
NASA/CPm1999-209236

Proceedings of the Twenty-Third Annual

Software Engineering Workshop

SEL-98-002

Software Engineering Laboratory Series

Compiled by."

Goddard Space Flight Center

Proceedings of a workshop held

at the Goddard Space Flight Center

Greenbelt, Maryland

December 2-3, 1998

National Aeronautics and

Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

June 1999

TheNASASTI ProgramOffice ... inProfile

Sinceits founding,NASAhasbeendedicatedto
theadvancementof aeronauticsandspace
science.TheNASAScientificandTechnical
Information(STI)ProgramOfficeplaysakey
partin helpingNASAmaintainthisimportant
role.

TheNASASTI ProgramOfficeis operatedby
LangleyResearchCenter,theleadcenterfor
NASA'sscientificandtechnicalinformation.The
NASA STIProgramOfficeprovidesaccessto
theNASASTIDatabase,thelargestcollectionof
aeronauticalandspacescienceSTI in theworld.
TheProgramOfficeisalsoNASA'sinstitutional
mechanismfor disseminatingtheresultsof its
researchanddevelopmentactivities.These
resultsarepublishedbyNASAin theNASASTI
ReportSeries,whichincludesthefollowing
reporttypes:

• TECHNICALPUBLICATION.Reportsof
completedresearchor amajorsignificant
phaseof researchthatpresenttheresultsof
NASAprogramsandincludeextensivedataor
theoreticalanalysis.Includescompilationsof
significantscientificandtechnicaldataand
informationdeemedto beof continuing
referencevalue.NASA'scounterpartof
peer-reviewedformalprofessionalpapersbut
haslessstringentlimitationsonmanuscript
lengthandextentof graphicpresentations.

• TECHNICALMEMORANDUM.Scientific
andtechnicalfindingsthatarepreliminaryor
of specializedinterest,e.g.,quickrelease
reports,workingpapers,andbibliographies
thatcontainminimalannotation.Doesnot
containextensiveanalysis.

CONTRACTORREPORT.Scientificand
technicalfindingsbyNASA-sponsored
contractorsandgrantees.

CONFERENCEPUBLICATION.Collected
papersfromscientificandtechnical
conferences,symposia,seminars,or other
meetingssponsoredorcosponsoredby NASA.

SPECIALPUBLICATION.Scientific,techni-
cal,or historicalinformationfrom NASA
programs,projects,andmission,oftencon-
cernedwithsubjectshavingsubstantialpublic
interest.

TECHNICALTRANSLATION.
English-languagetranslationsof foreignscien-
tific andtechnicalmaterialpertinentto NASA's
mission.

SpecializedservicesthatcomplementtheSTI
ProgramOffice'sdiverseofferingsincludecreat-
ingcustomthesauri,buildingcustomizeddata-
bases,organizingandpublishingresearchresults...
evenprovidingvideos.

FormoreinformationabouttheNASASTIPro-
gramOffice,seethefollowing:

• AccesstheNASASTIProgramHomePageat
http://www,sti.nasa.gov/STI-homepage.html

• E-mailyourquestionvia theInternetto
help@sti.nasa.gov

Faxyourquestionto theNASAAccessHelp
Deskat(301)621-0134

TelephonetheNASAAccessHelpDeskat
(301)621-0390

Writeto:
NASAAccessHelpDesk
NASACenterfor AeroSpaceInformation
7121StandardDrive
Hanover,MD 21076-1320

The views and findings expressed
hereinare thoseof the authorsand
presenters and do not necessarily
represent the views, estimates, or
policies of the SEL. All material
herein is reprintedas submitted by
authors and presenters, who are
solely responsible for compliance
with any relevant copyright, patent,
or otherproprietaryrestrictions.

Availablefrom:

NASACenterforAeroSpaceInformation
7121StandardDrive
Hanover,MD 21076-1320
PriceCode:A 17

NationalTechnicalInformationService
5285PortRoyalRoad
Springfield,VA22161

PriceCode:AI0

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National

Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and created

to investigate the effectiveness of software engineering technologies when applied to the

development of applications software. The SEL was created in 1976 and has three primary

organizational members:

NASA/GSFC, Information Systems Center

The University of Maryland, Department of Computer Science

Computer Sciences Corporation, Development and Sustaining Engineering Organization

The goals of the SEL are (1) to understand the software development process in the GSFC

environment; (2) to measure the effects of various methodologies, tools, and models on this

process; and (3) to identify and then to apply successful development practices. The activities,

findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory

Series, a continuing series of reports that includes this document.

Documents from the Software Engineering Laboratory Series can be obtained via the SEL

homepage at:

http://sel.gsfc.nasa.gov/

or by writing to:

Systems Integration and Engineering Branch
Code 581

Goddard Space Flight Center

Greenbelt, Maryland 20771

CONTENTS

Page

X

X

X

X

X

X

X

X

Materials for each session include the viewgraphs

presented at the workshop and a supporting paper

submitted for inclusion in these Proceedings.

Opening

Welcoming and Al Diaz Introduction (see Preface to H. Kea paper in Session 1).
M. Szczur, NASA/Goddard

Key Note Address (not available)

A. Diaz, Director of NASA/Goddard

Session 1: The Software Engineering Laboratory - Discussant: H. Kea,
NASA/Goddard

Co,qa'ara'5" IVew /m'egra/edApproach ¢o/7'
H. Kea, NASA/Goddard

Baseh n ing the/Vew CSFC lnf orma#o/1Svs/ems Center."/he Fo undaZio nfor Izerl)qaD/e

Sofnvare Process Improvement
;_.-" A. Parra, D. Schultz, J. Boger, and S. Condon, Computer Sciences Corporation,

V. Basili, R. Webby, M. Morisio, D. Yakimovich, and J. Carver, University of

Maryland, S. Kraft and J. Lubelczyk, NASA/Goddard

(/sing Experiments ¢o guz/a/ a Body of lCnowlegge

V. Basili, University of Maryland

Session 2: Experimentation -Discussant: R. Webby, University of Maryland

Culture ConJTicts /n Software Eng/neerblg Pechno/o£7_ Transfer

D. Wallace, National Institute Of Standards and Technology, and M. Zelkowitz,

University Of Maryland

An Adap/a#on of _per/men/a/ Desi_n /o Empirz'ca/ 7a/ida#on of Software

Engineering Theories

N. Juristo and A. Moreno, Universidad Politecnica de Madrid

D/_clj_/inedSoftware Eng/neer/ng" Extendlng Enterpr/Xe Eng/neering Architec/ures

/o Support/he O0 Paradigm

F. Maymir-Ducharme, Lockheed Martin

CONTENTS (cont'd)

Session 3: Inspections - Discussant: G. Abshire, Computer Sciences Corporation

X

X

X

X

X

X

/._ , Nat/onaf So._vare _uah_' E_per/ment." A Zesson m h/easuremenL" 199_?- 1997
D. O'Neill, Independent Consultant

P_'nc&les of Success/hl So._vare _:spec:/o::s

D. Beeson, Ki Solutions Consulting, and T. Olson, World-Class Quality

h I Capture-Recapture - h/ode/s. He/hods. and/he Rea/:_'J. Ekros and A. Subotic, Linkoeping University

-<Session 4: Fault Prediction -Discussant: M. Zelkowitz, University of Maryland
)

/ £oftware £vohm'on and/:_e Yau/t Process

_" A. Nikora, Jet Propulsion Laboratory, and J. Munson, University of Idaho
)

//////_'/ntegratzng Formal Prethods Into Sofnvare DependaD//i(p Ana_s/s
J. Knight and L. Nakano, University of Virginia

...... :An AJaptive Sq_vare IFeliaD//z& Prediction Approach

(_Z'27/M. Fin, L. James, S. Keene, R. Arellano, and J. Peterson, Raytheon Systems

Company

Key Note Address (not available)

U,.)l 'i.-
The Fatal Flaw

I. Peterson, Math/Computers Editor for Science/Vews

X

X

X

X

Session 5: Verification & Validation- Discussant: J. Lubelczyk, NASA/Goddard

/J_ g,loJel Chec_z'ng 7er:Jication and 7al/gation at JPZ and the SVASA Pa/rmont IKd 7

P. Schneider, Jet Propulsion Laboratory, S. Easterbrook, NASA IV&V Facility,

J. Callahan and T. Montgomery, West Virginia University

/

' l.S Using Iklodel Chec,('ing to 7ahdate A/Planner Domal):/kCode/s
: J. Penix, C. Pecheur, and K. Havelund, NASA Ames Research Center

/ ._ Vc_ Yoga %pacecra_ "sAutonomous Planner through _'tengedAummatz'o_
/ M. Feather and B. Smith, Jet Propulsion Laboratory

_ performing Kerl)@at1on and 7ahgan'on in geuse-gasedSo, ln_are Engineering
/-" E. Addy, NASA/WVU Software Research Laboratory

Session 6: Embedded Systems and Safety Critical Systems -Discussant: S. Kraft,
NASA/Goddard

X
, ,_ / Deem'rig and Yah'dating EmDeJded Computer Software Requirements Using the ECS..
,' OTPHanglPFA

..... J

J. Manley, University of Pittsburg

CONTENTS (cont'd)

.... Ushlg Aulmtm#c Code Celmrdlion In lhe Ammale Conn-olFh_h! Sofnmre
X/, /0 E1,zg'/mer//zg Process

'//" D. McComas, J. O'Donnell, Jr., and S. Andrews, NASA/Goddard

// _ <;" M. Yin and D. Tamanaha, Raytheon Systems Company

Appendix A - Workshop Attendees

Appendix B - Standard Bibliography of SEL Literature

Session 1: The Software Engineering Laboratory

Codaiarai_" lVeu,' hl/egra./eg,4pproac,6 /o /7'

H. Kea, NASA/Goddard

gaseh'n/n g /h e Xe w CSPC /nf orma//on Systems Cen/er. "

/_e Founga/z'onjCor Ver/j_a_le Software Process/mprovemen/

A. Parra, D. Schultz, J. Boger, and S. Condon, Computer Sciences Corporation,

V. Basili, R. Webby, M. Morisio, D. Yakimovich, and J. Carver,

University of Maryland,

S. Kraft and J. Lubelczyk, NASA/Goddard

Us�rig Erp er/m e,,I/s to Bui/d a Body of lf',,l o _ ,/ea'ge

V. Basili, University of Maryland

GODDARD'S NEW APPROACH TO

INFORMATION TECHNOLOGY

The Information Systems Center
An Overview

The 23 rd Annual Software Engineering

Workshop

December 2-3, 1994

By Howard E. Kea

I

PREFACE

By Martha Szczur

Welcome and AI Diaz Introduction

23 rd GSFC Software Engineering Workshop

December 2, 1998

Hi, I'm Marti Szczur, the Chief of the Information Systems Center, which is one of the organizations
within the Applied Engineering & Technology Directorate (AETD).

Since last year's workshop, Goddard has undergone a significant reorganization. AETD is one of two new

directorates, made up of over 1300 Goddard engineers, including computer science professionals. The
engineers are matrixed or assigned to flight projects, science directorate activities and/or advanced

technology tasks. ISC is one of the engineering groups within AETD, and as the name implies, the
Information System Center is heavily vested in all aspects of software (from design, development, testing,
validation, integration, maintenance, and including assessment of existing software products.)

The software is applied to a broad spectrum of mission and science systems ... from command & control

of the spacecraft (both on-board and on the ground) to planning/scheduling, guidance & navigation
systems, communication support, to the processing, archival, & distribution and analysis of science data
... Software is one of the key business products within the ISC.

And thus, my interest in software engineering is extremely high. In tact, the Software Engineering Lab,
the group hosting this workshop, resides within the ISC, and I am a strong supporter of the research they

conduct. I'm also interested in their expanding their software engineering knowledge and influence across
Goddard, as well as NASA. Because of my vested interest in SE as a computer science discipline, it is

quite a privilege for me to be opening this 23 rd Software Engineering workshop.

I'd like to mention a recent exercise at Goddard, which involved looking ahead to the year 2003 and
defining the type of work and missions in which we would be involved. And, the future missions identified

have increasing software complexity, such as

- operation of multiple spacecraft and constellations

distributed sensing systems

increased on-board science processing and autonomous operations

higher volume/higher rate of science data to process, manage, archive and distribute

collaborative, distributed engineering and science computing environments to improve formulation and

implementation of missions, as well as to foster collaborative scientific discovery.

To meet these software challenges, It is critical that advancements in software engineering be made.

Today, the software industry has not been overly successful in consistently developing software systems
that are within budget or on time or which meet all the requirements.

For example, in a Standish Group's 1994 study*, based on an evaluation of 8330 industry software
projects, only 16% were actually successful in being on-time, in budget and meeting all originally-specified
requirements,

A staggering 53% were "challenged". On an average, they were (1) 189% over budget, (2) had time
overruns of 222% and (3) only 61% of originally specified requirements were met.

ii

Theother31%ofthesoftwareprojectswerecanceledsomewhereduringdevelopment.

Thus,withtheincreaseofNASAmission'sdependencyonsoftwareandtheincreaseinits' complexity,a
fbcusonproducingqualitysoftware,andthussottwareengineering,I feel,becomesacriticalnecessity.

And,it ismanyofyouinthisroomwhowillmoveusinadirectiontoenableatimewhenwecandevelop
softwaresystemswhicharebug-free,reusable,deliveredonscheduleandwithincostwhilemeetingall
requirements..,onaconsistentbasis.

Manyofthepresentationsoverthenexttwodayspertain to advances and lessons learned which are directly

related to the software engineering challenges we Ihce. I look forward to listening and learning from the
diverse collection of international experts represented here today.

I have the privilege this morning to be introducing, A1 Diaz, who is the Director of Goddard Space Flight
Center.

We are very lucky at GSFC because Al, I believe more than any other Center Director to date, has an
appreciation of the critical role software ... and in particular QUALITY software ... plays in the success of
Goddard's missions, and he recognizes its increasing role in the future.

So, with pleasure, I welcome A1 and thank him for agreeing to take time from his incredibly busy schedule

to open the 23 rd Software Engineering Workshop.

* NOTE: The Standish Group International, Inc. is a market research and advisory firm specializing in
mission-critical software and electronic commerce. Information about this study can be found on their web

site: http://www.standishgroup.com Go to the option titled "Chaos Report."

3

BACKGROUND

The Goddard Space Flight Center (GSFC) Strategic Implementation Plan (SIP) was published in January
1997. Since the plan was published several centerwide activities have been initiated. One in particular

known as "Project Goddard" is responsible for one of the most significant changes that have occurred in
Goddard's history. This was the reorganization of Codes 500 and 700. The reorganization [Reference 1]

was the result of much planning that began with an assessment of the external environment and the writing
of Goddard's SIP followed by definition of macro level processes from which an organization that could

support those processes was derived. In today's environment, performance, cost and schedule are three
critical elements to the successful execution of a program. The requirements have become an integral

factor throughout the development process making it necessary for close customer involvement. The

reorganization was primarily structured to more effectively focus engineering talent into teams drawn from
the different disciplines. This would facilitate being able to provide products and services which support

mission needs aligned with customer requirements.

INFORMATION SYSTEMS CENTER

The ISC was created as part of the Goddard reorganization and was located within the Applied Engineering

and Technology (AET) Directorate. Why create an ISC? The creation of ISC was to (1) focus expertise

and leadership in information system development. (2)Promote organizational collaboration, partnerships,
and resource sharing. (3)Stimulate design/development of seamless end-to-end flight and ground systems.
(4) Enable flexibility to effectively support many simultaneous projects by improved access to critical mass

of discipline expertise. (5)Enhance career growth and opportunities including multi-disciplinary

opportunities and (6) to improve communications among information system professionals. Figure 1, is an
Organizational Chart of Goddard after the reorganization showing AETD and System, Technology, and

Advanced Concepts (STAAC) as new organizations.

GSFC - after reorganization

I

EARTH SCIENCES

r" Salom,)_on

D Z.k,_ Z>eF.r >

DIRECTOR: A. Diaz

DEPUTY DIRECTOR: B. Townsend

SPACEs SCIENCESHolt Jl',_(znt, Depzttt

ASSOCIATE DIRECTOR

MTPE

J lfr, t.ar

OFFICE OF HUMAN I

IRESOURCES

J Simp_,m

NFW I I
SYSTEMS TECHNOLOGY I

& ADVANCED

C_CEPTE

0 b_guer_

M R_schke.r_,rch r De o.t_,

NFW

APe.lED

ENGINE[ERING &

TECHNOLOGY

B Kee_an

MARAGEMENT

OPERATIONS

S /_oster

l_cant, l)epufy

I
ASSOCIATE DIRECTOR I

SPACE SCIENCES
PROGRAM

M Ki,-:a

CFO j

(" T.tLp

_' 4hell t)eput>

'1=UGHT PROJECTS I

o_,oEoFFoo_ /SUBORBITAL &

1ASSURANCE UNIVERSITY CLASS

PROJECT OPERATIONS
C _J_k

W l>e_.o, t>eln,tv A T,,rre.

Figure 1.

4

Figure2.ShowstheAETDOrganization,theDirectorisBrianKeegan.

@
Go_ard Sp,aceFlight Cont_

AETD ORGANIZATION

BUSINESS

MANAGEMENT OFFICE

Code 501

('hi_ ..IMa Simpson

._tssociutt.: Grctfcht./1 Blrrfo/t

MECHANICAL SYSTEMS

CENTER

Code 540

CIm7 Ed P,,w,._-

Associate: Steve Orodcur

..|sxociatt': TBD

AET DIRECTORATE

CODE Director Britm Kee._._m

500 _ Deputy: D_dly t'erkin_'Associate: KrtsfaPaquin

/
I

INFORMATIONcodeCENTER580SYSTEMSI

('hie! Martt Szczm"

,l_,lclate J.e Hemlessv

ELECTRICAL SYSTEMS

CENTER

Code 560

Chw! CActmg_: Bob Kachak

A=_so_'i.tv B_Jh Kichak

A_oe'tate])en_li_/fmlr,c_k

INSTRUMENT

TECHNOLOGY CENTER

Code 550

Chief. Jim Mas,,n

,,lssoctate Carolt. Krehv

GUIDANCE, NAVIGATION

& CONTROL CENTER

Code 570

Chi,.f Frank Bauer

As_,)clate ,_tat(v Frederick

Figure 2.

There are five Engineering Centers within the AETD which are equivalent to Division level organizations.
Each of these engineering centers is tbcused on a particular engineering discipline. The ISC (Code 580) is
the engineering center focused on software engineering and computer science. The ISC mission is

[Reference 2] "to provide high value information systems products and services and to advance information
technologies, which are aligned with customer needs." The ISC organization is shown in Figure 3 below.

ISC has 8 Branches in which each Branch is tbcused on critical software engineering domains that cover
the full lifecycle phase of a mission. Table 1, represents each of the Branches in the ISC and highlights
their major functional areas, products and services, customers and projects supported. More detailed

information can be found at the ISC Website, http://ww_v.isc.nasa.gov. ISC is predominantly a matrix
organization in that many of the Branch personnel 581,584, 586 are co-located with the project offices.

The process in which personnel are assigned is accomplished annually when the projects submit Statements
of Work (SOW) to the ISC for services. Personnel with the necessary skills and experience are then
assigned to the project from 1 to several years dependent on the duration of the project.

58O

Branch

5gl / Syslems Integration and

Engineering

Lcst_c Bow,.¸ Ih,_,lrd K,',l

t I,,._V,.+, t ',,,,q;,,t,t

582 / Flight Software

Fhmw Sh_,ll R_ W ItTm/el Li_t Shear_

583 ' Mission Applications

Iit,n O Alurr,lx St ,,tt Green

584 " Realtimc Softx_are

Engineering

B,irh Phwr J_O Plltrmm JohPi
Ihmohue

/ Information Systems Center Branch Structure

Functional Area/Products

End-to-end data s)stems

engineering of ISC mission

s_stems development activities.

Embedded spacecraft, instrument

and hardware component

soffwares; FSW tcstbeds

Off-line mission data s)stems

(e.g., Command man., s/c mission

and science P&S. GN&C, NCC

Real-time ground mission data

systems for I&-f and on-orbit ops

{e.g., s/c command & control.

launch and tracking ser',iccs)

Fools and services in support of

information management
585 : Computing Environments

and lcchnolog_
Ibm ..1Er_crlkc Stt,_z, A,mx

586 / Science Data Systems Science data systems including

M,u 3, ,,inn £_[_t_dl+tri, ;thtr_ R,7_h data processing, archi', al,
distribution, anal)sis & info man

587 ,, Advanced Data

Management and Analysis

It E!_an,h,trt CAtting) Jim IJv'rncs

58g./Advanced Architectures &

Autonom_

Dt,ug ttcL'ut_tum (,tttinku Juhe Brce_

Advanced concept development

for archival retrieval, d splay.

dissemination of science data

lechnolog) R&D ft_used on

space-ground au oma ion s',s. and
advanced architectures

Services

Mission directors, ground s3s,'tlight

ops management, sys. eng.. flight prep

support. SW eng, Sys I&T, AO prep

End-to-end FSW development;

simulation s,w; spacecraft

sustaining engineering

Sys eng.& implementation. COIs

application, tcstbcds for concept

nroo6'nrototvt_im, in nr_s environment

Sys. cog& implementation, COIs

application, simulators, testbeds for

concept prootTprototyping in ops era.

Hands-on sys admin., network

manage, husiness,,support tool

develop, WWW application

S)s eng.& implementation. COI's

application & integration, testbcds.

prototvping

Next-gen req. development, testbed for

s_s evaluation, prototype products

S3s eng & implementation, human-

computer cog. techno og? evaluations.

concept protoDpes, sw eng. methods

Customer Projects/Org

EOS DIS. HS I. S I AAC, NGS'I.

MAP. [MAGI. I RACE. POES.

AGS. en-orbil missions

HSI, MAP, I RMM. EO-I.

SMEX SMEX-lite, SPAR'tAN.

I!OS AM/PM:Chem, GI.AS,

XRS XDS, POES, NGST, XTE,

EUVE, GRO

NCC SPSR. I.$7. EO-I, EOS

AM I, HSI, IRACE, C930.
IMAGE S(X"

HS [, WFF. ISTP, IMAGE.

MAP. SMEX. TRA('I_,WIRI ,

EO-I, LS7, HITCHHIKER,

SPAR] AN, EOS. NGST

EOSDIS, IFMP. C630. C930.

HST, WSC. C250. C450, HST

EOSDIS. I+$7.]RACE. FRMM,

HST

FAST, NEAR. WIN[),
UI_YSSES. C632, C686, C694,

('930, C922

N(C. SI ,a.A(, SOMO, Code

SM, I:t)SI)lS, MIDEX, NGST

Table 1.

The ISC has 4 simple but very critical Strategic Goals to achieve in the next 5 years:

1. Advance leading-edge information systems technology.
2. Clearly define the scope of ISC business, and deliver high value products and services that satisfy

customer needs.

3. Build a diverse, talented, innovative, energized, internationally recognized, workforce of employees

and managers.

4. Establish open, flexible, collaborative relationships with customers and partners.

These strategic goals are aligned with the Goddard Strategic Goals.

Role of the Software Engineering Laboratory in ISC

Given the external drivers such as "Agenda for Change "which promulgated the creation of the ISC, the

SEL has an opportunity to leverage its capabilities to help the ISC meet its strategic goals and objectives.
There are several areas where the SEL can be an enabler for software process improvement:[Reference 3]:

• Build an improvement organization within the ISC that will increase the competency of its software

engineering professionals, thereby increasing the quality of Goddard software systems.
• Model and characterize software systems in use on the ground and onboard spacecraft.

• Transfer and help tailor proven development and maintenance technologies to new domains, internal
and external to GSFC.

As a result of Goddard's organizational changes, a new vision and mission statement and new goals and

objectives have been established for the SEL. Over the past several months a series of workshops had been

6

conducted with the SEL Director's to outline and define the new direction for the SEL and still maintain its

heritage over the past 20 plus years. The SEL's new Vision and Mission statement shown in Figure 3,

emphasizes continuous software process improvement.

Software Engineering Laboratory Vision:

To be internationally recognized as a leader for applied research in Evolutionary

Software Engineering Process Improvement.

Software Engineering Laboratory Mission:

"Serve as a World Class Laboratory dedicated to evolutionary software

engineering process improvement and serve as a clearinghouse within GSFC for

software engineering best practices. And to foster the development of highly skilled

software engineers in the ISC and in GSFC and contractor community through

continued education and training of software development practices and

methodologies, n

Mission Objectives:

1) To study, research and roll out products from our best practices and

methodologies.

2) To provide useable and applicable products aligned with customer needs.

3) To increase visibility, size and scope.

4) To partner with other software engineering organizations.

5) To serve as clearinghouse within ISC/GSFC for Software Engineering process

improvement information.

6) To educate the software engineering community on software engineering best

practices.

7) To identify resources for funds.

8) To develop quickie products e.g. "reusable abstractions n and modularize SEL
documents into a handbook format.

9) To develop strategies for rolling out practices to customers and Immersing

customers in the process.

Figure 3

The current base of SEL activities include: management of databases and producing monthly reports,

development of WEB based forms to eliminate file transfer, maintenance of SEL Library and development

of Software Engineering Courses. Current research topics include Meta-process, Baseline Process and

Core Metrics development. Short term and long term goals for the SEL have been established. They are:

SEL Short-term Goals:

l) Software Engineering Workshop

2) Complete ISC baseline study

3) Update SEL webpage

4) Develop customer focus teams

5) Increase GSFC visibility and interaction

SEL Lon_-term Goals:

1) Develop a full Software engineering training development program

2) Assist the ISC in obtaining CMM level 2 & 3

3) Establish partnerships with other software Engineering process improvement organizations

Figure 4 shows the relationship of the SEL with ISC. Under the new SEL structure, the ISC Branches and

Teams would work more closely with the SEL in defining current processes and developing improved
processes. The SEL analysts' role would expand to encompass end-to-end systems development processes,

from requirements definition through maintenance and operations. In addition, new metrics will be
developed that include the complete lifecycle of the end-to-end systems development process. An example
of software technology products supporting the end-to-end mission system is shown in Figure 5.

/ Example ISC Technology in _o._
...................... the End-to-end Mission Svstem

Scienct__

Satelli

! - NGST Adaptive Scheduling =_%_

t - Real-time Weather Assessment]
._ for Remote Sensing Spacecraft !

ST-KDa Warehousing_ MOCC __ll_

__I: NGS_t_cientri_t'm: ExCe°_ tr IRemotely:Located

[__Assistant ... = ¢r_T,,_L_,,ernDer or p.! - SMEX GDS & Automation

... _ "_.............. i "Mission Ops Automation
_ - Java-based Remote

I......................_'"-_ _ I Command & Control
- TRACE Automation & ! I - SIC Emergency Response System

I Remote Notification _.......

!_.-Remot_e In_strume nt Control :

Figure 5.

As a result of the expanded responsibilities, the SEL has already begun to baseline the ISC Branch's
products and services and software development processes and team products. This effort will establish a

basis for measuring the impact of software process improvement measures that are implemented within the
ISC. SEL is also in the process of developing a series of lectures and courses that focus on the SoRware
Engineering Process incorporating the CMM philosophy. The SEL will also play a key role in helping the

ISC to achieve CMM levels 2 & 3 and the presence of the SEL in ISC also provides the potential to
ultimately achieve CMM levels 4 &5.

In summary, the 23 year history of the SEL has proven that long term focus on continuous improvement

can reduce costs and produce a better product, The SEL, as a research organization must continuously
adopt to the changing environment in which it exists. Expanding the scope and support activities of the

SEL will present a great challenge, however, it will position the ISC to be able to improve Goddard's future
systems development efforts.

References:

(1) Keegan,B."AppliedEngineering& TechnologyDirectorate(AETD)500,"AETDNewsletter,NASA
GoddardSpaceFlightCenter,August1998.

(2) ISCManagementTeam,"ISCRetreatReport",St.Michaels,MD,March1998.
(3) Pajerski,R.andV.Basili,"TheSELAdaptstoMeetChangingTimes,"Proceedingsofthe22"d

AnnualSoftwareEngineeringWorkshop,Greenbelt,MD,December1997.
(4) Szczur,M.,"InformationSystemsCenter(ISC)OverviewBriefing",NASAGoddardSpaceFlight

Center,May1998.
(5) Kea,H.,"SoftwareEngineeringLaboratoryOverview,"NASAGoddardSpaceFlightCenter,

September1998

9

0

Baselining the New GSFC

Information Systems Center:
The Foundation for Verifiable

Software Process Improvement

5o /

A. Parra, D. Schultz, J. Boger, S. Condon,

CSC

R. Webby, M. Morisio, D. Yakimovich,

J. Carver, M. Stark,

University of Maryland

V. Basili,

Fraunhofer Center Maryland and University of Maryland

S. Kraft,
NASA/GSFC

Abstract

This paper describes a study performed at the Information System Center (ISC) in NASA

Goddard Space Flight Center. The ISC was set up in 1998 as a core competence center in

information technology. The study aims at characterizing people, processes and products of the

new center, to provide a basis for proposing improvement actions and comparing the center

before and after these actions have been performed. The paper presents the ISC, goads and

methods of the study, results and suggestions for improvement, through the branch-level portion

of this baselining effort.

Introduction

At the beginning of 1998, a major reorganization of software engineering functions took place

within the NASA Goddard Space Flight Center. A new "Information Systems Center" (ISC) was

created with the objective of concentrating and consolidating Goddard's Information Technology

(IT) capabilities into one organizational unit.

Within the aegis of this new organization, sits the Software Engineering Laboratory (SEL) [1,7],

a twenty-three years old consortium of process and product improvement specialists from three

organizations: NASA Goddard itself, the University of Maryland and Computer Sciences

Corporation. The SEL had previously focused most of its efforts within the Flight Dynamics

Division (FDD), performing process and product improvement studies and software engineering

experiments. With the reorganization of software activities at Goddard, its scope now expands to
the entire ISC. Therefore there was a need to better understand the wider context that the SEL

now found itself within.

Consequently,a"baseline"studywasinitiatedby theSEL in April 1998.Theaimof thebaseline
wasto characterizeor profile the ISCin termsof its people,processesandproducts.Eachbranch
andmany teamswithin the ISC were studiedfor the purposeof completingan initial baseline

study. We emphasize the word "initial" to indicate that this study is not a detailed baseline in the

sense of capturing extensive focussed data about one aspect of the ISC's operations. Rather it is a

baseline that will provide an overall high-level profile of the new organization.

Many previous baselines have been conducted within the FDD, as well as at the level of Goddard

Code 500 [4], Goddard as a whole [5] and NASA as a whole [6]. The questionnaires developed

by the baselining team were heavily based on these earlier studies to enable comparison. Where

practical, this paper will compare data from ISC with earlier studies.

This paper documents preliminary data and observations that the SEL has made in baselining the

ISC. The ultimate goals of the baselining study are to identify areas for process and product

improvement of benefit to Goddard, as well as interesting and novel research areas to pursue.

This paper will begin by elaborating upon the goals of the study. It will continue by describing

the methods adopted (and their constraints), the data collected, and the preliminary results of the

work. The paper concludes with some recommendations for ISC and suggestions for future work

for the SEL.

The ISC

Quoting from the ISC home page [8]:

"The Information Systems Center (ISC) is an innovative center of expertise in the implementation of

seamless, end-to-end information systems in support of NASA programs and projects, and

specifically the GSFC Earth Science, Space Science and Technology focus areas. The ISC provides
leadership and vision in identifying and sponsoring new and emerging information systems

technologies."

The ISC is organized in eight branches, each with a unique function. Refer to Figure l for the

organization structure of lSC and Table 1 for the associated products and services. The meaning

of boxes line styles will be explained later. The work is organized in various manners: within

these branches exist teams that are producing software products and services, there are personnel

(and sometimes teams) matrixed to other ISC branches or other Codes at GSFC, and there are
cross-branch teams that serve all the ISC with representation from the branches. The detailed

organizational structure is explained in [3].

Certain terminology (noted in Italics) is used in this environment and in this paper, especially

terminology related to organizational structure. Basic organizational structure is broken down

from highest level to lowest, GSFC is divided into 9 directorates, including the Applied

Engineering and Technology Directorate (AETD), within that there are 5 Centers, including the

Information Systems Center, within that the eight branches mentioned above, within those

branches, teams of individuals supporting projects, such as the Earth Observing System (EOS).

Sometimes a person or persons is matrixed from one organizational entity to another, so that one

group manages the work, while the person(s) maintains their original organizational alliances.

Code580

InformationSystemsCenter

.........

Code581

Systems

Integration&

Engineering

I
I I I I I I I

Code582

Flight

Software

Code583

Mission

Applications

Code584

Real-Time

Software

Engineering

Code585

Computing
Environments

&Technology

Code586

Science

Data

Systems

Code587

Adv.Data

Management

&Analysis

Code588

Adv

Architectures

&Automation

Figure 1 - Organizational Structure of the ISC

Branch Code

581

582

583

584

585

586

587

588

Branch Name

Systems Integration and
Engineering

Flight Software

Mission Applications

Real-Time Software

Engineering

Computing Environments
and Technology

Science Data Systems

Advanced Data

Management and Analysis

Advanced Architectures

and Automation

Products�Services

End-to-end data systems engineering of

ISC mission systems development
activities

Embedded software products for on-

board data handling; management and
control of flight hardware

Off-line mission data systems
(command management, spacecraft

mission planning and scheduling,
science planning, etc.)

Tools and services in support of

information management. Real-time

ground mission data systems for I&T
and on-orbit ops (e.g., s/c command

and control, launch, and tracking
services)

Tools and services in support of
information management. Hands-on

system administration, network

management, WWW applications

Data processing, archival distribution,
analysis and information management

for science data systems

Advanced concept development for
archival, retrieval, display, and
dissemination of science data

Technology R&D focused on space-

ground automation systems and
advanced architectures

Table 1. Products and Services of the ISC Branches

Goals for Baselining

The major objective of the baselining study is to gain an understanding of the ISC as to allow us

to identify areas for process and product improvement. The philosophy behind the effort is to

characterize and understand the new organization before attempting to introduce any new

technology or process improvements. From the understanding, we seek to find a basis to assess

improvements, which can then be packaged for wider integration into the business. Figure 2

highlights the role of baselining (the bottom rectangle) in the broader context of process and

product improvement according to the Experience Factory paradigm [1].

f

Iterate

UNDERSTAND

PACKAGE

Integrate the improvement into your business• Update standards
• Refine training

ASSESS'_T.a!.!.°..r..P.r°c.e..s.s.base.d..°n..e..x..P.e.r.!me..n..t...s....................

Select/define, implement, & evaluate an improvement locally

• Will particular reading techniques improve quality?
• Will OOT lead to higher reuse?
• Will a different testing technique reduce costs?

I,U

=E

LLI

Gather, sift, and analyze data to build baselines

• Identify software characteristics
• Characterize process used
• Define goals

TIME
y

Figure 2 - Role of Baselines in Process and Product Improvement

Methods Used

The following methods, already used in the COTS Study [9], were used.

First, a number of questions and measures have been developed, starting from the high level

goals and using the Goal Question Metric (GQM) approach [2], to collect information about

ISC's processes, products and people. They gather both quantitative and qualitative information

- some of the data are numeric and highly factual (e.g. staff numbers), whereas other data

represent informed opinion (e.g., expectations of future change). The aim is to be able to

characterize the software products, processes and people within the organization, with adequate

qualitative context to meaningfully interpret the hard quantitative data.

Questions and measures have then been organized in a questionnaire and a structured interview

[10]. The interview being constrained to no more than 30 - 45 minutes covered the qualitative

data. The questionnaire was devoted to quantitative data that were less subject to interpretation.

To enforce consistency, guides for filling questionnaires and performing interviews were

developed too [10].

After validating these tools with pilots, they were used to collect data from branch heads and

team leaders. The process was the following.

During the interview, the Interviewer asks questions following the outline of the Interview

Guide. The Scribe takes notes and employs a tape recorder, if acceptable to the Interviewee, to

aid in preparation of the interview report. The Interviewee is told that the result of the interview

is the interview report, which will not be considered final until the Interviewee had read and

approved it. At the end of the interview the Scribe may ask some clarification questions. The

Interviewer gives a copy of the Questionnaire, which asks questions of a detailed, numeric nature

that don't lend themselves well to open-ended, face-to-face discussion to the Interviewee, and

requests that the Questionnaire be completed within two weeks.

After the interview, the Scribe prepares an interview report, consisting of brief summaries of the

Interviewee's responses to the questions on the standard Interview Guide. The Interviewer

reviews the notes. Once reviewed they are sent to the Interviewee for concurrence. At this stage

of the process, the interview report is considered approved. Tape recordings were not kept as the

approved interview report serves as the result of the interview.

At the end of the initial interview, the Interviewer schedules a follow-up interview. The purpose

of the follow-up is to go over the questionnaire that the interviewee has completed, and resolve

any items where either the questions weren't clear to the interviewee, or the responses are unclear
to the interviewer.

About the data

The baseline study collects data at two levels within the ISC: the branch and team levels. The

current status of the study is that we have completed the branch data collection and analysis, and

are currently finalizing the team-level data collection and the team-level analysis is in progress.

Therefore this paper will only report on the results from the branch-level data.

The branch-level data were collected from the management of each branch. Our aim at the

branch-level data collection stage was to build an overall characterization of the organization,

with a wide range of factors (e.g. process, people, and product) considered. The intent is that we

will perform more detailed baselines on specific factors in a subsequent study, as and when more
accuracy is required.

The consequence is that the data reported in this paper have varying degrees of reliability. In

some cases, they are actual data (e.g. head count). In other cases, they may be derived data. For

example, a question asking how much effort was spent on software maintenance versus

development was sometimes answered by managers going through their roster and counting how

many people did maintenance versus development. In other cases, the data may represent only

"guesstimates". Sometimes we asked questions seeking data that they do not collect, so they had

to estimate. In all cases, we are dealing with a new organization, so there is not a body of

historical data, or even established data collection procedures in many cases.

As we analyze the data, we will report on the expected reliability.

Findings

Domams

Figure 3 presents a depiction of sample application domains in the ISC, in contrast to the more

focused domains of the FDD. Whereas the FDD was primarily concerned with attitude, orbit and

mission planning applications, the ISC must now be concerned with such diverse pursuits as

science data visualization and embedded flight software. The new ISC is a much more

heterogeneous organization than the FDD, so the need to understand the context of the data

collected is paramount. Direct comparison of branch to branch will be meaningless without an

appreciation of the context within which the data were collected.

O
Figure 3. Sample Application Domains in ISC and FDD

FDD

ISC

Domains and organization

As mentioned above, the Information Systems Center is organizated into eight branches. Figure

1 shows the basic organizational structure of the ISC. We have found that several branches

appear to have a functional domain focus (e.g. flight software), specifically these are 582, 583,

584 and 586, designated in Figure 1 with double borders. Those are contrasted with branches

that deal primarily with technology domains (e.g. advanced architectures), specifically 585,587

and 588. Code 581 is probably neither in the technology nor functional camp, they deal primarily

with the management of systems integration activities, this uniqueness is indicated in Figure 1
with a dashed border.

6

Matrixing and projects common to branches

In the questionnaire, branch management were asked to list the projects with which their branch

was involved. Figure 4 presents the common projects by branch. These are larger projects such

as the Hubble Space Telescope (HST) or Landsat-7, where several branches are involved.

Another question was the number of staff belonging to the branch but working outside it (or

matrixed). On average, 63% of ISC staff is matrixed. Both facts above suggest that the

organisation by branches is in some sense virtual, while the projects rather than the branches

control the process. This was also confirmed by comments from branch managers. An

implication of this for the SEL is that to introduce any process improvement, it would appear

necessary to consider how to influence the project to adopt the new technology.

HST

581 582 S83 584G 584W: 585 586 587_588

ULDB

0 ¸ /_iiiiilili_i_iiiii!iliiiii_iii_i:¸_i¸I̧i : (i :i!_iiiiiiii_iiiiii!iii_iiiiiiiiii!i!i_ili!iiiii_iil;__: :
_ ,i_iliili_!_i_!i!i_!ilili_!!ii!ilili_i_i _//_iiiiiiiiii_iiii,_ii!_!ii_!iiiii:7!i!̧i:;i!iiiiiiii!!i'iiii!'!ii!!!!!!i!i!!iiiili'iii!iii!!i,i_!i)i?ii

Figure 4 - Common Projects by Branch

Characterization of branches

Figure 5 presents the variation in staff numbers by branch. The total number of civil servants in

ISC is 249, based on an aggregation of the questionnaire data. This total has been verified by a

check against the overall ISC roster. The total number of contractors in ISC is over 308 - the

exact number is difficult to determine because some branches were unable to specify their exact
number of contractors 1.

IStaffing Numbers - The count of civil servants and subcontractors working for a branch or team is not unique, as

they can report to an entity (say the team) but be paid by another (another team or branch or project). Most
interviewees did not have both data, and reported the best estimate they had. An effort to collect the most accurate

data is underway and will be reported in the ISC Baselining final report.

Number of

employees

180

160

140

120

100

8O

60

40

20

Staffing
(see note on staffing numbers)

587 588 Average

Branch

Figure 5 - Staff Numbers by Branch

Most notable here is that there is one very large branch (582), more than 2/3's of its personnel

are contractors; one very small branch (587), with no contractors whatsoever; and the rest are
mid-sized.

It is worthwhile to compare these figures to the SEL's 1992 baseline of Code 500 [4]. Code 500

at that time contained responsibility for most of the same functional and technology domains that

the ISC contains today. Code 500, however, did not employ all of the GSFC software personnel

working in these functional and technology domains; the Engineering Directorate (Code 700)

employed some of them. On the other side of the balance sheet, however, we must note that

some of the 1992 employees of Code 500 were analysts and other "non-software" types. These

personnel were largely transferred to "Centers" other than the ISC in the recent GSFC

reorganization. With these differences between the Code 500 of 1992 and the ISC of today kept

in mind, let us proceed. In the 1992 baseline of code 500, it was found that approximately 1,600

of 5,000 staff (including contractors) were performing software-related functions (development,

maintenance, etc). The FDD had 700 staff, of which 250 were in software. This comparison (see

Figure 6) indicates that the ISC has approximately twice as many IT-related staff as FDD.

However, they are significantly smaller in size than were the code 500 software people in 1992.

6OOO

5000

4000

3000

2000

1000

0

I Non softwarestaff

[] Software staff

Code 500 FDD- ISC-

-1992 1992 1998

Figure 6 - Code 500, FDD and ISC staff

Branch management was also asked to estimate effort distribution within three categories:

Development, Maintenance and Other. The results for this question are shown in Figure 7. The

average is weighted for head-counts in the respective branches. Notable contrasts here are 581 's

large amount of "other" activity - as a systems integration management branch they do hardly

any software development themselves. Also notable is 584 (Goddard real-time software)'s large

maintenance effort relative to development effort, and 586 (science data systems)'s large

development effort relative to maintenance.

In comparison with the code 500 baseline, maintenance effort in the code 500 was a lower

proportion of total effort (24%) as opposed to ISC's 35% of effort devoted to maintenance. This

is probably explained by the smaller amount of legacy code that the ISC is responsible for

maintaining, in comparison to code 500.

Figure 8 turns our focus on software development effort alone, broken into the activities

'requirements analysis', 'design', 'coding', 'testing' and 'other'. It is apparent that at this macro

process level, there is relatively little difference between ISC's average development effort

distribution and that of the 1992 FDD. The ISC do a little more requirements, but that is the only

major difference. Again, we should stress that these data are management estimates, not the

actual recorded effort for each employee. In some cases, managers used heuristics such as

counting the number of testers in the organization to come up with the proportion of testing

being done. But did this then account for developers' unit testing? We do not know.

lOO%

9o%

80%

70% -

60% -

50% -

40% -

30% -

20% -

10% .

0%

-- --_ _j

581 582 583 584W 584 585 586 587 588 Average

Branch

DDevelopmentBMalnlenance OOther I

Figure 7 - Overall Effort by Branch

100%

80%

6O%

4O%

20%

0%

I

° !
584 586 587 588 Average F_585

Branch

RequirementsAnalys_ _Design _Coding OTesling nOther I

Figure 8 - Development Effort by Branch

One possible interpretation of this data is that organizations that are more outwardly focused,

have had to put more effort into the requirements stage (and hence proportionally less in other

areas). Code 585 (science data systems) is an example of this - much of their work is for the

science community as a whole, a fairly diverse and remotely located user population. Code 583

l0

(mission applications) has a much more defined user base and develops software such as off-line

mission scheduling systems that can be precisely specified more easily up-front.

Some further observations about process, product and knowledge levels. Note that all branch

averages are weighted by the number of staff in the branch.

• The percent of branches (including contractors) using "defined, written, advocated

software processes" varied from 10-95%, with an average of 45%

• The percent of branches (including contractors) using "software standards" ranged from

0-95%, with an average of 57%

• The number of COTS products used varied from 2-10 with an average of 5.1. Note that

these figures are probably deflated due to some branches listing "DBMSs", or "lots" in

response to this question.

• Overall the use of C++, Java and Ada for new development is increasing, relative to

Assembly, Fortran and C. 12 languages are used across ISC as a whole.

• The most significant causes of errors in operational software were (in the following order

of importance): 'changing requirements', 'missing requirements', 'misinterpreted

requirements', 'coding errors', 'interfaces', 'design errors' and 'environment problems'.

• Most branches consider themselves well-informed about 'prototyping', 'object-oriented

technology', 'inspections/walkthroughs', and 'COTS Integration'

• Most branches consider themselves to have relatively little knowledge about 'formal

methods' and 'defect causal analysis', except 586 science data systems

• Most branches consider themselves to have relatively little knowledge about 'information

hiding' except 584W real-time systems (Wallops)

• All branches consider themselves to have relatively little knowledge about 'Cleanroom

techniques'.

• Only three branches produce 'lessons learned' documents at the end of a project.

Interestingly, one of these (584W) also produce a document called 'a day in the life'

which serves to portray a typical day's activities for a developer. This is considered

useful for training purposes.

In the process improvement area, several of the branches have ongoing activities:

• Code 581 is funding this ISC baselining study, and is also leading the ISO 9000 ISC

certification. It is also pursuing an effort to define a core metrics set with the SEL and
Code 300.

• Code 582 is encouraging reuse of both flight software and ground simulators, is looking

into additional opportunities for automatic code generation, and is pursuing the use of

COTS.

• Code 583 has implemented the CORE TEAM approach, which is a type of process

improvement, and some parts of the branch are involved in some level of data collection.

11

Codes584and587arecurrentlydefiningtheir processes,asapreludeto improvingthem.
Code 584 expresseda desire to define a multi-level processstructure, to facilitate
modularizationof processes.

Code585,althoughit hasnot initiateda formalprocessimprovementprogram,is using
guidelinesin certainareas.TheCode585 personnelprefer to useguidelines,ratherthan
standards,becauseof thegreaterflexibility thatguidelinesprovide.

• Code586is engagedin processmanagementactivities,including implementationof ISO
9001.

Code588, for the mostpart, hasnot initiatedany processimprovementactivities; they
are, however,currently working on a TechnologyManagementPlan that is oriented
toward ISO 9000. Code 588 is also trying to move the designationof their ultimate
customerorganizationearlierin theprocessof makingasystemoperational.

Analysis and further activities

The ISC is a new organization that supports many of the key projects at NASA Goddard. It is

divided into management, technology and functional branches that represent a wide variety of

technical and functional domains. Here we try to summarize the main results of the baselining

effort and their implications for further SEL activities.

Diversity

The preliminary results of this baseline show that each branch is very different in terms of

personnel, process and product characteristics. The variations in effort distribution, languages

used, and products developed by the different branches provide surface indications of the

diversity among the branches. The implications are that it will not be possible to apply the same

models for cost and quality to each branch, as we could do to some extent within the more

homogeneous FDD. To understand how cost and quality relate, we must study them in the

context of each branch, team and/or project. Then, each model must be constructed and

calibrated to the given context in question. The development of different models however is not

the only challenge; these models must be capable of integration so that aggregated information

can be meaningfully provided for the whole of ISC.

The NASA Core Software Metrics Initiative

The SEL and GSFC/NASA's Software Assurance Technology Center (SATC) l11] are currently

pursuing an initiative to define and implement a core set of software metrics, common to the

whole of NASA. For well over a year these two GSFC organizations have been working

together to define a core set of metrics.

The baselining has confirmed that there is an essential need for core metrics within the ISC. Due

to the diversity of the ISC, branches, teams and projects use different reporting units for metrics

such as product size, effort and defects. The core metrics initiative defines a set of metrics

capable of being used in different contexts, yet capable of providing a common abstraction level

to allow aggregation at the ISC level. This is essential not only for monitoring purposes, but also

for the model building needs mentioned above.

12

At this time, a draft version of the Core Metrics set, developed by the SEL and SATC, is

currently under review by the NASA Software Working Group. At the time this paper is written

the SATC and SEL web pages do not specifically call out the Core Metrics, in future that

information should be assessable through SATC and SEL web pages [11,12]. An experiment

within the ISC to validate these Core Metrics would serve both the NASA Core Metric Initiative

and the ISC's proactive drive toward process and product awareness and improvement.

Matrixing

The ISC is organized in branches and teams, but branch and team staff work, at 63% on average,

on projects outside the scope of ISC, managed and funded by NASA Codes other than 500. In

particular, 95% of the staff belonging to Code 582 is matrixed outside ISC. This is not

surprising, as the ISC is meant to offer IT services to all of GSFC and NASA. However, a

number of issues are raised.

• System and software engineering. Many projects where matrixed staff works are system

projects where software is only a part. The system issues (processes, technologies,

interfaces) should be taken into account in software processes too.

• Ownership of processes and rights to modify. When projects are funded and ruled outside

ISC, ISC may or may not be free to decide on processes, standards, and organizations to
be used.

• Diffusion of information. Matrixed personnel could physically work outside ISC, with
increased difficulties in communication and diffusion of information about the SEL and

technology transfer or software process improvement projects.

The SEL could try to understand in more depth these issues with further studies. However, it

seems that, for the purposes of assessment, characterization, and model building, the team and

the projects are the more suitable units to be considered. This implies that, as projects and teams

are volatile, with a life span of months, measures and models should be highly versatile and

adaptive.

Also, the concept of Experience Factory, defined and used by the SEL in the past years, could

need some adaptation. Several levels of experience, and several levels of learning loops, can be

identified: at the individual, team, branch and ISC levels.

Finally, if projects and teams are volatile, and branches are virtual, individual persons are the

most stable and valuable resources to base process and product improvement on. Approaches

such as Watt Humphrey's Personal Software Process (PSP) could be used and adapted to the ISC

context. Specifically, the PSP does not consider sharing experiences and improvements with

peers, and should be extended in this direction to integrate concepts from the Experience

Factory.

COTS

All branches report the use of COTS. The SEL should support teams and branches in COTS

related activities: evaluation and selection, testing and certification, interaction with producer,

documentation and diffusion of information. The SEL's experience in COTS processes will be

of benefit to the ISC and the diversity of the ISC offers opportunities for case studies to further

13

validatethe COTSprocessmodel [9]. This studyconcludedwith recommendationsfor further
work to build costmodels,risk analysis,andprocessmodels. Since,COTSremainsa buzzword
with differentmeaningsfor differentpeople.Anotheractionfor the SELis thedefinition of a set
of terms and classificationtools for the different conceptsand artifacts currently considered
undertheumbrellatermCOTS.

Finally, COTSshouldbe consideredin the broadercontext of reuseand relatedtechnological
and organizationalissues:domainanalysisandengineering,productline engineering,reusable
libraries, frameworks,designpatterns,mechanismsandstandards(Com,Corba,Active-X, Java
RMI, Javabeans,etc.).

Internal technology transfer

There would seem to be opportunities for greater synergies within ISC to do internal technology

transfer so that the advanced technologies and research efforts of branches 585,587 and 588 are

successfully transitioned into practice in branches 582, 583,584 and 586.

The past work of the SEL within Goddard has shown the need to understand, assess and package

technology to insure its successful introduction. Possibly the SEL in code 581 can play a role in

furthering a controlled and systematic transfer of this technology to the functional branches, as

well as helping insure that the advanced technology branches work in relevant areas amenable to

future technology transfer.

The SEL could assist by defining a methodology to evaluate if and how a technology

successfully applied in one context (branch, team, project) can be transferred to another context.

Reuse and frameworks

Several products in ISC are developed and mantained for years and possibly customised in

different versions. The overall cost of a product during the complete service cycle can be

decreased by technologies such as architecture and framework-based reuse. For example Code

582 (flight software) is exploring this road by developing a new architectural design for on-board

shuttle navigation control.

The SEL could offer support to organize, measure and document such efforts with two main

goals. Promote the success of the reuse effort inside a branch. And acquire methodological

experience to replicate the same effort in other branches (see also the Internal Technology

Transfer subsection).

Requirements instability

Requirements, and specifically requirements instability, are a common source of problems for

ISC teams. Several lines of intervention are available for the SEL:

• Experimentation with novel techniques for requirements capture and management.

• Adaptation of and experimentation with of techniques for early detection of defects in

requirements, such as requirement reading techniques.

• Adaptation of and experimentation with new lifecycles for early verification of

requirements, such as prototyping, iterative lifecycles, joint application development.

14

Acknowledgements

This work was funded by NASA grant NCC-5170, and the following NASA Contracts: CNMOS

and CSOC.

References

[l] V. R. Basili, G. Caldiera, F. McGarry, R. Pajerski, G. Page, S. Waligora, The Software

Engineering Laboratory - an Operational Software Experience Factory, International Conference

on Software Engineering, May, 1992, pp. 370-381.

[2] R. Basili, H. D. Rombach, The TAME Project: Towards Improvement-Oriented Software

Environments, IEEE Transactions on Software Engineering, vol. SE-14, no.6, June 1988.

[3] Kea H., Goddard's New Integrated Approach to Information Technology, 23 rd Software

Engineering Workshop, Nasa/GFSC, December 1998.

[4] NASA, Profile of Software Within Code 500 at Goddard Space Flight Center, Technical

report R01-92, 1992.

[5] NASA, Profile of Software at the Goddard Space Flight Center, Technical report RPT-002-

94, June 1994.

[6] NASA, Profile of Software at NASA, Technical report RPT-93, December 1993.

[7] NASA, An Overview of the Software Engineering Lab, Technical report SEL-94-005,
December 1994.

[8] NASA/ISC, The ISC home page, http://isc.gsfc.nasa.gov/default.htm.

[9]NASA/SEL, SEL COTS Study, Phase 1, Initial Characterization Study report, SEL-98-001,

August 1998.

[10] NASA/SEL, 1SC Baselining documentation, http://sel.gsfc.nasa.gov/doc-st/tech-

st/sew23/baselining.htm

[11] NASA/SATC, The SATC home page, http://satc.gsfc.nasa._ov/

[12] NASA/SEL, The SEL home page, http://sel.gsfc.nasa.gov/

15

0

°_,._

c_

0
°_,_

0

c_

r_

r_

0
0

0

_J

,q,-

0

©

C_

<

©

©

c'q

• • • •

,12

_ _ .__.-_

g37dNVX3

0
• _..,q
4m_
c_
b4

o_,_

¢)

c_

c_

¢)

c_

c_

0

r./3

c_
¢)

¢

,S

0

°_,,_

r._
c_

0
r._

©

r_

;>

0

c_

©

c_

°v"_

c_

r_

0
E
0

0

rf_

I I

;>
0

c_

r_

r_

c_ c_

t_

c_ "_

xo

D---

°_-._

r._
c_

©

0

eo
c_

p.

E
D4

c_

c_

r./3

c_

c_

p.

E

.o

c_

r./3
c_

_b

r.13

0
°_,_

r.f3

o
E

oO

r_

0

0
O_

<

0

,, _,ml

°_,_

c_

_J

o_,_

4m_
o_ml

o_,mq

0"_

c_
r_

c_
r_
r._

0

c_

c_
r_

©

.c_

©

nl

°_-._

<

c_

0 0 0
CD _- CM

LtoJ.,IO 1Lt_oJod

0

¢'-1

¢D

! !

eo eo

I

!
I

P. +
+
(..)

o%

X

0
0.0
oa

0

0

0
¢/3

0.0
=

.¢..a

• ,,,,,,i

X

0

0

0

O_

>

0

0

I

@ _

©

0

._.._

O_

>
0_

@ _

._--_

0

0
>

r_
c_

0

©
°_,-_

._,ul

r_

r_

0
_J

r._

0

c_
t_

c_

0

0

°_i._

© o

Using Experiments to Build a Body of Knowledge

Victor Basili

Fraunhofer Center Maryland
and Computer Science Dept.
University of Maryland
College Park, MD 20742, USA
basili@cs.umd.edu

Forrest Shull

Institute for Advanced Computer Studies
Computer Science Dept.

University of Maryland
College Park, MD 20742, USA

fshull@cs, umd.edu

Filippo Lanubile
Dipartimento di Informatica

Universita' di Bad
Via Orabona, 4

70126 Bari, Italia
lanubile@di.uniba.it

Abstract

Experimentation in software engineering is important but difficult. One reason it is so difficult is that there
are a large number of context variables, and so creating a cohesive understanding of experimental results

requires a mechanism for motivating studies and integrating results. This paper argues for the necessity of a
framework for organizing sets of related studies. With such a framework, experiments can be viewed as

part of common families of studies, rather than being isolated events. Common families of studies can
contribute to important and relevant hypotheses that may not be suggested by individual experiments. A
framework also facilitates building knowledge in an incremental manner through the replication of

experiments within families of studies.

Building knowledge in this way requires a community of researchers that can replicate studies, vary context
variables, and build abstract models that represent the common observations about the discipline. This

paper also presents guidelines for lab packages, meant to encourage and support replications, that
encapsulate materials, methods, and experiences concerning software engineering experiments.

