowledge from families of experiments has the following benefits for the software

engineering researcher:

e It allows the results of several experiments to be combined in order to build up our knowledge about
software processes.

e It increases the effectiveness of individual experiments, which can now contribute to answering more
general and abstract hypotheses.

e It offers a framework for building relevant practical software engineering knowledge, organized
around the GQM goal template or another framework from the literature.

e It provides a way to develop and integrate laboratory manuals, which can facilitate and encourage the
types of replications that are necessary to expand our knowledge of basic principles.

e It helps generate a community of experimenters, who understand the value of, and can carry out, the
needed replications.

The ability to carry out families of replications has the following benefits for the software engineering

practitioner:

e It offers some relevant practical SE knowledge; fully parameterizing process, product, and context
models allows a better understanding of the environment in which the experimental results hold.

e It provides a better basis for making judgements about selecting process, since practitioners can match
their development context to the ones under which the processes are evaluated.

e It shows the importance of and ability to tailor “best practices”, that is, it shows how software
processes can be altered by meaningful manipulation of key variables.

e It provides support for defining and documenting processes, since running related experiments assists
in determining the important process variables.

e It allows organizations to integrate their experiences by making explicit the ways in which experiences
differ (i.e. what the relevant process, product, and context models are) or are similar, and allowing the



abstraction of basic principles from this information.

Acknowledgements

This work was supported by NSF grant CCR9706151, NASA grant NCC5170, and UMIACS. The authors
would like to thank Michael Fredericks and Shari Lawrence Pflceger for their valuable comments on earlier
drafts of this paper.

References

[1]  V.R.Basili, "The experimental paradigm in software engineering", Experimental Software
Engineering Issues: Critical Assessment and Future Directions, International Workshop, Dagstuhl,
Germany, 1992. Appeared in Springer-Verlag, Lecture Notes in Computer Science, Number 706,
1993.

[2]  V.R. Basili, "Evolving and packaging reading technologies", Journal of Systems and Software, vol.
38,no. 1, pp.3-12, July 1997.

[3] V.Basili, G. Caldiera, F. Lanubile, and F. Shull, "Studies on reading techniques", Proc. of the
Twenty-First Annual Software Engineering Workshop, SEL-96-002, Goddard Space Flight Center,
Greenbelt, Maryland, pp.59-65, December 1996.

[4] V.R.Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Soerumgaard, M. Zelkowitz, “The
empirical investigation of perspective-based reading”; Empirical Software Engineering Journal, vol.
1, no. 2, 1996.

[5] V.R.Basili, S. Green, O. Laitenburger, F. Lanubile, F. Shull, S. Serumgard, and M. Zelkowitz,
"Packaging researcher experience to assist replication of experiments", Proc. of the ISERN meeting
1996, Sydney, Australia, 1996.

[6] V.R. Basili,and D. H. Hutchens, "An empirical study of a syntactic metric family", JEEE
Transactions on Software Engineering, vol. SE-9, pp.664-672, November 1983.

[7]  V.R. Basili, and R. W. Reiter, "A controlled experiment quantitatively comparing software
development approaches", IEEE Transactions on Software Engineering, vol. SE-7, no. 3, pp.299-
320, May 1981.

[8]  V.R. Basili, and H. D. Rombach, "The TAME project: Towards improvement-oriented software
environments", IEEE Transactions on Software Engineering, vol. SE-14, no. 6, June 1988.

[9] V.R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in software engineering”, IEEE
Transactions on Software Engineering, vol. SE-12, no. 7, pp. 733-743, July 1986.

[10] V. Basili, F. Lanubile, F. Shull, "Investigating maintenance processes in a framework-based
environment", Proc. of the Int. Conf. on Software Maintenance, Bethesda, Maryland, pp.256-264,
1998.

[11] D.T.Campbell, and J. C. Stanley, Experimental and Quasi-Experimental Designs for Research,
Boston: Houghton Mifflin Co, 1963.

[12] Composable Systems Group, "Model Problems", http://www.cs.cmu.edu/~Compose/html/ModProb/,
1995.

[13] P.Fusaro, F. Lanubile, and G. Visaggio, "A replicated experiment to assess requirements inspections
techniques", Empirical Software Engineering Journal, vol 2, no.1, pp.39-57, 1997.

[14] IEEE. Software Engineering Standards. IEEE Computer Society Press, 1987.

[15] C. M. Judd, E. R. Smith, and L. H. Kidder, Research Methods in Social Relations, sixth edition,
Orlando: Harcourt Brace Jovanovich, Inc., 1991.

[16] O. Laitenberger, and J. M. DeBaud, "Perspective-based reading of code documents at Robert Bosch
GmbH", Journal of Information and Software Technology, 39, pp.781-791, 1997.

{17] F.Lanubile, "Empirical evaluation of software maintenance technologies", Empirical Software
Engineering Journal, vol.2, no.2, pp.95-106, 1997.

[18] E.Lanubile, "Report on the results of the parallel project meeting reading techniques”,

12



[19)

[20]

(21]
[22]

{23}

(24]
(25]
[26]

[27]

http://seldi2.ur1iba.it:1025/isem97/readwg/index.htm , October 1997.

F. Lanubile, F. Shull, V. Basili, "Experimenting with error abstraction in requirements documents”,
Proc. of the 5th Int. Symposium on Software Metrics, Bethesda, Maryland, pp.114-121, 1998.

C. M. Lott, and H. D. Rombach, "Repeatable software engineering experiments for comparing
defect-detection techniques”, Empirical Software Engineering Journal, vol.1, no.3, pp.241-277,
1996.

K. Popper, The Logic of Scientific Discovery, Harper Torchbooks, New York, NY, 1968.
A. Porter, L. Votta, V. Basili, “Comparing detection methods for software requirements inspections:

a replicated experiment”, [EEE Transactions on Software Engineering, vol. 21, no. 6, pp. 563-575,
1995.

F. Shull, F. Lanubile, and V. R. Basili, "Investigating Reading Techniques for Framework
Learning", Technical Report CS-TR-3896, UMCP Dept. of Computer Science, UMIACS-TR-98-26,
UMCP Institute for Advanced Computer Studies, ISERN-98-16, International Software Engineering
Research Network, May 1998.

F. Shull. Developing Techniques for Using Software Documents: A Series of Empirical Studies.
Ph.D. thesis, University of Maryland, College Park, December 1998.

F. Shull, “Reading Techniques for Object-Oriented Frameworks",
http://www.cs.umd.cdu./proiccts/SoftEnQ/ESEG/manua]/sbr package/manual.html.

F. Shull, "Lab Package for the Empirical Investigation of Perspective-Based Reading”,
http://www.cs‘umd‘edu/projccts/SoftEng/ESEG/manual/pbr__package/manual.html.

Z.Zhang, V. Basili, and B. Shneiderman, “An Empirical Study of Perspective-based Usability
Inspection”, Human Factors and Ergonomics Society Annual Meeting, Chicago, Oct. 1998.

13



puejAiepy - 193ua9 J9j0yunel 4
pue
puejiiepy Jo Ajisiaaiun
92udI9g JaIndwo9 jo Juswuedaqg
SaIpn}g J9jndwo) pasueApy 10} 3)NJSu|
dnoug Bunsauibug alemyjog |ejuswiiadxyg

ljiseq "y 10101\

abpajmouy] jo Apog e pjing
0] sjuawiadxg buisn




auop s)}ab uonejuswiiadxs moy -
pazAjeue pue }jing aie S|apowl Moy -
ale spj|al} ay) buowe saoualaylp syl -«

-Bunnioenuew ‘suipaw ‘sojsAud 6o -
‘sp|al} Auew ul pasn uaaq sey jey} wbipesed sy} st siyl

awl} JOAO UOIIN|OAS [apow —
uoljejuswadxe —
(sasseo0.d Buinjos wajgosd ‘uiewop uonedljdde) Buipjing [spow -
abpajmouy Jo uoljejnsdeous pue ‘uonos|dl —
uoljealasqo -

“-3°| ‘Buluies| saAjoAul auldiosip e Buipuelsiapun e

auljdiosiq e ui abpajmouyl buiajoa]

N



> ok, L

aul|dIosIp a1em}jos sy} Ul uonejuswiiadxa jnoge si y|ey siy L

uoljejuawiiadxa pue sisAjeue jusidlynsul st alsyy —

1X8Ju02 3y} Jo} salbojouyoa} jo sHwi| ay) jo uoubosal jJo yoe| -

sul|diosip ayj Jnoge uoseal 0} S|apoul Jo 189S Judidiynsul —
‘Apualing

palpn}s pue pooisiapun aq 0} PaaU Sjo0aye 11vyY} —

saoualalip 9sned jey) ssjgelieA jo Jaquinu abie| e aie a1oy} —
awes ayj Jou s| alemyos ||

Wa)sAs oy} JO 1X8JU0D 8y} Ul OM} By} usamiaq diysuonelal
sy} pue sjonpold ‘sessaso.id ay) JO ainjeu ay} puejsiapun 0} pasu ap\

aoualas Alojesoqe] e s| Busdsauibua asempos

Bulidauibug asemyos uj
abpamouy BuiA|OAT



- JINIL

sjeob ajeAnop «
pasn ssajoud azuajoeseys .
sdlsuajoeieyd aremyos Ayuap| «

sauljaseq p|inq o} ejep azAjeue pue ‘Yis ‘Jayjes

¢S3S02 3anpai anbiuyae) 6unsa) Juasayip e I ANV.LSH3ANN

£9snal saybiy o) pes) 10O IIIM »
¢Ajenb anoadwy sanbiuyss) uipea Jejnanted [JIA » S|eon)

Aljed0] Juswenoudwy ue ajenjess pue ‘suyap 1o }2a[oS

sjuawiadxs uodn paseq ssasoad Jojie] . SS3ASSVY

Bujuies; auyay . Ak ajelal|

spJepuejs ajepdn .

sseuisnq inoA ojui Juswanoiduwy ay} sjeibajul

JOVMOVd

wbipeled juswarosdwyi Ayjenp
9y} ul sy Buipjing abpajmouyj/sjuswiiadxy asaypn

SI1dANVX3



sul|diosip sy} o} |nyasn si Jey) abpsjmouy
jo Apoq e pjing 0} Auessaoau s| sjuawiiadxa Buluiquon <=

sa|qeliea
JO }8s |jews ‘A}1jeal JO WISO20IDIW ‘SANSSI [9AD] MO| YJIM [EBp —

S8JusIsip 8sned jey} sojgeLieA jo Jaqunu abiej ay) —
(pajj01ju02) syuswadxe YIm swa|qodd

solsiiejoe.leyd Jonpold pue sonsisioeleyd
ss920.1d ussmiaq diysuonejal ay} se yans ‘ss|qelen
OM} usamiaq diysuonejal e 1oy Buiyoo| ate Aay) AjjeaidA |

'(8INPaYOS 10 }S0D) SJUIBIISUOD [BIUSLUUOIIAUS ‘soljsliajoeleyd
Jonpoud ‘syoaye ssadoid Apnys 0y :sasodind Auew Joy pawouad

Salpn}s ased 0} sjuswiiadxe pPajjoJjuod woly :seliobajes Auepy

sjuawliadx3 wouy
abpajmouy jo saipog BuiajoaT



‘g)eol|dal pue ajeiode||oo o} Buljim siayoseadsal jo Apunwwio) -
UOIJBUIGWOD pue UoIeol|dal J0) UOIJeJUBWNIoP JUBIDIPNG -

“1X9Ju09 ssao0.4d ay} jo soioads —
(syeayy Aupljen Joy dn ayew) uoneueA ubisap |ejuswiiadxs —
1o} moj|e 0} pabueyd aq ued jey} sajqeleA }1xajuod

sasayjodAy [aA8| ybiy poddns 0} 8|qeulquod —
Juswiliadxa pauldp ||dM € 10} MOJj[e Jeyj] 1XSJUOD B Ul USHUM —

sasayjodAy pajielap jo s}aS
sasayjodAy pa|ielep Bunos|es auy o} suoldo apiroid —

sajgelleA juspuadapul pue juspuadap Jo s}as Ajijuspl —
Ajunwwod Bulesuibus aiemyos sy} Jo }salsjul ssalppe —

sasayjodAy [aA9) ybiy jJo sleg

Buliaauibug asem}jos ul abpajmou)
Jo salpoq aaisuayaisdwod buipjing 1o} eudlld



s|eob jualayip uodn paseq auo Uey) sjoayep JusISyIp
pul |im sjeob oyioads uodn peseq Guipeas o} yoeoidde |einpsooid y —

Soljslisjorieyd 9say) aAeY Jou saop jey)
SUO UBY] dAI}08YS aI0W S| 8sSn 10§ USALP |eob pue ‘Oloads uolejou
pue juswnoop ‘paulyap Ajleinpasoud si jey) anbiuyos) Buipeal v —

¢ s9sayjodAy [aAs] ybiy sy aie Jeypy -

¢,SUOIJIPUOD UIBlSD Japun
SUO [einpa2doid SS8| B UBY) SAI}0aYS 10w aq pinod yse) Buusauibua
2Jem}jos e 0} yoeoidde [euinpadold e jey} sjesjsuowsp om ue) —

¢$,9SN 10} pajepljeA
Alleauidwa pue ‘usaup |eob ‘ol10ads uolejou pue Juswnoop ‘pauysp
Ajleinpadoud ale jey) senbiuyoas} Apnys pue ubisep AjaAlosye em uen —

i1saJajul Jo suonsanb [aAs| ybiy sy) ale 1By o

}ONpPOo.d B UO SS820.4d JS e JO S)oay3 ayj buizAjeuy -
Ajunwwod ay} 0} }salalu| [elsuss) .

SN204 |9A97 YbBIH e Buisooyn

] 1,.5.:%« £
m »\wx.ﬂ



@oueuUsjUlBW ‘@shal ‘uoIjoa)ap 109)ep B8
yse} Jejnoiued e 10} papasau Buipuelsiapun ayj} aAdiyoe 0}
sueld }sa) ‘apoo ‘ubisap ‘sjuswaiinbai 68
Joejilie a1eMos e Jo sisAjeue jenplAipul ay}
s| Buipeals atemyos ‘Ajjeoioads aloN

1onpo.Jd a1emyos B Ul 10} Y00| O} Jeym pue
peal 0} moy Buifes Japeal ay} 0} USAIB SUOI}ONJISUI JO }8S S)aIoUoo e
2 onbiuyos) Buipeal e sI Jeypn

-+ ‘ggnaJ ‘eoueuajuIeW ‘SMIIAAI 10} [ed1)LId S| buipesy
Bunjlum Joj japouwl e s| Buipesy
sjonpold pue sjuswnoop alemyos
BuijonJisuod pue BuizAjeue 1o} AJAOE |B21UY23) Ad) B S| Bulpesy
s Buipeal yoid AYpa

Buipeay 10} UOI}eAlJON
as( 40} Buipuelsiapun :ajdwex3



Sa|qelIBA IX3JU02 pue ‘Juspuadap ‘Juspuadspul ay) Alsse|o
pue Ajijuspi 0} ss|gelien ayj Jo yoeas buisodwoosp Japisuo)

JUBWUOIIAUD JO }X8JUOD 8Y) Ul OYM JO M3IA JO Julod ay} wolj snooy
0} Joadsal yyum asodind o} Japio ul Apnis Jo 309lqo ue azAjeuy -

2)e|dws | |eos

whipeied soudN/uUoIISaNd/jeos) ay) Buisn Jspisuo)

/,S9|qelieA [enpliAipul Jno Buiejos! ‘sjuswiiadxa |enpiAlpul
wo.} sasayjodAy Buluiquoo Joj Jomawelj e pjing am op MOH

SN204 |9Ad] YbBiH e Buisooyn



19S 9|gElIeA JO ]1X3juod
3y} Ul T9p[ING Sbpamouy ay) JO MaIA Jo jutod ay) wol) Tonpoid
B UO SSoUoAoa]s JIay] SJEN|eAs 0} SonbiuyJa) buipeal azAjeuy

(- ‘Buiubiseq ‘Bunsa] ‘Buipeay) sse|n) anbiuyos| -
(" ‘loo] ‘enbiuyoa] ‘pPoyls|N ‘|19POIN B]2AD 8)I) sse|D) sse00ld —
(" ‘Jonpolid ‘ssadsodd) Apnis jo 108lqo -

:Apnjs Jo 108[go ay) azusjoeleyn

VES
3[JElIeA) JO 1X81u0o 8y} Ul T8p[ing abpajMmouy ay) JO MaIA 1o julod ay)
Wwo.l} JoNpoId B U0 SSSUSANDS)S 119y} SJBN[BAS 0] S9ss0004d azAleuy —

S]oNPoId UO S8SS820.id JS JO S)oayg ay) BuizAjeuy

SN204 |9A9 YbBiH e buisooyn



R -

R . 50

(29) 185 9|qeueA

JO 1X8ju02 8y} Ul JTep|ing SbpajMmouy 8y} JO MSIA JO iod ay)
WwoJj JUsInNoog Ssjuatialinbay B ul S30948p }0319p 0} Ajjiqe
J19Y) SJEN[EAS 0} Senbiuyoa} buipeal azAjeuy :|eoH o|ldwexy .

-+ Joyg UdaIIg ‘solewayieiN ‘YIS ‘ysiibul) uoneloN jonpold -

-+ ‘goppMolU| JOSN ‘Ue|d }sa] ‘ubiseq ‘sjuawalinbay) adA | jonpoid —

Ayqesn ‘uoioa3aq 39349(Q) [BOD SSOUSAAIOBYT —
(" ‘sisAjeuy ‘uoidNISUO)D) SSB|D SSBUBAIOSYT —
19NpPO0Jdd B UO SSBUDAIIIBYT SNJ0} 8y} azlisjoeleyy .

(19) 18S S|JElEA JO 1X3Ju0d
ay} ul TSp[INg SDPaMOUY aU} JO M3IA Jo jJulod 8y} wouy S3onpold
10 SSOUSAIIDOIJJ0 JIay) SJENEAs 0} SSnbiuyoa) buipeal azAjeuy .

sn204 |oAa] YybiH e Buisooyd



et
L ée o,
N " N

**‘;“m o

uo13233aq
199)8Q

/

sjuawaldinbay sisAjeuy

N

19Npoid U0 39943

\

SN20

ysibu3

Buipeay

anbiuyoss]

$S920.d

Apnis jo 309[qo

SN204 |[9A97] YbIH e Buiuijay



opod
yiomawel4 dlomewelq Aleiqi] 821n0S
Joyg UsaI0S UsiIBug HOS "ti_ Xog ¥oejg xog SWYMm  8pod 1osfoid

uoijejoN:19NpoId \
[49)

adA}:1onpoad adeuejul Jasn ubise@ sjuswalinbay ublse 9poD ue|disel

jeoo) 3093 " Aujigesn uondsia( 1o8keg mo:mg
30VdS

sse|) 10943 siskleuy uoIONAISUO0D NTH0Nd

anbiuysa] :ssa8d%0id Buipeay

.@ sanbiuyose] Buipeay jo saljiwed



8pod
yloMmawel4 Ylomawel4 Aieiqi] 821nog

Joys usaidg ysibuz YOS **° xog Wde|g xodg SUM  9poD jasloid

UOI}BJON:}ONpOoId
\ 4N® <
adA]:1onpoad ascepau| Jasn cm_é_scmm ubiseq °8poD ue|d}sa]

jeos) 32343 "2 Algesn uonosla osjed soueusjulely  Ssnay

3oVdS
sse|) 130943 sishleuy UoHONHSUOD W3190¥d

155 S[GENEA JO 1X8)uod 8y} ul TpJng BBPajmoly] 8y} 40 M3IA jo juiod
sy} WoJ} SJoNpoId U0 SSOUDAINIIBHS JIoy} SIENEAS nbiuyoo) buipeal azAleuy L9
anbiuyosa]:ssadoid Buipeay

.,_M_;m sonbiuyosa] Buipeay jo saljiwed



Ajjeluswiiadxa
paipnis aq ueo jey} sanbiuyos) Buipeal 1o} uoijuep ssasold
B 10} solisiia)oelieyo/sauljapinb Jo 1os e saulep sjeob asay |

suonoadsul se yons ‘spoyjaw Buisixa ul sjgesn  —
asn S}l 10} SAI}03Ye 8q 0} paljuaA Ajecuidws -~
Juswinoop ay} jo abelanoo tgnoiped e apinold 0) pasnooy -
usAlp [eob -
pauljep Ajjeinpsoosd -
Juswuodinue pue 103loid ayy 0} 9|qeloje} -
olj10ads uoljejou pue juswnoop -
aq ued jey) salbojouyoss) buipeal J0 }as e auljep 0] :Sjeon

pauljap usaQ sey ‘SoLIBUdIS
Jeuonjesado psjeo ‘senbiuyos) buipeal Jo Ajiwey e buijeisausb
0} yoeoudde ue ‘suoisuawip/soljsliajoeieyd Jo 189S Siy} USAIS

uoniuag buipeay paseg-oLieuadg



sjuswiladxa |[ENPIAIPUI JO} SHIOMBWE.)
e apinold pue sesayjodAy [aAs| ybiy auy Asnes o} sjdwany

(155 S|GEILER) JO 1X8}U0d 8y} Ul J3P[ING SDPS|MOU
2y} JO MaIA Jo juiod 8y} woly STONPOId UG SSSUSAIIOSYS 18U}
STENTEAS 0} SSNDIUD3) DUIPES] PISE] OHEUSJS JO 195 & azZAjeuy

(185 S|qelen) JO 1Xaju0d ay} ul Jepling abpajMmouy
oy} JO M3IA JO Juiod 8y} Wou} JoNpoJd € U0 SSauaAljoaya Jisy) 3lenjens
0) SanbiuyJ3) buipeal J1jioads UOIJejou pue Jusiindop "passnioj

3DEI9A0D 'PasSeq-A|[eanpad0id 'pajusdLio-|eob JO }9s E azAjeuy

(- ‘oiy19ads UOIIRIOU PUB UOIJRIUBWNIOP PISSNIO0} abeianod
‘paseq Ajjeinpasold ‘pajusiio [eoh) soisusjoeleyd anbiuyos] -

(- ‘Buiubisaq ‘Bunsa] ‘Buipeay) sse|d anbiuyos] -
'ss9004d 3y} azllajyoeieyd

yiomeuweld [ejuswnadx3
ay} wodj snoo4 ay1oadg e buisooyn

s “b"n-%f '
E‘ _&I 3’:‘- =



Ainbiquy e pajusO  SPIM
Joiig eoinoN  Madx3  sadojgas@ JosM J8)se]  UOISSIWQ J09.I00U| Aouajsisuodu]  ysel woalsAg

NN T

paseg Ajigesn paseg aA1}o9dsiad paseg }29j8Q paseg adoog

SIX8)u02 asoy) Ul Ajjejuswiiadxs pajenjeas —
pue SIXa}uod JUaJayIp ul 3sn Joj pazusjeweled —
sanbiuyos} Buipeal Jo saljiwe) Jnoj padojaAsp SABY SAN e

(195 S[GENEA) JO 1X8JU09d 3y} Ul TOp[INg SPPS[MOUY
oy} JO MaIA Jo Julod 8y} wol) SJoNpoId U0 SSSUSAIOSHS J1ay)
S1en|ens o) SaNbiuyoa) bUIpEal PaSeq OUBUsds JO 1S e azAleuy

yJOoMauwed |ejuswiiadx3y
ay] wod} snoo4 dij10adg e buisooyn



|jpuuosiad jo8loid yosog
“wuspnis Buuesulbug a1emyos |euoissajold ‘syoslgns 13S/VSYN
B9 ‘papuedxa Ajjenuiluod aq ued (Ss|qelieA JXSjUuoD) SIX8jJUoD .

)9 —
S8SSE|D 109)9p 8sooy) —

Juswieal) |ejuswiiadxs asooyd -

aAlpadsiad yoes 1o} sassadoud |einpadold suyaq —
Jasn ‘1a}se) ‘Jaubisap saAloadsiad ssooyd -

————

"BUIDESY PoSEey- oAj0adsIod O[dWexXy

(195 S|GElEA) JO }X8Ju0d
sy} ul TOPJINg SDPJMOUY 82U} 0 M3IA JO Julod Sy} WoJj JUSWNI0(Qq
SJuowiaaiNbay € Ul S}09j9p 109)ap O] AJIJIqe Jiay) 3Jen[eAs

0} Sanbiuyd9a] buipeal paseq oleuads Jo Jos e azAleuy .

yiomauwiel |ejudwliddx3y
ay} wo.uj snoo4 ayy1oadg e Buisooyn

L



AnBiquy pajusLO apIM
anbiuyosa} Jadojans Josn 49)se@l UOISSIWQO J09100U| JUS)SISUOIU| yse | wolsAs

Jou3 e2InoN Hadx3
A0VdS
NOILNTOS
Ahwe4 paseg Aljigesn pesed aAljoadsiad aseq Joajed paseg 8doog
3pod
yomaweld ylomawelq Aeiqi] 99IN0g

joyg usalog  uslibul HoS xog Yoelg Xog Sjum  @pod 1o9loid
uoijejoN:39NpoId

adA]:31onpo.id eoeusiu] J8sn cm_wécmm cmﬁéwmk
Aupqescel]  uoposleg j09jeg SdUBUSJUIEN asney " -

30VdS
IW3190dd

|eoo) 130843 Anjigesn

sse|) 19943 sisAleuy uolonJIsuo)

_ anbluysa]:ssad0id BuipeEay

sonbiuyoa] buipeay jJo saljlwed




iR

(" ‘AemuoN ‘puepjoog ‘uspamg ‘Ajeyl ‘Auewan) °'gn) :seluUNo) ajdwex

(¥9Q) yusonT

(49d) yosog Hagoy

(¥gn) shsua) Jo neaing

(49S ‘“Y4an 'Y¥9a) swspnis WN

(49N "¥9d) @sinod 33 [euolssajold NN
(49d) 04SO/VSYN

(Aysnpu| ‘AjisIaAlun ‘JUBWIUIBAOD)) :SIX8juo0)) ajdwex]

JOou pIp S18y}o ‘sisjuswiiadxa se Ajjoalip se sn paAjoAUl SWOS
SIX3]U0D JuaiayIp Ul asn 1o} pszusjsweled

sanbiuyos} buipeal Jo saljiwe} Jnoy ||je uo —

sjuswiiadxa [elaAaS UNnJ aABY SN

sjuswiadx3g jo }9ag ajdwes



synsaJ Apnis jo Alpliea Hoddns -
sasayjodAy pajielsp sy} fen —
0} SN MOJ|e S3|gelleA 9say} JO SSNjeA ay) builiep

uoneoijdal Joj pajuswnd0p pue paijioads
JayLny 9q 0} pasu sajgelieA 8y} UM Po]EIDOSSE SUOlISaND

;.ss900.d ay} Buiwlopad aie s}oalans JeUM -
'$aNss| SajqeueA 1xajuoy —

¢, SSOUBAII0SYS 10} BLISIIO poob j09|9s aM Op MOH -
'sanssi (ajqeueA juapuadaq) 1onpoid JOo SSBUSANOSYT —

¢, 90UBWIOJU0D ss900.4d 10} JUNOJOOE 9M Op MOH

/. ssa%04d ay} Ajloads/aulep @M Op MOH ¢
‘sanssl (ajqeueA juapuadapul) 9|qeleA ss330id —

‘palan0d q 0} pasu jey} suoljsenb Aueuwl |jiis aje aidyl -

yiomauield jejuswiiadx3y
ay} wodj snoo4 aiy199dg e buisooyd



aoue|jeqtajunod o} bunesidas -
sjuswjeal} ssooe sjoalgns o uonesbiw snosuejuods —
Juswijeal) pue aduailadxs Jo uoljoessiul —

Alpi|eA 0] sjealy} aouejeq 0} Sh SMO||Y

SaI}IAI}OB PUB SJUSAS JO Japio Alep —
sjoalgns Buowe Ajjiqeuen —
(108fosd ui ‘aul-4o ‘A0} ‘WOOISSE|D) IX8JUOD —
aousladxa joalgns —

sa|qeLieA 1xajuon builien

s)nsaJl Buluiquod ‘sisayjodAy swes sy} buidssy
‘sjuswiiadxa pajiejep Buiesrdas Ag sbpsimouy dn pjing ued spA

abpajmouy| asealou|
0} sjuawiiadxg pajielaqg bulubisaqg

e
w\ - é .



AinBiquy
anbiuyosa] JadojaAa(g J8sM J8)se] UoISSIWQO }984J00uU| Jul)SISuodU|

10413 S82IAON Madx3 .
////NMMV 30VdS
NOILNT0S

Aiwe4 paseg Aljigesy peseg aAljoadsiad pasegq }o9Je(

ysibug d0s
uol}elJON J0US usai0s
JoeuyY aoeualU| Jasn sjuswalinbay
SN204 uonoayeq Alewouy
340VdS
IN3T190¥dd
Apnis jo 199[qO Buipeay/sisAjeuy/ssao0ld

(195 S|gBIEA) JO 1X8JU0d 8y} Ul J3p|INg SDPa|MOUY
ay] JO M3IA Jo Juiod By} wouy Safjewioue 199)9p 03 AJ[Iqe 1i1ay} 8jen|eAs 0} jJoejiJe
Ue JO 9DBIOA0D Jejnoiled e opiAoId 0} posSnoo} 50559904d JO }8S e azAleuy €9

B8 Sanbiuyo9] SISA[euy JO Saljiwied pasndog



e e -

JUSWUOIIAUS
ay) o) paJojie} ueo Buipeal os ‘sjeob asoy) 0} paje|al s}0a9p
pul |im sjeob oigioads uodn paseq Buipeal 0} yoeoidde |einpadold ¥ —

(sousliadxa uo spuadap ‘'6°9) suolnipuod uleuad Jspun
auo |eINpa20id SS9| B UBY) SAIJ0aS aIow 8g pinod yse) Buliesulbus
asemyos e 0} yoeoiadde jeinpadsoud e ey} ajesjsuowsp ued sp\ —

asn 10} pajepijeA
Ajlesuidwa pue ‘uaaup |eob ‘oioads uoljejou pue jJuswndop ‘pauysp
A|jeanpasoud ale jey) sanbiuyoa) Apnis pue ubisap AJaA1}oay ued sp\ —

s9ss920.d aiemyos noge abpajmouy Ino
dn pjing pue sjuawladxs [elaAss JO S}INsal 8y} auiquiod 0} 9|qy

sjuswiIddx3 woudj suoisnjduo)

- w..m



sassaooid ypm sasuaradxa Jiay) ajesbajul 0} suolneziuebio smoje —
sassaoo.d Bupuawnosop pue Bujuyap Joy Hoddns sapinosd —

_soanjoeud }saq, Jojie} 0} Ajjige pue jo souepodwl SMoys —

ssoo04d Buoa|as jnoge syuswabpnl Bupnjew 1oy siseq 1sajeq e sapinoid —
abpajmouy 3S [eonoead JUBAS|SS BWOS SIBJ0 —

‘slauoljljoeld 0} sjyouag

sjojuawiiadxe jo Ajunwwo? e sjessusb —

sjenuew Aiojesoqe| ajeibajul pue dojoasp 0} fem e sapinoid —

abpajmouy 33 |eonoeld jueasjal Bulpjing o) Ylomawel) e SIS0 —

sjuswiiadxa [ENPIAIPUI JO SSBUBAIIDBYD B} asealdul 0} Ajge —
'SJayoleasay o] Jijsuag -

}iomauwel |ejuauwiiadxsy
Buipjing abpajmouy| Jnoge sUoIsSN|dU0Y
)



sivyl0 -
siaquiaw N¥3SI -
SUOI}E20T JoYIQ Ul slejuswiiadx3 sy .

SOSSEARI| auWIay[INg ‘UOMY| SeY
‘1obas|}d 9ouaime] Leys ‘syouspaid pald ‘Kemiapup saIpnis MaN -
Bueyz

c:.__ﬁN ,NH_Bow_mN uiAJep ‘pleebwniog YaAIS [Inys 1s8.io4 ‘ajignue]
oddiji4 ‘1ebiaqualie J8AIO ‘USaI9 HOOS ‘sjuswiadx3y papodsy -

K100 siejuswadx3 sy o

ajignueT] oddijid ‘|nys 1sa.104 -
‘aloy peajuasald seap| ayi o} Ajoang .

3IOM SIUL 0} SI0INQLIU0D



Py

Session 2: Experimentation

Culture Conflicts in Sgftware £ngineering Technology Transfer
D. Wallace, National Institute Of Standards and Technology,
and M. Zelkowitz, University Of Maryland

An Adaplation of Experimental Design to Lmprrical Validation of Sofiware
Lngineering Theorres
N. Juristo and A. Moreno, Universidad Politecnica de Madrid

LDisciplined Software Engineering. Extending Enterprise Engineering
Architectures fo Support the OO Paradjgn
F. Maymir-Ducharme, Lockheed Martin



Sy -2

Culture Conflicts in Software Engineering Technology Transfer

Marvin V. Zelkowitz’ Dolores R. Wallace David W. Binkley
Department of Computer Science and Information Technology Laboratory Computer Science Department
Inst. for Advanced Computer Studies  Natl. Inst. of Standards and Technology Loyola College

University of Maryland Gaithersburg, Maryland 20899 Baltimore, Maryland

College Park, Maryland 20742 and Information Technology Lab.
and Fraunhofer Center - Maryland Natl. Inst. of Standards and Technology
College Park, Maryland 20742 Gaithersburg, MD 20899
Abstract

Although the need to transition new technology to improve the process of developing
quality software products is well understood, the computer software industry has done a
poor job of carrying out that need. All too often new software technology is touted as the
next "silver bullet”" to be adopted, only to fail and disappear within a very short period.
New technologies are often adopted without any convincing evidence that they will be
effective, yet other technologies are ignored despite the published data that they will be
useful. Clearly there is a clash between those developing new technologies and those
responsible for developing quality products. In this paper we discuss a study conducted
among a large group of computer software professionals in order to understand what
techniques can be used to support the introduction of new technologies, and to understand
the biases and opinions of those charged with researching, developing or implementing
those new technologies. This study indicates which evaluation techniques are viewed as
most successful under various conditions. We show that the research and industrial
communities do indeed have different perspectives, which leads to a clash between the
goals of the technology researchers and the needs of the technology users.

Keywords: Experimentation, Survey, Technology transfer, Validation models

1. Introduction

When the computer industry began several decades ago, software engineering was somewhat unique
among engineering fields in that researchers and practitioners worked closely together in using and
understanding this new technology. There was easy cross-fertilization between these two communities.
Over time, this has changed with tremendous growth of computer applications, computer users, and
computing professionals. Programming languages have evolved from-low level assembler languages to
today’s very high level visual object-oriented languages. Simple programs have become complex large
systems, with some systems running an entire enterprise. Methods for developing programs have grown
from design-writing on napkins to a myriad of overlapping processes comprising varieties of methods and
documentation types.

A response to this growth has been a corresponding growth in organizations dedicated to supplying an
ever-increasing need for better tools and techniques for producing these complex products. Trade shows,
research conferences, trade magazines proliferate on the technology scene. New professional technical

* Research supported in part by National Science Foundation grant CCR-9706151 to the University of Maryland.

SEW Proceeedings-98



journals regularly come alive to add to an already large number; the IEEE alone through its Computer
Society currently publishes 20 monthly or bimonthly computer technology publications.

In spite of an abundance of methods and tools and information about them, why do the same problems
appear over and over again in new software developments? Why are development schedules not met?
Why do some systems fail? Why do some technical problems remain unsolved? While new solutions are
frequently proposed, many have not been transferred into the industry at large. Many problems remain
untouched by researchers. Why does it appear that today researchers and practitioners are no longer
necessarily understanding each other’s needs and efforts?

Researchers have been looking at the role of experimentation in computer science research [Fenton94].
However, most of these have looked at the relatively narrow scope of how to conduct replicated scientific
experiments within this domain. We have been looking at the larger problems of the role of
experimentation as an agent in transferring new technology into industry. We have been studying various
experimental methods, in addition to the replicated experiment, useful for validating newly developed
software technology [Zelkowitz97] [Zelkowitz98], and we have also studied various evaluation methods
industry uses before adopting a new technology. As we later explain, these two processes are very
different. The questions important to us include "Which of these validation and evaluation methods are
most effective?” “Why aren't these methods used more often?” and “Why don't these results provide
evidence for the transference of a technology into industry?” To try to understand these questions, we
decided to survey a cross section of computer professionals about their views about software engineering
technology validation.

1.1 The research and industrial communities

Researchers, whether in academia or industry, have a desire to develop new concepts and are rewarded
when they produce new designs, algorithms, theorems, and models. The "work product” in this case is
often a published paper demonstrating the value of their new technology. Development professionals,
however, have a desire and are paid to produce a product using whatever technology seems appropriate
for the problem at hand. The end result is a product that produces revenue for their employer.

Researchers select their research according to a topic of their own interest; the topic may or may not be
directly related to a specific problem faced by industry. After achieving a result that they consider
interesting, they have a great desire to get that result in print. Providing a good scientific validation of the
technology is often not necessary for publication, and several studies have shown that experimental
validation of computer technology is particularly weak, e.g., [Tichy95] [Zelkowitz98].

In industry, producing a product is most important and the "elegance" of the process used to produce that
product is less important than achieving a quality product on time as a result. Being "state of the art" in
industry often means doing things as well (or as poorly) as the competition, so there is considerable risk
aversion to try a new technology unless the competition is also using it.

Consequently, researchers produce papers outlining the values of new technology, yet industry often
ignores that advice. Assorted "silver bullets" are proposed as solutions to the "software crisis" without any
good justification that they may be effective, are used for a time by large segments of the community, and
then are discarded when they indeed turn out not to be the solution. Clearly the research community is not
generating results that are in tune with what industry needs to hear, and industry is making decisions
without the benefit of good scientific developments. The two communities are severely out of touch with

SEW Proceeedings-98



one another. The purpose of our survey is to try and understand these communities and understand their
differences.

1.2 Research models

We began our effort to understand the differences between the research and industrial communities by
examining models of experimentation for computer technology research. We identified 12 methods of
experimentation that have been used in the computer field [Table 1.1] and verified their usage by studying
612 papers appearing in three professional publications at 5-year intervals [Zelkowitz98] from 1985
through 1995. About 20% of the papers contained no validation at all and another third contained only a
weak ineffective form of validation. The figure for other scientific fields was more like 10% - 15%
[Zelkowitz97]. The methods are defined in Appendix 1.

Table 1.1 Experimental Validation Models
Case study Project monitoring
Dynamic analysis Replicated
Field study Simulation
Legacy data Static analysis
Lessons learned Synthetic
Literature search Theoretical analysis

Our results were consistent with those found by Tichy in his 1995 study of 400 research papers
[Tichy95]. He found that over 50% of the design papers did not have any validation in them. In a more
recent paper [Tichy98], Tichy makes a strong argument that more experimentation is needed and refutes
several myths deprecating the value of experimentation.

1.3 Transition models

Given the set of research validation methods, we then sought to determine the techniques actually used by
industry in order to transition a new technology. We visited several large development corporationsl and
interviewed reasonably high level individuals, such as Chief Scientist, Chief Technology Officer, and
managers of large divisions. All had ultimate responsibility for technology selection. They were
primarily influenced by trade shows, weekly trade magazines, Web information, customer opinion (i.e.,
technologies that would win the contract), vendor opinion, friends in other companies, and infrequently
by the papers in professional technical journals. Sometimes recommendations from technical staff would
be based on their readings and would eventually reach the managers’ offices. Once a technology was
identified, the companies might perform a pilot study or were mentored by an expert of the technology to
determine if the technology would be effective.

Based on these industrial interviews and some earlier work by Brown and Wallnau [Brown96], we
defined a set of industrial transition models for technology evaluation. While the transition models
include some that are similar to those of the researchers, many are different [Table 1.2); Appendix 2
provides a short description of these models. For example, vendor opinion (e.g., trade shows, weekly
trade magazines, web information) seemed important to industry; Web information also provides access
to research literature so we needed to separate the medium in which information is located from the type
of model that information supports. An important finding, though, is that everyone with whom we spoke
claimed to use the web to find technology information.

| To assure frank discussion, we agreed not to reveal the names of the corporations who spoke with us.

SEW Proceeedings-98



Table 1.2 Industrial Transition Models
Case study Research literature
Data mining Shadow (replicated) project
Demonstrator projects State of the art
Feature benchmark Survey
Field study Theoretical analysis
Measurement Vendor opinion
Pilot study

Our interviews revealed that a company may use people-oriented methods for technology transfer. For example, a
company may hire a well-recognized expert in that technology, perhaps its creator, to help integrate the method into
company practices. They may specifically recruit people who have that skill on their resumes. Another practice
appears to be training by hiring an expert to teach in-house training or by sending their personnel to universities or
training companies.

In retrospect we would have entered these models in our survey, especially because the survey results discussed in
Section 4 indicate that in two instances, two models could have been combined. Field study and survey both
estimate the probable effects of some new technology. In the field study, several development groups may be
observed over a short time period while in the survey several experts may discuss their opinions based on their
expertise in the technology. They are rather closely aligned in time and people requirements and were perceived
approximately the same. A pilot study involves a sample project, usually small, to study a new technique while
demonstrator studies are less complete multiple instances of a pilot study.

1.4 Understanding each community

Researchers principally use methods from Table 1.1 in order to demonstrate the value of their
technological improvements and industry selects new technology to employ by using the methods in
Table 1.2. How do these communities interact? How can their methods support forward growth in
computer technology and its application in real systems? We need to develop a better understanding of
what each community understands and values. Then, perhaps, we can identify commonalities and gaps,
and from there, mechanisms to enable each community to benefit better from the other.

2. Development of the survey

To understand the different perceptions between those who develop technology and those who use
technology, we decided to survey the software development community to learn how they view the
effectiveness of the various evaluation models of Tables 1.1 and 1.2. For questions, we based our survey
on a previous survey [Daly97], modified for our current purposes. Each survey participant was to rank the
difficulty of each of our 12 experimental models (or 13 evaluation models) according to 7 criteria, criteria
1 and 2 being new and 3 through 7 being the same as the Daly criteria. We decided to try to obtain an
objective score by having all values ranked between 1 and 20, with 10 being arbitrarily defined as the
maximum difficulty that a given company would apply in practice, and 20 being defined as an impossible
model for that criterion.

2.1 Survey questions

The 7 questions we chose were:

1. How easy is it to use this method in practice? -- Can we use this method to evaluate a new
technology? The answer should be independent of whether the method gives accurate results or not.

SEW Proceeedings-98



2. What is the cost of adding one extra subject to the study? -- Assume you want to add an
additional subject (another data point) to your sample. What is the relative cost of doing so?

3 What is the internal validity of the method? -- What is the extent to which one can draw correct
causal conclusions from the study? That is, to what extent can the observed results be shown to be
caused by the manipulated dependent experimental variables and not by some other unobserved
factor?

4. What is the external validity of the method? -- What is the extent to which the results of the
research can be generalized to the population under study and to other settings (e.g.,
professional programmers, organizations, real projects)?

5. What is the ease of replication? -- What is the ease with which the same experimental conditions
can be replicated (internally or externally) in subsequent studies? It is assumed that the variables that
can be controlled (i.e., the dependent variables) are to be given the same value.

6. What is the potential for theory generation? -- What is the potential of the study to lead to
unanticipated a priori and new causal theories explaining a phenomenon? For example, exploratory
studies tend to have a high potential for theory generation.

7. What is the potential for theory confirmation? -- What is the potential of the study to test an a
priori well-defined theory and provide strong evidence to support it?

In an eighth question we asked each participant to rank the relative importance (again using the 1-20
ranking) of each of the 7 questions when making a decision on using a new technology. That is, which of
the 7 questions was most important when a new technology was being evaluated?

We developed two different survey instruments from these 8 questions -- one by ranking each of the 12
research validation methods of Table 1.1 (i.e., the research survey) and one by ranking each of the 13
evaluation methods of Table 1.2 (i.e., the industrial survey).

2.2Population samples

For our 2 survey instruments we obtained three populations to sample. Sample 1 included U.S.-based
authors with email addresses published in several recent software engineering conference proceedingsz.
These were mostly research professionals, although included a few developers. Approximately 150
invitations to participate were sent to these individuals, and 45 accepted. The survey was not sent until
the participant agreed to fill out the form, which we estimated would take about an hour to 90 minutes to
read and fill out. About half of the individuals returned the completed form.

Sample 2 included U.S.-based authors with email addresses from several recent industry-oriented
conferences. They were sent the industrial survey. About 150 invitations to participate were sent and
about 50 responded favorably to our invitation. They were then sent the survey. Again, about half
completed and returned the form.

2 . .
2 The survey was conducted via email.

SEW Proceeedings-98



Sample 3 were students in a graduate software engineering course at the University of Maryland taught by
one of the authors of this paper. This sample was given the research survey. This course was part of a
masters degree program in software engineering, and almost all of the students were working
professionals with experience ranging up to 24 years. Not surprisingly, the return rate of the form for this
sample was high at 96% (44 of 46).

It is important to realize that we wanted the subjective opinion of those surveyed on the value of the
respective validation techniques based upon several criteria. Not everyone returning the survey had
previously used all, or even any, of the listed methods. We simply wanted their views on how important
they thought the methods were. However, by choosing our sample populations from those writing papers
for conferences or taking courses for career advancement, we believe we have chosen sample populations
that are more knowledgeable, in general, about validation methods than the average software
development professional. The invitations were sent early in 1998, and data was collected F ebruary
through early April, 1998. Table 2.1 summarizes the 3 sample populations.

Table 2.1 Characteristics of each survey sample
Sample Survey Sample | Years | Academic | Industrial Industrial | Other (e.g.,
size exper. | Position R&D developer | Consultants)
1 (Research) | Research 18 18.6 9 3 3 3
2 (Industry) | Industry 25 19.1 0 5 8 12
3 (Students) | Research 44 6.6 1 5 27 11

3 Survey results

Our initial concern was to determine bias in the set of responses. Would certain individuals rank all
techniques high or low compared to other individuals? In order to test for this, we computed the average
raw scores for each technique for each question, and we also ranked each answer (i.e., computing the
easiest technique for each question, second easiest, third easiest, ..., |2 easiest). This would eliminate
such bias, but would also eliminate the significance of the value 10 being the subjective value of "hard to
do." Fortunately, we believe that we don’t have to take this into account. Figure 1 shows the value for the
question "Easy to do." The first column represents the average raw scores for the 12 methods of Table 1.1
from the research sample (sample 1) and the second column is the average ranked score. Low values
indicate the more important techniques. The fact that the ordering of the techniques from best to worst
was essentially the same indicates that the raw score is an accurate reflection of the ranking. Only the 3"
and 4", 5" and 6", and 9® and 10" techniques switched places, not a major change. Columns 3 and 4
represent similar data from the student sample (sample 3). Here only the third and fourth and eighth and
ninth techniques switched places. However, there are some slight differences between sample 1 and
sample 3, which will be discussed in Section 4.

Similar charts were obtained from the other questions. In addition, the correlation between the raw scores
and the ranked scores for sample 1 was 0.86, 0 .96 for sample 2 and 0.93 for sample 3. On this basis, we
decided we could use the raw data and did not need to use only the ranked data for comparisons.

The average value for each technique for each of the 7 criteria appears in Figures 2 through 4. Figure 2
represents the average score for each of the 12 experimental methods over all 7 criteria for sample 1 with
alpha=.05 confidence interval bars surrounding each average value. The “7” in each criterion represents
the midpoint among the methods in order to make it easier to read the figure. Of greatest interest are bars
that do not overlap, meaning there is a 95% probability that the average values for those techniques

SEW Proceeedings-98




14>7*‘7‘—7. e e e e —_—
Sample 3
— Raw
score
12 — DU
Sample 3 -
Ranked score
10
8
6
4
I - Raw Sample 1 -
score Kk
N L Ranked score .

Figﬁi‘é 1. Easy to do. Average value for eécﬁ of 12 validation méthods.
indicate a significant difference. Figure 3 represents a similar graph for sample 2 (the industrial group

ranking 13 techniques) and Figure 4 represents a similar graph for sample 3 (the student industrial
sample).

SEW Proceeedings-98



14

12

1-case study 2-dynamic analysis 3-field study 4-lessons learned 5-legacy data 6-project monitoring 7-literature search

8-replicated experiment 9-simulation 10-static analysis 11-synthetic study 12-theoretical analysis

Easy to do?

Additional §

Internal valid

External valid

Ease of repl

Theory gen

THeory conf

'__,
~
 ——

SEW Proceeedings-98

Figure 2. Sample 1 (research group) results.




1-case study 2-data mining 3-demonstrator projects 4-feature benchmark 5-field study 6-measurement 7-pilot study 8-research literature 9-
shadow({replicated) project 10-state of the art 11-survey 12-theoretical analysis 13-vendor opinion

18
16

14 |

T Easy todo| Additional $ | Internal valid

Ext validity |

__E;;é;f repl

Th:a;ry Gen

S -

The&ry conf.

i

7

Figure 3. Sample 2 (industry group) results.

SEW Proceeedings-98




1-case study 2-dynamic analysis 3-field study 4-lessons learned 5-legacy data 6-project monitoring 7-literature search 8-

replicated experiment 9-simulation 10-static analysis 11-synthetic study 12-theoretical analysis

1

14

Ext validity

Jheory con

f, B |

M L b W Ll
L A1 g
LA A M
T

Figure 4. Sample 3 (student industrial group) results.

One way to simplify the data from these figures is to split the methods for each criterion into three
partitions: practical, neutral, and impractical. The following procedure was applied:

1.

3.

Each method whose upper confidence interval was below the average value for all techniques
would be listed in the practical partition. These methods are all "better than average"
according to our 95% confidence criterion.
Each method whose lower confidence interval was above the average value for all methods
would be listed in the impractical partition. These methods are all "worse than average”

according to our 95% confidence criterion.
All other methods would be listed in the neutral partition.

Tables 3.1 through 3.3 summarize this process giving the practical and impractical techniques. All other
methods are in the neutral partition.

Table 3.1 Practical and impractical techniques from research sample

Easy Addit. $ Int. val. Ext. val. | Ease of repl. | Theory gen. | Theory conf.
Practical Dyn. anal Legacy data | Dyn. anal. Dyn. anal. Replicated
Les. learned | Proj. mon. Replication Simulation
Legacy data | Static anal. Static anal.
Static anal.
Impractical | Replicated Replicated Case study Case study Legacy data
Synthetic Field study
Les. learned

SEW Proceeedings-98




Table 3.2 Practical and impractical techniques from industry sample
Easy Addit. $ Int. val. Ext. val. Ease repl. | Theory gen. | Theory conf.
Practical Case study Res. Lit Measure Field study Measure Data mining Field study
Pilot study Survey Measure Res. Lit. Measure Measure
Survey Vendor opin. Theory anal.
Vendor opin.
Impractical | Replicated Replicated State of art State of art Vendor opin. | State of art
Vendor opin | Vendor opin Vendor opin
Table 3.3 Practical and impractical techniques from student industrial sample
Easy Addit. $ Int. val. Ext. val. Ease repl. | Theory gen. | Theory conf.
Practical Case study Case study Case study Case study Case study | Case study Field study
Legacy data Legacy data Dyn. Anal. Legacy data Field study
Proj. mon. Proj. mon. Simulation Theory anal.
Lit. search
Impractical | Replicated Replication Proj. mon. Synthetic Proj. mon. Proj. mon.
Synthetic Synthetic Theory anal. | Theory anal.
Theory anal. | Theory anal.

Our final 8" question was to rate the importance of each of the 7 questions when making a decision on
using a new technology. The purpose was to determine which of the criteria was most important when
making such a decision. Figure 5 summarizes those answers on a single chart, the column labeled 1
representing the average values for the first sample, column 2 representing the average value for sample 2
and column 3 being sample 3.

4 Survey Evaluation

4.1Preferred research techniques

Figures 2 and 4 and Tables 3.1 and 3.3 present a summary of our findings for the research validation

methods. We summarize some of the observations from those figures.

In terms of easiness (question 1), replicated experiments and synthetic experiments for the research
sample and replicated experiments, synthetic experiments and theoretical analysis for the student
industrial sample were viewed as significantly (at the .05 level) harder to do than the other techniques and

as impractical according to Tables 3.1 and 3.3. With average scores above 10, the consensus of these

groups was that industry would never use such techniques as part of a validation strategy. It is no wonder

that such techniques are rarely reported in the literature. In our earlier survey

the reported studies used synthetic or replicated experiments.

[Zelkowitz98] only 3.2% of

On the other hand, these two groups differed in their belief in the effectiveness of theoretical analysis with
respect to internal and external validity (questions 3 and 4). Whereas the research group considered a
theoretical validation likely to be used as much as any other technique (i.e., in the neutral partition of

Table 3.1), the industrial group considered it most difficult to use, preferring instead the "hands on"

techniques over the more formal arguments.

SEW Proceeedings-98




Other than the cost and ease issues, none of the other criteria exhibited significant differences among the
respondents. However, when we combine the criteria into a single composite number, differences do
become apparent (See Section 4.3).

4.2 Preferred industrial methods

Figure 3 and table 3.2 give the basic results for the industrial transition methods. As with the research
population, the replicated (shadow) project had an average rating (over all 7 questions) of over 10,
signifying little industrial interest in performing such studies. Vendor opinion also averaged above 10, as
did the need to be state of the art.

These high scores were all probably due to different reasons. Replicated experiments were viewed as
hardest to do (highest score among all techniques at about 13.5), while vendor opinion had the worst
internal and external validity (the ability for the method to explain the phenomenon under study, i.e.,
trusting the vendor to give the correct explanation). On the other hand, the need to be state of the art also
suffered with respect to internal and external validity.

It is interesting to note that according to table 3.2, vendor opinion was considered practical according to
ease of use (criterion 1), yet was impractical according to the criteria that dealt with accuracy of the

evaluation (questions 3,4, 6 and 7).

Theoretical analysis was harder to do than any other technique except the replicated project.

rﬁfﬂ—*#;ﬂ ]

Value of Questions

1

Blresearch
Bindustry
Ostudent

1 2 3 4 5 6 7
1=easy to do; 2=additional $; 3=int. validity;
4=ext. validity; 5=ease of repl.; 6=theory gen.;
7=theory conf.

S

Figure 5. Relative importance of each criterion.

4.3 Culture differences

By comparing results across different samples, we gain an appreciation of the differing values in the
software engineering community. Although sample 2 evaluated the industrial methods according to our 7
criteria and sample 3 evaluated the research methods for the same criteria, both were made up mostly of

SEW Proceeedings-98



professional developers. Question 8, the importance of each criterion, reveals strong agreement between
these two populations, and strong disagreements with the research professionals from sample 1.

Figure 5 summarizes this result. Both samples 2 and 3 viewed easy to do, internal validity (that the
validation confirmed the effectiveness of the technique) and the ease of replicating the experiment as the
most important criteria in choosing a new method. While internal validity was important, external validity
was of less crucial concern. That can be interpreted as the self-interest of industry in choosing methods
applicable to its own environment and of less concern if it also aided a competitor.

On the other hand, for the research community of sample 1, internal and external validity, the ability of
the validation to demonstrate effectiveness of the technique in the experimental sample and also to be able
to generalize to other samples, were the primary criteria. Confirming a theory was next, obviously
influenced by the research community's orientation in developing new theoretical foundations for
technology. At the other end of the scale, cost was of less concern where ease of replication was only 5
most important and cost of adding additional subjects was rated as last.

This points out some of the problems we addressed at the beginning of this paper. The research
community is more concerned with theory confirmation and validity of the experiment and less concerned
about costs, whereas the industrial community is more concerned about costs and applicability in their
own environment and less concerned about general scientific results which can aid the community at
large.

4.4 Composite measures

Given the set of 7 criteria, can we generate any composite measure for evaluating the effectiveness of the
various validation methods? Since we have the respondents’ impressions of the importance of each of the
7 criteria (via Figure 5), one obvious composite measure is the weighted sum of all the criteria
evaluations. In this case, low score would determine the most significant methods. Table 4.1 gives these
results.

Table 4.1 Composite measures
Sample 1 ordering Sample 3 ordering Sample 2 ordering
(Research group) (Student group) (Industry group)
Simulation 288 | Case study 284 | Measurement 258
Static analysis 292 | Legacy data 314 | Data mining 305
Dynamic analysis 298 | Field study 315 | Theoretical analysis 324
Project monitoring 301 | Simulation 333 | Research literature 325
Lessons learned 339 | Dynamic analysis 355 | Case study 326
Legacy data 345 | Static analysis 361 | Field study 327
Synthetic study 346 | Literature search 370 | Pilot study 329
Theoretical analysis 348 | Replicated experiment 387 | Feature benchmark 338
Field study 363 | Project monitoring 388 | Survey 343
Literature search 367 | Lessons learned 391 | Demonstrator project 345
Replicated experiment | 368 Theoretical analysis 405 | Replicated project 361
Case study 398 | Synthetic study 418 | State of the art 407
Vendor opinion 469

Table 4.1 reveals some interesting observations:

SEW Proceeedings-98



1. For the research community, tools-based techniques dominate the rankings. Simulation, static
analysis, and dynamic analysis are techniques that are easy to automate and can be handled in the
laboratory. On the other hand, techniques that are labor intensive and require interacting with
industrial groups (e.g., replicated experiment and case study) are at the bottom of the list. From our
own anecdotal experiences over the past 20 years, working with industry on real projects certainly is
harder to manage than building evaluation tools in the lab.

2. For the industrial community (the student sample 3 population), almost the opposite seems true.
Those techniques that can confirm a technique in the field using industry data (e.g., case study, legacy
data, field study) dominate the rankings, while “artificial” environments (e.g., theoretical analysis,
synthetic study) are at the bottom. Again, this seems to support the concept that industrial
professionals are more concerned with effectiveness of the techniques in live situations than simply
validating a concept.

3. The industrial group evaluating the industrial validation methods (sample 2) cannot be compared with
the above two groups since the methods they evaluated were different; however, there are some
interesting observations. For one, measurement, the continual collection of data on development
practices, clearly dominates the ranking. This is a surprising considering the difficulty the
software engineering measurement community has been having in getting industry to
recognize the need to measure development practices. With models like the Software
Engineering Institute’s Capability Maturity Model (CMM), the SEI’s Personal Software Process
(PSP) and Basili’s Experience Factory promoting measurement, perhaps the word is finally getting
out about the need to measure. But actual practice does not seem to agree with the desires of the
professionals in the field. In addition, theoretical analysis came out fairly high in this composite
score, but that does not seem to relate to experiences in the field.

4. Also within the industrial group, the need to be state of the art came near the bottom of the list (12"
out of 13) as not important. Basing decisions on vendor opinions was last. Yet vendors often
influence the decision making process. Vendor opinions were judged to be least effective with respect
to internal and external validity (Figure 3), but since vendor opinion was also judged to be one of the
easiest to do, apparently users rely on such opinions even though they know the results are not to be
trusted.

5. Data mining of collected data turned out to be second most important according to the industrial
group. This is compatible with measurement being most important. If data is not collected, then there
is nothing available to mine. Theoretical validation, literature search, and various experimental
developments (i.e., field study, case study, pilot study) all ranked about the same level of importance
to this group.

5. Conclusions

In this paper we discuss a survey taken from approximately 90 software engineering professionals. The
survey evaluated subjective opinions on the value of validation methods for transferring new technology
into industry. The idea was to study those methods used by the research community to validate new
technologies and those methods used by industry to evaluate a new technology and to try and understand
the differences. From this survey, we can make the observation that the research community and the
development community do indeed have different perceptions of the role of experimentation to validating
new technology. Researchers are more interested in how well a theory has been validated, whereas
industry is more attuned, as expected, to how well the technique works in their own environment. Costs,
while important to the industry sample, are mostly ignored by the research community.

Publication of research results is a major focus of the research community. In this respect, journal editors
can play an important role in affecting this cultural difference. Developing new technologies and getting

SEW Proceeedings-98



them into use should be a major focus of software engineering research. Editors of journals consider
requiring more real-world validation using models like case studies, legacy data and field studies and be
more suspect at validation via laboratory models, such as simulation and synthetic studies.

The survey also indicates that one should not simply be state of the art simply to be “fashionable” or
listen to vendors for technology transfer decisions. Such decisions should depend on more technological
reasons. Yet such actions are taken daily.

Measurement became the most important industrial decision making process in our composite analysis,
yet anecdotal evidence indicates that much of industry does not collect the necessary data to build
measurement programs. For the most part, our earlier survey [Zelkowitz98], the composite scores, and the
results in Tables 3.1 to 3.3 are compatible. In the earlier survey, papers studied from 1995 used case study
and lessons learned equally, followed by simulation at half that number. In Table 3.3, the student
population considering the research techniques ranked case study as practical in six of the seven
questions. The industrial group (Table 3.2) selected either measurement or case study as practical for six
of the seven questions, but the researchers find case study either impractical or neutral. Case study
requires collection of data and measurement. It appears that the industry population values these
measurement techniques as important, cost is a significant driver to industry, measurement techniques are
perceived as too expensive. Better methods and tools for aiding measurement techniques are required to
address industry concerns and to make the techniques more acceptable to researchers.

Given that industry is most concerned with internal validity, better tools are needed to aid the research
community so that external validity can be conveyed more effectively to the industrial community. This
would limit the effects of the "silver bullet" solution to complex problems. Studies are needed to identify:

1. What are the primary drivers that affect applicability in different environments?
2. How do you measure the effectiveness of a new method in a different environment?

Some of the results obtained here may be viewed as obvious, but we believe that these opinions have not
been quantified previously. The industrial and the research community do look at method validation for
different purposes, so it is not too surprising that one does not share the beliefs of the other. This leads to
conflicts when one group does not provide or use the results of the other.

Given the set of techniques described here, it would aid both communities if those techniques near the top
of the rankings had better tool support. Measurement is clearly important to the industrial professional, so
less expensive data collection methods are needed. Tools for collecting defect data or analyzing defect
and resource data are needed. Tools to better evaluate case studies would help. How to deal with the high
cost and poor perception of the replicated experiment needs to be further studied.

In this paper, as with our earlier survey of the research literature, we have tried to understand the process
that organizations use to evaluate new technologies and transition them into industrial use. We haven't
solved the significant technology transition problems with this survey, but we do believe we have
indicated where further research is needed and why some of the current problems in technology transition
exist. We need to further understand both cultures in order to determine which technique can best enable
industry to make intelligent choices on which new technology to use and, we emphasize the need for
research to develop the methods and tools to make these techniques practical..

Acknowledgments

We thank Dr. Nien Zhang for his suggestions regarding statistical methods for viewing this data.

SEW Proceeedings-98



References

[Brown96] Brown A. W. and K. C. Wallnau, A framework for evaluating software technology, /EEE
Software, (September, 1996) 39-49.

[Fenton94] Fenton N., S. L. Pfleeger, and R. L. Glass, Science and substance: A challenge to software
engineers, I[EEE Software, Vol. 11, No. 4, 1994, 86-95.

[Daly97] Daly, J., K. El Emam, and J. Miller, Multi-method research in software engineering, 1997
IEEE Workshop on Empirical Studies of Software Maintenance (WESS ‘97) Bari, Italy,
October 3, 1997.

[Tichy95] Tichy W. F., P. Lukowicz, L. Prechelt, and E. A. Heinz, Experimental evaluation in computer
science: A quantitative study, J. of Systems and Software Vol. 28, No. 1, 1995 9-18.

[Tichy98] Tichy, W., Should computer scientists experiment more?, Computer, Vol.31, No.5, 1998, pp.
32-40.

[Zelkowitz97] Zelkowitz M. and D. Wallace, Experimental validation in software engineering,
Information and Software Technology, Vol. 39, 1997, 735-743.

[Zelkowitz98] Zelkowitz M. and D. Wallace, Experimental models for validating technology, Computer,
Vol.31, No.5, 1998, 23-31.

SEW Procecedings-98



APPENDIX 1 -- Types of Research Validation

10.

11.

Case study - a project is monitored and data collected over time. Data collection is derived from a
specific goal for the project. A certain attribute is monitored (e.g., reliability, cost) and data is
collected to measure that attribute.

Dynamic analysis - a product is executed for performance. Many methods instrument the given
product by adding debugging or testing code in such a way that features of the product can be
demonstrated and evaluated when the product is executed.

Legacy data - data from previous projects is examined for understanding in order to apply that
information on a new project under development. Available data includes all artifacts involved in the
product, e.g., the source program, specification, design, and testing documentation, as well as data
collected in its development.

Lessons-learned - qualitative data from completed projects is examined. Lessons-learned documents
are often produced after a large industrial project is completed. A study of these documents often
reveals qualitative aspects which can be used to improve future developments.

Literature search - previously published studies are examined. It requires the investigator to analyze
the results of papers and other documents that are publicly available (e.g., conference and journal
articles).

Project monitoring - collect and store development data during project development. The available
data will be whatever the project generates with no attempt to influence or redirect the development
process or methods that are being used.

Field study - A field study may examine data collected from several projects (e.g., subjects)
simultaneously. Typically, data are collected from each activity in order to determine the
effectiveness of that activity. Often an outside group will monitor the actions of each subject group,
whereas in the case study model, the subjects themselves perform the data collection activities.

Replicated experiment - develop multiple versions of product. In a replicated experiment several
projects are staffed to perform a task in multiple ways. Control variables are set (e.g., duration, staff
level, methods used) and statistical validity can be more applied. This is the "classical” scientific
experiment where similar process is altered repeatedly to see the effects of that change.

Simulation - execute product with artificial data. Related to dynamic analysis is the concept of
simulation. We can evaluate a technology by executing the product using a model of the real
environment. We hypothesize, or predict, how the real environment will react to the new technology.

Static analysis - examine structure of developed product. This is a special case of studying legacy
data except that we centralize our concerns on the product that was developed, whereas legacy data
also included development process measurement.

Synthetic environment - replicate one factor in laboratory setting. In software development, projects
are usually large and the staffing of multiple projects (e.g., the replicated experiment) in a realistic
setting is usually prohibitively expensive. For this reason, most software engineering replications are
performed in a smaller artificial setting, which only approximates the environment of the larger
projects.

SEW Proceeedings-98



12.

Theoretical analysis - uses logic to validate a theory; validation consists of logical proofs derived
from a specific set of axioms.

APPENDIX 2 -- Types of Industrial Evaluation

10.

11.

12.

13.

Case study -- Sample projects, typical of other industrial developments for that organization, are
developed, where some new technology is applied and the results of using that technology are
observed.

Data mining -- Completed projects are studied in order to find new information about the
technologies to develop those projects.

Demonstrator projects -- Multiple instances of an application, with essential features deleted, are
built in order to observe behavior of the new system.

Feature benchmark -- Alternative technologies are evaluated and comparable data are collected.
This is usually a "desk study" using documentation on those features.

Field study - An assessment is made by observing the behavior of several other development groups
over a relatively short time.

Measurement -- Data is continually collected on development practices. This data can be
investigated when a new technology is proposed.

Pilot study - A sample project that uses a new technology. This is generally a smaller application
(than a case study) before scaling up to full deployment, but is more complete than a demonstration
project.

Research literature -- Information is obtained from professional conferences, journals, and other
academic sources of information.

Shadow (Replicated) project -- One or more projects duplicate another project in order to test
different alternative technologies on the same application.

State of the art -- Using a new technology that is based upon purchaser or client desires or
government rules to only use the latest or best technology.

Survey -- Experts in other areas (e.g., other companies, academia, other projects) are queried for their
expert opinion of the probable effects of some new technology.

Theoretical analysis -- Basing an opinion on the validity of the mathematical model of a new
technology.

Vendor opinion -- Vendors (e.g, through trade shows, trade press, advertising, sales meetings)
promote a new technology.

SEW Proceeedings-98



Ny, puelAIe]N

1 S,
@ ,_ 2100 RIHT vsn sagonune 1SIN
% 3 Hiam

86MAS DASD

R &
Lipgua®

PUB[AIRA - 19JUd)) Igjoyuner
pue pue[AIeJA JO AUSIDATU()
ZUMOYN[QZ A UIAIRIA]
»
ASojouyo9 ], pue spiepuel§ JO ninsuy [eUONEN
A101R10QRT A3010UYI9 ], UOTIRULIOJU]

doe[lep\ Y saJojo(d

JISuBI] ASO[OUYII],
JO S[OPOJA [BIUdWILIdAXH




puejAIe]N

121420 Eoﬁﬂm VSN 12 joqunery ASSIN
86MAS DASD Hiaw

pUB[AIBIN
‘Qrowneyg ‘939[[0)) B[OAOT ‘Adpurg piae( —

:AQ papre os[e AJIAIOR STUT, e

SJUAUWIAZPIA[MOUN DY




pueAIe]

¢ S
I2)uan) 12]0yunel
2 T g veassewsns 1SN
K 3 HEH
i

86MIS DASD B

AL

8661 - SANIUNWIWOD
Isuonnoeid pue yoreasas 3uowe suondsorog —

0661 - UOTIBPI[RA [RIUSWIIIAXI JO S[OPOIN —
I9Jsuer) A3o[ouyda
ur o[oI e sAejd A30[0uyd3) Mau Jo
UonepI[BA [RIUSWILIdAXd MOY puRISIpUN O]

AJTIATIOR JO [BON)




w

86MAS DASD  “

b /.(,,.L;xﬁ puejliey
Y ; ] I131ud) 13joyunely
o | " VSN d3joqunery
@@ og 1SIN

SISATBUR [BO1]OI0Y] JOJeds INjeIdI| .
ONOYIUAS POWIB[ SUOSSIT

SISATBUE J1BIS BlRep AOB39T .
uonenuIg . Apnis protg .
pajesrday . SISAJeUR JTWRUA(T .
3uriojiuow 109[01J Apnis ase)) .

SPOYIaW UOTJBPI[BA [OIBISY




puelAIeN

131ud) Smoscmm VS 12joquneiy I—m.—z

R6MAS DASD  “ar

+91dodd .
+ 3ururer], «x ApNIS 1011
uotuIdo JOPUS A JUOWIAINSBIN o
SISATEUR [BJ1]I0dY ], « Apnis p[o1g
« AOAINS NIRWYOUd(q 2IMBd,

118 9U] JO AIBIS o 44 109(01d JOJRIISUOWD(T

foxd (pajeorjdar) mopeys ururw eje(q e

AINIBIANI] oIeISY Apnis ase)) e

Spo19UW uonIsuel) [eLsnpu]




puejAIe|N

9 101u3) Smo:ﬁ:lmm VS() 195 0qunEL] I—m-z
86 IS DASD e
29 |LL € 2¢ |zl 09 S& Iyl OF 9 s|ejo) AesA
¢§ [L 0 € |6k 0 L 8 L € | Aioay )
v ¢ 0 0 |0 0 0 | 0 |} sisheue oels
6 8 L S 8 ¥ L ¥ & L PaUIES| SUOSSST
A I A A [ A A ejep Aoeban
Ll b ¢ o | | m« l m\ | w _‘ cohmmw m._Em._mﬁ_n_;
L fc v b @b 0 O b 0O b fpnys pjai4
6L lcc vv v |zv 6L 2L |¥S € 2L |  uonessy
8 [0 9 ¥ |9 9 L 2L ¢ & - Apnjs asen
I 0 0 0 0 I 0 0 0 o mc_._oﬁ_coE “om‘o._n_
ke o b b |} 0 0 oo 0 __uoneinwig
)] 7 0 0 ¢ 0 0 0O 0 0 m_w>_mcm olweulq
2t g o o ¥ v O | L ¢ onaUYIuAS
9 |¢ o L | 0 0 [0 0 V pajeoiiday|
sivlz ¢ 2 leg 8 2 |se 0L ¢ |uoneuswisdxs oN
os I 2 ¢ |z 9 v e 9 9 a|qeoljdde JoN
3S1 '¥0S 380I[ ISL '¥os ISOI[ ISL Yos3ISIl| PoyIBN|

(oo TIAT 866 ABIN)

s1oded teumnol 719 Jo uonenjeayq




pueAIe]
191u9) Iajoyunel]

gm VSN +esouuney

A 08

ssaded jJuad iad

uonejuswuadxs oN

a)eolds =
(sieded /1Z) 066, W Pojeolidod

(sieded zg|) 664 O : s A | RDETN TS

sisAleue olweuAg

uonenwIs

Buuojiuow j08loid

epljeA

Apnys ase)
uolyassy
Apnjs p|ai 4

yoJeas ainjessy

ejep Aoeba

paules| suossan
sisAleue onels

Aioay)

poylaw uo

POYISW (983 JO 3Sn dATIR[oY




Ay, puellien

w ..Vl ¢¢s
) « 191U 19joyunel
% LT — 1SN

o~

R6MS DASD e

ITIA [ pue “wewr] [q "3
‘ATe ' Aq 1ded /6, SSHAM uodn paseq 1daduo)) .

oI[E
s1ouonnoeld pue SIAYIILISAI WOIJ SINSAI UIRIq()
1OUIUI JOAO AJAINS WIIOJIQJ o

QAT}IJIJA 1SOW 3q
pInoys spoylaw yorym Jo suondadsiad suruadd(q e

ApmiS 8661




6 .%2.»5« puekIey

Y T 121U9) 19j0yunel

ag Py &1 <w: -o.“c:::g
$6MAS DdSD oSS

SULIOJ [RLIISNPUT G7 ‘SULIOJ OJBISI 79 :BIBp [BI0]
WLIOJ PAuIN}al SJUIPNIS 9 IO pi o

ULIOJ pauinial Jjey Jnoge ‘uIoj juas
3I9M pUE PI2I3E ()G IN0qe ‘dnoi3 yoed 0} JUIS SUOTIRIIAUI ()G

WLIOJ [0JB3sal INO PI[[1]
"d0USLIAdXD TELIISNPUL Y)IM SIUIPNIS J0ITIP SIAl [RUOISSIJOI] o
SOSSAIPPE [TRWD M SIIUIIJUOI SULIAIUISUD SIBMIJOS
[eLasnpul woly sioyine paseq-'§ ) - uonendod [emsnpuy
SOSSAIPPE [IBWS [IM SIOUIJUO0D SULIAUITUD SIBM]JOS
UoJeasal wiogy sioyine paseq-'§ ) - vonemndod yoreasay .
pajeIoud3 ATwopuer ajedronted 01 suoneliauy .

suonendod arduweg




/

VAN, puejAIe]N

0l v 4.
“f 131U9) Idjoyunel]
, @ pes VS0 os0uuney 1SN
2 Hine

A ¢

~

R6MIAS DASD  “a s

o

Juoneuyuod K103y} 10y renuajod ay) st ey —
JUOTIRIDUST A109Y) J0J [eniudjod o) STIBYM —
;,uoned1dar Jo ases oy} STIBYM —

Jpoylaw Ay} JO AJPI[eA [BUIXD Y] ST IBYM —
(POYIdU U} JO ANPI[RA [BUISIUL OUI STIEYM —

. Apris 01 102[qns BI)Xd dUO SUIPPE JO 1SOJ ST IBYM —
¢,2o110e1d U1 poylaw SIy) dsn 03 1 ST ASed MOH —

:(Teonoead wnuwixew (] ‘orqissodwr (g ‘Ases 1) LIID /
a1 0] SUIPIODJE POYIAW (I8 JO AYNOIIJIP SAIIB[AI ()~ WO 9y

suonsanb AdAing




11 puejlIeN

1 AN 1 1oy Je=IN
g6MdS DASD R
Il LT S [ 99 by yoresssy (syuspmis) €
4 8 S 0 161 ST  Ansnpuy (Ansnpuj)
¢ ¢ ¢ 6 98I 81  yoressay (yoreasdy) I

(ymsuo) PAIq d¥PA  sod -radxd IZIS
“3:3) JOY)() ISnpuj °ISnpuj ‘peIY SIBIA sjdweg  AdAInNg jduwreg

syuedronied Jo Arewiuing




71 puejkIey
19)ud) 19joyunelq
VSN 19joyuner] —m——/—
o
86MAS DASD 0
[4
| o,
_ 1
_ /] ] ) ; e
| V i L - g - L o | L
InE T T | M
i | T | I (IR
ﬁ w W , - o L m 7“ N o - - - J
, W. " ; j ; |1 ! ] ] 9
! d a1y 1 “ “ ] 4 )
2 i 1 | S .
“ - i . ] ol
] m .
J cl
14
|
— 9l
juod fioay uab Aoayy| |dasgo wmmj PljeA [euJa)x3 (pijeA Jeutaiu] | ¢ leuonippy | ¢op o} Aseg
8L

sishjeue [ealjaioayi-z | Apmis oldYUAs-| | sisAeue opejs-0| uone|nwis-g JuswLadxe pajesidal

-8 yoless aimessylj-/ Buuoyuow josfoid-g ejep Aoebsl-g paules) suosss|- Apnis pIel-¢ sisAjeue olweulp-z Apnys aseo-|

S1[NSaX dNOI3 JOIBISAY




el

86MAS D4ASD

puelkIey

131ud) 19j0yunel]

mm VSN 12joyquney

rans
awas
Ruan
saes

I W

"~
.