1. Introduction

Experimentation in software engineering is necessary. Common wisdom, intuition, speculation and
proofs of concepts are not reliable sources of credible knowledge. On the contrary, progress in any

discipline involves building models that can be tested, through empirical study, to check whether the
current understanding of the field is correct I. Progress comes when what is actually true can be separated

from what is only believed to be true. To accomplish this, the scientific method supports the building of
knowledge through an iterative process of model building, prediction, observation, and analysis. It requires

that no confidence be placed in a theory that has not stood up to rigorous deductive testing [21]. That is,
any scientific theory must be (1) falsifiable, (2) logically consistent, (3) at least as predictive as other

competing theories, and (4) its predictions have been confirmed by observations during tests for
falsification. According to Popper, a theory can only be shown to be false or not yet false; researchers only
become confident in a theory when it has survived numerous attempts made at its falsification. This

paradigm is a necessary step for ensuring that opinion or desire does not influence knowledge.

Experimentation in software engineering is difficult. Carrying out empirical work is complex and time

consuming; this is especially true for software engineering. Unlike manufacturing, we do not build the
same product, over and over, to meet a particular set of specifications. Software is developed and each

1 For the purpose of this paper, we use the definitions of some key terms from [15] and [1]. An empirical

study, in a broad sense, is an act or operation for the purpose of discovering something unknown or of

testing a hypothesis, involving an investigator gathering data and performing analysis to determine what the
data mean. This covers various forms of research strategies, including all forms of experiments, qualitative
studies, surveys, and archival analyses. An experiment is a form of empirical study where the researcher

has control over some of the conditions in which the study takes place and control over the independent
variables being studied; an operation carried out under controlled conditions in order to test a hypothesis

against observation. This term thus includes quasi-experiments and pre-experimental designs.
A theory is a possible explanation of some phenomenon. Any theory is made up of a set of hypotheses. A

hypothesis is an educated guess that there exists (1) a (causal) relation among constructs of theoretical
interest; (2) a relation between a construct and observable indicators (how the construct can be observed).

A model is a simplified representation of a system or phenomenon; it may or may not be mathematical or
even formal; it can be a theory.

productisdifferentfromthelast.So,softwareartifactsdonotprovideuswithalargesetofdatapoints
permittingsufficientstatisticalpowerforconfirmingorrejectingahypothesis.Unlikephysics,mostofthe
technologiesandtheoriesinsoftwareengineeringarehuman-based,andsovariationinhumanabilitytends
toobscureexperimentaleffects,ltumanfactorstendtoincreasethecostsofexperimentationwhilemaking
it moredifficulttoachievestatisticalsignificance.

Abstracting conclusions from empirical studies in software engineering research is difficult. An

important reason why experimentation in software engineering is so hard is that the results of almost any
process depend to a large degree on a potentially large number of relevant context variables. Because of

this, we cannot apriori assume that the results of any study apply outside the specific environment in
which it was run, For isolated studies, even if they are themselves well-run, it is difficult to understand how

widely applicable the results are, and thus to assess the true contribution to the field.

As an example, consider the following study:
• Basili/Reiter. This study was undertaken in 1976 in order to characterize and evaluate the

development processes of development teams using a disciplined methodology. The effects of the
team methodology were contrasted with control groups made up of development teams using an "ad

hoc" development strategy, and with individual developers (also "ad hoe"). Hypotheses were proposed:
that (BR1) a disciplined approach should reduce the average cost and complexity (faults and rework)

of the process and (BR2) the disciplined team should behave more like an individual than a team in
terms of the resulting product. The study addressed these hypotheses by evaluating particular methods

(such as chief programmer teams, top down design, and reviews) as they were applied in a classroom
setting. [7]

This study, like any other, required the experimenters to construct models of the processes studied, models
of effectiveness, and models of the context in which the study was run. Replications that alter key attributes

of these models are then necessary to build up knowledge about whether the results hold under other
conditions. Unfortunately, in software engineering, too many studies tend to be isolated and are not

replicated, either by the same researchers or by others. Basili/Reiter was a rigorous study, but

unfortunately never led to a larger body of work on this subject. The specific experiment was not
replicated, and the applicability of the hypotheses in other contexts was not studied. Thus it was never

investigated whether the results hold, for example:

• for software developers at different levels of experience (the original experiment used university
students);

* if development teams are composed differently (the original experiment used only 3-person teams);

• if another disciplined methodology had been used (i.e., were the benefits observed due to the particular
methodology used in the experiment, or would they be observed for any disciplined methodology?).

2. A Motivating Example: Software Reading Techniques
Yet even when replications are run, it's hard to know how to abstract important knowledge without a

framework for relating the studies. To illustrate, we present our work on reading techniques. Reading
techniques are procedural techniques, each aimed at a specific development task, which software

developers can follow in order to obtain the information they need to accomplish that task effectively [2, 3].
We were interested in studying reading techniques in order to determine if beneficial experience and work
practices could be distilled into procedural form, and used effectively on real projects. We felt that reading

techniques were of relevance and value to the software engineering community, since reading software

documents (such as requirements, design, code, etc.) is a key technical activity. Developers are often called
upon to read software documents in order to extract specific information for important software tasks, e.g.

to read a requirements document in order to find defects during an inspection, or an Object-Oriented design
in order to identify reusable components. However, while developers are usually taught how to write
software documents, the skills required for effecting reading are rarely taught and must be built up through

experience. In fact, we felt that research into reading could provide a model for how to effectively write
documents as well: by understanding how readers perform more effectively it may be possible to write

documents in a way that facilitates the task.

However,theconceptofreadingtechniquescannotbestudiedin isolation. Like any other software process,
reading techniques must be tailored to the environment in which they are run. Our aim in this research was

to generate sets of reading techniques that were procedurally defined, tailorable to the environment, aimed
at accomplishing a particular task, and specific to the particular document and notation on which they

would be applied. This has led a series of studies in which we evaluated the following types of reading
techniques:

• Defect-Based Reading (DBR) focused on defect detection in requirements, where the requirements
were expressed using a state machine notation called SCR [13, 22].

• Perspective-Based Reading (PBR) also focused on defect detection in requirements, but for

requirements expressed in natural language [4, 16].

• Use-Based Reading (UBR) focused on anomaly detection in user interfaces [27].

• Second Version ofPBR (PBR2) consisted of new techniques that were more procedurally-oriented

versions of the earlier set of PBR techniques. In particular, we made the techniques more specific in all
of their steps [24].

• Scope-Based Reading (SBR) consisted of two reading techniques that were developed for learning

about an Object-Oriented framework in order to reuse it [10, 23].

A framework that makes explicit the different models used in these experiments would have many benefits.
Such a framework would document the key choices made during experimental design, along with their
rationales. The framework could be used to choose a focus for future studies: i.e., help determine the

important attributes of the models used in an experiment, and which should be held constant and which
varied in future studies. The ultimate objective is to build up a unifying theory by creating a list of the

specific hypotheses investigated in an area, and how similar or different they all are.

Using an organizational framework also allows other experimenters to understand where different choices
could have been made in defining models and hypotheses, and raises questions as to their likely outcome.

Because these frameworks provide a mechanism by which different studies can be compared, they help to
organize related studies and to tease out the true effects of both the process being studied and the
environmental variables.

3. The GQM Goal Template as a Tool for Experimentation
Examples of such organizational frameworks do exist in the literature, e.g. [9, 17, 20]. For the purpose of

this paper we find the Goal/Question/Metric (GQM) Goal Template [8] useful. The GQM method was
defined as a mechanism for defining and interpreting a set of operational goals using measurement. It

represents a top-down systematic approach for tailoring and integrating goals with models of software
processes, products, and quality perspectives, based upon the specific needs of a project and organization.

The GQM goal template is a tool that can be used to articulate the purpose of any study. It ties together the
important models, and provides a basis against which the appropriateness ofa study's specific hypotheses,
and dependent and independent variables, may be evaluated. There are five parameters in a GQM goal

template:

• object of study: a process, product or any other experience model

• purpose: to characterize (what is it?), evaluate (is it good?), predict (can I estimate something in

the future?), control (can I manipulate events?), improve (can I improve events?)

• focus: model aimed at viewing the aspect of the object of study that is of interest, e.g., reliability
of the product, defect detection/prevention capability of the process, accuracy of the cost model

• point of view: e.g., the perspective of the person needing the information, e.g., in theory testing the
point of view is usually the researcher trying to gain some knowledge

• context: models aimed at describing environment in which the measurement is taken

For example, the goal of the Basili/Reiter study, previously described, might be instantiated as:

To analyze the development processes of a 1) disciplined-methodology team approach, 2) ad hoe team
approach, and 3) ad hoc individual approach

for the purpose of characterization and evaluation

with respect to cost and complexity (faults and rework) of the process

from the point of view of the developer andproject manager
in the context of an advanced university classroom

Due to the nature of software engineering research, instantiated goals tend to show certain similarities. The

purpose of studies is often evaluation; that is, researchers tend to study software technologies in order to

assess their effect on development. For our purposes, thepoint of view can be considered to be that of the
researcher or knowledge-builder. While studies can be run from the point of view of the project manager,
i.e. requiring some immediate feedback as to effects on effort and schedule, published studies have usually

undergone additional, post-hoe analysis.

The remaining fields in the template require the construction of more complicated models, but still show
some similarities. The object ofstu_ is often (but not always) a process; researchers are often concerned

with evaluating whether or not a particular development process represents an improvement to the way
software is built. (E.g.: Does Object-Oriented Analysis lead to an improved implementation? Does an

investment in reviews lead to less buggy, more reliable systems? Does reuse allow quality systems to be
built more cheaply?) When the object of study is a process, the focus of the evaluation is the process' effect.

The experimenter may measure its effect on a product, that is, whether the process leads to some desired
attribute in a software work product. Or, the experimenter may attempt to capture its effect on people, e.g.

whether practitioners were comfortable executing the process or found it tedious and infeasible. Finally, the
context field should include a large number of environmental variables and therefore tends to exhibit the
most variability. Studies may be run on students or experts; under time constraints, or not; in well-

understood application domains, or in cutting-edge areas. There are numerous such variables that may
influence the results of applying a technique.

For the remainder of this paper, we will illustrate our conclusions by concentrating on studies that

investigate process characteristics with respect to their effects on products. A GQM template for this class
of studies is:

Analyze processes to evaluate their effectiveness on a product from the point of view of the

knowledge builder in the context of (a particular variable set).

For particular studies in this class, constructing a complete GQM template requires making explicit the
process (object of study), the effect on the product (focus), and context models in the experiment. Making
these models explicit is necessary in order to understand the conditions under which the experimental
results hold.

For example, consider the GQM templates for the list of reading technique experiments described in the
previous section. There are many ways of classifying processes, but we might first classify processes by
scope as:

• Techniques (processes that can be followed to accomplish some specific task),
2

• Methods (processes augmented with information concerning when and how the process should be

applied),

• Life Cycle Models (processes which describe the entire software development process).

Each of these categories could be subdivided in turn. The set of techniques, for example, could be classified
based on the specific task as: Reading, Testing, Designing, and so on. We have found it helpful to think of
the range of values as organized in a hierarchical fashion, in which more general values are found at the top

of the tree, and each level of the tree represents a new level of detail. (Figure 1)

Selecting a particular type of process for study, our GQM template then becomes:
Analyze reading techniques to evaluate their effectiveness on a product from the point of view of

the knowledge builder in the context of a particular variable set

2 The definitions of "technique" and "method" are adapted from [5].

Process

Life Cycle Model Method Technique

Waterfall Spiral Inspection Through Reading Testing

Figure I: A portion of the hierarchy of possible values for describing software

processes.

The reading technique experiments were concerned with studying the effect of the reading technique on a

product. So, the model of focus needs to specify both how effectiveness is to be measured and the product
on which the evaluation is performed.We find it useful to divide the set of effectiveness measures into

analysis and construction measures, based on whether the goal of the process is to analyze intrinsic
properties of a document or to use it in building a new system. Each of these categories can be further

broken down into more specific types of process goals, for which different effectiveness measures may
apply (Fig. 2). For example, the effectiveness of a process for performing maintenance can be evaluated by
how that process effects the cost of making a change to the system. The effectiveness of a process for

detecting defects in a document can be measured by the number of faults it helps find. Of course, many
more measures exist than will fit into Figure 2. For instance, rather than measure the number of faults a
defect detection process yields, it might be more appropriate to measure the number of errors 3, or the

amount of effort required, among other things.

Effectiveness

Analysis Construction

Defect

Usability . . . Reuse Maintenance .

of # of # of Cost of Cost of Cost of

faults errors anomalies finding integrating making a

detected detected detected components components change

Figure 2: A portion of the hierarchy of possible values for

describing the effectiveness of software processes

Similarly, a software document can be classified according to the model of a software system it contains (a

relatively well-defined set) and further subdivided into the specific notations that may be used (Fig.3). The
main purpose of organizing the possible values hierarchically is to organize a conception of the problem

space that can be used by others for classifying their own experiments. The actual criteria used are
somewhat subjective; naturally there are multiple criteria for classifying processes, effectiveness measures,

and software documents, but we have selected just those that have contributed to our conception of reading
techniques.

3 Here we are using the terms "faults" and "errors" according to the IEEE standard definitions [14], in

which "fault" refers to defects appearing in some artifact while "error" refers to an underlying human
misconception that may be translated into faults.

Document

Requirements Design Code

Natural SCR . .

Language

Figure 3 : A portion of

documents.

Data Flow Object • • . Structured OO

Diagrams Oriented

the hierarchy of possible values for describing software

Thus a GQM template for the PBR experiment could be:

Analyze reading techniques to evaluate their ability to detect defects in a Requirements Document
written in English from the point of view of the knowledge builder in the context of a particular
variable set.

A GQM goal is not meant to be a definitive description, but reflects the interests and priorities of the

experimenter. If we were to study the process model for the reading techniques in each experiment in more

detail, we would see that each technique is tailored to a specific task (e.g., analysis or construction, etc.)
and to a specific document. This is what characterizes the reading techniques and distinguishes them from
one another. Thus the process goals used to classify measures of effectiveness in Figure 2 can be easily

adapted to describe the processes themselves (Figure 4). The distinction between analysis and construction
process goals can apply directly to processes. That is, we hypothesize that analysis tasks differ sufficiently

from construction tasks that, along with differences in the way they may be evaluated for effectiveness,
there may also be different guidelines used in their construction. Thus figures 2 and 3 can also be

mechanisms for identifying process model attributes. They should be accounted for in the process model as
well as the effect on process.

Process Goal

Analysis Construction

Defect Usability . . Reuse Maintenance . . .

Detection

Figure 4: A portion of the hierarchy of possible values for describing the goal of

a software engineering process.

Thus we can say that we are:
analyzing a reading technique for thepurpose of evaluating its ability to detect defects in a natural

language requirements document
or we can say that we are:

analyzing a reading technique tailored to defect detection in natural language requirements for the
purpose of evaluation.

It depends on whether we are emphasizing the definition of the process or of its effectiveness.

In linking goal templates to hypotheses, we can think of the process model (object of study) as the

independent variable, the effect on product (focus) as the dependent variable, and the context variables as
the variables that exist in the environment of the experiment. The differences or similarities between

experimental hypotheses can then be described in terms of these hierarchies of possible values. For
example, consider the studies of DBR and PBR. In both cases, the process model was focused on the same

task(defectdetection);althoughthenotationdiffered,bothwerealsofocusedonthesamedocument
(requirements).If allotherattributesforprocess,product,andcontextmodelswereheldconstant,wecould
begintothinkofhypothesesatahigherlevelofabstraction.Thatis,insteadofthehypothesis:

Subjects using a reading technique tailored to defect detection in natural language
requirements are more effective than subjects using ad hoc techniques for this task

The following hypothesis might be more useful:

Subjects using reading techniques tailored to defect detection in requirements are more
effective than subjects using ad hoc techniques for this task.

The difference between these hypotheses is that the focus of the study is described at a higher level of

abstraction for the second hypothesis (requirements) than for the first (natural language requirements).

This difference in abstraction makes the second hypothesis more difficult to test. In fact, probably no single
study could ever give us overwhelming evidence as to its validity, or lack thereof. Testing the second

hypothesis would require some idea of what types of requirements notation are of interest to practitioners.
Building up a convincing body of evidence requires the combined analysis of multiple studies of specific
reading techniques for defect detection in requirements. But the effort required to formulate the hypothesis

and begin building a body of evidence helps advance the field of software engineering. At best, the
evidence can lead to the growth of a body of knowledge, containing basic and important theories

underlying some aspect of the field. At worst, the effort spent in specifying the models forces us to think
more deeply about the relevant ways of characterizing software engineering models that we, as researchers,
are implicitly constructing anyway.

The above discussion should not be taken to imply that the attributes identified in Figures 1 through 4 are

the only ones that are important, or for which hierarchies of possible values exist. To choose another

example, in specifying the model of the context it is almost always important to characterize the experience
of the subjects of the experiment. The most appropriate way of characterizing experience depends on many

things; two possibilities are proposed in Figure 5.

Experience

Students Professionals

Experience

Never used Learned Applied Applied Applied

process process in a process on process on 2- process on >3

before class one project 3 projects projects

Figure 5: Two possible value hierarchies for measuring sub2ect experience.

The trees shown in Figure 5 present two different ways of characterizing experience. The first is a simpler

way of characterizing the attribute that distinguishes only between subjects who are still learning software
engineering principles versus those who have applied them on real projects. The second hierarchy attempts

to place finer distinctions on the amount of experience a subject has applying a particular process. Each
may be appropriate to different circumstances.[vSl]

4. Replicating Experiments
In preceding sections of this paper, we have tried to raise several reasons why families of replicated

experiments are necessary for building up bodies of knowledge about hypotheses. Another reason for
running replications is that they can increase the amount of confidence in results by addressing certain

threats to validity: Internal validity defines the degree of confidence in a cause-effect relationship between
factors of interest and the observed results, while external validity defines the extent to which the

conclusionsfromtheexperimentalcontextcanbegeneralizedtothecontextspecifiedintheresearch
hypothesis[I 1].Inthissection,wediscussreplicationsinmoredetailandlookatthepractical
considerationsthatresult.

Ourprimarystrategyforsupportingreplicationsinpracticehasbeenthecreationof lab packages, which

collect information on an experiment such as the experimental design, the artifacts and processes used in
the experiment, the methods used during the experimental analysis, and the motivation behind the key

design decisions. Our hope has been that the existence of such packages would simplify the process of
replicating an experiment and hence encourage more replications in the discipline. Several replications
have been carried out in this manner and have contributed to a growing body of knowledge on reading

techniques.

4.1. Types of Replications

Since we consider that replications may be undertaken for various reasons, we have found it useful to

enumerate the various reasons, each of which has its own requirements for the lab package. In our view the
types of replications that need to be supported can be grouped into 3 major categories:

1. Replications that do not vary any research hypothesis. Replications of this type vary none of the
dependent or independent variables of the original experiment.

1.1. Strict replications (i.e. replications that duplicate as accurately as possible the original
experiment). These replications are necessary to increase confidence in the validity of the

experiment. They demonstrate that the results from the original experiment are repeatable, and
have been reported accurately by the original experimenters.

1.2. Replications that vary the manner in which the experiment is run. These studies seek to

increase our confidence in experimental results by addressing the same problem as previous
experiments, but altering the details of the experiment so that certain internal threats to validity

are addressed. For example, a replication may vary the order of activities to avoid the possibility
that results depend not on the process used, but on the order in which activities in the experiment
are completed.

The attempt to compensate for threats to internal validity may also lead to other types of changes.

For example, a process may be modified so that the researchers can assess the amount of process
conformance of subjects. Although the aim of the change may have been to address internal

validity, the new process should be evaluated in order to understand whether unanticipated effects
on process effectiveness have resulted. Thus such a replication would fall into the second major
category, discussed below.

. Replications that vary the research hypotheses. Replications of this type vary attributes of the

process, product, and context models but remain at the same level of specificity as the original
experiment.

2.1. Replications that vary variables intrinsic to the object of study (i.e. independent variables).
These replications investigate what aspects of the process are important by systematically varying
intrinsic properties of the process and examining the results. This type of experiment requires the

process to be supplied in sufficient detail that changes can be made. This implies that the original
experimenters must provide the rationales for the design decisions made as well as the finished

product. For example, researchers may question whether the specificity at which the process is
described affects the results of applying the process. In this sense, the study of PBR2 may be seen

as a replication of the study of PBR, in which the level of specificity of the process was varied
but all other attributes of the process model remained the same.

2._. Replications that vary variables intrinsic to the focus of the evaluation (i.e. dependent
variables). Replications of this type may vary the ways in which effectiveness is measured, in

order to understand for what dimensions of a task a process results in the most gain. For example,
a replication might choose another effectiveness measure from those listed in Figure 2,

investigating whether a defect detection process is more beneficial for finding errors than faults.

.

Other aspects of the focus model might be varied instead, e.g. a process might be evaluated on a
document of the same type but different notation to see if it is equally effective (see Figure 3).

2.3. Replications that vary context variables in the environment in which the solution is
evaluated. These studies can identify potentially important environmental factors that affect the
results of the process under investigation and thus help understand its external validity. For

example, replications may be run using the same process and product models as the original

experiment but on professionals instead of students (see Figure 5) to see if the same results are
obtained.

Replications that extend the theory. These replications help determine the limits to the effectiveness
of a process, by making large changes to the process, product, and/or context models to see if basic

principles still hold. We discussed replications in the previous category as replacing the value of some
variable (e.g. document on which the process was applied, Figure 3) with another, equally specific

value (e.g. SCR requirements instead of English-language requirements). Replications in this category,
however, can be thought of as replacing an attribute of a process, product, or context model with a

value at a higher level of abstraction (i.e. from a higher level in the hierarchy). Again using Figure 3,
researchers may choose to study whether a type of process is applicable to requirements documents in

general, rather than limiting their scope to a specific kind. The type of hypotheses associated with such
replications was discussed in section 3.

4.2 Implications for Lab Package Design

In software engineering research, there has been a movement toward the reuse of physical artifacts and

concrete processes between experiments. This is indeed a useful beginning. The cost of an experiment is
greatly increased if the preparation of multiple artifacts is necessary. Creating artifacts which are

representative of those used in real development projects is difficult and time consuming. Reusing artifacts
can thus reduce the time and cost needed for experimentation. A more significant benefit is that reuse

allows the opportunity to build up knowledge about the actual use of particular, non-trivial artifacts in
practice. Thus replications (and experimentation in general) could be facilitated if there were repositories

of reusable artifacts of different types (e.g. requirements) which have a history of reuse and which,

therefore, are well understood. (A model for such repositories could be the repository of system
architectures [12], where the relevant attributes of each design in the repository are known and described.)

A first step towards this goal is the construction of web-based laboratory packages, At the most basic level,
these packages allow an independent experimenter to download experimental materials, either for reuse or

for better understanding. In this way, these packages support strict replications (as defined in section 4.1),
which require that the processes and artifacts used in the original experiment be made available to
independent researchers.

However, web-based lab packages should be designed to support more sophisticated types of replications
as well. For example, packages should assist other experimenters in understanding and addressing the

threats to validity in order to support replications that vary some aspects of the experimental setup. Due to
the constraints imposed by the setting in which software engineering research is conducted, it is almost

never possible to rule out every single threat to validity. Choosing the "least bad" set of threats given the
goal of the experiment is necessary. Lab packages need to acknowledge this fact and make the analysis of

the constraints and the threats to validity explicit, so that other studies may use different experimental
designs (that may have other threats to validity of their own) to rule out these threats.

Replications that seek to vary the detailed hypotheses have additional requirements if the lab package is to
support them as well. For example, in order for other experimenters to effectively vary attributes of the

object of study, the original process must be explained in sufficient detail that other researchers can draw
their own conclusions about key variables. Since it is unreasonable to expect the original experimenters to

determine all of the key variables apriori, lab packages must provide rationales for key experimental
context decisions so that other experimentalists can determine feasible points of variation of interest to

themselves. Similarly, lab packages must specify context variables in sufficient detail that feasible changes

totheenvironmentcanbeidentifiedandhypothesesmadeabouttheireffectsontheresults.

Finally,in order to build up a body of knowledge about software engineering theories, researchers should

know which experiments have been run that offer related results. Therefore, lab packages for related
experiments should be linked, in order to collect different experiments that address different areas of the

problem space, and contribute evidence relevant to basic theories. The web is an ideal medium for such

packages since links can be added dynamically, pointing to new, related lab packages as they become
available. Thus it is to be hoped that lab packages are "living documents" that are changed and updated to

reflect our current understanding of the experiments they describe.

Lab packages have been our preferred method for facilitating the abstraction of results and experiences
from series of well-designed studies. Interested readers are referred to existing examples of lab packages:

[25, 26]. By collecting detailed information and results on specific experiments, they summarize our
knowledge about specific processes. They record the design and analysis methods used and may suggest
new ones. Additionally, by linking related studies they can help experimenters understand what factors do

or do not impact effectiveness.

4.3. The Experimental Community

A group of researchers, from both industry and academia, has been organized since 1993 for the purpose of
facilitating the replication of experiments. The group is called ISERN, the International Software
Engineering Research Network, and includes members in North America, Europe, Asia, and Australia.

ISERN members publish common technical reports, exchange visitors, and organize annual meetings to
share experiences on software engineering experimentation 4. They have begun replicating experiments to

better understanding the success factors of inspection and reading.

The Empirical Software Engineering journal has also helped build an experimental community by

providing a forum for publishing descriptions of empirical studies and their replications. An especially
noteworthy aspect of the journal is that it is open to publishing replicated studies that, while rigorously

planned and analyzed, yield unexpected results that did not confirm the original study. Although it has
traditionally been difficult to publish such "unsuccessful" studies in the software engineering literature, this
knowledge must be made available if the community is to build a complete and unbiased body of

knowledge concerning software technologies.

5. Conclusions
The above discussion leads us to propose that the following criteria are necessary before we can begin to
build up comprehensive bodies of knowledge in areas of software engineering:

1. Hypotheses that are of interest to the software engineering community and are written in a context that
allow for a well defined experiment;

2. Context variables, suggested by the hypotheses, that can be changed to allow for variation of the
experimental design (to make up for validity threats) and the context of experimentation;

3. A sufficient amount of information so that the experiment can be replicated and built upon; and

4. A community of researchers that understand experimentation, the need for replication, and are willing
to collaborate and replicate.

With respect to the Basili/Reiter study introduced in section 1, we can note that while it satisfied criteria 1

and 3, it failed with respect to criteria 2 and 4. It was not suggested by the authors that other researchers
might vary the design or manipulate the processes or criteria used for evaluation (although the analysis of

the data was varied in a later study [6]). Nor was there a community of researchers willing to analyze the
hypotheses even if suggestions for replication had been made.

In contrast, the set of experiments on reading, discussed in a working group at the 1997 annual meeting of

4 More information is available at the URL http://wwwagse.informatik.uni-kl.de/ISERN/isern.html

10

ISERN[18],isanexamplethatwehavebuiltupabodyofknowledgebyindependentresearchersworking
ondifferentpartsoftheproblemandexposingtheirconclusionstodifferentplausiblerivalhypotheses.We
haveshowninthispaperthatexperimentalconstraintsinsoftwareengineeringresearchmakeit very
difficult,andevenimpossible,todesignaperfectsinglestudy.Inordertoruleoutthethreatstovalidity,it
ismorerealistictorelyonthe"parsimony"conceptratherthanbeingfrustratedbecauseoftryingto
completelyremovethem.Thisappealtoparsimonyisbasedontheassumptionthattheevidenceforan
experimentaleffectismorecredibleif thateffectcanbeobservedinnumerousandindependent
experimentseachwithdifferentthreatstovalidity[11].

A secondconclusionisthatempiricalresearchmustbeacollaborativeactivitybecauseof the huge number

of problems, variables, and issues to consider. This complexity can be faced with extensive brainstorming,
carefully designing complementary studies that provide coverage of the problem and solution space, and

reciprocal verification.

It is our contention that interesting and relevant hypotheses can be identified and investigated effectively if
empirical work is organized in the form of families of related experiments. In this paper, we have raised
several reasons why such families are necessary:

• To investigate the effects of alternative values for important attributes of the experimental models;

• To vary the strategy with which detailed hypotheses are investigated;

• To make up for certain threats to validity that often arise in realistically designed experiments.

Discussion within the experimental community is also needed to address other issues, such as what

constitutes an "acceptable" level of confidence in the hypotheses that we address as a community. By
running carefully designed replications, we can address threats to validity in specific experiments and
accumulate evidence about hypotheses. However, we are unaware of any useful and specific guidelines

that concern the amount of evidence that must be accumulated before conclusions can confidently be drawn
from a set of related experiments, in spite of the existence of specific threats. More discussion within the

empirical software engineering community as to what constitutes a sufficient body of credible knowledge
would be of benefit.

Building up a body of knowledge from families of experiments has the following benefits for the software

engineering researcher:

• It allows the results of several experiments to be combined in order to build up our knowledge about
software processes.

• It increases the effectiveness of individual experiments, which can now contribute to answering more
general and abstract hypotheses.

• It offers a framework for building relevant practical software engineering knowledge, organized
around the GQM goal template or another framework from the literature.

• It provides a way to develop and integrate laboratory manuals, which can facilitate and encourage the
types of replications that are necessary to expand our knowledge of basic principles.

• It helps generate a community of experimenters, who understand the value of, and can carry out, the
needed replications.

The ability to carry out families of replications has the following benefits for the software engineering

practitioner:

• It offers some relevant practical SE knowledge; fully parameterizing process, product, and context
models allows a better understanding of the environment in which the experimental results hold.

• It provides a better basis for making judgements about selecting process, since practitioners can match

their development context to the ones under which the processes are evaluated.

• It shows the importance of and ability to tailor "best practices", that is, it shows how software

processes can be altered by meaningful manipulation of key variables.

• It provides support for defining and documenting processes, since running related experiments assists
in determining the important process variables.

• It allows organizations to integrate their experiences by making explicit the ways in which experiences

differ (i.e. what the relevant process, product, and context models are) or are similar, and allowing the

I1

abstractionofbasicprinciplesfromthisinformation.

Acknowledgements
This work was supported by NSF grant CCR9706151, NASA grant NCC5170, and UMIACS. The authors
would like to thank Michael Fredericks and Shari Lawrence Pfleeger for their valuable comments on earlier

drafts of this paper.

References

[1] V.R.Basili, "The experimental paradigm in sol, ware engineering", Experimental Software
Engineering Issues: Critical Assessment and Future Directions, International Workshop, Dagstuhl,

Germany, 1992. Appeared in Springer-Verlag, Lecture Notes in Computer Science, Number 706,
1993.

[2] V.R. Basili, "Evolving and packaging reading technologies", Journal of Systems and Soft, rare, vol.

38, no. 1, pp.3-12, July 1997.

[3] V. Basili, G. Caldiera, F. Lanubile, and F. Shull, "Studies on reading techniques", Proc. of the
Twenty-First Annual Software Engineering Workshop, SEL-96-002, Goddard Space Flight Center,

Greenbelt, Maryland, pp.59-65, December 1996.

[4] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Soerumgaard, M. Zelkowitz, "The
empirical investigation of perspective-based reading"; Empirical Software Engineering Journal, vol.

1, no. 2, 1996.

[5] V.R. Basili, S. Green, O. Laitenburger, F. Lanubile, F. Shull, S. Sorumg_rd, and M. Zelkowitz,
"Packaging researcher experience to assist replication of experiments", Proc. of the ISERN meeting

1996, Sydney, Australia, 1996.

[6] V.R. Basili, and D. H. ttutchens, "An empirical study of a syntactic metric family", IEEE
Transactions on Software Engineering, vol. SE-9, pp.664-672, November 1983.

[7] V.R. Basili, and R. W. Reiter, "A controlled experiment quantitatively comparing software

development approaches", IEEE Transactions on Software Engineering, vol. SE-7, no. 3, pp.299-

320, May 1981.

[8] V.R. Basili, and H. D. Rombach, "The TAME project: Towards improvement-oriented software
environments", 1EEE Transactions on Software Engineering, vol. SE-14, no. 6, June 1988.

[9] V.R. Basili, R. W. Selby, and D. H. Hutchens, "Experimentation in software engineering", IEEE
Transactions on Software Engineering, vol. SE-12, no. 7, pp. 733-743, July 1986.

[10] V. Basili, F. Lanubile, F. Shull, "Investigating maintenance processes in a framework-based
environment", Proc. of the Int. Conf. on Software Maintenance, Bethesda, Maryland, pp.256-264,
1998.

[11] D.T. Campbell, and J. C. Stanley, Experimental and Quasi-Experimental Designs for Research,
Boston: Houghton Mifflin Co, 1963.

[12] Composable Systems Group, "Model Problems", http://www.cs.cmu.edu/-Compose/html/ModProb/,
1995.

[13] P. Fusaro, F. Lanubile, and G. Visaggio, "A replicated experiment to assess requirements inspections

techniques", Empirical Software Engineering Journal, vol.2, no. 1, pp.39-57, 1997.

[14] IEEE. Software Engineering Standards. IEEE Computer Society Press, 1987.

[15] C.M. Judd, E. R. Smith, and L. H. Kidder, Research Methods in Social Relations, sixth edition,
Orlando: Harcourt Brace Jovanovich, Inc., 1991.

[16] O. Laitenberger, and J. M. DeBaud, "Perspective-based reading of code documents at Robert Bosch
GmbH", Journal of lnformation and Software Technology, 39, pp.781-791, 1997.

[17] F. Lanubile, "Empirical evaluation of software maintenance technologies", Empirical Software
Engineering Journal, vol.2, no.2, pp.95-106, 1997.

[18] F. Lanubile, "Report on the results of the parallel project meeting reading techniques",

12

http://seldi2.uniba.it:1025/isern97/readwg/index.htm,October1997.
[[9] F.Lanubile,F.ShuIl,V.Basi[i,"Experimentingwitherrorabstractioninrequirementsdocuments",

Proc. of the 5th Int. Symposium on Software Metrics, Bethesda, Maryland, pp. I 14-12 I, 1998.

[20] C.M. Lott, and H. D. Rombach, "Repeatable software engineering experiments for comparing

defect-detection techniques', Empirical Soft_ are Engineering Journal, vol. 1, no.3, pp.241-277,
1996.

[21] K. Popper, The Logic of Scientific Discovery, Harper Torchbooks, New York, NY, 1968.

[22] A. Porter, L. Votta, V. Basili, "Comparing detection methods for software requirements inspections:

a replicated experiment", IEEE Transactions on Software Engineering, vol. 21, no. 6, pp. 563-575,
1995.

[23] F. Shull, F. Lanubile, and V. R. Basili, "Investigating Reading Techniques for Framework
Learning", Technical Report CS-TR-3896, UMCP Dept. of Computer Science, UMIACS-TR-98-26,

UMCP Institute for Advanced Computer Studies, ISERN-98-16, International Software Engineering
Research Network, May 1998.

[24] F. ShuU. Developing Techniques for Using Soft3_are Documents: A Series of Empirical Studies.

Ph.D. thesis, University of Maryland, College Park, December 1998.

[25] F. Shull, "Reading Techniques for Object-Oriented Frameworks",

http://www.cs.umd.edu/projects/SoftEn_ESEG/manual/sbr_package/manual.html.

[26] F. Shull, "Lab Package for the Empirical Investigation of Perspective-Based Reading",

http://www'cs'umd'edu/pr°jects/S°ftEng/ESEG/manual/pbr--package/manual'html"

[27] Z. Zbang, V. 13asili, and B. Shneiderman, "An Empirical Stud), of Perspective-based Usability

Inspection", Human Factors and Ergonomics Society Annual Meeting, Chicago, Oct. 1998.

13

0.,

a_ o._•

X _'
I,LI '--

0_,

C
llm

lllm

,I=

8,

{
==

I,Ll

LIJ
_c

c-"

.E

gg-

_e

0

S3-1dW_3

&

,6._E

,,'I,
m

0

.>, .Iz,

E_

.E .c_

_e

L_

¢J

5

o,
f_

2
0

-0

-=

If.

..I

0

o

1o 01

0 0
w 5 ___ __

*" _oo _ _I

_-__I _ 80_ _,

< ¢0 < o

"[
=o
0

0

>

|m

_=
llm

llm

q==
(D
n,'

u_ _ cc

0 ..,
u.

= _ .-_
LLI

'Z3
:3

== U) "
0 _ o"

¢_ "'='

,4, o ce=

.===_ i..

0

gm
m

LIJ

<
a

0')
C

im

rv'

-.7 "_; i

q;

O"
im

0

i--
G'J
e-

|m

ilo_

>1 e"l __

I_ E: 0 0 0 __

a : -_ 0 "_E

.____1 _-° _ _l_l - oo
"_ _ -_'1=10l _'-I -ol _- _ • "E

E_I °°°_.. • .=_ _ u el _i ,-I • oI "Ol o
_ _ _ o _o_ _l _ _-_._1._1_18 :e_

°_ °°° _i_t• _ _. _ a,l=l_l_ ,- _ _)-o
__ ovo_ =,.,_,_ .__ __

(D L

._o__,=_ _1_ _1 _ oU)(!) _)

_ _ '- (_"=1_ _ (_-o
..E ..E • • q.) "0

,__o . __ __,_
E. _J >1 El0 < _=, a), ..', < _.. -_1 < .-

.__E
g.

"6

,,I

>:,

.E

.o

8

m

<o

,=_

¢)

I--

o

o
2,

,3

// _=_

Session 2: Experimentation

Ci#mre Con/h'cls lh 2ofn_are EngineerMg Pec,_no/ogv Transfer

D. Wallace, National Institute Of Standards and Technology,

and M. Zelkowitz, University Of Maryland

An Adapla//on ojFExper/Mz enta/Deslgn 1o Emp/r/'ca/ 7a&'gation of Sofn_ are

Eng/'neer/'/lg Theories

N. Juristo and A. Moreno, Universidad Politecnica de Madrid

D/Yc/p//'nedSo.I/ware Gng/'//eer/'//g." Ex/en_'ng En/erpr/se Eng/'neer/'ng

Arch#ecmres 1o Suppor/ /he O(:TParaglgm
F. Maymir-Ducharme, Lockheed Martin

Culture Conflicts in Software Engineering Technology Transfer

Marvin V. Zelkowitz*

Department of Computer Science and
Inst. for Advanced Computer Studies

University of Maryland

College Park, Maryland 20742
and Fraunhofer Center - Maryland

College Park, Maryland 20742

Dolores R. Wallace

Information Technology Laboratory
Natl. Inst. of Standards and Technology

Gaithersburg, Maryland 20899

David W. Binkley

Computer Science Department

Loyola College
Baltimore, Maryland

and lnIbrmation Technology Lab.

Natl. Inst. of Standards and Technology

Gaithersburg, MD 20899

Abstract

Although the need to transition new technology to improve the process of developing

quality software products is well understood, the computer software industry has done a

poor job of carrying out that need. All too often new software technology is touted as the

next "silver bullet" to be adopted, only to fail and disappear within a very short period.

New technologies are often adopted without any convincing evidence that they will be

effective, yet other technologies are ignored despite the published data that they will be

useful. Clearly there is a clash between those developing new technologies and those

responsible for developing quality products. In this paper we discuss a study conducted

among a large group of computer software professionals in order to understand what

techniques can be used to support the introduction of new technologies, and to understand

the biases and opinions of those charged with researching, developing or implementing

those new technologies. This study indicates which evaluation techniques are viewed as
most successful under various conditions. We show that the research and industrial

communities do indeed have different perspectives, which leads to a clash between the

goals of the technology researchers and the needs of the technology users.

Keywords: Experimentation, Survey, Technology transfer, Validation models

1. Introduction

When the computer industry began several decades ago, software engineering was somewhat unique

among engineering fields in that researchers and practitioners worked closely together in using and

understanding this new technology. There was easy cross-fertilization between these two communities.

Over time, this has changed with tremendous growth of computer applications, computer users, and

computing professionals. Programming languages have evolved from-low level assembler languages to

today's very high level visual object-oriented languages. Simple programs have become complex large

systems, with some systems running an entire enterprise. Methods for developing programs have grown

from design-writing on napkins to a myriad of overlapping processes comprising varieties of methods and

documentation types.

A response to this growth has been a corresponding growth in organizations dedicated to supplying an

ever-increasing need for better tools and techniques for producing these complex products. Trade shows,

research conferences, trade magazines proliferate on the technology scene. New professional technical

* Research supported in part by National Science Foundation grant CCR-9706151 to the University of Maryland.

SEW Proceeedings-98

journals regularly come alive to add to an already large number; the IEEE alone through its Computer

Society currently publishes 20 monthly or bimonthly computer technology publications.

In spite of an abundance of methods and tools and information about them, why do the same problems

appear over and over again in new software developments? Why are development schedules not met?
Why do some systems fail? Why do some technical problems remain unsolved? While new solutions are

frequently proposed, many have not been transferred into the industry at large. Many problems remain
untouched by researchers. Why does it appear that today researchers and practitioners are no longer

necessarily understanding each other's needs and efforts?

Researchers have been looking at the role of experimentation in computer science research [Fenton94].

However, most of these have looked at the relatively narrow scope of how to conduct replicated scientific

experiments within this domain. We have been looking at the larger problems of the role of
experimentation as an agent in transferring new technology into industry. We have been studying various

experimental methods, in addition to the replicated experiment, useful for validating newly developed
software technology [Zelkowitz97] [Zelkowitz98], and we have also studied various evaluation methods

industry uses before adopting a new technology. As we later explain, these two processes are very
different. The questions important to us include "Which of these validation and evaluation methods are

most effective? Why aren't these methods used more often?" and "Why don't these results provide
evidence for the transference of a technology into industry?" To try to understand these questions, we

decided to survey a cross section of computer professionals about their views about software engineering

technology validation.

1.1 The research and hTdustrial communities

Researchers, whether in academia or industry, have a desire to develop new concepts and are rewarded

when they produce new designs, algorithms, theorems, and models. The "work product" in this case is

often a published paper demonstrating the value of their new technology. Development professionals,
however, have a desire and are paid to produce a product using whatever technology seems appropriate

for the problem at hand. The end result is a product that produces revenue for their employer.

Researchers select their research according to a topic of their own interest; the topic may or may not be

directly related to a specific problem faced by industry. After achieving a result that they consider
interesting, they have a great desire to get that result in print. Providing a good scientific validation of the

technology is often not necessary for publication, and several studies have shown that experimental
validation of computer technology is particularly weak, e.g., [Tichy95] [Zelkowitz98].

In industry, producing a product is most important and the "elegance" of the process used to produce that

product is less important than achieving a quality product on time as a result. Being "state of the art" in
industry often means doing things as well (or as poorly) as the competition, so there is considerable risk

aversion to try a new technology unless the competition is also using it.

Consequently, researchers produce papers outlining the values of new technology, yet industry often

ignores that advice. Assorted "silver bullets" are proposed as solutions to the "software crisis" without any

good justification that they may be effective, are used for a time by large segments of the community, and
then are discarded when they indeed turn out not to be the solution. Clearly the research community is not

generating results that are in tune with what industry needs to hear, and industry is making decisions
without the benefit of good scientific developments. The two communities are severely out of touch with

SEW Proceeedings-98

oneanother.Thepurposeof our survey is to try and understand these communities and understand their
differences.

1.2 Research models

We began our effort to understand the differences between the research and industrial communities by

examining models of experimentation for computer technology research. We identified 12 methods of
experimentation that have been used in the computer field [Table 1.1] and verified their usage by studying

612 papers appearing in three professional publications at 5-year intervals [Zelkowitz98] from 1985

through 1995. About 20% of the papers contained no validation at all and another third contained only a
weak ineffective form of validation. The figure for other scientific fields was more like 10% - 15%

[Zelkowitz97]. The methods are defined in Appendix 1.

Table 1.1 Experimental Validation Models

Case study

Dynamic analysis

Field study

Legacy data
Lessons learned

Literature search

Project monitoring

Replicated
Simulation

Static analysis

Synthetic

Theoretical analysis

Our results were consistent with those found by Tichy in his 1995 study of 400 research papers
[Tichy95]. He found that over 50% of the design papers did not have any validation in them. In a more

recent paper [Tichy98], Tichy makes a strong argument that more experimentation is needed and refutes

several myths deprecating the value of experimentation.

1.3 Transition models

Given the set of research validation methods, we then sought to determine the techniques actually used by
industry in order to transition a new technology. We visited several large development corporations _and

interviewed reasonably high level individuals, such as Chief Scientist, Chief Technology Officer, and

managers of large divisions. All had ultimate responsibility for technology selection. They were
primarily influenced by trade shows, weekly trade magazines, Web information, customer opinion (i.e.,

technologies that would win the contract), vendor opinion, friends in other companies, and infrequently
by the papers in professional technical journals. Sometimes recommendations from technical staff would

be based on their readings and would eventually reach the managers' offices. Once a technology was
identified, the companies might perform a pilot study or were mentored by an expert of the technology to

determine if the technology would be effective.

Based on these industrial interviews and some earlier work by Brown and Wallnau [Brown96], we

defined a set of industrial transition models for technology evaluation. While the transition models

include some that are similar to those of the researchers, many are different [Table 1.2]; Appendix 2

provides a short description of these models. For example, vendor opinion (e.g., trade shows, weekly
trade magazines, web information) seemed important to industry; Web information also provides access

to research literature so we needed to separate the medium in which information is located from the type

of model that information supports. An important finding, though, is that everyone with whom we spoke
claimed to use the web to find technology information.

To assure flank discussion, we agreed not to reveal the names of the corporations who spoke with us.

SEW Proceeedings-98

Table 1.2 Industrial Transition Models

Case study

Data mining

Demonstrator projects
Feature benchmark

Field study
Measurement

Pilot study

Research literature

Shadow (replicated) project
State of the art

Survey
Theoretical analysis

Vendor opinion

Our interviews revealed that a company may use people-oriented methods for technology transfer. For example, a
company may hire a well-recognized expert in that technology, perhaps its creator, to help integrate the method into
company practices. They may specifically recruit people who have that skill on their resumes. Another practice
appears to be training by hiring an expert to teach in-house training or by sending their personnel to universities or
training companies.

In retrospect we would have entered these models in our survey, especially because the survey results discussed in
Section 4 indicate that in two instances, two models could have been combined. Field study and survey both
estimate the probable effects of some new technology. In the field study, several development groups may be
observed over a short time period while in the survey several experts may discuss their opinions based on their
expertise in the technology. They are rather closely aligned in time and people requirements and were perceived
approximately the same. A pilot study involves a sample project, usually small, to study a new technique while
demonstrator studies are less complete multiple instances of a pilot study.

1.4 Understanding each community

Researchers principally use methods from Table 1.1 in order to demonstrate the value of their

technological improvements and industry selects new technology to employ by using the methods in
Table 1.2. How do these communities interact? How can their methods support forward growth in

computer technology and its application in real systems? We need to develop a better understanding of
what each community understands and values. Then, perhaps, we can identify commonalities and gaps,

and from there, mechanisms to enable each community to benefit better from the other.

2. Development of the survey

To understand the different perceptions between those who develop technology and those who use

technology, we decided to survey the software development community to learn how they view the
effectiveness of the various evaluation models of Tables 1.1 and 1.2. For questions, we based our survey

on a previous survey [Daly97], modified for our current purposes. Each survey participant was to rank the

difficulty of each of our 12 experimental models (or 13 evaluation models) according to 7 criteria, criteria
1 and 2 being new and 3 through 7 being the same as the Daly criteria. We decided to try to obtain an

objective score by having all values ranked between 1 and 20, with 10 being arbitrarily defined as the
maximum difficulty that a given company would apply in practice, and 20 being defined as an impossible
model for that criterion.

2.1 Survey questions

The 7 questions we chose were:

1. How easy is it to use this method in practice? -- Can we use this method to evaluate a new

technology? The answer should be independent of whether the method gives accurate results or not.

SEW Proceeedings-98

.

.

What is the cost of adding one extra subject to the study? -- Assume you want to add an

additional subject (another data point) to your sample. What is the relative cost of doing so?

What is the internal validity of the method? -- What is the extent to which one can draw correct

causal conclusions from the study? That is, to what extent can the observed results be shown to be

caused by the manipulated dependent experimental variables and not by some other unobserved
factor?

°

,

What is the external validity of the method? -- What is the extent to which the results of the

research can be generalized to the population under study and to other settings (e.g.,

professional programmers, organizations, real projects)?

What is the ease of replication? -- What is the ease with which the same experimental conditions

can be replicated (internally or externally) in subsequent studies? It is assumed that the variables that

can be controlled (i.e., the dependent variables) are to be given the same value.

, What is the potential for theory generation? -- What is the potential of the study to lead to

unanticipated a priori and new causal theories explaining a phenomenon? For example, exploratory

studies tend to have a high potential for theory generation.

7. What is the potential for theory confirmation? -- What is the potential of the study to test an a

priori well-defined theory and provide strong evidence to support it?

In an eighth question we asked each participant to rank the relative importance (again using the 1-20

ranking) of each of the 7 questions when making a decision on using a new technology. That is, which of

the 7 questions was most important when a new technology was being evaluated?

We developed two different survey instruments from these 8 questions -- one by ranking each of the 12

research validation methods of Table 1.1 (i.e., the research survey) and one by ranking each of the 13
evaluation methods of Table 1.2 (i.e., the industrial survey).

2.2Population samples

For our 2 survey instruments we obtained three populations to sample. Sample l included U.S.-based
authors with email addresses published in several recent sot_ware engineering conference proceedings 2.

These were mostly research professionals, although included a few developers. Approximately 150

invitations to participate were sent to these individuals, and 45 accepted. The survey was not sent until
the participant agreed to fill out the form, which we estimated would take about an hour to 90 minutes to

read and fill out. About half of the individuals returned the completed form.

Sample 2 included U.S.-based authors with email addresses from several recent industry-oriented

conferences. They were sent the industrial survey. About 150 invitations to participate were sent and

about 50 responded favorably to our invitation. They were then sent the survey. Again, about half
completed and returned the form.

2The survey was conducted via email.

SEW Proceeedings-98

Sample3 werestudentsinagraduatesoftwareengineeringcourseattheUniversityof Marylandtaughtby
oneof theauthorsof thispaper.This sample was given the research survey. This course was part of a
masters degree program in software engineering, and almost all of the students were working

professionals with experience ranging up to 24 years. Not surprisingly, the return rate of the form for this

sample was high at 96% (44 of 46).

It is important to realize that we wanted the subjective opinion of those surveyed on the value of the

respective validation techniques based upon several criteria. Not everyone returning the survey had
previously used all, or even any, of the listed methods. We simply wanted their views on how important

they thought the methods were. However, by choosing our sample populations from those writing papers

for conferences or taking courses for career advancement, we believe we have chosen sample populations
that are more knowledgeable, in general, about validation methods than the average software

development professional. The invitations were sent early in 1998, and data was collected February
through early April, 1998. Table 2.1 summarizes the 3 sample populations.

Sample Survey

1 (Research) Research

2 (Industry)

3 (Students.)

Industw
Research

Table 2.1 Characteristics of each survey sample

Sample Years Academic Industrial Industrial

size exper. Position R&D developer
18 18.6 9 3 3

25 19.1 0 5 8

44 6.6 1 5 27

Other (e.g.,

Consultants)

12

1!

3 Survey results

Our initial concern was to determine bias in the set of responses. Would certain individuals rank all
techniques high or low compared to other individuals? In order to test for this, we computed the average

raw scores for each technique for each question, and we also ranked each answer (i.e., computing the
easiest technique for each question, second easiest, third easiest, 12 theasiest). This would eliminate

such bias, but would also eliminate the significance of the value 10 being the subjective value of"hard to

do." Fortunately, we believe that we don't have to take this into account. Figure 1 shows the value for the
question "Easy to do." The first column represents the average raw scores for the 12 methods of Table 1.1

from the research sample (sample 1) and the second column is the average ranked score. Low values
indicate the more important techniques. The fact that the ordering of the techniques from best to worst
was essentially the same indicates that the raw score is an accurate reflection of the ranking. Only the 3rd

and 4 th, 5 th and 6 th, and 9 th and 10th techniques switched places, not a major change. Columns 3 and 4

represent similar data from the student sample (sample 3). Here only the third and fourth and eighth and
ninth techniques switched places. However, there are some slight differences between sample 1 and

sample 3, which will be discussed in Section 4.

Similar charts were obtained from the other questions. In addition, the correlation between the raw scores

and the ranked scores for sample 1 was 0.86, 0.96 for sample 2 and 0.93 for sample 3. On this basis, we

decided we could use the raw data and did not need to use only the ranked data for comparisons.

The average value for each technique for each of the 7 criteria appears in Figures 2 through 4. Figure 2
represents the average score for each of the 12 experimental methods over all 7 criteria for sample 1 with

alpha=.05 confidence interval bars surrounding each average value. The "7" in each criterion represents
the midpoint among the methods in order to make it easier to read the figure. Of greatest interest are bars

that do not overlap, meaning there is a 95% probability that the average values for those techniques

SEW Proceeedings-98

14

Sample 3

- Raw

score
12

_ Sample 3-

10 ----

8.

41 :
1 - Raw Sample I -

__ score Ranked score j

Figure 1. Easy to do. Average value for each of 12 validation methods.

indicate a significant difference. Figure 3 represents a similar graph for sample 2 (the industrial group

ranking 13 techniques) and Figure 4 represents a similar graph for sample 3 (the student industrial

sample).

SEW Proceeedings-98

18

1-case study 2-dynamic analysis 3-field study 4-lessons learned 5-legacy data 6-proJect monitoring 7-literature search

8-repticated experiment 9-simulation l O-static analysis 1 1-synthetic study 12-theoretical analysis

Easy to do?

16

Additional $

il

IrllI I r'.

Internal valid

! .
I

Externalvalid --o,repIh.oryg.oTl.orycon,

Figure 2. Sample 1 (research group) results.

SEW Proceeedings-98

18

16

14

12

10

1-case study 2-data mining 3-demonstrator projects 4-feature benchmark 5-field study 6-measurement 7-pilot study 8-research literature 9-

shadow(replicated) project 10-state of the art 11-survey 12-theoretical analysis 13-vendor opinion

Easy to do Additional $ Internal valid ---Ext--va/idi_- Ease of repl Theory Ge Theory conf.

I "7

Figure 3. Sample 2 (industry group) results.

SEW Proceeedings-98

1-case study 2-dynamic analysis 3-field study 4-lessons learned 5-legacy data 6-project monitoring 7-literature search 8-

replicated experiment 9-simulation 10-static analysis 11-synthetic study 12-theoretical analysis

14

Easy to do Additional $ Internal valid

,!6 "

4

2

0

Theory gen Iheory confirm

Figure 4. Sample 3 (student industrial group) results.

One way to simplify the data from these figures is to split the methods for each criterion into three

partitions: practical, neutral, and impractical. The following procedure was applied:

1. Each method whose upper confidence interval was below the average value for all techniques

would be listed in the practical partition. These methods are all "better than average"

according to our 95% confidence criterion.
2. Each method whose lower confidence interval was above the average value for all methods

would be listed in the impractical partition. These methods are all "worse than average"

according to our 95% confidence criterion.
3. All other methods would be listed in the neutral partition.

Tables 3.1 through 3.3 summarize this process giving the practical and impractical techniques. All other

methods are in the neutral partition.

Practical

Impractical

Table 3.1 Practical and impractical techniques from research sample

Easy
Dyn. anal
Les. learned

Legacy data
Static anal.

Replicated

Synthetic

Addit. $ Int. val. Ext. val.

Legacy data

Proj. mon.
Static anal.

Replicated

Dyn. anal.
Replication

Case study

Ease of repl.

Dyn. anal.
Simulation

Static anal.

Case study

Field study
Les. learned

Theory gen. Theory conf.

Replicated

Legacy data

SEW Proceeedings-98

Table 3.2 Practical and impractical techniques from industry sample

Practical

Impractical

Easy
Case study
Pilot study

Survey

Vendor opin.

Replicated

Addit. $
Res. Lit

Survey

Vendor opin.

Replicated

Int. val.
Measure

State of art

Vendor opin

Ext. val.

Field study
Measure

State of art

Vendor opin

Ease repl.
Measure

Res. Lit.

Theory gen.

Data mining
Measure

Theory anal.

Vendor opin.

Theory conf.

Field study
Measure

State of art

Vendor opin

Practical

Impractical

Table 3.3 Practical and impractical techniques from student industrial sample

Easy
Case study
Legacy data
Proj. mon.

Replicated
Synthetic

Theory anal.

Addit. $

Case study
Legacy data

Proj. mon.
Lit. search

Replication
Synthetic

Theory anal.

Int. val.

Case study

Dyn. Anal.
Simulation

Proj. mon.
Theory anal.

Ext. val.

Case study

Legacy data

Synthetic
Theory anal.

Ease repl.
Case study

Theory gen.
Case study

Field study
Theory anal.

Pr_. mon.

Theory conf.
Field study

Proj. mon.

Our final 8th question was to rate the importance of each of the 7 questions when making a decision on

using a new technology. The purpose was to determine which of the criteria was most important when

making such a decision. Figure 5 summarizes those answers on a single chart, the column labeled 1

representing the average values for the first sample, column 2 representing the average value for sample 2

and column 3 being sample 3.

4 Survey Evaluation

4.1 Preferred research techniques

Figures 2 and 4 and Tables 3.1 and 3.3 present a summary of our findings for the research validation

methods. We summarize some of the observations from those figures.

In terms of easiness (question 1), replicated experiments and synthetic experiments for the research

sample and replicated experiments, synthetic experiments and theoretical analysis for the student

industrial sample were viewed as significantly (at the .05 level) harder to do than the other techniques and

as impractical according to Tables 3.1 and 3.3. With average scores above 10, the consensus of these

groups was that industry would never use such techniques as part of a validation strategy. It is no wonder

that such techniques are rarely reported in the literature. In our earlier survey [Zelkowitz98] only 3.2% of

the reported studies used synthetic or replicated experiments.

On the other hand, these two groups differed in their belief in the effectiveness of theoretical analysis with

respect to internal and external validity (questions 3 and 4). Whereas the research group considered a

theoretical validation likely to be used as much as any other technique (i.e., in the neutral partition of

Table 3.1), the industrial group considered it most difficult to use, preferring instead the "hands on"

techniques over the more formal arguments.

SEW Proceeedings-98

Other than the cost and ease issues, none of the other criteria exhibited significant differences among the

respondents. However, when we combine the criteria into a single composite number, differences do

become apparent (See Section 4.3).