S

‘Juod Aios|y] ueo Aioay|

jdaJ jo aseg

Aupijeaix3

pljeA [eulaju|

$ leuonippy

op 0} Aseg

uojuido JopuaA-g | sisAleue [eolaI08y)-Z| Asmns-| | pe ay} jo ayeys-g| Josloid (pajeoidas)mopeys
-6 @Injessy| yolessal-g Apnis jojid-/ Juswainsesw-g Apnis pai-g Hewyousq ainjesy- sjosfoid Jojensuowsp-¢ Buluiw ejep-z Apn)s ases-|

SI[NSAJ dNOJS TeInSnpu]

ol

ci

143

9l

8l



14!

puejlie
121ud) 19Joyuney

ASIN

L

. VS 13joyunery
$6MES D4SD e .
— N
“
i 1 14
| ‘ ‘ L q L L
| in 1 E .
| | ! | | *
11 b ; I - 9
| *, d ﬁ _ _ ‘ _ - . N A L ) | 4 4
T 705 ) | ] ] | | 8
IunnEa | | .
.. |
| ; . 0L
! -l
WE.__Eoo Aioayj uab Auoay] |daa jo aseq Aypijea i1x3 PIIEA [euJa)u] $ leuonippy op 0} Asexq
— ¥l

sisAjeue |eoijaioay)-z| Apnis oNBYuAs-| | sishleue aness-g| uone|nwis-g juawiiadxe pajesidal
-8 Ydoieas ainela)-, Buuoyuow josfoid-g ejep Aoebej-g paules| suosse|-i Apnis play-¢ sisAjeue olweuAp-z Apnjs aseo-|

STINSaT dNOI3 TUSpNIQ




NAY, puejAIe]N

Sl N
.,,@ ) 191U3) h&osc:mm VS 10joqune Imdz

o~
¢

R6MAS DASD e

SPOYIoW JAYIO [[V - [BININ
SpOY1oWI [[& 10} dN[BA STRIOAE
9} 9A0QE SEM [BAIDIUI SOUIPIJUOD IIMO] 3S0UYM
pOY1aW Yok - 93.IdAR UBY) SSIOM - [eonoeadwy .

sanbrutyo9) [[& J0J dN[eA 3TBISAE ) MO[3q
SeM [BAISIUT 9OUSPIJUOI Jaddn asoym poylow
yoeq - 98eIdAR UBY} 19119y - sonbruyodd) [ednoeId .

uonnquisi(q aMnbruyda ],




uonNnNQIISI(] ANDIUYI I, YOIISNY

91 Sk, pueikIe
.H@H ux) Isjoyu ﬂm VS0 d3joyuney EZ
86MAS DASD  “aan =
pawE] ST
prus piL] oIS
eEp AT | APIS D fprisose) | poeoridoy | pomeondy | reopoeadiuy
"Teue
oneIS | TEUR dnEIS
Teue oS uow forg | emep A3
UORELIS pareotdoy eRp |  poumed s
pamoday | Tewe u(q Twmudg| Al [EeUAQ| Ry
Juo) ) K10,
Koy, | g joasey TATH| TAWM| $3PPV Aseq
SIQUOIBISIY-




L1

86MAS DISD o T

ASIN

"Teue A0, | ‘TeuR AI0
[eue A0, | U AIO[[,| ODOUYIKS | JnAYIAS
uow ‘o1 | uow ‘forg opopuAS | uow foid | pareordyy | pareondsy | reonoeaduug
UYareas )|
Teue K10 |, uvomeuunS | wowrforg | uow ‘foig
Aptus ppoL] epep AEBY | “Teue UA(T | epep 0BT | epep AdeBo]
AprgspiaL] | Aprusase) | Aprusose)) | Aprusase) | Aprusose)) | Apmsase) | Aprusase) | [edmorIg
Juo) wr) oYy
Ao, Ao, Josey| PRBARI| RAWI| $WPPY Asey]

(SJUSpMIS)ANISNpUT -

uonngLiSI(J anbruyda 1 yoreasay




81

N Ay,
G
.M@.M_ uuu D .Ho,«o:cznnlwm vsn joyunery EZ
S6MAS DASD T Eiem
uoido uorndo uondo
JOPUIA uomndo JOPUOA JOPUOA
e JO RIS JOPUSA Jejo RS | MeJodms | pamoidsy | paoldsy | oporiduy
uomudo
vomndo JOPUOA
Tee A0, JOPUBA Aoamng
anseqnN | ANSeIN SAW[|  ANseIN Konng | Aprus 014
Aprospy | Summuer | amsen | ApmsppY | SN | Y W Aprisase) | [ednoRId
Juo) =) oy
Ko, Kox| Joased| PATKI| BAWI| SV Aseq
Ansnpuj

- uonnqLusI(q AnbIuyoa ], Ansnpuy




MVAY

R . puelAIe
61 Ny, 2 131ud) 19j0yunelr
o i* “ dJdjoyun
, : oy VSN 13joqunely Lm.-z
B ]

Q6MAS DASD  “a S

“Ju0d Auosy)=/
-uab Auoay)=9 {'|dal Jo asea=g :AJIpljeA “}xa=¢
‘AjpijeA =g ‘¢ Jeuonippe=g ‘op o} Asea=|

L 9 g v e 4 |

Juspnis O

Asnpul @

yoleasal L

suonsany Jo anjep

(TOTSTOIP & SUTEW USUA )
BLIILID JO ddueiodwir dANR[Y




puellie]N

0¢
2100 SO v sojonuny 1SN
86MAS 4SO -
69t uorutdo JI0pudA
LOY Me jo eS| 81v Apnis J1OYRUAS | 86¢ Apnis ase)
19¢ 1939foad pareorday | Sop SISA[eUR [B21}2109Y ] | 89¢ wowiradxa pajedrjdoy
SH¢ 193f0ad Jo1eMISUOWA(T | 16€ pauIB3] SUOSSAT | £9¢€ [oJeas aInjeIdir|
£he AaaIng | 88¢ Supojiuowr 193f01d | €9¢ Apnis pJalg
€€ yrewyouaq aned | /8¢ wowadxa paedday | gp¢ SISA[BUR [BO1}2109Y[ ]
6Z€ Apras1071d | 0LE YoJBas 2InjeIdNy | 9p¢ Apnis o11aYIUAS
LT¢€ Apras pjaL] | 19¢ SISA[BUE D1JBIS | € elep Aoe3a]
97¢ Apnis ase) | ¢G¢ SISA[eue JIWRUA(] | 6€€ POUIBI[ SUOSSI]
SZ€ [2Je3sal aInIeIdN Y | €€¢ uoneuwis | 10€ Buuojiuow 193[01g
a3 SISATRUR [BO11AI09Y] | SI¢€ Apnis pla1d | 862 SIsAjeue dJrweuA(]
S0¢ Surutw e1e(q | v1¢€ BIRp A0R337 | 76T SISA[RUE J11BIS
ST uawaInSeN | $87 Apnis ase)) | 887 uone[nuIg
dnouag Ansnpuj dnouas yuapnig dnoa3 ygoaeasay
7 djdueg ¢ djdureg 1 djdueg

(BLISILID [BNPIAIPUI WNS)
drnseauwr disodwo))




puejAie]N
I191ud) 1djoyunery

, as VSN sosouunEY IS\
86MdS D4SD i

;U210 0S JeY) 0] 10SI AYm 0s ‘jse] oured uorurdo
IOPUSA PUR 1€ A} JO Je)s ‘dnoi3 [ernsnpur 9y} 10

IC

don0r1d Ul QuOp AJdJel
3noY) UdAd Suruel Y} sajeurwiop AJIes[o sururu
Blep pue JudwINSedwW ‘dnois [ersnput 9y} 10
sgunjuel
1]} 9JBUILLIOP P[ALJ Y} Ul dNDbIUYII) B WILFUOD
e sanbruyda} 3asoy} ‘Aunuruiod JuIpnis Y3 10 e
suryuel 9y} 2BUTWIOP SANbIUYI)
Paseq-s[00] ‘AIUNUWITIO) YOIeISAL Y} JO] o

saInseaw isodwo))




NSV puejAIew

NN o.,iw
:@ ,_ S:Su H&oscsl_mm <mD._3c._==£ —m—z
6MTS SO  Carad i

pauue[d - UOTEpI[eA [RIUSWILIAAX? JO sodudLIadXy —

8661 - SOITUNUIWIOD
1ouonoeid pue yo1essar Suowre suondadidd —

9661 - UOTIEPI[RA [EIUWILIAAXS JO S[OPOIN —
ordwes Ternsnpur d31e[ ure1qQ o
19399[]  90UQIMET LIRYS [IIM SUINIOA| o

A3o[ouyd9} & SuLLIdJsULn) Ul
S9oUdLIddXd [BNOE U0 JUdWNISUI KIAINS MU dO[Ad(

uerd juaim)




puejAie]N

I131u2) 19j0yunel
DI s sagouun 1SN

b,

peH T

X4

86MHAS D4ASD

AZ0]0UYII) MIU UIAIS © JOJ poylow

JATIOD]]S 1SOW JUIULIDIAP 0} $$3201d UONIBNBAD PIIN
110ddns 1001 191199 pey s3unjues 3y} Jo doy

a1 Jeau sanbruyd3) IS0} JT SSMIUNUWILOD [10q PIe p[nom 3]
yonuw paosnoeid jou jey)

JOUAPIAD [BIOPOJUR N Juelodul S8 PAMITA JUSWIAINSBIN o
(Keonoeid “sa suonedrqnd) sanrunuwiuiod Yyjoq Jjo
SpadU JO FUIPULISIIPUN 13112q 0] PAAN -SAOUILIAXS Py

SyuBM AI)SNPUIL ¢S[00] SN SIAYIIBISAY :SMIIA SUNOIJUOD) »

SUOISN[OU0))




An Adaptation of Experimental Design to the Empirical Validation of Software
Engineering Theories

< -
~/ T2
N. Juristo, A.M. Moreno 2 /

Facultad de Informatica - Universidad Politécnica de Madrid -
Campus de Montegancedo s/n, 28660 Madrid
Tel.: +34 91 336 69 22; Fax: +34 91 336 69 17
{natalia, ammoreno }@fi.upm.es

Abstract

This paper has two objectives. Firstly, it seeks to promote discussion and debate about the need to
encourage experimentation of the claims in the field of software engineering. The software community’s
lack of concern for the need for the aforesaid experimentation is slowing down adoption of new
technology by organizations unfurnished with objective data that show the benefits of the new artifacts to
be introduced. This situation is also leading the introduction of new software technology to be considered
as a risk, because, as it has not been formally validated beforehand, its application can cause disasters in
user organizations. The second objective is to present a formal method of experimentation in SE, based
on the experimental design and analysis techniques used in other branches of science.

1. Introduction

Companies are continuously developing new, increasingly complex and, ultimately, more expensive
software systems. This should be a condition for applying the range of development artifacts in a reliable
manner. Paradoxically, however, real-world developments are often used as a culture medium for
validating these artifacts, with the ensuing risks. There is no denying, unfortunately, that the models and
theories outputted by Software Engineering (SE) research are not checked against reality as often as

would be necessary to assure their validity for use in software construction. This can lead to justified
distrust when applying the new solutions developed at laboratories or research centers in industry.

It is, therefore, essential to apply a process of experimental testing to validate any contribution made to
SE. This paper seeks to highlight the need for an empirical validation of all artifacts used in SE, and then
proposes an approach to introduce this based on experimental design techniques, widely used in other
fields of science and engineering. Other researchers, including Basili [Basili, 86] and Pfleeger [Pfleeger,
95], have published work on experimental design and SE. In this paper, we aim to address in detail
particular points, such as the parameters to be controlled in a SE experiment, and will set out several
examples of how different types of experimental design can be applied to SE.

So as show the lack of empirical validation in the field of SE, the authors have compared what we have
called the essence of the scientific method with SE research. The essence of the scientific method relates
to certain characteristics common to the different methods of research with regard to the manner of
attaining new knowledge. These common features can be divided into the following activities:

e Interaction with reality, which involves obtaining facts from reality. It can be performed by means of

observation, where researchers merely perceive facts from the outside, or by means of
experimentation, where researchers subject the object to new conditions and observe the reactions.

Speculation, where researchers think about the perception obtained from the outside world. The
results of this thinking range from a mere description of particular cases, through hypotheses and
models, to general laws and theories.

Checking ideas against reality in order to assure the truth of the speculations. It can safely be said
that it is this stage that lends research its scientific value, as the stages of interacting with reality and
speculation occur in other intellectual disciplines far from being considered scientific; for example,
philosophy, religion, politics, etc. A branch of human knowledge attains the status of scientific when
speculations are verifiable and, therefore, valid (although this status is always held provisionally until
contradicted by a new reality). Remember that engineering fields depend on scientific knowledge to

1



build their artifacts.

When comparing the essence of the scientific method and research in SE, there are a series of
discrepancies, including importantly the lack of emphasis on the experimental validation activity. In fact,
present scientific progress in the software community appears to be based on natural selection. That is,
researchers throw their lucubrations into the arena almost untested. After a few years or decades,
theoretically, the fittest survives. Note the risk involved in this manner of scientific progress, as fashion,
researcher credibility, etc., also play a prominent role in science. This way of selecting valid knowledge
involves important risks when industry applies this new knowledge.

Statements claiming that SE experimentation is not needed can be heard frequently in SE. One of the
arguments is that the “Romans built bridges and were not acquainted with the scientific method”.
Obviously, humans can generate valid knowledge by means of trial and error. However, this approach is
longer and more chancy than the scientific method. If a critical software system fails and causes a
disaster, could we say that we in SE prefer the old trial-and-error approach rather than experimental
validation as called for by the scientific method? Another justification used to refute SE experimentation
is based on trusting in intuition. Several examples can be used to reject this statement, for example, the
fact that small software components are proportionally less reliable than larger ones, as reported by Basili
[Basili, 94] among others. In [Tichy, 98] the author presents some arguments traditionally used to reject
the usefulness of experimentation in this area with the corresponding refutation.

Although there are some experimental studies in the computer science literature [Prechelt, 98] [Frankl,
93] [Seaman, 98] [Iyer, 90], this is not the general rule. The want of experimental rigor in SE has already
been stressed by authors like Zelkowitz [Zelkowitz, 98] or Tichy [Tichy, 93] [Tichy, 95], who base this
affirmation on a study of the papers published in several system-oriented journals. Surveys such as
Zelkowitz’s and Tichy’s tend to validate the conclusion that the SE community can do a better job in
reporting its results, making them more trustworthy and thus making it easier for industry to adopt the
new research results.

2. Experimental Design for Software Engineering

Once that the need for empirical validation in SE has been assumed, the authors propose an approach to
introduce it based on experimental design techniques [Box, 78] [Selwyn, 96] [Clarke, 97] [Edwards, 98]
used in others fields of science.

Empirical validation can be carried out in several situations : /aboratory validation of theories, validation
at the level of real projects and validation by means of historical data. Unlike the other two methods,
laboratory validation allows greater control of the different parameters that affect software development.
Real projects allow data considered to be relevant for the study in question to be collected. Validation
using historical data allows researchers to work with data on finished projects, employing the most
relevant for the experiment to be conducted. Zelkowitz [Zelkowitz, 98] and Kitchenham [Kitchenham, 96]
suggested similar classifications. Zelkowitz groups experimental approaches into three broad categories:
controlled methods, observational methods and historical methods, while Kitchenham refers to these
categories of experimentation as formal experiments, case studies, and surveys. An example of
experimentation with real projects is the experience factory proposed by Basili [Basili, 95], historical data
have been applied by McGarry [McGarry, 97] among others, and formal experiments have been studied
by Pfleeger [Pfleeger, 951 in the DESMET project.

In this paper, we focus on formal experiments and present an in-depth study of the application of
experimental design to SE empirical validation, placing special emphasis on the adaptation of
experimental design terminology to SE. Table 1 summarizes the above-mentioned experimentation
process. Table 2 describes the application of experimental design concepts to SE. Table 3 shows the value
of some of the experimental design concepts for SE experimentation. Finally, Table 4 presents a summary
of the experimental design techniques that can be applied.



Phase of the experiment

Description

Defining the Objectives of the
Experiment.

The mathematical techniques of experimental design demand that
experiments produce quantitative results. Therefore formal experimentation
in SE requires quantifiable hypotheses. This hypothesis will be usually
expressed in terms of a metric of the software product developed using the
software artifact to be analyzed or of the development process where this
artifact has been applied.

Designing the Experiment

In order to plan experimentation in SE according to experimental design
guidelines, its terminology has to be applied to SE. See table 2 with the
terminology employed in experimental design for generic experimentation,
and its application to experiments in SE.

The next step is to select the experimental design technique. This technique
will determine how many experiments are required, how many times each
experiment has to be repeated and what data we need to output to ascertain
the validity of the conclusions. There are different techniques of
experimental design depending on the aim of the experiment, the number of
factors, the levels of the factors, etc. Table 4 shows a brief summary of the
most commonly used experimental design techniques.

Executing Experiments

The software engineer is now ready to execute the experiments indicated as a
result of the preceding design stage, measuring the response variables at the
end of each experiment.

Analyzing Results

This stage is also called Experimental Analysis. The software engineer will
quantify the impact of each factor and each interaction between factors on the
variation of the response variable. This is what is referred to (according to
experimental design terminology) as “the statistical significance of the
differences in the response variable due to the different levels of each
factor”.

e If there is no statistical significance, the variation in the response
variable can be put down to chance or to another variable not
considered in the experiment.

o Ifthere is statistical significance, the variation in the response variable
is due to the fact that a certain level (or combination of levels of
different factors) causes improvements in the response variable.

When we have understood the impact, we can ascertain which alternative of
which factor significantly improves the value of the response variable.

Depending on the experimental design technique applied in the preceding
stage, a different statistical technique must be used to achieve the above
objective. This is not the place to expound the underlying mathematics of
experimental analysis. Interested readers are referred to the references
already mentioned. Section 3 shows some examples of SE experiments
illustrating different experimental design and analysis techniques.

Table 1. Phases of the Experimental Design Process used for SE Experiments



Concept Description Application in SE

Experimental Entity used to conduct the experiment | Software projects

unit

Parameters Characteristic (qualitative or| See table 3
quantitative) of the experimental unit

Response Datum to be measured during the |[See table 3. Note there are no response

variable experimental unit variables relating to the “problem”. This

is because response variables are data that
can be measured a posteriori, that is,
once the experiment is complete. In the
case of SE, the experiment involves
development (in full or in part) of a
software system to which particular
technologies are applied. The
characteristics of the problem to be
solved are the experiment input data, that
is, they stipulate how it will be
performed. As such, they are parameters
and factors of the experiment. However,
they are not experimental output data that
can be measured and, thus, do not
generate response variables.

Factor Parameter that affects the response | Factors are chosen from the parameters in
variable and whose impact is of|table 3. Factors have different values
interest for the study during the experiment

Level Possible values or alternatives of the | Values of factors in table 3
factors

Interaction The effect of one factor depends on | Relations between the parameters in table
the level of another 3; for example, problem complexity and

product complexity

Replication Repetition of each experiment to be |Repeatability in SE must be based on
sure of the measurement taken of the | analogy, not on identity; the different
response variable experiments will consist of similar

problems, similar processes, similar
teams, etc.

Design Specification of the number of|The design will indicate the number of

experiments, selection of factors,
combinations of levels of each factor
for each experiment and the number of
replications per experiment

software projects, factors and their
alternatives that will be used during
experimentation, as well as the number of
replications of the experiments, based on
analogy.

Table 2. Application of experimental design concepts to SE



PARAMETERS

PROBLEM PROCESSES PERSONS PRODUCT
(User need) of construction (team of developers)
employed
Definition — Maturity —~ Number of |- Type of life cycle to be
(poorly/well — Description (set of| members followed
defined problem) phases, activities, | — Division by Software type (OO,
Need volatility products, etc.) positions (no. of| databases, real time,
(very/hardly/non — Relationship software expert system, etc.)
volatile need) between  members engineers, Size
Ease of| (definition of|  programmers, Complexity
understanding interrelations project managers, | - Architecture/Organizatio
(problem between team etc.) n
well/poorly/fairly members) — Years of | - Hardware platform
well understood by Automation (in| experience of each|_ [nteraction with other
developers) which  phases or member in software
Problem activities tools are| development Processing  conditions
complexity used) — Experience of | (batch, on-line, etc.)
Problem type (data |- Risks each member in|_ Security requirements
processing, the problem type Response-time
knowledge use, - Experience of requirements
etc.), . each member in|_ pocumentation required
Problem-solving the software Help required
type  (procedural, process applied
heuristic, real-time — Background of
problem  solving, each member
etc.) (discipline of
Domain origin)
(aeronautics, - Type of
insurance, etc.) relationship
User type (expert, between members
novice, etc.) (all in the same
building, same
town,
subcontracts, etc.)
RESPONSE VARIABLES
PROBLEM PROCESS PERSONS PRODUCT
Schedule deviation |— Productivity Correctness of products
Budget deviation — User satisfaction obtained (no. of errors,
Compliance  with — usability etc.)
construction process — usefulness Validity of the products
Products  obtained (compliance with
(do they comply customer expectations)
with the process Portability,
stipulations?) Maintainability,
Extendibility,
Performance, Flexibility,
Interoperability,...
Table 3. Proposal of Parameters and Response Variables for SE research




|
CONDITIONS OF THE EXPERIMENT I EXPERIMENTAL DESGIN TECHNIQUE
}
I
1
All other parameters
have been fixed ! m One factor experiment
i
One factor of I
interest
5 ;
(Zor nlevels) Some parameters are :
. trrelevant for the experi ing E i
Categorical ';rj fz:nd:otntr-c ﬁt:x:(\]penmcm " === Blocking Experiment
Factors
and I
Quantitative 1
Experimental
Response 1 Blocki
1 & ocking
K factors of interest Some parameters are 1 Factorial Design
or n levels) irelevant ,
With Replication
Factorial
¥ experiments I L Design ’
H \Wilhoul Replication
All levels of factors are relevant ]
] . —
Fractional With Replication
k
tess than n | B actorial ’
experiments 1 Design
| \ Without Replication
!
Quantitative |
Factors and |} .
Regression Models
Response 1 » &
Variables I
!
a1

Table 4. Different Experimental Design Techniques

3. Example of SE Experiments using Experimental Design

This section presents two examples of possible SE experiments employing the experimental design
process described in Table 1. Depending on the experimental desgin techinque used, different analysis
methods must be applied. During the experimental analysis phase, we will not enter into a detailed
justification of all the mathematical calculations; our objective is simply to give readers a taste of what
sort of work could be performed during an experimentation in SE, avoiding the tiresome, though simple,
calculations called for by experimental analysis.

3.1. One Factor Experiment

Suppose we are researching on a CASE tool, and we think it will increase programmers productivity. We
will compare this tool with two other tools widely used in industry and each experiment will be repeated
five times, in order to consider experimental errors. The response variable will be programmers
productivity (lines of code/person-day) and all other parameters of table 3 will be fixed. This is an
example of one factor experiment. This kind of experimental design is used to determine the best choice
of k alternatives (in our case of three alternatives).

Table 5 shows the fifteen observations of the response variable (column Z contains the values for the new
tool).

R \4 Y4
144 101 130
120 144 180
176 211 141
288 288 374
144 72 302

Table 5. Value of the response variables



The analysis if this experiment is shown in table 6. From this table we can know that the mean value of
productuvity of a CASE tool is 1877 lines/person-day. The effects of tools R, V and Z are -13,3, -24,5
and 37,7, respectively. That means that tool R provides 13,3 lines less than the mean, tool V provides
245 lines less than the mean, and tool V provides 37,7 lines more than the mean.

R vV 7
144 101 130
120 144 180
176 211 141
288 288 374
144 72 302
o of the column L%, =872 Ly, =816 T Y., = 1127 Y ¥,, = 2815
ean o e column - - - -
Effect of the column o1 = 1744 Y,, =163.2 Yoy = 225 4 WY, =187.7

. Y, =244 a3§.3 -Y,, =37.7

Table 6. Data from the experimental analysis of the example

The second step involves calculating the sum of the squared errors (SSE) in order to estimate the variance
of the errors and the confidence interval for effects. For that aim each observation will be divided in three
parts: the grand mean, the effect of the tool, and the residuals. For each part we have used a matrix
notation.

[1a4 101 1307 [187.7 187.7 187.7] [-133 245 37.7] [-304 —62.2 -954]

| 120 144 180 | | 187.7 | | | | -54.4 -19.2 —45.4 |
|176 211 141 |=|187.7 |+ |+] 16 478 -844 |
288 288 374 187 .7 1136 1248 148.6
[144 72 302J Lsm 187.7J {—13.3 —-24.5 37‘7J [—30.4 -91.2 76.6J

SSE = Elz, e = (-30,4)™+ (-54,4)+ .. +(76,6)° = 94.365,20

i=l j=l
Next step is calculating the variation in the response variable due to the factor and to the experimental
error. For that aim we calculate the sum of squares total (SST).

SST = rz M2+ SSE =5 ((-13,3 + (-24,57 + (37,6)°) + 94.365,2 = 105.357,3
J

The percentage of variation in the response variable explained by CASE tools is 10,4%
(10.992,13/105.357,3). The rest of the variation 89,6% is due to experimental errors. That means that the
experiment has not been planned properly.

In order to determine whether the variation of 10,4% in the productivity has statistical significance we
have to use the ANOVA (Analysis Of VAriance) technique, with the F-test function and table (this table
is not included in the paper, readers can find them in the bibliography of experimental design mentioned
above). The technique seeks to compare the contribution of the factor to the variation in the response
variable with the contribution of the errors. If the variation due to errors is high, a factor that explains a
high variation in the response variable might has not statistical significance. In order to determine the
statistical significance we will compare the computed F-value with the value got from the F-table, as
shown in table 7.

Table & shows the ANOVA analysis for our example. The calculated F-value is smaller than the one got
from the F-table. Therefore, we can, again, conclude that the difference in productivity is mainly due to
experimental errors instead of to the CASE tools. In that sense, we can state that neither tool provides
more productivity than the others.



COMPONENT SUM OF PERCENTAGE DEGREES MEAN F- F-

SQUARES OF VARIATION OF SQUARE COMPUTED TABLE
FREEDOM
Y SSY =¥, ar
Y SSO = ary’ 1
Y-Y. SST = SSY - S50 100 ar-1
SSA MSA
A SSA = rz al 1()()[5_5/‘) a-1 MsA = — o Ficasiainy
85T MSE
e _ a(r-1) SSE
SSE = 58T — SSA SSE" MSE =
100 (———) alr—1)
SST
Se = ¥ MSE
Table 7. ANOVA table for one factor experiments
Y 633,639.00
Y.. 528,281.69
Y-Y.. 105.357,31 100.00 14
A 10.992,13 10.4 2 5496.1 0.7 2.8
Errors 94.365,20 89.6 12 7863.8

s, =JMSE =7863.77 = 88.68

Table 8. ANOVA table for our experiment

3.2. Factorial Design with Replication

Suppose that we have invented a new development paradigm that is completely different from the
structured and OO paradigms and want to confirm that our innovation improves development projects.
We will centre on correctness as the response variable, measured, for example, by the number of faults
emerging three months after software deployment. There are a lot of characteristics that have an impact
on this response variable: problem complexity, problem type, process maturity, team experience, software
complexity, integration with other software, etc. However, all of these will be fixed at an intermediate
value (that is, they will be selected as parameters of the experiment), except development paradigm, and
software complexity which will be factors. Each factor will necessarily admit two alternatives to simplify
the calculations. According to experimental design guidelines, the factors, labelled with letters, and their
alternatives, labelled with level 1 and -1, are listed, as shown in table 9.

FACTOR NAME LEVEL -1 LEVEL 1
Paradigm A New 00
Software complexity B Complex Simple

Table 9. Factors and levels of the experiment

We will use a factorial design with replication as all levels of our factors are relevant for the experiment,
and we want to consider the experimental errors. In order to evaluate the experimental errors we will
repeat each experiment three times, so we will get twelve measurements of the response variable.

Taking the measurements of the response variable and the values assigned to the factors in table 9, the
first step of the experimental analysis is to build what is called the sign table. As shown in table 10, the
first column of the matrix is labelled I, and it contains all 1s. The next two columns, labelled with the
factor names, contain all the possible combinations of -1 and 1. The fourth column is the product of the
entries in columns A and B. The twelve observations are then listed in column Y. The entries in column I
are then multiplied by those in last column, and the sum is then entered under column 1. The entries in
column A are then multiplied by those in last column and the sum is entered under column A. This
column multiplication operation is repeated for the remaining columns in the matrix. The sum under each

8



column is divided by 4 to give the corresponding coefficients of the regression model.

I A B AC Y Mean Y
1 -1 -1 1 (15, 18, 12) 15

1 1 -1 -1 (45, 48, 51) 48

1 -1 1 -1 (25, 28, 19) 24

1 1 1 1 (75,75,81) 77
164 86 38 20 Total
41 21.5 9.5 5 Total/4

Table 10. Sign table for a 2° experimentation with replication

The second step involves calculating SSE. Table 11 shows the estimated response and the errors for each
of the twelve observations. The estimated value for the response variable is calculated adding the
products of the effects (Co, Ca, Cp, Cap) and the entries (X4, Xg, Xag) in the sign table.

Effects Estimated Mean Response Errors
Response
| A B AB
i 41 21.5 95 5 y Yii Y12 Yia €i1 ei2 i3
1 1 -1 -1 1 15 15 18 12 0 3 -3
2 1 1 -1 -1 48 45 48 51 -3 0 3
3 1 -1 1 -1 24 25 28 19 1 4 -5
4 1 1 1 1 77 75 75 81 -2 -2 4

Table 11. Errors in each experiment
The sum the squared errors is:
SSE = ey 2= 0443 (3P 3+ 043 (54272447 = 102
ij
Now we want to calculate the variation in the response variable due to each factor or combination of
factors, and to the experimental error. For that aim we calculate SST.

SST =21 Ca° + 2°r Cy’ + 2'r Cpp” + Zei\j ?=5,547 + 1,083 + 300 + 102 = 7,032

iy
Factor A explains 78,88% (5,547/7,032) of the variation, factor B explains 15,04% and the interaction
AB explains 4,27%. The rest of the variation, 1,45%, is a variation non explicated, and therefore, due to
experimental errors.

4. Conclusions

In this paper, we presented a possible adaptation of the experimental design techniques used in other
branches of science and engineering to perform experiments in SE.

The objective of the paper is not only to present a means of carrying out formal experimentation in SE but
also to promote discussion and debate on the need to encourage experimentation of the claims in this
field. The software community’s lack of concern for the need for the aforesaid experimentation is slowing
down adoption of new technology by organizations unfurnished with objective data that show the benefits
of the new artifacts to be introduced. This situation is also leading the introduction of new software
technology to be considered as a risk, because, as it has not been formally validated beforehand, its
application can cause disasters in user organizations.

We are aware that software development's marked economic and commercial nature can be a decisive
factor standing in the way of the necessary experimentation, as experimentation does not produce
tangible, short-term benefits. The benefit of experimentation will come to fruition in future development
projects, and this benefit is difficult to quantify at the time of deciding on experimental feasibility or the
number of experiments to be performed. However, as we have already said, experimentation can also stop

industry taking unnecessary risks by adopting proposals that have not been satisfactorily tested.




5. References
[Basili, 84] V.R. Basili, B.T. Perricone. Software Errors and Complexity: An Empirical Investigation.
Communications of the ACM, January 1984, pp. 42-52.

[Basili, 86] V.R. Basili, R.W. Selby, D.H. Hutchens. Experimentation in Software Engineering. IEEE Transactions
on Software Engineering, vol. 12 (7), July 1986, pp. 733-743.

[Basili, 95] V. R. Basili. The Experience Factory and lts Relationship to Other Quality Approaches, Academic Press
Inc., Adnvances in Computers, Volume 41, 1995.

[Box, 78] Box, G.E.P., Hunter W.G. and Hunter, J.S. Statistics for Experiments. Wiley, New York, (USA), 1978.

[Clarke, 97] Clarke, G.M. and Kempson, R.E. Introduction to the Design & Analysis of Experiments. Wiley &
Sons, New York (USA), 1997.

[Edwards, 98] Edwards, A.L. Experimental Design. Addison-Wesley Educational Publishers, Delaware (USA),
1998.

[Frankl, 93] P.G. Frankl, S.N. Weiss. An Experimental Comparison of the Effectiveness of Branch Testing and Data
Flow Testing. IEEE Transactions on Software Engineering, vol. 19 (8), August 1993.

[lyer, 90] lyer, R.K. Special Section on Experimental Computer Science. IEEE Transactions on Software
Engineering, vol. 16 (2), February 1990.

[Kitchenham, 96] Kitchenham, B. Evaluating Software Engineering Methods and Tools. Parts 1 to 8 SIGSOFT
Notes 1996 and 1997.

[McGarry, 97] F. McGarry, S. Burke, W. Deker and J. Haskell. Measuring Impacts of Software Process Maturity in
a Production Environment. 22nd NASA Workshop on Software Engineering, Maryland, USA, December 1997,
pp- 193-220.

[Pfleeger, 95] Pfleeger, S.L. Experimental Design and Analysis in Software Engineering. Annals of Software
Engineering, vol. 1, 1995, 219-253.

[Prechelt, 98] Prechelt, L and Tichy, W.F. 4 Controlled Experiment to Assess the Benefits of Procedure Argument
Type Checking. IEEE Transactions on Software Engineering, vol. 24 (4), April 1998, 302-318.

[Seaman, 98] Seaman, C.B. and V.R. Basili. Communication and Organization: An Empirical Study of Discussion in
Inspection Meetings. IEEE Transactions on Software Engineering, vol. 24 (7), July 1998, 559-572.

[Selwyn, 96] Selwyn, M.R. Principles of Experimental Design for the Life Sciences. CRC Press Inc. (UK) 1996.

[Tichy, 93] Tichy, W.F. On Experimental Computer Science. International Workshop on Experimental Software
Engineering Issues. Critical Assessment and Future Directions. Proceedings, 1993, 30-32.

[Tichy, 95] Tichy, W.F. et al. Experimental Evaluation in Computer Science. A Quantitative Study. Journal of
Systems and Software, vol. 28, 1995, 9-18.

[Tichy, 98] Tichy, W.F. Should Computer Scientists Experiment More ? IEEE Computer, May 1998,32-40.

[Zelkowitz, 98] Zelkowitz, M, Wallace, R. Experimental Models for Validating Technology. IEEE Computer, May
1998, 23-31.

10



86.MHS VSVN !

NIVdS
PUpPEN 9P BIIUIN[Od PEPISISAIUL)
BOIJBULIOJU] 9P peinoe]
OUQIOIN ‘N 'V oISt "N

SHIMOHHL
ONTIHANIONHT HIAVALAOS 40
NOILVAI'IVA TVORIIdIANH HH.L

OL NOISHA TVININIIHdIXH
HO NOILVLdVAV NV

AS 10} ud1so( [eIUSWILIdAXF

OURIOJN 29 OlsLInf




86.MdS VSVN ¢

oidurexy -

so[qelIe A asuodsay pue siojoweie] -
A3o[ouruuo |, -

:qS 01 sydadsuod (07 Jo uoneydepy

(qd) usrso( [eyudwiLiadxy Jo s1deouod swog
syuswIadxy qe] [eurio} uuoyiad 03 Aem v :esodold 1nQ
uonepifea edrnduws Jo spury|
uonejudwWLIadxa SI JBYA

SABM 2ARUWIYY -

suoneorduy -

(MOH 7 (UM -

:SeIPI 3G JO UONEpI[eA INOQY T

Seapt S Jo uonepifeA INA1dOdd °1

SINALNOD

N < v O~

OUSIO 29 OISHN[ dS 10] udisoq [eyuswadxyg



86.M4dS VSVN

510 100) ‘anbruyoa} ‘poyewt ‘wigipered “9daouod = eapl,

SVAQI S 40 NOLLVAITVA 9U} In0ge UIy) s 397

0

;3uowidO[2ASp 2TeM1JOS UL 3SN IM 4 SBIPI 3Y) INOQE AINS dM IV

INATdOUd

OUSION 29 OIsLInf qs 1o} udisa(q [eyuswdxyg



86.MHS VSVYN

Uuond9[as [eINteN

i

(,SBIPI 2JBPI[BA 9M Op MOH

asn JO SIedh 1YY

i

2.S10M BapI pasodoid e Jey} Ins am dIe UdYM

¢MOH (UIYM
SVAdI 4S5 4O NOILLVAI'IVA

OUSIOJN 29 OISLINf S 10§ ugiso(J [eyuomddxyy



86.MHdS VSVYN

*9IBM]JOS
unONIISUOD UAYM SBIPI J[QRI[AI-UOU SISN ANSnpuj —

' AJIUNUInIod )
01 pasodold 3urdq 210Joq pajepI[eA U(Q JOU dARY SBIP] —

suonjedpduny
SVAAI 434S 4O NOLLVAI'TVA

OUQIOp\ 29 O)sLInf S 10} udiso( [eyuowadxy



86.M4dS VSVN

NOLLV ILNATIAdXH y3noIy) 1 op 1941 “ON

i

;0P 9m Aem SUIBS
a1[) SBIPI SJepI[eA SP[aY) JULIAUIZUS pue JHUSIOS IS0 o

NOLLVINANMAJdXH YsnoIyy ‘sax

3

;s3unq) Surop Jo Aem JUISJJIP B 313U} S]

JAemM YO
SVAAI AS A0 NOLLVAI'IVA

qs Joj udisa( [eyuswiiadxy

OUdION 29 OIsHInf



86.MHS VSVN

(uonepife A Teouidwy) A1jeal jsurede seapl/1so], —
euawouayd Jo Apmis saneuen) —

sout[dIosIp oTuIapeoe. IdY)0 pue JulISdUI3UD 29
JOUATOS UM SOUIIQJIP dY) Sy UONeusIIddXy —

INOILLVINANTI-TAIXH ST LVHM

OUSIOJN 29 OIsLIng AS 1o0j udisa(q [eluswidxy



86.MIS VSVN

©Je(J [eOLIOISIH JO as) —
s109lo1d Ty :sarpmig ase) —
sjuswILIddxy A10jeIoge] [RWIO,] —

NOILLVAI'IVA
TVOIRIIdINA 4O SANDI

OUSIOJA] 29 OIsLIn[ A4S 103 ud1sa(J reyuswadxyg



86.MHS VSVN

ds o1 padepy NOISAJ
TVINANTIAdXA 3urs) sjuswiradxy [eulio,] WLIOLId]

i

Al0jRIOQRT AU} Ul
seap] AS Jo uonepifeA [eourduy o} yoeoiddy uy

sjuswLadxy qe] [eurio, wiojidd o) Aem Y

TVSOdOdd 410

OUSIOIN 29 O)suInf 4§ 10} ugisa(q eywswadxyg



86.MdS VSVYN 0l

ooﬂmowﬁﬁwmm [edonsnels Jo e3pt 9y} ST HQQOGOO urewl oY [, —

SUOISN[OUO0D 18 JALLIE pUR BJep ISAJeUR pUue JO3[[0D
‘syuowLIadXa Y1 JO SI[qELIBA 9} 9S00YD ‘SIUSWLIdXd
woyrad 01 suonepunoj [edriewayjewl SAYSI[QeISS I —

+ ‘sTRONINSORULIBYJ “QINNOLITY ‘ANSTWSY)
:sp[ol] SulIdouISuS 1Yo Aq pasn A[pupnol st 3] —

IYSI]
preuoy IS Aq Amuad {0 oy} ul A[res pasodoi —

NOISAA TVINHANITTAdXH
HO SLAADNOD HINOS

OUQIOJ 29 oisunf qS 103 ugisa( reyuswadxy



86.MES VSVN m

ssrqeLIE A
asuodsayg
S|opoJAl uolssaa8ay] ~gZpaman pus si010wg

saunTiuEnNd

uonesiday INOYITM g
udsaqg
£ (e e

vonesTday Yirm [eUOIDEL]

syuswradxa
u uein ssay

A1 S1E S1010E} JO S[RARL TV
asoneards ineyst

nesndsy w0 oy - siuswnadxe 4
£ 1ruoidey =
uonesiiday wirm

1UBAD[ILIT (s12A3] W0 7)

uSisag [euUIOcIde] are sameurered sutog s1:ur JO s103108F

B ]

Bupiord ssunodsay

aamusdxyg

neaend

pue

si010eg

PoXij 9q lou ued e Ing TesuocSaed
jusuwiuadxs I JOJ IURAI[ILN

siojourered swWI0S 2I' SIIYL

juswpadxy Sunijolg e

(512491 W0 7)
1s3123UT

30 10319%3 U

usmuadx? 1030€3 duQ TR PaxXy uaq IARY

sasjsurered 19410 IV

ANOINHDOIAX NIDSHJ TVINIANITAIXH AINTATEIAIXH AHL 3O SNOILIANOD

suonen)I§ JUIYI( L0 sanbruydd I, juaidji(

NOISAd TVINTNITHIXAH
, A0 SLdIINOD HINOS

| OUBIO 79 OISLIN( qS 1oy udisa( eyuswradxyg
/

\

\




86.MES VSVN cl

‘L{gojeue uo
paseq ‘sjuswuadxd syj jo suoijesijdai yo Isquinu juswadxs 12d suoijesijdal Jo rsqunu
sy se [jaw se ‘uoijejuswiuadxe Surmp pasn 2q |3yl pue juswladXs Yses 10] 10108 Yyoes jo
[ 1Byl SoAljEUID)[E IIDY] PUR sI10108] ‘s3oafoid | s[2A9] JO suUOlRUIqWOD ‘S10J0E] JO UOIHIRS

arenjjos Jo iaqumu Y3} 91edPUl [[Im udisap oYJ | ‘siuswruadxa Jo IaquUMU i) Jo uolesyyoads ugisxq
‘039 ‘swedl Je|luis
‘sassaoord ie[uuis ‘swa[qoird Ie[uuls JO }SISUOD J|qeLEA
[ sjuswiuadxs JUSISPIp Ayl ‘A1uspl uo jou |asuodsar 2yl JO UINel jusWIdMSEIW Y]
‘Afofeue uo paseq aq isnuw gs ul L1rqeieadsy] jjo 2ms 2q 03 JusWILAAXD YoEDd JO uonnadoy uonesijdey
AILX2 [dWwod
jonpord pue Airxsjdwioo wojqord sjdurexs 19130 Jo
10] ‘€ 2]qe} Ul s1vjpweied SY1 USIMISG SUOHR[SY | [949] 31 UO SpuSdSp 10158] U0 JO 19313 Y], uo11o'IalU]
€ 5]qe} Ul s10108] JO sanjeA | S10108] 543 JO SOALEWIS[E JO SAN[BA I[qISSOJ 124971
JUSWI USd XD
2y; Suunp sIN[EA  JUIIIJPIP SABY SI0PEY Apnus 2y} 10J 18213)U1 JO st joedwl soym pue
‘¢ 21qe1 ul sisjoweied WOl USSOYD SIE SI0EJ |2[qrUEA dsuodsal dYyj s103QE Jeyl Jojpweled 10108 ]

‘sa[qeuea ssuodsal ojeious s
j0u Op ‘snyj ‘pue peMSESW 3q Ues jrY) BiEp Ndmo
juswiusdXxs 10U dIe ASY] “ISAMOH "IUSWMIAXD
sy1 Jjo siopey pue swpwered ore A2y
‘yons sy -pountopad 5q [ J1moy 9remdys Aoyl
“s1 1oyl ‘ejep indut juswiadxs 2Yyj 3ue P34 [0S 3q
031 wajqosd sy; Jo sonsusioereys syl ‘parjdde sre
sa18ojouyss} Jemoiyed Ys1ym 0] WI)SAS JIBMYOS
e jo (yed ul io [ny ul) juswdojaasp sdajoaul
juswuadxs Yl “gS JO 3sed 2yl ul -3Pjdwod
S1 :..oEtvmxo oYl 20uU0 ‘st jeyl ‘uowmaisod
p pamsesw 5q URD JRY) BIEp OIE S3|qeueas asuodsal

ssnesaq st sy - wajqoid,, 01 Sune|al sajqelea jun
ssuodsa: ou ale 2194yl SION 2]qe) 199) 99g Jeruswiadxs 2y) BuLMp pamsesw 59 o} wmje] s[qeuea ssuodsday
1Iun [ejusw uadxs Y3
sag |30 (2aneinuenb 10 aaneirfenb) snususioerey) s1ojoweIeg
5102 [01d 1M YOS TUSW UDd X3 91} JONPUOD O] PAsn A}pug jium [ejuswiLiad Xg
qS ui uones>1jddy uondiurdsaqg ydaduo)

ASOo[ouTuLId J,
AS OL SLdADNOD dd 4O NOILVLdVAYV

OUSIOJA 29 OIS A4S 103 uSiso(] [eyuawLdxy



86.MHS VSVN
("312 ‘spe1u0IgnS
“Uno} oures ("1 “iaou
‘Guip|mq aues ot w padxe)  adA1  1asp
[[B) SIOqUWAI U3aMIaq (910 2ouemsul
drysuonjar jo adkp ‘SOINRUOLIIR)  UTRWO(]
(w§uo (010 ‘Buiajos
Jo aurjdiosip) Jaquiaw wajqord uE:._me
- DNISINIY  [empadol
pazinbax djag o o_somwwwmm adsy Surajos-waqorg _
pannbal UojejUAUNIAC] ssono1d o§.>c8 - (opasm |
sjuatuaznbal swrp-asuodsay oy W Iaquew sdpepmony ‘Smssoord |
sjuowafinbaI AJ1moag e jo 2oust1adxg vwp) 3ddy wopqoyy - |
(030 ‘dulf-uo umbswzoa sysry - | Anxojdwodwajqory - |
YIRq) SUOLNPUOD FUISS0I] ay W Joqubw (posn are s[00} (swdojoasp
EMYOS  yows jo coustdxg —[sopaoe  Jo soseqd |49 pooistpun |
DY0 @M uoHporId] yusmdoaasp piyw u) uonpwomy - |13 AprEAj100d 1am
wope|da®wpie |y pquowm  yoes (sloquw urea) w2|qo1d)
UoLeZIUed10) AMPI N YTy 10 Souatsadxa Jo sreay USMIaq  SUoT|BjaLjul upuelsiopun jo asey
Kuxopdwo) (op ‘sofewew  |JO uomuyop) S1quIW (paauajiyejoa
azI§ - |wofosd ‘sioururesford  fusemppq  diysuorepsy - uou/Ajprey/A1aa)
(010 ‘w=1sAs padxa ‘awry jear ‘s1oourgun (o1 “sppoid Anpte[oa paay
‘saseqeiep ‘QQ) 2dA1 aremyjog aemyos  Jo  ow)  |‘senuanpe ‘saseyd (warqoxd
Moy 0] suorpsod Aquotsiag] —fjo  pes) uwonduosx] - Jpouipp  [jam/Kpood)
aq 01 3pokd apy Jo adfg SIOqUISU JO Joqump Aumppw - uontua]
(s19dofaasp Jo ureay) paAo[dua UOIINISU0D Jo (paau asy))
120d0dd SNOS¥Ad SISSI00Ud WT180dd
SYALANVIVd

sIdjouweae sjudwLIddxy
dS OL SLdIONOD dAd 4O NOILVLdVAV

OURIOIN 29 OIsLIng AS 10J uSisa(q eyuowiradxy



86.MHS VSVN

T ATIGR19d 0 19U
“Aqrxar g (¢suonendns
“QourwW IO} Idd $$200.1d U} yim
‘AIIqIPUIX Adwod A
‘AnfiqeurejureiN Op)  pourlqo
‘Arigqeliod sponpold —
(suoneydadxa $s200.1d
IawoIsnd UoNON IISUOI
Uim duerdwos) ss qm
syonpod aunjosn — souerdwo) —
oy Jo  AupIieA —| Aijiqesn — uonelAsp
(7012 ‘s10112 JO "OU) uorjoejsijes 1P3png —
paurejqo  sjponpoid 138 — UOTIRIASD
JO SSaU1R110) —| AuAnonpoid — aMmpayos —
LONdOdd SNOSHId SSHOOUd WH'THOYd

SHTAVIIVA ASNOdSTA

J[qBLIB A dSUOdSY

dS OL SLdAONOD dd 40O NOILVLdVAV

OURIOJN 79 O)SLINS

AS 1o} ugisa( [ejuswnadxy




86.M3S VSYN 7!

pasn st widipeled

MU JY) UaYM J3139Q SI SSOUIILI0D LTINS
ugiso(J [eLI0108] ANOINHOAL a4
yjuowko[dap Ioye

SYIUOW 931U} PJod)ap sIodrd Jo _qunN HTIVIIVA HSNOdSHd
(ordums/xojdwod) Ajixadwio) we[qoid

(mo[/y31y) AILInJeIA SS9901d
(00/mau) wipeied juswdofara( 'SIYOLOVA

uSIsa(J [er103deq Jo sjdwexy
A4S OL SLdADNOD dd A0 NOILVLdVAV

OUSIOJN 29 OISLIN( qS 1oJ udisa(q [eyuswuadxy



86.M7S VSVN o1

01 - Ob = 0S = ¥ / 098+ E+85+7T = *° = "#"P*"d ss3u300110))
01 - OF = 0€ = ¥ / 0S+0T+9p+p1 =" = P 5531031107

gmort 1] ¢ ¢f <lorl syorfor:
%0 = CISy/8 : 09V

0
%¢C = CISY/TL OV RIOIY 6P pC] 9T 0p )91 Ok 08]CC
%I = CISH/TE 09 ool 1l 1l ol ol ol ol
%Y = TISH/00T ‘v NEIRIEAEE
%I L = T1SH/00C€ (A1xadwo) aremyos) D «l - I
ﬁqumﬁmy\oom”Ab:aﬁwzmmooe&m ~

Wl I
0681 = Z1S+/008 :(w3ipered juswido[oas) vV

1 |

op 1 !

al Ty rprEprefrprpl
—- -

CISh =8+ CL+TE+ 00Tt +00C + 008 al el

=(Z1 +TE+TT+TS+T0T+TS+T01)T
=P+ P+ + V0 + P+ D+ YD) T = 1SS sUm« alovlav| ol gl vl 1

y—
—
—_— o et e gt et et ——t

ugisa(q [eL10)de, Jo djdwexyy
dS OL SLdIDNOD dd 4O NOILV.LdVAV

OUSIOJN 29 O)sLInf 4§ 10} udiso eyuswiadxy



Extending Enterprise and Domain Engineering Architectures
to Support the Object Oriented Paradigm

Fred A. Maymir-Ducharme, PhD
Lockheed Martin, Mission Systems
fred.a.maymir-ducharme@Imco.com

1.0 BACKGROUND As the size and complexity of software systems increase and budgets decrease, the
U.S. Government has realized the dire need to provide guidance to develop systems more effectively and
efficiently. We can no longer afford to “reinvent the wheel” every time a new system is needed.
Engineering familics of systems, product lines, and exploiting commercial off-the-shelf (COTS) software
and Government off-the-shelf (GOTS) software are just a few approaches to achieving better engineered
systems. In addition, software intensive systems must be able to work together and exchange information.
While interoperability is important for many information systems, it is essential for military systems, which
must be capable of supporting lifesaving operations that may require changing a mix of forces, at a
moment’s notice, just about anywhere in the world.

U.S. Government has developed architectural guidance and policy to achieve the required interoperability,
as well as engineering systems faster, better and cheaper. These initiatives and products only address
“what” should be done. Program managers and systems engineers tasked to deliver these systems depend
on technology addressing the associated “how to’s.” This paper addresses the technology (concepts,
processes, methods and tools) used on multiple programs to effectively and efficiently engineer military
systems, using various architecture guidance, policy and products. One of the major themes (i.e., lessons
learned) of this paper is that there are many conflicts between the technologies associated with Object
Oriented approaches and the more traditional Structured/Functional approaches. 1f both approaches are
used by an organization, these challenges must be identified early and dealt with accordingly.

2.0 DISCIPLINED SOFTWARE ENGINEERING The way we engineer our systems is
continuously changing and improving. We can no longer treat each new project as a single, new and
independent development effort and not build on previous engineering efforts and experience. Instead we
need to view these systems within the context of similar systems built in the past, exploiting the
commonalities and engineering the appropriate variances. Additionally, we must leverage off existing
reusable assets and develop new ones with reuse in mind. Reuse is an integral part of a disciplined software
engineering practice, which is continuously improving its technology/asset base and processes. In order to
meet today's software challenges [6] of increasing demand, complexity and size, we need to establish new
ways of fusing together information about what assets exist and need to be woven into the processes used to
guide our engineering activities. Various software engineering methods, processes and tools exist to help
take advantage of available information about data, process, and software assets needed to make the
engineering decisions governing the quality of the products that evolve as a consequence of their
mechanization.

Disjoint engineering efforts (i.e., Information Engineering, Domain Engineering and Application
Engineering) result in engineering process stovepipes. Each engineering level develops models representing
the associated requirements. Each engineering practice designs a solution (sometimes captured by an
architecture or design). And each engineering practice then implements/develops their products. The
challenge is to fuse these engineering methods (and thereby their work products) to eliminate redundancies,
inconsistencies and other anomalies. The goal is to define and implement a disciplined software
engineering practice that assures that the work products and standards produced any phase of the lifecycle
are consistent and coordinated with the work products and standards of all associated lifecycle phases. For
example, data models developed during the enterprise modeling phases must feed into the appropriate
domain engineering and application engineering phases; and reciprocally, provide feedback to the
enterprise efforts when the data models need to be modified or extended. Applications developed
individually without considering common and/or related systems in the domain result in stovepipe systems /



applications. Likewise, domains enginecred without considering the broader enterprise (e.g., common data
elements, business functions, the need to interoperate, etc.), can result in stovepipe domains.

Mature engineering disciplines support clear separation of routine problem solving from R&D. These
disciplines have publicly-held, experience based, and formally transmitted technology bases that include
product models (e.g., designs, specifications, performance ranges) and practice models (tools and
techniques to apply to the product models) (See Figure 1 below). Furthermore, the qualities of products
built from these models are well-understood and predictable before the products are produced.

Maturing of the Software
Engineering Discipline

New  ~\_ . Engineered
Development experience Products
w in product

~o use y

technology

insertion ~

~

experience in

engin?ar\ing practice
~

production
engineering

Product Line Asset Base

*« Models (requirements,
architecture, design, ...)

* Plans (development, test, ... )

« Software (developed, COTS,
GOTs, ...)

Routine Design
and Engineering

Figure 1 The Maturing of the Software Engineering Discipline

The state-of-the-practice of software engineering is not yet at this level of maturity. Instead of basing new
development on a technology base of well-understood models, current software engineering practice tends
to start each new application development from scratch with the specification of requirements, and moves
directly into the design and implementation. By contrast, this effort's vision of a mature software
engineering discipline, as illustrated in the figure above, relies on a technology base of reusable assets and
clearly separates routine systems development (i.e., application engineering) from development of the
domain-specific technology base (i.e., domain engineering). This separation highlights the need and
significance of developing reusable corporate assets including requirements, models, architectures,
processes, and components. The application engineering function can then focus on validating and using
this technology base, instead of beginning with a blank sheet. In addition to creating the initial set of
domain assets, domain engineering processes will continue to add and enhance the technology base
according to the requirements associated with application engineering.

Under the USAF Comprehensive Approach to Reusable Defense Software (CARDS) Partnerships Program
[20], LM developed and applied, the AF/CARDS Engineered Software (ACES) methodology [21,22,23]
(illustrated below), an approach that combines Information Engineering with Domain Engineering and the
Object Modeling Technique (OMT). The CARDS Tri-Lifecycle Software Engineering model [1,2,27]
(Figure 2 below), reflects three types of engineering activities during the acquisition and life cycle
development and maintenance of software intensive systems: Enterprise Engineering [2,3,26], Domain
Engineering [23,24.25], and Application Engineering [1,5,7,8,17]. Due to the complexity of engineering all
of the systems within the enterprise, as well as the numerous methodologies available for each engineering
area, it is likely that information will be lost, regenerated, or not seen as relevant to previous or succeeding
activities -- thereby causing redundant work efforts, data and function anomalies, and higher development
and maintenance costs. This lack of coordination and communication across processes has been coined



"stovepipe processes” and is analogous to the systems stovepipes dilemma, where systems fail to leverage
common data and the necessary interoperability. Approaching the problem with planning oversight of all
three activities ensures that information flows from one activity to the next.

Tri-Lifecycla Enginzaring Model

Operational
Planning
T
Enlerp'nse Architecture Planning )

i
Domain /Product Line Englneering
1 1 i

( Asset Management

!
T

x x
¥ T 1
P 1 Z 1 = 3 =
Y o ¥ z . L v s
System Syste
Requirements Syslem Design

Application Engineering

<
+
m

Figure 2 The CARDS Tri-Lifecycle Engineering Model

There are numerous Domain Engineering methods and processes. The primary domain analysis methods
(primary because of their validation/applications on various efforts and associated publications) include:
Organization Domain Modeling (ODM) [18], a well defined and comprehensive method; Domain
Engineering Process (DEP) [27], an extension of object-oriented methods; the SEI Feature Oriented
Domain Analysis (FODA) [2] method, considered to be the most mature DE methodology; and SPC’s
Synthesis [19].

3.0 ARCHITECTURE GUIDANCE U.S. Government guidance and policy such as the Command
Control Communications Computers Intelligence Surveillance and Reconnaissance (C4ISR) Architecture
Framework, Joint Technical Architecture (JTA), Defense Information Infrastructure (DII) Common
Operating Environment (COE) and other US DoD architectural guidance are crucial to achieving
interoperability, while building systems faster, better and cheaper.

The JTA [30] is the DoD’s specification for interoperability between all DoD systems. Figure 3 below
illustrates the relationship of the JTA to other DoD architecture guidance and initiatives. The JTA is based
on the Technical Architecture Framework for Information Management (TAFIM), Adopted Information
Technology Standards (AITS) — Volume 7 of the TAFIM [12]; and uses the DoD Technical Reference
Model (TRM, TAFIM Vol 2) as it’s structure for specifying interoperability for each major service area.
The JTA defines the service areas, interfaces, and standards (JTA elements) applicable to all DoD systems,
and its adoption is mandated for the management, development, and acquisition of new or improved
systems throughout DoD. The JTA is complementary to and consistent with other DoD programs and
initiatives aimed at the development and acquisition of effective, interoperable information systems --
including the DoD’s Specification and Standards Reform, the Information Technology Management Reform
Act (ITMRA); DoD C4ISR Architecture Framework, the DoD TRM; the Defense Information
Infrastructure Common Operating Environment (DII COE); and Open Systems Initiative.



DOD Architecture Efforts

C4ISR Integration Task Force
(Integrated Architecture Panel)

Technical Architecture Framework for
Information Management (TAFIM)

+ Addressing operational, systems, and
technical architecture processes and
structure

« The JTA will continue to use the C4ISR
Architecture Framework.

+ Establishes DOD framework/processes
for defining technical architecture

+ Not a specific technical architecture

+ The JTA supersedes TAFIM
Volume 7 for C41 systems

JTA

Establishes a technical architecture
for C4l interoperability

Common Operating Environment(s)

1o Support Applications « Instantiation of C4I Technical Architecture
Infrastructure Services focused on (but not limited to) Information
Processing

KERNEL - | Opsrating System

+ The JTA mandates the use of the COE

Databases

JTAVID2e ppt 199KI209

Figure 3 DoD Architecture Guidance

The DoD TRM originated from the TAFIM and was developed to show which interfaces and content
needed to be identified. The TRM Working Group (TRMWG) has extended the scope of the TRM to
include real-time systems (e.g., weapon systems) and is coordinated with the JTA. As figure 3 indicates, the
JTA is also very closely coupled with the DII COE [32] and the C4ISR Architecture Framework [31]. The
DII COE is the DoD’s implementation of a technical architecture supporting interoperability, supplemented
by various common services / utilities to maximize reuse across multiple systems. And as the figure below
indicates, the JTA is one of the three architectures defined by the C4ISR Architecture Framework.

CAIS R Architeciural Pram 82 W orK

Operational
View

Tdentifics W hier Redationships
and Inf tion N cedy

Specifiv Capabilities Ldeatificd to

S " i
\ . .
T
46 ‘.
watisfy bnfocm ation-Evvhsnge
System s fevels aud Dther (Gperatinnal .
View Requiremenls g

Technical Criteria fivverning Fe cih Standards
excrihoes a -

Relafes Capabilities and Cha pactevistics o ‘wteroperableimplem cntatinn/
to ()prr»(iunzx’chuirum catsy G rocurement ol the Setected and Conoyentions

ystem Cupshitities

Figure 4 DoD C4ISR Architecture Framework



4.0 LESSONS LEARNED Lockheed Martin (LM) worked with the USAF to replace existing
transportation information systems. These systems were designed as stand-alone applications serving
individual offices or functions. The resulting system gaps and overlaps, and the concomitant data and
process redundancy and inconsistency, have caused problems for both information users and systems
maintainers. USAF’s goal is to reduce development and maintenance costs while enhancing support to the
warfighter. lts objectives are to develop a unified transportation system and environment -- consisting of a
corporate database, corporate applications, common functionality, and a corporate network. The strategy for
reaching these objectives is to introduce a reuse-based approach to application systems development. The
approach is to replace stovepipe information systems with a set of integrated applications that cut across
organizational and functional lines and to implement a virtual corporate database. The corporate database
will appear to the user to be integrated and monolithic but will actually be composed of physically
distributed, heterogeneous databases and - for the foreseeable future - legacy USAF and DoD systems.

The USAF employed the Zachman Framework to guide its Information Systems Architecture development.
Within this framework, USAF addressed its enterprise-wide data integration objectives by applying Steven
Spewak’s Enterprise Architecture Planning (EAP) process (an Information Engineering (IE) technique).
The product, a high-level Transportation System Master Plan, includes a Mission Analysis, Information
Architecture, Application Architecture, and Implementation Plan.

ACES was based on the CARDS Tri-Lifecycle Engineering Model, which extended the DARPA Software
Technology for Adaptable, Reliable Systems (STARS) Dual Lifecycle Model (i.e., Domain Engineering) to
include Information/Enterprise Engineering. The complete ACES methodology addresses Enterprise
Engineering (e.g., Spewak’s EAP) [3], Object-Oriented (O0O) Domain Engineering, and OO Applications
Engineering (using Rumbaugh’s OMT) [1]. The transition from Enterprise Engineering to Domain
Engineering uses IE-based affinity analysis between data entities and business processes to identify and
scope candidate domains. It then uses an OO approach to analyze inter-domain relationships in terms of
service requests. Within each domain of focus, ACES uses FODA to identify and categorize reuse
opportunities, and OMT to develop reusable business objects that satisfy semantic information integration
and synthesis requirements. Application Engineering consists of matching specific user requirements to
business objects and developing the necessary application-specific objects.

There were many lessons learned throughout this effort. Transitioning from the very functional (sometimes
referred to as “structured”) information/enterprise engineering methods to an OO solution incurred several
challenges. Applying affinity analyses and multi-domain modeling techniques over the enterprise
information element lifecycles to scope the domains and hence group the service objects proved to be key in
this transition. The fundamental differences between structured and OO approaches must be considered in
the many translations and transitions across the various methods and workproducts within the Tri-Lifecycle.
The Data Access Layer within the framework in Figure 4 below was necessary to deconflict data access
between the structured legacy code and the new OO code. The figure below summarizes the integration and
application of DoD architectural guidance / products with the associated architecture technology. Lessons
learned will be discussed during the panel session. Additional lessons learned in applying the ACES
methodology, based on the CARDS Tri-Lifecycle Engineering Model above are discussed in the references
listed below. The figure below illustrates the integration of both, the technology (e.g., EAP, ACES, OMT)
and the DoD guidance/products (e.g., C41SR Architecture Framework, JTA and COE) used to reengineer
the USAF’s Defense Transportation System.



Completz A

Enterprise
Architecture
O—0 Planning
-
oFOd
Multi-Domain
Model
i P i d Inf ti i
Operational ] Frocomng s e P _[__Technical ]
Defines Activites and & NowTechnological D&ﬂm’m&“‘
ACES Infoan;ﬂlﬁmI:nge Capabilities - p'eg':nl m' and
Architecture
Processing and

Time-Phased

Framework

Information T
Exchange Ge(f:nical
Requirements System S uidance

By |

Enables or Automates Operational Activities
through Physical Processes

o and Patient
&l Processing

<>k k

Figure 5 ACES’Integration of Architecture Guidance, Policy & Technology

5.0 ACKNOWLEDGMENTS Special thanks and credit are due to the teams that worked with me on
the development and application of these technologies, as well as the team supporting the development of
the DoD JTA (2.0). These include Jim Fulton, Mike Webb, Robin Burdick, Frank Svoboda, Roger
Whitehead, David Weisman, Lucy Haddad, Nancy Solderitsch, Paul Kogut, Wil Berrios, Russ Richards,
Olimpia Velez, Jim DeGoey, Mark Dowson and many others.

6.0 REFERENCES

1. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design,
Prentice-Hall, 1991.

2. K.Kang, 8. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility
Study, CMU/SEI-90-TR-21, Carnegie-Mellon University, Software Engineering Institute, November 1990.

3. S. Spewak. Enterprise Architecture Planning, John Wiley & Sons, 1992

4. J. Zachman. “A Framework for Information Systems Architecture,” IBM Systems Journal, Vol. 26, No. 3, 1987.
5. W. Royce, “Managing the Development of Large Software Systems: Concepts & Techniques” 1970

6. OUSD/AT “Defense Report of the Defense Science Board Task Force on Military Software,” 1987

7. B. Boehm, “A Spiral Model of Software Development an Enhancement,” 1988.

8.  W. Royce, “TRW’s Ada Process Model for Incremental Development of Large Software Systems,” 1990.

9.  MIL-STD-498 “Software Development and Documentation™ 1994

10. EIA/IEEE J-STD-016 “Software Life-Cycle Processes” 1995

11. ISO/MEC STD 12207 “IT — Software Life-Cycle Processes” 1995

12. DoD, “Technical Architecture Framework for Information Management (TAFIM)” Version 2.0, Defense
Information Systems Agency, Center for Architecture, June 1994

13. The DoD Enterprise Model, Volume I: Strategic Activity and Data Models, Office of the Secretary of Defense,
ASD (C31), January 1994.



15.
16.
17.

18.
19.

20.

21.

22,

23.

24.

25.

26.
27.
28.

29.
30.
31
32.

The DoD Enterprise Model, Volume II: Using the DoD Enterprise Model, A Strategic View of Change in DoD, A
White Paper, Office of the Secretary of Defense, ASD (C31), January 1994.

Information Management Program, DoD Directive 8000.1, October 1992.

DoD Data Administration, DoD Directive 8320.1, September 1991.

IEEE Standard for Developing Software Life Cycle Processes, IEEE Computer Society, IEEE STD 1074-1991,
January 1992.

Simos, M., “ARPA STARS Organization Domain Modeling (ODM) Guidebook Version 1.0” March 1995

“Synthesis, A Reuse-Based Software Development Methodology, Process Guide, Version 1.0,” Software
Productivity Consortium, October 1992,

Maymir-Ducharme, F.A., Weisman, D. "A.F/CARDS Technology Transition Program: Reuse Partnerships,”" proceedings of the
Reuse 95 Workshop, August 1995.

Maymir-Ducharme, F.A., "Variant Domain Engineering Approaches,” proceedings of the Workshop on Institutionalizing
Software Reuse WISR’95, July 1995.

Maymir-Ducharme, F.A., Svoboda, F. "Translating Enterprise Models into Domain Engineering Workproducts,” Proceedings of
the Reuse *96 Workshop, August 1996.

Maymir-Ducharme, F.A., (WG Chair). "Opportunistic, Systematic and Optimized Domain Engineering Approaches” Proceedings
of the Reuse "96 Workshop, August 1996.

Maymir-Ducharme, F.A., “Product Lines, Just One of Many Domain Engineering Approaches,” Proceedings of the NASA
Software Reuse Workshop, sponsored by GMU and NASA SORT Program, October 1997,

Maymir-Ducharme, F.A., “A Product Line Business Model,” Proceedings of ARES’96 (Architectural Reasoning for Embedded
Software), sponsored by ESPRIT [V project no. 20.477, Las Navas, Spain, 18-20 Nov. 1996.

Martin, James, “Information Engineering : A Trilogy,” Prentice Hall, Inc., Englewood Cliffs, NJ 1989.

Defense Information Systems Agency (DISA), “Domain Engineering Process (Version 2)” 28 April 1995.

Combined Communications Electronics Board (CCEB), “Combined Interoperability Technical Architecture (CITA) Rationale and
Development Framework (Ver. 0.2) March, 1998.

CCEB, “Combined Interoperability Technical Architecture (CITA), Ver. 0.1,” March 1998.

DISA, “DOD Joint Technical Architecture (JTA),” http:/Avww-jta.itsi disa.mil/

OSD/C3I “C4ISR Architecture Framework,” http://www cisa.osd.mil/organization/architectures/

DISA, “Defense Information Infrastructure (DII) Comrmon Operating Environment (COE),” http://spider.osfl.disa.mil/div/



v

Session 3: Inspections

National Sofiware Quality Experiment: A Lesson in Measurement.: /992 - 1997
D. O'Neill, Independent Consultant

Principles of Successfil Software lnspections
D. Beeson, Ki Solutions Consulting, and T. Olson, World-Class Quality

Caprure-Recapture - Models, Methods, and the Reality
J. Ekros and A. Subotic, Linkoeping University



NATIONAL SOFTWARE QUALITY EXPERIMENT
A LESSON IN MEASUREMENT
1992-1997 S 76

KEY WORDS

Analysis Bins

Common problems

Core samples

Defect types

Experiment participants
Software Inspection Lab
Software process maturity level
Standard of excellence

Return on investment

PROLOGUE

The nation's prosperity is dependent on software. The nation's software industry is slipping, and
it is slipping behind other countries. The National Software Quality Expeniment is riveting
attention on software product quality and revealing the patterns of neglect in the nation's software
infrastructure.

ABSTRACT

In 1992 the DOD Software Technology Strategy set the objective to reduce software problem rates
by a factor of ten by the year 2000. The National Software Quality Experiment is being
conducted! to benchmark the state of software product quality and to measure progress towards
the national objective.

The National Software Quality Experiment is a mechanism for obtaining core samples of software
product quality. A micro-level national database of product quality is being populated by a
continuous stream of samples from industry, government, and military services. This national
database provides the means to benchmark and measure progress towards the national software
quality objective and contains data from 1992 through 1997.

The centerpiece of the experiment is the Software Inspection Lab where data collection procedures,
product checklists, and participant behaviors are packaged for operational project use. The
uniform application of the experiment and the collection of consistent measurements are guaranteed
through rigorous training of each participant. Thousands of participants from dozens of
organizations are populating the experiment database with thousands of defects of all types along
with pertinent information needed to pinpoint their root causes.

To fully understand the findings of the National Software Quality Experiment, the measurements
taken in the lab and the derived metrics are organized along several dimensions including year,
software process maturity level, organization type, product type, programming language, and
industry type. These dimensions provide a framework for populating an interesting set of analysis
bins with appropriate core samples of software product quality.

1 The National Software Quality Experiment is an entrepreneurial activity.

@Copyright Don O'Neill, 1998 2 Software Engineering Workshop



EXPERIMENT MOTIVATION AND ORGANIZATION

Overview

Participants are attracted to the experiment as a place where they can calibrate their software quality
against appropriately selected industry core samples. Here they can jump-start the organization's
quality measurement program on the shoulders of uniform Software Inspection Lab procedures.
These procedures are operationally packaged for project use and include well defined processes,
industrial strength product checklists, participant roles and behaviors, and standard forms and
reports.

The National Software Quality Experiment provides the framework to pose important quality
questions. Its micro-level national quality database provides the measurements to answer them.
Similarly, the extent of certain common risks can be quantified. As a participant in the experiment,
an organization can characterize the effectiveness of its software quality process. At the industry
level, progress towards the national software quality objective can be can be benchmarked.

Participants in the experiment benefit in several ways. They are able to characterize the maturity of
their software quality process. With this understanding, they are able to establish goals for
improving the process and to set priorities for immediate action. Beyond that, these organizations
are able to promote a vision for excellence in their software products and to calibrate their progress
towards the national software quality goal.

Motivation
The Department of Defense Software Technology Strategy was drafted for the Director of Defense
Research and Engineering in December 1991 [DOD STS 91]. Three important national objectives
were established to be achieved by the year 2000:

1. Reduce equivalent software life-cycle costs by a factor of two

2. Reduce software problem rates by a factor of ten

3. Achieve new levels of mission capability and interoperability via software

Every software organization should treat the national objective to improve software product quality
by afactor of ten as a wake-up call. Are organizations planning to reduce software problem rates
by a factor of ten? Do they know what these rates are now?

Measurement Best Practice
Although measurement is needed to derive effective policy governing acquisition, development,
and operations, there is not yet an industry consensus on the wisdom of creating a national
database for software engineering. The issue centers on the use of the data, not on its collection.
The worry is that the industry is not ready to use the database appropriately. Clearly the industry
can learn to use the database appropriately once it exists. If there are national goals set for
software engineering, there must also be a national measurement program and database to track
progress and refine goals. Camegie Mellon University's Software Engineering Institute produced
"A Concept Study for a National Software Engineering Database" in July 1992 [Van Verth 92].
The study points out that there are many users for such a database, but few suppliers. The study
offers the following observations and advice on establishing a national database:

1. Wide variance may exist in the collection process

2. Common data definitions are needed

3. Goals and questions should precede data collection

4. Confidentiality of the data must be protected

@Copyright Don O'Neill, 1998 3 Software Engineering Workshop



In designing the experiment, it is recognized that the prescription for achieving lasting value in
measurement depends on the successful integration of measurement concepts, operationally
defined and packaged processes, effective technology transition including the training of
participants and the dissemination of results, and hands-on oversight of the experiment. The
prescription for lasting value in measurement revolves around four driving measurement concepts.
First, measurement must be aligned with business needs. Second, metrics must be carefully
pinpointed and rigorously defined. Third, measurement activities must be built into the normal
operation of the organization. Finally, extraordinary steps must be applied to obtain consistency
and uniformity in data collection.

Finally, Dr. Vic Basili of the University Maryland provides the following additional guidelines
[Wallace 97]:

1. Establish the goals of the data collection

2. Develop a list of questions of interest

3. Establish data categories

4. Design and test the data collection form

5. Analyze data

Nature and Role of Experiment
In the practice of software engineering, managers are guided more by myth than by measurement.
The experiment provides the framework for measuring critical aspects of software product quality
practice. The framework supplies the ingredients needed to install a uniform and consistent
measurement methodology. These are described in the Software Inspections Mechanism. The
predictability of the measurements taken in conducting the experiment provides the basis for
assessing the validity of a hypothesis. This is discussed in Experiment Results. Some of the
questions asked and answered in the experiment are:

1. To what extent is there a continuing stream of requirements changes?

2. What are the leading types of errors?

3. Are errors traced to people or process?

4. Is a standard development process followed?

5. To what extent are wrong software functions being developed?

6. To what extent are there shortfalls in real time performance?

7. 1s gold plating a problem?

Software inspections are an essential ingredient in fact-based software management. They utilize a
reasoning process for conducting a fine-grained, deep-probing evaluation. When combined with
automation-based quick-look evaluations, the best balance between efficiency and insight can be
obtained. Once installed in the organization, the software inspection process yields core samples
of software product quality. These can be used to benchmark problem rates by defect type among
major product areas within the organization. With the benchmark measurements in place, the
software inspections process provides a stable, uniform, and persistent mechanism for measuring
improvement progress toward the software product goals of the organization.

SOFTWARE INSPECTIONS MECHANISM

Setting the Standard of Excellence

Software products reveal the standard of excellence in software engineering applied in their
production. In improving software product quality, an industrial strength standard of excellence
must be set, and the software operations within the organization must be disciplined to meet that
standard. This is done by measuring actual practice using the strongly preferred indicators from the
national standard of excellence spanning completeness, correctness, style, rules of construction,
and multiple views.

@Copyright Don O'Neill, 1998 4 Software Engineering Workshop



Completeness

Completeness is based on traceability among the requirements, specification, design, code, and
test artifacts. Completeness analysis reveals what predecessor artifact sections have not been
satisfied as well as the inclusion of extra fragments.

Correctness

Correctness is based on reasoning about programs through the use of informal verification and
correctness questions derived from the prime constructs of structured programming and their
composite use in proper programs. Input domain and output range are analyzed for all legal values
and all possible values. Adherence to project specific disciplined data structures is analyzed.

Style

Style is based on project specified style guidance based on block structured templates. Semantics
of the design and code are analyzed for correspondence to the semantics used in the requirements,
specifications, and design. Naming conventions are checked for consistency of use; and
commentary, alignment, upper/lower case, and highlighting use are checked.

Rules of Construction

Rules of construction are based on the software architecture and its specific protocols, templates,
and conventions used to carry it out. For example, these include interprocess communication
protocols, tasking and concurrent operations, program unit construction, and data representation.

Multiple views

Multiple views are based on the various perspectives required to be reflected in the product.
During execution many factors must operate as intended including initialization, timing of
processes, memory use, input and output, and finite word effects. In generating the software,
packaging considerations must be coordinated including program unit construction, program
generation process, and target operations. Product construction disciplines of systematic design
and structured programming must be followed as well as interfaces with the user, operating
system, and physical hardware.

EXPERIMENT RESULTS

Experiment Participants

The participants of the National Software Quality Experiment have been trained in the Software
Inspections Course and Lab. Experiment results are drawn from these Inspection Lab sessions.
The participating organizations span government, DOD industry, and commercial sectors and
represent a wide range of application domains.

» Electronic warfare

¢ Accounting, personnel, administration

¢ Administrative and management
decision support

« Aircraft jet engine diagnostics,
logistics, and maintenance

¢ Artillery fire control system

* Avionics flight on-board control

* Control devices for avionics
applications

* Credit card application

* Department of State embassy support

¢ Electronic commerce

@Copyright Don O'Neill, 1998

¢ FAA communications

* Factory line support

* Financial services

* Global positioning system user sets
« Insurance and medical information
¢ International banking

¢ Joint Chiefs of Staff support

¢ Medical information system

» Naval surface weapons system

* Pre and post flight space application
* Telecommunications

Software Engineering Workshop



Results Summary

Ralph Waldo Emerson said, "The years teach us things the days never knew". The National
Software Quality Experiment has been accumulating a steady stream of core samples for its
micro-level national database. These results provide a benchmark of software product quality
measurements useful in assessing progress towards the national software quality objective for the
year 2000. These results are highlighted below in the discussion of the common problems
pinpointed, defect category and severity data summary, Inspection Lab operations, the
predictability of certain measurements, and the ranking of defect types.

Common Problems
Analysis of the issues raised in the experiment to date has revealed common problems that reoccur
from session to session. Typical organizations which desire to reduce their software problem rates
should focus on preventing the following types of defects:
1. Software product source code components are not traced to requirements.
* As a result, the software product is not under intellectual control, verification procedures
are imprecise, and changes cannot be managed.
2. Software engineering practices for systematic design and structured programming are applied
without sufficient rigor and discipline.
» As a result, high defect rates are experienced in logic, data, interfaces, and functionality.
3. Software product designs and source code are recorded in an ad hoc style.
* As a result, the understandability, adaptability, and maintainability of the software
product are directly impacted.
4. The rules of construction for the application domain are not clearly stated, understood, and
applied.
* As a result, common patterns and templates are not exploited in preparation for later
reuse.

Defect Category and Severity
The defect severity metric revealed that 14.27% of all defects were major, and 85.73% minor.
Defect category distinguishes missing, wrong, and extra. For major defects, 7.44% were missing,
5.95% wrong, and .88% extra.
For minor defects, 49.76% were Defect Severity and Category Summary

missing, 27.63% wrong, and
R.32% extra. Missing Wrong Extra Total

Inspection Lab Operations Major  7.44 595 88 14.27

Through 1997 there have been 112
Inspection Labs in which 2317
participants were trained and Total 57.20 33.60 9.20 100.00
conducted inspection sessions. A
total of 788,459 source lines of code have received strict and close examination using the
packaged procedures of the lab. There have been 142,306 minutes of preparation effort and 52,196
minutes of conduct time expended to detect 11,375 defects.

Minor 49.76 27.63 8.32 85.73

Of these 11,375 defects, 1854 were classified as major, and 9521 as minor. A major defect effects
execution; a minor defect does not. It required 12.51 minutes of preparation effort on the average
to detect a defect. To detect a major defect required 76.76 minutes of preparation effort on the
average. On the average, .906 thousand source lines of code were examined each inspection
conduct hour. There were 2.35 major defects detected in each thousand lines, and 12.08 minor
defects. There were 4.91 defects detected per session with a return on investment of 4.48.

@Copyright Don O'Neill, 1998 6 Software Engineering Workshop



INSPECTION LAB OPERATIONS
Sessions Prep Conduct Major Minor Size in
Effort Time Defects Defects Lines

2317 142,306 52,196 1854 9521 788,459
Metrics:

1. 12.51 minutes of preparation effort per defect

2. 76.76 minutes of preparation effort per major defect

3. 2.35 major defects per KSLOC

4. 12.08 minor defects per KSLOC

5. 906 lines per conduct hour

6. 4.91 Defects per session

7. 4.48 Return on Investment

Questions Answered in the Lab

The micro-level national database on software product quality can be used to answer important
software engineering questions. When appropriately selected core samples are accumulated in the
Report Summary Form and the probability of occurrence is computed for each defect type, defect
severity, and defect category, these probabilities can be used to construct answers to questions.
Five of Boehm's top ten risks are answered below using the 1992-1997 data from the experiment:

Defect Type Ranking
The foremost defect types that accounted for 90% of all defects detected are:

Documentation 40.86% error in guidance documentation
Standards 20.39% error in compliance with product standards
Functionality 7.95% error in stating or meeting intended
Logic 7.86% error revealed through informal correctness questions
function
Data 5.36% error in data definition, initial value setting, or use
Maintainability 4.73% error in good practice impacting the supportability
and evolution of the software product
Syntax 4.02% error in language defined syntax compliance
50.00 B interface
- Data
40.00 'L/°§'°
P B Performance
¢ 30.00 - Functionality
c ;. Human Resources
: 20.00 - Ei Standards
t ) Bl cocumentation
Syntax
10.00 Test Environment
[ Test Coverage
- Maintainability
©-007 Percent of Defect Types Other

@Copyright Don O'Neill, 1998 7 Software Engineering Workshop



To what extent were the wrong software functions being developed?
Functionality errors accounted for 7.95% of all errors.
To what extent were the wrong user interfaces developed?
Interface errors accounted for 1.05% of all errors.
Human Factors accounted for 1.79% of all errors.
To what extent was there gold plating?
9.20% of all errors were classified as extra.
To what extent was there a continuing stream of requirements changes?
Documentation errors accounted for 40.86% of all errors.
To what extent was there a shortfall in real time performance?
Performance errors accounted for 2.39% of all errors.

Questions Not Yet Answered

It is useful to keep in mind that defects detected do not equal defects inserted. Defects may go
undetected and leak into downstream activities. Consequently there is interest in defect leakage and
ways to measure and reason about it. The Software Inspection Lab includes a mechanism to
collect data on defect leakage and to reason about the results. This reasoning process crosses over
into defect prevention.

Defect leakage was introduced into the National Software Quality Experiment in 1995, and the data
on this is starting to build up. The defect leakage data needs to populate each analysis bin in
sufficient quantity before these results are usable. With this data it will be possible to conduct
special studies on defect leakage to augment the core analyses done continuously.

Questions asked but not yet answered include:
1. To what extent is defect leakage occurring?
2. What is the frequency distribution of defect types that leak?

The mechanism used to gather defect leakage involves identifying the life cycle activity for each
software inspection and the defect origin for each defect. Each software inspection is considered an
exit criteria for a software product engineering activity. Each defect is characterized by category,
severity, type, ... and defect origin. Defect origin is the software product engineering activity
where the defect was inserted. Where defect origin does not match the software product
engineering activity for which this inspection serves as an exit criteria, defect leakage has
occurred.

Measurement Results By Analysis Bin

The findings of the National Software Quality Experiment are organized along several dimensions
which provide a framework for populating an interesting set of analysis bins with appropriate core
samples of software product quality. The analysis bins are used to organize the findings into
collections of data that reveal distinctions and may suggest interesting trends.The types of bins
selected are year, software process maturity (level 1,2,3), organization type (commercial, DOD
industry, government), product type (embedded, organic), programming language (modern, old
style), and industry type (defense, financial, manufacturing, medical, telecommunication,
transportation). As data for each year is collected, the overall results become more interesting, and
the population of analysis bins becomes more robust.

Return On Investment
Managers are interested in knowing the return on investment to be derived from software process
improvement actions. The Software Inspections Process gathers the data needed to determine this.

@Copyright Don O'Neill, 1998 8 Software Engineering Workshop



The defined measurements collected in the Software Inspections Lab may be combined in complex
ways to form this derived metric. The Return on Investment for Software Inspections is defined
as:
Savings/Cost , where:
Savings=(Major Defects * 9) + Minor Defects
Cost= (Minutes of Preparation Effort + (Minutes of Conduct Time * 4))/60

This model for Return on Investment bases the savings on the cost avoidance associated with
detecting and correcting defects; — — I
earlier rather than later in the: [Return on investment |
product evolution cycle. A Major

Defect that leaks into later phases:
may cost ten hours to detect and |

correct. Ten hours to fix later minus: 14
one hour to fix now results in the
constant nine (9) applied to Major |
Defects. A Minor Defect may cost |
two hours to fix later minus one:
hour to fix now resulting in a!
constant of one (1) applied to Minor
Defects. To convert the Minutes of
Conduct Time to effort, the average
number of participants (4) is
applied. The constant 60 minutes is
applied to convert minutes to hours.

The graph showing the Return on T

Investment for each organization participating in the National Software Quality Experiment
suggests that the Return on Investment for software inspections ranges from 4:1 to 8:1. Forevery
dollar spent on software inspections, the organization can expect to avoid 4-8 dollars on higher

cost rework.

CONCLUSION

Closing Observations

In closing it needs to be stated that the data does not suggest progress towards the Year 2000 goal
to reduce software problems by a factor of ten. Hunting for defects in software is a target rich
opportunity. The harder the project looks for errors, the more it finds. The way to look harder is
to reduce the volume of product inspected in each session.

The data suggests that increased software process maturity results in increased defect detection,
with the result perhaps being lower defect leakage into the field. At level 1 the project lacks a
shared vision for a standard of excellence for software engineering products. At level 2 attention is
paid to establishing a standard of expectation, a standard of excellence, and so more defects are
identified. At level 3 the standard is set and the well defined, fined grained processes for software
product engineering are in place and in practice with software inspections operating as the exit
criteria for each activity of the life cycle.

The data also suggests that defect density decreases with program size. As stated earlier, all
programs contain a beginning, an end, and a context for operation within the larger system.
Starting, finishing, and fitting in are all more error prone than the body of the program which gives
it size.