4.2 Preferred industrial methods

Figure 3 and table 3.2 give the basic results for the industrial transition methods. As with the research
population, the replicated (shadow) project had an average rating (over all 7 questions) of over 10,

signifying little industrial interest in performing such studies. Vendor opinion also averaged above 10, as
did the need to be state of the art.

These high scores were all probably due to different reasons. Replicated experiments were viewed as
hardest to do (highest score among all techniques at about 13.5), while vendor opinion had the worst

internal and external validity (the ability for the method to explain the phenomenon under study, i.e.,

trusting the vendor to give the correct explanation). On the other hand, the need to be state of the art also
suffered with respect to internal and external validity.

It is interesting to note that according to table 3.2, vendor opinion was considered practical according to

ease of use (criterion 1), yet was impractical according to the criteria that dealt with accuracy of the

evaluation (questions 3, 4, 6 and 7).

Theoretical analysis was harder to do than any other technique except the replicated project.

Value of Questions

12

8 mresearch

6 industry

4 student
2
0

1 2 3 4 5 6 7

1=easy to do; 2=additional $; 3=int. validity;
4=ext. validity; 5=ease of repl.; 6=theory gen.;

7=theory conf.

Figure 5. Relative importance of each criterion.

4.3 Culture differences

By comparing results across different samples, we gain an appreciation of the differing values in the
software engineering community. Although sample 2 evaluated the industrial methods according to our 7

criteria and sample 3 evaluated the research methods for the same criteria, both were made up mostly of

SEW Proceeedings-98

professionaldevelopers.Question8,theimportanceof each criterion, reveals strong agreement between

these two populations, and strong disagreements with the research professionals from sample 1.

Figure 5 summarizes this result. Both samples 2 and 3 viewed easy to do, internal validity (that the

validation confirmed the effectiveness of the technique) and the ease of replicating the experiment as the
most important criteria in choosing a new method. While internal validity was important, external validity

was of less crucial concern. That can be interpreted as the self-interest of industry in choosing methods

applicable to its own environment and of less concern if it also aided a competitor.

On the other hand, for the research community of sample 1, internal and external validity, the ability of
the validation to demonstrate effectiveness of the technique in the experimental sample and also to be able

to generalize to other samples, were the primary criteria. Confirming a theory was next, obviously

influenced by the research community's orientation in developing new theoretical foundations for
technology. At the other end of the scale, cost was of less concern where ease of replication was only 5'h

most important and cost of adding additional subjects was rated as last.

This points out some of the problems we addressed at the beginning of this paper. The research

community is more concerned with theory confirmation and validity of the experiment and less concerned
about costs, whereas the industrial community is more concerned about costs and applicability in their

own environment and less concerned about general scientific results which can aid the community at

large.

4.4 Composite measures

Given the set of 7 criteria, can we generate any composite measure for evaluating the effectiveness of the

various validation methods? Since we have the respondents' impressions of the importance of each of the
7 criteria (via Figure 5), one obvious composite measure is the weighted sum of all the criteria

evaluations. In this case, low score would determine the most significant methods. Table 4.1 gives these
results.

Sample 1 ordering

(Research group)
Simulation 288

Static analysis 292

Dynamic analysis 298

Project monitoring 30 I
Lessons learned 339

Legacy data 345

Synthetic study 346

Theoretical analysis 348

Field study 363
Literature search 367

Replicated experiment 368

Case study 398

Table 4.1 Composite measures

Sample 3 ordering

(Student group)

Case study

Legacy data

Field study
Simulation

Dynamic analysis

Static analysis
Literature search

Replicated experiment

Project monitoring
Lessons learned

Theoretical analysis

Synthetic study

284

314

315

333

355

361

370

387

388

391

405

418

Sample 2 ordering
(Industry group)

Measurement

Data mining
Theoretical analysis
Research literature

Case study

Field study

Pilot study
Feature benchmark

Survey

Demonstrator project

Replicated project
State of the art

Vendor opinion

Table 4.1 reveals some interesting observations:

258

305

324

325

326

327

329

338

343

345

361

407

469

SEW Proceeedings-98

1. For the research community, tools-based techniques dominate the rankings. Simulation, static
analysis, and dynamic analysis are techniques that are easy to automate and can be handled in the

laboratory. On the other hand, techniques that are labor intensive and require interacting with

industrial groups (e.g., replicated experiment and case study) are at the bottom of the list. From our

own anecdotal experiences over the past 20 years, working with industry on real projects certainly is
harder to manage than building evaluation tools in the lab.

2. For the industrial community (the student sample 3 population), almost the opposite seems true.

Those techniques that can confirm a technique in the field using industry data (e.g., case study, legacy
data, field study) dominate the rankings, while "artificial" environments (e.g., theoretical analysis,

synthetic study) are at the bottom. Again, this seems to support the concept that industrial

professionals are more concerned with effectiveness of the techniques in live situations than simply
validating a concept.

3. The industrial group evaluating the industrial validation methods (sample 2) cannot be compared with
the above two groups since the methods they evaluated were different; however, there are some

interesting observations. For one, measurement, the continual collection of data on development

practices, clearly dominates the ranking. This is a surprising considering the difficulty the

software engineering measurement community has been having in getting industry to

recognize the need to measure development practices. With models like the Software

Engineering Institute's Capability Maturity Model (CMM), the SEI's Personal Software Process

(PSP) and Basili's Experience Factory promoting measurement, perhaps the word is finally getting
out about the need to measure. But actual practice does not seem to agree with the desires of the

professionals in the field. In addition, theoretical analysis came out fairly high in this composite
score, but that does not seem to relate to experiences in the field.

4. Also within the industrial group, the need to be state of the art came near the bottom of the list (12 'h
out of 13) as not important. Basing decisions on vendor opinions was last. Yet vendors often

influence the decision making process. Vendor opinions were judged to be least effective with respect
to internal and external validity (Figure 3), but since vendor opinion was also judged to be one of the
easiest to do, apparently users rely on such opinions even though they know the results are not to be
trusted.

5. Data mining of collected data turned out to be second most important according to the industrial
group. This is compatible with measurement being most important. If data is not collected, then there

is nothing available to mine. Theoretical validation, literature search, and various experimental

developments (i.e., field study, case study, pilot study) all ranked about the same level of importance
to this group.

5. Conclusions

In this paper we discuss a survey taken from approximately 90 software engineering professionals. The

survey evaluated subjective opinions on the value of validation methods for transferring new technology
into industry. The idea was to study those methods used by the research community to validate new

technologies and those methods used by industry to evaluate a new technology and to try and understand

the differences. From this survey, we can make the observation that the research community and the

development community do indeed have different perceptions of the role of experimentation to validating
new technology. Researchers are more interested in how well a theory has been validated, whereas
industry is more attuned, as expected, to how well the technique works in their own environment. Costs,

while important to the industry sample, are mostly ignored by the research community.

Publication of research results is a major focus of the research community. In this respect, journal editors

can play an important role in affecting this cultural difference. Developing new technologies and getting

SEW Proceeedings-98

themintouseshouldbeamajorfocusof softwareengineeringresearch.Editorsofjournalsconsider
requiringmorereal-worldvalidationusingmodelslikecasestudies,legacydataandfieldstudiesandbe
moresuspectatvalidationvia laboratorymodels,suchassimulationandsyntheticstudies.

Thesurveyalsoindicatesthatoneshouldnotsimplybestateof theartsimplyto be"fashionable"or

listen to vendors for technology transfer decisions. Such decisions should depend on more technological

reasons. Yet such actions are taken daily.

Measurement became the most important industrial decision making process in our composite analysis,

yet anecdotal evidence indicates that much of industry does not collect the necessary data to build
measurement programs. For the most part, our earlier survey [Zelkowitz98], the composite scores, and the

results in Tables 3.1 to 3.3 are compatible. In the earlier survey, papers studied from 1995 used case study
and lessons learned equally, followed by simulation at half that number. In Table 3.3, the student

population considering the research techniques ranked case study as practical in six of the seven

questions. The industrial group (Table 3.2) selected either measurement or case study as practical for six
of the seven questions, but the researchers find case study either impractical or neutral. Case study

requires collection of data and measurement. It appears that the industry population values these
measurement techniques as important, cost is a significant driver to industry, measurement techniques are

perceived as too expensive. Better methods and tools for aiding measurement techniques are required to
address industry concerns and to make the techniques more acceptable to researchers.

Given that industry is most concerned with internal validity, better tools are needed to aid the research
community so that external validity can be conveyed more effectively to the industrial community. This

would limit the effects of the "silver bullet" solution to complex problems. Studies are needed to identify:

I. What are the primary drivers that affect applicability in different environments?
2. How do you measure the effectiveness of a new method in a different environment?

Some of the results obtained here may be viewed as obvious, but we believe that these opinions have not

been quantified previously. The industrial and the research community do look at method validation for
different purposes, so it is not too surprising that one does not share the beliefs of the other. This leads to

conflicts when one group does not provide or use the results of the other.

Given the set of techniques described here, it would aid both communities if those techniques near the top
of the rankings had better tool support. Measurement is clearly important to the industrial professional, so

less expensive data collection methods are needed. Tools for collecting defect data or analyzing defect

and resource data are needed. Tools to better evaluate case studies would help. How to deal with the high
cost and poor perception of the replicated experiment needs to be further studied.

In this paper, as with our earlier survey of the research literature, we have tried to understand the process

that organizations use to evaluate new technologies and transition them into industrial use. We haven't
solved the significant technology transition problems with this survey, but we do believe we have

indicated where further research is needed and why some of the current problems in technology transition

exist. We need to further understand both cultures in order to determine which technique can best enable
industry to make intelligent choices on which new technology to use and, we emphasize the need for

research to develop the methods and tools to make these techniques practical..

Acknowledgments

We thank Dr. Nien Zhang for his suggestions regarding statistical methods for viewing this data.

SEW Proceeedings-98

References

[Brown96] Brown A. W. and K. C. Wallnau, A framework for evaluating software technology, IEEE

Software, (September, 1996) 39-49.

[Fenton94] Fenton N., S. L. Pfleeger, and R. L. Glass, Science and substance: A challenge to software

engineers, IEEE Software, Vol. 11, No. 4, 1994, 86-95.

[Daly97] Daly, J., K. El Emam, and J. Miller, Multi-method research in software engineering, 1997

IEEE Workshop on Empirical Studies of Software Maintenance (WESS '97) Bari, Italy,

October 3, 1997.

[Tichy95] Tichy W. F., P. Lukowicz, L. Prechelt, and E. A. Heinz, Experimental evaluation in computer

science: A quantitative study, J. of Systems and Software Vol. 28, No. 1, 1995 9-18.

[Tichy98] Tichy, W., Should computer scientists experiment more?, Computer, Vol.31, No.5, 1998, pp.
32-40.

[Zelkowitz97] Zeikowitz M. and D. Wallace, Experimental validation in software engineering,

Information and Software Technology, Vol. 39, 1997, 735-743.

[Zelkowitz98] Zelkowitz M. and D. Wallace, Experimental models for validating technology, Computer,

Vol.31, No.5, 1998, 23-31.

SEW Proceeedings-98

APPENDIX 1 -- Types of Research Validation

I. Case study - a project is monitored and data collected over time. Data collection is derived from a

specific goal for the project. A certain attribute is monitored (e.g., reliability, cost) and data is
collected to measure that attribute.

. Dynamic analysis - a product is executed for performance. Many methods instrument the given
product by adding debugging or testing code in such a way that features of the product can be

demonstrated and evaluated when the product is executed.

. Legacy data - data from previous projects is examined for understanding in order to apply that

information on a new project under development. Available data includes all artifacts involved in the
product, e.g., the source program, specification, design, and testing documentation, as well as data

collected in its development.

. Lessons-learned - qualitative data from completed projects is examined. Lessons-learned documents

are often produced after a large industrial project is completed. A study of these documents often
reveals qualitative aspects which can be used to improve future developments.

. Literature search - previously published studies are examined. It requires the investigator to analyze

the results of papers and other documents that are publicly available (e.g., conference and journal

articles).

. Project monitoring - collect and store development data during project development. The available

data will be whatever the project generates with no attempt to influence or redirect the development

process or methods that are being used.

. Field study - A field study may examine data collected from several projects (e.g., subjects)
simultaneously. Typically, data are collected from each activity in order to determine the

effectiveness of that activity. Often an outside group will monitor the actions of each subject group,
whereas in the case study model, the subjects themselves perform the data collection activities.

. Replicated experiment - develop multiple versions of product. In a replicated experiment several

projects are staffed to perform a task in multiple ways. Control variables are set (e.g., duration, staff
level, methods used) and statistical validity can be more applied. This is the "classical" scientific

experiment where similar process is altered repeatedly to see the effects of that change.

. Simulation - execute product with artificial data. Related to dynamic analysis is the concept of

simulation. We can evaluate a technology by executing the product using a model of the real
environment. We hypothesize, or predict, how the real environment will react to the new technology.

10. Static analysis - examine structure of developed product. This is a special case of studying legacy

data except that we centralize our concerns on the product that was developed, whereas legacy data

also included development process measurement.

11. Synthetic environment - replicate one factor in laboratory setting. In software development, projects

are usually large and the staffing of multiple projects (e.g., the replicated experiment) in a realistic
setting is usually prohibitively expensive. For this reason, most software engineering replications are

performed in a smaller artificial setting, which only approximates the environment of the larger
projects.

SEW Proceeedings-98

12.Theoreticalanalysis - uses logic to validate a theory; validation consists of logical proofs derived

from a specific set of axioms.

APPENDIX 2 -- Types of Industrial Evaluation

. Case study -- Sample projects, typical of other industrial developments for that organization, are
developed, where some new technology is applied and the results of using that technology are
observed.

2. Data mining -- Completed projects are studied in order to find new information about the

technologies to develop those projects.

3. Demonstrator projects -- Multiple instances of an application, with essential features deleted, are

built in order to observe behavior of the new system.

4. Feature benchmark -- Alternative technologies are evaluated and comparable data are collected.
This is usually a "desk study" using documentation on those features.

5. Field study -- An assessment is made by observing the behavior of several other development groups
over a relatively short time.

6. Measurement -- Data is continually collected on development practices. This data can be

investigated when a new technology is proposed.

. Pilot study - A sample project that uses a new technology. This is generally a smaller application

(than a case study) before scaling up to full deployment, but is more complete than a demonstration

project.

8. Research literature -- Information is obtained from professional conferences, journals, and other
academic sources of information.

9. Shadow (Replicated) project-- One or more projects duplicate another project in order to test

different alternative technologies on the same application.

10. State of the art -- Using a new technology that is based upon purchaser or client desires or

government rules to only use the latest or best technology.

11. Survey -- Experts in other areas (e.g., other companies, academia, other projects) are queried for their

expert opinion of the probable effects of some new technology.

12. Theoretical analysis -- Basing an opinion on the validity of the mathematical model of a new
technology.

13. Vendor opinion -- Vendors (e.g, through trade shows, trade press, advertising, sales meetings)
promote a new technology.

SEW Proceeedings-98

U_

_D

Ol)
0

©

Z

0

<

©

o _m,,(

F-T-I

@_._

o_-.4

0

0

o_

0

• • •• . . _

. __

• • • 7

©

©

°_-_
0

oo _C)

0

ov_q

r

poq_.etu uop, ep!leA

t

Z

r._ P.

0

r./'] L"- =

0 @

==

0 • ,..-_

_ _ _ P..,]

• • • •

oo o

_ I I I I I I I ,_

• ,1,,,,-,q

° ,_-n,,A

©

I

_ rm _

el
0

0

I--

c

0

.C
I--

m

e_

L_

0

Ill

"0
ig
m

>

X
W

c-
O

im

"0
,<

0

0

w

--_A

|

---m __

----_J--

_ . |

-- i

_1

__ |

h

i

1 1 1 -- __

JL

|

i

J

i

|

i

|

, i

JL

-- __Jl__._

|
p-

(D ('M 0 CO (D CM 0

o_

>-

L_

lll

Z

m

i

E

c"
0 _.,

(D 0

_ ___ E

I

_ e"

- ._ &

v.. _)
_X

I

,i

t-
O

o

e-
l-

c-

O

, e-
l-

0

LLI

X
UJ

n_

et.

0

0

o

(/)

nl

|

L--

i

o

L

L

--L--

------L-- __

p_

___ L___

b"

b"

b"

I

Ni

Z

©
o,=-I

c_

I
(D (D

r..)

©

I=-==I

• * * Z

©
°_,ml

°_lll

iI

i i

ii!l=

llll(_

Z

©

[/']

oO t""--

o_ -T_,,,:_.

0

,o

O

;>.,

iiiill _ "

==

mr

"" l
I
I
I
I Z

. _,,m(

G

• _,=.=i

..C

• []

i.:!!m

Z

[/3

°_

@

i
.,p._

o

;>.,

Z

• • • • Z

0

o_

• • • • Z

An Adaptation of Experimental Design to the Empirical Validation of Software

Engineering Theories

N. Juristo, A.M. Moreno

Facultad de lnformfitica - Universidad Polit6cnica de Madrid -

Campus de Montegancedo s/n, 28660 Madrid

Tel.: + 34 91 336 69 22; Fax: + 34 91 336 69 17

{natal ia, ammoreno }@ fi.upm.es

Abstract

This paper has two objectives. Firstly, it seeks to promote discussion and debate about the need to

encourage experimentation of the claims in the field of software engineering. The software community's

lack of concern for the need for the aforesaid experimentation is slowing down adoption of new

technology by organizations unfurnished with objective data that show the benefits of the new artifacts to

be introduced. This situation is also leading the introduction of new software technology to be considered

as a risk, because, as it has not been formally validated beforehand, its application can cause disasters in

user organizations. The second objective is to present a formal method of experimentation in SE, based
on the experimental design and analysis techniques used in other branches of science.

1. Introduction

Companies are continuously developing new, increasingly complex and, ultimately, more expensive

software systems. This should be a condition for applying the range of development artifacts in a reliable

manner. Paradoxically, however, real-world developments are often used as a culture medium for

validating these artifacts, with the ensuing risks. There is no denying, unfortunately, that the models and

theories outputted by Software Engineering (SE) research are not checked against reality as often as

would be necessary to assure their validity for use in software construction. This can lead to justified

distrust when applying the new solutions developed at laboratories or research centers in industry.

It is, therefore, essential to apply a process of experimental testing to validate any contribution made to

SE. This paper seeks to highlight the need for an empirical validation of all artifacts used in SE, and then

proposes an approach to introduce this based on experimental design techniques, widely used in other

fields of science and engineering. Other researchers, including Basili [Basili, 86] and Pfleeger [Pfleeger,

95], have published work on experimental design and SE. In this paper, we aim to address in detail

particular points, such as the parameters to be controlled in a SE experiment, and will set out several
examples of how different types of experimental design can be applied to SE.

So as show the lack of empirical validation in the field of SE, the authors have compared what we have

called the essence of the scientific method with SE research. The essence of the scientific method relates

to certain characteristics common to the different methods of research with regard to the manner of
attaining new knowledge. These common features can be divided into the following activities:

• Interaction with reality, which involves obtaining facts from reality. It can be performed by means of

observation, where researchers merely perceive facts from the outside, or by means of

experimentation, where researchers subject the object to new conditions and observe the reactions.

• Speculation, where researchers think about the perception obtained from the outside world. The
results of this thinking range from a mere description of particular cases, through hypotheses and

models, to general laws and theories.

• Checking ideas against reality in order to assure the truth of the speculations. It can safely be said

that it is this stage that lends research its scientific value, as the stages of interacting with reality and

speculation occur in other intellectual disciplines far from being considered scientific; for example,

philosophy, religion, politics, etc. A branch of human knowledge attains the status of scientific when

speculations are verifiable and, therefore, valid (although this status is always held provisionally until

contradicted by a new reality). Remember that engineering fields depend on scientific knowledge to

build their artifacts.

When comparing the essence of the scientific method and research in SE, there are a series of

discrepancies, including importantly the lack of emphasis on the experimental validation activity. In fact,

present scientific progress in the software community appears to be based on natural selection. That is,

researchers throw their lucubrations into the arena almost untested. After a few years or decades,

theoretically, the fittest survives. Note the risk involved in this manner of scientific progress, as fashion,

researcher credibility, etc., also play a prominent role in science. This way of selecting valid knowledge
involves important risks when industry applies this new knowledge.

Statements claiming that SE experimentation is not needed can be heard frequently in SE. One of the

arguments is that the "Romans built bridges and were not acquainted with the scientific method".

Obviously, humans can generate valid knowledge by means of trial and error. However, this approach is
longer and more chancy than the scientific method. If a critical software system fails and causes a

disaster, could we say that we in SE prefer the old trial-and-error approach rather than experimental

validation as called for by the scientific method? Another justification used to refute SE experimentation

is based on trusting in intuition. Several examples can be used to reject this statement, for example, the

fact that small software components are proportionally less reliable than larger ones, as reported by Basili

[Basili, 94] among others. In [Tichy, 98] the author presents some arguments traditionally used to reject
the usefulness of experimentation in this area with the corresponding refutation.

Although there are some experimental studies in the computer science literature [Prechelt, 98] [Frankl,

93] [Seaman, 98] [Iyer, 90], this is not the general rule. The want of experimental rigor in SE has already
been stressed by authors like Zelkowitz [Zeikowitz, 98] or Tichy [Tichy, 93] [Tichy, 95], who base this

affirmation on a study of the papers published in several system-oriented journals. Surveys such as

Zelkowitz's and Tichy's tend to validate the conclusion that the SE community can do a better job in
reporting its results, making them more trustworthy and thus making it easier for industry to adopt the
new research results.

2. Experimental Design for Software Engineering

Once that the need for empirical validation in SE has been assumed, the authors propose an approach to

introduce it based on experimental design techniques [Box, 78] [Selwyn, 96] [Clarke, 97] [Edwards, 98]
used in others fields of science.

Empirical validation can be carried out in several situations : laboratory validation of theories, validation

at the level of real projects and validation by means of historical data. Unlike the other two methods,

laboratory validation allows greater control of the different parameters that affect software development.
Real projects allow data considered to be relevant for the study in question to be collected. Validation

using historical data allows researchers to work with data on finished projects, employing the most

relevant for the experiment to be conducted. Zelkowitz [Zelkowitz, 98] and Kitchenham [Kitchenham, 96]

suggested similar classifications. Zelkowitz groups experimental approaches into three broad categories:
controlled methods, observational methods and historical methods, while Kitchenham refers to these

categories of experimentation as formal experiments, case studies, and surveys. An example of
experimentation with real projects is the experience factory proposed by Basili [Basili, 95], historical data

have been applied by McGarry [McGarry, 97] among others, and formal experiments have been studied

by Pfleeger [Pfleeger, 95] in the DESMET project.

In this paper, we focus on formal experiments and present an in-depth study of the application of

experimental design to SE empirical validation, placing special emphasis on the adaptation of

experimental design terminology to SE. Table 1 summarizes the above-mentioned experimentation

process. Table 2 describes the application of experimental design concepts to SE. Table 3 shows the value

of some of the experimental design concepts for SE experimentation. Finally, Table 4 presents a summary
of the experimental design techniques that can be applied.

Phase of the experiment Description

The mathematical techniques of experimental design demand that

experiments produce quantitative results. Therefore formal experimentation

in SE requires quantifiable hypotheses. This hypothesis will be usually

expressed in terms of a metric of the software product developed using the
software artifact to be analyzed or of the development process where this

artifact has been applied.

Defining the Objectives of the

Experiment.

Designing the Experiment

Executing Experiments

Analyzing Results

In order to plan experimentation in SE according to experimental design

guidelines, its terminology has to be applied to SE. See table 2 with the

terminology employed in experimental design for generic experimentation

and its application to experiments in SE.

The next step is to select the experimental design technique. This technique

will determine how many experiments are required, how many times each

experiment has to be repeated and what data we need to output to ascertain
the validity of the conclusions. There are different techniques of

experimental design depending on the aim of the experiment, the number of

factors, the levels of the factors, etc. Table 4 shows a brief summary of the
most commonly used experimental design techniques.

The software engineer is now ready to execute the experiments indicated as a

result of the preceding design stage, measuring the response variables at the
end of each experiment.

This stage is also called Experimental Analysis. The software engineer will

quantify the impact of each factor and each interaction between factors on the
variation of the response variable. This is what is referred to (according to

experimental design terminology) as "the statistical significance of the

differences in the response variable due to the different levels of each
factor".

• If there is no statistical significance, the variation in the response

variable can be put down to chance or to another variable not
considered in the experiment.

• If there is statistical significance, the variation in the response variable

is due to the fact that a certain level (or combination of levels of

different factors) causes improvements in the response variable.

When we have understood the impact, we can ascertain which alternative of

which factor significantly improves the value of the response variable.

!Depending on the experimental design technique applied in the preceding

stage, a different statistical technique must be used to achieve the above

objective. This is not the place to expound the underlying mathematics of

experimental analysis. Interested readers are referred to the references

already mentioned. Section 3 shows some examples of SE experiments
illustrating different experimental design and analysis techniques.

Table 1. Phases of the Experimental Design Process used for SE Experiments

Concept

Experimental
unit

Parameters

Description

Entity used to conduct the experiment

Response
variable

Factor

Level

Interaction

Replication

Design

Characteristic (qualitative or

quantitative) of the experimental unit

during theDatum to be measured

experimental unit

Parameter that affects the response

variable and whose impact is of

interest for the study

Possible values or alternatives of the
factors

The effect of one factor depends on i
the level of another

Repetition of each experiment to be
sure of the measurement taken of the

response variable

Specification of the number of

experiments, selection of factors,
combinations of levels of each factor

for each experiment and the number of

replications per experiment

Application in SE

Software projects

See table 3

See table 3. Note there are no response

variables relating to the "problem". This

is because response variables are data that

can be measured a posteriori, that is,

once the experiment is complete. In the

case of SE, the experiment involves

development (in full or in part) of a

software system to which particular
technologies are applied. The

characteristics of the problem to be

solved are the experiment input data, that

is, they stipulate how it will be

performed. As such, they are parameters

and factors of the experiment. However,

they are not experimental output data that
can be measured and, thus, do not

generate response variables.

Factors are chosen from the parameters in
table 3. Factors have different values

durin_ the experiment

Values of factors in table 3

Relations between the parameters in table

3; for example, problem complexity and

product complexity

Repeatability in SE must be based on

analogy, not on identity; the different

experiments will consist of similar

problems, similar processes, similar
teams, etc.

The design will indicate the number of

Isoftware projects, factors and their

alternatives that will be used during

experimentation, as well as the number of
replications of the experiments, based on

analogy.

Table 2. Application of experimental design concepts to SE

4

PARAMETERS

PRODUCTPROBLEM

(User need)

- Definition

(poorly/well

defined problem)

- Need volatility

(very/hardly/non
volatile need)

- Ease of

understanding

(problem

well/poorly/fairly

well understood by

developers)
- Problem

complexity

- Problem type (data

processing,

knowledge use,

etc.),

- Problem-solving
type (procedural,

heuristic, real-time

problem solving,

etc.)
- Domain

(aeronautics,
insurance, etc.)

- User type (expert,

novice, etc.)

PROCESSES

of construction

employed

- Maturity

- Description (set of

phases, activities,

products, etc.)

- Relationship
between members

(definition of
interrelations

between team

members)

- Automation (in

which phases or
activities tools are

used)

- Risks

PERSONS

(team of developers)

- Number of

members

- Division by

positions (no. of
software

engineers,

programmers,

project managers,
etc.)

- Years of

experience of each
member in

development

- Experience of
each member in

the problem type

Experience of
each member in

the software

process applied

- Background of
each member

(discipline of

origin)

- Type of

relationship
between members

(all in the same

building, same

town,

subcontracts, etc.)
RESPONSE VARIABLES

Type of life cycle to be
followed

- Software type (00,
databases, real time,

expert system, etc.)
- Size

- Complexity

- Architecture/Organizatio
n

- Hardware platform
- Interaction with other

software

- Processing conditions

(batch, on-line, etc.)

- Security requirements

- Response-time

requirements

- Documentation required

- Help required

PROBLEM PROCESS PERSONS PRODUCT

- Schedule deviation

- Budget deviation

- Compliance with

construction process
- Products obtained

(do they comply

with the process

stipulations?)

D

Productivity
User satisfaction

- usability

- usefulness

Table 3. Proposal of Parameters and Response Variables for

Correctness of products

obtained (no. of errors,

etc.)

Validity of the products

(compliance with
customer expectations)

Portability,

Maintainability,

Extendibility,

Performance, Flexibility,

Interoperability,...

SE research

CONDITIONS OF THE EXPERIMENT EXPERIMENTAL DESGIN TECHNIQUE

rail other paralneters

ha',e been fixed
tOne factor of ,,_

I i_t'%:t'e're's)-_p..... t......
. _ • irrelevant for the experiment

Categorical _ 1_,,and can not be fixed

Factors
and

Quantitative I
Experimental •

Response _

• K factors of interest _" Some parameters are

_,,,, All levels of factors are relevant

less than nk

experiments

Quantitative
Factors and

Response
Variables

IlllllllIll[l_ One i'_ctor experiment

Blocking Experiment

Blocking
Factorial Design

Factorial _ With Replication

Design _l_Without Replication

Fractional With Replication

Factorial

Design '_ Without Replication

Regression Models

Table 4. Different Experimental Design Techniques

3. Example of SE Experiments using Experimental Design

This section presents two examples of possible SE experiments employing the experimental design

process described in Table 1. Depending on the experimental desgin techinque used, different analysis
methods must be applied. During the experimental analysis phase, we will not enter into a detailed

justification of all the mathematical calculations; our objective is simply to give readers a taste of what

sort of work could be performed during an experimentation in SE, avoiding the tiresome, though simple,
calculations called for by experimental analysis.

3.1. One Factor Experiment

Suppose we are researching on a CASE tool, and we think it will increase programmers productivity. We

will compare this tool with two other tools widely used in industry and each experiment will be repeated

five times, in order to consider experimental errors. The response variable will be programmers
productivity (lines of code/person-day) and all other parameters of table 3 will be fixed. This is an

example of one factor experiment. This kind of experimental design is used to determine the best choice

of k alternatives (in our case of three alternatives).

Table 5 shows the fifteen observations of the response variable (column Z contains the values for the new
tool).

R V Z
144 101 130
120 144 180
176 211 141
288 288 374
144 72 302

Table 5. Value of the response variables

The analysis if this experiment is shown in table 6. From this table we can know that the mean value of

productuvity of a CASE tool is 187,7 lines/person-day. The effects of tools R, V and Z are -13,3, -24,5

and 37,7, respectively. That means that tool R provides 13,3 lines less than the mean, tool V provides

24,5 lines less than the mean, and tool V provides 37,7 lines more than the mean.

R V Z

144 101 130
120 144 180
176 211 141
288 288 374
144 72 302

Sum of the column _' Yol = 872 _ Yo2= 816 Y"Yo3= 1127
Mean of the column - - -
Effect of the column Y,l = 174.4 ¥oz._ 163.2 Yo3 = 225.4

= - =-13 m-Y- - f.. = -244 m;,,.- ,.;. 37. 7

Table 6. Data from the experimental analysis of the example

The second step involves calculating the sum of the squared errors (SSE) in order to estimate the variance
of the errors and the confidence interval for effects. For that aim each observation will be divided in three

parts: the grand mean, the effect of the tool, and the residuals. For each part we have used a matrix
notation.

[144

1120

176

288
L144

101 130 [-187

144 180 [187

211 141 =1187

288 374 [18772 302 1187

.7 187.7 187.7 3 [-13.3 -24.5 37.7q [--30.4 -62.2 -95.4 3

.7 II I 1-544 -19.2 -45.4 I

.7 I+1 I+1 1.6 47.8 -84.4I

.7 187.7 -13,3 -24.5 37.7 -30.4 -91.2 76.6

SSE = _ eij2
i=1 j--I

9+ _ .,,-- (-30,4)" (-54,4)'+ +(76,6) 2= 94.365,20

Next step is calculating the variation in the response variable due to the factor and to the experimental

error. For that aim we calculate the sum of squares total (SST).

SST = r Z 17j2 + SSE -- 5 ((-13,3) 2 + (-24,5) 2 + (37,6) 2) + 94.365,2 = 105.357,3
J

The percentage of variation in the response variable explained by CASE tools is 10,4%

(10.992,13/105.357,3). The rest of the variation 89,6% is due to experimental errors. That means that the

experiment has not been planned properly.

In order to determine whether the variation of 10,4% in the productivity has statistical significance we

have to use the ANOVA (Analysis Of VAriance) technique, with the F-test function and table (this table

is not included in the paper, readers can find them in the bibliography of experimental design mentioned

above). The technique seeks to compare the contribution of the factor to the variation in the response

variable with the contribution of the errors. If the variation due to errors is high, a factor that explains a

high variation in the response variable might has not statistical significance. In order to determine the

statistical significance we will compare the computed F-value with the value got from the F-table, as
shown in table 7.

Table 8 shows the ANOVA analysis for our example. The calculated F-value is smaller than the one got

from the F-table. Therefore, we can, again, conclude that the difference in productivity is mainly due to

experimental errors instead of to the CASE tools. In that sense, we can state that neither tool provides

more productivity than the others.

COMPONENT SUM OF PERCENTAGE DEGREES

SQUARES OF VARIATION OF

FREEDOM

MEAN

SQUARE

F- F-

COMPUTED TABLE

Y

Y-_.°

A

e

SSY = _ Y,i" ar

SSO= atw_ 1

SST = SSY- SSO 100 ar-1

SSA = r E c_, _' 100 1 SSA] a-1

k, SST /

a(r-1)

SSE = SST - SSA 100($$E "I
\ SST)

SSA
MSA =

a-I

SSE
MSE =-

a(r - I)

F
_l i,,: i, I

MSE

Y
Y.,

Y-Y..
A

Errors

S =

Table 7. ANOVA table for one factor experiments

633,639.00
528,281.69
105.357,31 100.00 14
10.992,13 10.4 2 5496.1
94.365,20 89.6 12 7863.8

0.7 2.8

s =M#h-TE: .77=8868

Table 8. ANOVA table for our experiment

3.2. Factorial Design with Replication

Suppose that we have invented a new development paradigm that is completely different from the

structured and OO paradigms and want to confirm that our innovation improves development projects.

We will centre on correctness as the response variable, measured, for example, by the number of faults

emerging three months after software deployment. There are a lot of characteristics that have an impact

on this response variable: problem complexity, problem type, process maturity, team experience, software

complexity, integration with other software, etc. However, all of these will be fixed at an intermediate

value (that is, they will be selected as parameters of the experiment), except development paradigm, and

software complexity which will be factors. Each factor will necessarily admit two alternatives to simplify

the calculations. According to experimental design guidelines, the factors, labelled with letters, and their

alternatives, labelled with level 1 and -1, are listed, as shown in table 9.

FACTOR NAME LEVEL-1 LEVEL I

Paradigm A New OO

Software complexity B Complex Simple

Table 9. Factors and levels of the experiment

We will use a factorial design with replication as all levels of our factors are relevant for the experiment,

and we want to consider the experimental errors. In order to evaluate the experimental errors we will

repeat each experiment three times, so we will get twelve measurements of the response variable.

Taking the measurements of the response variable and the values assigned to the factors in table 9, the

first step of the experimental analysis is to build what is called the sign table. As shown in table 10, the

first column of the matrix is labelled I, and it contains all Is. The next two columns, labelled with the

factor names, contain all the possible combinations of-1 and 1. The fourth column is the product of the
entries in columns A and B. The twelve observations are then listed in column Y. The entries in column I

are then multiplied by those in last column, and the sum is then entered under column I. The entries in

column A are then multiplied by those in last column and the sum is entered under column A. This

column multiplication operation is repeated for the remaining columns in the matrix. The sum under each

columnisdividedby4 togivethecorrespondingcoefficientsof theregressionmodel.
I A B AC Y Mean

1 -1 -1 1 (15, 18, 12) 15
1 1 -1 -1 (45, 48, 51) 48
1 -1 1 -1 (25, 28, 19) 24
1 1 1 1 (75,75,81) 77

164 86 38 20 Total
41 21.5 9.5 5 Total/4

Table 10. Sign table for a 22 experimentation with replication

The second step involves calculating SSE. Table 11 shows the estimated response and the errors for each

of the twelve observations. The estimated value for the response variable is calculated adding the

products of the effects (Co, CA, CB, CAu) and the entries (XA, Xu, XAB) in the sign table.

Effects

I A B AB
i 41 21.5 9.5 5
1 1 -1 -1 1
2 1 1 -1 -1
3 1 -1 1 -1
4 1 1 1 1

Estimated

Response

15
48
24
77

Mean Response

Yil Y12 Yi3

15 18 12
45 48 51
25 28 19
75 75 81

Errors

eil el2 ei3

0 3 -3
-3 0 3
1 4 -5
-2 -2 4

Table 11. Errors in each experiment

The sum the squared errors is:

SSE = E eij 2 = 02+32+(_3)2+(_3)2+ 02+32+12+(-5)2+(-2)2+(-2)2+42 = 102

i,j

Now we want to calculate the variation in the response variable due to each factor or combination of

factors, and to the experimental error. For that aim we calculate SST.

SST = 22r CA2+ 22r CB2+ 22r CAB2+ eij = 5,547 + 1,083 + 300 + 102 = 7,032
id

Factor A explains 78,88% (5,547/7,032) of the variation, factor B explains 15,04% and the interaction

AB explains 4,27%. The rest of the variation, 1,45%, is a variation non explicated, and therefore, due to

experimental errors.

4. Conclusions

In this paper, we presented a possible adaptation of the experimental design techniques used in other

branches of science and engineering to perform experiments in SE.

The objective of the paper is not only to present a means of carrying out formal experimentation in SE but

also to promote discussion and debate on the need to encourage experimentation of the claims in this

field. The software community's lack of concern for the need for the aforesaid experimentation is slowing

down adoption of new technology by organizations unfurnished with objective data that show the benefits

of the new artifacts to be introduced. This situation is also leading the introduction of new software

technology to be considered as a risk, because, as it has not been formally validated beforehand, its

application can cause disasters in user organizations.

We are aware that software development's marked economic and commercial nature can be a decisive

factor standing in the way of the necessary experimentation, as experimentation does not produce

tangible, short-term benefits. The benefit of experimentation will come to fruition in future development

projects, and this benefit is difficult to quantify at the time of deciding on experimental feasibility or the

number of experiments to be performed. However, as we have already said, experimentation can also stop

industry taking unnecessary risks by adopting proposals that have not been satisfactorily tested.

5. References

[Basili, 84] V.R. Basili, B.T. Perricone. Software Errors and Complexity. An Empirical Investigation.

Communications of the ACM, January 1984, pp. 42-52.

[Basili, 86] V.R. Basili, R.W. Selby, D.H. Hutchens. Experimentation in Solhvare Engineering. IEEE Transactions

on Software Engineering, vol. 12 (7), July 1986, pp. 733-743.

[Basili, 95] V. R. Basili. The Experience Factory and lts Relationship to Other Quality Approaches, Academic Press

Inc., Adnvances in Computers, Volume 41, 1995.

[Box, 78] Box, G.E.P., Hunter W.G. and Hunter, J.S. Statistics for Experiments. Wiley, New York, (USA), 1978.

[Clarke, 97] Clarke, G.M. and Kempson, R.E. Introduction to the Design & Analysis of Experiments. Wiley &
Sons, New York (USA), 1997.

[Edwards, 98] Edwards, A.L. Experimental Design. Addison-Wesley Educational Publishers, Delaware (USA),
1998.

[Frankl, 93] P.G. Frankl, S.N. Weiss. An Experimental Comparison of the Effectiveness of Branch Testing and Data

Flow Testing. IEEE Transactions on Software Engineering, vol. 19 (8), August 1993.

[lyer, 90] lyer, R.K. Special Section on Experimental Computer Science. IEEE Transactions on Software

Engineering, vol. 16 (2), February 1990.

[Kitchenham, 96] Kitchenham, B. Evaluating Soft3vare Engineering Methods and Tools. Parts I to 8. SIGSOFT
Notes 1996 and 1997.

[McGarry, 97] F. McGarry, S. Burke, W. Deker and J. Haskell. Measuring Impacts of Software Process Maturity in

a Production Environment. 22nd NASA Workshop on Software Engineering, Maryland, USA, December 1997,

pp. 193-220.

[Pfleeger, 95] Pfleeger, S.L. Experimental Design and Analysis in Software Engineering. Annals of Software

Engineering, vol. 1, 1995, 219-253.

[Prechelt, 98] Prechelt, L and Tichy, W.F. A Controlled Experiment to Assess the Benefits of Procedure Argument

Type Checking. IEEE Transactions on Software Engineering, vol. 24 (4), April 1998, 302-318.

[Seaman, 98] Seaman, C.B. and V.R. Basili. Communication and Organization. An Empirical Study of Discussion in

Inspection Meetings. IEEE Transactions on Software Engineering, vol. 24 (7), July 1998, 559-572.

[Selwyn, 96] Selwyn, M.R. Principles of Experimental Design for the Life Sciences. CRC Press Inc. (UK) 1996.

[Tichy, 93] Tichy, W.F. On Experimental Computer Science. International Workshop on Experimental Software

Engineering Issues. Critical Assessment and Future Directions. Proceedings, 1993, 30-32.

[Tichy, 95] Tichy, W.F. et al. Experimental Evaluation in Computer Science. A Quantitative Study. Journal of
Systems and Software, vol. 28, 1995, 9-18.

[Tichy, 98] Tichy, W.F. Should Computer Scientists Experiment More ? IEEE Computer, May 1998,32-40.

[Zelkowitz, 98] Zelkowitz, M, Wallace, R. Experimental Models for Validating Technology. IEEE Computer, May
1998, 23-31.

10

0

o

0

"_

o

E
o

Z_ Z

"0

0

<:

2:

0

0

C_

c_

E

X

c_

L_

<

<

0

0

0

_o

<

©

o Z

¢_ <

° ,,,,,4 0

°"_

<

0
0

0

0

oo

<

<
Z

0

0

0

m

0

= <

_e

©
°,-_

0

o N

©

<

<

0

0

0

CJl
• i,,,_

ol--I

oo

c/3

0
G_
0

0

$--4

_o

cD

_D

Z

I_ o

0

©

_D

o_,ml

_D

_D

Z
©

<

G_

G_

° v-,,,q

G_

e_

Z
©

.<

o ._

f_

_ Z

QV"_

0

©

G_

_a

<

.<
Z

0

0

0

.<
c_

<:
Z

t_

0
o9
lu(

0

0
.lw=)
e_

F_
_9

C_
,ira)

o

oo

Z

oo

0

0

0

ct_

c_

LO

0

<

c_o _

c_

L_
ct_

C_

Q

0

o

c_

_o
c_

L_

<

<
Z

0

0

0

=

=

ellm

0

o

0

2

m.

^

ii _ ¢"

E

2

n

0

• u

_ u

t_ 0

_o

o

0

e,

2

0

2

i
o

T,

"0

e_

0

0

0

0

°_i

._ 9 ..

.

e_

• - i)

c-
o

o

_°o
c_ N

.--_=

'- d' 0 0

IJ I,I I_ I'_

e_

_o _
_.__=

°!"_

-<
c_

--'Z
2:

0

09

0

0
0')

_o

o

_9

_O

C_

0
Z
0
0

i

-G

I

I

I

I

Q9 ¢_

e_

I I I

•_- _'_ E_''_

III I IIII

=

I I I I I
I

.- ._ _, _

I I I I

o

I I I I I I I

oo

LO
c_

<
Or)

<
Z

er_

0

0

0

V.m_

0

I I t I

©

°_md

0

).m,_

oo
c_

Bq

0

o=

O9

0

(D

O_
C_

<_

0

0

0

E..D
_ _ _ "7 _ , _ _

-.-.qP

"7, "7 _ "'Z, _ _

o

o

c_

<
Z

Extending Enterprise and Domain Engineering Architectures

to Support the Object Oriented Paradigm

Fred A. Maymir-Ducharme, PhD

Lockheed Martin, Mission Systems
fred. a. maymir-ducharme@lmco, com

1.0 BACKGROUND As the size and complexity of software systems increase and budgets decrease, the
U.S. Government has realized the dire need to provide guidance to develop systems more effectively and

efficiently. We can no longer affbrd to "reinvent the wheel" every time a new system is needed.
Engineering families of systems, product lines, and exploiting commercial off-the-shelf (COTS) software
and Government off-the-shelf (GOTS) software are just a few approaches to achieving better engineered

systems. In addition, software intensive systems must be able to work together and exchange information.

While interoperability is important for many information systems, it is essential for military systems, which
must be capable of supporting lifesaving operations that may require changing a mix of forces, at a

moment's notice, just about anywhere in the world.

U.S. Government has developed architectural guidance and policy to achieve the required interoperability,

as well as engineering systems faster, better and cheaper. These initiatives and products only address
"what" should be done. Program managers and systems engineers tasked to deliver these systems depend

on technology addressing the associated "how to's." This paper addresses the technology (concepts,

processes, methods and tools) used on multiple programs to effectively and efficiently engineer military

systems, using various architecture guidance, policy and products. One of the major themes (i.e., lessons

learned) of this paper is that there are many conflicts between the technologies associated with Object

Oriented approaches and the more traditional Structured/Functional approaches. If both approaches are
used by an organization, these challenges must be identified early and dealt with accordingly.

2.0 DISCIPLINED SOFTWARE ENGINEERING The way we engineer our systems is

continuously changing and improving. We can no longer treat each new project as a single, new and

independent development effort and not build on previous engineering efforts and experience. Instead we
need to view these systems within the context of similar systems built in the past, exploiting the

commonalities and engineering the appropriate variances. Additionally, we must leverage off existing
reusable assets and develop new ones with reuse in mind. Reuse is an integral part of a disciplined software

engineering practice, which is continuously improving its technology/asset base and processes. In order to

meet today's software challenges [6] of increasing demand, complexity and size, we need to establish new
ways of fusing together information about what assets exist and need to be woven into the processes used to

guide our engineering activities. Various software engineering methods, processes and tools exist to help
take advantage of available information about data, process, and software assets needed to make the

engineering decisions governing the quality of the products that evolve as a consequence of their
mechanization.

Disjoint engineering efforts (i.e., Information Engineering, Domain Engineering and Application

Engineering) result in engineering process stovepipes. Each engineering level develops models representing

the associated requirements. Each engineering practice designs a solution (sometimes captured by an
architecture or design). And each engineering practice then implements/develops their products. The

challenge is to fuse these engineering methods (and thereby their work products) to eliminate redundancies,

inconsistencies and other anomalies. The goal is to define and implement a disciplined software

engineering practice that assures that the work products and standards produced any phase of the lifecycle
are consistent and coordinated with the work products and standards of all associated lifecycle phases. For

example, data models developed during the enterprise modeling phases must feed into the appropriate

domain engineering and application engineering phases; and reciprocally, provide feedback to the

enterprise efforts when the data models need to be modified or extended. Applications developed
individually without considering common and/or related systems in the domain result in stovepipe systems /

applications. Likewise, domains engineered without considering the broader enterprise (e.g., common data

elements, business functions, the need to interoperate, etc.), can result in stovepipe domains.

Mature engineering disciplines support clear separation of routine problem solving from R&D. These

disciplines have publicly-held, experience based, and formally transmitted technology bases that include

product models (e.g., designs, specifications, performance ranges) and practice models (tools and

techniques to apply to the product models) (See Figure 1 below). Furthermore, the qualities of products
built from these models are well-understood and predictable before the products are produced.

Maturing of the Software
Engineering Discipline

f New
_. Development jr"

technology "_-,,.

insertion

Product Line Asset Base
• Models (requirements,

architeclure, design)

• Plans (development, lest)

• Software (developed, COTS,

GOTs, ...)

experience i__
in product

• T
e x p'e,.r_e n c e lfl /P r°ducti°, n

e n g in'_'_rin " engmeermg

Figure 1 The Maturing of the Software Engineering Discipline

The state-of-the-practice of software engineering is not yet at this level of maturity. Instead of basing new

development on a technology base of well-understood models, current software engineering practice tends

to start each new application development from scratch with the specification of requirements, and moves

directly into the design and implementation. By contrast, this effort's vision of a mature software
engineering discipline, as illustrated in the figure above, relies on a technology base of reusable assets and

clearly separates routine systems development (i.e., application engineering) from development of the
domain-specific technology base (i.e., domain engineering). This separation highlights the need and

significance of developing reusable corporate assets including requirements, models, architectures,

processes, and components. The application engineering function can then focus on validating and using
this technology base, instead of beginning with a blank sheet. In addition to creating the initial set of

domain assets, domain engineering processes will continue to add and enhance the technology base

according to the requirements associated with application engineering.

Under the USAF Comprehensive Approach to Reusable Defense Software (CARDS) Partnerships Program

[20], LM developed and applied, the AF/CARDS Engineered Software (ACES) methodology [21,22,23]

(illustrated below), an approach that combines Information Engineering with Domain Engineering and the
Object Modeling Technique (OMT). The CARDS Tri-Lifecycle Software Engineering model [1,2,27]

(Figure 2 below), reflects three types of engineering activities during the acquisition and life cycle

development and maintenance of software intensive systems: Enterprise Engineering [2,3,26], Domain

Engineering [23,24.25], and Application Engineering [1,5,7,8,17]. Due to the complexity of engineering all
of the systems within the enterprise, as well as the numerous methodologies available for each engineering

area, it is likely that information will be lost, regenerated, or not seen as relevant to previous or succeeding

activities -- thereby causing redundant work efforts, data and function anomalies, and higher development
and maintenance costs. This lack of coordination and communication across processes has been coined

"stovepipeprocesses"andisanalogoustothesystemsstovepipesdilemma,wheresystemsfail toleverage
commondataandthenecessaryinteroperability.Approachingtheproblemwithplanningoversightofall
threeactivitiesensuresthatinformationflowsfromoneactivitytothenext.

Asset M a nagem ent

Application Engineering

System System

Requirements Syslem Design

9 d 1

Figure 2 The CARDS Tri-Lifecycle Engineering Model

There are numerous Domain Engineering methods and processes. The primary domain analysis methods

(primary because of their validation/applications on various efforts and associated publications) include:

Organization Domain Modeling (ODM) [18], a well defined and comprehensive method; Domain

Engineering Process (DEP) [27], an extension of object-oriented methods; the SEI Feature Oriented
Domain Analysis (FODA) [2] method, considered to be the most mature DE methodology; and SPC's

Synthesis [19].

3.0 ARCHITECTURE GUIDANCE U.S. Government guidance and policy such as the Command

Control Communications Computers Intelligence Surveillance and Reconnaissance (C41SR) Architecture
Framework, Joint Technical Architecture (JTA), Defense Information Infrastructure (DII) Common

Operating Environment (COE) and other US DoD architectural guidance are crucial to achieving

interoperability, while building systems faster, better and cheaper.

The JTA [30] is the DoD's specification for interoperability between all DoD systems. Figure 3 below

illustrates the relationship of the JTA to other DoD architecture guidance and initiatives. The JTA is based
on the Technical Architecture Framework for Information Management (TAFIM), Adopted Information

Technology Standards (AITS) - Volume 7 of the TAFIM [12]; and uses the DoD Technical Reference

Model (TRM, TAFIM Vol 2) as it's structure for specifying interoperability for each major service area.
The JTA defines the service areas, interfaces, and standards (JTA elements) applicable to all DoD systems,

and its adoption is mandated for the management, development, and acquisition of new or improved

systems throughout DoD. The JTA is complementary to and consistent with other DoD programs and

initiatives aimed at the development and acquisition of effective, interoperable information systems --
including the DoD's Specification and Standards Reform, the Information Technology Management Reform

Act (lTMRA); DoD C4ISR Architecture Framework, the DoD TRM; the Defense Information

Infrastructure Common Operating Environment (DII COE); and Open Systems Initiative.

DOD Architecture Efforts

C41SR Integration Task Force

(Integrated Architecture Panel)

Technical Architecture Framework for • Addressing operational, systems, and

Information Management (TAFIM) technical architecture _ and

• Establishes DOD framework/processes • The JTA will continue to use the C4ISR

for defining technical architecture Architecture Framework.

• Not a specific technical architecture _ A _ I _._._ltk

Volume 7 for C41 systems _,_ Establishes a tec.hnieal arehi.t ecture _) M k_"'_ll_lL

___ StandardAPl$ _ " lustantiation of C4I Technical Architecture

i rocessing
• The JTA mandates the use of the COE

[A'V2D2e pl 19¢_¢}2_)¢

Figure 3 DoD Architecture Guidance

The DoD TRM originated from the TAFIM and was developed to show which interfaces and content

needed to be identified. The TRM Working Group (TRMWG) has extended the scope of the TRM to

include real-time systems (e.g., weapon systems) and is coordinated with the JTA. As figure 3 indicates, the

JTA is also very closely coupled with the DII COE [32] and the C41SR Architecture Framework [3 l]. The

DII COE is the DoD's implementation of a technical architecture supporting interoperability, supplemented

by various common services / utilities to maximize reuse across multiple systems. And as the figure below

indicates, the JTA is one of the three architectures defined by the C4ISR Architecture Framework.

System s
View

Operational
V iew

_li_f_ _r,_r m :lT_ol_-_: _ _ _l_,_,_ ¸

r _q_,_rera r_

Figure 4 DoD C41SR Architecture Framework

4.0 LESSONS LEARNED Lockheed Martin (LM) worked with the USAF to replace existing

transportation information systems. These systems were designed as stand-alone applications serving

individual offices or functions. The resulting system gaps and overlaps, and the concomitant data and

process redundancy and inconsistency, have caused problems for both information users and systems
maintainers. USAF's goal is to reduce development and maintenance costs while enhancing support to the

warfighter. Its objectives are to develop a unified transportation system and environment -- consisting of a

corporate database, corporate applications, common functionality, and a corporate network. The strategy for

reaching these objectives is to introduce a reuse-based approach to application systems development. The

approach is to replace stovepipe information systems with a set of integrated applications that cut across
organizational and functional lines and to implement a virtual corporate database. The corporate database

will appear to the user to be integrated and monolithic but will actually be composed of physically

distributed, heterogeneous databases and - for the foreseeable future - legacy USAF and DoD systems.

The USAF employed the Zachman Framework to guide its Information Systems Architecture development.

Within this framework, USAF addressed its enterprise-wide data integration objectives by applying Steven

Spewak's Enterprise Architecture Planning (EAP) process (an Information Engineering (IE) technique).
The product, a high-level Transportation System Master Plan, includes a Mission Analysis, Information

Architecture, Application Architecture, and Implementation Plan.

ACES was based on the CARDS Tri-Lifecycle Engineering Model, which extended the DARPA Software

Technology for Adaptable, Reliable Systems (STARS) Dual Lifecycle Model (i.e., Domain Engineering) to

include Information/Enterprise Engineering. The complete ACES methodology addresses Enterprise

Engineering (e.g., Spewak's EAP) [3], Object-Oriented (OO) Domain Engineering, and OO Applications
Engineering (using Rumbaugh's OMT) [1]. The transition from Enterprise Engineering to Domain

Engineering uses IE-based affinity analysis between data entities and business processes to identify and

scope candidate domains. It then uses an OO approach to analyze inter-domain relationships in terms of

service requests. Within each domain of focus, ACES uses FODA to identify and categorize reuse

opportunities, and OMT to develop reusable business objects that satisfy semantic information integration
and synthesis requirements. Application Engineering consists of matching specific user requirements to

business objects and developing the necessary application-specific objects.

There were many lessons learned throughout this effort. Transitioning from the very functional (sometimes

referred to as "structured") information/enterprise engineering methods to an OO solution incurred several

challenges. Applying affinity analyses and multi-domain modeling techniques over the enterprise
information element lifecycles to scope the domains and hence group the service objects proved to be key in

this transition. The fundamental differences between structured and OO approaches must be considered in

the many translations and transitions across the various methods and workproducts within the Tri-Lifecycle.
The Data Access Layer within the framework in Figure 4 below was necessary to deconflict data access

between the structured legacy code and the new OO code. The figure below summarizes the integration and

application of DoD architectural guidance / products with the associated architecture technology. Lessons
learned will be discussed during the panel session. Additional lessons learned in applying the ACES

methodology, based on the CARDS Tri-Lifecycle Engineering Model above are discussed in the references

listed below. The figure below illustrates the integration of both, the technology (e.g., EAP, ACES, OMT)
and the DoD guidance/products (e.g., C41SR Architecture Framework, JTA and COE) used to reengineer

the USAF's Defense Transportation System.

Enterprise
Architecture

Planning

Multi-Domain

Model

ACES
Architecture

E

I • II I I

I Operational Processing and Infownation Technical I
I Exchange Requirements 'ql_ I

ill _ [D_imm ti_ _d Of RuM II

Defines ActivIUeaand m• _.: New Techno ogical I u,,mli.._ovem;_ygt_mm"" "- IInformation Exchange I Capabilities I knpkmlent_ and

I V Time-Phased

Information _ _ Technical

Processing and

Exchange Guidance

Requirements Systems I

through Physlcal Processes

Figure 5 ACES'integration of Architecture Guidance, Policy & Technology

5.0 ACKNOWLEDGMENTS Special thanks and credit are due to the teams that worked with me on

the development and application of these technologies, as well as the team supporting the development of

the DoD JTA (2.0). These include Jim Fulton, Mike Webb, Robin Burdick, Frank Svoboda, Roger

Whitehead, David Weisman, Lucy Haddad, Nancy Solderitsch, Paul Kogut, Wil Berrios, Russ Richards,

Olimpia Velez, Jim DeGoey, Mark Dowson and many others.

6.0 REFERENCES
1. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design,

Prentice-Hall, 1991.

2. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility

Study, CMU/SEI-90-TR-21, Carnegie-Mellon University, Software Engineering Institute, November 1990.