@Copyright Don O'Neill, 1998 9 Software Engineering Workshop



In addition the data suggests that the organization's neglect of its software process exceeds the
poor workmanship of individual programmers as the source of errors. Documentation and
standards defect types account for nearly two-thirds of all defects, and these are the responsibility
of the organization and its process.

Software products are not well connected to the requirements or business case that inspired their
creation. Much of the documentation type defect detection results from the lack of traceability from
the code to the design to the specification to the requirements.

Field Measurement Lessons
In conducting the National Software Quality Experiment, valuable lessons in field measurement are
being learned. These lessons are forming the prescription for obtaining lasting value in
measurement:
1. Measurement must be aligned with business and performance needs. These activities
must be built into the normal operation of the organization. To do this, the goals to be met
and questions to be answered in management, engineering, and operations must precede
the collection of data.
2. Metrics must be carefully pinpointed and rigorously defined. Extraordinary steps must
be applied to obtain consistency and uniformity. Without a well defined process for data
collection and analysis, the variance in the measurement process itself impacts the accuracy
of results.
3. Attention must be paid to the confidentiality of results. The opportunity for improvement
is increased when the measured results are made more widely available. However,
individuals and groups naturally resist having their shortcomings made public. If ignored,
this resistance will defeat the measurement program. The organization must strike a balance
between public and private data.

Next Steps

The National Software Quality Experiment is a demonstrated mechanism for collecting uniform and
consistent measurements of software product quality. It provides the vantage point for software
product quality and the field experience in measurement needed to jump start the practice of fact-
based software management.

As the centerpiece of the experiment, the Software Inspection Labs have been installed in
software factories around the country. The National Experiment collects, organizes, and packages
core samples of software product quality. These measurements are increasing the understanding of
the state of the practice and how to measure it.

The usefulness and success of the National Software Quality Experiment depends on sustaining a

continuous stream of core samples. Organizations from industry, government, and the military are
invited to participate and enrich this national database resource.

@Copyright Don O'Neill, 1998 10 Software Engineering Workshop



BIBLIOGRAPHY

[DOD STS 91]

[Ebenau 94]
[Fagan 76]
[Florac 92}

[Freedman 90]

[Gilb 93]
[Linger 79]
[Humphrey 89]
[O'Neill 88]
[{O'Neill 89]
[O'Neill 92]
[O'Neill 94}
[O'Neill 95,96]
[O'Neill 97]
[O'Neill 97}

[O'Neill 97}

[O'Neill 98]

[Paulk 95]
{Van Verth 92]
[Wallace 97]

@Copyright Don O'Neill, 1998 11

Department of Defense Software Technology Strategy, draft prepared for
the Director of Defense Research and Engineering [DDR&E], December
1991

Ebenau, Robert G. and Susan H. Strauss, "Software Inspection Process",
McGraw-Hill, Inc., 1994

Fagan, M., "Design and Code Inspections to Reduce Errors in Program
Development", IBM Systems Journal, 15, 3, 1976, 182-211

Florac. William B., "Software Quality Measurement: A Framework for
Counting Problems and Defects”, CMU/SEI-92-TR-22, September 1992
Freedman, D.P., G.M. Weinberg, "Handbook of Walkthroughs,
[nspections, and Technical Reviews", Dorset House Publishing Co., Inc.,
1990

Gilb, Tom and Dorothy Graham, “Software Inspection”, Addison Wesley
Longman Limited, 1993

Linger, R.C., H.D. Mills, B.L Witt, "Structured Programming: Theory
and Practice", Addison-Wesley Publishing Company, Inc., 1979
Humphrey, Watts S., "Managing the Software Process”, Addison-Wesley
Publishing Company, Inc., 1989

O'Neill, Don and Albert L. Ingram, "Software Inspections Tutorial",
Software Engineering Institute Technical Review 1988

O'Neill, Don, "Software Inspections Course and Lab", Training Offering
for Practitioners, Software Engineering Institute, 1989

O'Neill, Don, "Software Inspections: More Than a Hunt for Errors",
CrossTalk, Issue 30, January 1992

O'Neill, Don, "National Software Quality Experiment”, International
Conference on Software Quality, Washington DC, 1994

O'Neill, Don, "National Software Quality Experiment: Results 1992-1995",
Software Technology Conference, Salt lake City, 1995 and 1996

O'Neill, Don, "Issues in Software Inspection”, IEEE Software, Vol .14
No 1., January 1997

O'Neill, Don, “Setting Up a Software Inspection Program”, CrossTalk,
The Journal of Defense Software Engineering, Vol. 10 No. 2, February
1997

O'Neill, Don, "National Software Quality Experiment: A Lesson in
Measurement 1992-1996", Quality Week Conference, San Francisco, May
1997 and Quality Week Europe Conference, Brussels, November 1997
O'Neill, Don, “Software Inspections and the Year 2000 Problem”,
CrossTalk, The Journal of Defense Software Engineering, Vol. 11 No. 1,
January 1998 ‘

Paulk, Mark C., “The Capability Maturity Model: Guidelines for Improving
the Software Process”, Addison-Wesley Publishing Company, 1995

Van Verth, Patricia B., "A Concept Study for a National Software
Engineering Database", CMU/SEI-92-TR-23, July 1992

Wallace, Dolores R., Laura M. Ippolito, and Herbert Hecht, "Error, Fault,
and Failure Data Collection and Analysis", http://hissa.ncsl.nist.gov,
Quality Week, San Francisco, May 1997

Software Engineering Workshop



AUTHOR: Don O'Neill

Don O’Neill is a seasoned software engineering manager and technologist currently serving as an
independent consultant. Following his twenty-seven year career with IBM’s Federal Systems
Division, Mr. O’Neill completed a three year residency at Carnegie Mellon University’s Software
Engineering Institute (SEI) under IBM’s Technical Academic Career Program. There he developed
a blueprint for charting software engineering evolution in the organization including the training
architecture and change management strategy needed to transition skills into practice.

As an independent consultant, Mr. O’Neill conducts defined programs for managing strategic
software improvement. These include implementing an organizational Software Inspections
Process, implementing Software Risk Management, and conducting Global Software
Competitiveness Assessments. Each of these programs includes the necessary practitioner and
management training.

In his IBM career, Mr. O’Neill completed assignments in management, technical performance, and
marketing in a broad range of applications including space systems, submarine systems, military
command and control systems, communications systems, and management decision support
systems. He was awarded IBM’s Outstanding Contribution Award three times:
1. Software Development Manager for the Global Positioning
Ground Segment (500,000 source lines of code) and a team of 70 software engineers
within a $150M fixed price program.
2. Manager of the FSD Software Engineering Department responsible for the origination
of division software engineering strategies, the preparation of software management and
engineering practices, and the coordination of these practices throughout the division’s
software practitioners and managers.
3. Manager of Data Processing for the Trident Submarine Command and Control System
Engineering and Integration Project responsible for architecture selections and software
development planning (1.2M source lines of code).

Mr. O’Neill served on the Executive Board of the IEEE Software Engineering Technical
Committee and as a Distinguished Visitor of the IEEE. He is a founding member of the National
Software Council and the Washington DC Software Process Improvement Network (SPIN). He
is an active speaker on software engineering topics and has served as the Program Chairman and
Program Committee member for several conferences. He has numerous publications to his credit.
Mr. O’Neill has a Bachelor of Science degree in mathematics from Dickinson College in Carlisle,
Pennsylvania.

Contact Information
Don O’Neill

Independent Consultant

9305 Kobe Way

Montgomery Village, Maryland 20886

Phone: (301) 990-0377
email: ONeillDon@aol.com
http://members.aol.com/ONeillDon/index.html

word count: 4,581

@Copyright Don O'Neill, 1998 12 Software Engineering Workshop



JIili Il [ REE I:ﬁl

‘IHL_'_'L'l'_J l'!'l'l"':: T T === =N T e

N ARONAANAN NNl e & & & r‘IIIHIHI.IHII N S T4V 7 Tl o4 o] o) 1)

NATIONAL SOFTWARE QUALITY EXPERIMENT
A LESSON IN MEASUREMENT
1992-1997

Don O'Neill
independent Consultant
(301) 990-0377

http:/members.aol.com/ONeillDon/index.htmi

@Copyright Don O'Nelll, 1698 1 Natlonal Software Quallty Experiment

Experiment Purpose

Don O'Neill Consulting

To measure progress towards the national objective

Reduce software problems by a factor of 10
by the year 2000

Set by the DOD Software Technology
Strategy in 1992

To benchmark the state of software product quality

@Copyright Don O'Nelll, 1098 2 National Software Quaitty Experiment




Some of the Questions Asked and
_‘_“Ar‘]“swered in the Experiment

Don O'Neill Consutting

To what extent is there a continuing stream of requirements
changes?

What are the leading types of errors?

Are errors traced to people or process?

Is a standard development process followed?

To what extent are wrong software functions being developed?
To what extent are there shortfalls in real time performance?

Is gold plating a problem?

@Copyright Don O'Neilll, 1668 3 National Software Quality Experiment

Experiment Participants

Don O'Neil Consutting

- Accounting, personnel, - Electronic warfare
administration - FAA communications

- Administrative and - Factory line support
management decision - Financial services
support - Global posltioning system

- Aircraft jet engine user sets
diagnostics, logistics, and « Insurance and medical
maintenance information

- Artillery fire control system - International banking

- Avionics flight on-board - Joint Chlefs of Staff
control support

- Control devices for avionics - Medical Information
applications system

- Credit card aprllcatlon - Naval surface weapons

- Department of State system
embassy support - Pre and post flight space

- Electronic commerce application

. Telecommunications

@Copyright Don O'Nelll, 1998 4 National Sottware Quaitty Experiment




Experiment Centerpiece: Inspection Lab

Don O'Neill Consutting ~

Structured
Review
Process

Forms and
Reports

Entry Task Ex|t
Criterla Criterla

Product

Checklists Defined

Roles

@Copyright Don O'Nelll, 1998 5 National Software Quallty Experiment

Product Checklist Themes

Don O'Neil Consuiting ~

Completeness
Traceability from code to requirements

Correctness
Intended function with faithful elaboration of steps that carry it out

Style

Naming, commentary, alignment, case, highlighting, templates

Rules of Construction
Application domain specific reference architecture

Multiple Views

Programmer, tester, user, computer resources, security, Y2K

@Copyright Don O'Neill, 1998 -] Nationat Software Quality Experiment




Inspection Reporting Form

jssue Page/ (Checklist| Defect Defect |Defect | Defect |Defect
Number| Line Category {Severity {Type Origin (Description

Defect Category: Missing, Wrong, Extra Defect Type: interface, Data, Logic, I/O, Performance,
Defect Severity: Major, Minor Functionality, Human Factors, Standards,
Documentation, Syntax, Maintainability, Other

@Copyright Don O'Nelli, 1988 7 National Softwaro Guality Experiment

Defect Severity and Category
Summary

o o Don O'Neili Consuting ~

Defect Severity and Category Summary

Missing Wrong Extra Total
Major 7.44 5.95 .88 14.27
Minor 49.76 27.63 8.32 85.73
Total 57.20 33.60 9.20 100.00

@Copyright Don O'Neill, 1998 8 National Software Quality Experiment




Inspection Lab Operations Summary

Don O'Neill Consutting

Sessions Prep
Effort

2317 142,306

Metrics:
1. 12.51
2, 76.76
3. 2.35
4, 12.08
5. 906
6. 4.91
7. 4.48

INSPECTION LAB OPERATIONS

Conduct Major Minor Size in
Time Defects Defects Lines
52,196 1854 9521 788,459

minutes of preparation effort per defect
minutes of preparation effort per major defect
major defects per KSLOC

minor defects per KSLOC

lines per conduct hour

Defects per session

Return on Investment

@Copyright Don O'Neil, 1098

g National Softwara Quality Experiment

Software Inspections Control Panel

Don O'Neill Consulting

Minutes of
Preparation
Effort
Per Major Detect

Defect Detection Rate Gauge

Per Minor Defect

Defect Density Gauge
2 14

90 12
7@% Wﬂi 0 4 7 21

Minutes of
Preparation

Major Defecte Minor Defects
Per Thousand Per Thousand
Effort Lines l.ines

New Development
Lines Per Conduct Hour

Inspection Conduct Rate Gauge
1200 4

400
2@"0 @1 500 2 6

Legacy Lines Per
Conduct Hour

Return on Investment Gauge

Net Savings/Detection Cost

@Copyright Don O'Nelll, 1898

10 National Software Quality Experiment




Defect Types
“l1992-:9—9‘a o

Don O'Neill Consulting

50.00 1 ’ - Interface
40.00
’; B performance
; 3000 BA Functionality
c Human Resources
e Standards
n 20.00
t E Documentation
Syntax
10.00 Test Environment
B3 : Z Test Coverage
0.00 it SR B maintainability

Other

Percent of Defect Types

@Copyright Don O'Neill, 1908 11 National Software Qualty Experiment

Common Problems

Don O'Neill Consutting ~

1. Software product source code components are not traced to
requirements.
As a result, the software product is not under intellectual control,
verification procedures are imprecise, and changes cannot be
managed.

2. Software engineering practices for systematic design and structured
programming are applied without sufficient rigor and discipline.
As a result, high defect rates are experienced in logic, data,
interfaces, and functionality.

3. Sloftware product designs and source code are recorded in an ad hoc
style.
As a result, the understandability, adaptability, and
maintainability of the software product are directly impacted.

4. The rules of construction for the application domain are not clearly

stated, understood, and applied.
As a result, common patterns and templates are not exploited in
preparation for later reuse.

@Copyright Don O'Nelll, 1998 12 National Sottware Quality Experiment




ASoftwa_re Process Maturity Level

Don O'Neill Consulting

Major Defects Per Thousand Lines IMinor Defects Per Thousand Lines;:'

. Level 1
. Level 2

W Level 3

. Level 1
. Level 2

6.00 -
4.00
2.00

0.00-
Process Maturity Level
| Lines Per Conduct Hour l

: Level 1 Biee:

Level 2
- . Level 2

Level 3
e

Process Maturity Level Process Maturity Leve!
@Copyright Don O'Nelll, 1998 I T T National Softwaro Qually Experiment

Return on Investment

Don O'Neiff Consutting

[Return on Investmentl

. Participants

National Software Quality Experiment

@Copyright Don O'Nslll, 1668 14 Natlonal Software Qualtty Expertment




Experiment Findings Summary

Don O'Nelll Consutting

Lack of Progress
-The objective to reduce software problems by a factor of 10 is not
being met
Looking Harder, Findin? More
ac

-By reducing the size of artifacts inspected

Program Size Matters

-Defect density decreases with program size
-Starting, finishing, and fitting in are all more error prone than the
body of the program which gives it size

Software Process Maturity Insight
-Legacy software anchors many organizations at level 1
-These are often commercial enterprises

Process Neglect Exceeds Personal Defects
-Organization neglect of its software process exceeds the poor
workmanship of individual programmers as the source of errors
-Documentation and standards defect types account for nearly two-
thirds of all defects

Return on Investment High
-Software inspections deliver a favorable return on investment with
-Savings exceed costs by 4 to 1

@Copyright Don O'Nelit, 1998 15 Natlonal Software Quality Experiment

Field Measurement Lessons

e Don O'Neill Consuting

1. Measurement must be aligned with business and
performance needs.

These activities must be built into the normal operation of the organization.

To do this, the goals to be met and questions to be answered in management,
engineering, and operations must precede the collection of data.

2. Metrics must be carefully pinpointed and
rigorously defined.

Extraordinary steps must be applied to obtain consistency and uniformity.

Without a well defined process for data collection and analysis, the variance in the
measurement process itself Impacts the accuracy of results.

3. Attention must be paid to the confidentiality of
results.

The opportunity for improvement is increased when the measured results are made
more widely available.
-However, Individuals and groups naturally resist having their shortcomings
made public.
-if ignored, thls resistance will defeat the measurement program.

-The organization must strike a balance between public and private data.
@Copyright Don O'Nelll, 1898 16 National Software Quality Experiment




NATIONAL SOFTWARE QUALITY EXPERIMENT
A LESSON IN MEASUREMENT

PROLOGUE

The nation's prosperity is dependent on software. The nation's software industry is slipping, and it is slipping behind
other countries. The National Software Quality Experiment is riveting attention on software product quality and
revealing the patterns of neglact in the nation's softwars infrastructure.

ABSTRACT

In 1892 the DOD Software Technology Strategy set the objective to reduce software problem rates by a factor of ten by
the year 2000. The National Software Quality Experiment is being conducted! to benchmark the state of software
product quality and to measure progress towards the national objective.

The National Software Quality Experiment is a mechanism for obtaining core samples of software product quality. A
micro-level national database of praduct quality is being populated by a continuous stream of samples from industry,
government, and military services. This national database provides the means to benchmark and measurs progress
towards the national software quality objective and contains data from 1992 through 1997.

The centerpiece of the experiment is the Software Inspection Lab where data collection procedures, product checklists,
and participant behaviors are packaged for operational project use. The uniform application of the experiment and the
collection of consistent measurements are guaranteed through rigorous training of each participant. Thousands of
participants from dozens of organizations are populating the expsriment database with thousands of defects of all types
along with pertinent information needed to pinpoint their root causes.

To fully understand the findings of the National Software Quality Experiment, the measurements taken in the lab and
the derived metrics are organized along several dimensions including year, software process maturity level,
organization type, product type, programming language, giobal region, and industry type. Thesse dimensions provide a
framework for populating an interesting set of analysis bins with appropriate core samples of software product quality.

1 The National Sottware Quality Experiment is an entrepreneurlal activity
@Copyright Don O'Neitt, 1988 17 National Software Quakty Experiment

Author: Don O'Neill

Don O'Neill is a seasoned software engineering manager and technologist currently serving as an independent
consultant. Following his twenty-seven year career with IBM's Federal Systems Division, Mr. O'Nsill completed a three
year residency at Carnegie Mslion University’s Software Engineering Institute (SEl) under IBM's Technical Academic
Career Program. There he developad a blueprint for charting software engineering svolution in the organization
including the training architecture and change management strategy needed to transition skills into practice.

As an independent consuitant, Mr. O'Neill conducts defined programs for managing strategic software improvement.
These include implementing an organizational Software Inspections Process, implementing Software Risk
Management, and conducting Globa! Software Competitiveness Assessments. Each of these programs includes the
necessary practitioner and management training.

In his 1BM career, Mr. O'Neill completed assignments in management, technical performance, and marketing in a broad
range of applications including space systems, submarine systems, military command and control systems,
communications systems, and management decision support systems. He was awarded IBM's Outstanding
Contribution Award three times:
1. Software Development Manager for the Global Positioning Ground Segment (500,000 source lines ot
code) and a team of 70 software engineers within a $150M fixed price program.
2. Manager of the FSD Software Engineering Department responsible for the origination ot division
software engineering strategies, the preparation of software managementand engineering practices,
and the coordination of these practices throughout the division’s software practitioners and managers.
3. Manager of Data Processing for the Trident Submarine Command and Control System Engineering and
Integration Project responsible for architecture selections and software devslopment planning (1.2M
source lines of code).

Mr. O'Neili served on the Executive Board of the IEEE Software Engineering Technical Committee and as a
Distinguished Visitor of the IEEE. He is a founding member of the National Software Councit and the Washington DC
Software Process Improvement Network (SPIN). He is an active speaker on software engineering topics and has
served as the Program Chairman and Program Committee member for several conferences. He has numerous
publications to his credit. Mr. O'Neill has a Bachelor of Science degree in mathematics from Dickinson College in
Carlisle, Pennsylvania.

@Copyright Don O'Nelill, 1908 18 National Soltware Quallty Experiment




Abstract

Objectives

In This Paper

Principles of Successful Software Inspections

Dennis Beeson and Tim Olson e .5//

World-Class Quality
3082 Hamline Ave. N, St. Paul, MN. 55113
Phone: 612-636-2234
Email: DDBeeson@gte.net, Tim.Olson@worldnet.att.net

Software inspections remain the most effective method of early defect detection and
removal (e.g. early defect detection 80 - 90%, ROI 7:1 - 12:1).  Yet many
organizations are unsuccessful at invoking the cultural changes required to implement
and sustain an effective software inspection process. So what can an organization
focus on to change people’s perspective of inspections to develop a quality culture
centered around software inspections? This paper will identify some of the essential
attributes or principles of software inspections which facilitate in building and
sustaining a quality culture. This paper will measure the F/A-18 Software
Development Team’s inspection process against these principles to determine
software inspections effectiveness as well as identify areas for future improvement.

The objectives of this paper are to:
¢ present some common cultural problems associated with software inspections.
* present some successful software inspection data from the F/A-18 Aircraft.

* present an overview of effective principles that are successful when performing
software inspections.

¢ benchmark the F/A-18 Software Development Team's inspection process against
inspection principles identified to determine effectiveness and indicate areas for
improvement.

The following table describes the title and starting page of each section:

Section See Page
The Positive Impact of Inspections on F/A-18 2
Benchmarking the F/A-18 Inspection Process 3
Some Principles of Successful Software Inspections 4
Measuring the Principles of the F/A-18 Inspections 5
References 6

Copyright © 1998 by World-Class Quality Page 1 of 6



The Positive Impact of Inspections on F/A-18

Background

F/A-18 Mission
Computer
Upgrades

F/A-18 MC
Defect Removal
Life Cycle

Since 1987, the F/A-18 Software Development Team (SWDT) at the Naval Air
Warfare Center - Weapons Division (NAWC-WD) has been providing system and
software engineering maintenance and upgrades on the F/A-18 A/B model aircraft
Mission Computer (MC) and Stores Management System (SMS) for the US Navy and
Foreign Military Sales (FMS) customers.

The F/A-18 SWDT has undertaken four major upgrades to the F/A-18 aircraft's
Mission Computer (MC) Operational Flight Program (OFP). The MCs are the center
of the F/A-18’s avionics architecture. The MCs are the primary link between the
aircrews cockpit display environment and the aircraft's tactical and air vehicle
management avionics subsystems.

Figure 1 illustrates the overall impact software product inspections and software
process improvement have had on product quality. During a ten year period involving
over 5000 inspections, early defect detection and defect prevention have significantly
moved the defect removal curve to the left. The majority of product defects are now
found in the requirements, design and coding phases. In fact, over 86.6% of all
defects are found before testing. The defect removal life cycle curve is also used to
demonstrate product maturity to the customer.

40.00

35.00

F/A-18 A/B Mission Computer Defect Removal Life Cycle

Defects Found in System
Integration Testing

30.00

B 89A OFP [1900)
] 92A OFP [1993)
2500 A [J 10A OFP (1995)
B 12A OFP [1908)

F "

22.62)
est.

215

Defects per KSLOC

20.00

15.00

Defects per KSLOC

10.00

500

_La!u oFP :QZA 104~ 12Al_

1990 1993 1996 1998

o System " Software 'Design Code Unit System Systém Fleet
Design Reqt.’s Test Int. Test Ver. Test Use

Figure 1: F/A-18 A/B Mission Computer Defect Removal Life Cycle

Copyright © 1998 by World-Class Quality Page 2 of 6




Benchmarking the F/A-18 Inspection Process

World-Class

Benchmarking the F/A-18s inspection process data against a world-class level. Over

Software the last 10 years, the F/A-18 SWDT has progressed from an average performing SEI
Benchmarks CMM Level 1 organization to comparing favorably against world-class software
organizations. Table 1 characterizes current performance of various world-class
organizations to the F/A-18 SWDT current performance capability.
Measurement World-CIasi F/A-18 Software
Benchmark Development Team
Quality

Inspection Defect Removal Efficiency

80%-90%

86.6%

Post-Release Defect Rate

.01 per KSLOC

.01 per KSLOC

Cost

Total Cost Savings

$7.5-$45 Million

$14.4 Million
($ 3.6M per major update)

Inspection Cost

$2,500 on Average

$1,500 on average

Return on Investment (ROI) 7:1-12:1 7:1

Schedule
Schedule / Cycle Time Reduced 10-25% per yr. | Reduced 9% per year
Productivity Doubled in 3 years Increased 62% in 3 years

Table 1 World-Class Software Benchmarks

*derived from World-Class Quality - Timothy G. Olson copyright 1995 - 1996

Copyright © 1998 by World-Class Quality

Page 3 of 6




Principles of Successful Software Inspections

Principles of
Software
Inspections

To fully understand how to optimize software inspections to promote team building
and improve individual learning it was necessary to have a clear description of the
core attributes or principles that make software inspections successful from a people
prospective. Only after these principles were identified was it possible to make the
necessary process improvements.  Research and benchmarking of software
inspections best practices were successful in identifying the following principles
found in most effective inspection processes:

Principles Description

Leadership Management should provide resources and be an active participant in
communicating, mentoring, and building the organizations quality
culture. Facilitate the team in setting clearly stating mission, goals, and
objectives centered around quality, quality measurement, and quality
improvement.

Quality Culture Foster commitment to designing in quality. Develop an understandin

gning in quality. Develop an g
of the quality expectations, values, and priorities of the immediate and
final customers.

Responsibility Foster responsibility for the quality of the end product

Process Ownership | Team participation in process definition and process change
mechanisms.

Defect Prevention | Foster commitment to learning from past defects.

Communication Foster open honest communication supported by effective meeting
facilitation. Understand the strength and weaknesses of self, team, and
organization and use this diversity to optimize effectiveness. Operate
organization with integrity, making decisions based on what is truly best
for product quality and the organization.

Feedback Give feedback on individual defects found, overall product quality,
status of defect prevention (e.g. common defect trends identified,
changes to data driven checklists).

Defect Analysis Analysis and tracking of defect density per development phase and
determining criteria for reinspection.

Agreement Management, engineering, suppliers, and immediate and final
customers should effectively review and agree to product plans (e.g.
schedule, resources, staffing, quality objectives, etc..).

Defined Process Fully communicate what is expected of management, engineering,
suppliers, and immediate and final customers (e.g. what, how, when,

were, why).
Training Effectively train people in inspection purpose, roles, process,
facilitating meetings.
D.efect' Formal mechanism for documenting, categorizing, and dispositioning
Identification defects. Defect identification involves gathering defect and associated

metrics (e.g. size, effort, cost, time, rework). Defect identification is
usually supported by data driven checklists.

Accountability Formal mechanism hold developers, reviews, and moderators
accountable for fulfilling their role in the inspection process.

Copyright © 1998 by World-Class Quality Page 4 of 6




Measuring the Principles of the F/A-18 Inspections

F/A-18 Over the last ten years the F/A-18 Software Development Team has training

Software Team approximately 50 software engineers in formal inspections. Most have never used
formal inspection methods before working on the team. As they progress in
knowledge and understanding of inspections they move up in their level of
commitment to the teams product quality goals and buy-in to the inspection process.
The principles of software inspects need to be effective and in place to protect against
loosing buy-in or commitment, issues of non-compliance, or to assist in gaining
enough trust in the team and the inspection process to move to a higher level of buy-in
or commitment.

Questionnaire A survey was conducted of the F/A-18 Software Development Team in order to
measure the buy-in and commitment to the software inspection principles. The table
below shows the results:

Principles of Inspections Questionaire Results

100 T - . ]
90 | I I I l
80 T

70 T
60 T
50 T
40 1
30 T
20 1
101

Percentage Responses agree - strongly agree

x
2 a c @ = "] o
= 2 9 + 5 G & G S o c
= @ B @ D £
[ = o @ Q = = a o S5 ] ra . 5 2
& o o5 %= s g %5 £ (=] E G 8 =
2 B 2 ] g @ 28 S o 2 R 3
] 2 o c < = o c &’, 08 = 2w
@ c a 3 € @ < <4 A o = o O [}
b <] 0—8 <4 2 w =) = oS €
3 a o € < o b3 3
a £ o ]
@ Q ko] a
o <

Principles of Inspections

Summary Achieving measurable results using software inspections requires understanding
fundamental principles, and then tailoring those principles to practice. These
principles must then become part of an organization’s day to day business.

by World-Class Quality Page 5 of 6



References

References

The references used for this presentation are:
e [Covey 91] S. R. Covey, Principle Centered Leadership, New York, NY:

Simon & Schuster, 1991

o [Senge 90] P. M. Senge, The Fifth Discipline, New York, NY: Currency

Doubleday, 1990

e [Curtis 95] Curtis, Bill, et al. People Capability Maturity Model (CMU/SEI-95-

MM-02). Pittsburgh, PA: Carnegie Mellon

e [Deming 95] W. E. Deming, Out of Crisis, Cambridge, MA: MIT Center

for Advanced Engineering Study, 1995

e [Beeson 98] D. D. Beeson and T. G. Olsen, "Benchmarking F/A-18

Software Inspection Data", SEI 1998 Conference Proceedings, 1998.

e [Barnard 94] Barnard, J. and Price, A. “Managing Code Inspection

Information®, IEEE Software, March 1994.

[Billings 94] Billings, C., etal. “Journey to a Mature Software Process”, IBM

Systems Journal, vol. 33, no. 1, 1994.

[Ebenau 94] Ebenau, B. and Strauss, S., Software Inspection Process. McGraw-

Hill, 1994.

[F/A-18 96] F/A-18 MC/SMS Software Processes; February 12, 1996.

[F/A-18 97] F/A-18 Systems Engineering Process Guide; August 9, 1997.

[Fagan 76] Fagan, M. “Design and Code Inspections to Reduce Errors in

Program Development”, IBM Systems J., no. 3, 1976. pp 182-210.

[Fagan 86] Fagan, M. “Advances in Software Inspections”, IEEE Transactions

on Software Engineering, July 1986

[Gilb 93] Gilb, T. and Graham, D. Software Inspection. Addison-Wesley, 1993.

[Grady 94] Grady, R. and Van Slack, T. “Key Lessons In Achieving Widespread

Inspection Use”, IEEE Software, July 1994.

[Herbsleb 94] Herbsleb, James, et al. “Benefits of CMM-Based Software

Process Improvement: Initial Results”, CMU/SEI-94-TR-13, 1994.

[Humphrey 89] Humphrey, W. S. Managing the Software Process. Reading,

MA: Addison-Wesley Publishing Company, 1989.

[Olson 94] Olson, Timothy G., et al. “A Software Process Framework for the
CMU/SEI-94-HB-01, 1994.

[Olson 96] Olson Timothy G., “World-Class Software Inspections”, SEI

1996 SEPG Conference Proceedings, 1996.

[Paulk 93] Paulk, Mark C., et al. Capability Maturity Model for Software,

Version 1.1 (CMU/SEI-93-TR-24). Pittsburgh, PA: Carnegie Mellon University,

1993.

[O' Hara 97] F. O'Hara, Achieving maximum benefits from formal

reviews/inspections - strategies and case studies, proceedings of EuroSTAR'97,

Edinburgh and SPI'97, Barcelona, 1997.

Copyright © 1998 by World-Class Quality Page 6 of 6



P . . .
1o g Principles of Sucopeatul Settinirs spections
N e b

/

Principles of Successful
Software Inspections

NASA/Goddard Software Engineering

Workshop
Presented by

Dennis Beeson Tim Olson, President
F/A-18 Software Development Team, Manager World-Class Quality
Ki Solutions Consulting, Co-Founder Juran Institute Associate
SEi Certified SCE Evaluator Authorized SE! Lead Assessor
(760) 375-3376 (612) 636-2234
DDBeeson@gte.net Tim.Olson @worldnet.att.net
Word-Class Quellty, Copyrght © 1937 - 1998 Pare

ER .
porog Principlos Of Sanonasbal Soitwore Inspootion
e

Objective

e Provide principles of effective software inspections
derived from real-world organizations

e Example using inspection principles to benchmark:

m Inspection process
m Individual buy-in and commitment

Word-Class Quably, Copyright © 1997 - 1998 TG



Agenda

e F/A-18 Software Team Overview

e Software Inspection Principles ldentified

o Benchmarking Inspection Process

@ Inspection Principles and Buy-in

e Measuring People Buy-in and Commitment

® Question 77?72

Workd-Class Quelty, Copyright © 1997 - 1998

v 2 2

SEI CMM Level 3 rating

"Workd-Gias Guslly. Copyright © 1997 - 1998

LRGN

Measurement World-Class F/A-18 Software
Benchmark Development Team
QUALITY
* Inspection Defect Removal

Efficiency
* Post-Release Defect Rale

80% - 90% 86.6%

.01 per KSLOC .01 per KSLOC

COST
= Total Cost Savings
* Inspsction Cost

* Return on Investment (ROI}

$7.5M-$45M $14.4 Million
$25000nAvg. | $1500 on Avg.
7:1 - 12:1 71

SCHEDULE
* Schedule / Cycle Time
* Productivity

Reduced 10-25% yr| Reduced 9% peryr
Doubledin3yrs | Increaged 62% in 3yr

Mission E
Computer |




Epeeiions

F/A-18 Software Team Performance

F/A-18 Mission Computer Defect Removal Life Cycle
40
Defects Found in System
8 Integration Testin
35 % ntegl 9
30 4o A 89A OFP (1990 E 22.62
o B 92A OFP (1983) =l B
S 25 L]0 104 OFP (1596) g ':
14 B 12A OFP (1909 : ’ 2_
g 20 A E ]
89A 92A 10A 12A
@ g
§ 15
¢ Y
8 10
9
5
0 | E i !
System Software Design Code  Software S 'stem  Syslem Flest
Design Fleqmt Insp. int. Test . Test  Ver. Test Use

World-Class Quallty, Cogyright © 1697 - 1998 Puae 5

Technology

Software Inspections and Quality

Process

SEl Software CMM




Principles of Software Inspections Identified

Leadership foster, communicate, mentor, and facilitate a quality culture

Responsibility personally identifies with quality of product

(IR O L ETRYHTN willing to take on process improvement

DN Sy LU root cause analysis of common defects for data driven checklists

[T TR E U facilitated meetings, environment focused on product quality

Feedback author defacts, product defect density

PLEIEGLIYIEEEE defect density per development phase and reinspection criteria

Agreement agreement to pians and tasking

L R C - a clear description of what to do when

Training re-enforcement of what to do when and why

Defect
/ document, categorize, and disposition defects
Identitication » categ g P

ntability reinspection criteria and moderator tracking defects to closure

World-Class Quadily, Copyright © 1957 - 1998

Benchmarking the Inspection Process

L.eadership o Quality Definition
{e.g. Conformance lo customer requiremsnts. meeting or beating defect

Responsibility removal lifecycle removal curve }

Process
OQwnership

PRI ULIE @ Define, document, and train defect prevention process

Communication Add overview meeting to educate reviewers on inspection package
Feedback Insure feedback on project defect density per phase

Defect Analysis Reinspection criteria (e.g. 10 major defects found or low praparation rate)

Agreement Review development plan with software engineers

Defined Process
Add moderator training stressing facilitation skills and inspection

principles
Defect Update general inspection training class with ingpection principles
Identification Data driven checklists to educate reviewer on common defects

- ® Preparation rate set a 10 - 15 pages per hour
Accountability
o Entry criteria for review material
(e.g. checklist of items, spell checked, clean compile}

Workd-Cisss Quality, Copyright © 1967 - 1908

Training

TG b



Software Principles and Buy-in

(Tt Does whatever is needed including creating new norms

e Il Does whatever can be done within the norms

Genuine

Compliance Sees benefit, does what is expected and more

Leadership

Responsibility

Process Ownership

Detect Prevention

Commitment Formal

Communication

based on Compliance Sees benefit, does what they are told Feedback
effective Detect Analysis
principles

Grudging

Compliance Does not see benefit, does not want to lose their job

Agreement

Defined Process

Training

Defect
Identitication

Won’tdo it

Compliance

Accountability

YL "3 Does nothing

Workt Ciss Quadty, Copyright © 1597 - 1998

Principles of Inspections Questionaire Results

Percentage Responses agree - strongly agree

Leadership
Responsibility
Process
Ownership
Defect
Prevention
Feedback
Defect
Analysis
Agreement
Defined
Processes
Training
Defect
Identification

Communication

Principles of Inspections

Accountabllity

Wortd-Ciass Quelly, Copyright © 1997 - 1998

s 193




§ Prmptes of 54 sl Bettusara hepsclinns

Questions ????

Workd-Ciuss Cualty, Gopytight © 1997 - 1598

Pane -t



Capture-Recapture — Models, Methods, and the Reality

Jens-Peder Ekros' jenek@ikp.liu.se
Anders Subotic’ andsu@ida.liu.se 5 ? - Q/
Bo Bergman' bober@ikp.liu.se

'Division of Quality Technology and Management

’Department of Computer and Information Science
Applied Software Engineering Laboratory

'L inképing University,
SE-581 83 Linkoping, Sweden

Abstract

Software inspections are widely used for defect detection, and are capable of detecting defects early in
development. In order to avoid spending too much resource and to assure that the inspected product has the
demanded quality, a method to estimate product quality and inspection performance would be helpful. For
this purpose, capture-recapture methods have been suggested. In this paper, we explore the relation between
models underlying capture-recapture methods and inspection data. We have tested three hypotheses that
underlie commonly used capture-recapture methods: Inspectors find the same number of defects; Defects
are equally easy to detect; and, Inspectors find the same defects. We find no support for any of the three
hypotheses. The paper also contributes to research by describing methods for testing the hypotheses. It is
not wise to generalise from these results, as the sample analysed is small. Nevertheless, the results imply
that the underlying models, or assumptions, of commonly used capture-recapture methods are not generally
applicable to software engineering.

Introduction

Software plays an important role in today’s society. The high dependence on software has put focus on
software quality engineering. Customer satisfaction through good quality gives competitive advantage.
Further, lack of quality costs, especially if quality deficiencies remain undetected from early phases of
development. The lowest level of quality engineering is the detection of defects for the sole purpose of
correction. The second level is quality assurance, where product measurements is compared to standards so
as to assure that the shipped product is of the “right” quality. To assure is more demanding than to detect,
and requires models of product quality.

Software inspection is a family of widely used methods for defect detection, capable of detecting defects
early in development. In many organisations that develop software, inspections are an essential part of the
process. It has been recognised that inspections have a positive effect on product quality as well as the
efficiency of the development process. However, inspections demand time and resources. Preparations must
be made before the inspection meeting where many key persons will attend. This is a problem. In order to
avoid spending too much resource and to assure that the inspected product has the demanded quality, a
method to estimate the performance of the inspection would be helpful,

Several approaches based upon different statistical techniques have been evaluated in order to get better
basis to assess the above mentioned aspects. Briand et al. (1997) described three approaches:

1. Comparing inspection results with historical defect count.

2. Comparing inspection results with a baseline for defect density.

3. Estimating the number of residual defects using the current inspection results.

This paper addresses issues related to the third approach.

Lately, capture-recapture methods have gained increased attention in the software engineering community,
see e.g. Eick et al. (1992). The purpose of capture-recapture methods is to estimate the size of populations.



These methods have their origin in the biological research society, recent examples include Chao (1988),
Chao et al. (1992), and Pollock (1991). The methods have also been used outside of the biology area. For
example, Efron and Thisted (1976) estimated the number of words known by Shakespeare.

Adapting methods to new areas, i.e. software inspections, may lead to difficulties which one has to have in
mind. The most important aspect of adaptation is that of the underlying models. The different estimation
methods assume certain conditions on the data, i.e. specific models. If the model does not correspond to the
data, the method may give results that are either incorrect or easily misinterpreted.

From related work we have found that there sometimes is a lack of distinction between models and
methods, also known as estimators, or the issue is not mentioned altogether. The bulk of work on capture-
recapture in the field of software engineering has been concerned with methods, e.g. Vander Wiel and
Votta (1993), Wohlin et al. (1995), Briand et al. (1997), Miller 1998, and Wohlin and Runesson (1998).
Assumptions have been made, and sometimes claimed, with little support from literature or analyses, e.g.
Vander Wiel and Votta (1993) and Wohlin et al. (1995). There are few tests of consequences of broken
model assumptions on results, e.g. Vander Wiel and Votta (1993). However, analyses investigating how the
assumptions behind methods correspond to reality are missing.

In this paper we examine published inspection data sets in order to learn more about inspector capability,
defect detectability, and how these relate to each other. The importance of this work is that it provides a
basis for use of prediction methods, by validating, or invalidating, model assumptions demanded by
methods. In order to manage this, new variants of statistical tools have been used. The differences between
inspection data and that of other fields, e.g. a low density of information in the tables, increases the
difficulty of conducting tests on inspection data. One problem is that ordinary distributions cannot be used.
This forces the creation of specific distributions for each specific case. These distributions depend on the
size of the table, the number of rows and columns, as well as the density of the table, i.e. the ratio of ones.
A number of extended computer simulations of Monte Carlo type and enumeration were conducted in order
to create these distributions.

Background

Generally, capture-recapture based estimation of population size begins with sampling of the population.
The results of sampling are used as parameters in an estimator function, which gives the size of the
population, if certain conditions are fulfilled. In previous published work in the field of software
engineering, the main focus was investigation of the performance of different methods, or estimators. In
fact, methods and models are often confused. In this paper, an estimator, or method, denotes the way in
which an estimate is computed. A model represents a set of assumptions on input data under which a
method has been designed to work.

The most common families of models are:

1. p;=p : the probability of an inspector having detected a defect is constant and does not vary with
inspector or defect.

2. py;=p;: the probability depends on the difficulty of the defect, which varies between defects, and all
inspectors have the same capability of detecting a specific defect.