3. S. Spewak. Enterprise Architecture Planning, John Wiley & Sons, 1992

4. J. Zachman. "A Framework for Information Systems Architecture," IBM Systems Journal, Vol. 26, No. 3, 1987.

5. W. Royce, "Managing the Development of Large Software Systems: Concepts & Techniques" 1970

6. OUSD/AT "Defense Report of the Defense Science Board Task Force on Military Software," 1987

7. B. Boehm, "A Spiral Model of Software Development an Enhancement," 1988.

8. W. Royce, "TRW's Ada Process Model for Incremental Development of Large Software Systems," 1990.

9. MIL-STD-498"Software Development and Documentation" 1994

10. EIA/IEEE J-STD-016 "Software Life-Cycle Processes" 1995

I 1. ISO/1EC STD 12207 "IT- Software Life-Cycle Processes" 1995

12. DoD, "Technical Architecture Framework for Information Management (TAF1M)" Version 2.0, Defense

Information Systems Agency, Center for Architecture, June 1994

13. The DoD Enterprise Model, Volume I: Strategic Activity and Data Models, Office of the Secretary of Defense,

ASD (C31), January 1994.

14. The DoD Enterprise Model, Volume II: Using the DoD Enterprise Model, A Strategic View of Change in DoD, A

White Paper, Office of the Secretary of Defense, ASD (C3I), January 1994.

15. Information Management Program, DoD Directive 8000.1, October 1992.

16. DoD Data Administration, DoD Directive 8320.1, September 199 I.

17. IEEE Standard for Developing Software Life Cycle Processes, IEEE Computer Society, IEEE STD 1074-1991,

January 1992.

18. Simos, M., "ARPA STARS Organization Domain Modeling (ODM) Guidebook Version 1.0" March 1995

19. "Synthesis, A Reuse-Based Software Development Methodology, Process Guide, Version 1.0," Software

Productivity Consortium, October 1992.

20. Ma)mir-Ducharme, F.A., Weisman, D. "A.F./CARDS Technology Transition Program: Reuse Parmerships," proceedings of the

Reuse '95 Workshop, August 1995.

21. Maymir-Ducharme, F.A., "Variant Domain Engineering Approaches," proceedings of the Workshop on Institutionalizing

Software Reuse WISR'95, July 1995.

22. Maymir-Ducharme, F.A., Svoboda, F. "Translating Enterprise Models into Domain Engineering Workproducts," Proceedings of

the Reuse '96 Workshop, August 1996.

23. Maymir-Duchamle, F.A., (WG Chair). "Oppommistic, Systematic and Optimized Domain Engineering Approaches" Proceedings

of the Reuse '96 Workshop, August 19%.

24. Maymir-Ducharme, F.A., "Product Lines, Just One of Many Domain Engineering Approaches," Proceedings of the NASA

So,rare Reuse Workshop, sponsored by GMU and NASA SORT Program, October 1997,

25. Maymir-Ducharme, F.A., "A Product Line Business Model," Proceedings of ARES'96 (Architectural Reasoning for Embedded

Software), sponsored by ESPRIT 1V project no. 20.477, Las Navas, Spain, 18-20 Nov. 1996.

26. Martin, James, "Information Engineering : A Trilogy," Prentice Hall, Inc., Englewood Cliffs, NJ 1989.

27. Defense Information Systems Agency (DISA), "Domain Engineering Process (Version 2)" 28 April 1995.

28. Combined Communications Electronics Board (CCEB), "Combined lnteroperability Technical Architecture (CITA) Rationale and

Development Frarnework (Ver. 0.2) March, 1998.

29. CCEB, "Combined Intempembility Technical Architecture (CITA), Ver. 0. I," March 1998.

30. DISA, "DOD Joint Technical Architecture (JTA)," http'./Avww-jta.itsi.dis,a_mil/

31. OSD/C3I "C4ISR Architecture Framework," http://www.cisa.osd.mil/organization/architectures/

32. DISA, "Defense Inlbrmation Infrastructure (DII) Common Operating Environment (COE)," http://spider.osfl.disa.mil/dii/

$. _,,, 7 ' y,L/,, +

i

Session 3: Inspections

Xational So_ware Quab'O, Experiment." A lesson in 31easurement." 1992- 1997

D. O'Neill, Independent Consultant

PM_c_les of _lccessfulSof/ware Inspections

D. Beeson, Ki Solutions Consulting, and T. Olson, World-Class Quality

Capture-Recapture - 3,lode/s, He/hods, unalike Reah_

J. Ekros and A. Subotic, Linkoeping University

NATIONAL SOFTWARE QUALITY EXPERIMENT
A LESSON IN MEASUREMENT

1992-1997

KEY WORDS

Analysis Bins
Common problems
Core samples
Defect types
Experiment participants
Software Inspection Lab
Software process maturity level
Standard of excellence
Return on investment

PROLOGUE

The nation's prosperity is dependent on software. The nation's software industry is slipping, and
it is slipping behind other countries. The National Software Quality Experiment is riveting
attention on software product quality and revealing the patterns of neglect in the nation's software
infrastructure.

ABSTRACT

In 1992 the DOD Software Technology Strategy set the objective to reduce software problem rates
by a factor of ten by the year 2000. The National Software Quality Experiment is being

conducted1 to benchmark the state of software product quality and to measure progress towards
the national objective.

The National Software Quality Experiment is a mechanism for obtaining core samples of software
product quality. A micro-level national database of product quality is being populated by a
continuous stream of samples from industry, government, and military services. This national
database provides the means to benchmark and measure progress towards the national software
quality objective and contains data from 1992 through 1997.

The centerpiece of the experiment is the Software Inspection Lab where data collection procedures,
product checklists, and participant behaviors are packaged for operational project use. The
uniform application of the experiment and the collection of consistent measurements are guaranteed
through rigorous training of each participant. Thousands of participants from dozens of
organizations are populating the experiment database with thousands of defects of all types along

with pertinent information needed to pinpoint their root causes.

To fully understand the findings of the National Software Quality Experiment, the measurements
taken in the lab and the derived metrics are organized along several dimensions including year,
software process maturity level, organization type, product type, programming language, and
industry type. These dimensions provide a framework for populating an interesting set of analysis
bins with appropriate core samples of software product quality.

1 The National Software Quality Experiment is an entrepreneurial activity,

@Copyright Don O'Neill, 1998 2 Software Engineering Workshop

EXPERIMENT MOTIVATION AND ORGANIZATION
Overview

Participants are attracted to the experiment as a place where they can calibrate their software quality
against appropriately selected industry core samples. Here they can jump-start the organization's
quality measurement program on the shoulders of uniform Software Inspection Lab procedures.
These procedures are operationally packaged for project use and include well defined processes,
industrial strength product checklists, participant roles and behaviors, and standard forms and
reports.

The National Software Quality Experiment provides the framework to pose important quality
questions. Its micro-level national quality database provides the measurements to answer them.
Similarly, the extent of certain common risks can be quantified. As a participant in the experiment,
an organization can characterize the effectiveness of its software quality process. At the industry
level, progress towards the national software quality objective can be can be benchmarked.

Participants in the experiment benefit in several ways. They are able to characterize the maturity of
their software quality process. With this understanding, they are able to establish goals for
improving the process and to set priorities for immediate action. Beyond that, these organizations
are able to promote a vision for excellence in their software products and to calibrate their progress
towards the national software quality goal.

Motivation

The Department of Defense Software Technology Strategy was drafted for the Director of Defense
Research and Engineering in December 1991 [DOD STS 91]. Three important national objectives
were established to be achieved by the year 2000:

1. Reduce equivalent software life-cycle costs by a factor of two
2. Reduce software problem rates by a factor of ten
3. Achieve new levels of mission capability and interoperability via software

Every software organization should treat the national objective to improve software product quality
by a factor of ten as a wake-up call. Are organizations planning to reduce software problem rates
by a factor of ten? Do they know what these rates are now?

Measurement Best Practice

Although measurement is needed to derive effective policy governing acquisition, development,
and operations, there is not yet an industry consensus on the wisdom of creating a national
database for software engineering. The issue centers on the use of the data, not on its collection.
The worry is that the industry is not ready to use the database appropriately. Clearly the industry
can learn to use the database appropriately once it exists. If there are national goals set for
software engineering, there must also be a national measurement program and database to track
progress and refine goals. Carnegie Mellon University's Software Engineering Institute produced
"A Concept Study for a National Software Engineering Database" in July 1992 [Van Verth 92].
The study points out that there are many users for such a database, but few suppliers. The study
offers the following observations and advice on establishing a national database:

1. Wide variance may exist in the collection process
2. Common data definitions are needed

3. Goals and questions should precede data collection
4. Confidentiality of the data must be protected

@Copyright Don O'Neill, 1998 3 Sollware Engineering Workshop

In designing the experiment, it is recognized that the prescription for achieving lasting value in
measurement depends on the successful integration of measurement concepts, operationally
defined and packaged processes, effective technology transition including the training of
participants and the dissemination of results, and hands-on oversight of the experiment. The
prescription for lasting value in measurement revolves around four driving measurement concepts.
First, measurement must be aligned with business needs. Second, metrics must be carefully
pinpointed and rigorously defined. Third, measurement activities must be built into the normal
operation of the organization. Finally, extraordinary steps must be applied to obtain consistency
and uniformity in data collection.

Finally, Dr. Vic Basili of the University Maryland provides the following additional guidelines
[Wallace 97]:

1. Establish the goals of the data collection
2. Develop a list of questions of interest
3. Establish data categories
4. Design and test the data collection form
5. Analyze data

Nature and Role of Experiment
In the practice of software engineering, managers are guided more by myth than by measurement.
The experiment provides the framework for measuring critical aspects of software product quality
practice. The framework supplies the ingredients needed to install a uniform and consistent
measurement methodology. These are described in the Software Inspections Mechanism. The

predictability of the measurements taken in conducting the experiment provides the basis for
assessing the validity of a hypothesis. This is discussed in Experiment Results. Some of the
questions asked and answered in the experiment are:

I. To what extent is there a continuing stream of requirements changes?
2. What are the leading types of errors?
3. Are errors traced to people or process?
4. Is a standard development process followed?
5. To what extent are wrong software functions being developed?
6. To what extent are there shortfalls in real time performance?

7. Is gold plating a problem?

Software inspections are an essential ingredient in fact-based software management. They utilize a
reasoning process for conducting a fine-grained, deep-probing evaluation. When combined with
automation-based quick-look evaluations, the best balance between efficiency and insight can be
obtained. Once installed in the organization, the software inspection process yields core samples
of software product quality. These can be used to benchmark problem rates by defect type among
major product areas within the organization. With the benchmark measurements in place, the
software inspections process provides a stable, uniform, and persistent mechanism for measuring
improvement progress toward the software product goals of the organization.

SOFTWARE INSPECTIONS MECHANISM
Setting the Standard of Excellence
Software products reveal the standard of excellence in software engineering applied in their

production. In improving software product quality, an industrial strength standard of excellence
must be set, and the software operations within the organization must be disciplined to meet that
standard. This is done by measuring actual practice using the strongly preferred indicators from the
national standard of excellence spanning completeness, correctness, style, rules of construction,

and multiple views.

@Copyright Don O'Neill, 1998 4 Software Engineering Workshop

Completeness
Completeness is based on traceability among the requirements, specification, design, code, and
test artifacts. Completeness analysis reveals what predecessor artifact sections have not been
satisfied as well as the inclusion of extra fragments.

Correctness

Correctness is based on reasoning about programs through the use of informal verification and

correctness questions derived from the prime constructs of structured programming and their
composite use in proper programs. Input domain and output range are analyzed for all legal values
and all possible values. Adherence to project specific disciplined data structures is analyzed.

Style
Style is based on project specified style guidance based on block structured templates. Semantics
of the design and code are analyzed for correspondence to the semantics used in the requirements,
specifications, and design. Naming conventions are checked for consistency of use; and
commentary, alignment, upper/lower case, and highlighting use are checked.

Rules of Construction
Rules of construction are based on the software architecture and its specific protocols, templates,

and conventions used to carry it out. For example, these include interprocess communication
protocols, tasking and concurrent operations, program unit construction, and data representation.

Multiple views
Multiple views are based on the various perspectives required to be reflected in the product.
During execution many factors must operate as intended including initialization, timing of
processes, memory use, input and output, and finite word effects. In generating the software,
packaging considerations must be coordinated including program unit construction, program
generation process, and target operations. Product construction disciplines of systematic design
and structured programming must be followed as well as interfaces with the user, operating

system, and physical hardware.

EXPERIMENT RESULTS
Experiment Participants
The participants of the National Software Quality Experiment have been trained in the Software
Inspections Course and Lab. Experiment results are drawn from these Inspection Lab sessions.
The participating organizations span government, DOD industry, and commercial sectors and
represent a wide range of application domains.

• Accounting, personnel, administration
• Administrative and management

decision support
• Aircraft jet engine diagnostics,

logistics, and maintenance
• Artillery fire control system
• Avionics flight on-board control
• Control devices for avionics

applications
• Credit card application
• Department of State embassy support
• Electronic commerce

• Electronic warfare
• FAA communications

• Factory line support
• Financial services

• Global positioning system user sets
• Insurance and medical information

• International banking
• Joint Chiefs of Staff support
• Medical information system
• Naval surface weapons system
• Pre and post flight space application
• Telecommunications

@Copyright Don O'Neill, 1998 5 Software Engineering Workshop

Results Summary
Ralph Waldo Emerson said, "The years teach us things the days never knew". The National
Software Quality Experiment has been accumulating a steady stream of core samples for its
micro-level national database. These results provide a benchmark of software product quality
measurements useful in assessing progress towards the national software quality objective for the
year 2000. These results are highlighted below in the discussion of the common problems
pinpointed, defect category and severity data summary, Inspection Lab operations, the
predictability of certain measurements, and the ranking of defect types.

Common Problems

Analysis of the issues raised in the experiment to date has revealed common problems that reoccur
from session to session. Typical organizations which desire to reduce their software problem rates
should focus on preventing the following types of defects:
1. Software product source code components are not traced to requirements.

• As a result, the software product is not under intellectual control, verification procedures

are imprecise, and changes cannot be managed.
2. Software engineering practices for systematic design and structured programming are applied
without sufficient rigor and discipline.

• As a result, high defect rates are experienced in logic, data, interfaces, andfunctionali_.
3. Software product designs and source code are recorded in an ad hoc style.

• As a result, the understandability, adaptability, and maintainability of the software

product are directly impacted.
4. The rules of construction for the application domain are not clearly stated, understood, and
applied.

• As a result, common patterns and templates are not exploited in preparation for later
reuse.

Defect Category and Severity
The defect severity metric revealed that 14.27% of all defects were major, and 85.73% minor.
Defect category distinguishes missing, wrong, and extra. For major defects, 7.44% were missing,
5.95% wrong, and .88% extra.
For minor defects, 49.76% were Defect Severity and Category Summary
missing, 27.63% wrong, and
8.32% extra.

Inspection Lab Operations
Through 1997 there have been 112
Inspection Labs in which 2317
participants were trained and
conducted inspection sessions. A

Missing Wrong Extra Total

Major 7.44 5.95 .88 14.27

Minor 49.76 27.63 8.32 85.73

Total 57.20 33.60 9.20 100.00

total of 788,459 source lines of code have received strict and close examination using the
packaged procedures of the lab. There have been 142,306 minutes of preparation effort and 52,196
minutes of conduct time expended to detect 11,375 defects.

Of these 11,375 defects, 1854 were classified as major, and 9521 as minor. A major defect effects
execution; a minor defect does not. It required 12.51 minutes of preparation effort on the average
to detect a defect. To detect a major defect required 76.76 minutes of preparation effort on the
average. On the average, .906 thousand source lines of code were examined each inspection
conduct hour. There were 2.35 major defects detected in each thousand lines, and 12.08 minor
defects. There were 4.91 defects detected per session with a return on investment of 4.48.

@Copyright Don O'Neill, 1998 6 Software Engineering Workshop

Sessions

2317

INSPECTION LAB OPERATIONS

Prep Conduct Major Minor
Effort Time Defects Defects

142,306 52,196 1854 9521

Metrics:
1. 12.51
2. 76.76
3. 2.35
4. 12.08
5. 906
6. 4.91
7. 4.48

minutes of preparation effort perdefect
minutesof preparation effort per major defect
major defects per KSLOC
minor defects per KSLOC
lines per conduct hour
Defects per session
Return on Investment

Size in
Lines

788,45_

Questions Answered in the Lab

The micro-level national database on software product quality can be used to answer important
software engineering questions. When appropriately selected core samples are accumulated in the
Report Summary Form and the probability of occurrence is computed for each defect type, defect
severity, and defect category, these probabilities can be used to construct answers to questions.
Five of Boehm's top ten risks are answered below using the 1992-1997 data from the experiment:

Defect Type Ranking
The foremost defect types that accounted for 90% of all defects detected are:

Documentation
Standards

Functionality
Logic

Data

Maintainability

Syntax

_..................

50.00

40.00

P

re 30.00

c

e

n 20.00
t

1 O.OO

0.00

40.86%
20.39%
7.95%
7.86%

5.36%
4.73%

4.02%

error in guidance documentation
error in compliance with product standards
error in stating or meeting intended

error revealed through informal correctness questions
function

error in data definition, initial value setting, or use
error in good practice impacting the supportability
and evolution of the software product
error in language defined syntax compliance

i ,992-,997 I

i Interface

Data

1 Logic

D I/O

1 Performance
m Functionality

Human Resources

r_ Standards

1 Documentation

B Syntax

_Test Environment

Test Coverage

1 Maintainability

Other

@Copyright Don O'Neill, 1998 7 Software Engineering Workshop

To what extent were the wrong software functions being developed?

Functionality errors accounted for 7.95% of all errors.
To what extent were the wrong user interfaces developed?

Interface errors accounted for 1.05% of all errors.
Human Factors accounted for 1.79% of all errors.

To what extent was there gold plating?

9.20% of all errors were classified as extra.
To what extent was there a continuing stream of requirements changes?

Documentation errors accounted for 40.86% of all errors.
To what extent was there a shortfall in real time performance?

Performance errors accounted for 2.39% ofall errors.

Questions Not Yet Answered
It is useful to keep in mind that defects detected do not equal defects inserted. Defects may go
undetected and leak into downstream activities. Consequently there is interest in defect leakage and

ways to measure and reason about it. The Software Inspection Lab includes a mechanism to
collect data on defect leakage and to reason about the results. This reasoning process crosses over
into defect prevention.

Defect leakage was introduced into the National Software Quality Experiment in 1995, and the data
on this is starting to build up. The defect leakage data needs to populate each analysis bin in
sufficient quantity before these results are usable. With this data it will be possible to conduct

special studies on defect leakage to augment the core analyses done continuously.

Questions asked but not yet answered include:
1. To what extent is defect leakage occurring?
2. What is the frequency distribution of defect types that leak?

The mechanism used to gather defect leakage involves identifying the life cycle activity for each
software inspection and the defect origin for each defect. Each software inspection is considered an
exit criteria for a software product engineering activity. Each defect is characterized by category,

severity, type and defect origin. Defect origin is the software product engineering activity
where the defect was inserted. Where defect origin does not match the software product

engineering activity for which this inspection serves as an exit criteria, defect leakage has
occurred.

Measurement Results By Analysis Bin
The findings of the National Software Quality Experiment are organized along several dimensions
which provide a framework for populating an interesting set of analysis bins with appropriate core
samples of software product quality. The analysis bins are used to organize the findings into
collections of data that reveal distinctions and may suggest interesting trends.The types of bins

selected are year, software process maturity (level 1,2,3), organization type (commercial, DOD
industry, government), product type (embedded, organic), programming language (modern, old
style), and industry type (defense, financial, manufacturing, medical, telecommunication,
transportation). As data for each year is collected, the overall results become more interesting, and
the population of analysis bins becomes more robust.

Return On Investment

Managers are interested in knowing the return on investment to be derived from software process
improvement actions. The Software Inspections Process gathers the data needed to determine this.

@Copyright Don O'Neill, 1998 8 Software Engineering Workshop

The defined measurements collected in the Software Inspections Lab may be combined in complex

ways to form this derived metric. The Return on Investment for Software Inspections is defined
as:

Savings/Cost, where:
Savings=(Major Defects * 9) + Minor Defects
Cost= (Minutes of Preparation Effort + (Minutes of Conduct Time * 4))/60

This model for Return on Investment bases the savings on the cost avoidance associated with

detecting and correcting defects, i............. "-]
earlier rather than later in the _
product evolution cycle. A Major]Retur, onlnvestment

I /
Defect that leaks into later phases 16
may cost ten hours to detect and,
correct. Ten hours to fix later minus 14.
one hour to fix now results in the _b 12

constant nine (9) applied to Major i
Defects. A Minor Defect may cost i 10
two hours to fix later minus one
hour to fix now resulting in a I 8
constant of one (1) applied to Minor i 6
Defects. To convert the Minutes of I 4 ...

Conduct Time to effort, the average
number of participants (4) is z-

applied. The constant 60 minutes is 0

applied to convert minutes to hours, llttional .(,f:wilt QJalit) I-xl:erirr,erJt /
i

The graph showing the Return on
Investment for each organization participating in the National Software Quality Experiment

suggests that the Return on Investment for software inspections ranges from 4:1 to 8:1. For every
dollar spent on software inspections, the organization can expect to avoid 4-8 dollars on higher
cost rework.

CONCLUSION
Closing Observations
In closing it needs to be stated that the data does not suggest progress towards the Year 2000 goal
to reduce software problems by a factor of ten. Hunting for defects in software is a target rich
opportunity. The harder the project looks for errors, the more it finds. The way to look harder is
to reduce the volume of product inspected in each session.

The data suggests that increased software process maturity results in increased defect detection,
with the result perhaps being lower defect leakage into the field. At level 1 the project lacks a
shared vision for a standard of excellence for software engineering products. At level 2 attention is

paid to establishing a standard of expectation, a standard of excellence, and so more defects are
identified. At level 3 the standard is set and the well defined, fined grained processes for software

product engineering are in place and in practice with software inspections operating as the exit
criteria for each activity of the life cycle.

The data also suggests that defect density decreases with program size. As stated earlier, all
programs contain a beginning, an end, and a context for operation within the larger system.
Starting, finishing, and fitting in are all more error prone than the body of the program which gives
it size.

@Copyright Don O'Neill, 1998 9 Software Engineering Workshop

In addition the data suggests that the organization's neglect of its software process exceeds the
poor workmanship of individual programmers as the source of errors. Documentation and
standards defect types account for nearly two-thirds of all defects, and these are the responsibility
of the organization and its process.

Software products are not well connected to the requirements or business case that inspired their
creation. Much of the documentation type defect detection results from the lack of traceability from
the code to the design to the specification to the requirements.

Field Measurement Lessons

In conducting the National Software Quality Experiment, valuable lessons in field measurement are
being learned. These lessons are forming the prescription for obtaining lasting value in
measurement:

1. Measurement must be aligned with business and performance needs. These activities
must be built into the normal operation of the organization. To do this, the goals to be met
and questions to be answered in management, engineering, and operations must precede
the collection of data.

2. Metrics must be carefully pinpointed and rigorously defined. Extraordinary steps must
be applied to obtain consistency and uniformity. Without a well defined process for data
collection and analysis, the variance in the measurement process itself impacts the accuracy
of results.

3. Attention must be paid to the confidentiality of results. The opportunity for improvement
is increased when the measured results are made more widely available. However,

individuals and groups naturally resist having their shortcomings made public. If ignored,
this resistance will defeat the measurement program. The organization must strike a balance

between public and private data.

Next Steps
The National Software Quality Experiment is a demonstrated mechanism for collecting uniform and
consistent measurements of software product quality. It provides the vantage point for software

product quality and the field experience in measurement needed to jump start the practice of fact-
based software management.

As the centerpiece of the experiment, the Software Inspection Labs have b_en installed in
software factories around the country. The National Experiment collects, organizes, and packages
core samples of software product quality. These measurements are increasing the understanding of
the state of the practice and how to measure it.

The usefulness and success of the National Software Quality Experiment depends on sustaining a

continuous stream of core samples. Organizations from industry, government, and the military are

invited to participate and enrich this national database resource.

@Copyright Don O'Neill, 1998 10 Software Engineering Workshop

BIBLIOGRAPHY

[DOD STS 91]

[Ebenau 94]

[Fagan 76]

[Florac 92]

[Freedman 90]

[Gilb 93]

[Linger 79]

[Humphrey 89]

[O'Neill 88]

[O'Neill 89]

[O'Neill 92]

[O'Neill 94]

[O'Neill 95,96]

[O'Neill 97]

[O'Neill 97]

[O'Neill 97]

[O'Neill 98]

[Paulk 95]

[Van Verth 92]

[Wallace 97]

Department of Defense Software Technology Strategy, draft prepared for
the Director of Defense Research and Engineering [DDR&E], December
1991

Ebenau, Robert G. and Susan H. Strauss, "Software Inspection Process",
McGraw-Hill, Inc., 1994

Fagan, M., "Design and Code Inspections to Reduce Errors in Program
Development", IBM Systems Journal, 15, 3, 1976, 182-211
Florac, William B., "Software Quality Measurement: A Framework for
Counting Problems and Defects", CMU/SEI-92-TR-22, September 1992
Freedman, D.P., G.M. Weinberg, "Handbook of Walkthroughs,
Inspections, and Technical Reviews", Dorset House Publishing Co., Inc.,
1990

Gilb, Tom and Dorothy Graham, "Software Inspection", Addison Wesley
Longman Limited, 1993
Linger, R.C., H.D. Mills, B.I. Witt, "Structured Programming: Theory
and Practice", Addison-Wesley Publishing Company, Inc., 1979
Humphrey, Watts S., "Managing the Software Process", Addison-Wesley
Publishing Company, Inc., 1989
O'Neill, Don and Albert L. Ingrain, "Software Inspections Tutorial",
Software Engineering Institute Technical Review 1988
O'Neill, Don, "Software Inspections Course and Lab", Training Offering
for Practitioners, Software Engineering Institute, 1989
O'Neill, Don, "Software Inspections: More Than a Hunt for Errors",

CrossTalk, Issue 30, January 1992
O'Neill, Don, "National Software Quality Experiment", International
Conference on Software Quality, Washington DC, 1994
O'Neill, Don, "National Software Quality Experiment: Results 1992-1995",
Software Technology Conference, Salt lake City, 1995 and 1996
O'Neill, Don, "Issues in Software Inspection", IEEE Software, Vol .14
No 1., January 1997
O'Neill, Don, "Setting Up a Software Inspection Program", CrossTalk,
The Journal of Defense Software Engineering, Vol. 10 No. 2, February
1997

O'Neill, Don, "National Software Quality Experiment: A Lesson in
Measurement 1992-1996", Quality Week Conference, San Francisco, May
1997 and Quality Week Europe Conference, Brussels, November 1997
O'Neill, Don, "Software Inspections and the Year 2000 Problem",
CrossTalk, The Journal of Defense Software Engineering, Vol. 11 No. 1,
January 1998
Paulk, Mark C., "The Capability Maturity Model: Guidelines for Improving
the Software Process", Addison-Wesley Publishing Company, 1995
Van Verth, Patricia B., "A Concept Study for a National Software
Engineering Database", CMU/SEI-92-TR-23, July 1992
Wallace, Dolores R., Laura M. Ippolito, and Herbert Hecht, "Error, Fault,
and Failure Data Collection and Analysis", http:l/hissa.ncsl.nist.gov,

Quality Week, San Francisco, May 1997

@Copyright Don O'Neill, 1998 11 Software Engineering Workshop

AUTHOR: Don O'Neill
Don O'Neill is a seasoned software engineering manager and technologist currently serving as an
independent consultant. Following his twenty-seven year career with IBM's Federal Systems
Division, Mr. O'Neill completed a three year residency at Carnegie Mellon University's Software
Engineering Institute (SEI) under IBM's Technical Academic Career Program. There he developed
a blueprint for charting software engineering evolution in the organization including the training
architecture and change management strategy needed to transition skills into practice.

As an independent consultant, Mr. O'Neill conducts defined programs for managing strategic
software improvement. These include implementing an organizational Software Inspections
Process, implementing Software Risk Management, and conducting Global Software
Competitiveness Assessments. Each of these programs includes the necessary practitioner and
management training.

In his IBM career, Mr. O'Neill completed assignments in management, technical performance, and
marketing in a broad range of applications including space systems, submarine systems, military
command and control systems, communications systems, and management decision support
systems. He was awarded IBM's Outstanding Contribution Award three times:

1. Software Development Manager for the Global Positioning
Ground Segment (500,000 source lines of code) and a team of 70 software engineers
within a $150M fixed price program.

2. Manager of the FSD Software Engineering Department responsible for the origination
of division software engineering strategies, the preparation of software management and
engineering practices, and the coordination of these practices throughout the division's
software practitioners and managers.
3. Manager of Data Processing for the Trident Submarine Command and Control System
Engineering and Integration Project responsible for architecture selections and software
development planning (1.2M source lines of code).

Mr. O'Neill served on the Executive Board of the IEEE Software Engineering Technical
Committee and as a Distinguished Visitor of the 1EEE. He is a founding member of the National
Software Council and the Washington DC Software Process Improvement Network (SPIN). He
is an active speaker on software engineering topics and has served as the Program Chairman and
Program Committee member for several conferences. He has numerous publications to his credit.
Mr. O'Neill has a Bachelor of Science degree in mathematics from Dickinson College in Carlisle,
Pennsylvania.

Contact Information
Don O'Neill

Independent Consultant
9305 Kobe Way
Montgomery Village, Maryland 20886

Phone: (301) 990-0377
email: ONeillDon@aol.com

http://members.aol.com/ONeillDon/index.html

word count: 4,581

@Copyright Don O'Neill, 1998 12 Software Engineering Workshop

NATIONAL SOFTWARE QUALITY EXPERIMENT
A LESSON IN MEASUREMENT

1992-1997

Don O'Neill
Independent Consultant

(301) 990-0377

http://members.aol.co nVONeillDo n/index, html
@Copyright Don O'Neill, 1998 1 Natiorlal Software Quality Experiment

Experiment Purpose
Don O'IV_II (_r_lltir_

To measure progress towards the national objective

Reduce software problems by a factor of 10
by the year 2000

Set by the DOD Software Technology
Strategy in 1992

To benchmark the state of software product quality

@CoWdght Don O'Neill, 1998 2 National S_tware Qt.Blty Experiment

Some of the Questions Asked and
Answered in the Experiment

To what extent is there a continuing stream of requirements
changes?

What are the leading types of errors?

Are errors traced to people or process?

Is a standard development process followed?

To what extent are wrong software functions being developed?

To what extent are there shortfalls In real time performance?

Is gold plating a problem?

@Copyright Don O'Neill, 1908 3 Natloual Soltwar. Quality Experiment

Experiment Participants
i _ = Don O'Neilt Cons_r_

• Accounting, personnel,
administration

• Administrative and
management decision
support

• Aircraft Jet engine
diagnostics, logistics, and
maintenance

• Artillery fire control system
• Avionics flight on-board

control
• Control devices for avionics
applications
Credit card application
Department of State
embassy support

• Electronic commerce

@Copyright Dog O'Neill, 1998 4

• Electronic warfare
• FAA communications
• Factory line support
• Financial services
• Global positioning system

user sets
• Insurance and medical

Information
• International banking
• Joint Chiefs of Staff

support
• Medical Information

system
• Naval surface weapons
system

• Pre and post flight space
application

• Telecommunications

National Soltwam Qualty Experiment

Experiment Centerpiece: Inspection Lab

Structured
Review Forms and
Process Reports

Product Defined
Checklists Roles

@Copyright Don O'Neill, 1998 5 National Software Quality Expedrne_t

Product Checklist Themes
Completeness

Traceabifity from code to requirements

Correctness

Don O'Nei# (:onsut_

Intended function with faithful elaboration of steps that carry it out

Style
Naming, commentary, alignment, case, highlighting, templates

Rules of Construction
Application domain specific reference architecture

Multiple Views
Programmer, tester, user, computer resources, security, Y2K

@Copyright Don O'Neill, 1998 8 National Software Qualny Experiment

Inspection Reporting Form

Defect

Description

Issue Page/
Number Line

Checklist Defact

;ategory

Defect Category: Missing, Wrong, Extra

Defect Severity: Major, Minor

Defect

Severity

Defect

Type

Defect

Origin

Defect Type: Interface, Data, Logic, I/O, Performance,
Functionality, Human Factors, Standards,

Documentation, Syntax, Maintainability, Other

@Copyright Don O'Neill, 1998 7 NationalS(_twaroQualityExl_edment

I .. Defect Severity and Category
Summary

..... --" ,;---_ _-_"--_- _ ,_ . _, Don O'Neitt C_leu#k_g

Defect Severity and Category Summary

Missing Wrong Extra Total

Major 7.44 5.95 .88 14.27

Minor 49.76 27.63 8.32 85.73

Total 57.20 33.60 9.20 100,00

@Copyright Don O'Neill, 1998 8 National Software Qua#tyE_periment

Inspection Lab Operations Summary
I i i i Oon O'Ne#l C_'rsultlng

INSPECTION LAB OPERATIONS

Sessions Prep Conduct Major Minor Size in
Effort Time Defects Defects Lines

2317 142,306 52,196 1854 9521 788,459

Metrics:
1. 12.51
2. 76.76
3. 2.35
4. 12.08
5. 906
6. 4.91
7. 4.48

minutes of preparation effort per defect
minutes of preparation effort per major defect
major defects per KSLOC
minor defects per KSLOC
lines per conduct hour
Defects per session
Return on Investment

@Copydght Don O'Neill, 1998 g
Natlor_l Sollware Quality ExpeJlment

Software Inspections Control Panel
Don O'Ne#l Consulting

Defect Detection Rate Gauge
90 12

Minutes of Minutes of

Preparation Preparation
Effort Effort

Per Major Defect Per Minor Defect

Inspection Conduct Rate Gauge
400 1200

oo
New Development Legacy Lines Per

Lines Per Conduct Hour Conduct Hour

@Copyright Don O'Neill, 1998

Defect Density Gauge
2 14

Major Defects Minor Defects
Per Thousand Per Thoueend

Lines t.ines

Return on Investment Gauge
4

Net Savings/Detection Cost

10 National Software Quality Exl0edment

Defect Types
..................... "...... _ " ' _- _ ,,i i ll.l=,l,= I i , li Don O'Nefll {_.onsulttng

1992-1997}

50,00

40.00

P
e

30.00
r

c

e

n 20.00
t

10,00

0.00
Percent of Defect Types

• Interface

• Data

[] Logic

[] I/0

• Performance

[] Functionality

[] Human Resources

[] Standards

[] Documentation

[] Syntax

[] Test Environment

[] Test Coverage

[] Maintainability

[] Other

@Copyright Don O'NolII. 1998 11 National Software Quality Experiment

Common Problems
I i li iil il Don O'Netll C,'ons_

1. Software product source code components are not traced to
requirements.

As a result, the software product is not under intellectual control,
verification procedures are imprecise, and changes cannot be
managed.

2. Software engineeringpractices for systematic design and structured
programming are applied without sufficient rigor and discipline.

As a result, high defect rates are experienced in logic, data,
interfaces, and functionality.

3. Software product designs and source code are recorded in an ad hoc
style.

As a result, the understandability, adaptability, and
maintainability of the software product are directly impacted.

4. The rules of construction for the application domain are not clearly
stated, understood, and applied.

As a result, common patterns and templates are not exploited in
preparation for later reuse.

@Cowdght Don O'Neill, 1908 12 National Software Quality Experiment

Software Process Maturity Level

MajorDefectsPerThousandLines]

6.00-1

4.00 t

2.00 I

ProcessMaturity Level

I • Level

I• Level

I[] Level

" I_.orDefectsPerThousandLine;]

30. Oq • Level1
H

20.o_ • Level2

t 10. O-l I! Level 3O.
ProcessMaturityLevel

II
I

1
LinesPerConductHour{

{•Leve{

{iLevel;

{ILeve{!

6.0(

4.0(

2.0(

0.0(

DefectsPer Session I

ProcessMaturityLevel

1300.O

BO0.C

400.C

O.C
ProcessMaturityLevel

I

@Copyright Don O'Neill, 1998

1 Level 1

1 Level 2

Level 3

13 National Software Quality Expedmeflt

Return on Investment
................ Don O'N_flc_noulting

16-

14-

10

8

6

4-

2-

O-
National Software Qualil:y Experiment

@Copyright Don O'Neill, 1908 14 National Softumre Quality Experiment

.........................Exp_eriment Findings Summary
Don O'Netl/ (?onsuiting

Lack of Progress
-The objective to reduce software problems by a factor of 10 is not
being met

Looking Harder, Finding More
-By reducing the size of artifacts inspected

Program Size Matters
-Defect density decreases with program size
-Starting, finishing, and fittin_l in are all more error prone than the
body of the program which gives it size

Software Process Maturity Insight
-Legacy software anchors many organizations at level 1
-These are often commercial enterprises

Process Neglect Exceeds Personal Defects
-Organization ne_llect of its software process exceeds the poor
workmanship of mdividual programmers as the source of errors
-Documentation and standards defect types account for nearly two-
thirds of all defects

Return on Investment High
-Software inspections deliver a favorable return on investment with
-Savings exceed costs by 4 to 1

@Copyright Don O'Neill, 1998 15 National Soi'tware Quality Expedmenl

Field Measurement Lessons
Don O'Ne_/f'_nsuttsg

1. Measurement must be aligned with business and
performance needs.

These activities must be built into the normal operation of the organization.

To do this, the goals to be met and questions to be answered in management,
engineering, and operations must precede the collection of data.

2. Metrics must be carefully pinpointed and
rigorously defined.

Extraordinary steps must be applied to obtain consistency and uniformity.

Without a well defined process for data collection and analysis, the variance in the
measurement process Itself Impacts the accuracy of results.

3. Attention must be paid to the confidentiality of
results.

The opportunity for Improvement is Increased when the measured results are made
more widely available.

-However, Individuals and groups naturally resist having their shortcomings
made public.
-If ignored, this resistance will defeat the measurement program.

-The organization must strike a balance between public and private data.

@Copyright Don O'Neill, 1998 10 National Soflware Quality Experiment

NATIONAL SOFTWARE QUALITY EXPERIMENT
A LESSON IN MEASUREMENT

PROLOGUE

The nation's prosperity is dependent on software. The nation's software industry is slipping, and it is slipping behind

other countries The National Software Quality Experiment is riveting attention on software product quality and
revealing the patterns of neglect in the nation's software infrastructure.

ABSTRACT

In 1992 the DOD Software Technology Strategy set the objective to reduce software problem rates by a factor of ten by
the year 2000. The National Software Quality Experiment is being conducted1 to benchmark the state of software
product quality and to measure progress towards the national objective.

The National Software Quality Experiment is a mechanism for obtaining core samples of software product quality. A
micro-level national database of product quality is being populated by a continuous stream of samples from industry,

government, and military services. This national database provides the means to benchmark and measure progress
towards the national software quality objective and contains data from 1992 through 1997.

The centerpiece of the experiment is the Software Inspection Lab where data collection procedures, product checklists,

and participant behaviors are packaged for operational project use. The uniform application of the experiment and the
collection of consistent measurements are guaranteed through rigorous training of each participant. Thousands of

participants from dozens of organizations are populating the experiment database with thousands of defects of all types
along with pertinent information needed to pinpoint their root causes.

To fully understand the findings of the National Software Quality Experiment, the measurements taken in the lab and

the derived metrics are organized along several dimensions including year, software process maturity level,

organization type, product type, programming language, global region, and industry type. These dimensions provide a

framework for populating an interesting set of analysis bins with appropriate core samples of software product quality.

1The NationalSoftwareQuality Experiment Is an entrepreneurial activity
@CopyrightDon O'Neill, 1998 17 National$ollware QuaNtyExperiment

Author: Don O'Neill
Don O'Neill is a seasoned software engineering manager and technologist currently serving as an independent

consultant Following his twenty-seven year career with IBM's Federal Systems Division, Mr. O'Neill completed a three
year residency at Carnegie Mellon University's Software Engineering tnstitute (SEI) under IBM's Technical Academic

Career Program. There he developed a blueprint for charting software engineering evolution in the organization
including the training architecture and change management strategy needed to transition skills into practice.

As an independent consultant, Mr. O'Neill conducts defined programs for managing strategic software improvement.
These include implementing an organizational Software Inspections Process, implementing Software Risk

Management, and conducting Global Software Competitiveness Assessments. Each of these programs includes the
necessary practitioner and management training.

In his IBM career, Mr O'Neill completed assignments in management, technical performance, and marketing in a broad

range of applications including space systems, submarine systems, military command and control systems,

communications systems, and management decision support systems, He was awarded IBM's Outstanding
Contribution Award three times:

1 Software Development Manager for the Global Positioning Ground Segment (500,000 source lines of
code) and a team of 70 software engineers within a $150M fixed price program,

2. Manager of the FSD Software Engineering Department responsible for the origination of division
software engineering strategies, the preparation of software management and engineering practices,

and the coordination of these practices throughout the division's software practitioners and managers.

3. Manager of Data Processing for the Trident Submarine Command and Control System Engineering and
Integration Project responsible for architecture selections and software development planning (1.2M
source lines of code).

Mr. O'Neill served on the Executive Board of the IEEE Software Engineering Technical Committee and as a
Distinguished Visitor of the IEEE He is a founding member of the National Software Council and the Washington DC

Software Process Improvement Network (SPIN). He is an active speaker on software engineering topics and has
served as the Program Chairman and Program Committee member for several conferences. He has numerous
publications to his credit. Mr, O'Neill has a Bachelor of Science degree in mathematics from Dickinson College in
Carlisle, Pennsylvania.

@CopyrightDon O'Neill, 1998 18 NaUoealSoftware QualityExperiment

Principles of Successful Software Inspections

Dennis Beeson and Tim Olson
) :

/

World-Class Quality

3082 Hamline Ave. N., St. Paul, MN. 55113
Phone: 612-636-2234

Email: DDBeeson@gte.net, Tim.Olson@worldnet.att.net

Abstract Software inspections remain the most effective method of early defect detection and

removal (e.g. early defect detection 80 90%, ROI 7:1 12:1). Yet many
organizations are unsuccessful at invoking the cultural changes required to implement

and sustain an effective software inspection process. So what can an organization
focus on to change people's perspective of inspections to develop a quality culture
centered around software inspections? This paper will identify some of the essential

attributes or principles of software inspections which facilitate in building and
sustaining a quality culture. This paper will measure the F/A-18 Software

Development Team's inspection process against these principles to determine
software inspections effectiveness as well as identify areas for future improvement.

Objectives The objectives of this paper are to:

• present some common cultural problems associated with software inspections.

• present some successful software inspection data from the F/A-18 Aircraft.

• present an overview of effective principles that are successful when performing
software inspections.

• benchmark the F/A-I 8 Software Development Team's inspection process against
inspection principles identified to determine effectiveness and indicate areas for
improvement.

In This Paper The following table describes the title and starting page of each section:

Section See Page

The Positive Impact of Inspections on F/A-18 2

Benchmarking the F/A- 18 Inspection Process 3

Some Principles of Successful Software Inspections 4

Measuring the Principles of the F/A-18 Inspections 5

References 6

Copyright © 1998 by World-Class Quality Page 1 of 6

The Positive Impact of Inspections on F/A-18

Background Since 1987, the F/A-18 Software Development Team (SWDT) at the Naval Air

Warfare Center - Weapons Division (NAWC-WD) has been providing system and

software engineering maintenance and upgrades on the F/A-18 A/B model aircraft
Mission Computer (MC) and Stores Management System (SMS) for the US Navy and

Foreign Military Sales (FMS) customers.

F/A-18 Mission

Computer
Upgrades

The F/A-18 SWDT has undertaken four major upgrades to the F/A-18 aircraft's

Mission Computer (MC) Operational Flight Program (OFP). The MCs are the center
of the F/A-18's avionics architecture. The MCs are the primary link between the

aircrews cockpit display environment and the aircraft's tactical and air vehicle

management avionics subsystems.

F/A-18 MC

Defect Removal

Life Cycle

Figure 1 illustrates the overall impact software product inspections and software
process improvement have had on product quality. During a ten year period involving
over 5000 inspections, early defect detection and defect prevention have significantly
moved the defect removal curve to the left. The majority of product defects are now

found in the requirements, design and coding phases. In fact, over 86.6% of all

defects are found before testing. The defect removal life cycle curve is also used to

demonstrate product maturity to the customer.

40 00

3500

30¸00

25¸00

8
20 00

1500
a

1000

500

0 00

F/A-18 NB Mission Computer Defect Removal Life Cycle

• 89A OFP [1990)

• 92A OFP [1993)

[] 10AOFP [199e)

• 12A OFP [lg98)

0

Defects Found in System

Integration Testing

1990 1993

est.2.15

1996 1998

System

Design

Software Design Code Unit System System Fleet

Reqt.'s Test Int. Test Ver. Test Use

Figure 1:F/A-18 A/B Mission Computer Defect Removal Life Cycle

Copyright © 1998 by World-Class Quality Page 2 of 6

Benchmarking the F/A-18 Inspection Process

World-Class
Software

Benchmarks

Benchmarking the F/A-I 8's inspection process data against a world-class level. Over

the last 10 years, the F/A-18 SWDT has progressed from an average performing SEI
CMM Level 1 organization to comparing favorably against world-class software

organizations. Table 1 characterizes current performance of various world-class
organizations to the F/A-18 SWDT current performance capability.

Measurement World-Class F/A-18 Software
Benchmark* Development Team

Quality
Inspection Defect Removal Efficiency 80%-90% 86.6%
Post-Release Defect Rate

Cost

Total Cost Savings

Inspection Cost
Return on Investment (ROI)

Schedule

Schedule / Cycle Time
Productivity

Table 1 World-Class Software Benchmarks

.01 per KSLOC

$7.5-$45 Million

$2,500 on Average
7:1 - 12:1

Reduced 10-25% per yr.
Doubled in 3 years

*derived from World-Class Quality - Timothy

.01 per KSLOC

$14.4 Million

($ 3.6M per major update)
$1,500 on average
7:1

Reduced 9% per year
Increased 62% in 3 years
G. Olson copyright 1995 - 1996

Copyright © 1998 by World-Class Quality Page 3 of 6

Principles of Successful Software Inspections

Principles of
Software

Inspections

To fully understand how to optimize software inspections to promote team building

and improve individual learning it was necessary to have a clear description of the

core attributes or principles that make software inspections successful from a people

prospective. Only after these principles were identified was it possible to make the

necessary process improvements. Research and benchmarking of software

inspections best practices were successful in identifying the following principles

found in most effective inspection processes:

Principles Description

Leadership Management should provide resources and be an active participant in

communicating, mentoring, and building the organizations quality
culture. Facilitate the team in setting clearly stating mission, goals, and
objectives centered around quality, quality measurement, and quality
improvement.

Quality Culture Foster commitment to designing in quality. Develop an understanding
of the quality expectations, values, and priorities of the immediate and
final customers.

Responsibility Foster responsibility for the quality of the end product

Process Ownership Team participation in process definition and process change
mechanisms.

Defect Prevention Foster commitment to learning from past defects.

Communication

Feedback

Defect Analysis

Agreement

Defined Process

Training

Defect
Identification

Accountability

Foster open honest communication supported by effective meeting

facilitation. Understand the strength and weaknesses of self, team, and
organization and use this diversity to optimize effectiveness. Operate
organization with integrity, making decisions based on what is truly best
for product quality and the organization.

Give feedback on individual defects found, overall product quality,
status of defect prevention (e.g. common defect trends identified,
changes to data driven checklists).

Analysis and tracking of defect density per development phase and
determining criteria for reinspection.

Management, engineering, suppliers, and immediate and final
customers should effectively review and agree to product plans (e.g.
schedule, resources, staffing, quality objectives, etc..).

Fully communicate what is expected of management, engineering,
suppliers, and immediate and final customers (e.g. what, how, when,
were, why).

Effectively train people in inspection purpose, roles, process,
facilitating meetings.

Formal mechanism for documenting, categorizing, and dispositioning
defects. Defect identification involves gathering defect and associated
metrics (e.g. size, effort, cost, time, rework). Defect identification is

usually supported by data driven checklists.

Formal mechanism hold developers, reviews, and moderators
accountable for fulfilling their role in the inspection process.

Copyright © 1998 by World-Class Quality Page 4 of 6

Measuring the Principles of the F/A-18 Inspections

F/A-18
Software Team

Over the last ten years the F/A-18 Software Development Team has training

approximately 50 software engineers in tbrmal inspections. Most have never used
formal inspection methods before working on the team. As they progress in

knowledge and understanding of inspections they move up in their level of
commitment to the teams product quality goals and buy-in to the inspection process.

The principles of software inspects need to be effective and in place to protect against
loosing buy-in or commitment, issues of non-compliance, or to assist in gaining

enough trust in the team and the inspection process to move to a higher level of buy-in
or commitment.

Questionnaire A survey was conducted of the F/A-18 Software Development Team in order to
measure the buy-in and commitment to the software inspection principles. The table
below shows the results:

100

90

80

70

60

50

40

30

20

10

0

Principlesof Inspections Questionaire Results

Summary Achieving measurable results using software inspections requires understanding

fundamental principles, and then tailoring those principles to practice. These
principles must then become part of an organization's day to day business.

by World-Class Quality Page 5 of 6

References

References The references used for this presentation are:

• [Covey 91] S. R. Covey, Principle Centered Leadership, New York, NY:

Simon & Schuster, 1991

• [Senge 90] P. M. Senge, The Fifth Discipline, New York, NY: Currency

Doubleday, 1990

• [Curtis 95] Curtis, Bill, et al. People Capability Maturity Model (CMU/SEI-95-
MM-02). Pittsburgh, PA: Carnegie Mellon

• [Deming 95] W. E. Deming, Out of Crisis, Cambridge, MA: MIT Center

for Advanced Engineering Study, 1995

• [Beeson 98] D. D. Beeson and T. G. Olsen, "Benchmarking F/A-18

Software Inspection Data", SEI 1998 Conference Proceedings, 1998.

• [Barnard 94] Barnard, J. and Price, A. "Managing Code Inspection
Information", IEEE Software, March 1994.

[Billings 94] Billings, C., et al. "Journey to a Mature Software Process", IBM
Systems Journal, vol. 33, no. 1, 1994.

• [Ebenau 94] Ebenau, B. and Strauss, S., Software Inspection Process. McGraw-
Hill, 1994.

• IF/A-18 96] F/A-18 MC/SMS Software Processes; February 12, 1996.

• [F/A-18 97] F/A-18 Systems Engineering Process Guide; August 9, 1997.

• [Fagan 76] Fagan, M. "Design and Code Inspections to Reduce Errors in
Program Development", IBM Systems J., no. 3, 1976. pp 182-210.

• [Fagan 86] Fagan, M. "Advances in Software Inspections", IEEE Transactions
on Software Engineering, July 1986

• [Gilb 93] Gilb, T. and Graham, D. Software Inspection. Addison-Wesley, 1993.
• [Grady 94] Grady, R. and Van Slack, T. "Key Lessons In Achieving Widespread

Inspection Use", IEEE Software, July 1994.
[Herbsleb 94] Herbsleb, James, et al. "Benefits of CMM-Based Software

Process Improvement: Initial Results", CMU/SEI-94-TR-13, 1994.
• [Humphrey 89] Humphrey, W. S. Managing theSofiware Process. Reading,

MA: Addison-Wesley Publishing Company, 1989.
• [Olson 94] Olson, Timothy G., et al. "A Software Process Framework for the

CMU/SEI-94-HB-01, 1994.

• [Olson 96] Olson Timothy G., "World-Class Software Inspections", SEI

1996 SEPG Conference Proceedings, 1996.

• [Paulk 93] Paulk, Mark C., et al. Capability Maturity Model for Software,
Version I. 1 (CMU/SEI-93-TR-24). Pittsburgh, PA: Carnegie Mellon University,
1993.

• [O' Hara 97] F. O'Hara, Achieving maximum benefits from formal
reviews/inspections - strategies and case studies, proceedings of EuroSTAR'97,

Edinburgh and SPI'97, Barcelona, 1997.

Copyright © 1998 by World-Class Quality Page 6 of 6

Principles of Successful
Software Inspections

NASA/Goddard Software Engineering
Workshop

Presented by

Dennis Beeson

F/A-18 Software Development Team, Manager
Ki Solutions Consulting, Co-Founder
SEI Certified SCE Evaluator

(760) 375-3376
DDBeeson @ gte.net

Tim Olson, President

World-Class Quality
Juran Institute Associate
Authorized SEI Lead Assessor

(612) 636-2234
Tim.Olson @worldnet.att.net

Wo4dK;lI_ O_za_, Cowdghl 0 _' - l_r_

Objective

• Provide principles of effective software inspections
derived from real-world organizations

• Example using inspection principles to benchmark:

• Inspection process

• Individual buy-in and commitment

Agenda

• F/A-18 Software Team Overview

• Software Inspection Principles Identified

• Benchmarking Inspection Process

• Inspection Principles and Buy-in

• Measuring People Buy-in and Commitment

• Question ????

F/A-18 Software Team Overview

l=iimmw_:,'_"-
I---__,;;,"_J_ Measurement World-Class F/A-18 Software

__.] Benchmark

"_ . +" Inspection Defect Removal

a_ : Efficiency

SEI CMM Level 3 rating Post-ReleaseDefect Rate

COST

TotalCostSavings

InspectionCost

Returnon Investment(ROI)

SCHEDULE

Schedule/ CycleTime

Productivity

Development Team

80% - 90%

.01 per KSLOC

$ 7.5M - $ 45M

$ 2500 on Avg.

7:1 - 12:1

86.6%

.01 per KSLOC

$14.4 Million

$1500 on Avg.

7:1

Reduced 9% per yr

Incre_=_=_-__62% In 3 yr

Mlsslon

Computer

F/A-18 Software Team Performance

F/A-18 Mission Computer Defect Removal Life Cycle

3 5 _ I I_J Integration Testing

3o /B,=AOFP,,,,_,I Iii

(_ 25 "1 n 10A OFP ('gas) I. .l_-Ii| '_l

_ 20 _

10

5

0

System Software Design Code Software System System Fleet
Design Reqmts Insp. Inl. Test InL Test Yer. Test Use

W='ld4_=_Ouil,_,Ow.1_,_0 lr_7 - l_FJe

People

D
PeopleCMM and Covey...

Principles of Software Inspections Identified

foster, communicate, mentor, and facilitate a quality culture

personally identifies with quality of product

willing to take on process improvement

root cause analysis of common defects for data driven checklists

facli;t_-;eG meetings, environment focused on product quality

author defects, product defect density

per development

agreement to plans and tasking

clear description of what to do when

re-enforcement of what to do when end why

document, categorize, and disposition defects

moderator tracking defects to closure

W_dd-C_= OwJ_, Copyrk_ • 19t? - t_

Benchmarking the Inspection Process

• Quality Definition

(e.g. Conlormanca to customer requirements, meeting or beating defect

removal lifecycle removal curve)

Leadership

Responsibility

Process

Ownership

Defect Prevention • Define, document, and train defect prevention process

• Add overview meeting to educate reviewers on inspection package

• Insure feedback on project defect density per phase

• Reinspection criteria (e.g. 10 major detects found or low preparation rate)

Communication

Feedback

Defect Analysis

Agreement

Defined Process

Training

Defect

Identification

Review development plan with software engineers

Add moderator training stressing facilitation skills and inspection

principles

Update general inspection training class with inspection principles

Data driven checklists to educate reviewer on common defects

Preparation rate set a 10 - 15 pages per hour

Entry criteria for review material

(e.g. checklist of items, spell checked, clean compile)

Software Principles and Buy-in

Commitment

based on

effective

principles

WOd_LC_OU_'/, CoFyrigh_Q 1_7- t_

whatever is needed Including creating new norms

whatever can be done within the norms

Sees benefit, does whet is expected and mere

Sees benefit, does what they are told

Does not see benefit, does not want to lose their job

nothing

Leadership

ResponsibSIIty

Process Ownership

Defect Prevention

Communication

Feedback

Defect Analysis

Agreement

Defined Process

Training

Defect
Identification

Accountability

Measuring Peoples Buy-in and Commitment

Principles of Inspections Questionaire Results

Prlnclples of Inspections

Questions ????

Capture-Recapture - Models, Methods, and the Reality

Jens-Peder Ekros I jenek@ikp.liu.se

Anders Subotic 2 andsu@ida.liu.se
Bo Bergman t bober@ikp.liu.se

tDivision of Quality Technology and Management

2Department of Computer and Information Science

Applied Software Engineering Laboratory

1'2LinkOping University,
SE-581 83 Link6ping, Sweden

Abstract
Software inspections are widely used for defect detection, and are capable of detecting defects early in

development. In order to avoid spending too much resource and to assure that the inspected product has the
demanded quality, a method to estimate product quality and inspection performance would be helpful. For

this purpose, capture-recapture methods have been suggested, in this paper, we explore the relation between
models underlying capture-recapture methods and inspection data. We have tested three hypotheses that
underlie commonly used capture-recapture methods: Inspectors find the same number of defects; Defects

are equally easy to detect; and, Inspectors find the same defects. We find no support for any of the three
hypotheses. The paper also contributes to research by describing methods for testing the hypotheses. It is

not wise to generalise from these results, as the sample analysed is small. Nevertheless, the results imply
that the underlying models, or assumptions, of commonly used capture-recapture methods are not generally

applicable to software engineering.

Introduction

Software plays an important role in today's society. The high dependence on software has put focus on
software quality engineering. Customer satisfaction through good quality gives competitive advantage.
Further, lack of quality costs, especially if quality deficiencies remain undetected from early phases of

development. The lowest level of quality engineering is the detection of defects for the sole purpose of
correction. The second level is quality assurance, where product measurements is compared to standards so
as to assure that the shipped product is of the "right" quality. To assure is more demanding than to detect,

and requires models of product quality.

Software inspection is a family of widely used methods for defect detection, capable of detecting defects

early in development. In many organisations that develop software, inspections are an essential part of the

process. It has been recognised that inspections have a positive effect on product quality as well as the
efficiency of the development process. However, inspections demand time and resources. Preparations must
be made before the inspection meeting where many key persons will attend. This is a problem. In order to

avoid spending too much resource and to assure that the inspected product has the demanded quality, a
method to estimate the performance of the inspection would be helpful.