3. p;=p; : the probability depends on the capability of the inspector, which varies between inspectors,
and all defects are equally difficult to detect for a given inspector.

4. p;=p;p;: the probability depends on the capability of the inspector as well as the difficulty of the
defect, which both vary.

5. p;=pj: the detection probability might be individual depending on both inspector and defect.

Miller (1998) gave additional assumptions that relate to the process of (re-)capturing.

The above mentioned models are implicitly used in estimators. The most common estimators are Jack-
knife, Maximum-likelihood, and the Chao estimator, of which there are several versions. The Jack-knife
estimator is based on mode! number two, Maximum-likelihood on number three, and Chao estimators exist
for numbers two to four.



Vander Wiel and Votta (1993) studied “the effects of broken [model] assumptions on” the Jack-knife and
Maximum-likelihood estimators. The Maximum-likelihood estimator was found to perform better than
Jack-knife, especially if defects were grouped to achieve homogenous detectability. Wohlin et al. (1995)
claimed that the assumptions of the Jack-knife method do not correspond to reality and rejected it in favour
of the Maximum-likelihood method. The claim was not supported by a test. They also evaluated a filtering
technique to improve estimates of residual defects. The new method was evaluated using data from an
experiment where a single document was inspected. Briand et al. (1997) examined the sensitivity of
methods with respect to the number of samples used, i.e. number of inspectors. They recommended that at
least four inspectors be used, and that the Jack-knife estimator was the best for four or five inspectors. The
Chao estimator with the same model as Jack-knife was comparable for five inspectors, but behaved badly
for four inspectors. The evaluation criticised by Miller (1998) with respect to choice of inspectors and
number of data points. Wohlin and Runesson (1998) proposed two new estimation methods based on
extrapolation of fitted curves. The methods are based on a number of assumptions that are not tested. The
methods were evaluated with inspection data from two experiments, where the choice of artefacts was
criticised by Miller (1998). Miller (1998) arrived roughly at the same conclusions as Briand et al. (1997).
However, Miller recommended Jack-knife for three to five inspectors and for six inspectors both Jack-knife
and the Chao estimator for model number four. In conclusion, there are no known examples in software
engineering literature where the viability of the models assumed by capture-recapture methods is tested.

Models and Tests

By using capture-recapture methods on inspection data we want to predict, or assess, the remaining number
of defects in the inspected document, the performance of the inspection, or both. To facilitate analysis of
empirical data from a certain perspective, models that faithfully represent the data are needed. These
models are the basis for analysis methods. That is, the “ mathematical model ... relates the attributes to be
predicted to some other attributes that we can measure now. ” (Fenton and Pfleeger 1996)

A number of model assumptions have implicitly been made when a method has been chosen. The methods
are dependent on the underlying models that supposedly describe the data to be analysed. This is important
but often forgotten. In this section we will present ways to determine model characteristics of inspection
data. This gives a better basis for choosing or creating suitable estimation methods. By looking at published
results from a number of inspections some conclusions regarding the underlying models have been made.
We have also made a contribution in the methods to determine these models.

The type of defect-inspector table used throughout this paper is shown in Figure 1. The table represents the
defects found as r rows and inspectors that found the defects as ¢ columns. Let r; be the contents of a cell
representing the detection of defect i by inspector j. If the defect on row i was detected by inspector j, n; is
one, otherwise s, is zero. The number of inspectors that detected defect i is the number of ones in row i, the
row sum, denoted ;. The number of defects detected by inspector ; is the number of ones in column j, the
column sum, denoted »;. The total number of detections is denoted n_.

Inspector
1 ] ... C
1
B
uu-’ ] ny n;
=)
r
n, n.

Figure 1. Graphical description of an inspection data matrix.

In the rest of this section we describe tests for analysing inspection data, mainly with respect to aspects that
are relevant to the most commonly used capture-recapture methods. Interesting aspects of inspection data
relate to inspectors, defects, and their relation.



Inspector Capability and Defect Detectability

The assumptions regarding the capabilities of inspectors are concerned with the number of defects detected
by each inspector. Intuition often suggests that inspectors have different capabilities but this has not yet
been tested, see e.g. Wohlin et al. (1995). The capability of inspectors is tested by comparing the number of
defects found by each inspector with the average number of defects detected.

c 2
A test statistic similar to the Chi-square test (Everitt 1992) is utilised, O = 2["-/ —LJ /n_ . Problems
Toe c

i=l
arise when the expected values of row or column sums are too small. The Chi-square test is commonly
considered to work less than well for values below five. With respect to row sums, this criterion is not
fulfilled by any of the tables analysed in this paper. The expected values of column sums fulfil the criterion
for roughly half of the tables. Preferably, under the null hypothesis of equality, the statistic for an observed
table is compared with a reference distribution. Since the Chi-square distribution is not applicable, a
substitute distribution has to be constructed.

Enumeration was the approach chosen for creating the distribution of the Q-statistic. That is, in e.g.
analysing inspector capability, the set of column sums of a table is analysed. The total number of detected
defects, the number of 1:s in a table, are distributed in all unique ways over the columns. The Q-statistic for
each permutation is computed and its occurrence is weighted by its probability under the assumption of
homogeneity. The result is a reference distribution adapted to characteristics of the table. The p-value for
the Q-statistic of the observed table, Q,, is obtained from the distribution as p= P(Q >0, ), where the

variable Q belongs to the distribution.

Similarly to inspector capability, defect detectability is defined as the fraction of inspectors that found a
specific defect. That is, a defect found by many inspectors is said to have a higher degree of detectability.
Wohlin et al. (1995) recommended that defects be divided into two groups based on the number of
inspectors that found each defect. When only one inspector found a defect the defect was putin a low
detectability group. Defects found by more than one inspector were put in a high detectability group.
However, this reasoning hides the assumption that defects have different probability of detection. The test
for difference among defects is the same as for inspector but along the other dimension of the table.

Defects and Inspectors Combined

A third approach to test inspection data is to consider defect and inspector characteristics at the same time.
That is, the test helps determine if inspectors are equally good in finding different types of defects. Since
the cell values of the tables analysed are either one or zero, chi-square tests are not appropriate. An
alternative test statistic is proposed. The new test statistic is built up by a sum of the differences between
the inspectors based on every specific defect.

Let / and m be the identities of two inspectors. Let n;; be one if defect / was detected by inspector /, and zero
otherwise. A matrix K is created where &, = {number of ny >n, } where / # m and

ky = {number of n, >0}. A proposed test statistic is T = Z _s_ [k% J*w, where w, =1.
i
I m

The diagonal of K, £, represents the number of defects found by each inspector. Values outside the

diagonal i.e. k,.j represents the number of defects found by inspector i but not by inspector j. That is, a big

number outside the diagonal indicates that one of the inspectors found many defects not found by the other.
The matrix is quadratic, but it is rarely symmetrical, as e.g. inspectors seldom find the same number of
defects.

The distribution of the T-statistic is not known, but needed in order to determine the meaning of a T-value.
Thus, the distributions of T for each table have to be generated. Due to problem size, enumeration is not an
option. Instead, Monte Carlo simulation is used. That is, the distribution of T for a given table is acquired
by computing the T-statistic for n randomly generated tables, with similar characteristics as the observed



table. The simulations are crucial to the reliability of the analysis, and so the bulk of work has been spent
on trying to achieve a simulation that represents the true probability distribution. Again, the rationale for
simulations is that the distribution of the test statistic is unknown.

Results

In this section we investigate characteristics of published inspection data sets and in the process we provide
ways of testing model assumptions. The data sets were mainly taken from Freimut (1997), where the
majority originates from experiments using NASA subjects. A data set from Wohlin et al. (1995) and one
from Myers (1978) were also used in some of the analyses. The results are used for accepting or rejecting
the hypotheses stated above. Three different hypotheses are tested.

Inspector homogeneity

For each table 4 the test-variable Q, is calculated. The value Qy is compared to an empirical distribution
constructed using enumeration, as described above. For this analysis, two data sets were not used due to
time and size complexity problems, as there were many combinations to enumerate.

Under the null hypothesis of homogeneity, the expected value of p is 0.5. A low p-value is the result of
large differences between the number of defects discovered by different inspectors. A single small p-value
supports rejection of the null hypothesis but is not enough to safely reject it. By combining analyses of a
number of tables we get a greater body of evidence. Figure 2 shows the p-values for the 22 different data
tables tested. Under the null hypothesis the p-values would be evenly distributed between 0 and 1. This
does not seem to be the case. The conclusion is therefore that the null hypothesis is rejected. Thus, based on
this set of data, we can say that inspectors generally do not find the same number of defects, i.e. inspector
capability varies with inspectors.

8

7t 1
ser
©
>
A sf
5
24l
Q
c
g3
5
8
o ¢

1 -

OO 01 0.2 03 04 05 0.6 0.7 0‘8 09 1

p-value
Figure 2. p-values for inspector homogeneity.
Defect homogeneity

Analysing the defect detectability in the same way as inspector capability shows that it can be concluded
that defects do not have equal detectability. The p-values for the 22 data sets shown in Figure 3 clearly
indicate a non-equal distribution. That is it cannot be said that the different defects generally have equal
detectability. For this analysis, two data sets were not used due to time and size complexity problems, as
there were many combinations to enumerate.



Occurrences of p-value

0 0.1 02 03 0.4 05 06 07 0B 09 1
p-value

Figure 3. p-values for defect homogeneity.

Another way of representing the p-values is with a scatter plot, shown in Figure 4. Here p-values for
inspector capability and defect detectability for 22 tables are plotted against each other. There are no real
outliers. That is, no table plots in the upper right quarter. The plot gives stronger support for rejection of the
null hypothesis for defect detectability than for inspector capability. That is, defects are more
heterogeneous than inspectors. Even though inspectors seem to be more homogeneous than defects, they
are predominantly heterogeneous.

1

Inspector homogeneity p-value
c o o © o ©o o ©
N w 3 [4,] o ~ (=) w

(=]
v

[¢] 01 02 0.3 04 0.5 06 07 08 0.9 1
Defect homogeneity p-value

o]

Figure 4. Scatter plot of defect and inspector homogeneity p-values.

Inspector and defect combined homogeneity

In this section, we analyse the relations between defects and inspectors. In Figure 5 the p-values from this
analysis is presented. The results stem from 10.000 simulations of 24 tables. As in the other cases it can
clearly be seen that the p-values are not evenly distributed between 0 and 1. A low p-value is the result of
large differences between inspectors; i.e. inspectors find different defects. The distribution of p-values is
skewed towards zero. In fact, 50 percent of the values are lower than 0.1 and about 85 percent are less than
0.5. This situation is highly unlikely under the assumption that inspectors find the same defects. The
implication is that there is no support for “inspector profiles”, i.e. groups of inspectors that find similar
subsets of the defect population. If groups of inspectors found largely the same defects p-values should be
skewed toward the right. It may be harsh to reject the concept of “inspector profile” based solely on this
analysis. However, analytical advocacy is no longer enough.



This is analysis differs from the test of inspector homogeneity above, where it was shown that different
inspectors find different number of defects.

12

Occurrences of p-value

[ ] .

0 0.1 02 03 04 0.5 0.6 0.7 08 09 1
p-value

0

Figure 5. The p-values for combined inspector and defect homogeneity.

Conclusion and Discussion

In this paper we went back to the basics, that is, using the information from inspections to explore the
underlying models that are assumed to characterise inspection data. The road towards better methods and
correct use of existing methods will start from the most logical point, the distribution and properties of the
data.

We have tested three hypotheses occurring in capture-recapture work in the software engineering field:
1. Inspectors find the same number of defects.

2. Defects are equally easy to detect.

3. Inspectors find the same defects.

We find no support for any of the three hypotheses. These results imply that the underlying models, or
assumptions, of commonly used capture-recapture methods are not applicable to the software engineering
data analysed in this paper. Even though 24 data sets were analysed, 16 of these originate from NASA.
Thus, it is not wise to generalise from these results. However, the results suggest that it is wise to test
model assumptions. Testing model assumptions requires good data, which in turn requires good
instrumentation and collection procedures. We have instrumented the inspection process of an industry
partner, and are currently awaiting data to accumulate.

By exploring data from several inspections we are able to draw general conclusions about how the data is
formed. This includes measures of correlation between inspectors and between faults. Other aspects are the
distributions of inspectors’ performance and defect detectability. Naturally, it may not be possible to find a
single specific model that will explain all relationships between inspectors and defects. The data sets used
here, to estimate characteristics of product and inspection process, have only two parameters. It is not
unlikely that other product, process and resource attributes could increase the usefulness of estimators.
There may be important differences between instances of inspections, e.g. differing inspection rate, team
expertise, type of document, and organisational culture.

Even though universal models are few and far between, the goal is to find general models. It may be easier
to find methods to derive situation specific models. These methods can then be used together with local
inspection data to assure that a suitable estimation method is used. Still, it is questionable how the
information gained can be used. Does the estimate of defect content depend mainly on the product, the
measurement process, or both? If the inspection process is unstable, measurement noise may obscure



product attributes. For example, it is hard to determine if a high defect count is the result of a bad product, a
good inspection, or both. An accompanying metric is needed for normalisation.

Acknowledgements

The authors wish to thank Mary Helander for her helpful comments on this paper. This work was supported
by the Swedish National Board for Industrial and Technical Development (NUTEK), administrated by the
Swedish Institute for Applied Mathematics, and the Swedish Foundation for Strategic Research through the
ECSEL graduate school at Linkoping University, Sweden.

References

Briand, L. C., Emam, K. E., Freimut, B., and Laitenberger, O. (1997). "Quantitative Evaluation of Capture-
Recapture Models to Control Software Inspections.” Report 97-22, ISERN.

Chao, A. (1988). “Estimating Animal Abundance with Capture Frequency Data.” Journal of Wildlife
Management, 52(2), 295-300.

Chao, A., Lee, S-M., and Jeng, S.-L. (1992). “Estimating Population Size for Capture-Recapture Data
When Capture Probabilities Vary by Time and Individual Animal.” Biometrics, 1992(March), 201-
216.

Efron, B., and Thisted, R. (1976). “Estimating the number of unseen species: How many words did

Biometrika, 63(3), 435-447.
Eick, S. G., Loader, C. R., Long, M. D., Votta, L. G, and Vander Wiel, S. (1992). “Estimating Software
Proceedings of the Fourteenth International Conference of Software
Engineering, May, Melbourne.

Everitt, B. S. (1992). The Analysis of Contingency Tables, Chapman & Hall, London.

Fenton, N. E., and Pfleeger, S. L. (1996). Software Metrics: A Rigorous and Practical Approach,
International Thomson Computer Press, London.

Freimut, B. (1997). “Capture-Recapture Models to Estimate Software Fault Content,” Masters Thess,
University of Kaiserslauten.

Miller, J. (1998). "Estimating the number of remaining defects after inspection." Report 98-24, ISERN.

Myers, G. J. (1978). “A Controlled Experiment in Program Testing And Code Walkthroughs/Inspections.”
Communications of ACM, 21(9), 760-768.

Pollock, K. H. (1991). “Modeling Capture, Recapture and Removal Statistics for Estimation of
Demographic Parameters for Fish and Wildlife Populations: Past, Present, and Future.” Journal of the
American Statistical Association, 86(413), 225-238.

Vander Wiel, S. A., and Votta, L. G. (1993). “Assessing Software designs using Capture-Recapture
Methods.” .

Wohlin, C., and Runesson, P. (1998). “Defect Content Estimations from Review Data.” Proceedings of the
Twentieth International Conference on Software Engineering, April, Kyoto, 400-409.

Wohlin, C., Runesson, P., and Brantestam, J. (1995). “An Experimental Evaluation of Capture-Recapture in

Software Testing, Verification and Reliability, 5, 213-232.



uapamg ‘Alsianiun buidoyuii
uewbiag og

21J0gNS SJapuy
soJy3 Japad-susr

Aiileay ayy pue ‘spoyisi ‘s|epoiN
alnjdeoay - ainiden



o110gNg SIAPUY 2 SO IOpdJ-Sudf 8661 Joquiao(J

JIOAN 2Inin, 29 UOISN[OUO))
SINSNY

S[OPOW JO 1S,

spoaw drnydesar-armde) .

SUOT}03dSur JO SaS[) o

SUIinO



o110qNgG SIAPUY 29 SO JOpaJ-Suaf 8661 19qUIA(J

92In0SA1 pue $$3201d ‘yonpoad
JO S[OPOW SIAJOAUL BJBP UOI}IAdSUIL JO SIAsN [eUONIPPY o

Sururea| [euOI}BSIUB3IO pUL JUAWIAOIAWIT SSA001] —

[onuod Aend) —
spoyiow a.nydpoa.i-a4nydpo uisn “3-d ‘dourinsse Ayend) —

:10] Pasn 3q ued elep Uonddsul ‘A[[euonIppy .

$109J9p JO U01J0232p A[LIRWILI]

suoljoadsul Jo sas



o110qN§ SISPUY 7 SONH 19pad-Sudf 8661 12qua23(J

e1ep Jndur JO SONSLIdORIBYD
*9'1 ‘SJapOUL JUSIYJIP UNSSD SpoYjaud JUSIIJI(

orY) —
POOYI[OYI] WNWIXEN —

Qyu-yoRf —
:(SI07BWIISI) SPOYIaW UOWWO))

$10BJ9LIE 9IBMIJOS JO JUIUOD JOJJ3P LW o
SuLIoUISUS 1EM]YOS 0] AZ0[01q WOLJ PILIJSUBL], »
uonerndod jo 9z1s Sunewnsd 10} SPOYIIN e

spoyjaw ainydedsal-ainyded



o1ogNg SISPUY 2 SO Jopog-susf 8661 12quIdd3(]

(VSVN WOoJJ 91) pasn axam s33s eyep paysiqnd 47 »
UOTIRIOWNUD PUB UOTIB[NWIS
O[Je)) JUOJA 3UISn Pajeard SOMSIIL)S 1591 JO SUONNQLNSI(] o
SONSIIE]S 1S9) MU pue po Suisn pIsa) suondwnssy
$109J9p Qwres Y} puy s1010adsu] —
(K1]1q©10939p) 19319p 03 Ased A[[enba a1e $109]9(] —
(A111qeded) $19939p JO JdqUINU SWes ) pulj siojoadsu] —

:P1S9) 219M SUOIdWINSSE 9O o

s|epow Jo 1S9 |



2110qNG SIPUY 29 SOINF J9PJ-SU[ 2661 12quIada(q

60 80 L0 90 S0 ¥0 €0 ¢o L'0 0

saleA Alljigede? Jojoadsu|



o10gng SIApuy 29 SO I9paJ-Susf 8661 12quIad3(]

6°0 80 L0 90 S0 ¥'0 £0 Ay L0 0

8l

salieA A}ljige1o8)ep J08je(]



o10gNng SIAPUY 29 SO JopaJ-Susf 8661 1oqUId3(]

L0

¢o

€0

¥0

G0

190

140

180

@ 160

-1

Ajljigeded uey} aiow salieA Ajljigeloslaq



o110gng SIApUY 29 SO I9PIJ-Sudf 8661 J2quada(]

anjea-d

b 60 80 L0 90 S0 v'o €0 ¢o 1’0 0
I T O

o0}
anjeA-d Jo seoualIN20Q

¢l

S]09Jop awes ayj pul) Jou op siojoadsuj



01

onoqng SIdpUY 2 SODYH JopaJ-Suaf 8661 19quIada(g

suondunsse Uay01q JO S}99JJd oY) 91eINSOAU]
SISATRUE dU) UI PIAJOAUI BIED [RLISNPUI JIOJA]

Spoylow UoreWIISY SUISIXd Isnlpe 10 mau do[aAd(
(,SSTBWIISI 13119q I0J SINSAT ASAYJ SN dIM UBD MO

$109Jop Sures ay) purj Jou op siojoadsuy —

19919p 01 Ased A[[enba jou are $109]9(] —

$199J9p JO Joquinu dures 3y} puy jou op sioyoadsuy —
118933ns ejep [eoundwo uisn SI1So] .

POJEPI[EA 3q 0} SABY S[OPOIA - S I, UIE SYNE,,

¥JOM 31NN % UOISN|oUOY



Session 4: Fault Prediction

Software Evolution and the Fault Process
A. Nikora, Jet Propulsion Laboratory, and J. Munson, University of Idaho

Integrating Formal Methods lnio S oftware Dependabiility Analysis
J. Knight and L. Nakano, University of Virginia

An Adapltive Sofiware Reliability Prediction Approacsk
M. Yin, L. James, S. Keene, R. Arellano, and J. Peterson,
Raytheon Systems Company



SOFTWARE EVOLUTION AND THE FAULT PROCESS

Allen P. Nikora
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109-8099
Allen.P.Nikora@ jpl.nasa.gov

John C. Munson
Computer Science Department
University of Idaho
Moscow, ID 83844-1010
jmunson @cs.uidaho.edu

ABSTRACT

In developing a software system, we would like to
estimate the way in which the fault content changes
during its development, as well determine the locations
having the highest concentration of faults. In the phases
prior to test, however, there may be very little direct in-
Sformation regarding the number and location of faults.
This lack of direct information requires developing a
Sault surrogate from which the number of faults and their
location can be estimated. We develop a fault surrogate

based on changes in the fault index, a synthetic measure
which has been successfully used as a fault surrogate in
previous work. We show that changes in the fault index
can be used to estimate the rates at which faults are in-
serted into a system between successive revisions. We
can then continuously monitor the total number of faults
inserted into a system, the residual fault content, and
identify those portions of a system requiring the applica-
tion of additional fault detection and removal resources.

1. INTRODUCTION

Over a number of years of study, we can now estab-
lish a distinct relationship between software faults and
certain aspects of software complexity. When a software
system consisting of many distinct software modules is
built for the first time, we have little or no direct infor-
mation as to the location of faults in the code. Some of
the modules will have far more faults in them then do
others. We do, however, now know that the number of
faults in a module is highly correlated with certain soft-
ware attributes that may be measured. This means that
we can measure the software on these specific attributes
and have some reasonable notion as to the degree to
which the modules are fault prone [Muns90, Muns96].

In the absence of information as to the specific lo-
cation of software faults, we have successfully used a
derived metric, the fault index measure, as a fault surro-
gate. That is, if the fault index of a module is large, then
it will likely have a large number of latent faults. If, on
the other hand, the fault index of a module is small, then
it will tend to have fewer faults. As the software system
evolves through a number of sequential builds, faults
will be identified and the code will be changed in an
attempt to eliminate the identified faults. The introduc-
tion of new code, however, is a fault prone process just
as was the initial code generation. Faults may well be
injected during this evolutionary process.

Code does not always change just to fix faults that
have been isolated in it. Some changes to code during its
evolution represent enhancements, design modifications
or changes in the code in response to continually evolv-
ing requirements. These incremental code enhancements
may also result in the introduction of still more faults.

Thus, as a system progresses through a series of builds,
the fault index of each program module that has been
altered must also change. We will see that the rate of
change in the system fault index will serve as a good
index of the rate of fault introduction.

The general notion of software test is to make the
rate of fault removal exceed the rate of fault introduc-
tion. In most cases, this is probably true [Muns97].
Some changes are rather more heroic than others. Dur-
ing these more substantive change cycles, it is quite pos-
sible that the actual number of faults in the system will
rise. We would be very mistaken, then, to assume that
software test will monotonically reduce the number of
faults in a system. This will only be the case when the
rate of fault removal exceeds the rate of fault introduc-
tion. The rate of fault removal is relatively easy to
measure. The rate of fault introduction is much more
tenuous. This fault introduction process is directly re-
lated to two measures that we can take on code as it
evolves, fault deltas and net fault change (NFC).

In this investigation we establish a methodology
whereby code can be measured from one build to the
next, a measurement baseline. We use this measurement
baseline to develop an assessment of the rate of change
to a system as measured by our fault. From this change
process we are then able to derive a direct measure of the
rate of fault introduction based on changes in the soft-
ware from one build to the next. Finally we examine
data from an actual system on which faults may be
traced to specific build increments to assess the predicted
rate of fault introduction with the actual.

/

//1/ &/



A major objective of this study is to identify a com-
plete software system on which every version of every
module has been archived together with the faults that
have been recorded against the system as it evolved. For
our purposes, the Cassini Orbiter Command and Data
Subsystem at JPL met all of our objectives. On the first
build of this system there were approximately 96K
source lines of code in approximately 750 program mod-
ules. On the last build there were approximately 110K
lines of source code in approximately 800 program mod-
ules. As the system progressed from the first to the last
build there were a total of 45,200 different versions of
these modules. On the average, then, each module pro-
gressed through an average of 60 evolutionary steps or
versions. For the purposes of this study, the Ada pro-
gram module is a procedure or function. it is the small-
est unit of the Ada language structure that may be meas-
ured. A number of modules present in the first build of
the system were removed on subsequent builds. Simi-
larly, a number of modules were added.

The Cassini CDS does not represent an extraordi-
nary software system. It is quite typical of the amount of
change activity that will occur in the development of a
system on the order of 100 KLOC. It is a non-trivial
measurement problem to track the system as it evolves.
Again, there are two different sets of measurement ac-
tivities that must occur at once. We are interested the
changes in the source code and we are interested in the
fault reports that are being filed against each module.

2. A MEASUREMENT BASELINE

The measurement of an evolving software system
through the shifting sands of time is not an easy task.
Perhaps one of the most difficult issues relates to the
establishment of a baseline against which the evolving
systems may be compared. This problem is very similar
to that encountered by the surveying profession. If we
were to buy a piece of property, there are certain physi-
cal attributes that we would like to know about that
property. Among these properties is the topology of the
site. To establish the topological characteristics of the
land, we will have to seek out a benchmark. This
benchmark represents an arbitrary point somewhere on
the subject property. The distance and the elevation of
every other point on the property may then be estab-
lished in relation to the measurement baseline. Interest-
ingly enough, we can pick any point on the property,
establish a new baseline, and get exactly the same topol-
ogy for the property. The property does not change.
Only our perspective changes.

When measuring software evolution, we need to
establish a measurement baseline for this same purpose
[Niko97, Muns9%6a]. We need a fixed point against
which all others can be compared. Our measurement
baseline also needs to maintain the property that, when

another point is chosen, the exact same picture of soft-
ware evolution emerges, only the perspective changes.
The individual points involved in measuring software
evolution are individual builds of the system.

For each raw metric in the baseline build, we may
compute a mean and a standard deviation. Denote the
vector of mean values for the baseline build as X* and
the vector of standard deviations as s®. The standard-
ized baseline metric values for any module ; in an arbi-
trary build 7, then, may be derived from raw metric val-
ues as

Standardizing the raw metrics makes them more
tractable. It now permits the comparison of metric val-
ues from one build to the next. From a software engi-
neering perspective, there are simply too many metrics
collected on each module over many builds. We need to
reduce the dimensionality of the problem. We have suc-
cessfully used principal components analysis for reduc-
ing the dimensionality of the problem [Muns90a,
Khos92]. The principal components technique will
reduce a set of highly correlated metrics to a much
smaller set of uncorrelated or orthogonal measures. One
of the products of the principal components technique is
an orthogonal transformation matrix T that will send the
standardized scores (the matrix z) onto a reduced set of
domain scores thusly, d =zT.

In the same manner as the baseline means and stan-
dard deviations were used to transform the raw metric of
any build relative to a baseline build, the transformation
matrix T® derived from the baseline build will be used
in subsequent builds to transform standardized metric
values obtained from that build to the reduced set of do-

main metrics as follows: d*' =z”' T?, where z*' are

the standardized metric values from build / baselined on
build B .

Another artifact of the principal components analy-
sis is the set of eigenvalues that are generated for each of
the new principal components. Associated with each of

the new measurement domains is an eigenvalue, A .
These eigenvalues are large or small varying directly
with the proportion of variance explained by each prin-
cipal component. We have successfully exploited these
eigenvalues to create the fault index, p, that is the

weighted sum of the domain metrics to wit:

p, = 50+10211d, , where m is the dimensionality of
=t
the reduced metric set [Muns90a).
As was the case for the standardized metrics and the
domain metrics, the fault index may be baselined as well,
using the eigenvalues and the baselined domain values:



pl= 2 Ad!
7=1

If the raw metrics that are used to construct the fault
index are carefully chosen for their relationship to soft-
ware faults then the fault index will vary in exactly the
same manner as the faults [Muns95]. The fault index is
a very reliable fault surrogate. Whereas we cannot
measure the faults in a program directly we can measure
the fault index of the program modules that contain the
faults. Those modules having a large fault index will
ultimately be found to be those with the largest number
of faults [Muns92].

3. SOFTWARE EVOLUTION

A software system consists of one or more software
modules. As the system grows and modifications are
made, the code is recompiled and a new version, or
build, is created. Each build is constructed from a set of
software modules. The new version may contain some
of the same modules as the previous version, some en-
tirely new modules and it may even omit some modules
that were present in an earlier version. Of the modules
that are common to both the old and new version, some
may have undergone modification since the last build.
When evaluating the change that occurs to the system
between any two builds (software evolution), we are
interested in three sets of modules. The first set, M., is

the set of modules present in both builds of the system.
These modules may have changed since the earlier ver-
sion but were not removed. The second set, M, is the
set of modules that were in the early build and were re-
moved prior to the later build. The final set, M, is the
set of modules that have been added to the system since
the earlier build.

The fault index of the system R " at build i, the early
build, is given by

R=Yp+dp.
€M, aeM,
Similarly, the fault index of the system R / at build j, the
later build is given by
R=Ypl+Y 9l
ceM, be M,
The later system build is said to be more fault prone if
R, >R.

As a system evolves through a series of builds, its
fault burden will change. This burden may be estimated
by a set of software metrics. One simple assessment of
the size of a software system is the number of lines of
code per module. However, using only one metric may

neglect information about the other complexity attributes
of the system, such as control flow and temporal com-

plexity. By comparing successive builds on their domain
metrics it is possible to see how these builds either in-
crease or decrease based on particular attribute domains.
Using the fault index, the overall system fault burden can
be monitored as the system evolves.

Regardless of which metric is chosen, the goal is the
same. We wish to assess how the system has changed,
over time, with respect to that particular measurement.
The concept of a code delta provides this information. A
code delta is, as the name implies, the difference be-
tween two builds as to the relative complexity metric.

The change in the fault in a single module between
two builds may be measured in one of two distinct ways.
First, we may simply compute the simple difference in
the module fault index between build / and build j. We
have called this value the fault delta for the module m, or
8 =pl —p. . A limitation of measuring fault deltas is

that it doesn’t give an indicator as to how much change
the system has undergone. If, between builds, several
software modules are removed and are replaced by mod-
ules of roughly equivalent complexity, the fault delta for
the system will be close to zero. The overall complexity
of the system, based on the metric used to compute del-
tas, will not have changed much. However, the reliabil-
ity of the system could have been severely affected by
the replacing old modules with new ones. What we need
is a measure to accompany fault delta that indicates how
much change has occurred.

The absolute value of the fault delta is a measure of
code churn. In the case of code churn, what is important
is the absolute measure of the nature that code has been
modified. From the standpoint of fault insertion, re-
moving a lot of code is probably as catastrophic as add-
ing a bunch. The new measure of net fault change
(NFC), y, for module m is simply

22 =82 |=ps - pu]

The total change of the system is the sum of the
fault delta’s for a system between two builds i and ; is

given by
D EED WIED WIS
ceEM, aEM be M,
Similarly, the NFC of the same system over the same
builds is
AW IS WY-JE I - F
ce M, ae M, be M,

With a suitable baseline in place, and the module
sets defined above, it is now possible to measure soft-
ware evolution across a full spectrum of software met-
rics. We can do this first by comparing average metric
values for the different builds. Secondly, we can meas-
ure the increase or decrease in system complexity as
measured by a selected metric, fault delta, or we can



measure the total amount of change the system has un-
dergone between builds, net fault change.

4. OBTAINING AVERAGE BUILD
VALUES

One synthetic software measure, fault index, has
clearly been established as a successful surrogate meas-
ure of software faults [Muns90a]. It seems only reason-
able that we should use it as the measure against which
we compare different builds. Since the fault index is a
composite measure based on the raw measurements, it
incorporates the information represented by LOC, V(g),
n,, 1., and all the other raw metrics of interest. The

fault index is a single value that is representative of the
complexity of the system which incorporates all of the
software attributes we have measured (e.g. size, control
flow, style, data structures, etc.).

By definition, the average fault index, p, of the

baseline system will be

where N? is the cardinality of the set of modules on
build B, the baseline build. The fault index for the base-
line build is calculated from standardized values using
the mean and standard deviation from the baseline met-
rics. The fault indices are then scaled to have a mean of
50 and a standard deviation of 10. For that reason, the
average fault index for the baseline system will always
be a fixed point. Subsequent builds are standardized
using the means and standard deviations of the metrics
gathered from the baseline system to allow comparisons.
The average fault index for subsequent builds is given by

el
P Ak ,
Pl ;p,

where N* is the cardinality of the set of program mod-

p’=

ules in the &” build and p’* is the baselined fault in-

dex for the ;" module of that set.

As the code is modified over time, faults will be
found and fixed. However, new faults will be introduced
into the code as a result of the change. In fact, this fault
introduction process is directly proportional to change in
the program modules from one version to the next. Asa
module is changed from one build to the next in response
to evolving requirements changes and fault reports, its
measurable software attributes will also change. Gener-
ally, the net effect of a change is that complexity will
increase. Only rarely will its complexity decrease.

h

S. DEFINITION OF A FAULT

Unfortunately there is no particular definition of
precisely what a software fault is. This makes it difficult

to develop meaningful associative models between faults
and metrics. In calibrating our model, we would like to
know how to count faults in an accurate and repeatable
manner. In measuring the evolution of the system to talk
about rates of fault introduction and removal, we meas-
ure in units to the way that the system changes over time.
Changes to the system are visible at the module level,
and we attempt to measure at that level of granularity.
Since the measurements of system structure are collected
at the module level (by module we mean procedures and
functions), we would like information about faults at the
same granularity. We would also like to know if there
are quantities that are related to fault counts that can be
used to make our calibration task easier.

Following the second definition of fault in [[EEE83,
IEEE88], we consider a fault to be a structural imper-
fection in a software system that may lead to the sys-
tem’s eventually failing. In other words, it is a physical
characteristic of the system of which the type and ex-
tent may be measured using the same ideas used to
measure the properties of more traditional physical sys-
tems. Faults are introduced into a system by people
making errors in their tasks - these errors may be errors
of commission or errors of omission. In order to count
faults, we needed to develop a method of identification
that is repeatable, consistent, and identifies faults at the
same level of granularity as our structural measurements.
Faults may be local — for instance, a system might con-
tain an implementation fault affecting only one module
in which the programmer incorrectly initializes a vari-
able local to the routine. Faults may also span multiple
modules - for instance, each module containing an in-
clude file with a particular fault would have that fault. In
identifying and counting faults, we must deal with both
types of faults. Details of the fault counting and identifi-
cation rules developed for this study are given in
[Niko97a, Niko98]

In analyzing the flight software for the CASSINI
project the fault data and the source code change data
were available from two different systems. The problem
reporting information was obtained from the JPL institu-
tional problem reporting system. Failures were recorded
in this system starting at subsystem-level integration, and
continuing through spacecraft integration and test. Fail-
ure reports typically contain descriptions of the failure at
varying levels of detail, as well as descriptions of what
was done to correct the fault(s) that caused the failure.
Detailed information regarding the underlying faults
(e.g., where were the code changes made in each af-
fected module) is generally unavailable from the prob-
lem reporting system.

The entire source code evolution history could be
obtained directly from the Software Configuration Con-
trol System (SCCS) files for all versions of the flight
software. The way in which SCCS was used in this de-
velopment effort makes it possible to track changes to



the system at a module level in that each SCCS file
stores the baseline version of that file (which may con-
tain one or more modules) as well as the changes re-
quired to produce each subsequent increment (SCCS
delta) of that file. When a module was created, or
changed in response to a failure report or engineering
change request, the file in which the module is contained
was checked into SCCS as a new delta. This allowed us
to track changes to the system at the module level as it
evolved over time. For approximately 10% of the failure
reports, we were able to identify the source file incre-
ment in which the fault(s) associated with a particular
failure report were repaired. This information was avail-
able either in the comments inserted by the developer
into the SCCS file as part of the check-in process, or as
part of the set of comments at the beginning of a module
that track its development history.

Using the information described above, we per-
formed the following steps to identify faults. First, for
each problem report, we searched all of the SCCS files
to identify all modules and the increment(s) of each
module for which the software was changed in response
to the problem report. Second, for each increment of
each module identified in the previous step, we assumed
as a starting point that all differences between the incre-
ment in which repairs are implemented and the previous
increment are due solely to fault repair. Note that this is
not necessarily a valid assumption - developers may be
making functional enhancements to the system in the
same increment that fault repairs are being made. Care-
ful analysis of failure reports for which there was suffi-
ciently detailed descriptive information served to sepa-
rate areas of fault repair from other changes. However,
the level of detail required to perform this analysis was
not consistently available. Third, we used a differential
comparator (e.g., Unix diff) to obtain the differences
between the increment(s) in which the fault(s) were re-
paired, and the immediately preceding increment(s).
The results indicated the areas to be searched for faults.

After completing the last step, we still had to iden-
tify and count the faults - the results of the differential
comparison cannot simply be counted up to give a total
number of faults. In order to do this, we developed a
taxonomy for identifying and counting faults [Niko98]}.
This taxonomy differs from others in that it does not
seek to identify the root cause of the fault. Rather, it is
based on the types of changes made to the software to
repair the faults associated with failure reports - in other
words, it constitutes an operational definition of a fault.
Although identifying the root causes of faults is impor-
tant in improving the development process [Chil92,
IEEE93), it is first necessary to identify the faults. We do
not claim that this is the only way to identify and count
faults, nor do we claim that this taxonomy is complete.
However, we found that this taxonomy allowed us to
successfully identify faults in the software used in the

study in a consistent manner at the appropriate level of
granularity.

6. THE RELATIONSHIP BETWEEN
FAULTS AND CODE CHANGES

Having established a theoretical relationship be-
tween software faults and code changes, it is now of in-
terest to validate this model empirically. This measure-
ment occurred on two simultaneous fronts. First, all of
the versions of all of the source code modules were
measured. From these measurements, NFC and fault
deltas were obtained for every version of every module.
The failure reports were sampled to lead to specific
faults in the code. These faults were classified accord-
ing to the above taxonomy manually on a case by case
basis. Then we were able to build a regression model
relating the code measures to the code faults.

The Ada source code modules for all versions of
each of these modules were systematically reconstructed
from the SCCS code deltas. Each of these module ver-
sions was then measured by the UX-Metric analysis tool
for Ada [SETL93]. Not all metrics provided by this tool
were used in this study. Only a subset of these actually
provide distinct sources of variation [Khos90]. The spe-
cific metrics used in this study are shown in Table 1.

Metrics Definition
n, Count of unique operators [Hal77]
n, Count of unique operands
N| Count of total operators
N, Count of total operands
P/R . . . A
Purity ratio: ratio of Halstead’s N 1o total program
vocabulary
V(g) McCabe’s cyclomatic complexity
Depth Maximum nesting level of program blocks
AveDepth | Average nesting level of program blocks
LOC Number of lines of code
Blk Number of blank lines
Cmt Count of comments
CmtWds Total words used in all comments
Stmts Count of executable statements
LSS Number of logical source statements
PSS Number of physical source statements
NonEx Number of non-executable statements
AveSpan | Average number of lines of code between references
to each variable
Vi Average variable name length

Table 1. Software Metric Definitions

To establish a baseline system, all of the metric data
for the module versions that were members of the first
build of CDS were then analyzed by our PCA-FI tool.
This tool is designed to compute fault indices either from
a baseline system or from a system being compared to



the baseline system. In that the first build of the Cassini
CDS system was selected to be the baseline system, the
PCA-FI tool performed a principal components analysis
on these data with an orthogonal varimax rotation. The
objective of this phase of the analysis is to use the prin-
cipal components technique to reduce the dimensionality
of the metric set. As may been seen in Table 2, there are
four principal components for the 18 metrics shown in
Table 1. For convenience, we have chosen to name
these principal components as Size, Structure, Style and
Nesting. From the last row in Table 2 we can see that
the new reduced set of orthogonal components of the
original 18 metrics account for approximately 85% of
the variation in the original metric set.