Several approaches based upon different statistical techniques have been evaluated in order to get better
basis to assess the above mentioned aspects. Briand et al. (1997) described three approaches:

1. Comparing inspection results with historical defect count.

2. Comparing inspection results with a baseline for defect density.
3. Estimating the number of residual defects using the current inspection results.

This paper addresses issues related to the third approach.

Lately, capture-recapture methods have gained increased attention in the software engineering community,

see e.g. Eick et al. (1992). The purpose of capture-recapture methods is to estimate the size of populations.

Thesemethodshavetheirorigininthebiologicalresearchsociety,recentexamplesincludeChao(1988),
Chaoetal.(1992),andPollock(1991).Themethodshavealsobeenusedoutsideofthebiologyarea.For
example,EffortandThisted(1976)estimatedthenumberofwordsknownbyShakespeare.
Adaptingmethodstonewareas,i.e.softwareinspections,mayleadtodifficultieswhichonehastohavein
mind.Themostimportantaspectofadaptationisthatoftheunderlyingmodels.Thedifferentestimation
methodsassumecertainconditionsonthedata,i.e.specificmodels.If themodeldoesnotcorrespondtothe
data,themethodmaygiveresultsthatareeitherincorrectoreasilymisinterpreted.

Fromrelatedworkwehavefoundthattheresometimesisalackofdistinctionbetweenmodelsand
methods,alsoknownasestimators,ortheissueisnotmentionedaltogether.Thebulkofworkoncapture-
recaptureinthefieldofsoftwareengineeringhasbeenconcernedwithmethods,e.g.VanderWieland
Votta(1993),Wohlinetal.(1995),Briandetal.(1997),Miller1998,andWohlinandRunesson(1998).
Assumptionshavebeenmade,andsometimesclaimed,withlittlesupportfromliteratureoranalyses,e.g.
VanderWielandVotta(1993)andWohlinetal.(1995).Therearefewtestsofconsequencesofbroken
modelassumptionsonresults,e.g.VanderWielandVotta(1993).However,analysesinvestigatinghowthe
assumptionsbehindmethodscorrespondtorealityaremissing.

Inthispaperweexaminepublishedinspectiondatasetsinordertolearnmoreaboutinspectorcapability,
defectdetectability,andhowtheserelatetoeachother.Theimportanceofthisworkisthatit providesa
basisforuseofpredictionmethods,byvalidating,orinvalidating,modelassumptionsdemandedby
methods.Inordertomanagethis,newvariantsofstatisticaltoolshavebeenused.Thedifferencesbetween
inspectiondataandthatofotherfields,e.g.alowdensityof informationinthetables,increasesthe
difficultyofconductingtestsoninspectiondata.Oneproblemisthatordinarydistributionscannotbeused.
Thisforcesthecreationofspecificdistributionsforeachspecificcase.Thesedistributionsdependonthe
sizeofthetable,thenumberofrowsandcolumns,aswellasthedensityofthetable,i.e.theratioofones.
AnumberofextendedcomputersimulationsofMonteCarlotypeandenumerationwereconductedinorder
tocreatethesedistributions.

Background
Generally, capture-recapture based estimation of population size begins with sampling of the population.
The results of sampling are used as parameters in an estimator function, which gives the size of the

population, if certain conditions are fulfilled. In previous published work in the field of software
engineering, the main focus was investigation of the performance of different methods, or estimators. In
fact, methods and models are often confused. In this paper, an estimator, or method, denotes the way in

which an estimate is computed. A model represents a set of assumptions on input data under which a

method has been designed to work.

The most common families of models are:

1. po=p : the probability of an inspector having detected a defect is constant and does not vary with

inspector or defect.
2. po=pi : the probability depends on the difficulty of the defect, which varies between defects, and all

inspectors have the same capability of detecting a specific defect.

3. p_ =pj : the probability depends on the capability of the inspector, which varies between inspectors,
and all defects are equally difficult to detect for a given inspector.

4. p_ = pipj: the probability depends on the capability of the inspector as well as the difficulty of the
defect, which both vary.

5. Po = P0: the detection probability might be individual depending on both inspector and defect.

Miller (1998) gave additional assumptions that relate to the process of (re-)capturing.

The above mentioned models are implicitly used in estimators. The most common estimators are Jack-
knife, Maximum-likelihood, and the Chao estimator, of which there are several versions. The Jack-knife
estimator is based on model number two, Maximum-likelihood on number three, and Chao estimators exist
for numbers two to four.

VanderWielandVotta(1993)studied"theeffectsofbroken[model]assumptionson"theJack-knifeand
Maximum-likelihoodestimators.TheMaximum-likelihoodestimatorwasfoundtoperformbetterthan
Jack-knife,especiallyif defectsweregroupedtoachievehomogenousdetectability.Wohlinetal.(1995)
claimedthattheassumptionsoftheJack-knifemethoddonotcorrespondtorealityandrejectedit infavour
oftheMaximum-likelihoodmethod.Theclaimwasnotsupportedbyatest.Theyalsoevaluatedafiltering
techniquetoimproveestimatesofresidualdefects.Thenewmethodwasevaluatedusingdatafroman
experimentwhereasingledocumentwasinspected.Briandetal.(1997)examinedthesensitivityof
methodswithrespecttothenumberofsamplesused,i.e.numberof inspectors.Theyrecommendedthatat
leastfourinspectorsbeused,andthattheJack-knifeestimatorwasthebestforfourorfiveinspectors.The
ChaoestimatorwiththesamemodelasJack-knifewascomparableforfiveinspectors,butbehavedbadly
forfourinspectors.TheevaluationcriticisedbyMiller(1998)withrespecttochoiceofinspectorsand
numberofdatapoints.WohlinandRunesson(1998)proposedtwonewestimationmethodsbasedon
extrapolationoffittedcurves.Themethodsarebasedonanumberofassumptionsthatarenottested.The
methodswereevaluatedwithinspectiondatafromtwoexperiments,wherethechoiceofartefactswas
criticisedbyMiller(1998).Miller(1998)arrivedroughlyatthesameconclusionsasBriandetal.(1997).
However,MillerrecommendedJack-knifeforthreetofiveinspectorsandforsixinspectorsbothJack-knife
andtheChaoestimatorformodelnumberfour.Inconclusion,therearenoknownexamplesinsoftware
engineeringliteraturewheretheviabilityofthemodelsassumedbycapture-recapturemethodsistested.

Models and Tests

By using capture-recapture methods on inspection data we want to predict, or assess, the remaining number

of defects in the inspected document, the performance of the inspection, or both. To facilitate analysis of
empirical data from a certain perspective, models that faithfully represent the data are needed. These

models are the basis for analysis methods. That is, the " mathematical model ... relates the attributes to be
predicted to some other attributes that we can measure now. "(Fenton and Pfleeger 1996)

A number of model assumptions have implicitly been made when a method has been chosen. The methods

are dependent on the underlying models that supposedly describe the data to be analysed. This is important
but often forgotten. In this section we will present ways to determine model characteristics of inspection

data. This gives a better basis for choosing or creating suitable estimation methods. By looking at published
results from a number of inspections some conclusions regarding the underlying models have been made.
We have also made a contribution in the methods to determine these models.

The type of defect-inspector table used throughout this paper is shown in Figure 1. The table represents the
defects found as r rows and inspectors that found the defects as c columns. Let no.be the contents of a cell

representing the detection of defect i by inspectorj. If the defect on row i was detected by inspector j, n9.is

one, otherwise nij is zero. The number of inspectors that detected defect i is the number of ones in row i, the
row sum, denoted ni.. The number of defects detected by inspectorj is the number of ones in column j, the

column sum, denoted n.j. The total number of detections is denoted n...
Inspector

1 c
1

oJ
E3

n# ni.

nj n

Figure 1. Graphical description of an inspection data matrix.

In the rest of this section we describe tests for analysing inspection data, mainly with respect to aspects that

are relevant to the most commonly used capture-recapture methods. Interesting aspects of inspection data

relate to inspectors, defects, and their relation.

Inspector Capability and Defect Detectability

The assumptions regarding the capabilities of inspectors are concerned with the number of defects detected

by each inspector. Intuition often suggests that inspectors have different capabilities but this has not yet
been tested, see e.g. Wohlin et al. (1995). The capability of inspectors is tested by comparing the number of
defects found by each inspector with the average number of defects detected.

A test statistic similar to the Chi-square test (Everitt 1992) is utilised, Q = n. i - . Problems

arise when the expected values of row or column sums are too small. The Chi-square test is commonly
considered to work less than well for values below five. With respect to row sums, this criterion is not

fulfilled by any of the tables analysed in this paper. The expected values of column sums fulfil the criterion
for roughly half of the tables. Preferably, under the null hypothesis of equality, the statistic for an observed

table is compared with a reference distribution. Since the Chi-square distribution is not applicable, a
substitute distribution has to be constructed.

Enumeration was the approach chosen for creating the distribution of the Q-statistic. That is, in e.g.
analysing inspector capability, the set of column sums of a table is analysed. The total number of detected

defects, the number of 1 :s in a table, are distributed in all unique ways over the columns. The Q-statistic for

each permutation is computed and its occurrence is weighted by its probability under the assumption of

homogeneity. The result is a reference distribution adapted to characteristics of the table. The p-value for

the Q-statistic of the observed table, Qo, is obtained from the distribution asp = p(Q > Qo)' where the
variable Q belongs to the distribution.

Similarly to inspector capability, defect detectability is defined as the fraction of inspectors that found a
specific defect. That is, a defect found by many inspectors is said to have a higher degree of detectability.
Wohlin et al. (1995) recommended that defects be divided into two groups based on the number of

inspectors that found each defect. When only one inspector found a defect the defect was put in a low

detectability group. Defects found by more than one inspector were put in a high detectability group.
However, this reasoning hides the assumption that defects have different probability of detection. The test
for difference among defects is the same as for inspector but along the other dimension of the table.

Defects and Inspectors Combined

A third approach to test inspection data is to consider defect and inspector characteristics at the same time.

That is, the test helps determine if inspectors are equally good in finding different types of defects. Since

the cell values of the tables analysed are either one or zero, chi-square tests are not appropriate. An
alternative test statistic is proposed. The new test statistic is built up by a sum of the differences between
the inspectors based on every specific defect.

Let l and m be the identities of two inspectors. Let n¢ be one if defect i was detected by inspector j, and zero

otherwise. A matrix K is created where kin = {number of nit > %, } where l _ m and

kn={number°fnn>O}'Apr°p°sedteststatisticisT=ZZ(klT_kll*wl, where w/ =1 •
/ m \ ."

The diagonal of K, k/t, represents the number of defects found by each inspector. Values outside the

diagonal i.e. k u represents the number of defects found by inspector i but not by inspectorj. That is, a big

number outside the diagonal indicates that one of the inspectors found many defects not found by the other.
The matrix is quadratic, but it is rarely symmetrical, as e.g. inspectors seldom find the same number of
defects.

The distribution of the T-statistic is not known, but needed in order to determine the meaning of a T-value.
Thus, the distributions of T for each table have to be generated. Due to problem size, enumeration is not an

option. Instead, Monte Carlo simulation is used. That is, the distribution ofT for a given table is acquired
by computing the T-statistic for n randomly generated tables, with similar characteristics as the observed

table.Thesimulationsarecrucialtothereliabilityoftheanalysis,andsothebulkofworkhasbeenspent
ontryingtoachieveasimulationthatrepresentsthetrueprobabilitydistribution.Again,therationalefor
simulationsisthatthedistributionoftheteststatisticisunknown.

Results

In this section we investigate characteristics of published inspection data sets and in the process we provide

ways of testing model assumptions. The data sets were mainly taken from Freimut (1997), where the
majority originates from experiments using NASA subjects. A data set from Wohlin et al. (1995) and one

from Myers (1978) were also used in some of the analyses. The results are used for accepting or rejecting
the hypotheses stated above. Three different hypotheses are tested.

Inspector homogeneity

For each table k the test-variable Qk is calculated. The value Qk is compared to an empirical distribution

constructed using enumeration, as described above. For this analysis, two data sets were not used due to

time and size complexity problems, as there were many combinations to enumerate.

Under the null hypothesis of homogeneity, the expected value ofp is 0.5. A low p-value is the result of

large differences between the number of defects discovered by different inspectors. A single small p-value
supports rejection of the null hypothesis but is not enough to safely reject it. By combining analyses of a
number of tables we get a greater body of evidence. Figure 2 shows the p-values for the 22 different data

tables tested. Under the null hypothesis the p-values would be evenly distributed between 0 and 1. This

does not seem to be the case. The conclusion is therefore that the null hypothesis is rejected. Thus, based on
this set of data, we can say that inspectors generally do not find the same number of defects, i.e. inspector

capability varies with inspectors.

°=I _ , ,

"5

g

o

o
0 01 02 03 0.4 0.5 06 07 08 09

p-value

Figure 2. p-values for inspector homogeneity.

Defect homogeneity

Analysing the defect detectability in the same way as inspector capability shows that it can be concluded

that defects do not have equal detectability. The p-values for the 22 data sets shown in Figure 3 clearly

indicate a non-equal distribution. That is it cannot be said that the different defects generally have equal
detectability. For this analysis, two data sets were not used due to time and size complexity problems, as
there were many combinations to enumerate.

18 1
16" !

J
Q.

"6 1o. [
(,9

g
t-
_6

0
0 0._ o2 o3 0.4

p-value

i i i i i
05 06 07 08 09

Figure 3. p-values for defect homogeneity.

Another way of representing the p-values is with a scatter plot, shown in Figure 4. Here p-values for

inspector capability and defect detectability for 22 tables are plotted against each other. There are no real
outliers. That is, no table plots in the upper right quarter. The plot gives stronger support for rejection of the

null hypothesis for defect detectability than for inspector capability. That is, defects are more
heterogeneous than inspectors. Even though inspectors seem to be more homogeneous than defects, they

are predominantly heterogeneous.

091 •

O8 I

Q-07

"_ 06

,o
_O04 I

°3i

o
d_

13. 02

_E
01

0

0 i i '01301 02 04 0_5 06 07 08 09 1

Defect homogeneity p-value

Figure 4. Scatter plot of defect and inspector homogeneity p-values.

Inspector and defect combined homogeneity

In this section, we analyse the relations between defects and inspectors. In Figure 5 the p-values from this

analysis is presented. The results stem from 10.000 simulations of 24 tables. As in the other cases it can
clearly be seen that the p-values are not evenly distributed between 0 and 1. A low p-value is the result of

large differences between inspectors; i.e. inspectors find different defects. The distribution of p-values is
skewed towards zero. In fact, 50 percent of the values are lower than 0.1 and about 85 percent are less than

0.5. This situation is highly unlikely under the assumption that inspectors find the same defects. The
implication is that there is no support for "inspector profiles", i.e. groups of inspectors that find similar

subsets of the defect population. If groups of inspectors found largely the same defects p-values should be
skewed toward the right. It may be harsh to reject the concept of "inspector profile" based solely on this
analysis. However, analytical advocacy is no longer enough.

Thisisanalysisdiffersfromthetestofinspectorhomogeneityabove,whereit wasshownthatdifferent
inspectorsfinddifferentnumberofdetects.

12----_

,°il78
6.

O
2"

0 [-----'] i J

0 01 02 03 04 05 06 0.7 08 09 1
p-value

Figure 5. The p-values for combined inspector and defect homogeneity.

Conclusion and Discussion
In this paper we went back to the basics, that is, using the information from inspections to explore the

underlying models that are assumed to characterise inspection data. The road towards better methods and
correct use of existing methods will start from the most logical point, the distribution and properties of the
data.

We have tested three hypotheses occurring in capture-recapture work in the software engineering field:

1. Inspectors find the same number of defects.
2. Defects are equally easy to detect.

3. Inspectors find the same defects.

We find no support for any of the three hypotheses. These results imply that the underlying models, or

assumptions, of commonly used capture-recapture methods are not applicable to the software engineering
data analysed in this paper. Even though 24 data sets were analysed, 16 of these originate from NASA.
Thus, it is not wise to generalise from these results. However, the results suggest that it is wise to test

model assumptions. Testing model assumptions requires good data, which in turn requires good
instrumentation and collection procedures. We have instrumented the inspection process of an industry

partner, and are currently awaiting data to accumulate.

By exploring data from several inspections we are able to draw general conclusions about how the data is
formed. This includes measures of correlation between inspectors and between faults. Other aspects are the

distributions of inspectors' performance and defect detectability. Naturally, it may not be possible to find a

single specific model that will explain all relationships between inspectors and defects. The data sets used
here, to estimate characteristics of product and inspection process, have only two parameters. It is not

unlikely that other product, process and resource attributes could increase the usefulness of estimators.
There may be important differences between instances of inspections, e.g. differing inspection rate, team

expertise, type of document, and organisational culture.

Even though universal models are few and far between, the goal is to find general models. It may be easier
to find methods to derive situation specific models. These methods can then be used together with local

inspection data to assure that a suitable estimation method is used. Still, it is questionable how the
information gained can be used. Does the estimate of defect content depend mainly on the product, the
measurement process, or both? lfthe inspection process is unstable, measurement noise may obscure

productattributes.Forexample,it ishardtodetermineifa highdefectcountistheresultofabadproduct,a
goodinspection,orboth.Anaccompanyingmetricisneededfornormalisation.

Acknowledgements
The authors wish to thank Mary Helander for her helpful comments on this paper. This work was supported

by the Swedish National Board for Industrial and Technical Development (NUTEK), administrated by the
Swedish Institute for Applied Mathematics, and the Swedish Foundation for Strategic Research through the

ECSEL graduate school at LinkOping University, Sweden.

References
Briand, L. C., Emam, K. E., Freimut, B., and Laitenberger, O. (1997). "Quantitative Evaluation of Capture-

Recapture Models to Control Software Inspections." Report 97-22, ISERN.
Chao, A. (1988). "Estimating Animal Abundance with Capture Frequency Data." Journal of Wildlife

Management, 52(2), 295-300.
Chao, A., Lee, S.-M., and Jeng, S.-L. (1992). "Estimating Population Size for Capture-Recapture Data

When Capture Probabilities Vary by Time and Individual Animal." Biometrics, 1992(March), 201-
216.

Efron, B., and Thisted, R. (1976). "Estimating the number of unseen species: How many words did
Biometrika, 63(3), 435-447.

Eick, S. G., Loader, C. R., Long, M. D., Votta, L. G., and Vander Wiel, S. (1992). "Estimating Software
Proceedings of the Fourteenth International Conference of Software

Engineering, May, Melbourne.
Everitt, B. S. (1992). The Analysis of Contingency Tables, Chapman & Hall, London.

Fenton, N. E., and Pfleeger, S. L. (1996). Software Metrics. A Rigorous and Practical Approach,
International Thomson Computer Press, London.

Freimut, B. (1997). "Capture-Recapture Models to Estimate Software Fault Content," Masters Thesis,

University of Kaiserslauten.
Miller, J. (1998). "Estimating the number of remaining defects after inspection." Report 98-24, ISERN.

Myers, G. J. (1978). "A Controlled Experiment in Program Testing And Code Walkthroughs/lnspections."
Communications ofACM, 21 (9), 760-768.

Pollock, K. H. (1991). "Modeling Capture, Recapture and Removal Statistics for Estimation of

Demographic Parameters for Fish and Wildlife Populations: Past, Present, and Future." Journal of the
American Statistical Association, 86(413), 225-238.

Vander Wiel, S. A., and Votta, L. G. (1993). "Assessing Software designs using Capture-Recapture

Methods.".
Wohlin, C., and Runesson, P. (1998). "Defect Content Estimations from Review Data." Proceedings of the

Twentieth International Conference on Software Engineering, April, Kyoto, 400-409.
Wohlin, C., Runesson, P., and Brantestam, J. (1995). "An Experimental Evaluation of Capture-Recapture in

Software Testing, Verification and Reliability, 5, 213-232.

L_

,4.., rr
O_cD

O-o

L__° _

C_ cD

Lo._o

LO c_

!.--

CD
rn
C_
rn

C
CD

"0

im

I,--

CD

c
Z_

c'-

Q.
"0

C

._1

• m

© o

0
°_

°v-_ |

O

0

O

0
.Q

<

!

<

I

0

._

©

0_

0
°_._

0

0

!

0

0

0

0

I

0

• m

• m

m

0
qL_

0
0
(1)

0o

I' "1' ! 1 1 T--

O

0

0

_0

O

0

0

0

0

0

J _--£--L-- 0

0

,<

O

I

o,0

E

(/)
(1)

mmmmm

S.._

_>

>,
• m

m

0
(1)

(1)
"0

0
(1)
(1)
a

T'r_T_T ! ! ! r

1 I._I._.L I I

CM 0

(:_

0

0

0

(.D

0

0

0

0

0

0

0

o
,.Q

¢)

<:

o

¢)

I

$-i
¢)

,.o

¢)

¢,)

• m

m

Q_

L.

0

im

>

• m

m

! !

o

!

(5

! !

O

0

o

0

o

O

o

O

O

o

. . ,aa .. ,D .0•
0

O

<

0

!

.Q

E

(/)
0
(1)

-0

(D

(L)

-0

0

0
-0
(/)

0
0

O_
(/)

oJ o

E

I I I I

(:0 E) _ @,1 (:)

enleA-d jo se0ueJJn000

o_

(:0

o

r--

E)

I

Q.

o

o

0

0

cJ
°_

0

¢)

<

0

¢)
"c3
¢)

I

¢)

00

C3_

¢)

¢)
_J
¢)

0

0

°_._

0

0

!

Session 4: Fault Prediction

/

So.ware Et,o/u//oH and/he Fau// Process

A. Nikora, Jet Propulsion Laboratory, and J. Munson, University of Idaho

Ifllegratz'Hg Form_/ /1.fetho_ /n/o So.there Depellda_//z'OJ A_za_¢zZ¢

J. Knight and L. Nakano, University of Virginia

An Adap/ive So.I/ware ge/iaDch'_ PreP'orion Approach

M. Yin, L. James, S. Keene, R, Arellano, and J. Peterson,

Raytheon Systems Company

SOFTWARE EVOLUTION AND THE FAULT PROCESS

Allen P. Nikora

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109-8099

Allen.P.Nikora@ jpl.nasa.gov

John C. Munson

Computer Science Department

University of Idaho

Moscow, ID 83844-1010

jmunson @cs.uidaho.edu

ABSTRACT

In developing a software system, we would like to
estimate the way in which the fault content changes

during its' development, as well determine the locations
having the highest concentration of faults. In the phases

prior to test, however, there may be very little direct in-
formation regarding the number and location of faults.
This lack of direct information requires developing a

fault surrogate from which the number of faults and their
location can be estimated. We develop a fault surrogate

based on changes in the fault index, a synthetic measure
which has been suecessfully used as a fault surrogate in
previous work. We show that changes in the fault index

can be used to estimate the rates at which faults are in-
serted into a system between successive revisions. We

can then continuously monitor the total number of faults
inserted into a system, the residual fault content, and

ident_, those portions of a system requiring the applica-
tion of additional fault detection and removal resources.

1. INTRODUCTION

Over a number of years of study, we can now estab-

lish a distinct relationship between software faults and
certain aspects of software complexity. When a software

system consisting of many distinct software modules is
built for the first time, we have little or no direct infor-
mation as to the location of faults in the code. Some of

the modules will have far more faults in them then do

others. We do, however, now know that the number of

faults in a module is highly correlated with certain soft-
ware attributes that may be measured. This means that

we can measure the software on these specific attributes
and have some reasonable notion as to the degree to

which the modules are fault prone [Muns90, Muns96].
In the absence of information as to the specific lo-

cation of software faults, we have successfully used a
derived metric, the fault index measure, as a fault surro-

gate. That is, if the fault index of a module is large, then

it will likely have a large number of latent faults. If, on
the other hand, the fault index of a module is small, then
it will tend to have fewer faults. As the software system

evolves through a number of sequential builds, faults
will be identified and the code will be changed in an

attempt to eliminate the identified faults. The introduc-
tion of new code, however, is a fault prone process just

as was the initial code generation. Faults may well be
injected during this evolutionary process.

Code does not always change just to fix faults that
have been isolated in it. Some changes to code during its

evolution represent enhancements, design modifications
or changes in the code in response to continually evolv-

ing requirements. These incremental code enhancements
may also result in the introduction of still more faults.

Thus, as a system progresses through a series of builds,
the fault index of each program module that has been

altered must also change. We will see that the rate of

change in the system fault index will serve as a good
index of the rate of fault introduction.

The general notion of software test is to make the
rate of fault removal exceed the rate of fault introduc-

tion. In most cases, this is probably true [Muns97].

Some changes are rather more heroic than others. Dur-
ing these more substantive change cycles, it is quite pos-
sible that the actual number of faults in the system will

rise. We would be very mistaken, then, to assume that
software test will monotonically reduce the number of

faults in a system. This will only be the case when the
rate of fault removal exceeds the rate of fault introduc-

tion. The rate of fault removal is relatively easy to
measure. The rate of fault introduction is much more

tenuous. This fault introduction process is directly re-
lated to two measures that we can take on code as it

evolves, fault deltas and net fault change (NFC).

In this investigation we establish a methodology
whereby code can be measured from one build to the
next, a measurement baseline. We use this measurement

baseline to develop an assessment of the rate of change

to a system as measured by our fault. From this change
process we are then able to derive a direct measure of the

rate of fault introduction based on changes in the soft-
ware from one build to the next. Finally we examine

data from an actual system on which faults may be
traced to specific build increments to assess the predicted
rate of fault introduction with the actual.

A majorobjectiveofthisstudyistoidentifyacom-
pletesoftwaresystemonwhicheveryversionof every
modulehasbeenarchivedtogetherwiththefaultsthat
havebeenrecordedagainstthesystemasit evolved.For
ourpurposes,theCassiniOrbiterCommandandData
SubsystematJPLmetallofourobjectives.Onthefirst
buildof this systemtherewereapproximately96K
sourcelinesofcodeinapproximately750programmod-
ules.Onthelastbuildtherewereapproximately110K
linesofsourcecodeinapproximately800programmod-
ules.Asthesystemprogressedfromthefirsttothelast
buildtherewereatotalof 45,200differentversionsof
thesemodules.Ontheaverage,then,eachmodulepro-
gressedthroughanaverageof 60evolutionarystepsor
versions.Forthepurposesof thisstudy,theAdapro-
grammoduleisaprocedureorfunction,it is thesmall-
estunitoftheAdalanguagestructurethatmaybemeas-
ured.A numberofmodulespresentin thefirstbuildof
thesystemwereremovedonsubsequentbuilds.Simi-
larly,anumberofmoduleswereadded.

TheCassiniCDSdoesnotrepresentanextraordi-
narysoftwaresystem.It isquitetypicaloftheamountof
changeactivitythatwill occurin thedevelopmentof a
systemon theorderof 100KLOC. It isa non-trivial
measurementproblemtotrackthesystemasit evolves.
Again,therearetwodifferentsetsof measurementac-
tivitiesthatmustoccurat once.Weareinterestedthe
changesin thesourcecodeandweareinterestedin the
faultreportsthatarebeingfiledagainsteachmodule.

2. A MEASUREMENT BASELINE

The measurement of an evolving software system
through the shifting sands of time is not an easy task.
Perhaps one of the most difficult issues relates to the

establishment of a baseline against which the evolving
systems may be compared. This problem is very similar
to that encountered by the surveying profession, If we

were to buy a piece of property, there are certain physi-
cal attributes that we would like to know about that

property. Among these properties is the topology of the
site. To establish the topological characteristics of the
land, we will have to seek out a benchmark. This

benchmark represents an arbitrary point somewhere on
the subject property. The distance and the elevation of

every other point on the property may then be estab-
lished in relation to the measurement baseline. Interest-

ingly enough, we can pick any point on the property,
establish a new baseline, and get exactly the same topol-

ogy for the property. The property does not change.
Only our perspective changes.

When measuring software evolution, we need to
establish a measurement baseline for this same purpose

[Niko97, Muns96a]. We need a fixed point against
which all others can be compared. Our measurement

baseline also needs to maintain the property that, when

another point is chosen, the exact same picture of soft-

ware evolution emerges, only the perspective changes.
The individual points involved in measuring software

evolution are individual builds of the system.
For each raw metric in the baseline build, we may

compute a mean and a standard deviation. Denote the
vector of mean values for the baseline build as gR and

the vector of standard deviations as s e. The standard-

ized baseline metric values for any module j in an arbi-

trary build i, then, may be derived from raw metric val-
ues as

zB,, -- If:" _ _Bj

l
S n

!

Standardizing the raw metrics makes them more
tractable. It now permits the comparison of metric val-

ues from one build to the next. From a software engi-
neering perspective, there are simply too many metrics

collected on each module over many builds. We need to
reduce the dimensionality of the problem. We have suc-

cessfully used principal components analysis for reduc-
ing the dimensionality of the problem [Muns90a,

Khos92]. The principal components technique will
reduce a set of highly correlated metrics to a much
smaller set of uncorrelated or orthogonal measures. One

of the products of the principal components technique is
an orthogonal transformation matrix T that will send the

standardized scores (the matrix z) onto a reduced set of

domain scores thusly, d = zT.
In the same manner as the baseline means and stan-

dard deviations were used to transform the raw metric of

any build relative to a baseline build, the transformation
matrix T _ derived from the baseline build will be used

in subsequent builds to transform standardized metric
values obtained from that build to the reduced set of do-

main metrics as follows: d e.` =z e'' T n , where z B'' are

the standardized metric values from build i baselined on

build B.

Another artifact of the principal components analy-
sis is the set ofeigenvalues that are generated for each of

the new principal components. Associated with each of

the new measurement domains is an eigenvalue, A.

These eigenvalues are large or small varying directly
with the proportion of variance explained by each prin-

cipal component. We have successfully exploited these

eigenvalues to create the fault index, p, that is the

weighted sum of the domain metrics to wit:

p, = 50+10_2,d, , where m is the dimensionality of
1=1

the reduced metric set [Muns90a].
As was the case for the standardized metrics and the

domain metrics, the fault index may be baselined as well,
using the eigenvalues and the baselined domain values:

p, = ,_SdB
1 t

I I

If the raw metrics that are used to construct the fault

index are carefully chosen for their relationship to soR-
ware faults then the fault index will vary in exactly the

same manner as the faults [Muns95]. The fault index is

a very reliable fault surrogate. Whereas we cannot
measure the faults in a program directly we can measure

the fault index of the program modules that contain the
faults. Those modules having a large fault index will

ultimately be found to be those with the largest number
of faults [Muns92].

3. SOFTWARE EVOLUTION

A software system consists of one or more software
modules. As the system grows and modifications are

made, the code is recompiled and a new version, or
build, is created. Each build is constructed from a set of

software modules. The new version may contain some

of the same modules as the previous version, some en-
tirely new modules and it may even omit some modules

that were present in an earlier version. Of the modules
that are common to both the old and new version, some

may have undergone modification since the last build.

When evaluating the change that occurs to the system
between any two builds (software evolution), we are

interested in three sets of modules. The first set, M c , is

the set of modules present in both builds of the system.

These modules may have changed since the earlier ver-

sion but were not removed. The second set, M A, is the

set of modules that were in the early build and were re-

moved prior to the later build. The final set, M B, is the

set of modules that have been added to the system since
the earlier build.

The fault index of the system R i at build i, the early

build, is given by

R':Zp:+Zp:,.
¢_: M, ae ,14

Similarly, the fault index of the system R j at build j, the

later build is given by

The later system build is said to be more fault prone if

Rj > R,.

As a system evolves through a series of builds, its

fault burden will change. This burden may be estimated
by a set of software metrics. One simple assessment of

the size of a software system is the number of lines of
code per module. However, using only one metric may

neglect information about the other complexity attributes
of the system, such as control flow and temporal corn-

plexity. By comparing successive builds on their domain
metrics it is possible to see how these builds either in-

crease or decrease based on particular attribute domains.
Using the fault index, the overall system fault burden can

be monitored as the system evolves.
Regardless of which metric is chosen, the goal is the

same. We wish to assess how the system has changed,

over time, with respect to that particular measurement.
The concept of a code delta provides this information. A

code delta is, as the name implies, the difference be-
tween two builds as to the relative complexity metric.

The change in the fault in a single module between
two builds may be measured in one of two distinct ways.
First, we may simply compute the simple difference in

the module fault index between build i and buildj. We
have called this value the fault delta for the module m, or

8_' = p,', -p'o,. A limitation of measuring fault deltas is

that it doesn't give an indicator as to how much change
the system has undergone. If, between builds, several
software modules are removed and are replaced by mod-

ules of roughly equivalent complexity, the fault delta for
the system will be close to zero. The overall complexity

of the system, based on the metric used to compute del-
tas, will not have changed much. However, the reliabil-

ity of the system could have been severely affected by

the replacing old modules with new ones. What we need
is a measure to accompany fault delta that indicates how

much change has occurred.
The absolute value of the fault delta is a measure of

code chum. In the case of code chum, what is important
is the absolute measure of the nature that code has been

modified. From the standpoint of fault insertion, re-

moving a lot of code is probably as catastrophic as add-
ing a bunch. The new measure of net fault change

(NFC), X, for module m is simply

=1. I=lp.-p l2,2j 8"' '

The total change of the system is the sum of the
fault delta's for a system between two builds i and j is

given by

A',: Xs:'- Xp; +
cEM, a_M. bEM b

Similarly, the NFC of the same system over the same
builds is

v',: X z';'+ X p: + X p:
c_M aEMo b6M_

With a suitable baseline in place, and the module
sets defined above, it is now possible to measure soRt-

ware evolution across a full spectrum of software met-
rics. We can do this first by comparing average metric

values for the different builds. Secondly, we can meas-
ure the increase or decrease in system complexity as

measured by a selected metric, fault delta, or we can

measurethetotalamountof changethesystemhasun-
dergonebetweenbuilds,netfaultchange.

4. OBTAINING AVERAGE BUILD

VALUES

One synthetic software measure, fault index, has

clearly been established as a successful surrogate meas-
ure of software faults [Muns9Oa]. It seems only reason-
able that we should use it as the measure against which

we compare different builds. Since the fault index is a
composite measure based on the raw measurements, it

incorporates the information represented by LOC, V(g),

rL, r/2, and all the other raw metrics of interest. The

fault index is a single value that is representative of the
complexity of the system which incorporates all of the
sottware attributes we have measured (e.g. size, control

flow, style, data structures, etc.).
By definition, the average fault index, _, of the

baseline system will be

N s

:so,

where N" is the cardinality of the set of modules on

build B, the baseline build. The fault index for the base-

line build is calculated from standardized values using
the mean and standard deviation from the baseline met-

rics. The fault indices are then scaled to have a mean of

50 and a standard deviation of 10. For that reason, the

average fault index for the baseline system will always

be a fixed point. Subsequent builds are standardized
using the means and standard deviations of the metrics

gathered from the baseline system to allow comparisons.
The average fault index for subsequent builds is given by

7= py

where N k is the cardinality of the set of program mod-

ules in the k 'h build and p7 k is the baselined fault in-

dex for the i 'h module of that set.

As the code is modified over time, faults will be

found and fixed. However, new faults will be introduced

into the code as a result of the change. In fact, this fault
introduction process is directly proportional to change in

the program modules from one version to the next. As a
module is changed from one build to the next in response

to evolving requirements changes and fault reports, its
measurable software attributes will also change. Gener-

ally, the net effect of a change is that complexity will
increase. Only rarely will its complexity decrease.

5. DEFINITION OF A FAULT

Unfortunately there is no particular definition of
precisely what a software fault is. This makes it difficult

to develop meaningful associative models between faults

and metrics. In calibrating our model, we would like to
know how to count fhults in an accurate and repeatable

manner. In measuring the evolution of the system to talk
about rates of fault introduction and removal, we meas-

ur_ in units to the way that the system changes over time.
Changes to the system are visible at the module level,

and we attempt to measure at that level of granularity.
Since the measurements of system structure are collected

at the module level (by module we mean procedures and
functions), we would like information about faults at the

same granularity. We would also like to know if there

are quantities that are related to fault counts that can be
used to make our calibration task easier.

Following the second definition of fault in [IEEE83,

IEEE88], we consider a fault to be a structural imper-
fection in a software system that may lead to the sys-

tem's eventually failing. In other words, it is a physical
characteristic of the system of which the type and ex-

tent may be measured using the same ideas used to
measure the properties of more traditional physical sys-
tems. Faults are introduced into a system by people

making errors in their tasks - these errors may be errors
of commission or errors of omission. In order to count

faults, we needed to develop a method of identification
that is repeatable, consistent, and identifies faults at the

same level of granularity as our structural measurements.

Faults may be local - for instance, a system might con-
tain an implementation fault affecting only one module
in which the programmer incorrectly initializes a vari-

able local to the routine. Faults may also span multiple
modules - for instance, each module containing an in-

clude file with a particular fault would have that fault. In
identifying and counting faults, we must deal with both

types of faults. Details of the fault counting and identifi-
cation rules developed for this study are given in

[Niko97a, Niko98]
In analyzing the flight software for the CASSINI

project the fault data and the source code change data
were available from two different systems. The problem
reporting information was obtained from the JPL institu-

tional problem reporting system. Failures were recorded
in this system starting at subsystem-level integration, and
continuing through spacecraft integration and test. Fail-

ure reports typically contain descriptions of the failure at
varying levels of detail, as well as descriptions of what
was done to correct the fault(s) that caused the failure.

Detailed information regarding the underlying faults

(e.g., where were the code changes made in each af-
fected module) is generally unavailable from the prob-

lem reporting system.
The entire source code evolution history could be

obtained directly from the Software Configuration Con-

trol System (SCCS) files for all versions of the flight
software. The way in which SCCS was used in this de-

velopment effort makes it possible to track changes to

thesystemat a modulelevelin thateachSCCSfile
storesthebaselineversionof thatfile (whichmaycon-
tainoneor moremodules)aswellasthechangesre-
quiredto produceeachsubsequentincrement(SCCS
delta)of thatfile. Whena modulewascreated,or
changedin responseto a failurereportor engineering

change request, the file in which the module is contained
was checked into SCCS as a new delta. This allowed us

to track changes to the system at the module level as it
evolved over time. For approximately 10% of the failure

reports, we were able to identify the source file incre-
ment in which the fault(s) associated with a particular

failure report were repaired. This information was avail-
able either in the comments inserted by the developer

into the SCCS file as part of the check-in process, or as
part of the set of comments at the beginning of a module

that track its development history.
Using the intbrmation described above, we per-

formed the following steps to identify faults. First, for
each problem report, we searched all of the SCCS files
to identify all modules and the increment(s) of each

module for which the software was changed in response
to the problem report. Second, for each increment of

each module identified in the previous step, we assumed
as a starting point that all differences between the incre-

ment in which repairs are implemented and the previous

increment are due solely to fault repair. Note that this is
not necessarily a valid assumption - developers may be
making functional enhancements to the system in the

same increment that fault repairs are being made. Care-
ful analysis of failure reports for which there was suffi-

ciently detailed descriptive information served to sepa-
rate areas of fault repair from other changes. However,

the level of detail required to perform this analysis was
not consistently available. Third, we used a differential

comparator (e.g., Unix d±ff) to obtain the differences

between the increment(s) in which the fault(s) were re-
paired, and the immediately preceding increment(s).
The results indicated the areas to be searched for faults.

After completing the last step, we still had to iden-
tify and count the faults - the results of the differential

comparison cannot simply be counted up to give a total
number of faults. In order to do this, we developed a

taxonomy for identifying and counting faults [Niko98].
This taxonomy differs from others in that it does not
seek to identify the root cause of the fault. Rather, it is

based on the types of changes made to the software to

repair the faults associated with failure reports - in other
words, it constitutes an operational definition of a fault.
Although identifying the root causes of faults is impor-

tant in improving the development process [Chi192,
IEEE93], it is first necessary to identify the faults. We do

not claim that this is the only way to identify and count
faults, nor do we claim that this taxonomy is complete.

However, we found that this taxonomy allowed us to
successfully identify faults in the sot_ware used in the

study in a consistent manner at the appropriate level of
granularity.

6. THE RELATIONSHIP BETWEEN

FAULTS AND CODE CHANGES

Having established a theoretical relationship be-
tween software faults and code changes, it is now of in-

terest to validate this model empirically. This measure-
ment occurred on two simultaneous fronts. First, all of
the versions of all of the source code modules were

measured. From these measurements, NFC and fault

deltas were obtained for every version of every module.
The failure reports were sampled to lead to specific
faults in the code. These faults were classified accord-

ing to the above taxonomy manually on a case by case

basis. Then we were able to build a regression model
relating the code measures to the code faults.

The Ada source code modules for all versions of

each of these modules were systematically reconstructed
from the SCCS code deltas. Each of these module ver-

sions was then measured by the UX-Metric analysis tool
for Ada [SETL93]. Not all metrics provided by this tool

were used in this study. Only a subset of these actually
provide distinct sources of variation [Khos90]. The spe-

cific metrics used in this study are shown in Table I.

Metrics Definition

Count of unique operators [Hal77]rL

r/2 Count of unique operands

N_ Count of total operators

N2 Count of total operands

P/R

V(g)
Depth

AveDeptb
LOC

Purity ratio: ratio ofHalstead's /V to total program

vocabulary

McCabe's cyclomatic complexity

Maximum nestin_ level of program blocks

Avera_;e nesting; level of prod;ram blocks
Number of lines of code

Blk Number of blank lines

Cmt Count of comments

CmtWds Total words used in all comments

Struts Count of executable statements

LSS

PSS
Number of lo_,ical source statements

Number &physical source statements
Number o f non-executable statementsNonEx

AveSpan Average number of lines of code between references
to each variable

VI Average variable name length

Table 1. Software Metric Definitions

To establish a baseline system, all of the metric data
for the module versions that were members of the first

build of CDS were then analyzed by our PCA-FI tool.

This tool is designed to compute fault indices either from
a baseline system or from a system being compared to

thebaselinesystem.InthatthefirstbuildoftheCassini
CDSsystemwasselectedto bethebaselinesystem,the
PCA-FItoolperformedaprincipalcomponentsanalysis
onthesedatawithanorthogonalvarimaxrotation.The
objectiveofthisphaseof theanalysisisto usetheprin-
cipalcomponentstechniquetoreducethedimensionality
ofthemetricset.AsmaybeenseeninTable2,thereare
fourprincipalcomponentsfor the18metricsshownin
TableI. Forconvenience,wehavechosento name
theseprincipalcomponentsasSize, Structure, Style and

Nesting. From the last row in Table 2 we can see that
the new reduced set of orthogonal components of the

original 18 metrics account for approximately 85% of
the variation in the original metric set.

Metric Size Structure

Stmts 0.968 0.022

LSS 0.961 0.025

N_, 0.926 0.016

Ni 0.934 0.016

/7, 0.884 0.012

0.852 0.032AveSpan

v(_)

r/_

Depth
LOC

Cmt

PSS

CmtWds

NonEx

Blk

P/R

VI

AveDepth
% Variance

0.843

0.635

0.617

-0.027

-0.046

-0.043

0.033

-0.053

0.263

-0.148

0,372

-0.000

37.956

0.032

-0.055

-0.022

0.979

0.970

0.961

0.931

0.928

0.898

-0.198

-0.232

-0.009

30.315

Style Nesting
-0,079 0.021

-0.080 0.004

0.086 0.086

0.074 0.077

-0.244 0.043

0.031 -0.082

-0.094 -0.114

-0.522 -0.136

-0.337 -0.379

0.136 0.015

0,108 0.004

0.149 0.019

0,058 -0.010

0.076 -0.009

0.048 0.005

-0.878 0.052

-0.752 0.010

0.041 -0.938

10,454 6.009

Table 2. Principal Components of Software Metrics

As is typical in the principal components analysis of
metric data, the Size domain dominates the analysis. It

alone accounts for approximately 38% of the total varia-
tion in the original metric set. Not surprisingly, this do-
main contains the metrics of total statement count

(Struts), logical source statements (LSS), the Halstead
lexical metric primitives of operator and operand count,

but it also contains cyclomatic complexity (V(g)). In that
we regularly find cyclomatic complexity in this domain

we are forced to conclude that it is only a simple meas-
ure of size in the same manner as statement count. The

Structure domain contain those metrics relating to the

physical structure of the program such as non-executable
statements (NonEx) and the program block count (Blk).

The Style domain contains measures of attribute that are
directly under a programmer's control such as variable

length (V/) and purity ratio (P/R). The Nesting domain
consist of the single metric that is a measure of the aver-

age depth of nesting of program modules (AveDepth).

In order to transform the raw metrics for each mod-

ule version into their corresponding fault indices, the

means and the standard deviations must be computed.
These values will be used to transform all raw metric

values for all versions of all modules to their baselined z

score values. The transformation matrix will then map

the metric z score values onto their orthogonal equiva-

lents to obtain the orthogonal domain metric values used
in the computation of the fault index. With this
information, we can obtain baselined fault index values

for any version of any module relative to the baseline
build. As an aside, it is not necessary that the baseline

build be the initial build. As a typical system progresses

through hundreds of builds in the course of its life, it is
worth reestablishing a baseline closer to the current sys-

tem. In any event, these baseline data are saved by the
PCA-FI tool for use in later computation of metric val-
ues. Whenever the tool is invoked referencing the base-

line data it will automatically use these data to transform
the raw metric values given to it.

Once the baselined fault index data have been as-

sembled for all versions of all modules, it is then possi-
ble to examine some trends that have occurred during the

evolution of the system. For example, in Figure 1 the

fault index of the evolving CDS system is shown across
one of its five major builds. To compute these changing

fault index values, every development increment within
that build was identified. Then, for each increment, the
baselined fault indices of the modules in that increment

were computed. The next four increments, not shown

here, have evolutionary patterns similar to that shown in
Figure 1. It seems to be that the average fault index of

most systems is a monotonically increasing function.

---T T

k_UlIIUldtlVC

NFC

r

Cumulative --

L fault delta __

Figure 1. Change in the Fault Index for One Version

of CDS Flight Software

Note in Figure 1 that not all increments within a
build represent the same increase in the fault index.

Nearly one third of the total change in this version takes

place within the first 10% of the development incre-
ments. From our understanding of the relationship be-
tween the fault index and injected faults, we would ex-

pect that the magnitude of change within the first 30 in-
crements would indicate that a large number of faults

wouldhavebeeninjectedasaresultofthisactivity.It is
alsointerestingto notethatthefinalfaultindexof this
particularversionisratherclosetotheinitialfaultindex,
althoughit isquiteclearfromthemeasuredactivitythat
asignificantamountofchangehasoccurred.

Notallprogrammodulesreceivedthesamedegree
of modificationasthesystemevolved.Somemodules
changedrelativelylittle. Figure2 showsthenetfault
changeandfaultdeltavaluesforamodulethatwasrela-
tivelystableoveritschangehistory.Therewereonly
fourrelativelyminorchangestothismodule.A more
typicalchangehistoryis shownfor anothermodulein
Figure3. Thetotalnetfaultchangefor this module is
approximately 38. It is interesting to note that the fault
delta for this module is close to zero. The fault index of

the module at the last version is very close to its original

value. This figure clearly illustrates the conceptual dif-
ferences between the two measure of net fault change

and fault delta.

2.00

1.80 |

160

1.40 _-

1.20 1--

1,00]

080 [

0.60 /

040 |

0.20 |
0.00 /

Cumulative [

NCF F-

..........................f...../--

Cumulative

fault delta

'2__

Figure 2. Change History for Stable Module

5O0

_,oo Cumulative .

50o NCF [

3.tx]] . __ r

5oo I I"Cumulative

El,O0 '
:' fault delta

5.00

soo : 1/ _
OOO r

Figure 3. Typical Module Change History

Figure 4 shows a module at the extreme end of
change history. This module has a total net fault change
value of close to 140. Also, its final fault delta value is

about 30, indicating that its fault index has also increased

significantly as it evolved. Among the three modules
whose change history is illustrated by Figures 2, 3, and
4, the latter module is the one that we focus our attention
on the most. It is the one most likely to have had signifi-

cant numbers of faults introduced into it throughout its
dramatic life.

Now let us turn our attention to the fault identifica-

tion process. Over 600 failure reports were written

against the CDS flight software during developmental
testing and system integration. Failure reports contain a
description of how the system's behavior deviated from

expectations, the date on which the failure was observed,
and a description of the corrective action that was taken.

In relating the number of faults inserted in an incre-
ment to measures of a module's structural change, we

had only a small number of observations with which to
work. There were three difficulties that had to be dealt

with. First, recall that for only about 10% of the failure

reports were we able to identify the module(s) that had
been changed, and in which increment those changes
were made. Although the development practices used on

this project included the placement of comments in the
source code to identify repair activities resulting from

each problem report, this requirement was not consis-
tently enIbrced. Second, once a fault had been identi-
fied, it was necessary to trace it back to the increment in
which it first occurred. For some source files, there were
over 100 increments that had to be manually searched.

Since the SCCS files for each delivered version were

available, it was possible to trace most faults back to

their point of origin. As previously noted, the principal
difficulty was the sheer volume of material that had to be
examined - this was one of the factors restricting the
number of observations that could be obtained. Third,

there were numerous instances in which the UX-Metric

analyzer that was used to obtain the raw structural meas-
urements would not measure a particular module. The
net result was that of the over 100 faults that were ini-

tially identified, there were only 35 observations in
which a fault could be associated with a particular in-

crement of a module, and with that increment's measures

of fault delta and net fault change.

16000

140.00 Cumulative

120.00 NCF

100CO

80.00 [

60.00 /)

40.00

20.00

0.00

a 2,. as. a_,'9 •

Cumulative
fault delta

Figure 4. Change History for Frequently Changed
Module

For each of the 35 modules for which there was vi-

able fault data, there were three data points. First, we

had the number of injected faults for that module that
were the direct result of changes that had occurred on
that module between the current version that contained

the faults and the previous version that did not. Second,
we had fault delta values for each of these modules from

the current to the previous version. Finally, we had net

fault change values derived from the fault deltas.
Linear regression models were computed l-br net

fault change and fault deltas with actual code faults as
the dependent variable in both cases. Both models were
build without constant terms in that we surmise that if no

changes were made to a module, then no new faults

could be introduced. The results of the regression be-

tween faults and fault deltas were not at all surprising.
The squared multiple R for this model was 0.001, about
as close to zero as you can get. This result is directly

attributable to the non-linearity of the data. Change
comes in two flavors. Change may increase the com-

plexity of a module. Change may decrease the com-
plexity of a model. Faults, on the other hand are not

related to the direction of the change but to its intensity.
Removing masses of code from a module is just as likely

to introduce faults and adding code to it.
The regression model between net fault change and

faults is dramatically different. The regression ANOVA
for this model are shown in Table 3. Whereas fault del-

tas do not show a linear relationship with faults, net fault

change certainly does. The actual regression model is
given in Table 4. In Table 5 the regressions statistics

have been reported. Of particular interest is the Squared
Multiple R term, having a value of 0.653. This means,

roughly, that the regression model will account for more
than 65% of the variation in the faults of the observed

modules based on the values of net fault change.

Source Sum-of- DF Mean- F-Ratio P

Squares Square

Re_ression 331.879 1 331.879 62.996 0.000
Residual 179.121 34 10.673 5.268

Table 3. Regression Analysis of Variance

Effect Coefficient I Std Err t P(2-Tail)]

NFC 0.576] 0.073 7.937 0.000

Table 4. Regression Model

Squared multiple

N Multiple R R
35 0.806 0.649

Standard error of

estimate

2.296

Table 5. Regression Statistics

Of course, it may be the case that both the amount

of change and the direction in which the change oc-
curred. The linear regression through the origin shown
in Tables 6, 7, and 8 below illustrates this model.

Source Sum-of- DF Mean- F-Ratio P

Squares Square

Re_ression 367.247 2 183.623 42.153 0.000
Residual 143.753 33 4.356

Table 6. Regression Analysis of Variance

Effect Coefficient Std Err t P(2-Tail)
NFC 0.647 0.071 9.172 0.000

Delta 0.201 0.071 2.849 0.002

Table 7. Regression Model

Squared multiple Standard error of

N Multiple R R estimate
35 .848 .719 2.087

Table 8. Regression Statistics

We see that the model incorporating fault delta as well as

net fault change performs significantly better than the
model incorporating net fault change alone, as measured

by Squared Multiple R and Mean Sum of Squares.

We determined whether the linear regression model
which uses net fault change alone is an adequate predic-

tor at a particular significance level when compared to
the model using both net fault change and fault delta. We
used the R2-adequate test [MacD97, Net83] to examine

the linear regression models through the origin and de-
termine whether the models that depend only on struc-

tural measures are an adequate predictor. A subset of
predictor variables is said to be R2-adequate at signifi-
cance level c_ if:

R_o_> 1-(1- R'-1,,,,XI+d.,,), where

• R2sub is the R2 value achieved with the subset of

predictors
• R2fuHis the R 2 value achieved with the full set of

predictors

* dn,k = (kFk,n.kq)/n-k- 1, where

• k = number of predictor variables in the
model

• n = number of observations

• F = F statistic for significance c_ for n,k de-

grees of freedom.
Table 9 below show values of R 2, k, degrees of freedom,
Fk,n-k-I, d,.k, and R2sub for all four linear regression models

through the origin. The number of observations, n, is 35,

and we specii_ a value oft_=.05.
We see in Table 9 that the value of Multiple Squared

R for the regression using only net fault change is 0.649,
and the 5% significance threshold for the net fault

change and fault delta regression model is 0.661. This
means that the regression model using only NFC is not
R2 adequate when compared to the model using both net

fault change and fault delta as predictors. The amount of
change occurring between subsequent revisions and the

direction of that change both appear to be important in
determining the number of faults inserted into a system.

Lin. Regres- R _

sions

Through

Origin

NFC onl}_ 0.649

NFC, Fault 0.719
Delta

DF k

34 1

33 2

F_.,-k-i for d(n,k) Thresh-

signifi- old for

¢ance _ signifi-

cance tx

4.139 0.125

3.295 0.206 0.661

Table 9. Values of R DOF, k, Fk, n-k-I, and dn,k for R

adequate Test

Finally, we examined the predicted residuals for the
linear regression models described above. Table 10 be-

low showstheresultsof theWilcoxonSignedRanks
test,asappliedtothepredictionsfortheexcludedobser-
vationsandthenumberoffaultsobservedtbreachofthe
two linearregressionmodelsthroughtheorigin.For
thesemodels,about2/3of theestimatestendto beless
thanthenumberoffaultsobserved.

Plotsof thepredictedresidualsagainsttheactual
numberof observedfaultsforeachof thelinearregres-
sionmodelsthroughtheoriginareshownin Figures5
and6below.Theresultsof theWilcoxonsignedranks
tests,aswellasFigures5and6,indicatethatthepredic-
tiveaccuracyof theregressionmodelsmightbeim-
provedif syntacticanalyzerscapableofmeasuringaddi-
tionalaspectsof a softwaresystem'sstructurewere
available.Recall,forinstance,thatwedidnotmeasure
anyof thereal-timeaspectsof thesystem.Analyzers
capableof measuringchangesinvariabledefinitionand
usageaswellchangestothesequencingofblocksmight
alsoprovidemoreaccuratemeasurements.

Sample N Mean Sum Test Asymp-
Pair Rank of Statis- totic

Ranks tic Signifi-
Z cance

(2-tailed)

Observed Neg. 25" 17.52 438.00 -Z015 d .044

Faults; Pos. 10 b 19.20 192.00

NFC only Ties 0 '
fault est. Total 35

Observed Neg 24 _ 16.92 406.00 -1.491 a .136

Faults; Pos. 1 Ib 20.36 224.00

NFC and Ties 0 _

Fault Total 35

Delta est.

a.

b.

C.

d.

Observed Faults > Regression model predictions

Observed Faults < Regression model predictions

Observed Faults = Regression model predictions

Based on positive ranks

Table 10. Wilcoxon Signed Ranks Test for Linear
Regressions Through the Origin

Predicted Residuals vs. Observed Faults

Faults = bl*NFC

s

n,,

o,

O..

-a. -

-6

0 2 4 6 8 10 12

Number of observed faults - verspons 2.0, 2,1a, and 2. lb

Figure 5. Predicted Residuals vs. Number of Ob-
served Faults for Linear Regression Using NFC

s
a

a

a

Predicted Residuals vs. Observed Faults

Faults = bl*NFC + b2"Fault Delta
8,

6

4,

-8 o

i
m

-4,

0 2 4 6 8 10 _2

Number of observed faults - versions 2 0, 2 1a, and 2 1b

Figure 6. Predicted Residuals vs. Number of Ob-
served Faults for Linear Regression with NFC and

Fault Delta

7. SUMMARY

There is a distinct and a strong relationship between
software faults and measurable software attributes. This
is in itself not a new result or observation. The most

interesting result of this endeavor is that we also found a
strong association between the fault introduction process

over the evolutionary history of a software system and
the degree of change taking place in each of the program

modules. We also found that the direction of the change

was significant in determining the number of faults in-
serted. Some changes will have the potential of intro-

ducing very few faults while others may have a serious
impact on the number of latent faults. Different numbers

of faults may be inserted, depending upon whether code
is being added to or removed from the system.

In order for the measurement process to be meaning-

ful, fault data must be very carefully collected. In this
study, the data were extracted ex post facto as a very
labor intensive effort. Since fault data cannot be col-

lected with the same degree of automation as much of
the data on software metrics being gathered by develop-

ment organizations, material changes in the software
development and software maintenance processes must

be made to capture these fault data. Among other things,
a well defined fault standard and fault taxonomy must be
developed and maintained as part of the software devel-

opment process. Further, all designers and coders should
be trained in its use. A viable standard is one that may

be used to classify any fault unambiguously. A viable
fault recording process is one in which any one person

will classify a fault exactly the same as any other person.
Finally, the whole notion of measuring the fault in-

troduction process is its ultimate value as a measure of
software process. The software engineering literature is

replete with examples of how software process im-
provement can be achieved through the use of some new
software development technique. What is almost absent
from the same literature is a controlled study to validate

the fact that the new process is meaningful. The tech-

niques developed in this study can be implemented in a

development organization to provide a consistent method

of measuring fault content and structural evolution

across multiple projects over time. We are working with

software development efforts at JPL to address the prac-

tical aspects of inserting these measurement techniques

into production sot_ware development environments.