Metric Size Structure Style Nesting
Stmts 0.968 0.022 -0.079 0.021
LSS 0.961 0.025 -0.080 0.004
N, 0.926 0.016 0.086 0.086
N1 0.934 0.016 0.074 0.077
n, 0.884 0.012 -0.244 0.043
AveSpan 0.852 0.032 0.031 -0.082
Vig) 0.843 0.032 -0.094 -0.114
n 0.635 -0.055 -0.522 -0.136
Depth 0.617 -0.022 -0.337 -0.379
LOC -0.027 0.979 0.136 0.015
Cmt -0.046 0.979 0.108 0.004
PSS -0.043 0.961 0.149 0.019
CmtWds 0.033 0.931 0.058 -0.010
NonEx -0.053 0.928 0.076 -0.009
Blk 0.263 0.898 0.048 0.005
P/R -0.148 -0.198 -0.878 0.052
Vi 0.372 -0.232 -0.752 0.010
AveDepth -0.000 -0.009 0.041 -0.938
% Variance 37.956 30.315 10.454 6.009

Table 2. Principal Components of Software Metrics

As is typical in the principal components analysis of
metric data, the Size domain dominates the analysis. It
alone accounts for approximately 38% of the total varia-
tion in the original metric set. Not surprisingly, this do-
main contains the metrics of total statement count
(Stmts), logical source statements (LSS), the Halstead
lexical metric primitives of operator and operand count,
but it also contains cyclomatic complexity (¥(g)). In that
we regularly find cyclomatic complexity in this domain
we are forced to conclude that it is only a simple meas-
ure of size in the same manner as statement count. The
Structure domain contain those metrics relating to the
physical structure of the program such as non-executable
statements (NonEx) and the program block count (B/k).
The Style domain contains measures of attribute that are
directly under a programmer’s control such as variable
length (V) and purity ratio (P/R). The Nesting domain
consist of the single metric that is a measure of the aver-
age depth of nesting of program modules (4veDepth).

In order to transform the raw metrics for each mod-
ule version into their corresponding fault indices, the
means and the standard deviations must be computed.
These values will be used to transform all raw metric
values for all versions of all modules to their baselined z
score values. The transformation matrix will then map
the metric z score values onto their orthogonal equiva-
lents to obtain the orthogonal domain metric values used
in the computation of the fault index. With  this
information, we can obtain baselined fault index values
for any version of any module relative to the baseline
build. As an aside, it is not necessary that the baseline
build be the initial build. As a typical system progresses
through hundreds of builds in the course of its life, it is
worth reestablishing a baseline closer to the current sys-
tem. In any event, these baseline data are saved by the
PCA-FI tool for use in later computation of metric val-
ues. Whenever the tool is invoked referencing the base-
line data it will automatically use these data to transform
the raw metric values given to it.

Once the baselined fault index data have been as-
sembled for all versions of all modules, it is then possi-
ble to examine some trends that have occurred during the
evolution of the system. For example, in Figure 1 the
fault index of the evolving CDS system is shown across
one of its five major builds. To compute these changing
fault index values, every development increment within
that build was identified. Then, for each increment, the
baselined fault indices of the modules in that increment
were computed. The next four increments, not shown
here, have evolutionary patterns similar to that shown in
Figure 1. It seems to be that the average fault index of
most systems is a monotonically increasing function.

1400.00 I

120000 +—] Cumulative —

NFC S

1000.00 T

800.00 ~

800 00 r‘e—)

400.00 :’" Cumulative —

! fault delta
200.00 —
0.00 =
1% 2 2% 300

-200.00

Figure 1. Change in the Fault Index for One Version
of CDS Flight Software

Note in Figure 1 that not all increments within a
build represent the same increase in the fault index.
Nearly one third of the total change in this version takes
place within the first 10% of the development incre-
ments. From our understanding of the relationship be-
tween the fault index and injected faults, we would ex-
pect that the magnitude of change within the first 30 in-
crements would indicate that a large number of faults



would have been injected as a result of this activity. Itis
also interesting to note that the final fault index of this
particular version is rather close to the initial fault index,
although it is quite clear from the measured activity that
a significant amount of change has occurred.

Not all program modules received the same degree
of modification as the system evolved. Some modules
changed relatively little. Figure 2 shows the net fault
change and fault delta values for a module that was rela-
tively stable over its change history. There were only
four relatively minor changes to this module. A more
typical change history is shown for another module in
Figure 3. The total net fault change for this module is
approximately 38. It is interesting to note that the fault
delta for this module is close to zero. The fault index of
the module at the last version is very close to its original
value. This figure clearly illustrates the conceptual dif-
ferences between the two measure of net fault change
and fault delta.

2.00

1.80 R —
igg 1 Cumulative [ 4

120 1 NCF !

1.00 f Cumulative
0.80 ] fault delta
0.60 =

0.40 l[\ "_—_ e ——
0.20 1 i

0.00 4 AT YT

R

<

SO 5 & o L PR L R ]
oY eV ST O e gV e &Y 4V

Figure 2. Change History for Stable Module

45.00
4000 .
Cumulative L
35.00 NCF |
30.00 ——
25 00 v
i .
2000 Cumulative
15.00 fault delta
1000
5,00 - I
f \ ’ — jgu—y
0.00 ;
D Al ad D B D D B D B D
ey P Ry & 4‘3‘3 »° o Pt

Figure 3. Typical Module Change History

Figure 4 shows a module at the extreme end of
change history. This module has a total net fault change
value of close to 140. Also, its final fault delta value is
about 30, indicating that its fault index has also increased
significantly as it evolved. Among the three modules
whose change history is illustrated by Figures 2, 3, and
4, the latter module is the one that we focus our attention
on the most. It is the one most likely to have had signifi-
cant numbers of faults introduced into it throughout its
dramatic life.

Now let us turn our attention to the fault identifica-
tion process. Over 600 failure reports were written

against the CDS flight software during developmental
testing and system integration. Failure reports contain a
description of how the system’s behavior deviated from
expectations, the date on which the failure was observed,
and a description of the corrective action that was taken.

In relating the number of faults inserted in an incre-
ment to measures of a module’s structural change, we
had only a small number of observations with which to
work. There were three difficulties that had to be dealt
with. First, recall that for only about 10% of the failure
reports were we able to identify the module(s) that had
been changed, and in which increment those changes
were made. Although the development practices used on
this project included the placement of comments in the
source code to identify repair activities resulting from
each problem report, this requirement was not consis-
tently enforced. Second, once a fault had been identi-
fied, it was necessary to trace it back to the increment in
which it first occurred. For some source files, there were
over 100 increments that had to be manually searched.
Since the SCCS files for each delivered version were
available, it was possible to trace most faults back to
their point of origin. As previously noted, the principal
difficulty was the sheer volume of material that had to be
examined — this was one of the factors restricting the
number of observations that could be obtained. Third,
there were numerous instances in which the UX-Metric
analyzer that was used to obtain the raw structural meas-
urements would not measure a particular module. The
net result was that of the over 100 faults that were ini-
tially identified, there were only 35 observations in
which a fault could be associated with a particular in-
crement of a module, and with that increment’s measures
of fault delta and net fault change.

160.00
140.00 1 Cumulative ]
120.00 H NCF /J,f
100.00 H
80.00 f[ Cumulative H
£0.00 [JI fault delta |
oo A
0.00 A mTmdm
A D DD D AP P PV
L 3;" R 4‘9\ @'}’4"-’ » &S QA

Figure 4. Change History for Frequently Changed
Module

For each of the 35 modules for which there was vi-
able fault data, there were three data points. First, we
had the number of injected faults for that module that
were the direct result of changes that had occurred on
that module between the current version that contained
the faults and the previous version that did not. Second,
we had fault delta values for each of these modules from



the current to the previous version. Finally, we had net
fault change values derived from the fault deltas.

Linear regression models were computed for net
fault change and fault deltas with actual code faults as
the dependent variable in both cases. Both models were
build without constant terms in that we surmise that if no
changes were made to a module, then no new faults
could be introduced. The results of the regression be-
tween faults and fault deltas were not at all surprising.
The squared multiple R for this model was 0.001, about
as close to zero as you can get. This result is directly
attributable to the non-linearity of the data. Change
comes in two flavors. Change may increase the com-
plexity of a module. Change may decrease the com-
plexity of a model. Faults, on the other hand are not
related to the direction of the change but to its intensity.
Removing masses of code from a module is just as likely
to introduce faults and adding code to it.

The regression model between net fault change and
faults is dramatically different. The regression ANOVA
for this model are shown in Table 3. Whereas fault del-
tas do not show a linear relationship with faults, net fault
change certainly does. The actual regression model is
given in Table 4. In Table 5 the regressions statistics
have been reported. Of particular interest is the Squared
Multiple R term, having a value of 0.653. This means,
roughly, that the regression mode! will account for more
than 65% of the variation in the faults of the observed
modules based on the values of net fault change.

Standard error of
estimate

Squared muitiple
N Multiple R R

35 .848 719 2.087

Source Sum-of- DF Mean- F-Ratio P
Squares Square
Regression 331.879 1 331.879 62.996 0.000
Residual 179.121 34 10.673 5.268

Table 3. Regression Analysis of Variance

Effect Cocefficient Std Err t P(2-Tail)
NFC 0.576 0.073 7.937 0.000
Table 4. Regression Model

Squared multiple Standard error of
N Multiple R R estimate
35 0.806 0.649 2.296

Table 5. Regression Statistics

Of course, it may be the case that both the amount
of change and the direction in which the change oc-
curred. The linear regression through the origin shown

Table 8. Regression Statistics

We see that the model incorporating fault delta as well as
net fault change performs significantly better than the
model incorporating net fault change alone, as measured
by Squared Multiple R and Mean Sum of Squares.

We determined whether the linear regression model
which uses net fault change alone is an adequate predic-
tor at a particular significance level when compared to
the model using both net fault change and fault delta. We
used the R’-adequate test [MacD97, Net83] to examine
the linear regression models through the origin and de-
termine whether the models that depend only on struc-
tural measures are an adequate predictor. A subset of
predictor variables is said to be R’-adequate at signifi-
cance level aif:

R>1-(1-p2.X1+4d..), where

e RZ%,; is the R? value achieved with the subset of

predictors

. szu" is the R? value achieved with the full set of

predictors

s dng = (kFi px1)/n-k-1, where

e k = number of predictor variables in the
model
n = number of observations
F = F statistic for significance « for n,k de-
grees of freedom,
Table 9 below show values of R%, k, degrees of freedom,
Fy k-1, dnk, and stub for all four linear regression models
through the origin. The number of observations, n, is 35,
and we specity a value of 0=.05.
We see in Table 9 that the value of Multiple Squared
R for the regression using only net fault change is 0.649,
and the 5% significance threshold for the net fault
change and fault delta regression model is 0.661. This
means that the regression model using only NFC is not
R? adequate when compared to the model using both net
fault change and fault delta as predictors. The amount of
change occurring between subsequent revisions and the
direction of that change both appear to be important in
determining the number of faults inserted into a system.

A ]
in Tables 6, 7, and 8 below illustrates this model. Lin- Regres- | RO | DF 1 K F:l;',‘,:ffor dlouk) | Thresh-
Through cance o signifi-
Source Sum-of- DF Mean- F-Ratio P Origin cance
Squares Square NFC only 0.649 1 34 1 4.139 0.125 | ----
Regression 367.247 2 183.623 42.153 0.000 NFC, Fault |0.719| 33 2 3.295 0.206 0.661
Residual 143.753 33 4.356 Delta
Table 6. Regression Analysis of Variance Table 9. Values of Rz, DOF, k, Fy n.x.1, and d i for R’-
Effect | Coefficient | _Std Err t P(2-Tail) adequate Test
NFC 0.647 0.071 9.172 0.000 Finally, we examined the predicted residuals for the
Delta 0.201 0.071 2.849 0.002 linear regression models described above. Table 10 be-

Table 7. Regression Model




low shows the results of the Wilcoxon Signed Ranks
test, as applied to the predictions for the excluded obser-
vations and the number of faults observed for each of the
two linear regression models through the origin. For
these models, about 2/3 of the estimates tend to be less
than the number of faults observed.

Plots of the predicted residuals against the actual
number of observed faults for each of the linear regres-
sion models through the origin are shown in Figures 5
and 6 below. The results of the Wilcoxon signed ranks
tests, as well as Figures 5 and 6, indicate that the predic-
tive accuracy of the regression models might be im-
proved if syntactic analyzers capable of measuring addi-
tional aspects of a software system’s structure were
available. Recall, for instance, that we did not measure
any of the real-time aspects of the system. Analyzers
capable of measuring changes in variable definition and
usage as well changes to the sequencing of blocks might
also provide more accurate measurements.

Sample N | Mean Sum Test Asymp-
Pair Rank of Statis- totic
Ranks tic Signifi-
Z cance
(2-tailed)
Observed | Neg. 28" | 17.52 | 438.00 | -2.015¢ 044
Faults; Pos. | 10°] 19.20 | 192.00
NFC only | Ties 0°
fault est. Total 35
Observed | Neg. | 24° | 16.92 | 406.00 | -1.491° 136
Faults; Pos. | 11°| 2036 | 224.00
NFC and Ties 0¢
Fault Total 35
Delta est.

a.  Observed Faults > Regression model predictions
b.  Observed Faults < Regression model predictions
¢ Observed Faults = Regression model! predictions
d. Based on positive ranks

Table 10. Wilcoxon Signed Ranks Test for Linear
Regressions Through the Origin

Predicted Residuals vs. Observed Faults

Faults = b1*NFC

wo

Predicted Residuals
-

] 2 4 8 8 10 12
Number of observed faults - versions 2.0, 2.1a, and 2.1b

Figure 5. Predicted Residuals vs. Number of Ob-
served Faults for Linear Regression Using NFC

Predicted Residuals vs. Observed Fauits

Faults = b1*NFC + b2*Fault Delta

Predicted Residuals
-

o 8 10 12

Number of observed faulls - versions 2.0, 2.1a, and 2.1b

Figure 6. Predicted Residuals vs. Number of Ob-
served Faults for Linear Regression with NFC and
Fault Delta

7. SUMMARY

There is a distinct and a strong relationship between
software faults and measurable software attributes. This
is in itself not a new result or observation. The most
interesting result of this endeavor is that we also found a
strong association between the fault introduction process
over the evolutionary history of a software system and
the degree of change taking place in each of the program
modules. We also found that the direction of the change
was significant in determining the number of faults in-
serted. Some changes will have the potential of intro-
ducing very few faults while others may have a serious
impact on the number of latent faults. Different numbers
of faults may be inserted, depending upon whether code
is being added to or removed from the system.

In order for the measurement process to be meaning-
ful, fault data must be very carefully collected. In this
study, the data were extracted ex post facto as a very
labor intensive effort. Since fault data cannot be col-
lected with the same degree of automation as much of
the data on software metrics being gathered by develop-
ment organizations, material changes in the software
development and software maintenance processes must
be made to capture these fault data. Among other things,
a well defined fault standard and fault taxonomy must be
developed and maintained as part of the software devel-
opment process. Further, all designers and coders should
be trained in its use. A viable standard is one that may
be used to classify any fault unambiguously. A viable
fault recording process is one in which any one person
will classify a fault exactly the same as any other person.

Finally, the whole notion of measuring the fault in-
troduction process is its ultimate value as a measure of
software process. The software engineering literature is
replete with examples of how software process im-
provement can be achieved through the use of some new
software development technique. What is almost absent
from the same literature is a controlled study to validate



the fact that the new process is meaningful. The tech-
niques developed in this study can be implemented in a
development organization to provide a consistent method
of measuring fault content and structural evolution
across multiple projects over time. We are working with
software development efforts at JPL to address the prac-
tical aspects of inserting these measurement techniques
into production software development environments.
The initial estimates of fault insertion rates can serve as a
baseline against which future projects can be compared
to determine whether progress is being made in reducing
the fault insertion rate, and to identify those development
techniques that seem to provide the greatest reduction.

ACKNOWLEDGMENTS

The research described in this paper was carried out
by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aero-
nautics and Space Administration.

REFERENCES

[Chil92]  R. Chillarege, 1. Bhandari, J. Chaar, M. Halliday,
D. Moebus, B. Ray, M.-Y. Wong, “Orthogonal Defect
Classification - A Concept for In-Process Measurement”, IEEE
Transactions on Software Engineering, November, 1992, pp.
943-946.

[Hal77} M. H. Halstead, Elements of Software Science.
Elsevier, New York, 1977.

[IEEE83] “IEEE Standard Glossary of Software Engineering
Terminology”, IEEE Std 729-1983, Institute of Electrical and
Electronics Engineers, 1983.

[IEEE88] “IEEE Standard Dictionary of Measures to
Produce Reliable Software”, IEEE Std 982.1-1988, Institute of
Electrical and Electronics Engineers, 1989.

[IEEE93] “IEEE Standard Classification for Software
Anomalies”, IEEE Std 1044-1993, Institute of Electrical and
Electronics Engineers, 1994

[Khos90] T. M. Khoshgoftaar and J. C. Munson , "Pre-
dicting Software Development Errors Using Complexity Met-
rics," IEEE Journal on Selected Areas in Communications 8,
1990, pp. 253-261.

[Khos92] T. M. Khoshgoftaar and J. C. Munson "A
Measure of Software System Complexity and Its Relationship
to Faults,” In Proceedings of the 1992 International Simulation
Technology Conference, The Society for Computer Simulation,
San Diego, CA, 1992, pp. 267-272.

[MacD97] S. G. MacDonell, M. J. Shepperd, P. J. Sallis,
“Metrics for Database Systems: An Empirical Study”,
Proceedings of the Fourth International Software Metrics
Symposium, November 5-7, 1997, Albuquerque, NM, pp. 99-
107

[Muns90] J. C. Munson and T. M. Khoshgoftaar “Regres-
sion Modeling of Software Quality: An Empirical Investiga-
tion,” Journal of Information and Software Technology, 32,
1990, pp. 105-114.

[Muns90a) J. C. Munson and T. M. Khoshgoftaar "The
Relative Software Complexity Metric: A Validation Study,” In
Proceedings of the Software Engineering 1990 Conference,
Cambridge University Press, Cambridge, UK, 1990, pp. 89-
102.

[Muns92] J. C. Munson and T. M. Khoshgoftaar "The De-
tection of Fault-Prone Programs," IEEE Transactions on Soft-
ware Engineering, SE-18, No. 5, 1992, pp. 423-433.

{Muns95] J. C. Munson, "Software Measurement: Problems
and Practice," Annals of Software Engineering, 1. C. Baltzer
AG, Amsterdam 1995.

[Muns96] J. C. Munson, “Software Faults, Software Failures,
and Software Reliability Modeling”, Information and Software
Technology, December, 1996.

[Muns96a) J. C. Munson and D. S. Werries, “Measuring
Software Evolution,” Proceedings of the 1996 IEEE Interna-
tional Software Metrics Symposium , 1EEE Computer Society
Press, pp. 41-51.

[Muns97] J. C. Munson and G. A. Hall, “Estimating Test
Effectiveness with Dynamic Complexity Measurement,” Em-
pirical Software Engineering Journal. Feb. 1997.

[Net83] J. Neter, W. Wasserman, M. H. Kutner, Applied
Linear Regression Models, Irwin: Homewood, IL, 1983
[Niko97] A. P. Nikora, N. F. Schneidewind, J. C. Munson,
“IV&YV lIssues in Achieving High Reliability and Safety in
Critical Control System Software”, proceedings of the Interna-
tional Society of Science and Applied Technology conference,
March 10-12, 1997, Anaheim, CA, pp 25-30.

[Niko97a] A. P. Nikora, J. C. Munson, “Finding Fault with
Faults: A Case Study”, proceedings of the Annual Oregon
Workshop on Software Metrics, Coeur d’Alene, ID, May 11-
13, 1997
[Niko98]

A. P. Nikora, “Software System Defect Content
Prediction From Development Process And Product
Characteristics’, Doctoral Dissertation, Department of
Computer Science, University of Southern California, May,
1998.

[SETL93] “User’s Guide for UX-Metric 4.0 for Ada”, SET
Laboratories, Mulino, OR, © SET Laboratories, 1987-1993



//

V&
INTEGRATING FORMAL METHODS

INTO SOFTWARE DEPENDABILITY ANALYSIS
John C. Knight Luis G. Nakano
(knight | nakano)@virginia.edu
Department of Computer Science

University of Virginia
Charlottesville, VA 22903-2442, USA

An abstract submitted to:

The Twenty-Third Goddard Software Engineering Laboratory Workshop

Contact author:
John C. Knight

Department of Computer Science
University of Virginia
Thornton Hall
Charlottesville, VA 22903-2442, USA

knight@virginia.edu
+1 804 982 2216 (Voice)
+1 804 982 2214 (FAX)



INTEGRATING FORMAL METHODS INTO SOFTWARE
DEPENDABILITY ANALYSIS

John C. Knight Luis G. Nakano
Department of Computer Science Department of Computer Science
University of Virginia University of Virginia

1. Introduction

Formal methods are techniques based in mathematics that facilitate the precise specification and
verification of software systems. Their use has been demonstrated in a number of experiments
and industrial development projects [3]. Despite these demonstrations, formal techniques remain
the exception rather than the rule in system development. One of the issues raised about the use
of formal methods is the lack of any means whereby their results can be used in the broader
context of system dependability analysis, i.e., the analysis of a complete system including
hardware and software. For example, what would be the benefit at the system level of the use of a
formal specification in the preparation of the system software?

The issues that we address in the work summarized here are:

e For what parts of a complex software system should formal methods be used?

e How can the results of formal analysis be used in the overall dependability analysis of the
entire system?

We summarize a process by which these issues are addressed, and show thereby how to
determine the role of formal methods in any particular development and how to exploit the
results of formal analysis in system dependability analysis. At the workshop, we will illustrate
the process using examples from analysis performed on parts of the design of an experimental
nuclear-reactor control system.

2. Dependability Analysis

Analysis of the dependability of safety-critical systems is essential in order to provide estimates
of the expected losses (life and/or property) that such systems will cause per unit of operating
time, i.e., their risks. These risk estimates are used by developers, users, policy makers and
others to make informed decisions about deploying safety-critical systems based on the expected
benefits and losses to society.

Risk analysis has not been applied as successfully to software-based safety-critical systems as it
has to hardware-only systems. The reason is the discrete nature of software—it causes
complexity not usually found in analog hardware and prevents interpolation of test results
commonly applied to hardware-only systems. The result is a situation in which the hardware
elements of a system are typically analyzed in depth but software is handled in only a very
limited way, often as a “black box™.



Life testing is an approach to software dependability assessment in which the software is treated
as a black box. The software is executed continuously in its operating environment for a period
of time proportional to the duration of the mission and inversely proportional to the acceptable
probability of failure. Unfortunately, it has been shown [2] that life testing is not a feasible
approach to the dependability assessment of life-critical software because the duration of testing
required is excessive. To reduce the need for testing, reliability growth models have also been
tried [1]. By modeling the development of software in terms of testing and fault removal, it is
argued that an estimate for software reliability can be obtained with lower test requirements. If it
works at all, this approach only works for modest levels of dependability.

Formal methods are often advocated as an approach to developing dependable software. But
poor tool support, the complexity of the systems, and the difficulty of using the techniques have
limited the application of formal methods in many cases. The application of formal methods just
to the safety-critical parts of a system is a valid approach, but it requires that the safety-critical
parts be identified and delimited. No general technique for isolating the safety-critical
components of systems is available, however. In addition, it is not clear how to determine the
properties of a system (or part of one) that are relevant to its safety. Again, no technique so far
has been widely accepted, and most applications of formal methods try to establish properties
chosen in a non-rigorous manner. Though clearly useful, this utility is informal—such properties
do not contribute formally to the overall system dependability analysis. In summary, though
formal methods are of value, it is not clear how they should be applied nor how to use the fact
that they have been applied in system dependability analysis.

Given this situation, an integrated approach that: (a) addresses both the software and hardware
elements of a system; and (b) exploits the tremendous potential of formal methods is needed. In
this paper, a comprehensive approach to system dependability analysis based on traditional
techniques for risk analysis is summarized. The approach models software as a set of interacting
components based on the structure of the software. By viewing software this way, software
analysis can be integrated fully into the models used presently for hardware. The resulting
composite models provide details of those conditions in which hazards might occur as a result of
erroneous software operation thereby identifying precisely where attention to software
dependability must be focused. As such, these conditions can be the target of formal analysis so
that confidence is gained about the right properties of the right parts of a software system.

3. A Component Model of Software Dependability

Both simple life testing and reliability growth models ignore the structure of software when
obtaining estimates of software failure rates thereby requiring either that impossibly large
numbers of tests be performed or that failures induced in one component by another be ignored.
Unfortunately, however, if one appeals to formal methods as an alternative approach, one is
faced with the fact that formal methods do not provide stochastic estimates and so cannot be used
easily in place of testing. And, as we have already noted, it is not possible to identify precisely
where or how such methods can be applied effectively to just parts of large systems.

Traditional dependability analysis techniques, such as fault-tree analysis and failure-modes-and-
effects analysis, are performed for hardware-only systems using complete knowledge of the
internal design. Typically, the software in software-based systems cannot be analyzed this way
because the interactions between components have either been ignored or not obtained

-3 -



rigorously. Clearly, software components such as functions and tasks interact extensively, but
this is not to be the case (or is assumed not to be the case) in archetypal hardware-only systems.

Since techniques that model software as a monolithic entity have not achieved sufficient fidelity,
we have developed an approach in which software is modeled as a graph with components as
nodes and interactions as edges. An event associated with the failure of a software component
then appears as a separate entity in the system fault tree. However, traditional quantitative
analysis cannot be undertaken without further analysis because of the component interactions.
Qualitative analysis, however, is possible and the comprehensive system fault tree allows those
parts of the software whose failure might lead to a hazard to be identified easily.

In our approach, interactions are determined based on a component-interaction model and then
minimized using architectural techniques. The resulting fault tree is then analyzed quantitatively
using extensions to fault tree analysis that include dependencies [5].

Of critical importance is the fact that the failures of individual soffware components now appear
in the system fault tree. This permits system design decisions to be taken to reduce
vulnerabilities, but, more importantly, it indicates what aspects of the software will benefit most
from the use of formal methods and how. For example, if a software component is deemed to be
critical because the fault tree shows that its failure would lead to a hazard with unacceptable
probability, then the component can be subjected to detailed formal analysis. If it can be shown
to be correct via proof, then its probability of failure can be assumed to be close to zero and
increased confidence gained in the system’s safety. The role of formal methods is then clear.

4. Component Interaction Model

In developing an analysis-by-components approach to modeling software, the first step is to
determine how one software component can affect another. There are, of course, a multitude of
ways that this can occur, but there is no basis in either models of computation or programming
language semantics for performing a comprehensive analysis.

We chose to approach this problem by viewing component interaction as a hazard and basing
our analysis on a fault tree for this hazard. In this way, we have documented, albeit informally
but rigorously, all possible sources of software component interaction. The fault tree is quite
large and we cannot include it here in detail. The events in the fault tree are based on the
semantics of a typical procedural programming language, and the results apply to all common
implementation languages such as Fortran and C.

In order to reflect the syntactic structure of procedural languages accurately, we define the term
component to mean either (a) a function in the sense of a function in C, (b) a class in the sense of
a class in C++, or (c) a process in the sense of a task in Ada. We make no assumptions about
how components can provide services to each other (in a client/server model) or collaborate with
each other (in a concurrent model) or otherwise interact.

As an example of the interaction model, figure 1 shows the top of the component-interaction
fault tree. With no loss of generality, in this fault tree we consider only two components because
there can be no interaction between components if there is no pair-wise interaction. Since
information flow between A and B is symmetric, only one of the cases need be considered.

-4 -



Hazard

Component
Interaction

Information flows Information flows to A and B
fromAtoB from a common source
Data Transfer Data Transfer

O O

Figure 1: Fragment of component interaction fault tree

In the first level of the partial tree shown in figure 1, component interaction can be caused by
information flow from A to B or by a common source of information. Thus, these are the two
events shown. Note that component interaction does not necessarily mean intended
communication in any format. Rather, it includes both intended and non-intended interaction
between components. In addition, information flow does not mean just transfer of data. Flow of
control is also information in the sense of the analysis that we wish to perform.

The complete interaction model derives sources of interaction in all semantic areas including
shared data, memory management (e.g., one task consuming all memory thereby causing others
to fail), task communications (e.g., priority inversion and deadlock), and exception generation
and propagation.

5. Design Techniques for Analyzability

If analysis using our software component model is to be complete, it is essential that interactions
between components that have to be analyzed always be detectable. Analysis of the component
interaction model indicates that several potential causes for unwanted interaction cannot be
discovered by static analysis of the system. Dynamic scheduling of functions and dynamic
resource allocation, for example, have the potential for leading to failure under circumstances
that are unpredictable. Similarly, other characteristics of software designs have the potential for
increasing the complexity of the analysis or even making it infeasible.

-5



Analytic feasibility requires that these sources of interaction be eliminated and this requires that
certain restrictions be imposed. Both imposing the restriction and showing that a system meets
them is best achieved by explicit use of design choices, for example:

e All resources must be statically allocated.
e All scheduling actions must be static.
e Execution times of components must be bounded.

e Inter-task communications must be synchronous.

This list, although not exhaustive, illustrates the properties that were derived from the component
interaction model. Provided the complete set of design restrictions is met, all interactions
between components of a software system can be analyzed. Achieving analytic feasibility of
complex software systems using architectural techniques such as these is not unique to the
approach we have developed. The SAFEBus architecture [4], for example, used in the Boeing
777 air transport enforces several of these properties to facilitate the safety analysis of the final
system.

6. Quantitative Analysis

The final step in the approach that we have developed is quantitative analysis of complete
systems including both hardware and software. The composite fault tree contains nodes
describing failure events of all system components and all interactions between components are
known. To complete the part of the quantitative analysis associated with the software nodes, we
have developed an extension to the cut-set technique employed with conventional fault trees. The
extension, termed hazard-causing sequences, involves enumerating all sequences of software
component failures that could cause a hazard and analyzing each such sequence to show that its
probability of occurrence is sufficiently small. If this analysis reveals a sequence whose
probability of occurrence is not sufficiently small, formal techniques (perhaps combined with
certain restricted forms of testing) can be applied to the sequence in order to either reduce the
probability to a sufficiently small value or to show how the system design can be modified to
make the associated sequence less critical.

7. Summary

In order to better model the dependability of complex software-based systems, we have
developed an approach that uses the design of the software (viewed as a set of interacting
components) as a basis for analysis. This approach permits the critical elements of the software
to be identified and subjected to analysis using formal techniques. The approach, therefore,
permits a clear determination to be made of the most appropriate application of formal methods
to a large system and permits the results of formal analysis to be included in comprehensive
system dependability analysis.

At the workshop we will describe the approach in detail, present the complete component
interaction model, discuss the analytic techniques used in analysis of the composite fault-tree
model, and illustrate the approach using analysis performed on parts of the design of an
experimental nuclear reactor control system.

—6--



References

1.

3.

Brocklehurst, S.; Littlewood, B. Technigues for prediction analysis and recalibration.
Chapter 4. In: Lyu, M. R, (ed). Handbook of Software Reliability Engineering. IEEE
Computer Society, Los Alamitos, CA, 1995.

. Butler, R. W_; Finelli, G. B. The infeasibility of quantifying the reliability of life-critical real-

time software. In: IEEE Transactions on Software Engineering, v. 19, n. 1, p. 3-12, Jan.
1991.

Craigen, D; Gerhart S; and Ralston, T. An international survey of industrial applications of
formal methods. National Institute of Standards Technology, U.S. Department of Commerce,
(March 1993)

. Hoyme, K_; Driscoll, K. S4FEbus. In: Proceedings of the 1992 IEEE/AIAA 1" Digital

Avionics Systems Conference, Seattle, WA, USA, 5D8 Oct. 1992, p. 610, 68-73. IEEE, New
York, NY, USA, 1992,

. Pullum, L. L.; Dugan, J. B. Fault tree models for the analysis of complex computer-based

systems. In: Annual Reliability and Maintainability Symposium. 1996 Proceedings. The
International Symposium on Product Quality and Integrity, Las Vegas, NV, USA, 22D25
Jan. 1996, p. 2007, 1996.

S



20U212§ 4ainduio?) Jo juauianda(

2V ===
\

T
]

VSN ‘BIUIBIIA
Q[[IASANO[IRY)D
RIUISITA JO AJISIOATU()
oouarog Ionduwo)) Jo yuaunredad

ouexeN ‘D ST pue JYSIUY "D uyof

SISATVNV ALI'TIAVANAdA(J FIVMALIOS
OIN] SGOHILAA TVINIOA DNILLVIOHLN]




20U210§ L2INAUWO)) JO JUULIDADT b

VAN < oputs

QWL dwlld,, 104 Apedy
$90IN0SY AUBRIA 00, as() 0, Aseq Apired

| [POROBId 10N | Kousronyys (oA 2aoidur] |

@m&o&mz noaoa@ r Arrend o>@

SAOHLAIN TVINIO ] AQ AS(] dH.L



AIUNDS 4INAUO)) JO JUIWIIDAI(] A

VAl &

JUAUWISSOSSY/
Ayiqepuade(
WASAS

sonbruyoa,
[ewiog

$$3001d
uawdopaad(
1BM1JOS

SHSHH.LOdAH



AIU210§ AJNAULIO)) JO JUIUIADAI(] ] S

vAn S

¥ 3pus

A12A119913H 1SOIN parddy ag ue)) A9y, 91oYA\ SUIUTWINR( JO SUBA V PN »

¢patdde aq sanbiuyoa) jewuoy pjnoys walsAs e jo sped ysiym ol

10§ ‘Teonoeiduy ST SWIISAS 3318 JO SISA[RUY [RWIO] dalsudyaidwo) ‘mg .

sjoo1d Auradoig

SJOOIJ SSaU)I2II0))

UONBOIJIO Y AUWAULJ Y

SISATeuy uonedyrads

uonedy10adg [ewIo]

:3uIpnouy ‘sanbruyoq ] [eWIO,] JUI[[QOX;] AURIA 1Y QIYL, o

NOLLSAN()



20UBIDS L2INAUIOY) JO TUIUIDAI([ A

VAN &2

¢ 9p1s

POIUSLI() JOUBULIONIS ‘[BOIUYIR], 9 O, POPUS ], BLISILD) UoneneAy

:9S() JO YIpealg SSaIpPY 10N PId YIOM Snolasid

(JuaonT) ‘[e 19 SIPIY

(LSIN) Uois[ey ‘Uey1an ‘uadrer)

:ordurexy] 10, ‘patIIONIdd SUOLIRN[BAY SNOLBA

suI[oD) [emo0y “1drf A4 SAd
paayo0T “TIN Ad 210D/4DS

sixeld ‘NG Ad Z

3uroog uepIn) ‘snqiry Ag S1IBl01R1S

-ardurexy 10, ‘A[9AISUIXH Pas() udeg SeH uonedy1ads Teuo

NOLLVO'IVAH ANV NOILLVOI'lddY




AOUBIDS AIINAUIO)) JO JUIUMDAI(T  HArrreh

vAn S

sonzadoid
2t <A fen] Q) (e

9 9pIS

uonedIadg

SISATeu SISATeUy
P AU SR ODSHIQRqOId _
19JES /pIezel]
wAISAS

SINANAOTIAAQ MS NT TVINNOI A9 AHM




AOU21DS 42INAUO]) JO JuUIADAI (]

VAl

3

L 3PUS

(1ySy] puy ‘WeHug ‘UURWWY) Jey L, BT, 9SIOM SI -
(UL puy 10png) J1qseaju] A[[eIsusn) sIf -
:unso ], 9Jr WAISAS a1BMJOS o

uoNNQLISI(] .AIqRUOSERY,, V 3uIs() [OPOIA FGABIN 10

0197 99K 10

ouQ 0], 21n[re JO AIqeqoid 1S 10

Sunsa], 9Jr1 A 2njed JO A1[Iqeqoid SINSEIN OL A1]1,

:PUY JUOAY QIN[[E] AI1BMIJOS SUQ A[UQ SWNSSY—SI0NIEId eotdAl, o

i Kepp owes sy [red [TV AL od - (TN IV AYL IV -

:suonouny JO $107 SIPIA0id d1emyos .

—

INANSSASSY ALI'TTIVANAdIA INALSAS NI MS



AIURIDS A2JNAULO]) JO JUMIIDA3 (] 4 S

VAN o

—~
.

8 2PIS

SISA[eUY QIeMpPIBH UM AS0[BUY

oImPNNS Juauodwo)) s uIs) AIBMIJOS [SPOJN

SUONORIN]

juauodwo)

UIRIN

TANLIMIALS HIVMILIOS



gIUdlIN AU ) JU JUTUILDUI (] s 1

[ )
VA N 69p1IS
sjuauodwo))
[E9nLD) -
9POIN
[°POIA sanbruyda], mowuoﬁug
Aymiqepuade( [BUWLIO] yusuoduwon)
wasAS sjuauoduio))
A A [eonHD k
u3Isa(g
UOTIOBIANU]
[EWIUTIA
SUOTIORIAU]
1wauodwo)) «
AIBMIJOS
u31so(g
SISATRUY SIBMIJOS
(quauodwo))) \_
aNonIs
AIBMIJOS

ALI'TAVANIAdHA MS 40 THAON ININOJINOY)




20UR1DS 42INAWO)) JO JUIUIIDAI(]

] N

VA 4 01 2pUS
_ _ _ | ,
|ele | | 2I1em)joS | | aIlempiey UONBZIUOIYOUAS | | SUuINpayos |
_ | |
_ E
L
[ JU21INJU0)) | | Jenuanbag |
|
JUSWUOIIAUH awdoraaag | IoJsuel], JQJsuel],
[euoneidd( uowwo)) uowwo)) m ele( [01uU0)

_

90IN0S UOUWIWIOD B WOIJ J10q
0] SMO[] UOIBRULIOJUT SNOSUOLI

porIie] Sey Y 9snedeq g 03
V WOIJ MO[] UONBULIOJUI SNOUOLIY

T

!

uoneIIUINWWO))

Juouodwo)) pajuemu() :pIezely

THAOJAN NOLLOVIHAIN] LNANOJINOY)



JOUDIIS AINALUO]) JO JUIULIADAI (]

VAl o5

-
A

1T 9pIS

Q0B1INU] J3S)

WNSAS MOPUIM

YI0MIAN
swaIsAS SuneradQ

20I1BM1JOS JO SIOT e
ereq
10SU3S
= syuownradx g
100d
SuTwwims
9[0SU0)) e Spoy doog
[onuo) [onuo) Arewrnid
I9MO],
3uro00)

INALSAS JOLOVAY VINIDUIA 40 ALISHAAIN(]



20U2108 12INAUIOT) JO JUIUMDAI(T b

VAN

S~—" A
3UTTORSC $1032% I01I%
DISSTH yse1d sg Sutul] we T0X3UC) HOtm
uoneod11adg
oIWOD 30} 0] 0ad§
UOISIQAUO e
U 510113 puozpm Huoim
. waTSAS £10133
Hoaom %Hﬂgmm SutyeIsco ucT1esT1ddy
UCTSIBAUOCD Iceuas UOTSIBAUOD JOosSuss
®S IBMCA I8M0d uftsec MS poliad potIag
Fh fal-Fd ATaes UT s3033g [2ed1; 132343 Aaned FaTned
1033UCD
A3{NE4
aImseeR 21607 BINSBIN
-Esse TLITUIT . I opotrzs |
ATnes tred | farred |
JURTOOD
17 5507
yETH 007 po1Isd
FaAs] JaMOg ~Ioys

SL'INVH HIVMALAOS



AOUIIOG 42JNAUO]) JO JUUIADAI(J

VA

N

€1 PSS

SPOUIIN
[euLIOq

soniadoid
AIBSSOIN

24DM1f0S 2241DUY

991, 1neq
WIISAS

SUOTIORIANU]
1usuoduio))

waIsL§ 2ZLpuUy

QIMONIYIIY
uonejos|

[°SPOIN
jusuodwo)
2IBM]J0S

aavmifos dojpaaa(q

\

SANOINHOAL TVINIO J 40 ATOY dALVEIALN]



VA =22

¥1 =pPUS

SISATRUY 9211 -1[NB UQ) Paseq USIS( 2I1em1JOS IO WUAWOURYUH

901, J[ne] WASAS U sIsA[euy 1wauodwo)) JO uonei3auj

[SPOJAl uonoeIAu] 1uauodwo))

u31so( 21eM1JOS Juauoduwo)

U posey

padofaaa Aipigepuada(g 218m1J0S JO [PPON Juduodwo))
JuawIssassy Aiqepudada waIsAS 0], A[19911(] 21NqLIUO)) 1, U0(] sonbruyda ], [pwiioq
yuowdoraAa( Uy sanbruyoda |, [pu1o,] 10, 9]0y 31931 ON

TUQWSSASSy Afiqepuado(q WaIsAS YIIAN PAIRISAUT-[[OA ION 2IBM1JOS

SNOISNI'TONO))



AN ADAPTIVE SOFTWARE RELIABILITY PREDICTION APPROACH

Meng-Lai Yin'  Lawrence E. James ~ Samuel Keene  Rafael R. Arellano  Jon Peterson
Raytheon Systems Company
Loc. FU. Bldg. 675, M/S AA341
1801 Hughes Drive, Fullerton, CA 92834 USA

ABSTRACT

Software reliability analysis is inevitable for modern
systems, since a large amount of system functionality
is now dependent on software, and software does
contribute to system failures. Although extensive
research efforts have been devoted to the field of
software reliability, there is no single consensus
model available. On the other hand, most software
reliability models are based on software failure data
collected from the project. This creates a problem
for the designers since, during the early stage,
software failure data are not available. This paper
presents the approach we took to deal with the above
issues. The adaptive approach presented here
continuously adjusts and evaluates the performance
of the models as the software development proceeds.
For the early-stage prediction, a simple and
straightforward method is introduced which can be
used when no failure data are available. This
process, which is based on the adaptive approach and
includes the early-stage prediction method, has been
implemented in a software intensive development
program in progress.

INTRODUCTION

As more and more failures attributed to software are
observed, it is recognized that software reliability
analysis is an inevitable task. However, although
several software reliability models have been
proposed [6], there is still no “standard” model. In
reality, the needs of software reliability prediction
force people to choose one (or more) models so that
some software reliability numbers can be provided.
The problem with this approach is that, at the
beginning of a system development, there is no
failure data available. Thus, no one knows which

model best describes the software product. This
approach is referred to as the blind approach.

Another approach is to apply various models and the
results are compared with actual failure data at the
end of the project. This way, the performance of
different models can be evaluated [12]. The problem
is, the software reliability can not be estimated until
the very-late stage of the development, when
software is almost ready to be delivered. This
approach is referred to as the autopsy approach.

To cope with the above problems, we propose an
approach  that analyzes software reliability
adaptively. That is, software reliability is modeled as
the software development proceeds.  First, we
provide a rough estimation, to start the whole
process. As the software is being developed, failure
data become available, and software reliability can
be predicted progressively. Comparing the actual
failure data with the predicted numbers, we can see
the trend of the software failure behavior, and
determine which models are the most appropriate
ones. When the software development reaches the
final stage, modeling experience is also becoming
more mature. The ultimate goal is to provide
software reliability estimation using the model that
best characterizes the failure behavior of the
particular software product. Not only that, this
process continuously provides estimation at each
phase of the system development based on the most
current failure information.

Note that even at the beginning of software
development where failure data are not available,
some assurance that the design is meeting its
requirements is desirable. Therefore, a method that
can provide a reasonable estimation before any actual
failure data available is a benefit to the program. Ina

* Contact author. Email: mlyin@west.raytheon.com. Tel: 714-446-4269. Fax: 714-446-3137.



survey provided in [6], three models have been
identified as the “early-phase’ models, i.e., Gaffney
and Davis’ phase-based model [3], Agresti and
Evanco’s Ada software defects model [1], and the
Air Force’s Rome Lab model [9].

The basic philosophy of these early-phase models is
to do a prediction based on as much information as
possible.  For example, the phase-based model
requires the information of discovered faults found
during the design and implementation phases [3]; the
Rome Lab’s model considers a very comprehensive
list of factors [9]. The Ada software defects model
requires 4 product and 2 process characteristics [1].

Although detailed information is desirable, they are
not necessarily available, or they may be very costly
to obtain at the early stage of the program. In this
paper, we propose a cost-efficient method, called the
early-stage prediction, to be added to the adaptive
prediction process for software reliability.

This adaptive process with the early-stage prediction
method has been implemented in a software
development program in progress. As more
experience is gained and more failure data are
collected, the performance of the early-phase
prediction method is improved.

Prodluct
characferistics

Adaptive Software Reliability Estimation
N

4 Y

Process
characteristics

Faults/Failure Data Collection

L

Early-Stage
Prediction

Code-Phase
Prediction

Unit-Test :
Phase Systern-Test

Prediction § Phase

Prediction

Qutputs: Software Reliability Estimation
Performance Evaluation of Prediction Models

:
]
i
E
]
]
:
]
]
]
i
t
t
[}
1
:
Prediction Phase Operational § |
—_— g
:
i
E
1
]
]
:
[}
[}
:
[}

Figure 1. The Adaptive Software Reliability Prediction Process

THE ADAPTIVE APPROACH

The Process
The adaptive approach is integrated into the software
development process, as shown in Figure 1. The



waterfall-software-development process [6] is used
as the basis. As shown in the figure, a software
product starts with some set of requirements,
followed by design, code, unit test, system test, and
the operation phases.

Five prediction activities are identified, i.e., early-
stage prediction, code-phase prediction, unit-test-
phase prediction, system-test-phase prediction, and
finally the operational phase prediction. The early-
stage prediction will be described in detail later.
Once the software has been designed and
implemented, information about discovered faults
can be obtained, and code-phase estimation can be
performed. The unit-test and system-test phase
predictions can be conducted once those test data are
available. When the software reaches the field
(operational phase), software reliability growth is
projected over its future use'. As failure data are
being collected, the performance of the models can
be evaluated. The outputs are not only the predicted
software reliability number, but also an evaluation of
the models. As illustrated in Figure 1, the outputs are
fed back into the estimation process so that the
software reliability models can be refined and
justified. Moreover, these outputs are fed back into
the development process to improve the product.

Tools Consideration

When faults/failure data are available, tools such as
SWEEP (SoftWare Error Estimation Program),
SMERF (Statistical Modeling and Estimation of
Reliability Functions) and CASRE (Computer-Aided
Software Reliability Estimation) can be applied. In
particular, our process uses CASRE for the
operational phase prediction and SMERF for the
code-phase, unit-test-phase and system-test-phase
prediction. SMERF and CASRE utilize the same set
of models. SMERF is developed at the Naval
Surface Warfare Center (NSWC) [6], and CASRE is
developed in 1993 at Jet Propulsion Lab[10]. Eleven
models are supported, i.e., geometric model,
Jelinski/Moranda De-Eutrophication model,
Littlewood and Verrall’s Bayesian model, John
Musa’s basic execution time model, John Musa’s
logarithmic poisson model, Non-homogeneous
Poisson (execution time), Brooks and Motley’s
discrete model, generalized Poisson model, Non-

! The issues of asymptotic properties of software reliability
have been studied {11], and different methods have been
proposed.

homogeneous Poisson (interval data),
Scheiderwind’s Max Likelihood model, and
Yamada’s S-shaped growth mode [6].

SWEEP is an implementation of the phase-based
model [3]. It makes use of fault statistics obtained
during the technical review of requirements, design,
and the coding to predict the reliability during test
and operation. Thus, SWEEP can be used before
testing (after coding). On the other hand, CASRE and
SMEREF can be used in the system test phase. None
of the above tools can be used for the very early-
stage prediction where no fault or failure data are
available. A methodology that provides estimation
for this situation is the topic of the next section.

EARLY-STAGE PREDICTION

The purpose of this method is to provide a rough
estimation on  various software reliability
measurenents, based on the limited information. In
particular, the only information required are the size
of the software, measured by source lines of codes
(SLOC), the maturity of the development process’,
and the schedule. Since only a rough estimation is
expected, accuracy is not a main concern for the
early-stage prediction. Instead, accuracy is the goal
of the overall adaptive process, which will be
achieved by continuously refining various models.
The two basic assumptions are (1) the time between
software failures is exponentially distributed (2) the
occurrence of a failure is followed by the removal of
the corresponding fault’.

There are many research efforts devoted to the topic
of imperfect software debugging. In particular, the
asymptotic properties of software failure rates have

? The software development process level, such as the
SEl(Software Engineering Institute) CMM(Capability
Meturity Model) or the ISO 9000 series of standard by the
International Organization for Standardization, have been
proposed to assist the assessment of inherent faults [S].

? This implies that we assume there is a one-to-one
mapping between the faults and failures.



M) Mo-1) Mr+1)
—»@———Q o o0 ‘@—' AP

Figure 2. Software Failures Behavior Model for Early-Stage Prediction

been studied [11]. There is always a possibility that
new faults will be introduced when removing a
software bug. However, from a statistical point of
view, the number of newly introduced faults is less
significant when the total number of remaining faults
is (relatively) large. It is only when the software
product is reaching the mature stage, where the
number of remaining faults and the number of
introduced faults are in the same order of magnitude,
should the imperfect debugging be concerned. This
phenomenon is captured in our model as the “stable”
state. Figure 2 shows the model that describes the
behavior of software failures.

In this model, a software program is estimated to
have »n inherent faults at the beginning of the
estimation. An assumption is made that the
corresponding fault is removed when a software
failure occurs. This will bring the software to the
next state where the number of faults is decreased
(one at a time). This process continues until the
software reaches the stable state. In the stable state,
the asymptotic failure rate phenomenon is observed.
A failure rate function A(i) is used in this model. This
failure rate function A(i) can be described in many
different ways, according to the software failure
behavior. For example, it can be described as a
linear increasing function that is in proportion to the
number of remaining faults, ie., A(i)=il. Or, the
failure rates can be described as a logarithmic
increasing function, i.e., A(i)=Infi]xA. This failure
rate function should be a function of A. The value of
Ais then calculated based on the model, the
parameters, and the failure rate function specified.

The key of this method is to find out the value of
A, using the information of the size of the code, the
software process maturity level, and the duration 7.
T is the duration from the beginning time the
software is measured (¢,) to the time the software is
‘stable’ (t;). Theoretically, the selection of ¢, can be
any time, for example, the time the software is
finished compilation or the beginning of various
phases indicated in the waterfall process.

According to [2] and [5], the actual failure data from
different programs show that the stable time is
approximately 4 years after delivery for a new
program release. The stabilization period might be
reduced to two years for subsequent program
releases.

Once the starting time and the “stable” time are
determined’, the next step is to estimate the number
of inherent faults, denoted as n, and the number of
remaining faults, denoted as r.

Estimating the numbers of inherent faults and
remaining faults

In order to solve the model described in Figure 2, the
number of inherent faults, i.e., #, and the number of
remaining faults, i.e, r, need to be determined. The
inherent faults are the faults existing at time #,;
remaining faults are the faults existing at time 1,, A
wide-used method to determine the number of
inherent faults is through the use of fault density’.

There are several studies on estimating the fault
density. Musa’s survey [7][8] provides fault density
estimated for different software life-cycle phases. As
presented in [8], the mean inherent fault density
remaining at the beginning of different phases is
estimated based on actual failure data from many
different programs. As an example, the inherent
fault densities for different phases are summarized in
the following table.

Table 1
Phase Faults/KSLOC
Coding 99.5
after compilation/assembly)
Unit Test 19.7
System Test 6.01
Operation 1.48

(copied from [8], Table 5.4)

* Note that this is only a rough estimation.

S Although Hatton [4] disagrees with this approach, the
size of the code times the fault density is commonly used in
the field.



The work of Aagresti and Evanco’s Ada software
defects estimation method [1] recognizes the
differences in the way organizations develop
software for software reliability prediction. Both
process characteristics and product characteristics
are considered in the overall software defects model.
Moreover, Keene [5] proposed an approach that
applies the software process levels and the size of the
code to predict the number of inherent faults. As an
example, the following table shows the relationship
of the inherent fault densities at the beginning of the
operational phase and the software process levels.
Table 2

SEI CMM Level | Faults’KSLOC

5 0.5
4 1.0
3 2.0
2

1

3.0
5.0
Un-rated 6.0

For the value of r, i.e., the number of remaining
faults, the observation in [2] and [5] suggests that,
after four years of deployment, the number of
software faults be reduced to a level less than 10% of
the level at deployment. Thus, one way to
conservatively estimate the value of r is to use 10%
of the fault density estimated at the beginning of the
operation phase.

Calculating A
Define a sequence of non-negative real-valued
infinite random variables X,, X;, Xs, ... , Xi, ....

Each of these random variables represents the time
between two consecutive failures. Recall that
exponential distribution has been assumed. The
value of A is assessed by utilizing the relation that
E[X; + Xo+ ...+ Xon] = E[Xi] + E[X;] +... + E[X,.
). In other words, we have the equation 1/A(n)
+1/A(n-1) +...+1/A(r+1) = T°. Given the failure rate
function A(i) and the values of », r and 7, the value of
A can be calculated.

Stable State MTBF

Plugging Ainto the failure rate function with
parameter r, i.e., A(r), the stable state MTBF can be
estimated, i.e., 1/ A(r).

® For exponential distribution 1-e™, the expected value is
/A

Expected Number of Failures Occurred

The expected number of software failures occurred
by time ¢ is calculated in the following way. First, we
estimate the state the software is expected to be in at
time . This can be done by calculating Z(ix P)),
where i is the number of existing faults (the state
number), and P; is the probability that the software is
in state / at time 7. Denote the expected number of
existing faults at time ¢ as & Then, the expected
number of software failures that have occurred by
time ¢ is n-k.

Software MTBF prior to the Stable State

Suppose at time #, the number of existing faults is
predicted (by the above method) to be &, then the
MTRBEF at time ¢ can be estimated as 1/A(k). This can
be interpreted as the mea time between software
failures if no further faults are removed.

Software Reliability

According to the standard definition of reliability’,
the software program’s reliability is the probability
that at time #, the software is still in state » (no failure
has occurred yet). This reliability number depends on
the value of A4, which in turn is dependent on the
other parameters and the failure rate function
specified.

Improvement of the Method

Although this method only provides a rough
estimation, the actual data collected in the later
phases will give us feedback on the method and the
parameters used. Furthermore, the experience from
actually implementing the process will improve the
overall approach, which can be used for other
programs. For example, the fault density level at the
stable state used now is 10% of the level when the
software is deployed. This number can be refined or
justified, as more experience is gained. The
accumulation of this experience over time can be
added to the confidence in the reliability parameters,
which can then be used in upcoming programs.

In the next section, an example is used to
demonstrate the early-stage prediction, and the
feedback gained from later phases prediction
activities.

7 The reliability is defined as the probability that the
component operates correctly throughout the interval ¢, ¢]
given that it was operating correctly at time #,.



AN EXAMPLE

In this example, we consider a software product
whose size is 360 KSLOC (K Source Lines Of
Code). The software process applied is rated as SEI
CMM Level 4. The duration T is assumed to be 4
years. Based on this information, the early-stage
prediction method suggests the fault density at the
beginning of the operation phase is 1.0 per thousand
lines of code, i.e., 360 faults, if the process-driven
fault density model is applied (Table 2). If Table 1 is
used, then the fault density at the beginning of
operation phase is 1.48, i.e., 533 faults. These two
models give us a rough estimation on the number of
inherent faults at the beginning of the operation
phase. According to the discussion presented in the
previous section, we can derive various software
reliability measurements based on this information.

As the software development is progressing,
faults/failures data are collected. The tool SWEEP
was used to perform a phase-based model prediction
[3]. Eight phases were specified, e.g., preliminary
design, detailed design, code, unit test, integration
test, final test, system test, and operation phases.
Figure 3 through Figure 7 show the adaptive
predicted fault density for each phase based on
different sets of available failure data. Specifically,
Figure 3 is the prediction made at the beginning of
code phase, when only the defects found in
preliminary design and detailed design are known.
Figure 4 is the prediction made at the beginning of
unit test, and so on.

@ Predicted
& Actual

Prediction based on the first 2 sets of data

18
16

Fault Deasity (per KSLOC

o ooo -
N & O @ =2 N O

Prdiminesy  Detailed Code Unit Test  Imegration Final Test  Sysiem  Operation
Design Design Test Test

Phases

Figure 3. SWEEP Prediction based on 2 sets of data

The stage of the project is currently at the beginning
of system test. Therefore, only the failure data up to
the final-test phase are available. The predictions

show that the operation phase fault density based on
the most updated failure data, i.e., 0.99, is very close
to our early-stage predictions (1.0 if using process-
driven model, 1.48 if using Musa’s survey). This
example demonstrates that we can earn more
confidence in the model that we chose at the earlier
stage, by the predictions performed at the later
phases.

B Prdicwed
B Actai

Prediction based on the first 3 sets of data

-~
1]
=]
-
wn
X
A
3
=
I
]
[}
o
=]
=
3
=
[
Preliminary  Detailed Code UnitTest  Integration  Final Test  SstemTest  Operation
Design Design Test
Phases

Figure 4. SWEEP Prediction based on 3 sets of data

Predicted

Prediction based on the first 4 sets of data
8 Acunl

-
o

Fault Density (per KSLOC
QO <=2 N W bH OO~ O

Preliminary  Detailed  Code  Unit Test Integration Final Test  System  Operation
Design Design Test Test

Phases

Figure 5. SWEEP Prediction based on 4 sets of data

B Predicied

Prediction based on the first 5 sets of data
W Actual

Fault Density (per KSLOC
N w & o (2]

-

(=]

Preliminary  Detailed Code Unit Test Integration Final Test  System  Operalion
Design Design Test Test

Phases

Figure 6. SWEEP Prediction based on 5 sets of data




Preciiction based an the first 7 sets of data

8 Prodicied BAnal

A 0 O

Fault Density (per KSLOC)

o - N
P

Prebmirary  Dxtailed Cak: UnitTest  Intcgaion Fimal Test Sptem Tet Operation
Desgn Do Test
Phases

Figure 7. SWEEP Prediction based on 6 sets of data

CONCLUSION

We have presented an adaptive approach, which is
integrated with the software development process, to
estimate the software failure behavior. This
approach has been implemented in an ongoing
software development program. The key feature of
this method is that the prediction is improving as the
software proceeds. Our basic philosophy is that,
since the software product is evolving continuously,
the software reliability prediction should be
improving continuously.

Moreover, a method that can assess software
reliability in the early stage is presented. This
method requires only very limited information about
the software product and the process. The
asymptotic property of software failure rates is
recognized in the model. While most early-phase
software reliability prediction methods focus on how
to provide a precise prediction with the limited
information, we provide a rough estimation as a
starting point of the overall prediction process. The
accuracy of the estimation is the goal of the overall
process. The approach presented here is readily
performed and should provide adequate initial
software reliability estimation. As more experience
in this early-stage prediction is gained, the method
can be improved and benefit other software
development products.

REFERENCES

[1] W.W. Agreti, and W.M. Evanco, “Projecting
Software Defects From Analyzing Ada Design,”

IEEE Transactions on Software Engineering, Vol.18,
No.11, Nov.1992, page 988-997.

[2] Ram Chillarege, Shriram Biyani, Jeanette
Rosenthal, “Measurement of Failure Rate in Widely
Distributed Software,” Fault Tolerant Computing
Symposium (FTCS), 1995, page 424-433.

[3] JE. Gaffney and Davis, C.F,, “An Automated
Model for Software Early Error Prediction
(SWEEP),” Proceedings of the 13"™ Minnowbrook
Workshop on Software Reliability, July 1990.

[4] L.Hatton, “Reexamining the Fault Density -
Component Size Connection,” IEEE Software,
March 1997, pp. 89-97.

[5] S.J. Keene, “Modeling Software R&M
Characteristics,” ASQC Reliability Review, Part [
and 11, Vol 17, No.2&3, 1997 June, pp.13-22.

[6] Michael R. Lyu (editor), Handbook of Software
Reliability Engineering, McGraw-Hill, 1996.

[7] John Musa, “A Theory of Software Reliability
and Its Application,” IEEE Transactions on Software
Engineering, Vol. SE-1, No.3, Sep. 1975, page 312-
327.

[8] John D. Musa, Anthony Iannino, Kazuhira
Okumoto, Software Reliability - Professional
Edition, McGraw-Hill, 1990.

[9] Rome Laboratory (RL), Methodology for
Software Reliability Prediction and Assessment,
Technical Report RL-TR-92-52, volumes 1 and 2,
1992.

[10] A.P. Nikora, “CASRE User’s Guide,” Jet
Proopulsion Laboratories, August 1993.

[11] M.C.]. Van Pul, Statistical Analysis of Software
Reliability Models, Stichting Mathematisch Centrum,
Amsterdam, 1993.

[12] A. Wood, “Predicting Software Reliability,”
IEEE Computer, Nov. 1996, pp. 69-77.



8692Q/13PUSWA “TIW
MAS PIET

U0sI9)9J uof oue[[aIy Y [ovjey
SUOSY [oNUIRS  SOWE[ “F JUAIMET]  , UK TBT-SUSN

yoroaddy uondipaid
A)qeray 21emijos dAndepy uy

\

uo3ayjiey



86 9°/TIPUSAIA T MIS PIET

A1aA1ssa13oad
pue AjoAndepe AJI[IGRI[AI 9I1BM]JOS ZATRUR —

yoeoadde aandepy .

yoroidde Asdomny .

yoeoxdde purpg o

pasn 9q 0} [9powW _ pIepuUR]S,, ON o

sayoeoxddy uondIparg ANIqRIaY 9I1eM]JOS

uodyjiey



860°Q/€IPNISMA "TIN MAS PAET

ssa1301d ur weidoid yuswdoaaap
aIeM)JOS © Ul pajudwdduwr uaaq sey $sa001d SIY],

(uonoipaid o3e)s
-A11e3) ATBSSQIdU OSJe SI ‘9[qe[IeAR dIk BJEp dIN[IR] OU UIYM
“Yuswdo[aAdp dremyjos Jo Suruuidaq ay) 1e UOTIIIPAI
uonewIojur aInjrej Judrind
1SOW 97} UO paseq UOHJBWIISI IPIAOId A[Snonunuo)) .

AdA1ssai3o1d pargnsnl pue paurjor oq ueo uonorpaid ayJ, .

SPa3%01d jududo[aAap
9IeM]JOS JY) SB PI[IPOW SI AJI[IGRI[AI JIBMIJOS

uonoIpaId 19y MS 107 yoroirddy aAndepy

uodyjAey



86°3Q/papHS/UIA 'TIN

MdS PIET

S[OPOJA UOIDIPaId JO UOLEN[EAT 35URULIOJId]
uoneumsg ANIqe[sY 21emyog TIAND

[ L D T T

uondIpalg

aseld uonoipald
Teuoneradp aseyq uondIpald
1S9 -asAg aseqq

1S31-nuf}

uondIpald
aseyd-opoD

uonoIpaid
a8eig-Areq

o R

uonerd

1S3 WasAg

®— | sermun
¥__ | o

[ siuawannbay

SS3001d 9Y ],
uoayjiey



86'22W/S3PISUA T
MAS PieT

S[OpOW IMOIZ SNOLIBA —
(uonewnSy
ANIqenoy aremyos papry-1ndwo)) ISV e
S[OpOW YIMOIZ SNOLIBA —
(suopoun,] ANIQEI[OY
jo uonewmsg pue SurEpoN [eonsuels) JYANS e
[opow paseq-aseyd —

(wei3oid uonjewn)sy I0g A1 MYOS) JTAMNS o

UOonNerapisuo)) SO0,
uodyjiey



8693/93plIsMA “TIN MdS PIET

1uoWdO[oAdD 91BMIJOS JO [NPAYDS AY) —
[9A9] AjLmjewr $S9901d 9I18M1JOS AY) —
9p09 Y] JO 97ZIS ) —

oJE Papaau UONIBUWLIOJU]
(uonorpaxd a8ejs-AIe 9y} JO UIDOUOD UTRUWI

a1 jou ‘ssaooid sandepe [[e1240 9y Jo (203 Y3 ST %o&:uux\v .—HOMH@EHO r%gﬁ MU@H..—EMM
UO Paskq ‘SJuduwdInNSeaw AJ[IgeI[aI 3I1em1JOS
SNOLIBA UO UOTIBWI}SY Y3NOI IPIAOL]

UuonoIpaId 33e1S-AJIeq

uoajAey



uonouny del aanjie] : (1)y

(Aadoid onoydwAse) swes

9Y) UTBWAI )Rl dINJIe] dIem1JOs Y} AIdYM 3Jels Y] :91e1S 9[qels
sj[nej SUIUIewWal JO Joqunu ) 11

S}[NeJ JUdIdYul JO JaquInu Y) U

91qelS AN +kv.& A I ..Qv.& Q\QK

[OPOJA UONIIPAI] 988IS-AJIe] Y[

uodyjiey



86703/83PISMULA "TIN
MIS PIET

Jjnsal oY) Wol] paure)jqo 2q ued syudtidinseawl SNOLIBA “{
(I+49Y/1 + " + (I-WY/1 + (WY/1 = [ WOIJ Y dA[OS ¢
uorouUny el amjie] AJ10adg 7
9)e]S J[qeIS SAYIBAI AIBM]JOS ) W) )
0} aseyd jeuonerddo Jo Suruui3aq o) woij SI J

93e1u0d1ad sjney SUIUTBWAI 4 U = ./
AJISUdp JINeJ JUdIYUI ,, SPOD JO IZIS = U
L pue ‘4 ‘u ouimIdo( ‘|

SS9J30I1J uone[ndre)
uoayiey



8632A/62PHSMUIA TN MAS PIET

(76 a19.], ‘[g]esny woy pardoo)

37l uonesddQ
10°9 1S9 ], WAISAS
L 61 1S9 MU
S 66 3uIpon
DOTISH /sned oStld

e

SSBUJ A[IAI-JI[ 91eMJOS

soou2IOIP 0] SANISUR(T Yne " djdwexg




8693Q/0T12PHSUIA "TIN
MAIS PiET

([s]ouaay woxy pardod)

09 pajeI-un)
0§ |
0'¢ [4
0°¢C ¢
01 1%
¢0 S
(aseyd uonerado Jo JuruuIdaq ays 1)
DOTSH /sineg| [°2A27T ININD TdS

[PA9T ININD TdS
soolakag’d P 10] SMISUS(I INB] ¢ srdwrexy



8693/ [ 13P1S/UA TN MIS PIET

uonodIpard paseq-[oA9[-ALInjew
-$89001d 10] (S)[N€J 09€) DOTSI/SHNE) ([
uonoIpald AJISuap j neJ JuLIayuI paseq

-oseyd 1o (S)ne} €€5) DOTISII/SHNES 8y [

JudWAO[dap 21eMIJOS
IoYJe 91e)S J[qeIS AY) YOI 0] SIBIA 4

$830014 ¢ [9A9T WIND I4S e

DOISA 09¢
S,

drdwexy

woaL Ay



86 93Q/LI3PYSAA "TIN MES PIET

‘sjonpoad

JUWAO[9AIP 3I8M1JOS IOYIO0 1JoUd(q

[[IM pue ‘paaoxdwir oq [[Im poyjowl Yy} pue
$59001d o) ‘paures SI 0UILIAAX JTOUT S e

uonoipaid ayenbope popraoid pue wrerdoid
1uowdo[oA9p 21eM]JOS SUTOS-UO Ue Ul

pajuswajdwr usaq aAey poyidw uonoipaid

a3e)s-A11e9 o) pue yoreoidde aandepe ayJ,

Arewuung
uody ey



Session 5: Verification & Validation

Model Checking Ferficarion and Validation at JPL and the NASA Fairmont IF &V
Facilnty
F. Schneider, Jet Propulsion Laboratory, S. Easterbrook, NASA IV&V Facility,
J. Callahan and T. Montgomery, West Virginia University

Using Mode/ Checking lfo Falidate A7 Planner Domain Models
J. Penix, C. Pecheur, and K. Havelund, NASA Ames Research Center

V&V of a Spacecrqft s Autonomous Planner through Fxtended Automation
M. Feather and B. Smith, Jet Propulsion Laboratory

Lerforming Verfication and Validation in Reuse-Based Software Engineering
E. Addy, NASA/WVU Software Research Laboratory



Model Checking Verification and Validation at JPL and the NASA Fairmont
IV&YV Facility! -

Frank Schneider, Jet Propulsion Laboratory, California Institute of
Technology, Steve Easterbrook, NASA IV&YV Facility, Jack Callahan and Todd Montgomery;”

West Virginia University /
Contact: Francis.L.Schneider@jpl.nasa.gov S

Va2

2/
/
vy /-

Abstract

We show how a technology transfer effort was carried out. The successful use of model checking on a pitot JPL
flight project demonstrates the usefulness and the efficacy of the approach. The pilot project was used to model a
complex spacecraft controller. Software design and implementation validation were carried out successfully. To
suggest future applications we also show how the implementation validation step can be automated. The effort was
followed by the formal introduction of the modeling technique as a part of the JPL Quality Assurance process.

Introduction

Following the pilot use of model checking at NASA JPL and the IV&V Facility [1], and at
NASA Ames|[2], we have followed five steps in introducing model checking to the Quality
Engineering process at JPL. First, references [1] and [2] show model checking to be an effective
tool in validating the behavior of spacecraft systems. Second, our model checking results were
then carried forward to validate the software implementation for the presence of design
anomalies. Third, having validated the implementation by hand, we show how the process can be
automated. Fourth, we have documented the process to be used in a development environment by
incorporating and generalizing the above elements. Finally, we are engaged in applying the
methodology developed here on future spacecraft.

Model Checking as a Validation Tool

We use model checking to mean the process of (1) abstracting a partial specification from
requirements and design elements for a reactive system and (2) applying reachability analysis to
the resulting partial specification to validate that it has properties of interest. A reactive system is
one that takes input from its environment at unpredictable times and responds according to a
specific set of rules. We have previously shown model checking to be an effective tool in
validating the behavior of a fault tolerant embedded spacecraft controller [1]. That case study
shows that by judiciously abstracting away extraneous complexity, the state space of the model
could be exhaustively searched allowing critical functional requirements to be validated down to
the design level. The system we validated was a two-fold redundant spacecraft controller. It
consists of a prime system that controls the spacecraft bus and a backup system. The backup
system receives synchronization information from the prime system via the spacecraft bus. The
purpose of the system is two fold. First, it has to respond to and repair must-fix-spacecraft faults.

! The research described in this paper was catried out by the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.



Second, it must complete execution of high priority sequences. To realize these goals two
mechanisms were utilized.

First, the system uses a checkpointing scheme that allows:

Execution to be frozen when a fault occurs

Repair of the fault somewhere in the spacecraft
Rollback to the start of the last incomplete subsequence
Resumption of sequence execution

Accordingly, the checkpointing scheme allows efficient sequence execution since completed
subsequences need not and in many cases can not be repeated. The checkpointing scheme
requires three seconds of aging for each new checkpoint before the new checkpoint is considered
to have been encountered. This is caused by fault leakage detection time such that a fault at the
end of a previous subtask may not be detected until up to three seconds after the beginning of a
new subtask. This could mean that the fault precluded instructions at the end of the previous
subtask from being executed.

Second, the overall redundancy of the system made up of prime and backup controllers allows
the entire prime controller to fail. Failure is detected by the backup system that then becomes
prime and takes over execution where the failed system halted. The backup system becomes
prime; takes over control of the spacecraft bus; completes repairing the fault; rolls back to the
start of the last incomplete subsequence and resumes execution of the sequence. Figure 1
illustrates the architecture involved. Further details can be found in reference [1].

The initial abstracted design state space contained about 2% states. By this statement we mean
that we estimate there to be 2% different combinations of variable values and conditions that
completely describe every possible configuration of the spacecraft controller. There are five
types of faults such that the controller is required to respond to one type of fault at a time.
Because fault detection and recovery requirements could be handled one-at-a time, the
requirements were partitioned into five equivalence classes accordingly reducing the state space
to be searched significantly. The state space was further reduced by removing states from the
finite state machine representation that did not contribute to the checkpointing scheme we were
attempting to validate. This gave rise to a new estimate of about 100, 000 states. The resulting
Harel Chart [3] for the abstracted spacecraft controller is that shown in Figure 1.



Example: Sequence execution segment:

Beg/i\ Sequence / First Check Point
Sub ¥ \
' u sequenN . . 1

} i

L i l 1
l 1 L) I ] T T T
\ / Second /

i ; Subsequence
Time Markers [sec] since start q
of subsequence or last mark point
4 PRIME ) 4 E BACKUP )
Prime init Online init
RAM \
W 4 PRIME NOMINAL N INIT ( BACKUP NOMINAL
y

SEQUENCE IDLE
SEQUENCE IDLE Q

SFP Response
iive

Power-up Fault

State Data tdle Idle
Packet

Power-up Fault
Idle idle

Resume
“ritical

Kequence
from aged
narkpoint

Done | Jactivate
“ritical
Kcquence

Done | [Aactivae
“ritical
Kequence

prarkpoint

y y
[SEQUENCE CRITICAL

SEQUENCE CRITICAL

\—

Figure 1

The validation was accomplished with the SPIN model checking system [4]. Six separate
rollback requirements on the rollback scheme were validated. Three anomalies were uncovered
with the model checker traversing about 130,000 states for each anomaly with run time being
approximately 30 seconds for each anomaly.

Anomaly one resulted from repeated prime failure causing loss of synchronization with the
backup system. This result occurs when the prime system experiences repeated intermittent
failures possibly due to the same fault, and such that the prime system repairs the fault in less
than one second. According to our model this would mean that notice of the fault would never be
propagated to the backup system. Consequently, the backup system could get significantly ahead
of the prime system in the execution of its own copy of the sequence. Then should the prime
system subsequently fail, the backup system could roll back to an incorrect location. This
anomaly is due to the ordering of processing described in the requirements specification.

Anomaly two depends on how faults are handled at the end of the sequence. Should a fault
occurrence be detected up to within three seconds of execution of the last instruction, there
would be no rollback after repair of the fault. This is the case since the last instruction in the
sequence was not identified as a checkpoint. However, should a fault occur prior to the end of
the sequence, according to the fault leakage detection rule there is no guarantee that all



instructions at the end of the sequence would have been successfully executed. Our validation
run failed because our model assumed that once the sequence completed, the backup and the
prime systems returned to the Power Up Idle state; accordingly, there would be no sequence to
return to once the fault was corrected. This anomaly is due to a missing requirement.

The third anomaly concerns the occurrence of a fault 2 seconds after a checkpoint is encountered
in the prime string. The prime string freezes its aging function at n + 2 seconds. Since faults that
occurred in the previous second are not broadcast to the backup system until the current second it
will continue to execute, aging its checkpoint by one further second. At this point the backup
system receives notice of the fault and freezes its aging process. However, it now has an
erroneous rollback point. Should the prime system subsequently fail, the backup system would
roll back to an incorrect address. This requirement is an error in the detailed requirements. This
is so since the error would not go away by making the checkpoint-aging bufter shallower or
deeper. It would just make the anomaly occur at a different location.

Software Implementation Validation

We have subsequently validated the implementation for the presence of the three design anomalies.
For this purpose we used a special purpose spacecraft simulator called the High Speed Simulator
(HSS) [5, 6]. The simulator uses code identical to the real spacecraft. However, it is de-coupled
from hardware and telemetry. Accordingly, its use as a test vehicle (1) is an accurate measure of
system functionality and (2) it allows rapid turnaround on test suite creation, execution, and
reporting of results.

The simulator allows test engineers to write test sequences for execution on the simulator. Given
the data structures present in the spacecraft controller, a Tool command language (Tcl) program is
written that orchestrates (1) the execution of the test sequence, (2) the extraction and printing of
values of selected data attributes (3) the extraction and printing of any relevant time stamps and (4)
fault injection scenarios and their responses.

1.1 Procedural Steps

We wanted to know if the software implementation contained the same anomalies as were found in
the design. To determine this, we supplied the High Speed Simulator with a simple sequence
program for execution. By injecting faults into the running sequence, the same problematic
conditions would be set up in the implementation that were discovered by design validation. Our
earlier validation work derived the design anomalies from a three-step process. First, the prime
system would stop running freezing its check point ager in response to a fault occurrence
somewhere in the spacecraft. Second, the prime system would load and begin execution of a fault
recovery program. Finally, during its execution of the fault recovery program, the prime system
itself would fail. To affect this same scenario in the software implementation, the prime system was
commanded to do a cold boot at execution points in the implementation identical to those that
caused the anomalies in the design validation. An operational backup system considers the prime
system cold boot to be a prime system failure. It reacts by becoming prime itself; taking control of



the spacecraft bus; rolling back to the relevant earlier check point address if necessary; and
resuming execution of the sequence program. For example, the third anomaly found in the design
validation process occurs when the prime system fails after encountering a fault scenario that
freezes its check point at second two in the aging process. This results in the new prime system
rolling back to an inappropriate address due to a timing problem in the design. Accordingly, cold
booting the prime system when it has aged its checkpoint by two seconds has the same effect as the
two step process considered in the design case.

Detection of the presence of design anomalies in the implementation was done by selecting data
structures for output identical to those used in the design case. These output data values taken
together at any execution cycle represent the state of the implementation at a particular point in
time. As the implementation executes, this 'state vector' describes a finite state machine that
represents the implementation. This finite state machine is an abstracted finite state machine since
it doesn't include all variables, only the ones considered relevant to the current validation. If a
corresponding design anomaly is itself present in the implementation, the implementations'
abstracted state vector will go through an equivalent sequence to that found in the design validation
done earlier. In this case the work proceeded by outputting each state vector for the executing
implementation. The output list was then manually examined line by line to look for the presence
of anomaly states.

The input sequence program that was incorporated into the HSS Tcl interface program to check for
the presence of anomalies in the implementation is shown in Figure 2.

1P Mnemonic

800 BEGIN

803 NOP

805 NOP

807 NOP

809 NOP

80b NOP

80d CHECKPOINT
80f NOP

811 NOP

813 NOP

815 NOP

817 NOP

819 CHECKPOINT
81b NOP

81d NOP

81f  NOP

821 NOP

823 NOP

825 END

Figure 2 Sequence Validation Program



To keep the analysis as straight forward as possible, each instruction was executed on one-second
boundaries. A HSS Tcl interface program was written to generate the output state vector sequence
of the abstracted implementation state machine. Schematically, the overall process is shown in
Figure 3.

Commands for
execution: Data
Structure Identity

—

Abstracted
Data Values State Vectors
(Sequence
For
nspection}

Figure 3: Implementation Abstracted State Machine

The implementation was validated at this point by simply looking at the results of the simulation by
hand and recognizing that a design anomaly was or was not reproduced in the output. This means
visually examining the output sequence labeled “Abstracted State Vectors™ to check the rollback
process functionality. Two of the three anomalies found in the design validation were present in the
implementation. A brief summary of the results follows.

Implementation Anomaly Validation Results

The first anomaly resulted from repetitive errors that caused the prime and the backup system to get
out of synchronization. Our design anomaly fault scenario required a series of prime-fault-repair
sequences each of one-second duration or less. We did not see the first anomaly in the system.
Further investigation with system engineers revealed that all faults take at least several minutes to
repair. Therefore, repair time was extended so that anomaly one would not be seen.

The second anomaly occurs when a fault occurs less than three seconds after the sequence ends. In
this case, there is no rollback. That is, once the sequence has been completed there is no rollback in
response to an error injected inside the three-second-rollback window. Therefore, there is no
guarantee that all instructions at the end of the sequence would have been carried out by the
spacecraft. Accordingly, on this basis, the last instruction in the program should have been
identified as a rollback point. Our technique demonstrated that the second anomaly was present in
the implementation.

The third anomaly results from a fault that brings the prime system down when its aging buffer
contains a check point rollback address that has been aged by two seconds. According to our model
checking validation, this information would not get to the backup system until the following



second, thereby causing its two deep backup buffer to age its rollback address by an additional
second. Consequently, its rollback address would be consistent with a three-second delay following
a checkpoint when only two seconds had elapsed since the prime string had executed its last
instruction. Prime system failure was again caused by cold booting the prime string at the point it
had aged its checkpoint by two seconds. The subsequent rollback in the new prime system did not
match the old prime’s rollback address. Accordingly, our technique demonstrated that the third
anomaly was present in the implementation.

The cold boot process is equivalent to the injection of a single fault that brings the prime system
down. This process causes the overall spacecraft controller to fail to conform to requirements since
control in the new prime system rolls back to an inappropriate location. Therefore, our technique
also demonstrated that the overall system made up of prime and backup systems was not single
fault tolerant.

All of these results were taken with respect to the spacecraft software as it existed on the High
Speed Simulator.

Automating the Validation Process

Dillon and Ramakrishna show how test oracles can be generated from linear temporal logic
specifications [7]. Log files generated from a running implementation can then drive these
automata. The log files generated are used to drive requirements automata into accepting states
should strings from the language they accept be traversed and output by the implementation. The
automata are usually specified to check for requirements violations. Using these ideas, we have
extended our work on design verification and validation [1] and applied it to the validation of the
generic spacecraft controller's implementation. Our results used the output of the running
spacecraft simulator system. The real time output was used to drive the automaton that represents
one of the anomalies found by model checking. The resultant system was then made up of the
spacecraft simulator; the test scenario generator, and automaton representing the requirement to
be tested. The result system, called the Automated Validation System (AVS) did detect a counter
example in the output indicating the presence of the design anomaly in the implementation.
Additionally, the automaton has the capability to output the state vector trail taken by the
implementation as it encountered the anomaly thereby giving information on how the anomaly
develops as execution proceeds.

We have proposed that this concept be used as a fault protection mechanism on autonomous
spacecraft. These spacecraft have self sufficient activities based on a set of high-level mission
objectives carried on board the spacecraft. See for example [10]. The AVS would provide an
effective and robust fault detection and response system for such spacecraft. The steps to be
followed are outlined below.

1. Intercept the autonomously developed activity or action routine that the spacecraft is to carry out based
upon and derived from the current mission profile.

2. Parse the mission profile or its more detailed on-board-generated requirements and derive from them the
logical condition that represents the requirements that are to hold during and at termination of the
executing action routine.

3. Express the logical condition in the linear temporal logic (LTL).



4. Define any macros that may be necessary to map the derived LTL automaton into any required ancillary
form.

5. Produce the executable fault detection automaton from the LTL formula derived from steps 3 and 4.

6. Annotate the action routine so that it outputs an abstracted state vector representing an essential model
of the action routine.

7. Couple the output from step 6 to the executable automaton produced in step 5.

8. Execute the overall action routine piping its real time output to the LTL automaton as it is produced. A
fault condition will then drive the LTL automaton into one of its accepting states indicating that the
associated requirement has been violated. When this condition is detected, respond autonomously to the
fault. If this is not feasible, notify ground control and begin to safe the spacecraft as may be apropos of
the situation.

1.2 Critique of Recommendat