The initial estimates of fault insertion rates can serve as a

baseline against which future projects can be compared

to determine whether progress is being made in reducing

the fault insertion rate, and to identify those development

techniques that seem to provide the greatest reduction.

ACKNOWLEDGMENTS

The research described in this paper was carried out

by the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aero-

nautics and Space Administration.

REFERENCES

[Chi192] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday,

D. Moebus, B. Ray, M.-Y. Wong, "Orthogonal Defect

Classification - A Concept for In-Process Measurement", IEEE

Transactions on Software Engineering, November, 1992, pp.
943-946.

[Hal77] M. H. Halstead, Elements of SoJhvare Science.

Elsevier, New York, 1977.

[IEEE83] "IEEE Standard Glossary of Software Engineering

Terminology", IEEE Std 729-1983, Institute of Electrical and

Electronics Engineers, 1983.

[1EEE88] "IEEE Standard Dictionary of Measures to

Produce Reliable Software", IEEE Std 982.1-1988, institute of

Electrical and Electronics Engineers, 1989.

[IEEE93] "IEEE Standard Classification for Software

Anomalies", IEEE Std 1044-1993, Institute of Electrical and

Electronics Engineers, 1994

[Khos90] T. M. Khoshgoftaar and J. C. Munson, "Pre-

dicting Software Development Errors Using Complexity Met-

rics," IEEE Journal on Selected Areas in Communications 8,

1990, pp. 253-261.

[Khos92] T. M. Khoshgoftaar and J. C. Munson "A

Measure of Software System Complexity and Its Relationship

to Faults," In Proceedings of the 1992 International Simulation

Technology Conference, The Society for Computer Simulation,

San Diego, CA, 1992, pp. 267-272.

[MacD97] S. G. MacDonell, M. J. Shepperd, P. J. Sallis,

"Metrics for Database Systems: An Empirical Study",

Proceedings of the Fourth International Software Metrics

Symposium, November 5-7, 1997, Albuquerque, NM, pp. 99-

107

[Muns90] J.C. Munson and T. M. Khoshgoftaar "Regres-

sion Modeling of Software Quality: An Empirical Investiga-

tion," Journal of Information and Software Technology, 32,

1990, pp. 105-114.

[Muns90a] J. C. Munson and T. M. Khoshgoftaar "The

Relative Software Complexity Metric: A Validation Study," In

Proceedings of the Soft_'are Engineering 1990 Conference,

Cambridge University Press, Cambridge, UK, 1990, pp. 89-
102.

[Muns92] J.C. Munson and T. M. Khoshgoftaar "The De-

tection of Fault-Prone Programs," IEEE Transactions on Soft-

ware Engineering, SE- 18, No. 5, 1992, pp. 423-433.

[Muns95] J.C. Munson, "Software Measurement: Problems

and Practice," Annals of Software Engineering, J. C. Baltzer

AG, Amsterdam 1995.

[Muns96] J.C. Munson, "Software Faults, Software Failures,

and Software Reliability Modeling", Information and Software

Technology, December, 1996.

[Muns96a] J. C. Munson and D. S. Werries, "Measuring

Software Evolution," Proceedings of the 1996 IEEE Interna-

tional Soft_vare Metrics Symposium, IEEE Computer Society

Press, pp. 41-5 I.

[Muns97] J.C. Munson and G. A. Hall, "Estimating Test

Effectiveness with Dynamic Complexity Measurement," Em-

pirical Software Engineering Journal. Feb. 1997.

[Net83] J. Neter, W. Wasserman, M. H. Kutner, A_A_p_plied

Linear Regression Models, Irwin: Homewood, 1L, 1983

[Niko97] A.P. Nikora, N. F. Schneidewind, J. C. Munson,

"IV&V Issues in Achieving High Reliability and Safety in

Critical Control System Software", proceedings of the Interna-

tional Society of Science and Applied Technology conference,

March 10-12, 1997, Anaheim, CA, pp 25-30.

[Niko97a] A.P. Nikora, J. C. Munson, "Finding Fault with

Faults: A Case Study", proceedings of the Annual Oregon

Workshop on Software Metrics, Coeur d'Alene, 1D, May 11-

13, 1997

[Niko98] A.P. Nikora, "Software System Defect Content

Prediction From Development Process And Product

Characteristics", Doctoral Dissertation, Department of

Computer Science, University of Southern California, May,

1998.

[SETL93] "User's Guide for UX-Metric 4.0 for Ada', SET

Laboratories, Mulino, OR, © SET Laboratories, 1987-1993

INTEGRATING FORMAL METHODS

INTO SOFTWARE DEPENDABILITY ANALYSIS

John C. Knight Luis G. Nakano

(knight / nakano)@virginia.edu

Department of Computer Science

University of Virginia

Charlottesville, VA 22903-2442, USA

An abstract submitted to:

The Twenty-Third Goddard Software Engineering Laboratory Workshop

Contact author:

John C. Knight

Department of Computer Science

University of Virginia

Thornton Hall

Charlottesville, VA 22903-2442, USA

knight@virginia.edu

+l 804 982 2216 (Voice)

+1 804 982 2214 (FAX)

INTEGRATING FORMAL METHODS INTO SOFTWARE

DEPENDABILITY ANALYSIS

John C. Knight

Department of Computer Science

University of Virginia

Luis G. Nakano

Department of Computer Science

University of Virginia

1. Introduction

Formal methods are techniques based in mathematics that facilitate the precise specification and

verification of software systems. Their use has been demonstrated in a number of experiments

and industrial development projects [3]. Despite these demonstrations, formal techniques remain

the exception rather than the rule in system development. One of the issues raised about the use

of formal methods is the lack of any means whereby their results can be used in the broader

context of system dependability analysis, i.e., the analysis of a complete system including

hardware and software. For example, what would be the benefit at the system level of the use of a

formal specification in the preparation of the system software?

The issues that we address in the work summarized here are:

• For what parts of a complex software system should formal methods be used?

• How can the results of formal analysis be used in the overall dependability analysis of the

entire system?

We summarize a process by which these issues are addressed, and show thereby how to

determine the role of formal methods in any particular development and how to exploit the

results of formal analysis in system dependability analysis. At the workshop, we will illustrate

the process using examples from analysis performed on parts of the design of an experimental

nuclear-reactor control system.

2. Dependability Analysis

Analysis of the dependability of safety-critical systems is essential in order to provide estimates

of the expected losses (life and/or property) that such systems will cause per unit of operating

time, i.e., their risks. These risk estimates are used by developers, users, policy makers and

others to make informed decisions about deploying safety-critical systems based on the expected

benefits and losses to society.

Risk analysis has not been applied as successfully to software-based safety-critical systems as it

has to hardware-only systems. The reason is the discrete nature of software--it causes

complexity not usually found in analog hardware and prevents interpolation of test results

commonly applied to hardware-only systems. The result is a situation in which the hardware

elements of a system are typically analyzed in depth but software is handled in only a very

limited way, often as a "black box".

--2 --

Life testing is an approach to software dependability assessment in which the software is treated

as a black box. The software is executed continuously in its operating environment for a period

of time proportional to the duration of the mission and inversely proportional to the acceptable

probability of failure. Unfortunately, it has been shown [2] that life testing is not a feasible

approach to the dependability assessment of life-critical software because the duration of testing

required is excessive. To reduce the need for testing, reliability growth models have also been

tried [1]. By modeling the development of software in terms of testing and fault removal, it is

argued that an estimate for software reliability can be obtained with lower test requirements. If it

works at all, this approach only works for modest levels of dependability.

Formal methods are often advocated as an approach to developing dependable software. But

poor tool support, the complexity of the systems, and the difficulty of using the techniques have

limited the application of formal methods in many cases. The application of formal methods just

to the safety-critical parts of a system is a valid approach, but it requires that the safety-critical

parts be identified and delimited. No general technique for isolating the safety-critical

components of systems is available, however. In addition, it is not clear how to determine the

properties of a system (or part of one) that are relevant to its safety. Again, no technique so far

has been widely accepted, and most applications of formal methods try to establish properties

chosen in a non-rigorous manner. Though clearly useful, this utility is informal--such properties

do not contribute formally to the overall system dependability analysis. In summary, though

formal methods are of value, it is not clear how they should be applied nor how to use the fact

that they have been applied in system dependability analysis.

Given this situation, an integrated approach that: (a) addresses both the software and hardware

elements of a system; and (b) exploits the tremendous potential of formal methods is needed. In

this paper, a comprehensive approach to system dependability analysis based on traditional

techniques for risk analysis is summarized. The approach models software as a set of interacting

components based on the structure of the software. By viewing software this way, software

analysis can be integrated fully into the models used presently for hardware. The resulting

composite models provide details of those conditions in which hazards might occur as a result of

erroneous software operation thereby identifying precisely where attention to software

dependability must be focused. As such, these conditions can be the target of formal analysis so

that confidence is gained about the right properties of the right parts of a software system.

3. A Component Model of Software Dependability

Both simple life testing and reliability growth models ignore the structure of software when

obtaining estimates of software failure rates thereby requiring either that impossibly large

numbers of tests be performed or that failures induced in one component by another be ignored.

Unfortunately, however, if one appeals to formal methods as an alternative approach, one is

faced with the fact that formal methods do not provide stochastic estimates and so cannot be used

easily in place of testing. And, as we have already noted, it is not possible to identify precisely

where or how such methods can be applied effectively to just parts of large systems.

Traditional dependability analysis techniques, such as fault-tree analysis and failure-modes-and-

effects analysis, are performed for hardware-only systems using complete knowledge of the

internal design. Typically, the software in software-based systems cannot be analyzed this way

because the interactions between components have either been ignored or not obtained

-- 3 --

rigorously. Clearly, software components such as functions and tasks interact extensively, but

this is not to be the case (or is assumed not to be the case) in archetypal hardware-only systems.

Since techniques that model software as a monolithic entity have not achieved sufficient fidelity,

we have developed an approach in which software is modeled as a graph with components as

nodes and interactions as edges. An event associated with the failure of a software component

then appears as a separate entity in the system fault tree. However, traditional quantitative

analysis cannot be undertaken without further analysis because of the component interactions.

Qualitative analysis, however, is possible and the comprehensive system fault tree allows those

parts of the software whose failure might lead to a hazard to be identified easily.

In our approach, interactions are determined based on a component-interaction model and then

minimized using architectural techniques. The resulting fault tree is then analyzed quantitatively

using extensions to fault tree analysis that include dependencies [5].

Of critical importance is the fact that the failures of individual software components now appear

in the system fault tree. This permits system design decisions to be taken to reduce

vulnerabilities, but, more importantly, it indicates what aspects of the software will benefit most

from the use of formal methods and how. For example, if a software component is deemed to be

critical because the fault tree shows that its failure would lead to a hazard with unacceptable

probability, then the component can be subjected to detailed formal analysis. If it can be shown

to be correct via proof, then its probability of failure can be assumed to be close to zero and

increased confidence gained in the system's safety. The role of formal methods is then clear.

4. Component Interaction Model

In developing an analysis-by-components approach to modeling software, the first step is to

determine how one software component can affect another. There are, of course, a multitude of

ways that this can occur, but there is no basis in either models of computation or programming

language semantics for performing a comprehensive analysis.

We chose to approach this problem by viewing component interaction as a hazard and basing

our analysis on a fault tree for this hazard. In this way, we have documented, albeit informally

but rigorously, all possible sources of software component interaction. The fault tree is quite

large and we cannot include it here in detail. The events in the fault tree are based on the

semantics of a typical procedural programming language, and the results apply to all common

implementation languages such as Fortran and C.

In order to reflect the syntactic structure of procedural languages accurately, we define the term

component to mean either (a) a function in the sense of a function in C, (b) a class in the sense of

a class in C++, or (c) a process in the sense of a task in Ada. We make no assumptions about

how components can provide services to each other (in a client/server model) or collaborate with

each other (in a concurrent model) or otherwise interact.

As an example of the interaction model, figure 1 shows the top of the component-interaction

fault tree. With no loss of generality, in this fault tree we consider only two components because

there can be no interaction between components if there is no pair-wise interaction. Since

information flow between A and B is symmetric, only one of the cases need be considered.

--4 --

I
Information flowsfrom A to B

f t
 a a ran ferI IOa a rao erI

Hazard

Component
Interaction

Information flows to A and B

from a common source

Figure 1: Fragment of component interaction fault tree

In the first level of the partial tree shown in figure 1, component interaction can be caused by

information flow from A to B or by a common source of information. Thus, these are the two

events shown. Note that component interaction does not necessarily mean intended

communication in any format. Rather, it includes both intended and non-intended interaction

between components. In addition, information flow does not mean just transfer of data. Flow of

control is also information in the sense of the analysis that we wish to perform.

The complete interaction model derives sources of interaction in all semantic areas including

shared data, memory management (e.g., one task consuming all memory thereby causing others

to fail), task communications (e.g., priority inversion and deadlock), and exception generation

and propagation.

5. Design Techniques for Analyzability

If analysis using our software component model is to be complete, it is essential that interactions

between components that have to be analyzed always be detectable. Analysis of the component

interaction model indicates that several potential causes for unwanted interaction cannot be

discovered by static analysis of the system. Dynamic scheduling of functions and dynamic

resource allocation, for example, have the potential for leading to failure under circumstances

that are unpredictable. Similarly, other characteristics of software designs have the potential for

increasing the complexity of the analysis or even making it infeasible.

-- 5 --

Analytic feasibility requires that these sources of interaction be eliminated and this requires that

certain restrictions be imposed. Both imposing the restriction and showing that a system meets

them is best achieved by explicit use of design choices, for example:

• All resources must be statically allocated.

• All scheduling actions must be static.

• Execution times of components must be bounded.

• Inter-task communications must be synchronous.

This list, although not exhaustive, illustrates the properties that were derived from the component

interaction model. Provided the complete set of design restrictions is met, all interactions

between components of a software system can be analyzed. Achieving analytic feasibility of

complex software systems using architectural techniques such as these is not unique to the

approach we have developed. The SAFEBus architecture [4], for example, used in the Boeing

777 air transport enforces several of these properties to facilitate the safety analysis of the final

system.

6. Quantitative Analysis

The final step in the approach that we have developed is quantitative analysis of complete

systems including both hardware and software. The composite fault tree contains nodes

describing failure events of all system components and all interactions between components are

known. To complete the part of the quantitative analysis associated with the software nodes, we

have developed an extension to the cut-set technique employed with conventional fault trees. The

extension, termed hazard-causing sequences, involves enumerating all sequences of software

component failures that could cause a hazard and analyzing each such sequence to show that its

probability of occurrence is sufficiently small. If this analysis reveals a sequence whose

probability of occurrence is not sufficiently small, formal techniques (perhaps combined with

certain restricted forms of testing) can be applied to the sequence in order to either reduce the

probability to a sufficiently small value or to show how the system design can be modified to

make the associated sequence less critical.

7. Summary

In order to better model the dependability of complex software-based systems, we have

developed an approach that uses the design of the software (viewed as a set of interacting

components) as a basis for analysis. This approach permits the critical elements of the software

to be identified and subjected to analysis using formal techniques. The approach, therefore,

permits a clear determination to be made of the most appropriate application of formal methods

to a large system and permits the results of formal analysis to be included in comprehensive

system dependability analysis.

At the workshop we will describe the approach in detail, present the complete component

interaction model, discuss the analytic techniques used in analysis of the composite fault-tree

model, and illustrate the approach using analysis performed on parts of the design of an

experimental nuclear reactor control system.

--6 --

References

1. Brocklehurst, S.; Littlewood, B. Techniques for prediction analysis and recalibration.

Chapter 4. In: Lyu, M. R., (ed). Handbook of Software Reliability Engineering. IEEE

Computer Society, Los Alamitos, CA, 1995.

2. Butler, R. W.; Finelli, G. B. The infeasibility of quantifying the reliability of life-critical real-

time software. In: IEEE Transactions on Software Engineering, v. 19, n. 1, p. 3-12, Jan.
1991.

3. Craigen, D; Gerhart S; and Ralston, T. An international survey of industrial applications of

formal methods. National Institute of Standards Technology, U.S. Department of Commerce,

(March 1993)

4. Hoyme, K.; Driscoll, K. SAFEbus. In: Proceedings of the 1992 IEEE/AIAA 11 th. Digital

Avionics Systems Conference, Seattle, WA, USA, 5D8 Oct. 1992, p. 610, 68-73. IEEE, New

York, NY, USA, 1992.

5. Pullum, L. L.; Dugan, J. B. Fault tree models for the analysis of complex computer-based

systems. In: Annual Reliability and Maintainability Symposium. 1996 Proceedings. The

International Symposium on Product Quality and Integrity, Las Vegas, NV, USA, 22D25

Jan. 1996, p. 200-7, 1996.

-- 7 --

Z

0

Z

d

©

° i,,,_

o_o__
__o_

0

0

0

© 0

_ o •

_0

o_

c_ _

©

L

7_

\

/

\
\

\
\

\

\

\

\

\

/

/

/

\

\

\

\

/

/

"2

° _-.,I

0

c_

o

<

4=I

0
° 'w,--q

c_

°_,_q

c_

©
L_

I

°_,mq

c_

<

©
*_m.I

0

0

©

0
h=
°v--'l

©
o

0

©
r_

@" ;>

in

n

° ,_,-,N

_ o

E = <

0 ._ _

• "8
o

o _ 7.F= .._

, _ 0 Z
I-

c_

q

-rl-

oo

Z
0

.,e

Z
.,e
Z
0

.,e

k_ 0

I I

°_.._

Z

r_

Z

r_

r_

,..,.m I

r_
°,lml

©

©

q_

°_--'1

r_

© ©

©

>.

_D

Z

Z

r_

Z

r_

b_

©
o_.._

©

©

¢3

o_.,_

0

¢)

o

<

©

n/

L)

2

CD

©

• _.--N

c_ ._

cs_
° v....q

c_

c_

q_

C_

c_

o_

.<

Z

z
Z

T

/

_8 ©

f _',,

_ J

.

o_

41_ m

0

0

Z

Z

Z
0

0

©

© ©1
• ,,,,,_ P_ i

N Pl

0

A _

e_ue

_ m <

c J _

,p,,,,qr •

i _ v

, m

, m

im

,,-,,,-I

©

v

C ",'-'_

u • •

©

©

m

©

°_-'1

©--

c_

0

I,-,N

0

I,,--,(

i,-,,-(

Z

I I i I

--- _iio

;>

>, _

I

¢,,!

Z

0
%

"1

I

I

I

I

I

I

I

I

I

I
-I

-I

I

I

I-

I-

I

I

I

I

I

I

I

I
.1

I

I

I

I

I

I

I

I

I

I
.J

c_

Z
0

C_
Z
0

0

<

,_

r_
..o 0

' 0 r._

0

o "_ N
Z ¢_ o =

© 0 © 0

0

0
Orj

©

0

0

©

!

©

©

0

0

!

0

0

0

©

.<

!

0

0

0

AN ADAPTIVE SOFTWARE RELIABILITY PREDICTION APPROACH

Meng-Lai _Tn* Lawrence E. James Samuel Keene Rafael R. Arellano

Raytheon Systems Company

Loc. FU. Bldg. 675, M/S AA341

1801 Hughes Drive, Fullerton, CA 92834 USA

Jon Peterson

ABSTRACT

Software reliability analysis is inevitable for modem

systems, since a large amount of system functionality

is now dependent on software, and software does

contribute to system failures. Although extensive
research efforts have been devoted to the field of

software reliability, there is no single consensus
model available. On the other hand, most software

reliability models are based on software failure data
collected from the project. This creates a problem

for the designers since, during the early stage,

software failure data are not available. This paper

presents the approach we took to deal with the above

issues. The adaptive approach presented here

continuously adjusts and evaluates the performance

of the models as the software development proceeds.

For the early-stage prediction, a simple and

straightforward method is introduced which can be
used when no failure data are available. This

process, which is based on the adaptive approach and

includes the early-stage prediction method, has been

implemented in a software intensive development
program in progress.

INTRODUCTION

As more and more failures attributed to software are

observed, it is recognized that software reliability

analysis is an inevitable task. However, although
several software reliability models have been

proposed [6], there is still no "standard" model. In

reality, the needs of software reliability prediction

force people to choose one (or more) models so that

some software reliability numbers can be provided.

The problem with this approach is that, at the

beginning of a system development, there is no
failure data available. Thus, no one knows which

model best describes the software product. This

approach is referred to as the blind approach.

Another approach is to apply various models and the

results are compared with actual failure data at the

end of the project. This way, the performance of

different models can be evaluated [12]. The problem

is, the software reliability can not be estimated until

the very-late stage of the development, when

software is almost ready to be delivered. This

approach is referred to as the autopsy approach.

To cope with the above problems, we propose an

approach that analyzes software reliability

adaptively. That is, software reliability is modeled as
the software development proceeds. First, we

provide a rough estimation, to start the whole

process. As the software is being developed, failure

data become available, and software reliability can

be predicted progressively. Comparing the actual

failure data with the predicted numbers, we can see
the trend of the software failure behavior, and

determine which models are the most appropriate
ones. When the software development reaches the

final stage, modeling experience is also becoming

more mature. The ultimate goal is to provide

software reliability estimation using the model that
best characterizes the failure behavior of the

particular software product. Not only that, this

process continuously provides estimation at each

phase of the system development based on the most
current failure information.

Note that even at the beginning of software

development where failure data are not available,

some assurance that the design is meeting its

requirements is desirable. Therefore, a method that

can provide a reasonable estimation before any actual

failure data available is a benefit to the program. In a

* Contact author. Email: mlyin@west.raytheon.com. Tel: 714-446-4269. Fax: 714-446-3137.

surveyprovidedin [6], three modelshavebeen
identifiedasthe"early-phase'models,i.e.,Gaffney
and Davis' phase-basedmodel [3], Agresti and
Evanco'sAdasoftwaredefectsmodel[1], andthe
Air Force'sRomeLabmodel[9].

Thebasicphilosophyof theseearly-phasemodelsis
to doa predictionbased on as much information as

possible. For example, the phase-based model

requires the information of discovered faults found

during the design and implementation phases [3]; the

Rome Lab's model considers a very comprehensive
list of factors [9]. The Ada software defects model

requires 4 product and 2 process characteristics [1].

Although detailed information is desirable, they are

not necessarily available, or they may be very costly

to obtain at the early stage of the program. In this

paper, we propose a cost-efficient method, called the

early-stage prediction, to be added to the adaptive

prediction process for software reliability.

This adaptive process with the early-stage prediction

method has been implemented in a software

development program in progress. As more
experience is gained and more failure data are

collected, the performance of the early-phase

prediction method is improved.

System Test

Operation

, Estimation

Process
characteristics

Faults/Failure Data Collection

Early-Stage Code-Phase
Prediction Prediction

V

Unit-Test
Phase

Prediction
System-Test

Phase
Prediction

Operational
Phase

Prediction

Out.puts: Software Reliability Estimation
Performance Evaluation of Prediction Models

I

I.. !

Figure 1. The Adaptive Software Reliability Prediction Process

THE ADAPTIVE APPROACH The Process

The adaptive approach is integrated into the software

development process, as shown in Figure I. The

waterfall-software-developmentprocess[6] is used
as the basis.As shownin the figure,a software
product starts with some set of requirements,
followedby design, code, unit test, system test, and

the operation phases.

Five prediction activities are identified, i.e., early-

stage prediction, code-phase prediction, unit-test-

phase prediction, system-test-phase prediction, and

finally the operational phase prediction. The early-

stage prediction will be described in detail later.
Once the software has been designed and

implemented, information about discovered faults

can be obtained, and code-phase estimation can be

performed. The unit-test and system-test phase

predictions can be conducted once those test data are
available. When the software reaches the field

(operational phase), software reliability growth is
projected over its future use _. As failure data are

being collected, the performance of the models can

be evaluated. The outputs are not only the predicted

software reliability number, but also an evaluation of

the models. As illustrated in Figure 1, the outputs are

fed back into the estimation process so that the

software reliability models can be refined and

justified. Moreover, these outputs are fed back into

the development process to improve the product.

Tools Consideration

When faults/failure data are available, tools such as

SWEEP (SoftWare Error Estimation Program),

SMERF (Statistical Modeling and Estimation of
Reliability Functions) and CASRE (Computer-Aided

Software Reliability Estimation) can be applied. In

particular, our process uses CASRE for the

operational phase prediction and SMERF for the

code-phase, unit-test-phase and system-test-phase

prediction. SMERF and CASRE utilize the same set

of models. SMERF is developed at the Naval
Surface Warfare Center (NSWC) [6], and CASRE is

developed in 1993 at Jet Propulsion Lab[10]. Eleven

models are supported, i.e., geometric model,

Jelinski/Moranda De-Eutrophication model,

Littlewood and Verrall's Bayesian model, John

Musa's basic execution time model, John Musa's

logarithmic poisson model, Non-homogeneous

Poisson (execution time), Brooks and Motley's
discrete model, generalized Poisson model, Non-

The issues of asymptotic properties of software reliability
have been studied [I 1], and different methods have been
proposed.

homogeneous Poisson (interval data),
Scheiderwind's Max Likelihood model, and

Yamada's S-shaped growth mode [6].

SWEEP is an implementation of the phase-based

model [3]. It makes use of fault statistics obtained

during the technical review of requirements, design,

and the coding to predict the reliability during test

and operation. Thus, SWEEP can be used before

testing (after coding). On the other hand, CASRE and

SMERF can be used in the system test phase. None

of the above tools can be used for the very early-

stage prediction where no fault or failure data are

available. A methodology that provides estimation

for this situation is the topic of the next section.

EARLY-STAGE PREDICTION

The purpose of this method is to provide a rough

estimation on various software reliability

measurements, based on the limited information. In

particular, the only information required are the size

of the software, measured by source lines of codes

(SLOC), the maturity of the development process 2,

and the schedule. Since only a rough estimation is

expected, accuracy is not a main concern for the

early-stage prediction. Instead, accuracy is the goal

of the overall adaptive process, which will be

achieved by continuously refining various models.

The two basic assumptions are (1) the time between

software failures is exponentially distributed (2) the

occurrence of a failure is followed by the removal of
the corresponding fault 3.

There are many research efforts devoted to the topic

of imperfect software debugging. In particular, the

asymptotic properties of software failure rates have

2 The software development process level, such as the
SEl(Software Engineering Institute) CMM(Capability
Meturity Model) or the ISO 9000 series of standard by the
International Organization for Standardization, have been
proposed to assist the assessment of inherent faults [5].
3This implies that we assume there is a one-to-one
mapping between the faults and failures.

© _' _ " " • -_ _,(r)

Figure 2. Software Failures Behavior Model for Early-Stage Prediction

been studied l1 l]. There is always a possibility that

new faults will be introduced when removing a

software bug. However, from a statistical point of

view, the number of newly introduced faults is less

significant when the total number of remaining faults

is (relatively) large. It is only when the software

product is reaching the mature stage, where the
number of remaining faults and the number of

introduced faults are in the same order of magnitude,

should the imperfect debugging be concerned. This
phenomenon is captured in our model as the "stable"

state. Figure 2 shows the model that describes the
behavior of software failures.

In this model, a software program is estimated to

have n inherent faults at the beginning of the

estimation. An assumption is made that the

corresponding fault is removed when a software

failure occurs. This will bring the software to the
next state where the number of faults is decreased

(one at a time). This process continues until the
software reaches the stable state. In the stable state,

the asymptotic failure rate phenomenon is observed.

A failure rate function 2(i) is used in this model. This

failure rate function 2(0 can be described in many

different ways, according to the software failure
behavior. For example, it can be described as a

linear increasing function that is in proportion to the

number of remaining faults, i.e., 2(i)=i2. Or, the

failure rates can be described as a logarithmic

increasing function, i.e., 2(i)=ln[i]x2. This failure
rate function should be a function of_.. The value of

X is then calculated based on the model, the

parameters, and the failure rate function specified.

The key of this method is to find out the value of

X, using the information of the size of the code, the

software process maturity level, and the duration T.

T is the duration from the beginning time the
software is measured (to) to the time the software is

'stable' (ta). Theoretically, the selection of to can be

any time, for example, the time the software is

finished compilation or the beginning of various

phases indicated in the waterfall process.

According to [2] and [5], the actual failure data from

different programs show that the stable time is

approximately 4 years after delivery for a new

program release. The stabilization period might be

reduced to two years for subsequent program
releases.

Once the starting time and the "stable" time are
determined 4, the next step is to estimate the number

of inherent faults, denoted as n, and the number of

remaining faults, denoted as r.

Estimating the numbers of inherent faults and

remaining faults

In order to solve the model described in Figure 2, the
number of inherent faults, i.e., n, and the number of

remaining faults, i.e., r, need to be determined. The

inherent faults are the faults existing at time to;

remaining faults are the faults existing at time ta. A
wide-used method to determine the number of

inherent faults is through the use of fault density s.

There are several studies on estimating the fault

density. Musa's survey [7][8] provides fault density
estimated for different software life-cycle phases. As

presented in [8], the mean inherent fault density

remaining at the beginning of different phases is

estimated based on actual failure data from many

different programs. As an example, the inherent
fault densities for different phases are summarized in

the following table.
Table 1

Phase Faults/KSLOC

99.5Coding

(after compilation/assembly)
Unit Test 19.7

System Test 6.01
Operation 1.48

(copied from [8], Table 5.4)

4 Note that this is only a rough estimation.
5 Although Hatton [4] disagrees with this approach, the
size of the code times the fault density is commonly used in
the field.

Thework of AagrestiandEvanco'sAda software
defects estimation method [1] recognizes the

differences in the way organizations develop

software for software reliability prediction. Both

process characteristics and product characteristics
are considered in the overall software defects model.

Moreover, Keene [5] proposed an approach that

applies the software process levels and the size of the
code to predict the number of inherent faults. As an

example, the following table shows the relationship

of the inherent fault densities at the beginning of the

operational phase and the software process levels.
Table 2

SEl CMM Level Faults/KSLOC
5 0.5

4 1.0
3 2.0
2 3.0

l 5.0
Un-rated 6.0

For the value of r, i.e., the number of remaining

faults, the observation in [2] and [5] suggests that,

after four years of deployment, the number of
software faults be reduced to a level less than 10% of

the level at deployment. Thus, one way to
conservatively estimate the value of r is to use 10%

of the fault density estimated at the beginning of the
operation phase.

Calculating 2

Define a sequence of non-negative real-valued
infinite random variables X0, X_, X2, ... , X_.....

Each of these random variables represents the time
between two consecutive failures. Recall that

exponential distribution has been assumed. The

value of _, is assessed by utilizing the relation that

E[Xl + X2+ ... + X,-r+l] = E[X,] + E[Xz] +... + E[Xn_

_l]. In other words, we have the equation l/Jr(n)

+l/X(n-1) +... + l/X(r+ l) = 7_. Given the failure rate

function 2(i) and the values of n, r and T, the value of
can be calculated.

Stable State MTBF

Plugging _.into the failure rate function with

parameter r, i.e., _,(r), the stable state MTBF can be

estimated, i.e., 1/_,(r).

Expected Number of Failures Occurred

The expected number of software failures occurred

by time t is calculated in the following way. First, we

estimate the state the software is expected to be in at

time t. This can be done by calculating Y.(ix &),
where i is the number of existing faults (the state

number), and Pi is the probability that the software is

in state i at time t. Denote the expected number of

existing faults at time t as k. Then, the expected

number of software failures that have occurred by
time t is n-k.

Software MTBF prior to the Stable State

Suppose at time t, the number of existing faults is
predicted (by the above method) to be k, then the

MTBF at time t can be estimated as l/_,(k). This can

be interpreted as the mea time between software
failures if no further faults are removed.

Software Reliability

According to the standard definition of reliability 7,

the software program's reliability is the probability

that at time t, the software is still in state n (no failure

has occurred yet). This reliability number depends on

the value of 2, which in turn is dependent on the
other parameters and the failure rate function

specified.

Improvement of the Method

Although this method only provides a rough
estimation, the actual data collected in the later

phases will give us feedback on the method and the

parameters used. Furthermore, the experience from
actually implementing the process will improve the

overall approach, which can be used for other

programs. For example, the fault density level at the
stable state used now is 10% of the level when the

software is deployed. This number can be refined or

justified, as more experience is gained. The

accumulation of this experience over time can be

added to the confidence in the reliability parameters,

which can then be used in upcoming programs.

In the next section, an example is used to

demonstrate the early-stage prediction, and the

feedback gained from later phases prediction
activities.

6 For exponential distribution 1-ext, the expected value is
1/_,.

7 The reliability is defined as the probability that the
component operates correctly throughout the interval [to.t]
given that it was operating correctly at time to.

AN EXAMPLE

In this example, we consider a software product
whose size is 360 KSLOC (K Source Lines Of

Code). The software process applied is rated as SEI
CMM Level 4. The duration T is assumed to be 4

years. Based on this information, the early-stage

prediction method suggests the fault density at the
beginning of the operation phase is 1.0 per thousand

lines of code, i.e., 360 faults, if the process-driven
fault density model is applied (Table 2). If Table 1 is

used, then the fault density at the beginning of
operation phase is 1.48, i.e., 533 faults. These two
models give us a rough estimation on the number of

inherent faults at the beginning of the operation

phase. According to the discussion presented in the
previous section, we can derive various software

reliability measurements based on this information.

As the software development is progressing,
faults/failures data are collected. The tool SWEEP

was used to perform a phase-based model prediction
[3]. Eight phases were specified, e.g., preliminary

design, detailed design, code, unit test, integration

test, final test, system test, and operation phases.

Figure 3 through Figure 7 show the adaptive

predicted fault density for each phase based on

different sets of available failure data. Specifically,

Figure 3 is the prediction made at the beginning of

code phase, when only the defects found in

preliminary design and detailed design are known.

Figure 4 is the prediction made at the beginning of
unit test, and so on.

1.8

1.6

_1,4

"_ 0.8,

9 o.6_
=

0.4 •

0.2"

O-

• Pp.'dicled

• Actual
PRdig6m based on the first 2 sets of data

P_imma5 L_.'t=k'd Code Unit T_._I Imegration Final'l_l Sys|em Operation

D_i_ D_i_ Test rcsl

Phmes

Figure 3. SWEEP Prediction based on 2 sets of data

The stage of the project is currently at the beginning

of system test. Therefore, only the failure data up to

the final-test phase are available. The predictions

show that the operation phase fault density based on

the most updated failure data, i.e., 0.99, is very close

to our early-stage predictions (1.0 if using process-

driven model, 1.48 if using Musa's survey). This
example demonstrates that we can earn more

confidence in the model that we chose at the earlier

stage, by the predictions performed at the later
phases.

I'I PrLvJicl_d

•/V._ ml
!_ based on the first 3 sets of data

Phases

Figure 4. SWEEP Prediction based on 3 sets of data

Pn:dk'_cd
P_d_6_ basecl on _e first 4 sets of data

• Actual

10

8

_ 6
5

•- %,]
4 _

__ 3, •.....

1-

0

_r _d C_ UnitTest In_gratio_ F'malT_ S_'m Operation

Design Design Tc_ Test

Phmes

I
Figure 5. SWEEP Prediction based on 4 sets of data

• Predi_lc_l

• Actual Pt_dicli_ based _ the fiI_ 5 seas of data

5

_4

_3
_2

'-'1,

0 •

Prelimin._ O' Detailed Cc<1¢ UnitTest Integration FinalTesl System Operalion

Design Design Test Test

Pham

Figure 6. SWEEP Prediction based on 5 sets of data

Pmkfion basedon_he _ 7 se_ of dab

[] P_co_'l_d • Aoaxd

Ple_o_. [_._cd (_r/_ Ur_Tc_ l_e_a F_T_ $_ernTe_ Opaa_

laha_

Figure 7. SWEEP Prediction based on 6 sets of data

CONCLUSION

We have presented an adaptive approach, which is

integrated with the software development process, to
estimate the software failure behavior. This

approach has been implemented in an ongoing

software development program. The key feature of

this method is that the prediction is improving as the

software proceeds. Our basic philosophy is that,

since the software product is evolving continuously,

the software reliability prediction should be

improving continuously.

Moreover, a method that can assess software

reliability in the early stage is presented. This
method requires only very limited information about

the software product and the process. The

asymptotic property of software failure rates is

recognized in the model. While most early-phase

software reliability prediction methods focus on how

to provide a precise prediction with the limited
information, we provide a rough estimation as a

starting point of the overall prediction process. The

accuracy of the estimation is the goal of the overall

process. The approach presented here is readily

performed and should provide adequate initial

software reliability estimation. As more experience

in this early-stage prediction is gained, the method

can be improved and benefit other software
development products.

REFERENCES

[1] W.W. Agreti, and W.M. Evanco, "Projecting

Software Defects From Analyzing Ada Design,"

IEEE Transactions on Software Engineering, Vol.18,

No. 11, Nov.1992, page 988-997.

[2] Ram Chillarege, Shriram Biyani, Jeanette

Rosenthal, "Measurement of Failure Rate in Widely

Distributed Software," Fault Tolerant Computing

Symposium (FTCS), 1995, page 424-433.

[3] J.E. Gaffney and Davis, C.F., "An Automated

Model for Software Early Error Prediction
(SWEEP)," Proceedings of the 13 th Minnowbrook

Workshop on Software Reliability, July 1990.

[4] L.Hatton, "Reexamining the Fault Density -

Component Size Connection," IEEE Software,
March 1997, pp. 89-97.

[5] S.J. Keene, "Modeling Software R&M

Characteristics," ASQC Reliability Review, Part I

and II, Vol 17, No.2&3, 1997 June, pp.13-22.

[6] Michael R. Lyu (editor), Handbook of Software

Reliability Engineering, McGraw-Hill, 1996.

[7] John Musa, "A Theory of Software Reliability

and Its Application," IEEE Transactions on Software

Engineering, Vol. SE-1, No.3, Sep. 1975, page 312-
327.

[8] John D. Musa, Anthony Iannino, Kazuhira

Okumoto, Software Reliability Professional
Edition, McGraw-Hill, 1990.

[9] Rome Laboratory (RL), Methodology for
Software Reliability Prediction and Assessment,

Technical Report RL-TR-92-52, volumes 1 and 2,
1992.

[10] A.P. Nikora, "CASRE User's Guide," Jet

Proopulsion Laboratories, August 1993.

[11] M.C.J. Van Pul, Statistical Analysis of Software

Reliability Models, Stichting Mathematisch Centrum,
Amsterdam, 1993.

[12] A. Wood, "Predicting Software Reliability,"
IEEE Computer, Nov. 1996, pp. 69-77.

0

el(
l,U
el4

c_

c_

omU

c_

c_
C_

C_
ejU

el_q

ct_

E o

c_

!

_)

r_

r_
r_

|
0

0

0

<

0
o_

0
°_

0

=

°_

°_

0 "°_

°_

• 0
o_

0
o_

I

• • • • •

I,I

r_
r_

0

i •

I

C_

|
m

0
o_

©

0
0

©

©

©

0

0

©
°_

°_

0

|
I1

0

0

n::;l _
r_

0

0

©

o

¢_ .,-_ o _ _

.J

_9

|
0

©

©
°_,_

_0

t_

!

4_

c_
E

c_

°v.ul

_h

0
r_ r_

_J

_J

|
I1

o=

d

>.

t"q

|
O

r_

_ ° _'q

c_

c_

r._

0

O0

0

©

vml

oo
i..m,J

c_
ct_

0

• v-..,I

0
_J

_J

,J

r,J
crJ

|

°_,m4

c_

O

j o

_J

Lt_ _ 0

c_
!

o_,ut

C_

r_

0
0

|
0

b

O

C_
U.1

Session 5: Verification & Validation

Adoa'e/ Checking l@r.[17calio# and YahdatioH at Jgl und the XASA Fairmonl IE_ Y

Faclb'O,

F. Schneider, Jet Propulsion Laboratory, S. Easterbrook, NASA IV&V Facility,

J. Callahan and T. Montgomery, West Virginia University

Csing Aiode/ Checking to Yah'gate A/Planner Domain i_¢ode/s

J. Penix, C. Pecheur, and K. Havelund, NASA Ames Research Center

Vc_ Vof a Spacecra_ _ Auionomous Planner through ExlendedAuiomaiion

M. Feather and B. Smith, Jet Propulsion Laboratory

Performing Yerl)qcation and Yalidation in Reuse-Based Software Engineering

E. Addy, NASA/WVU Software Research Laboratory

Model Checking Verification and Validation at JPL and the NASA Fairmont

IV&V Facility I -

Frank Schneider, Jet Propulsion Laboratory, California Institute of

Technology, Steve Easterbrook, NASA IV& V Facility, Jack Callahan and Todd Montgomery,U, "_ , rill

West Virginia University _/_//'
Contact. Francis.L.Schneider@jpl. nasa.gov

Abstract

We show how a technology transfer effort was carried out. The successful use of model checking on a pilot JPL
flight project demonstrates the usefulness and the efficacy of the approach. The pilot project was used to model a
complex spacecraft controller. Software design and implementation validation were carried out successfully. To
suggest future applications we also show how the implementation validation step can be automated. The eflbrt was
followed by the formal introduction of the modeling technique as a part of the JPL Quality Assurance process.

Introduction

Following the pilot use of model checking at NASA JPL and the IV&V Facility [1], and at

NASA Ames[2], we have followed five steps in introducing model checking to the Quality

Engineering process at JPL. First, references [1] and [2] show model checking to be an effective

tool in validating the behavior of spacecraft systems. Second, our model checking results were

then carried forward to validate the software implementation for the presence of design

anomalies. Third, having validated the implementation by hand, we show how the process can be

automated. Fourth, we have documented the process to be used in a development environment by

incorporating and generalizing the above elements. Finally, we are engaged in applying the

methodology developed here on future spacecraft.

Model Checking as a Validation Tool

We use model checking to mean the process of(l) abstracting a partial specification from

requirements and design elements for a reactive system and (2) applying reachability analysis to

the resulting partial specification to validate that it has properties of interest. A reactive system is

one that takes input from its environment at unpredictable times and responds according to a

specific set of rules. We have previously shown model checking to be an effective tool in

validating the behavior of a fault tolerant embedded spacecraft controller [1]. That case study

shows that by judiciously abstracting away extraneous complexity, the state space of the model

could be exhaustively searched allowing critical functional requirements to be validated down to

the design level. The system we validated was a two-fold redundant spacecraft controller. It

consists of a prime system that controls the spacecraft bus and a backup system. The backup

system receives synchronization information from the prime system via the spacecraft bus. The

purpose of the system is two fold. First, it has to respond to and repair must-fix-spacecraft faults.

1 The research described in this paper was carried out by the Jet Propulsion

Laboratory, California Institute of Technology, under a contract with the

National Aeronautics and Space Administration.

Second, it must complete execution of high priority sequences. To realize these goals two
mechanisms were utilized.

First, the system uses a checkpointing scheme that allows:

• Execution to be frozen when a fault occurs

• Repair of the fault somewhere in the spacecraft

• Rollback to the start of the last incomplete subsequence

• Resumption of sequence execution

Accordingly, the checkpointing scheme allows efficient sequence execution since completed

subsequences need not and in many cases can not be repeated. The checkpointing scheme

requires three seconds of aging for each new checkpoint before the new checkpoint is considered

to have been encountered. This is caused by fault leakage detection time such that a fault at the

end of a previous subtask may not be detected until up to three seconds after the beginning of a

new subtask. This could mean that the fault precluded instructions at the end of the previous

subtask from being executed.

Second, the overall redundancy of the system made up of prime and backup controllers allows

the entire prime controller to fail. Failure is detected by the backup system that then becomes

prime and takes over execution where the failed system halted. The backup system becomes

prime; takes over control of the spacecraft bus; completes repairing the fault; rolls back to the

start of the last incomplete subsequence and resumes execution of the sequence. Figure 1

illustrates the architecture involved. Further details can be found in reference [1 J.

The initial abstracted design state space contained about 287 states. By this statement we mean
that we estimate there to be 287 different combinations of variable values and conditions that

completely describe every possible configuration of the spacecraft controller. There are five

types of faults such that the controller is required to respond to one type of fault at a time.

Because fault detection and recovery requirements could be handled one-at-a time, the

requirements were partitioned into five equivalence classes accordingly reducing the state space

to be searched significantly. The state space was further reduced by removing states from the

finite state machine representation that did not contribute to the checkpointing scheme we were

attempting to validate. This gave rise to a new estimate of about 100, 000 states. The resulting

Harel Chart [3] for the abstracted spacecraft controller is that shown in Figure 1.

Example: Sequence execution segment:

Begin Sequence First

¢'1 _ Subsequence_""_-
I ', I I

\/
Time Markers [sec] since start

of subsequence or last mark point

PRIM

State Data

Packet

Check Points_.._...._.._.

I f I I +1
+eco. /
Subsequence

BACKUP _

BACKUP NOMINAL

Figure 1

The validation was accomplished with the SPIN model checking system [4]. Six separate

rollback requirements on the rollback scheme were validated. Three anomalies were uncovered

with the model checker traversing about 130,000 states for each anomaly with run time being
approximately 30 seconds for each anomaly.

Anomaly one resulted from repeated prime failure causing loss of synchronization with the

backup system. This result occurs when the prime system experiences repeated intermittent

failures possibly due to the same fault, and such that the prime system repairs the fault in less

than one second. According to our model this would mean that notice of the fault would never be

propagated to the backup system. Consequently, the backup system could get significantly ahead

of the prime system in the execution of its own copy of the sequence. Then should the prime

system subsequently fail, the backup system could roll back to an incorrect location. This

anomaly is due to the ordering of processing described in the requirements specification.

Anomaly two depends on how faults are handled at the end of the sequence. Should a fault

occurrence be detected up to within three seconds of execution of the last instruction, there

would be no rollback after repair of the fault. This is the case since the last instruction in the

sequence was not identified as a checkpoint. However, should a fault occur prior to the end of

the sequence, according to the fault leakage detection rule there is no guarantee that all

instructionsatthe end of the sequence would have been successfully executed. Our validation

run failed because our model assumed that once the sequence completed, the backup and the

prime systems returned to the Power Up Idle state; accordingly, there would be no sequence to

return to once the fault was corrected. This anomaly is due to a missing requirement.

The third anomaly concerns the occurrence of a fault 2 seconds after a checkpoint is encountered

in the prime string. The prime string freezes its aging function at n + 2 seconds. Since faults that

occurred in the previous second are not broadcast to the backup system until the current second it

will continue to execute, aging its checkpoint by one further second. At this point the backup

system receives notice of the fault and freezes its aging process. However, it now has an

erroneous rollback point. Should the prime system subsequently fail, the backup system would

roll back to an incorrect address. This requirement is an error in the detailed requirements. This

is so since the error would not go away by making the checkpoint-aging buffer shallower or

deeper. It would just make the anomaly occur at a different location.

Software Implementation Validation

We have subsequently validated the implementation for the presence of the three design anomalies.

For this purpose we used a special purpose spacecraft simulator called the High Speed Simulator

(HSS) [5, 6]. The simulator uses code identical to the real spacecraft. However, it is de-coupled

from hardware and telemetry. Accordingly, its use as a test vehicle (1) is an accurate measure of

system functionality and (2) it allows rapid turnaround on test suite creation, execution, and

reporting of results.

The simulator allows test engineers to write test sequences for execution on the simulator. Given

the data structures present in the spacecraft controller, a Tool command language (Tcl) program is

written that orchestrates (1) the execution of the test sequence, (2) the extraction and printing of

values of selected data attributes (3) the extraction and printing of any relevant time stamps and (4)

fault injection scenarios and their responses.

1.1 Procedural Steps

We wanted to know if the software implementation contained the same anomalies as were found in

the design. To determine this, we supplied the High Speed Simulator with a simple sequence

program for execution. By injecting faults into the running sequence, the same problematic

conditions would be set up in the implementation that were discovered by design validation. Our

earlier validation work derived the design anomalies from a three-step process. First, the prime

system would stop running freezing its check point ager in response to a fault occurrence

somewhere in the spacecraft. Second, the prime system would load and begin execution of a fault

recovery program. Finally, during its execution of the fault recovery program, the prime system

itself would fail. To affect this same scenario in the software implementation, the prime system was

commanded to do a cold boot at execution points in the implementation identical to those that

caused the anomalies in the design validation. An operational backup system considers the prime

system cold boot to be a prime system failure. It reacts by becoming prime itself; taking control of

thespacecraftbus;rolling backto therelevantearliercheckpoint addressif necessary;and
resumingexecutionof thesequenceprogram.For example,thethird anomalyfoundin thedesign
validationprocessoccurswhentheprimesystemfailsafterencounteringafault scenariothat
freezesits checkpointat secondtwo in theagingprocess.Thisresultsin thenewprimesystem
rolling backto an inappropriateaddressdueto atiming problemin thedesign.Accordingly,cold
bootingtheprimesystemwhenit hasagedits checkpointby two secondshasthesameeffectasthe
two stepprocessconsideredin thedesigncase.

Detectionof thepresenceof designanomaliesin the implementationwasdoneby selectingdata
structuresfor outputidenticalto thoseusedin thedesigncase.Theseoutputdatavaluestaken
togetherat anyexecutioncyclerepresentthestateof the implementationat a particularpoint in
time. As theimplementationexecutes,this 'statevector'describesafinite statemachinethat
representsthe implementation.This finite statemachineis anabstractedfinite statemachinesince
it doesn'tincludeall variables,only theonesconsideredrelevantto thecurrentvalidation.Ifa
correspondingdesignanomalyis itselfpresentin the implementation,the implementations'
abstractedstatevectorwill go throughanequivalentsequenceto thatfoundin thedesignvalidation
doneearlier.In thiscasethework proceededby outputtingeachstatevector for theexecuting
implementation.Theoutputlist wasthenmanuallyexaminedline by lineto look for thepresence
of anomalystates.

Theinput sequenceprogramthatwasincorporatedinto theHSSTcl interfaceprogramto checkfor
thepresenceof anomaliesin the implementationis shownin Figure2.

IP Mnemonic
800 BEGIN
803 NOP
805 NOP
807 NOP
809 NOP
80b NOP
80d CHECKPOINT
80f NOP
811 NOP
813 NOP
815 NOP
817 NOP
819 CHECKPOINT
81b NOP
81d NOP
81f NOP
821 NOP
823 NOP
825 END

Figure 2 Sequence Validation Program

To keep the analysis as straight forward as possible, each instruction was executed on one-second

boundaries. A HSS Tcl interface program was written to generate the output state vector sequence

of the abstracted implementation state machine. Schematically, the overall process is shown in

Figure 3.

Commands for

execution: Data

Structure ldentit]

Data Values

Abstracted

State Vectors

(Sequence

For

nspection)

Figure 3: Implementation Abstracted State Machine

The implementation was validated at this point by simply looking at the results of the simulation by

hand and recognizing that a design anomaly was or was not reproduced in the output. This means

visually examining the output sequence labeled "Abstracted State Vectors" to check the rollback

process functionality. Two of the three anomalies found in the design validation were present in the

implementation. A brief summary of the results follows.

Implementation Anomaly Validation Results

The first anomaly resulted from repetitive errors that caused the prime and the backup system to get

out of synchronization. Our design anomaly fault scenario required a series of prime-fault-repair

sequences each of one-second duration or less. We did not see the first anomaly in the system.

Further investigation with system engineers revealed that all faults take at least several minutes to

repair. Therefore, repair time was extended so that anomaly one would not be seen.

The second anomaly occurs when a fault occurs less than three seconds after the sequence ends. In

this case, there is no rollback. That is, once the sequence has been completed there is no rollback in

response to an error injected inside the three-second-rollback window. Therefore, there is no

guarantee that all instructions at the end of the sequence would have been carried out by the

spacecraft. Accordingly, on this basis, the last instruction in the program should have been

identified as a rollback point. Our technique demonstrated that the second anomaly was present in

the implementation.

The third anomaly results from a fault that brings the prime system down when its aging buffer

contains a check point rollback address that has been aged by two seconds. According to our model

checking validation, this information would not get to the backup system until the following

second,therebycausingits two deepbackupbuffer to ageits rollbackaddressby anadditional
second.Consequently,its rollbackaddresswouldbeconsistentwith athree-seconddelayfollowing
acheckpointwhenonly two secondshadelapsedsincetheprimestringhadexecutedits last
instruction.Primesystemfailurewasagaincausedby cold bootingtheprime stringatthepoint it
hadagedits checkpointby two seconds.Thesubsequentrollback in thenewprimesystemdid not
matchtheold prime's rollbackaddress.Accordingly,our techniquedemonstratedthatthethird
anomalywaspresentin the implementation.

Thecold bootprocessis equivalentto the injectionof asinglefault thatbringstheprimesystem
down.Thisprocesscausestheoverallspacecraftcontrollerto fail to conformto requirementssince
controlin thenewprimesystemrolls backto an inappropriatelocation.Therefore,ourtechnique
alsodemonstratedthattheoverallsystemmadeupof primeandbackupsystemswasnot single
fault tolerant.

All of theseresultsweretakenwith respectto thespacecraftsoftwareasit existedon theHigh
SpeedSimulator.

Automating the Validation Process

Dillon and Ramakrishna show how test oracles can be generated from linear temporal logic

specifications [7]. Log files generated from a running implementation can then drive these

automata. The log files generated are used to drive requirements automata into accepting states

should strings from the language they accept be traversed and output by the implementation. The

automata are usually specified to check for requirements violations. Using these ideas, we have

extended our work on design verification and validation [1] and applied it to the validation of the

generic spacecraft controller's implementation. Our results used the output of the running

spacecraft simulator system. The real time output was used to drive the automaton that represents

one of the anomalies found by model checking. The resultant system was then made up of the

spacecraft simulator; the test scenario generator, and automaton representing the requirement to

be tested. The result system, called the Automated Validation System (AVS) did detect a counter

example in the output indicating the presence of the design anomaly in the implementation.

Additionally, the automaton has the capability to output the state vector trail taken by the

implementation as it encountered the anomaly thereby giving information on how the anomaly

develops as execution proceeds.

We have proposed that this concept be used as a fault protection mechanism on autonomous

spacecraft. These spacecraft have self sufficient activities based on a set of high-level mission

objectives carried on board the spacecraft. See for example [10]. The AVS would provide an

effective and robust fault detection and response system for such spacecraft. The steps to be
followed are outlined below.

1. Intercept the autonomously developed activity or action routine that the spacecraft is to carry out based

upon and derived from the current mission profile.

2. Parse the mission profile or its more detailed on-board-generated requirements and derive from them the
logical condition that represents the requirements that are to hold during and at termination of the

executing action routine.
3. Express the logical condition in the linear temporal logic (LTL).

4. Define any macros that may be necessary to map the derived LTL automaton into any required ancillary
form.

5. Produce the executable fault detection automaton from the LTL formula derived from steps 3 and 4.

6. Annotate the action routine so that it outputs an abstracted state vector representing an essential model

of the action routine.

7. Couple the output from step 6 to the executable automaton produced in step 5.
8. Execute the overall action routine piping its real time output to the LTL automaton as it is produced. A

fault condition will then drive the LTL automaton into one of its accepting states indicating that the

associated requirement has been violated. When this condition is detected, respond autonomously to the
fault. If this is not feasible, notify ground control and begin to safe the spacecraft as may be apropos of

the situation.

1.2 Critique of Recommendations

The production of the executable LTL automaton cited in step 5 need not be a complex stumbling block. For

example, safety conditions on total available power, maximum turn angles, antenna pointing and the like are
easily quantified. The production of an automaton that checks for a liveness condition has already been

illustrated in this section for design anomaly three of the spacecraft controller checkpoint process.
Additionally, any of several other automata systems could be used depending on analyst choice.

The advantage of the system proposed here is that detailed knowledge of the underlying spacecraft software

is not required nor would it ever be necessary. 2 Once the appropriate data structures governing the

requirements are located, they can be output to the LTL automaton in the form of an abstracted state vector.
Additionally, if the autonomous system makes use of an architecture analogous to the High Speed Simulator

architecture, the process would be considerably more straightforward and precise. Here, once the appropriate
data structures were identified, they would be easily tagged for inclusion in the abstracted state vector. All of

this is again easily an automation step. In this latter case, consideration of the action routine per se would be
minimized.

The usefulness of the procedure described here is that the automata theory is well understood, predictable,

and easily programmable. Systems engineers would however have somewhat of a learning curve to become

proficient in expressing requirements specifications in the linear temporal logic.

It might be argued that because the low level sequence and requirments are derived from high level mission

objectives that AVS derived requirements are of course always going to work out. This would be the case
should it be proven that the deductive logic used in producing detailed low level commands is valid in all
circumstances. Therefore, one might argue what is the point of the procedure at all? However, such an

argument would not be valid for it is a physical spacecraft in a physical universe dynamically making
decisions about its environment. First, things can and do often go awry aboard the spacecraft. Single Event

Upsets, bus failures, cameras jamming, valves freezing up or not opening properly on first try, squibs misfire
and a host of others. Second, estimates of relative locations of external objectives can be misjudged. If

distance estimates are accurate, angles and velocities can be way off due to low measurement resolution in

the region where they are made.

Although the example in the text used a single AVS, the number of threads that might be running scales

linearly. Accordingly, many such AVSs could be dynamically created as required and released when no
longer necessary. Also, there is no reachability problem here as occurs in model checking due to the on-the-

2 The Time Rover Company discusses their innovative test system at http://v_vw.time-
rover.com/SpecLang.htinl. It embeds LTL logic in the forv0, of language statements within, executable
routines. Accordingl 7, it may be difficult to implement such a system within the context dlsCussea here
where on-the-fly vahdation is required for newly generated procedures.

fly-one-time nature of the problem here. We are in fact only interested in current behavior, not in all possible
future behaviors. Therefore an AVS for maximum and minimum angles, power, closest distance of
approach, and the like could be easily and dynamically configured for each scenario to be carried out.

Accordingly, the AVS system described here can provide a powerful, fast, reliable, first line of defense

towards assuring mission success in the Laboratories' unmanned exploration efforts of the 21 st century.

Formalization of the Model Checking Process

Having successfully shown the applicability of the model checking process on a spacecraft

system, we decided to formalize the methodology. Our introduction of the modeling technique

was via the use of a "process chart." A process chart is a flowchart that details the methodology

that is applied to accomplish in our case a quality assurance technique. There are currently 21

processes for which process charts exist. Example process charts include Training, Risk

Assessment, Requirements Assessment and Design Assessment. In addition to the process chart,

each process also has an accompanying summary that details the contents of the process flow.

The purpose of the process charts is to (a) document our own processes (b) to be able to convey

in a clear and unambiguous way to our customers what our QA processes are and (c) in cases

where customers want further assistance, we give guidance to them on how they can carry out

their part of the resulting interface. The model checking verification and validation process chart

includes high level guidance on how incremental design modeling is carried out over a project

lifecycle for reactive systems and their components. This includes using the results of

incremental design modeling to check to see if the design anomalies are present in an

implementation. Callahan and Montgomery have discussed the use of this approach adopted here

within the context of a model-checking environment in their development of the RMP Protocol

[8]. In addition to using model checking to find design anomalies, the implementation is also

checked in an incrementally evolving development environment. If a faulty design is

subsequently corrected, the condition of the implementation can then be checked to see that it

reflects the new design. Conversely, should the partial implementation get ahead of the partial

design, then the implementation can be used to check the design. In this way an evolving partial

implementation and a partial design can be driven to maintain phase coherence with each other.

The process thereby yields an implementation that has a much higher confidence level associated

with it. Additional details concerning this approach can be found in [9].

Ongoing Work

A test harness similar to the one we have used on the generic spacecraft validation effort is being

constructed for a future series of deep space missions called X2000. Presently X2000 includes

missions to Pluto and Europa. We are planning to use the validation methodology described here
on the X2000 project.

Summary

We have shown model checking to be a viable and useful technology to apply towards making

future spacecraft designs and their corresponding implementations more robust. A method was

suggested whereby a validation scheme called the Automated Validation System could be used

to provide an analytic framework to wrap conventional fault detection and response mechanisms

aboardautonomousspacecraft.TheVerificationandValidationprocessusingmodelchecking
was formalizedat theLaboratoryby addingthe ModelCheckingprocessto our Office 506

Quality Assurance process methodology system. Our effort at applying the technology to future

spacecraft is a work in progress. We plan to publish a more detailed analysis of the results given

in this paper.

References

[1] Francis L. Schneider, Steve M. Easterbrook, John R. Callahan, and Gerard J. Holzmann:

Validating Requirements for Fault Tolerant Systems using Model Checking. ICRE
1998: 1-13.

[2] Michael R. Lowry, Klaus Havelund, John R. Penix: Verification and Validation of AI

Systems that Control Deep-Space Spacecraft: ISMS 1997:35-47

[3] D. Harel, "Statecharts: A Visual Formalism for Complex Systems," Science of Computer

Programming, vol. 8, pp. 231-74, 1987.

[4] G.J. Holzmann, "The Model Checker Spin," IEEE Transactions on Software Engineering,

vol. 23, pp. 279-295, 1997.

[5] Reinholtz, WK and Robison, WJ.,III, "TheZIPSIM series of high-performance, high fidelity

spacecraft simulators," Proceedings AIAA/Utah State University Annual Conference on

Small Satellites, Aug 29-sept 1, 1994.

[6] Patel, K and Reinholtz, W and Robison, W, "High-speed simulator: A simulator for all

seasons", Proceedings International Symposium on Space Mission Operations and Ground

Data Systems (SPACEOPS96, Munich, Germany Sept 16-20 1996; pg 749-756

[7] L.K. Dillon and Y.S. Ramakrishna: Generating Oracles From Your Favorite Temporal

Logic specifications: SIGSOFT'96 CA, USA 106-117

[8] J. R. Callahan and T. L. Montgomery: An Approach to Verification and Validation of a

Reliable Multicasting Protocol: ISSTA 96:187-194

[9] John Callahan, Francis Schneider, Steve Easterbrook: Automated Testing Using Model-

Checking: Invited talk Bellcore division of Bell-Laboratories: 1996 - see also
http://swayer/~sch/

[I0] N. Muscettola, B. Smith, C. Fry, S. Chien, K. Rajan, G. Rabideau, and D. Yan. "On-

Board Planning for New Millennium Deep Space One Autonomy," Proceedings of the

IEEE Aerospace conference, Snowmass CO, 1997.

00

JU
oju(

O0

° / f

m

v

• I:_i

o

\

J

_u

_u

=
0

omm
_u

_u

m

°_

T

/ ,._L, ,_ /

Using Model Checking to Validate AI Planner Domain Models

John Penix, Charles Pecheur and Klaus Havelund

Automated Software Engineering Group

NASA Ames Research Center

M/S 269-3

Moffett Field, CA 94035

jpenix,pecheur,havelmld@ptolenly.arc.nasa.gov

Abstract

This report describes an investigation into using model checking to assist validation of do-

main models for the HSTS planner. The planner models are specified using a qualitative tem-

poral interval logic with quantitative duration constraints. We conducted several experiments

to translate the domain modeling language into the SMV, Spill and Murphi model checkers.

This allowed a direct comparison of how the different systems would support specific types of

validation tasks. The preliminary results indicate that model checking is useflfl for finding faults

in models that may not be easily identified by generating test plans.

1 Introduction

In the classical approach to analyzing the correctness of a piece of software is broken into two tasks:

verification and validation. Verification is the task of making sure that the software implementation

complies with a stated set of requirements. Validation is making sure that the stated requirements

correctly reflect the needs of the end user.

In the realm of artificial intelligence and knowledge-based systems, the role of validation shifts

slightly. These systems are generally divided into two parts: a knowledge base that is used as

a model of the environment with which the program interacts, and a reasoning algorithm that

manipulates the knowledge base during program execution. The accuracy of the knowledge base

with respect to the real environment has direct implications on the performance of the AI system.

A system with a totally correct reasoning algorithm will be ineffective if its model of the world

is flawed. Therefore, validation becomes a critical task of evaluating a part of the system to be

deployed.

We are currently investigating the use of model checking [2, 4, 5] to assist in the validation of

models used in the HSTS Planner [6], a model-based planning system that is being used in the

Remote Agent autonomous control system architecture [7]. The planner takes an initial state and a

goal as inputs and produces a plan for achieving that goal. The planning algorithm guarantees that

the generated plan is consistent with a set of temporal constraints that model physical limitations

of the controlled system and the environment.

Because domain models are often composed of a large number of tightly coupled constraints,

the interactions among constraints can become conceptually unmanageable very quickly. There-

fore, it is desirable to have methods to validate the model by finding inconsistencies in the model

and determining whether implicit properties of the model can be derived from the set of explicit

constraints.

2 Constraint Model Specifications

The HSTS Planner domain models are described using the HSTS Domain Description Language

(DDL), an object-oriented constraint specification language based on Allen's temporal interval

logic [1].

DDL models define object classes and instances. Each object encapsulates a number of state

variables. A state variable is declared to be controllable if it Call be modified during scheduling and

uncontrollable otherwise. For example, a robot object class could be defined and instantiated as

follows:

(Define_0bject_Class Robot

:state_variables

((Controllable Task)

(Controllable Location)))

(Define_0bject Robot Robbie)

The language provides special support for the definition of objects without any properties as

sets of labels:

(Define_Label_Set Room (Kitchen Hallway LivingRoom))

A set of member values is defined for each state variable. The member values are called predicates

and may have parameters. The name of a predicate and the value of its parameters define the value

of a state.

Predicate parameters can be objects, labels or built in types. For example, possible values for

the Task and Location state variables in the Robot class are defined in Figure 1. In this example,

the Task state variable for the Robot class can either has the value Moving (x , y) , where x and y

are locations, or it has the value Idle. The Location state in the Robot class can have the value

In_Room(x), where x is a location.

(Define_Predicate Moving

((Room From)

(Room To)))

(Define_Predicate Idle)

(Define_Member_Values ((Robot Task))

(Moving Idle)

(Define_Predicate In_Room

((Room R)))

(Define_Member_Values ((Robot Location))

(In_Room))

Figure 1: Example Predicate and Member Value Definitions

Temporal Relation Inverse Relation Endpoint Relation

T1 before (d D) T2

T1 starts_before (d D) T2

T1 ends_before (d D) T2

T1 starts_before_end (d D) T2

T1 contains ((a A) (b B)) T2

T1 parallels ((a A) (b B)) T2

T2 after (d D) T1

T2 starts_after (d D) T1

T2 ends_after (d D) T1

T2 ends_after_start (d D) T1

T2 contained_by ((a A) (b B)) T1

T2 paralleled_by ((a A) (b B)) T1

d < T2.start - Tl.end < D

d < T2.start - Tl.start < D

d < T2.end- Tl.end < D

d < T2.end - Tl.start < D

a < T2.start - Tl.start < A

b _< Tl.end- T2.end _< B

a < T2.start - Tl.start < A

b < T2.end- Tl.end < B

Table 1: HSTS DLL Temporal Relations

A DDL model is constrained by defining compatibility conditions that must hold between dif-

ferent values of state variables. The constraints are specified in terms of temporal intervals (called

tokens) during which a sate variable holds a specific value or set of values. The compatible rela-

tionships between tokens are specified using a set of predefined temporal operators. The operators

permit the expression of all possible temporal relationships between the start and end points of two

tokens. The DDL temporM relationships are shown in Table 1. DDL also supports abbreviations

for common temporal relations as shown in Table 2.

DDL compatibility specifications are defined using token descriptors. A token descriptor is a

pattern that describes attributes of a set of tokens. These patterns can refer to either one (SINGLE}

or a sequence of tokens (MULTIPLE). Compatibility specifications have the form:

(master-token-descriptor compatibility-tree)

3

Abbreviation Temporal Relation
before
after
meets

met_by
starts
ends
contains

contained_by
equal

before (0 +9c)

after (0 +co)

before (0 O)

after (0 O)

starts_before (0 O) = starts_after (0 O)

ends_before (0 0) = ends_after (0 0)

contains ((0 +_) (0 +oc))

contained_by ((0 +c¢) (0 +c¢))

contains ((0 O) (0 0))

Table 2: Abbreviations for Common Temporal Relations

where compatibility-tree is an and/or tree of pairs of temporal relations and token descriptors. For

example, we can specify that the robot can only move from the Kitchen to the LivingRoom by

going through the Hallway as follows:

(Define_Compatibility

(SINGLE ((Robot Task)) ((Moving (Kitchen LivingRoom))))

:compatibility_spec

(AND (met_by (SINGLE ((Robot Location)) ((In_Room(Kitchen)))))

(equals (SINGLE ((Robot Location)) ((In_Room(Hallway)))))

(meets (SINGLE ((Robot Location)) ((In_Room(LivingRoom)))))))

In addition, variables can be used to constrain parameter values between the master token descriptor

and the token descriptors in the compatibility tree.

3 Model Checking for DDL

For the purpose of translating HSTS models into suitable inputs for model checkers, we need to

express HSTS models in terms of states and transitions between states. In HSTS, the state of the

system is defined by the values of all state variables of all objects. A transition occurs when the

value of at least one state variable changes.

For describing what happens upon a transition, we take the convention that V (resp. V')

denotes the value of variable V before (resp. after) the transition. We then define the following

abbreviations for convenience:

(SY to P) _ (SY != P) AND (SV' == P)

(SV from P) _ (SV == P) AND (SV' != P)

4

DDL Constraint State TranslationRelation

((SINGLE (SV1Pl)) meets (SINGLE (SV2 P2))) (SYl from P1) _ (SV2 to P2)

((SINGLE (SVI PI)) met_by (SINGLE (SV2 P2))) (SVI to PI) _ (SV2 from P2)

((SINGLE (SVI PI)) starts (SINGLE (SV2 P2))) (SVI to PI) _ (SV2 to P2)

((SINGLE (SVI PI)) ends (SINGLE (SV2 P2))) (SVI from PI) _ (SV2 from P2)

((SINGLE (SVI Pi)) contained_by (SINGLE (SV2 P2))) ((SVI == Pl) _ (SV2 == P2))

AND ((SVI' == PI) _ (SV2' == P2))

((SINGLE (SVI P1)) equals (SINGLE (SV2 P2))) (SVI to PI) _ (SV2 to P2)

AND (SVI from PI) _ (SV2 from P2)

AND ((SVi == Pl) _ (SV2 == P2))

AND ((SVI' == Pl) _ (SV2' == P2))

Table 3: Translation from DDL Constraints to State Transition Computation Model

Using these, some of the abbreviated temporal relations frolnTable 2 can be expressed as a logical

relation that describes legal transitions between states. Table 3 shows the translation for six of the

basic DDL qualitative relations.

Some of the translations can be further simplified. For example, the contained_by translation

can be simplified to

((SVI' == PI) _ (SV2' == P2))

plus checking that in the initial state

((SV1 == P1) => (SV2 == P2))

This simplification was used in the SMV model.

This generic translation was used as the basis for translation into the input languages for 3

different model checkers: Spin [5], SMV [2] and Murphi [4]. The translation had to be done slightly

differently for each due to differences in their input languages. For example, the translation into

both Spin and Murphi includes a small program that selects the next state of the model based

on the state transition relation. In SMV, the input languages allows the specification of a state

transition relation as a propositional formula, simplifying the translation.

4 Results

We tested our translation on a small model of an autonomous robot. The model consisted of a

battery powered robot that could move between three locations: A, B, and In_Between. The goal

of the robot was to fix a hole at location A. The model had 65 temporal constraints which allowed

16320 reachable states out of a potential 559872 states. The constrains in the model dictated such

things as:

((Robot.Task = Moving) contained_y (Hole.Charge = Charge_Full))

((Robot.Task = Fixing_Hole) meets (Hole.Status = Hole_Fixed))

The analysisidentified severalpotentialflawsin themodelthat were notidentified during testing.

4.1 Expressibility

The subset of the language that is covered by the initial translation is expressive enough to cover the

majority of the modeling done for the robot. We were not able to capture a couple of quantitative

durations that were used in the model. The inability to translate nonlocal constraints was not a

limitation in this example.

4.2 Analysis Capabilities

We analyzed the model for both safety and liveness properties. Safety properties state that nothing

wrong ever happens, e.g. that no deadlock occurs. They are simple to verify: the model checker

checks if any reachable state violates the property. Liveness properties state that something good

must eventually happens, e.g. that a query is always answered. They are more complex to handle

because they apply to runs rather than states. Some model checkers, like Murphi, do not support

liveness properties; others, such as SPIN and SMV, use a more elaborate state space exploration

algorithm to verify them.

4.2.1 Safety Properties

Safety properties can be used to check whether plans exist within a domain model. This is done by

checking whether there is a path that leads to a goal state, or, cast as a safety property, checking if

it is never the case that the system reaches a goal state. If there is such a case, the model checker

will return a series of state transitions that will lead to the goal state, which is in essence a plan.

For example, in SMV we could ask if there was a plan where the robot fixes the hole using the

query

!EF (Hole.Status = Hole_Fixed)

which reads, "for all initial states, there does not Exist a Future state where the hole is fixed."

In an early version of the model, this analysis yields "true", meaning that the hole could never be

fixed. Further queries revealed the fact that the robot could not move. This was because of an

overly general constraint that was intended to constrain movement to and from locations A and B,

but also ended up constraining location In_Between. The fix was to replace the general constraint

with individual constraints for A and B. After the fix, analysis of the above specification gave a

sequence of states that lead to the hole being fixed.

There were several other queries that were useful for inspecting the model. First, it was inter-

esting to see if a plan existed from any initial state in the model, not just some initial state as is

the case above. This can be done with the query

EF (Hole.Status = Hole_Fixed)

which reads, "for all initiM states, there Exists a Future state where the hole is fixed." Note

that this specification is not tile logical opposite of tile previous query, because SMV includes an

implicit quantification over all legal initial states, requiring "for all initial states" to be read before

any query. Analysis of the second specification gives an example of a initial state from which the

hole cannot be fixed, i.e. one where the robot starts away from a recharge station, with no charge.

This analysis therefore useflfl for identifying initial states that may have been unintended.

4.2.2 Liveness Properties

In the robot model, a desirable liveness property is that there always exists a sequence of states

that leads to the hole being fixed. This can be tested using the query

AG EF (Hole.Status = Hole_Fixed)

which asks, "for all initial states, and for all states (Globally) on All paths, there Exists a path

with a Future state where the hole is fixed." Analysis of this specification revealed that it was not

true. An error trace was reported in which the robot fixes the hole and then the hole reappears.

This leaves us in the situation where the robot is uncharged away from a recharge station and

cannot fix the new hole. If the model is constrained such that a fixed hole stays fixed, then this

specification becomes true.

Another liveness property is that the hole eventually gets fixed. That is, "All paths lead to a

Future state where the hole is fixed. In SMV, we can write this as:

AF (Hole.Status = Hole_Fixed)

Without further hypotheses, it turns out that this formula does not hold. Indeed, SMV reports a

diagnostic trace where the robot remains idle forever, which is a valid behavior according to the

model but unlikely to be chosen by the more proactive HSTS planner.

To obtain a more meaningful result, we consider only "fair" runs, such that no enabled move is

ignored indefinitely. The property that all such fair runs eventually reach a property p is captured

by the SMV formula !E[!p U (AG !p)] [8], so the formula above becomes:

!E[! (Hole. Status = Hole_Fixed) U AG !(Hole. Status = Hole_Fixed)]

which means that, "from allinitialstates,there does not Exist a path where the hole remains not

fixed Until a point where the hole isnever (AS!) fixed." SMV indeed reports this to be a valid

property of our model. 1

*SMV also has a FAIRNESS declaration for declaring application-specific fairness constraints explicitly, which has

not been used here.

4.3 Performance

For the initial subset of the language addressed, the SMV model checker is much faster than its

competitors (0.05 seconds vs. 30 seconds). There were two reasons for this result. The main

reason is that the reachable traces through the system were shallow relative to the size of tile

state space. This type of model is more amiable to the symbolic state space representation and

searching technique employed by SMV. This method represents sets of states as logical predicates

avoiding the need to represent each state explicitly. The second reason is that SMV allows explicit

specification of a state transition relation as opposed to the standard guarded command language or

programming language format for model checkers, This allowed the translated DDL constraints to

be mapped directly into the model checking language without the need for additional mechanisms

to select the next state based on tile constraints. Further studies will investigate whether SMV

can maintain this advantage when the translation is expanded to handle non-local constraints and

quantitative intervals.

5 Related Work

The link between planning and model checking is not new; Cimatti et al [3] use the SMV model

checker as a reasoning engine to do planning. There work has the same spirit as ours because

it also requires translation from a planning language to a model checking language. However,

the differences between the two planning languages are significant, making the technical details

dissimilar.

6 Conclusion

Our initial investigations show that model checking can be effective at finding flaws in HSTS domain

models. The exhaustive search capabilities of model checking will discover modeling errors that

may be overlooked by the heuristic search done during planning. Our future work will involve

expanding the expressiveness of the language covered by the translation and, after determining the

best target, automating the translation so that model checking can be used directly by domain

experts.

Acknowledgements

We would like to thank Nicola Muscettola and Kanna Rajan for their help in understanding DDL

and the HSTS planner, Lina Khatib for allowing us to use her robot model, and Nikolaj Bjorner for

his enlightening discussions about the performance of various model checkers on the robot example.

References

[1] James F. Allen. Towards a general theory of action and time. Artificial Intelligence, 23:123-154,

1984.

[2] J. R. Burch, E. M. Clarke, K. L. McMillam D. L. Dill, and J. Hwang. Symbolic model checking:

10e20 states and beyond. In Proceedings of The International Conference on Logic in Computer

Science, 1990.

[3] A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. Planning via Model Checking: A

Decision Procedure for ATe. hi S. Steel and R. Alami, editors, Proceeding of the Fourth European

Conference on Planning, number 1348 in Lecture Notes in Artificial Intelligence, pages 130-142,

Toulouse, France, September 1997. Springer-Verlag. Also ITC-IRST Technical Report 9705-02,

ITC-IRST Trento, Italy.

[4] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol verification as a

hardware design aid. In 1992 IEEE International Conference on Computer Design: VLSI in

Computers and Processors, pages 522-525. IEEE Computer Society, 1992.

[5] Gerard J. Holzmann. Design and Verification of Protocols. Prentice Hall, 1990.

[6] Nicola Muscettola. Hsts: Integrating planning and scheduling. In M. Zweben and M. S. Fox,

editors, Intelligent Scheduling. Morgan Kaufinann, 1994.

[7] Barney Pell, Erann Gat, Ron Keesing, Nicola Muscettola, and Ben Smith. Plan execution for

autonomous spacecraft. In Proceedings of the 1999" International Joint Conference on Artificial

Intelligence, 1997.

[8] J. P. Queille and Joseph Sifakis. Fairness and related properties in transition systems - a

temporal logic to deal with fairness. Acta Informatica, 19:195-220, 1983.

n-" y _ .

<h'i- •
r

o_

L_

m

L.

: i

= •

E
0

o_

0

0

e.x

_ co

o_

X

X

II

CO

• ,_.im

C)
(J

Q

m_

4_

olm,_

Clll_ "

Cb

0

(f- Z ¸ iJ

V&V of a Spacecraft's Autonomous Planner !i(r

through Extended Automation //J -G;//

Martin S. Feather

Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive

Pasadena, CA 91109, USA
+1 818354 1194

Martin.S.Feather@Jpl.Nasa.Gov

Ben Smith

Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive

Pasadena, CA 91109, USA

+1 818 353 5371

Ben.D.Smith@Jpl.Nasa.Gov

ABSTRACT

We have introduced and used significant

automation during the verification and validation

(V&V) of a spacecraft's autonomous planner.

This paper describes the problem we faced, the

solution we employed, and the applicability of

our approach in a general V&V setting.

PROBLEM

Cost, performance and functionality concerns are

driving a trend towards use of self-sufficient

autonomous systems in place of human-
controlled mechanisms. Our focus has been the

verification and validation (V&V) of a

spacecraft's autonomous planner. This planner

generates the sequences of high-level commands

that control the spacecraft. The planner is part of

a self-sufficient autonomous system that will

operate a spacecraft over an extended period,

without human intervention or oversight. Hence,

V&V of the planner is crucial.

The planner can exhibit a much wider range of

behaviors that the command sequence

mechanisms of more traditional spacecraft

designs. Furthermore, it must respond correctly to

a wide range of circumstances. Together, these

raise some new challenges for V&V.

As for any complex piece of software, a major

focus of V&V revolves around thorough testing.

The new V&V challenges manifest themselves

during testing as the following combination of
characteristics:

• The planner's output (plans) are detailed and

voluminous, ranging from 1,000 to 5,000

lines long. Plans are intended to be read by

software, and are not designed for easy

perusal by humans. To illustrate this, a small

fragment of a plan is shown in Figure 1.

• Each plan must satisfy all of the flight rules

that characterize correct operation of the

spacecraft. Flight rules may refer to the state

of the spacecraft and the activities it

performs, and describe temporal conditions

required among those states and activities.

Flight rules are expressed in a special-purpose

language; an example is shown in Figure 2.

There are over 200 such flight rules of

relevance to the planner.

• The information pertinent to deciding

whether or not a plan passes a flight rule is

dispersed throughout the plan.

• The thorough testing of the planner yields

thousands of such plans, spanning the wide

range of circumstances in which the planner

is expected to operate.

As a consequence, manual inspection of more

than a small fragment of plans generated in the

course of testing is impractical.

SOLUTION

Our approach has been to automate the checking

of plans. The automated system checks each plan

for adherence to all of the flight rules input to the

planner. This verifies that the planner is not

(#S(C-TOKEN
:CARDINALITY :SINGLE :NAME VAL-920

:SV-SPEC (SPACECRAFT_ATTITUDE SPACECRAFT_ATTITUDE_SV)

:TYPE-SPEC ((CONSTANT_POINTING_ON_SUN

(HGA AT EARTH BBC_DEADBAND_CRUISE)))
:START-B-TOKEN VAL-920

:END-B-TOKEN VAL-920

:STATE-VARIABLE (SPACECRAFT_ATTITUDE SPACECRAFT_ATTITUDE_SV)

:TOKEN-TYPE ((CONSTANT_POINTING_ON_SUN

(HGA AT EARTH BBC_DEADBAND_CRU1SE)))

:DURATION (37801 500000000)
:START-TIME-POINT TP- 1279

:END-TIME-POINT TP-1116

Figure 1 - Small fragment of a plan

Every interval of SEP_Thrusting whose 4thparameter = FIRST is "contained_by"

interval of Sun_Pointing with the same 1_tparameter as the 1_tparameter of the

thrusting interval, and with 2naparameter = BBC_DEADBAND_IPS_TVC

(Define_Compatibility

(SINGLE ((SEP SEP_SV))

((SEP_Thrusting (?heading ?level ?duration FIRST))))

:compatibility_spec

(contained_by

(SINGLE ((SpacecraR_Attitude Spacecraft Attitude_SV))

((Sun_Pointing (?heading BBC_DEADBAND_IPS_TVC))))

Figure 2 - Example flight rule

generating hazardous command sequences. The

automated system also performs some validation

checks. These arise from a gap between the

"natural" form of a flight rule, and the way in

which it must be re-encoded so as to be expressed

to the planner. The automated system checks a

direct encoding of the "natural" statement of the

flight rule, thus helping validate that the planner

and its inputs are accomplishing the desired
behavior.

We use a database as the underlying reasoning

engine of our system to automatically check

plans. To perform a series of checks of a plan, we

automatically load the plan as data into the

database, having previously created a database

schema for the kinds of information held in plans.

We express the flight rules as database queries.

The database query evaluator is used to

automatically evaluate those queries against the

data. Query results are organized into those that

correspond to passing a test, which we report as

confirmations, and those that correspond to

failing a test, which we report as anomalies.

The net result is that we can quickly and

thoroughly check each plan. The automated

checking code takes less than five minutes (on a

Sun ULTRA Spare) to perform each of several

hundred checks of a large (5,000 line) plan and

generate a report of the results. Plan generation is

a search-intensive activity, and a planner is a

complex piece of software precisely because of

the need to perform this search in an effective

and efficient manner.

Conversely, once a plan has

been generated, checking

properties of that plan is

relatively straightforward.

Because the flight rules

themselves are numerous

and detailed, and evolve

over the course of software

development, we have taken

the automation one step

further. We generate the

verification part of the plan-

checking code from the

flight rules themselves, in

the same form in which they

are input to the planner.

Automatie

translation

finding a Sun_Pointing interval in the

plan corresponding to an SEP_Thrusting

PLANNER

Database schema

nually created

database queries " DATABASE p data

_ Automatic analysis

Query results (confirmations with

justifications or anomalies)

]]]activities of plan

I---ql_ PL_ " _--- _ their rationale

A utomatic

loading of

database

Figure 3 - Architecture for verification of plans

Using this capability, we are

able to automatically regenerate the flight-rule

checking code, whenever the set of flight rules

input to the planner evolves. The architecture of

this system is shown in Figure 3.

The pieces we had to build were:

• The database schema to hold plan

information.

• Code to automatically load a plan (in the form

output by the planner) into the database.

• Code to automatically generate a report from

running the database queries. A report

contains more than simply a pass/fail result

for the plan as a whole. For example:

• Flight rules that are satisfied trivially are

reported as such (e.g., the flight rule

shown in Figure 2 would be trivially

satisfied if the plan contained no intervals

of SEP_Thrusting).

• Flight rules that are satisfied by finding

corresponding activities in the plan are

reported as such (e.g., the flight rule

shown in Figure 2 would be satisfied by

Planner inputs

and outputs

interval in the plan). All such pairs of

corresponding intervals are reported.

This kind of information is useful to the

planning team in assessing test coverage.

• Code to automatically translate flight rules (in

the form input to the planner) into database

queries.

METRICS

The checker tool has been used during of the

testing of the spacecraft's autonomous planner.

• It is applied to check every flight rule input to

the planner. There over 200 such rules.

• It is applied to the plans generated during

testing. To date, there have been thousands of

such plans.

• The checker runs somewhat faster than the

planner; the time to check a plan typically

ranges from 30 seconds to 4 minutes, while

the time to generate a plan typically ranges
from 3 minutes to 10 minutes.

• When there is a change to the flight rules, we

automatically regenerate the checker's

databasequeries. This takes less than 10
minutes for the entire set of flight rules.
Completeregeneration,in responseto flight
rule changes,hasbeenperformed3 times.

° The development of the checker was a
significantly lesser effort than the
developmentof the planner.The former took
severalmonths,the latter severalyears.

• The checker was modified to accommodate a

modest change to the plan syntax. This took

less than 3 days to accomplish. A small

change to the syntax of the flight rules was
accommodated in less than one hour.

APPLICABILITY

Our approach has been developed for, and

applied to, V&V of a spacecraft's autonomous

planner. However, we believe the approach has

much wider applicability than this one project.

The characteristics that identify when this

approach is worthwhile and viable are as follows:

Worthwhile: The development of automated test

checking code, rather than relying upon manually

conducted checks, is warranted when:

• There are voluminous amounts of data to

check, either because each test run yields lots

of data, or there are numerous test runs, or
both.

• The checking of a test run is complex, either

because there are many checks to perform, or

the checks themselves are hard to perform, or
both.

These conditions render manual

unsatisfactory.

A further applicability condition is

checking

that it is

infeasible to analyze the code itself in place of

testing the code. For our task, the planner was a

complex piece of software, and seemed beyond

the capabilities of present-day analysis

techniques (such as model checking or theorem

proving). This rendered thorough testing, and

therefore thorough checking of the test results,

inevitable.

Viable: The style of automated checking we

developed requires the following conditions to
hold:

• The data to check is self-contained. That is,

there is no need for human interaction to

determine whether or not a check has been

met. (In our planner task, each plan is a self-

contained object from which it can be

determined whether or not each flight rule

holds.)

• The data to check is in a machine-

manipulable form. That is, it is feasible to

develop automated checking that will work

directly off the form of data available,

without human intervention. (In our planner

task, plans have exactly this characteristic,

since they are intended for consumption by

the spacecraft's automatic executive.)

• Checking is easier than generation. That is,
the code to check that a test run satisfies the

desired conditions is simpler than the code

that generates that test data.

This has two positive consequences:

1. The development of the automated test

checking code will be a much lesser effort

than the development of the system under
test.

2. The test checking code will run faster

than the system under test (meaning it can

easily keep up with the test data

generated, and provide quick feedback to

the test personnel).

Our automatic generation of flight-rule checking
code reflects the same characteristics of an

activity that is worthwhile and viable to
automate:

• we have hundreds of flight rules to check

• individual rules can be quite complex

• the set of rules evolves over time

flight rules are expressedin a machine-
manipulableformat (constraintsinput to the
planner)

the languageof thoserules(plannerconstraint
language) is carefully proscribed so as to
render plan generation feasible; the
expression of those rules as checks can
employ an extensible, general purpose

checkedto ensurethat the planneris not only
arrivingat the "right" solution(namely,aplan
that adheresto all the flight rules), but is
doing so for the "right" reasons. This gives
the test team confidenceto extrapolatethe
correct operation of the planner to a wide
rangeof circumstances.

they provide redundancythat contributesto

Conceptual

flight rule

(natural

language)

_ Manual
expression

Database query

Manual

decomposition

and expression

1
Goals&initial] I
conditions

[Flight rule

w--[pieces

Automatic translation

Database queries

Database schema

:J
v I

PLAN
activities

fplan

Automatic

loading of
database

DATABASE data

_ Automatic analysis

Query results

Figure 4 - Extension to the architecture to do validation

language.

In our system, generation of the flight-rule

checking code takes under 10 minutes and is

completely automatic.

FURTHER OBSERVATIONS

Our problem and solution exhibit two further

characteristics of general importance.

The value of redundancy and rationale: Each

plan generated by the spacecraft's planner

contains both a sequence of activities, and

justifications for those activities. These

justifications relate each activity to the flight

rules that were taken into account in planning that

activity. Viewed solely as a command sequence,

the presence of these justifications in the plan is

redundant. However, these justifications serve

two very useful roles for V&V purposes:

* they provide rationale for why the planner

arrived at a plan. This rationale can be

our confidence in the checking code itself.

Our test checking code independently

performs the following three kinds of checks:

1. that the activities of the plan adhere to all

the flight rules,

2. that there is a justification recorded with

each activity in the plan for every flight

rule that the checker finds is applicable to

that activity, and

3. that every justification recorded in the

plan can be traced back to a flight rule.

This makes it unlikely that the checking code

has a "blind spot" that happens to overlook a

fault in a plan.

The automated test checking code we

automatically generate from planner flight rules
checks this rationale.

Opportunities for validation: Verification was

the original focus of our plan checker generation

effort. By thoroughchecking of the planner's
outputs (plans) againstthe flight rules given as
input to the planner,we gainedconfidencethat
the internal operation of planner was correct.
However, the effort also yielded significant
opportunitiesfor validation.

Validation opportunities arose from a gap
betweenthe most "natural" statementof a flight
rule, andtheform in which it mustbere-encoded
soasto beexpressedto theplanner.The planner
constraintlanguageis carefully proscribedso as
to renderplan generationfeasible. On occasion,
a flight rule cannotbe expresseddirectly in this
limited language.Instead, it must be (manually)

subdivided into several separate rules that in

conjunction will achieve the requisite condition,

and that individually can be expressed in the

constraint language. Our language for expressing

checks is more general purpose than the planner

constraint language. This means that it is possible

to (manually) encode an automatic check

corresponding directly to the original flight rule.

By following this process, we are able to validate

that the planner, and the encodings of flight rules

given to it, do in fact achieve the original intent.

Note that there is a manual step to this validation

- we must manually encode the original flight

rules (expressed in natural language) as checking

code. The checking code then runs automatically.

However this manual step can take advantage of

the framework established by the verification
architecture and code.

In more general terms, we see that verification
can be extended into the realm of validation when

the verification language is more general than the

language of the system being verified.

CONCLUSIONS

Testing activities are an area ripe for insertion of
automation. Our work automates the

determination of whether a test run has met its

requirements. Furthermore, we automate the

generation of the code performing these

determinations. We were motivated in part by

early work in this direction, reported in [1].

We employ a database at the heart of our

checking tool. Our earlier pilot studies had shown

a database could be used to provide rapid and

flexible analysis [2].

Checking test runs is only a part of testing. For

example, selecting which tests to run is an

important decision. Other than providing some

feedback on which requirements a test run has

exercised, the work reported here does not

address test selection. For a broader perspective

on the testing of autonomous spacecraft software,

see [3].

ACKNOWLEDGMENTS

The research and development described in this

paper was carried out by the Jet Propulsion

Laboratory, California Institute of Technology,
under a contract with the National Aeronautics

and Space administration. Funding was provided

under NASA's Code Q Software Program Center

Initiative UPN #323-098-5b, and by the

Autonomy Technology Program.

REFERENCES

[1] D.J. Richardson, S.L. Aha & T. O'Malley,

"Specification-based Test Oracles for Reactive

Systems," Proceedings of the 14 th International

Conference on Software Engineering, pp. 105-

118, Melbourne, Australia, 1992.

[2] M.S. Feather, "Rapid Application of

Lightweight Formal Methods for Consistency

Analysis," IEEE Transactions on Software

Engineering, vol, 24, no. 11, pp. 949-959, Nov.
1998.

[3] B. Smith, B. Millar, J. Dunphy, Y. Tung, P.

Nayak, E. Gamble & M. Clark, "Validation and

Verification of the Remote Agent for Spacecraft

Autonomy," to appear in Proceedings, 1999

IEEE Aerospace Conference.

g,la_ _0
11 tll

0 0

11

c_

©

m
t

• • • • • • • • •

r_

i

>

I

Z
<

I¢1

If

111
II1

ttl

i

IlK

,11
1,1
I1

II
1,1

0

Z
<

<

II11

--_f__I_
<
0

<

J

c_

Y

©

0
am

m

|m
mi

mm

0

0
I

0

mum

0

C/3

°_ _

C_

C_

_ _ _ Z < _ _

<_ • • • • •

Performing Verification and Validation in Reuse-Based Software Engineering

Edward A. Addy

NASA/WUV Software Research Laboratory

1. INTRODUCTION

304-3678353 (Voice)

304-367-8211 (Fax)

eaddy@wvu.edu

The implementation of reuse-based software engineering not only introduces new activities

to the software development process, such as domain analysis and domain modeling, it also

impacts other aspects of software engineering. Other areas of software engineering that are

affected include Configuration Management, Testing, Quality Control, and Verification and

Validation (V&V). Activities in each of these areas must be adapted to address the entire domain

or product line rather than a specific application system. This paper discusses changes and

enhancements to the V&V process, in order to adapt V&V to reuse-based software engineering.

V&V methods are used to increase the level of assurance of critical software, particularly

that of safety-critical and mission-critical software. Software V&V is a systems engineering

discipline that evaluates software in a systems context [Wallace and Fujii 1989]. The V&V

methodology has been used in concert with various software development paradigms, but always

in the context of developing a specific application system. However, the reuse-based software

development process separates domain engineering from application engineering in order to

develop generic reusable software components that are appropriate for use in multiple

applications.

The earlier a problem is discovered in the development process, the less costly it is to

correct the problem. To take advantage of this V&V begins verification within system

application development at the concept or high-level requirements phase. However, a reuse-

based software development process has tasks that are performed earlier, and possibly much

earlier, than high-level requirements for a particular application system.

In order to bring the effectiveness of V&V to bear within a reuse-based software

development process, V&V must be incorporated within the domain engineering process. Failure

to incorporate V&V within domain engineering will result in higher development and

maintenance costs due to losing the opportunity to discover problems in early stages of

development and having to correct problems in multiple systems already in operation. Also, the

same V&V activities will have to be performed for each application system having mission or

safety-critical functions.

On the other hand, it is not possible for all V&V activities to be transferred into domain

engineering, since verification extends to the installation and operation phases of development

and validation is primarily performed using a developed system. This leads to the question of

which existing (and/or new) V&V activities would be more effectively performed in domain

engineering rather than in (or in addition to) application engineering. Related questions include

how to identify critical reusablecomponentshow to identify reusablecomponentsfor which
V&V at thedomainlevelwouldbecost-effective,andhow to determinethelevel to which V&V
shouldbeperformedon thereusablecomponentsandon thedomainarchitectureitself.

This paper discussesa framework for performing V&V within reuse-basedsoftware
engineeringthat hasbeenpresentedin [Addy 1998].The frameworkidentifiesV&V tasksthat
couldbeperformedin domainengineering.,V&V tasksthatcouldbeperformedin thetransition
from domainengineeringto applicationengineering,andtheimpactof thesetasksonapplication
V&V activites. This paper further considersthe extensionof criticality analysis from an
application-specificcontextto aproduct-linecontext.

2. DIFFERENCES BETWEEN V&V AND COMPONENT

CERTIFICATION

Much work has been done in the area of component certification, which is also called

evaluation, assessment, or qualification. These terms can have slightly different meanings, but

refer in general to rating a reusable component against a specified set of criteria.

The common thread through these certification processes is the focus on the component

rather than on the systems in which the component will eventually be (re)used. Dunn and Knight

[1993] note that with the exception of the software industry itself, customers purchase systems

and not components. Ensuring that components are well designed and reliable with respect to

their specifications is necessary but not sufficient to show that the final system meets the needs

of the user. Component evaluation is but one part of an overall V&V of an application system.

Another distinction between V&V and component certification is the scope of the artifacts

that are considered. While component certification is primarily focused on the evaluation of

reusable components (usually code-level components), V&V also considers the domain model

and the generic architecture, along with the connections between domain artifacts and

application system artifacts. Some level of component certification should be performed for all

reusable components, but V&V is not always appropriate. V&V should be conducted at the level

determined by an overall risk mitigation strategy.

3. FRAMEWORK FOR PERFORMING V&V W21THIN REUSE-BASED

SOFTWARE ENGINEERING

One of the working groups at the 1996 Reuse workshop (Reuse '96) developed a

framework for performing V&V within reuse-base software engineering [Addy 1996]. This

framework is illustrated in Figure 1, and is described in more detail in [Addy 1998].

Domain-level V&V tasks are preformed to ensure that domain products fulfill the

requirements established during earlier phases of domain engineering. Transition-level tasks

provide assurance that an application artifact correctly implements the corresponding domain

artifact. Traditional application-level V&V tasks ensure the application products fulfill the

requirements established during previous application life-cycle phases.

Performing V&V in Reuse-Based Software Engineering 2

.Appl_¢utiun Enginrcrinl_

l-'r(_ m Manllgcmcnl

Figure 1: Framework for V&V within Reuse-Based Software Engineering

Performing V&V tasks at the domain and transition levels will not automatically eliminate

any V&V tasks at the application level. However, it should be possible to reduce the level of

effort for some application-level tasks. The reduction in effort could occur in a case where the

application artifact is used in an unmodified form from the domain component, or where the

application artifact is an instantiation of the domain component through parameter resolution or

through generation.

Domain maintenance and evolution are handled in a manner similar to that described in the

operations and maintenance phase of application-level V&V. Changes proposed to domain

artifacts are assessed by V&V to determine the impact of the proposed correction or

enhancement. If the assessment determines that the change will impact a critical area or function

within the domain, appropriate V&V activities are repeated to assure the correct implementation

of the change.

4. V&V OF GENERAL COMPONENTS

The discussion in Section 3 focused on the issue of V&V within domain engineering, in the

situation where the final systems would be subject to V&V even if the systems were not

developed within a reuse environment. Many of the same justifications for performing V&V in a

product line that includes critical systems also apply to V&V of other product lines and to

general purpose reusable components. The component Verification, Validation and Certification

Working Group at WISR 8 found four general considerations that should be used in determining

the level of V&V of reusable components [Edward and Wiede 1997]:

• Span of application - the number of components of systems that depend on the

component

• Criticality - potential impact due to a fault in the component

• Marketability - degree to which a component would be more likely to be reused by a

third party

• Lifetime - length of time that a component will be used

Performing V&V in Reuse-Based Software Engineering 3

The domain architecture serves as the context for evaluating software components in a

product-line environment. However, this architecture may not exist for general use components.

The working Group determined that the concept of validation was different for a general use

component than for a component developed for a specific system or product line. In the latter

case validation refers to ensuring that the component meets the needs of the customer. A general

use component has not one customer, but many customers, who are software developers rather

then end-users. Hence validation of a general use component should involve the assurance (and

supporting documentation) that the component satisfies a wide range of alternative usages, rather

than the specific needs of a particular end-user.

5. CRITICALITY ANALYSIS

Although not shown as a specific V&V task for any particular phase of the life-cycle,

criticality analysis is an integral part of V&V planning. Criticality analysis is performed in V&V

of application development in order to allocate V&V resources to the most important (i.e.,

critical) areas of the software [IEEE Std 1059-1993]. This assessment of criticality and the

ensuing determination of the level of intensity for V&V tasks are crucial also within reuse-based

software engineering.

The Criticality Analysis and Risk Assessment (CARA) method is one of the tools used by

V&V practitioners at the NASA IV&V Facility to evaluate and prioritize the areas of risk with

an application system. The CARA method includes a determination of both the likelihood that an

error will occur in the software (risk) and the impact of an error occurring in that

software(criticality). A team determines the criteria by which the software will be evaluated,

which includes areas such as performance and operation, safety, development cost, and

development schedule. Each software component receives a score based on these factors, and

the scores are performed once with each major development milestone.

Other methods that are used to perform criticality analysis (or risk analysis) include the

Software Engineering Institute Software Risk Evaluation Method and the NASA Continuous

Risk Management process based on the SEI SRE, the NASA Ames Research Center approach to

risk management within an ISO 9001 environment, the Jet Propulsion Laboratory System Risk

Balancing method, the V&V Goal-Question-Metric process, and the SAIC Risk Cube method.

[WORM 98] All of these methods share with CARA a tabular-based aggregation approach to

determine overall risk, by evaluating fundamental risk factors and combining them in some

fashion to determine aggregate risk of a system, subsystem, or component.

Criticality analysis methods need to be extended to include consideration of multiple

application systems developed from reusable components. Each software component should be

evaluated not only as is done with current methods, but also with consideration of the criteria

listed in Section 4. For example, a component that does not score highly on any specific

application system might require a high level of V&V because it is used (or anticipated to be

used) in a large number of systems.

The current methods to perform analysis on software architectures [Tracz 1996, Garlan

1995] are also directed at the architecture for an application system rather than a product line

architecture. One of the approaches being researched is a scenario-based analysis approach,

Software Architecture Analysis Method [Kazman, et al. 1996], that could be extended to product

line architectures. In the area of correspondence tasks, the Centre for Requirements and

Performing V&V in Reuse-Based Software Engineering 4

Foundationsat Oxford is developing a tool (TOR) to supporttracing dependenciesamong
evolvingobjects[Goguen1996].

6. CONCLUSION

The framework for performing V&V in traditional application system development can be

extended to reuse-based software engineering. The extended framework allows the V&V effort

to be amortized over the systems within the domain or product line. Just as with V&V in

application systems development, V&V should be performed as part of an overall risk mitigation

strategy within the domain or product line.

The primary motivation for V&V within domain engineering is to find and correct errors in

the domain artifact in order to prevent the errors from being propagated to the application

systems. This motivation is especially strong where the application systems perform critical
functions. Even if there are no critical functions performed by the systems within the domain,

V&V might be appropriate for a component that has the potential to be used in a large number of

application systems.

ACKNOWLEDGEMENT

This work is funded by NASA Cooperative Agreement NCC 2-979 at the NASA/Ames

IV&V Facility in Fairmont, WV.

REFERENCE

Addy, Edward A. (1998), "A Framework for Performing Verification and Validation in Reuse-

Based Software Engineering," Annals of Software Engineering, Vol. 5, 199.

Addy, Edward A. (1996), V&V Within Reuse-Based Software Engineering," Proceedings for the

Fifth Annual Workshop on Software Reuse Education and Training, Reuse '96',

http//www.asset.com/WSRD/conferences/proceedings/results/addy/addy.html.

Dunn, Michael F. and John C. Knight (1993), Certification of Reusable Software Parts,"

Technical Report CS-93-41, University of Virginia, Charlottesville, BA

Edwards, Stephen H. and Bruce W. Wiede (1997), "WISR8L 8th Annual workshop on SW

Reuse," Software Engineering Notes, 22, 5, 17-31.

Garlan, David (1995), "First International Workshop on Architectures for Software Systems

Workshop Summary," Software Engineering Notes, 20, 3, 84-89.

Goguen, Joseph A. (1996), "Parameterized Programming and Software Architecture," In

Proceedings of the Fourth International Conference on Software Reuse, IEEE Computer

Society Press, Los Alamitos, CA, pp. 2-10.

IEEE STD 1059-1993, IEEE Guide for Software Verification and Validation Plans, Institute of

Electrical and Electronics, Inc., New York, NY.

Kazman, Rick, Gregory Abowd, Len Bass, and Paul Clements (1996), "Scenario-Based Analysis

of Software Architecture," IEEE Software, 13, 6, 47-55.

Performing V&V in Reuse-Based Software Engineering 5

Tracz, Will (1996), "Test and analysis of Software Architectures," In Proceedings of the

international Symposium on software Testing and Analysis (ISSTA '96), ACM press,

New York, NY, pp 1-3.

Wallace, Dolores R. and Roger U. Fujii (1989), Software Verification and Validation: Its Role in

Computer Assurance and Its Relationship with software Project Management Standards,"

NIST Special Publication 500-165, National Institute of Standards and Technology,

Gaithersburg, MD.

WORM 98, Proceedings of the Workshop on Risk Management, October 1998.

Performing V&V in Reuse-Based Software Engineering 6

e

O

f.
O

..._1

0

iim ill

t_ (1)

iim

m

"OLU

O (1)

O

L.,
O

O3

iim

i_.
(1)
(1)

iim

O3

ILl
CD
Im
t_

O
crj

O

t_
L_

O

t_

.CZ

"C3

(1)

"C3 (1)
L_ i_
t_ t_

LU O
00

<
Z

L_

C O
cD

*-' 0

|m
m

ii m-o _ E
_U C

"O ILl
"O _ a
O L

if) 0
< m
Z

©

Z

©

©

©

_3

oO

0

Z

©

0

_J

_J

©

..-I

0

U'I

oo

©

Z

©

©

©

°

O

©

©

0

0

D

S
...J

-> _ _

olnml

L'_

o_
Z

©

_q

d

0

- . _._- _:_- _- _ _.o_

oo _ ._-_
• _ _.

_O

Z

.')

Session 6: Embedded Systems and Safety Critical Systems

DelTning and Validating Embedded Computer Software £equirements

(7s/n 8 the ECS OTPMand /PPA

J. Manley, University of Pittsburg

Osing Automat/c Code Generation In the Attitude Contro/Phght Software

gngineerin 8 Process

D. McComas, J. O'Donnell, Jr., and S. Andrews, NASA/Goddard

Determin/ng Software (Safe_v) [eve/s for Safep CAt/ca/Systems

M. Yin and D. Tamanaha, Raytheon Systems Company

Defining and Validating Embedded Computer Software Requirements
Using the ECS, OTPM and IPFA

Dr. John H. Manley

Professor of Industrial Engineering

Director, Manufacturing Systems Engineering Program

University of Pittsburgh

jmanley@engrng.pitt.edu

1 Introduction

In the 1960s a new class of highly specialized digital computers began to evolve from the existing worlds of

general purpose "automatic data processing" business machines and specialized analog computers. In 1973 this new

computer type was first formally defined by the author for the US Air Force as an "embedded computer" since they
were being engineered into so called "embedded computer systems" (ECS). I An ECS was defined as a stand-alone,

real-time, semi-automated system such as the then-new B-IA strategic bomber aircraft. Since the early 1970s

embedded computers have become ubiquitous and appear as integral parts of most manufactured products, from
talking toys and automobiles to aerospace vehicles. They are also used extensively to integrate complex repetitive

processes which represent the nervous systems of large-scale enterprises such as satellite launch centers and modem
factories. 2

This paper describes a field-tested, common-sense, macro-modeling solution to the now 25-year-old problem of
how to cost-effectively define and validate certain critical embedded computer software requirements. The solution
employs the author's Object Transformation Process Model (OTPM) [Figure 2] which can be used to macro-model
any ECS architecture and comprehensively identify the minimum essential information (MEI) required by specified
humans, machines, and computers involved in time-critical processes. 30TPM-based modeling results in: (1)the
identification of explicit inputs and outputs required for each involved embedded computer program, and (2) the
required timing for data arrival at and computer information departure from any embedded computer. This
information is used to develop an improved requirement definition for the stored embedded computer programs
needed to transform embedded computer input data sets into required output computer information to humans,
control signals to machines, or computer data to other embedded computers. Finally, output timing and data volume
specifications can be derived from this information and used to define bandwidth requirements for designing ECS
supporting telecommunication systems.

2 ECS Computer Information Flow Analysis

All automated manufacturing lines, manned space vehicles, military aircraft, nuclear power plants, and similar

real-time automated systems contain three control elements: (1) embedded computers, (2) humans-in-the-loop, and

(3) certain electromechanical and/or analog devices, e.g., switches, sensors, and motors. The three elements are
interconnected to make up the parent system and both individually and collectively require precisely-timed, highly-

accurate, closed-loop control systems to ensure both human safety and high quality output products and/or services

from their parent systems. Digital computers embedded in time- and safety-critical systems are especially difficult
control elements to initially design, validate, and subsequently upgrade during parent systems reengineering projects,

e.g., modernizing factories, and finding sources of year 2000 (Y2K) problem code in embedded processors.
Industrial engineers can assist computer systems and communication engineers design new and/or reengineer

troublesome or obsolescent real-time ECS by ensuring that all control loops, both feed forward and feed back, are

complete and efficient. The primary tool used for such work is a modified industrial engineering Process Flow
Analysis (PFA) procedure called an Information Process Flow Analysis (IPFA). 4 The 1PFA uses a combination of

an ECS physical model [Figure 1] and the OTPM [Figure 2] as a conceptual framework to guide specialized analyses

of complex, large-scale, embedded systems. When the IPFA is used to reengineer systems that are considered
"troublesome" by management, the analysis objectives are twofold: (1) identify the minimum essential, necessary

and sufficient information required for controlling any type of digital or analog computer embedded in large,

complex, real-time automated systems, and (2) eliminate unnecessary and/or redundant information to and from

embedded computers in order to improve the parent system's overall throughput and efficiency. What is different

about]FPA is that it is focused on improving information flows--not material flows. Thus, the normal use of PFA
by industrial engineers to eliminate waste from moving, storing, and unnecessary handling of physical material is of

secondary importance to IPFA. The primary focus of IFPA is on ensuring that all control loops, both feed forward

and feed back are complete, validated, and made as efficient as economically possible.

Manley,J.It., Defining and Validating Embedded Computer Software Requirements, page 2

2.1 Embedded Computer System (ECS) Model Description

Greater environmental system

Internal inputs

Humans _.,

Machines Computer

data I

Computer data

Embedded

computer

equipment

I

User's greater system Internal outptlts

Embedded Computer

System

Computer programs

Computer data

Embedded

computer

equipment

Computer

info 1_[Hnmans l

Control _ I

signals p,_] Machines I

Computer data

 lComp ,.*p,o,....l'rComputer data

Embedded I

computer

equipment

External inputs External outputs

Other computer [systems

Figure 1: Embedded Computer System Model

The ECS model in Figure 1 has the following four important attributes:
1. The ECS describes systems nested within systems. An embedded computer system can be a single

processor containing computer software (computer programs and computer data) which controls an

electromechanical system, such as the flight controls of an aerospace vehicle, or desired pacing of an automated
materials handling system. A "user's greater system" is composed of an integrated complex of humans, machines and

multiple embedded computer systems that comprise, for example, a highly-automated aircraft, or an entire factory. A

"greater environmental system," such as an airport that contains a control tower, aircraft maintenance facilities, etc.

provides external inputs and receives outputs to support several "greater user systems" such as a fleet of aircraft. This
nesting approach, or "onion skin model" can be continued upward to higher conceptual levels, such as multiple

airports connected together by an air traffic control system, and so on.

2. The ECS emphasizes three distinct sources of ECS input computer data: (1) data generated by humans
such as a single digital pulse from pushing a button, to a complex keyed or voice input data string, (2) analog or

digital data generated by machines, such as a position signal from a servomechanism or the operation of a limit

switch, and (3) digital data generated as output from another ECS within a user's greater system.
3. The ECS emphasizes three distinct types of ECS outputs: (I) computer-generated (human-understandable)

information for humans, (2) computer-generated (machine-understandable) control signals for electromechanical

machinery, and (3) computer-generated (computer program-understandable) output computer data from one ECS's
computer program for another ECS's computer program as input data.

4. The ECS emphasizes that all types of ECS inputs and outputs can coexist within a user's greater system,

and also can originate from and terminate in the ECS's greater environmental system.
Communication system issues addressed in the context of the ECS involve the physical and logical

interconnections between embedded computers, humans, and machines that are integral to enterprise-wide

manufacturing information systems. Today's manufacturing and aerospace systems engineers must not only

understand the fundamentals of communication technology as it applies to embedded computer systems, but they
must also know how to intelligently use this capability to install successful factory, office, and manned vehicle

automation systems.

Manley,J.H.,DefiningandValidatingEmbedded Computer Software Requirements, page 3

2.2 Object Transformation Process Model (OTPM) Description

OlD --_

FCI -d_

MC] -_

INPUTS

0 Object to be trans-

formed

R Resources required

to support process

M Phase Start Message

(Locate. Move, Begin)

t PROCEDURES

QCI P SPC Procedures

ECl E Process Description

(How-to-do-it)

M El l / Education & "rraining

nformation

PROCESS

Object
Transformation

Work Steps

Education & Training

Information ME!

ECi

QCl --_

MC! -_

REFERENCE DATA

E Environment & Pro-

cess Specification

P Work Step Completion

Criteria

M Phase Completion

Criteria

OUTPUTS

O Transformed

Object

i

M Phase Completion

Message

P Meaurements of

Process

E Measurements of

Objects

F Measurements of

Resources Used

_OID

P"MC!

I_QC!

I_EC]

_FCI

NOT E Objects can e

hardwareor software,

T e g_ erizproces s
isth s e ea m

KEY

O= Objector Process

R rocks Ress ur_ms

M : anMgem hie ontro

E = Engineering Co tr o4

P = rocPs Comtrol

F = in FcialComtrol

OID=Object Identificatio] _ n

MC! =M na$eme tCo_ntrollnfo

i_CI=E ngi eerri gCnntrol Info

QCI=Qu lityaC o tr ¢dl fon

FC I=F na ici IC_ntro I Info

M l:_lin uim Esnen_iallnfo

Figure 2: Object Transformation Process Model (OTPM)

The OTPM in Figure 2 describes a generic, arbitrarily-defined object transformation process (OTP) phase (which
can be defined at any level of detail) and four information support components: inputs, outputs, procedures, and

reference data. The physical input object is the output of a preceding transformation process phase. In the case of

manufacturing, the starting point of a birth-to-death, repetitive manufacturing life cycle process considers the first
objects to be transformed are crude oil or metal ore out of the ground; or biological materials from the surface such

as tomatoes or peaches for transformation into food products. This first phase of the manufacturing process is

defined as refining which produces raw materials or producer goods such as fuels, plastic, wood, metal, or

specialized food items such as pastes or purees. In OTPM terms, refining represents the first phase of the
manufacturing OTP life cycle. Therefore, the object transformation sequence from birth to death is as follows:

• Refining or raw material processing.

• Raw material production.
• Parts fabrication.

• Product assembly.

• Product modification, repair and/or re-manufacturing.

Manley,J.H.,DefiningandValidatingEmbeddedComputerSoftwareRequirements,page4

• Productdisassemblyforrecyclingand/orreuse.
• Productdestructionand/ordisposal.
Theinputobjecttoeachphaseis,ofcourse,anyobjectthatwastransformedbyapreviousprocessstep.Inthe

caseof intelligentproductmanufacturing,e.g.,anti-lockbrakingsystemsfor automobiles,all software-intensive
componentpartsaretreatedin thesamemannerashardwareobjectsusingtheOTPMsinceallsoftwareeventually
endsupembeddedinaphysicalcomponent,i.e.,logicchips,ROM,"firmware,"etc.,or "modules"in thecaseof
autos.Thus,in additionto a physicalmaterialtransformationprocess,therealsoexistsanintellectual object

transformation process that, for example, transforms in a stepwise manner a human's mental concept of a computer

program (software) into a physical read-only-memory (ROM) configuration that is eventually assembled into some

"smart" product. Hence, the OTPM was designed to satisfy this manufacturing systems engineering need for using
the same generic model to describe both physical and "intellectual object" transformations, namely hardware and

software. The OTPM requires any manufacturing process phase or work package to contain four basic categories of
information, each of which is an integral part of the OTPM. As indicated above, one relates to object identification,

and three to process control.

• OID--Object identification information uniquely describes the object of interest. This information

accompanies the object and changes as the object is progressively transformed.
• MCl--Management control information denotes both specific direction from transformation phase

supervisors as input and reference data, as well as feedback output information that returns to the supervisors.

• ECI--Engineering control information comprises "how-to-do-it" process descriptions and process
environment specifications as input, and transformed object measurements as feedback information to the

engineers.
• QCI--Quality control information comprises work step completion criteria and statistical process control

procedures as input information, and measurements of the transformation process as feedback output

information to the quality control personnel.

2.3 Engineering Control Information Perspective

Traditional manufacturing engineering control connotes the process of ensuring that a transformed object meets

or exceeds tolerances specified by an engineering design drawing. The OTPM uses the term "engineering" in a
much broader sense. For example, if the object transformation process involves preparing an annual corporate tax

return, the "engineer" who defines the how-to-do-it procedures in all likelihood would be a certified public

accountant (CPA) trained in tax matters. The point is that the transformation process must be specified by an expert

who, upon receiving detailed feedback information on what the transformed object looks like (a completed tax
return), can readily identify errors and make rapid corrections to the methods and tools being used (machines or

software) that perform the transformation. For specifying parameter settings on complex machine tools, this is

clearly the responsibility of, e.g., mechanical, electrical, manufacturing or software engineers.

2.4 Quality Control Information Perspective

The term "quality" has many different meanings, especially in the context of a manufacturing enterprise. For

OTPM purposes, quality is a primary attribute of not only every object that flows through an enterprise, but also the

process itself. In particular, process stability (the ability to repetitively produce identical engineering results) is of
major concern, as is the identification of object defects that cannot readily be controlled by engineering designs, e.g.,
those that result from human errors. Therefore, for any given level of quality of an object input into a subsequent

transformation process phase or work step, the transformation process itself will determine the output level of object

quality which has two components: (1) that which engineering can control, and (2) that which has to do with

efficiency. For example, in one manufacturing plant, a particular fabricated part may continually conform to

engineering specifications but takes twice as long to produce in another plant. The difference can be attributed to

process variability (efficiency) since object variation is not an issue.
The author has arbitrarily decided to focus a highly desirable "continuous process improvement" function under

the umbrella of quality control to distinguish it from traditional engineering quality control. The OTPM model also

removes quality control from consideration as a testing and assurance function, in keeping with a very important

principle that quality be built into products to prevent defects, i.e., "do it right the first time."
Therefore, from a manufacturing information systems perspective, quality control information (QCI) is focused

on making continuous process improvements in regard to both shortening process cycle times, and also reducing

process variability by identifying new engineering and management controllable variables for incorporation into the
engineering and management control systems. QCI is collected for all important object transformation processes

Manley,J.H.,DefiningandValidatingEmbeddedComputerSoftwareRequirements,page5

usingreal-timestatisticalprocesscontrol(SPC)techniques.QCIis fedbackto anewparadigmqualitycontrol
organizationforappropriateanalysisandactionaspartofenterprise-wide"totalquality"initiatives.

3 Enterprise-wide Process Integration Through the OTPM

As shown in Figure 2, the OTPM elaborates each of the input, output, process, and control boxes by labeling
information flows for objects [O], management [M], engineering [E], financial [F], and process (quality) control [P].

Resources required for a specific transformation as part of financial budget control is designated JR]. From a

business perspective, no object transformation process can be undertaken without direction from management, since

it represents a direct expenditure of material, human, and other resources. Also, no transformation can be considered

complete unless information is generated and fed back to the manager who authorized the operation. Finally, for
every controlled process, management must provide an explicit criteria for successful completion.

After completing their planning and organizing functions, managers direct manufacturing operations through an

input (phase start message). They also control through the output (phase completion message) and reference data
(phase completion criteria). By time-stamping input and output messages to and from any process, managers (or

engineers) can determine any process end-to-end cycle time. Conformance to the reference criteria and procedures

helps control the quality of each operation. For both human and machine processes, effective control is established
because people (and machines) are expected to "perform as they are measured."

The sheer simplicity of this model can be deceiving, since it can also integrate a number of processes within a

group, department, division, or even an entire manufacturing plant into a single process. This can be accomplished
by connecting outputs (feedback messages) from one object transformation process as the input to another process

(direction message). To satisfy these integration requirements, we can theoretically combine the individual process

models of an entire enterprise using their information flows as depicted by the OTPM using the same linking

method. The main feature of this architectural building block is its uniform four-dimensional interface for any

process down to individual work steps. Thus, complex logical process models having this configuration can be
linked together in essentially the same manner that children build complex static structures out of Legos, and systems

engineers design and construct dynamic worldwide telecommunication systems. The key to success in both cases are

straightforward and understandable logical interfaces between the component parts. From the resulting logical
models, we can construct viable physical models for controlling any business, engineering, or other control system.

This is done using the ECS model referenced above in a similar manner to how it has been used by systems engineers

for almost two decades to architect complex aerospace systems.

3.1 IPFA Link to Information System Requirements Specifications

Initial information requirements (or subsequent deficiencies) identified and documented through the IPFA must
be translated into requirement specifications for engineering or reengineering supporting throughput, financial,

business, engineering, and or total quality information systems in accordance with the OTPM conceptual framework.
Note that the Structured Analysis and Design Technique (SADT) tool 5 that has been enhanced by the Air Force into

1DEF (the Integrated Computer and Manufacturing ICAM DEFinition methodology) 6 appears on the surface to be

similar to the OTPM IPFA methodology in regard to reengineering information systems that control real-time

embedded manufacturing systems. However, the OTPM provides an added cross-functional higher level perspective
of an enterprise that is not normally described by IDEF. In accordance with the 1PFA methodology, traditional PFA

provides IDEF 0 with task information, follow-up OTPM analysis provides IDEFI with what information is required,

and IDEF2 adds the missing element of when the information is required, as can be conceptualized from the ECS

model.

Note also that IDEF, OTPM and IPFA are based on classical structured techniques, and are therefore compatible

with information system software requirement specification development tools such as data flow diagrams, structure
charts, entity-relationship diagrams, and most Computer Aided Software Engineering (CASE) tools. Other potential

candidates for IPFA linkage also exist such as a state-based methodology using Requirements State Machine

Language (RSML) which involves a graphical specification language that is both readable and reviewable by
applications experts who are not computer scientists or mathematicians] Note, however, that neither IDEF or RSML

are object-oriented in the sense of emerging software development methodologies) Therefore, one important

subject of my university research is to find even more effective ways to link IPFA structured analysis results to

object-oriented and/or other types of information system software requirement specification methods and tools.
In short, the OTPM and ECS conceptual models provide a framework to guide process flow analyses that can

help industrial and manufacturing system engineers identify critical information errors of commission and omission

during product and service manufacturing system reengineering projects. In addition, traditional industrial

Manley,J.t!.,DefiningandValidatingEmbeddedComputerSoftwareRequirements,page6

engineeringPFAis enhancedby addingtherequirementto analyzethenecessityandsufficiencyof object
identificationandprocesscontrolinformationthatsupportsphysicaland/orintellectualobjecttransformation
processes.Finally,IPFAresultscanbeusedto developrequirementspecificationsfor systemengineeringor
reengineeringanytypeofproductorservicemanufacturinginformationsystem.

4 Using the OTPM to Improve Designer, User and Constructor Mutual Understanding

The totality of OTPM analysis and modeling methodology outputs specify multifaceted and integrated real-time

information systems that support end-to-end physical and/or intellectual object transformation processes, primarily
products and/or services that satisfy customer's expressed requirements. According to Olle, 9 any design product

resulting from the design activities should include specifications that are understandable to the acceptors. For

example, these may be the set of user acceptors who are required to review and submit positive approval of the

design work. The specifications may be also reviewed by a constructor acceptor, who will apply very different

judgments from the user acceptor.
Since the OTPM methodology focuses almost exclusively on the user, achieving mutual understanding between

OTPM designers and users should not pose any major problems. However, special attention must be paid to

establishing effective communications between the OTPM information system engineer and the constructor
acceptors, the latter being primarily information system hardware, software and communications professionals. One

of the biggest barriers to good communication in this case is the highly specialized technical jargon that each party

uses to communicate with each other--which is a continuing problem for information system professionals
throughout the world. In this case, the solution to achieving mutual understanding is to prescribe an interface

language made up of carefully chosen and defined words and phrases which can be mutually understood.

Unfortunately, to the best of my knowledge there are no universal interface language standards to enhance mutual

understanding among information system analysts, designers and constructors. Therefore, the concepts and
terminology recommended by the IFIP are used to the maximum extent possible in the OTPM methodology

specification to help make OTPM-based design products more easily understood by constructor acceptors, in this

regard, key elements of the OTPM methodology are summarized in the tables below which compares it to some of
the traditional methods mentioned above. Additional details can be found in the author's book, Rise Above the Rest."

The Power of Superior Information, Knowledge, and Wisdom. to

Process Orientation

OTPM TRADITIONAL

End-to-end requirement-to-delivery product and service

repetitive processes (manufacturing)

Cross-functional processes are required
Enterprise-wide process integration promoted through
the OTPM methodology

Optimize end-to-end process information requirements

Data flows and their supporting processes

Processes normally limited to selected functional areas

Process integration discouraged by traditional

methodolosy (becomes too complex)
Suboptimize process functions without regard for

precedent or subsequent functions

Data Orientation

OTPM

Minimum essential information (MEI) to support object
transformations

Data are categorized into management, financial,

engineering, quality, and obiect identification

Data are defined from a process definition

TRADITIONAL

All available information and relationships between data

elements NOTE: This is especially troublesome with

current enterprise requirements plannin_ (ERP) methods

No standard method for categorizing data

Data are cross-referenced to functional areas to ensure

availability

Manley,J.H.,DefiningandValidatingEmbeddedComputerSoftwareRequirements,page7

Behavior Orientation

OTPM TRADITIONAL

Transformation process corrective actions taken by Computerized tasks are triggered by human, computer or

humans, machines, or computers are triggered by means machine actions

of comparisons of input with output MEI

OTPM specifies where and when ME1 are needed to

support human-to-human mutual understanding;

Specifies user system events which trigger changes in data

flow processes

Modelin

OTPM

Information Process Flow Analysis (IPFA) used to

identify and model relationships of MEI needed to
I1

support any "manufacturinl_" process
Embedded Computer System model used as a common

framework for physical implementation of OTPM

enterprise-wide architectures

MEI defined for intellectual and material object

transformation process phases help determine physical

location and type of databases required

Technique
TRADITIONAL

Required data elements identified by user(s) and

information system analysts model their relationships

No common interface model to link logical data flow

models to physical architectural designs

Existing or planned database systems determine their

physical location

50TPM Solution Field Experience and Results

Manufacturing industry sponsored field tests beginning in 1991 have clearly demonstrated that the OTPM and

IPFA are highly useful for improving data identification, collection, analysis, feedback, and related manufacturing

processes in ECS environments, especially for information system improvement. Most experiments have been

conducted as integral parts of University of Pittsburgh Manufacturing Systems Engineering Program internships
which required students to complete either a major capstone research project or formal M.S. thesis internship with

their committees composed of both faculty and industry project supervisors.

1. The first major field test was conducted at the Packard Electric Division of General Motors Corporation in

Warren, Ohio where an OTPM-modified PFA of a 320-machine plastic molding plant was used to identify and
eliminate waste generated by ineffective communications in both business and engineering shop-floor semi-

automated control systems. The improved information systems produced thesis-documented savings of over

$1,800,000 per year.

2. The second major field test was conducted at AEG Westinghouse Transportation Services Inc. [currently
ABB Adtranz] in West Mifflin, Pennsylvania that focused on a cycle time analysis of airport people mover

manufacturing final assembly and testing. The OTPM-modified cycle time analysis uncovered the need for
improved engineering control data. When such data were subsequently defined, collected and analyzed, the results

led to making major changes to the final assembly process. This, in turn, generated an annual savings of over

$600,000 and doubled the manufacturing plant's overall production capacity
3. Another early field test was conducted at Bloom Engineering, Inc. that manufactures customized

metallurgical furnace control systems, each of which is uniquely designed for a single customer need. The focus

there was on improving the generation and control of product design information to identify and separate that which
is unique to a job from that which can be reused on future jobs. A new engineering OTPM-based database was

designed and programmed which significantly improved Bloom's front-end engineering design processes.

Since 1993, 80 practicing engineers who average 11 years of industrial experience have learned how to

implement the methodology described in this paper by taking the author's graduate course in manufacturing
information systems reengineering. Most importantly, they have carried out 23 team projects to identify and solve

ECS-based information system problems using the OTPM-based methodology in a variety of manufacturing and

service organizations. In every project to date, the student teams were able to make significant improvements to
existing automated processes, or plan information system solutions which were accepted by the target enterprises for

subsequent implementation.

In addition to university research projects, the author has been teaching the methodology to other industrial

organizations through short course offerings and also as part of his corporation's educational services offerings to
government and industry. A sample of the wide variety of information system problems that have been solved by

practicing engineers (as MSEP student researchers) using the OTPM methodology are provided in the table below.

Manley,J.H.,DefiningandValidatingEmbeddedComputerSoftwareRequirements,page8

ORGANIZATION INFORMATION PROBLEM SOLVED

STUDENT RESEARCHER

Petro I eos de Venezuela

(PDVSA)

Hugo R. Vasquez-Tarbay

Delphi Packard Electric Systems,

General Motors Corporation
Annette M. Pohlman

Cornelius Architectural Products,
Inc.

Mark F. Rothert

Superior Valve Company
Tracy R. Shaffer

Delphi Packard Electric Systems,
General Motors Corporation
Daniel D. Gottfried

The Eiliott Company

Elizabeth A. Samstag

Delphi Packard Electric Systems,
General Motors Corporation
John A. Sankovich

The OTPM was used to analyze the global RDC-generation process in

Venezuela's nationalized oil company from the arrival of an RDC [purchase

requisition in Spanish] at PDVSA Services, Inc. in Houston, Texas [PDVSA

central purchasing agency in the US] to the selection of the panel of vendors for
quotation. A relational database prototype was developed to unify 70 different

procedures for RDC generation being used to gather information from PDVSA's

country-wide operating divisions. This solution radically improved the quality of

the selection of the computer codes by clients and subsidiaries.

Applied the OTPM-based enterprise continuous improvement strategy to develop

a measurement system for streamlining General Motors Corporation's multi-

plant automobile power and signal distribution system product development

process. The strategy was adopted for implementation by management.

Designed a standard coding system for communicating complex information

relative to project material and components within a manufacturing organization
to eliminate waste from interpersonal misunderstandings. The projects by

Cornelius were one-of-a-kind, e.g., creating complex signage displays for

Disneyland in Orlando, Florida which were exceedingly difficult to describe in

understandable detail at the front end of the manufacturing; process.

A total process perspective was used to define a model for assembly

manufacturing cell design that incorporated product demand. Specifically, the
model showed that once machine-component groupings are formed, the cell

formation process can be further refined by sorting the product family by demand

and grouping parts into replicated cells according to high and low to medium
volume parts. The layout for each replicated cell was matched to the grouping's

production demand and adequate cell utilization is now maintained by comparing

demand to capacit_ for each replicated cell.

Used OTPM information process flow analysis (1PFA) to help define the
minimum, relevant information systems requirements of a five-stage

manufacturing process for producing automotive ignition cable. The problem

solved was determining the root cause and implementing corrective actions to
eliminate loose core cable defects from the extrusion of composite, high

temperature core, rubber insulated ignition cable. "The use of object-oriented

information systems facilitated more concise problem definition and timely
discovery of causal factors that could be controlled or eliminated within the

improved manufacturin_ system."
Used OTPM principles to analyze and improve the receiving function for a gas

turbine power generator manufacturer from the delivery of materials from

vendors and carriers, to initial receipt of materials, inspection, repackaging, and

final placement of these materials in their warehouse locations.

Taguchi methods were first used to define the impact of extrusion processing
factors on fuselink cable processing. These factors were then optimized in order

to achieve fuselink with the desired insulation strip force. Then, an OTPM

minimum essential information analysis was used to identify all non-value added

activities that resulted from poor fuselink quality. These activities were
quantified in order to allow management to more accurately measure and

eliminate all forms of waste involved in the fuselink production process.

6 Conclusion

Numerous field tests by practicing engineers in a variety of manufacturing companies, as well as consulting

engagements conducted by the author have all shown that an OTPM-based IPFA analysis of any complex, repetitive,
real-time, object transformation process can identify minimum, necessary and sufficient embedded computer

information requirements. Since these requirements are in the form of well-defined input data and output

information from and to people, machines, and other embedded computers in a bounded embedded system, their
specificity, in addition to process timing requirements, provides a complete specification for developing process

Manley,J.H.,DefiningandValidatingEmbeddedComputerSoftwareRequirements,page9

controlsoftware.Fromanindustrialengineeringperspective,whenthecontrolloopsarecompletedandputinto
operation,theunderlyingembeddedcomputersoftwarecanbeeasilyvalidatedbyengineeringinspectionusingthe
sameIPFA methodology.

7 Acknowledgement

The author would like to acknowledge all of his experienced engineering graduate students who have carried out
field tests of the OYPM-based methods described in this paper, and also the numerous manufacturing managers and

information system software engineers whose helpful comments freely offered in a variety of conferences and

workshops helped fine-tune the methodology over the past seven years.

8 About the Author

Dr. Manley is Professor of Industrial Engineering and Director, MS. Degree Program in Manufacturing Systems

Engineering (MSEP), University of Pittsburgh; Member of the Board of Directors Emeritus, Concurrent

Technologies Corporation, Chairman, Computing Technology Transition, Inc., and LtCol Regular Air Force,

Retired. His prior leadership positions include: Assistant to the Director, The Johns Hopkins University Applied

Physics Laboratory; Director, Programming Applied Technology, ITT Corporation; Vice President Engineering and

Technology, Nastec Corporation; and Director, Software Engineering Institute, Carnegie Mellon University.

References

Manley, John H., "Embedded Systems," in Encyclopedia of Software Engineering, John J. Marciniak, Ed.,

Wiley-lnterscience, John Wiley & Sons, Inc., New York, 1994, pp. 454-458.

Manley, John H., "Managing Software in the Automated Factory," Chapter in The Automated Factory

Handbook. Technology and Management, David I Cleland and Bopaya Bidanda, eds., TAB Professional
Books, New York, 1990, pp. 198-219.

Manley, John H., "OTPM and the New Manufacturing Paradigm," in Computers and Industrial Engineering,

Vol. 23, Nos. I-4, Pergamon Press Ltd, Oxford, England, 1992, pp. 427-430.

4 Manley, John H., "Information Process Flow Analysis (1PFA) for Reengineering Manufacturing Systems," in

Computers andlndustrial Engineering, Vol. 25, Nos. 1-4, 1993, pp. 275-278.

Ross, D. T, Structured Analysis: A Language for Communicating Ideas, IEEE Transactions on Software
Engineering, Vol. 3, No. 1, 1977, pp 16-33.

Rasmus, Daniel, "Redesigning the Corporation with IDEF's Help, Manufacturing Systems, December 1988, pp.
26-31.

Leveson, Nancy G., et al, "Requirements Specification for Process-Control Systems," Information and
Computer Science Technical Report 92-106, University of California- Irvine, November 10, 1992, 54 pp.

Rine, David C. and Bharat Bhargava, "Object-Oriented Computing," Computer, Vol. 25, No. 10, Oct 1992, pp.
6-10.

9 lbid, p. 17

10 Manley, John H., Rise Above the Rest." The Power of Superior Information, Knowledge and Wisdom, Third

Edition, Cathedral Publishing, Pittsburgh, Pennsylvania, 1998.

11 Manley, John H., "Information Process Flow Analysis (IPFA) for Reengineering Manufacturing Systems," Op.
Cit.

glx

0

_D

_N

0

o _.,,q

o"
o

o
_9

_j

iml

F_

o

Z _ _ _ < =< =

o
°_

°_

<

o

• • • • • • • •

0

o
°_

o

0

0

o

0

0

Q

c_

c_

c_

c_

c_

o

°,,,_

t_
.<

;4

0

_J

0
°,,-_

<

_S

0

_J

_S

o

It

C9

t_

0

.i,-(

o"
¢,9

(_

0

E9

E_

C9

o

0

• • • • •

C9

t",,I

0
.l==)
°l,=_

o_,=(

e_
o

Ira(

0
ed_

C9

C9

o

o

o

0

Z

0

0
o_

°.,-_

o.,_q

¢.9
<
_9

0

0

0

o

Q

,}
{}

_cD

_0 0

Z
0
[.D

i

o
f-m {./'}

Z_

I_ _0

_ Z
- 0
m _
0

t_

°,,,_

.<

o
r_

I I

"_ = _ _'-._
_ _---_ __o_

t_._
_.__'-

:_ _-_ _ ._-
0 _ _- _,,,_,,_9_

_ ._-_

:_ _ __ _ _.O_

oB._6

._ g .__

c_

t"-.I

0

. ,..._

<

r_

:/

0

@

o_

°_

<

o

o

@

Using
Automatic Code Generation

In the

Attitude Control Flight Software

Engineering Process

Primary Author:

Co-Authors:

David McComas

NASA Goddard Space Flight Center, Code 582

Greenbelt, MD 20771

301-286-9038

david.mccomas@gsfc.nasa.gov

James R. O'Donnell, Jr., PhD

Stephen F. Andrews

Abstract

This paper presents an overview of the attitude control subsystem flight software

development process, identifies how the process has changed due to automatic code

generation, analyzes each software development phase in detail, and concludes with a

summary of our lessons learned.

Attitude Control Subsystem (ACS) Flight Software (FSW) and the processes that govern

its development are complex. The Microwave Anisotropy Probe (MAP) spacecratt's ACS

FSW, currently being developed at the NASA's Goddard Space Flight Center (GSFC), is

being partially implemented using Integrated Systems Inc.'s (ISI) MATRIXx which

includes an automatic code generation tool AutoCode TM. This paper examines the

"traditional" ACS FSW development process and describes how the MAP effort,

augmented with ISI's tool set, has addressed ACS FSW development complexities.

The MAP ACS team carefully scoped the use of the MATRIXx tools from the outset of

the project. The analysts confirmed that MATRIXx was suitable for analysis and

algorithm development, but was not certain that AutoCode would be used. Initially,

AutoCode's role was to automatically generate an algorithms specification, which has

traditionally been a laborious process. If the generated code could be verified, and it

passed size and performance requirements, then it would be considered for use as flight

code. This low risk approach allowed the team to investigate new technology while

addressing the demands of MAP's ambitious schedule with a small development team.

Thepaperis structuredinto two sections.Thefirst sectionprovidescontextual
informationfor thesecondsection.The first sectiondescribestheMAP missionandthe
flight architectureonwhich theACSFSWresides,andtheMATRIXx tools. Sectiontwo
presentsanoverviewof theACS FSWdevelopmentprocess,identifieshow theprocess
haschangeddueto AutoCode,analyzeseachsoftwaredevelopmentphasein detail,and
concludeswith asummaryof our lessonslearned.

MAP Mission and Flight Architecture Overview

MAP's mission is to probe conditions in the early universe by measuring the properties of

the cosmic microwave background radiation over the full sky. These measurements will

help determine the values of cosmological parameters associated with the "Big Bang" and

determine how and when galactic structures formed. MAP will maintain a halo orbit

about the Sun-Earth Lagrange point (L2), 1.5 million kilometers from the Earth (away

from the sun). MAP will maintain a 0.464 rpm spin rate about the spacecraft's Z axis

during science observations.

The ACS FSW plays a central role in every phase of the MAP mission using, sensors and

actuators to perform attitude determination and control and fault detection and correction.

Following launch, the ACS must reduce spacecraft body rates and orient the spacecraft to

a power-positive and thermally-safe attitude. The ACS must provide three-axis inertial

pointing and provide the capability to slew the spacecraft to new attitudes. The ACS

must be capable of doing orbit maneuvers using thrusters. These maneuvers will be used

to get to L2 and to perform L2 station keeping. The ACS also controls the 0.464 rpm

science observation spin.

Figure 1 shows where the ACS FSW fits into the MAP flight architecture. The portion of

ACS FSW relevant to this paper resides on the Mongoose processor in the ACS task.

The Mongoose uses the software bus for inter-task communication. The software bus is a

GSFC custom-built library that provides standardized packet-based inter-task

communication and insulates applications from the real-time operating system. A task

defines a packet pipe on which to receive data. Task execution is usually controlled by a

task pending for data with an optional timeout. The ACS task pends for an Attitude

Control Electronics (ACE) sensor data packet, which is generated at a 1Hz rate. After the

ACS task receives the packet it converts the sensor data to engineering units in the body

frame, updates its attitude knowledge, executes a control law, and issues an actuator

command. Each second the ground command packet pipe is polled for new commands,

and telemetry packets are generated for onboard storage and/or downlink. Note that the
ACS task is isolated from hardware interface details and uses the software bus for all

external communications.

IRU
DSS
CSS

PCS
RWA_

Attitude
Control

Electronics

Mongoose Processor

Autonomous
Star

Tracker

. I [I
1773 Bus

Figure 1 - MAP flight architecture

Two additional ACS features need to be described in order to understand the analysis and

design of the automatically generated code and the code that interfaces with it. These two

features are the sensors and actuators and the ACS operational modes. MAP uses the

following sensors and actuators for attitude determination and control:

Inertial Reference Units (IRU)

Digital Sun Sensor (DSS)

Coarse Sun Sensors (CSS)

Autonomous Star Tracker (AST)

Propulsion Control System (PCS)

Reaction Wheel Assembly (RWA)

Measure changes in MAP's angular

position. Spacecraft body rates are derived

from the incremental angular

measurements.

Provides accurate measurements (< 0.01 °)

of the sun's position within a 64 degree

square field of view.

Provide coarse measurements (< 10°) of the

sun's position. The CSSs are mounted to

provide complete sky coverage.
Provides an estimated attitude derived from

star measurements.

Provides external force and torque to the

spacecraft via hydrazine-fueled thrusters.

Provides spacecraft attitude control via
three reaction wheels.

MAP uses five operational modes to achieve its mission goals. Modes are defined in

terms of operational objectives, spacecraft control objectives, and performance criteria.

Each mode specifies a set of sensors and actuators and a control subsystem configuration.

MAP definesthefollowing modes:

Operational Mode

Sun Acquisition (SA)

Inertial (IN)

Observing (OB)

Delta-V (DV)

Delta-H (DH)

Description

Uses IRUs, CSSs, and the RWA to acquire

a sun-pointing, power and thermally-safe

attitude within 20 minutes from any initial
attitude.

Uses IRUs, DSS, ST, and the RWA to

acquire and hold a fixed commanded
attitude.

Uses IRUs, DSS, ST, and the RWA to

perform a scanning pattern. Observing is

the only mode used for collecting science

data.

Uses IRUs and the PCS to perform

spacecraft maneuvers. Delta-V is used for

trajectory management to get to the Sun-

Earth L2 point approximately 1.5 million

km from the Earth (away from the sun) and

for L: station-keeping.

Uses IRUs and the PCS to perform

momentum unloading.

MATRIXx Overview

The purpose of this paper is not to evaluate MATRIXx. However, it is necessary to

understand some of the components and features of MATRIXx in order to understand

how they impacted the software development. Figure 2 shows the MATRIXx runtime

environment. SystemBuild provides a graphical environment for building models and a

graphics package for analyzing data. Xmath provides text-based windows for user

interaction and the mathematical computation engine. The three standard user windows

are status log, command input, and error message.

Xma hk Diagrams __ Signl[7:':_l'l"""""-_ [M atha_ma:ilyaliEngine

ulations D/|):'J I pl°ts] Controls analysis

Figure 2 - MATRIXx Environment

An engineergraphicallydecomposescomplexmodels in SystemBuild using SuperBlocks.

SuperBlocks are characterized by their inputs, outputs, and user defined attributes.

Timing attributes include continuous, discrete, procedure, and triggered. Procedure

blocks can be further classified as standard, inline, macro, interrupt, background, or

startup. Attribute details will be described as needed in the paper.

SuperBlocks may contain other SuperBlocks and/or functional blocks. Hierarchies of

SuperBlocks are used to abstract system details. Functional blocks cannot be further

decomposed. The most common functional blocks used on MAP include trigonometric

functions, algebraic functions, logical functions, and dynamic systems functional blocks.

Most functional blocks are "closed" which means an engineer can define the block's I/O

and configuration parameters, but cannot change the block's functionality. For MAP, we

used three types of "open" blocks, which allow the user to extend the system's

functionality. Algebraic blocks allow the user to define the block's outputs as algebraic

functions of the block's inputs (and other parameters). BlockScript blocks allow the user

to use BlockScript, a FORTRAN-like procedural language, that allows many

programming constructs. Finally, User Code Blocks (UCB) allow user supplied C code

to be linked with SystemBuild.

In addition to providing functional organization, SuperBlocks also control some aspects

of the data flow. There are three basic methods for transferring data with a SuperBlock.

SuperBlock I/O pins can be used to pass data up and down a SuperBlock hierarchy.

Read-from and write-to variable blocks can input and output data from a global

workspace. The last method, available for most SuperBlocks, is to define SuperBlock

parameters. Parameters are variables that are imported from the Xmath variable space

and are called percent variables (%VARs). %VARs are used to define variables, such as

alignment matrices and controller gains, that do not change during a simulation.

AutoCode converts %VARs to global variables that can be written to and read by code

external to the automatically generated code. %VARs can be logically grouped into

partitions and a SuperBlock can specify a particular partition for its %VARs.

The automatic code generation process is shown in Figure 3. A model must be loaded

into SystemBuild and default values for %VARs should be established. This is best

achieved by using a MathScript (Xmath command files) to define the defaults. The top

most SuperBlock is supplied to AutoCode and code is generated for this SuperBlock and

every subordinate SuperBlock. Code can be generated for multi-rate systems using the

scheduled-subsystem option, and for single rate systems using the procedures-only

option.

HiFi /Model

Scripts /

map.tpl /

model.h /

/ mmoO ,b /

/ s .c /

Figure 3 - Automatic code generation process

The code generation process is controlled by a script written in ISI's Template

Programming Language (TPL). We extended ISI's default TPL file (renamed to map.tpl)

to include the following features:

• Non-FSW is output to a separate model_sim.c source file. This includes code

such as UCB wrappers (code used to interface C language functions into a

simulation via a User Code Block) that could be used in a simulation environment

but are not needed in the flight environment.

• Separate header and source files are created for each non-inline SuperBlock. This

enhances readability, encapsulation, maintenance, and configuration management.

Late changes will result in individual files being delivered.

• Two interface functions model_InitO and model_DispatchO are created to provide

a consistent interface to the automatically generated code. These functions also

provide a placeholder for customizations.

The MATRIXx AutoCode process is essentially closed, which means the code generated

for a functional block cannot be altered. This is why the BlockScript and Algebraic

blocks are considered to be open since they allow user customization of the generated

code. As an example of the closed nature of the code generation process, let us consider

how the %VARs are defined. To define the %VARs the TPL script calls a predefined

TPL function named define percentvars0. This generates the code for all of the %VAR

definitions. The TPL script can add code around the %VAR definitions and it can control

what file the definitions appear in, but that is all it can do.

ACS FSW Development Process

Figure 4 illustrates the MAP ACS FSW development process. The solid lines represent

the traditional process and the dashed lines indicate where the process has significantly

changed for MAP. Many traditional parts of the process were impacted as well, and these

impactswill bedescribedin theirrespectivesections.Notethereis aniterativeaspectto
ourdevelopmentprocessthatis notshownin thefigure. TheFSWis deliveredto the
build testteamin incrementalbuildsandtherequirementsanddesignarecontinually
refinedthroughouttheprocess.

Requirements /_

Specification//

L Manual Code

Requirement Analysis }

HiFiDesign]

I High Fidelity Simulation(HiFi)

Documentlt AutoCode

r_h [Unit Verification]
/Algo ms/ I. Method #3 J

]

Method # 1
)n] [Unit Verification]

1 (Method #2 J

FSW Load Image

!

I } ,porfo ance1Validation _ Build Test "-L Verification

Figure 4 - ACS FSW Development Process

The process begins with ACS FSW requirements analysis. This is a system engineering

process primarily involving Guidance Navigation and Control (GNCC) analysts, FSW

specialists, and spacecraft engineers. This activity produces an ACS FSW Requirements

Specification and feeds directly into both the FSW and high-fidelity (HiFi) simulator

designs. HiFi is required for the GNCC analysts to validate the spacecraft controls

algorithms which are needed in the ACS FSW. On previous GSFC missions, the ACS

FSW architecture and the HiFi software architectures were developed independently, with

minimal-to-none commonality between the two software systems.

Theuseof AutoCode requires that the FSW and HiFi architectures account for one

another's environment. The graphical HiFi environment encapsulates function and data

into a component called a SuperBlock. In order for a translated SuperBlock to exist in the

FSW environment, HiFi must emulate the FSW environment or the SuperBlock must

avoid interfacing or relying on features of the FSW environment. Any differences that

exist between the two environments must be accounted for by the automatic code

generation process or by manually changing code after it has been generated. The

analysis and design section describes the translation strategies that were taken on MAP.

The implementation phase gets its inputs from the ACS requirement specification and the

ACS algorithm specification. The ACS requirements specification defines what the FSW

needs to accomplish in terms of functional and performance statements. The algorithms

specification is a companion to the requirements and it defines the mathematical details

needed to be implemented by the FSW in order to meet the functional and performance

criteria. Traditionally all of the FSW has been manually coded from these inputs. Two

significant changes were made on MAP. First, the generation of the ACS algorithms

specification was automated using ISI's DocumentIt TM. In the past, the generation and

maintenance of the ACS algorithm specification was a tedious job that has required a

dedicated analyst. Second, the automatic generation of some of the flight code eliminated

part of the manual coding effort. These two changes were not free and the price of using

the tools will be discussed in the implementation section.

Testing occurs at both the unit and build test levels. At the unit level, 3 verification

processes have been enumerated. Unit verification method #1 requires the developer to

verify that the requirements and algorithms have been implemented correctly. Depending

upon the scope of the algorithms being coded, unit test data from HiFi may or may not be

supplied. Unit verification method #2 is new and is used to verify the automatic code.

Since the HiFi and FSW have a common interface to the automatic code it was relatively

easy to capture HiFi data at the common interface and feed it through the automatic code.

Even without AutoCode, this method could have been employed in the past if the FSW

and HiFi designs used a common architecture. Unit verification method #3 was an

unanticipated benefit of using the tool set. We were able to take the entire FSW attitude

determination subsystem flight code and run it in the HiFi.

At the build test level, the changes were mostly due to other features of the tool set

beyond AutoCode. The main advantage of the tool set is that the analysts used the HiFi

data analysis platform for test data comparison between data from the development lab

and data from the HiFi. In the past, the build test data analysis platform was not

necessarily the same as the HiFi's platform. Having the data analysis platform integrated

with the HiFi platform also enabled the script files developed during analysis to be used
for build test verification.

Analysis and Design

The analysts and programmers had to coordinate their efforts during the analysis phase

because automatic code generation requires a tight coupling between the HiFi design and

the ACS FSW design. First, both groups needed to understand the capabilities of the

tools in order to understand how to best utilize them. Concurrently, a preliminary
architecture that would be common to both the HiFi and the FSW needed to be defined.

The definition of this architecture was based on MAP requirements analysis and on

previous mission architectures. The common architecture identified major components

such as sensors, actuators, control modes, attitude determination, and ephemeris and the

data that flows between the components. With detailed knowledge of the tools and a

preliminary architecture, the MAP team was prepared to define the scope of the

automatically generated code. Business forces as well as technical forces shaped the

boundary of the automatically generated code.

The primary business issues are that we meet the schedule while delivering a high quality,

testable product that implements the requirements. MAP is Goddard's first mission to

use an automatic code generator for its FSW, and prior to MAP, Goddard had no

experience with ISl's code generator. Our strategy towards mitigating risks was to

minimize the impact of the FSW environment upon the HiFi and to limit the scope of the

automatically generated code to a portion of the ACS FSW that has a high algorithm-to-

code ratio. This strategy minimizes the impact to the analysts while taking advantage of

the biggest benefit of AutoCode, which is to eliminate the error prone process of

manually translating algorithms to flight code.

Technically, automatic code generation is the translation of a design from the HiFi

environment to the FSW environment. The HiFi environment must model any aspects of

the FSW environment if the generated code is to be linked with the flight code without

any manual changes to the automatic code. As described in the MAP flight architecture

overview, MAP is using the software bus as the inter-task communication medium.

Opting not to model the software bus in HiFi, we immediately limited the scope of each

AutoCode invocation to an intra-task scope and ISI's real-time operating system,

pSOSystem, was not even considered. There are also unique flight software interfaces for

processing ground commands, generating asynchronous event messages, and notifying

the Fault Detection and Correction (FDC) subsystem. Again, we opted not to model

these interfaces in the HiFi, further restricting the AutoCode scope.

With these guidelines in hand, we were prepared to identify the portion of the ACS FSW

that is automatically generated. Figure 5 shows a simplified high-level block diagram of

MAP's flight control software. This software is suitable for a single task because all of

its components execute at 1Hz and have fairly strong data cohesion. Sensors measure

spacecraft position and rates. Attitude determination uses sensor measurements to update

the onboard estimated attitude, which is supplied to the controller subsystem. The

desired spacecraft attitude is either supplied by mode management or internally computed

by command generation. Attitude error computes control errors for the control law based

on a combination of sensor measurements, estimated attitude, and commanded attitude.

The control law computes control torques which are output to the actuators.

Mode Commanded Command

Generation

,._I Sensor Pos&RatesSensor
Hardware ==_ Input

AttitudeDetermination

Estimated

Attitude Actuator Actuator

Error tlardware

Control

Law

Figure 5 - ACS FSW block diagram

The shaded controller subsystem identifies the portion of the MAP ACS FSW that is

being automatically generated. This final design takes advantage of the controller

subsystem's relatively small and simple set of inputs and outputs. The controller

subsystem's local rotating-sun-reference coordinate frame is encapsulated entirely within

the AutoCoded portion of the FSW. Since the controller subsystem components execute

at the same rate, we can use the "procedures-only" AutoCode option, which greatly

simplifies the automatic code. Attitude determination shares many of the same attributes

as the controller subsystem with respect to being suitable for AutoCode, but it was not

chosen to be automatically generated since MAP could adapt an existing attitude

determination subsystem from a previous mission.

Implementation

Once the scope of the automatically generated code was defined, we turned our attention

to the code that is generated and to the manual code that interfaces with the automatic

code. Figure 6 is a class diagram showing the classes involved with the manual-to-
automatic code interface. AutoCode creates a collection of C functions that can be

conceptualized as a single object. This object, named achifi, corresponds to the parent

SuperBlock supplied as an input to AutoCode. Achifi provides two interface functions

achifi_Initialize0 and achifi_Execute0. Outputs from achifi are exported via a global

data structure named achifi_Output. The manual code treats this as a read-only data

structure; although no mechanisms enforce this rule.

10

Controller

achifi Input

control Ier New()

Control let Del ete()

ControllerExecuteO

Controller_lnitO

Controller MonitorPerfbrmanceO

Only base class
calls achifi functions

I
I RWA Controller I

iTController Controller

I
PCS Controller]

+
I I,

Controller Controller

aehifi

achifi_Output

achifi Init0

achifi Execute0

Load and dump
%VARs

[TableManager]

Figure 6 - Manual and automatic code class diagram

The manual code is designed as a class hierarchy designed according to the operational
modes identified in the mission overview section. The base controller class defines

functions and data that are common to all controllers. Next, the control modes are

classified according to which actuator is used for control. Finally, individual modes are

defined. The base controller class is the only class that invokes achifi's member

functions. Achifi_lnitialize0 is called when the processor is initialized and whenever a

mode transition is performed. Achifi_Execute0 is called during each control cycle.

Achifi_Execute0 manages calling the other functions created by AutoCode.

The object-oriented design was implemented in C by constructing virtual function pointer

tables and the design has proven to be very robust with regard to automatic code interface

modifications. Most automatic code dependencies are encapsulated by the base controller

class, so changes to the interface have had no ripple affect. The base class also provides

functionality that can be shared by all controllers. ControllerMonitorPerformance0

monitors the performance of achifi by monitoring body rates, attitude errors, and body

rate errors. Controller unique performance limits are supplied to ControllerNew0 when

a controller is instantiated. Another benefit of the object-oriented design is that the class

hierarchy has resulted in small, easy to test functions. Below are some excerpts from the

ACS FSW showing how the base controller class manages the automatic code.

Controller file scope excerpt

#include "achifi.h"

achifi Input Rec achifi Input;

/* Autocode header file */

/* Autocode input record */

II

Controller Init() excerpt

achifi Ini_(&achifi Input,TRUE) ; /* TRUE means copy %VARs from EEPROM */

Controller_Execute() excerpt

achifi_Input.BodyEstRateX = DataMgr. Config.BodyRate.Comp[X] ;

achifi_Input.BodyEstRateY = DataMgr. Config.BodyRate.Comp[Y];

achifi Input.BodyEstRateZ = DataMgr.Config. BodyRate.Comp[Z];

achifi_Input.RwalMeasTachSpeed = RWA ProcData. Speeds[0];

achifi_Input. Rwa2MeasTachSpeed = RWA_ProcData. Speeds[l];

achifi Input. Rwa3MeasTachSpeed = RWA ProcData. Speeds[2];

achifi_Execute(&achifi Input,DataMgr. Config. DeltaTime);

AttCtl

AttCtl

AttCtl

AttCtl

.BodySysMom. Comp[X] = (float)achifi Output.BodyMeasSystemMomX;

.BodySysMom. Comp[Y] = (float)achifi Output.8odyMeasSystemMomY;

.BodySysMom. Comp[Z] = (float)achifi_Output.BodyMeasSystemMomZ;

.BodySysMomMag = (float)Vector3f Mag(&AttCtl.BodySysMom) ;

The automatic code is less readable than the manual code shown above, but this is mostly

due to the inclusion of SystemBuild's numeric block identifiers in the variable names.

The automatic code generation is very systematic and once you get a feel for how status

information, state information, inputs, outputs, and initialization are managed, the code is

is relatively easy to read. In fact, comments are inserted in the code to identify which

block is being coded. The code's readability is further enhanced by having each

SuperBlock output to a separate file, using data naming conventions in the HiFi, and

labeling all block I/O lines in the HiFi.

There are a few drawbacks to the automatic code, but none of them have proven to be

fatal. The automatic code is large and less efficient than its manual equivalent. We have

not had the luxury of duplicating the coding effort manually, but there have been a couple

of cases when a fair comparison between the manual and automatic code could be made.

In these cases the automatic code has been two to three times larger than the manual code.

This code bloat is primarily due to the fact that AutoCode does a lot of data copying

before and after calling a procedure. Declaring procedure blocks inline can reduce this

overhead, but this doesn't allow functions to reside in individual files. Since MAP has a

1Hz ACS task execution rate and 4 megabytes of EEPROM, resources have not been a

concern.

There are a few non-resource issues that did create some trouble. We wanted to treat

%VARs as one or more FSW tables. A FSW table must contain physically contiguous

data and we typically achieve this by defining a table as a C structure. Unfortunately the

Xmath variable partitions do not translate into C structures. We were able to

contiguously group the %VARs by defining the %VARs in a separate file. Using linker

scripts, the %VAR object file was defined as a contiguous data structure.

There have been two cases when the generated code wasn't what we expected. In both

cases, default values were hard coded for %VARs instead of variables being used. ISI's

12

responsewasthatthesearefeaturesof the blocks in question, although that

documentation has not been found yet. Hard coded %VARs is unacceptable so we had to

develop workarounds. In one case we coded the block in BlockScript and in the other

case we changed the design so the offending block wasn't used. Aside from the %VAR

problem, the generated code has properly implemented the HiFi design.

The last issue with the generated code concerns the time between valid control cycles,

which we refer to as delta time. Nominally, delta time is one second, but there are

situations in which this time can be greater than one second. The ACS FSW must use the

actual delta time to safely control the spacecraft. However, AutoCode hard codes a one

second delta time because the top-most SuperBlock is defined as a 1Hz procedure block.

To correct the situation the automatically generated code must be manually changed to

use the delta time passed to achifi_Execute0. Since our automatic code generation

process produces a separate source file for each SuperBlock, a manual code change has to

be made only once, unless the SuperBlock changes in a future build.

Testing

Both unit testing and build testing have been improved by using MATRIXx. Many of

these gains are the result of the entire tool set, not just AutoCode, and are also the result

of the FSW developers and analysts working more closely together than on previous

Goddard missions.

Figure 7 shows the primary unit testing effort. The HiFi outputs simulation results,

simulation inputs, and the automatic code to the unit test platform. The unit test (UT)
driver is linked with the FSW controller classes and the automatic code. Five HiFi test

cases, one for each operational mode, were used as the test suite. This data was run

through the FSW and the FSW results were compared to the HiFi results. This testing

has consistently shown that the automatic code accurately represents the Systembuild

design.

HiFi Platform Unit Test Platform

Dz_--_ Sire /

HiFi /Inputs/

'utomatic/

g Code /

--] __./Test/Unit Test Driver / Results/
acl_fi.h .:

"L

_l,inked to

l_i_a t/, ..I.iFSW Controller Classes]

13

Figure 7 - Automatic code unit test

Figure 7 identifies the primary unit testing activity, but there was additional unit testing

performed. A separate UT was developed to perform boundary testing, full path

coverage, and to test miscellaneous items such as whether %VARs are properly

parameterized. This additional testing is important because the analysts have not

traditionally programmed for flight and have not had to worry about issues such as

protecting against dividing by zero. This is also our first experience with AutoCode and

we don't have past experiences to provide a basis for confidence in the tool. This is the

testing that found that the %VARs are not being parameterized for some of the blocks.

Several additional features of the UT process should be noted:

• The UT calls the controller object functions in the same manner as the FSW

component that manages the controller objects. This testing verifies that the manual

code and the automatic code are properly integrated.

• Achifi.h is shown as a separate input into the UT because it is parsed by the UT to

identify the variable offsets within the simulation data file. This aspect is useful

because this allows the order of the data within the simulation data file to change

without impacting the UT. Since the simulation data file contains data used by the

analysts to verify the HiFi, this feature allows the analysts to change what data gets

captured without worrying about preserving the order of the data for the UT.

• Since MathScripts managed and documented HiFi test cases, the FSW developers

didn't require as much of the analyst's time as in the past to get necessary

information. Defining common controller interfaces in both the HiFi and the FSW

and having a standardized data file format were the drivers that empowered the UT.

These activities could occur with or without automatic code generation.

The improvements made to build testing were achieved by extending the tool set. Build

testing involves verifying the FSW's performance in the breadboard lab. Traditionally, a

small set of performance test cases were identified. These test cases were executed in

both the HiFi and in the build test lab. Two common problems with performance

verification involves setting up the same test case in both environments and comparing

the results. Through a combination of UNIX scripts and MathScripts, an automated

process was developed to transform build test scripts and data sets into HiFi MathScripts.

The MathScripts are executed to generate HiFi performance data for the corresponding

build tests. The ability to be able to generate these tools was also facilitated by the fact

that the HiFi design is similar to the FSW design so the HiFi can be configured in a

manner similar to how the FSW is configured via table loads and commands. Another set

of MathScript tools were created to automate the generation of comparison plots. The

plot generation and comparison tools use GUI-based menu systems making them easy to

use. These tools provide a consistent and efficient means for all team members to

generate and analyze data without having to dedicate an engineer to these tasks.

14

Lessons Learned

The most dramatic change has occurred to our ACS FSW development process. Figure 8

shows the same software development process shown in Figure 4 but in terms of

activities and products. What has changed is that many people are performing multiple

roles. The analysts have participated in every activity. They perform time domain

analysis using the HiFi, help to write the requirements, attend code reviews held by the

developers, write build test procedures, and serve as the focal point for performance

verification. Likewise, the developers have help to write the requirements, reviewed the

portion of the HiFi that is being translated to FSW, developed code, and supported

performance verification. We have intentionally not allowed the developers to participate

in build testing for independent verification. The tools have brought the team closer

together but also allowed them to work more independently and efficiently. Many

process participants have worked as system engineers with a specialty.

PerformanceData

• Algorithms
• Unit Test

Data
Flight [Software

Test _
Results

Figure 8 - Software development roles

Trying to quantify these perceived benefits is not so clear cut. We only have limited

metrics for the Rossi X-Ray Timing Experiment (RXTE), spacecraft which is a recent

Goddard ACS FSW development effort. The following data is a simple comparison of

the RXTE and MAP ACS FSW development efforts.

Lines Of Code(LOC) Spacecraft Man Years (MY) LOC/MY

33,318 XTE 13.8 2414

17,525 MAP 6.1 2872

This data appears to show that MAP has been slightly more productive. However, there

are many factors to consider when evaluating this data.

We only have metrics on how much time a developer spent on a project. These

metrics are not refined enough to know how much time a developer spent on activities

other than development.

15

• Conversely,themanyeardatadoesn'tincludeanalystsor build testers, yet one of the

empirical benefits of AutoCode is that it improves the entire development effort. We

definitely reduced the manpower required to translate the HiFi to FSW by using

AutoCode, and on RXTE, an analyst was dedicated to creating, executing, and

plotting HiFi performance runs for build test verification. These benefits have not

been quantified by the data above.

• As stated before, the automatic code was two to three times larger than if it were

manually coded. The 5,356 lines of automatic code (31% of the MAP ACS FSW)

inflate the MAP production rate.

This data is very encouraging considering that MAP incurred a learning curve with the

new tool set. Unfortunately we don't have any build test metrics, but the test effort has

been observably better than on RXTE and we do know the lab is vacant on weekends?

In summary, our low risk approach was successful in allowing us to investigate new

technology while meeting the demands of MAP's ambitious schedule with a small

development team.

16

""_ 0

c_

°_,._

©

©

°_,_

<

r_

©

oo

n_

©

o

r_

©

r_

©

r._
©

0

• ,,-,4

r./3

t_

© ,..
r..f) .,'-_ _

@

c_

r.J3
@

©

°i,,_

0

o_j_

o_

0
_9

0

©
0

0

0

O_

0

: o _

0 o

O_
_J9

O'h

<

o ,F,ml

0

0

.<

2

<'_

_! _

,_ <c_

0

i
0

o

• Q,,) °

_" _ .

x:gg_ _

"_ o _ o

!

©

×
\

oo

0
o_,,_

r_

0

c_

°Vm_

c_ _

ovmq

r_

r_

0

_ _ ° _"q

0 0

,ljq

4r_

0
C_

0

c_

r_

o _,,-q

r,,

0

c_

6_

r_

I

L_

r_

°_

r_

c_

©

0

._ o

o 0 I I

0

©
o_,._

0
_J

0

©

_ °r_
c_ ,-_

c_

r_

©

©

,,j

©

c_

_ _:_ 0
c_ _= _

._ _ ° v-,-_

I r,_ I

r_

0

c_
r_

@
c_ _r_

c__

c_

r_

0

G_

G_
>

©

<

5

L I c

0

, e-
c

> .-_._
>

°v-._

©

0 0

0
°w.._

©

!

CP
I

o_-._

©

,w--I

o _ _ _ _

°w,,_

0 0 0

_ Z Z Z _
© I i i

¢)

8

0

<

¢)

r.13

,.o

t_
¢)

Vm'l

<_

o

_k

° ,im,l ,i,_I

r_

¢)

©
°_-_

c_

©

0

0

,

Z

t_

0
• _,-,4

c_

_D
0 _

o_

= _ <_

O_ •

Z

©
° ,i,,,-,4

;>

©

©

_'4

©

0

©

• • • •

0

0

c'q

©

©
° ,p.,_

°_,._

0

©

©

©

©

©

0

t

0

°_-_

©

©

°_._

°_

0

0

©

©

0

DETERMINING SOFTWARE (SAFETY) LEVELS FOR

SAFETY-CRITICAL SYSTEMS

Doris E Tamanaha Meng-Lai Yin

dmmanaha@ _'est. raytheon, corn ml),in@west, raytheon, corn

Raytheon Systems Company

Loc. FU, Bldg. 675, M/S AA34I

I801 Hughes Drive, Fullerton, CA 92834

ABSTRACT

For safety-critical software-intensive systems,

software (safety) levels are determined so that the

appropriate development process is applied. This

paper discusses issues of applying the results of fault
tree analysis to software (safety) levels determination.

In particular, the inconsistency problem, i.e.,

inconsistent software (safety) levels, is addressed and

an approach is presented.

Keywords: Fault tree analysis application, safety-

critical systems, software (safety) levels.

1. INTRODUCTION

For safety-critical systems, process requirements

to develop the software need to be met. Several

standards have been evolved which classify

processes into levels, such as the RTCA/DO-178B
"Software Considerations in Airborne Systems and

Equipment Certification"Ill or the Software

Engineering Institute Capability Maturity Model

[2][3][4]. Applying the results of fault tree analysis

to determine the software (safety) levels is proposed

in this paper, since fault tree analysis has been
widely used for safety-critical systems.

For large stringent systems, inconsistent software

(safety) levels can occur. This is due to the various

concurrent activities of different organizations, e.g.,

the software development group, the system

architecture group, and the safety group. This paper

describes the inconsistency problem, and the

strategy and methods to deal with this problem. The

goal is to ensure that appropriate software (safety)
levels are applied to the developed software.

2. DETERMINING LEVELS

2.1 Software (Safety) Levels

Software (safety) levels determine the associated

process to be followed by the software developers.

There are several existing development processes

defined based on software levels, such as the

Capability Maturity Model (CMM) by the Software

Engineering Institute (SEI), the ISO 9000 series of

standards by the International Organization for

Standardization [2][3][4], and the RTCA/DO-178B

[1]. The discussion here focuses on the RTCA/DO-
178B standard.

The RTCA/DO-178B "Software Considerations

in Airborne Systems and Equipment Certification"

[1] provides guidelines for the production of
software for airborne systems and equipment [5]. In

particular, five categories are identified for the

failure conditions, i.e., catastrophic, hazardous,

major, minor, and no effect. Five software (safety)

levels are defined accordingly, i.e., level A, B, C, D

and E. The software (safety) level determines the
development effort that demonstrates compliance

with certification requirements.

2.2 General Rules

The top-down methodology based on the fault

tree models is fairly straightforward. The fault tree
considers not only the events related to the software,

but all the possible events that can cause the top

event (root event). The methodology first

determines the safety level of the top event, then

follows the 2 general rules listed below: (1) For the

events under an OR gate: the safety level of these

events are the same as that of the top event of the

OR gate.(2) For the eventsunderan AND gate,
threecasesaredistinguished:(2a) If the event is

associated with a monitoring function, i.e., that it

monitors some other function(s), then this event has

the same level as that of the top event of the AND

gate. (2b) If the event is associated with a monitored

function, i.e., its function is monitored by some

monitoring function, then it can have a level lower

than that of the top of the AND gate. The

philosophy is that we believe the failure of this

function can be detected and corrected by the

monitoring function. (2c) If the events under an

AND gate do not have the monitoring/monitored

relationship, then they will inherit the same level as

that of the top event of the AND gate. However, if

these events are truly independent, then a level
lower than the top event can be assigned. For the

example shown in Figure 1, assuming the effect of

the top event (Hazardously Misleading Information)

is classified as level B according to RTCA/DO-

178B. Then, the safety level for this HMI is B. If
IE1 and IE2 are functions that have the

monitored/monitoring relationship, e.g., IE1 is the

monitored function and IE2 is the monitoring

function, then IEl has safety level D and IE2 has

safety level B.

D

D D

6 6
D D B B

FIGURE 1. EXAMPLE FAULT TREE

For the basic event Ea and the intermediate event

IE3, since IE1 has safety level D, they are marked as
level D in accordance with rule 1 above. Moreover,

for IE4, assuming the basic events Ee and Ef under

the AND gate do not have the monitored/monitoring

relationship. Thus, they are both marked as level B.

For efficiency, minimum cut sets can be used as

assistance. Moreover, some engineering judgement

is necessary when conflicts occurred [6].

2.3 The Process

A six-step process relates the fault tree analyses

to the software activities is presented in Figure 2.

The first three steps are the preliminary marking,
whose results are recorded in a database called the

Requirement Management System (RMS). The

subsystem fault tree analyses and data flow analyses

were performed as parts of the preliminary marking.

The safety group conducted fault tree analyses,

while the software people conducted the data flow

analyses. The subsystem fault trees identify software

capabilities that can cause a hazard. In other words,
if a failure of a software capability contributes to a

hazard, it is identified in the subsystem fault tree.

Thus, the safety level for the software capability can
be marked, based on the general rules described

above. The marking results need to be integrated

into the software development process. The model

used for data flow analyses, referred to as the

capability model, is marked for this purpose.

Finally, the results are recorded into the RMS
database.

When the preliminary marking is finished, the

software development process moves to the stages

of preliminary design and detailed design. It is

during this time frame that the software level

marking is refined and updated through extending

the subsystem fault trees. Extending the subsystem
fault trees is based on the information provided by

the software preliminary design and detailed design.

In software preliminary design, the CSCs (Computer

Software Components) of each CSCI (Computer

Software Configuration Item) are defined, as are the

major data stores and interfaces among CSCs. Thus,
the original subsystem fault tree can be extended to

the CSC level. In the detailed design phase, the

processes are further decomposed into Computer

Software Units (CSUs) and functions. Hence, we
can extend the fault trees to the CSU level.

Due to the characteristics of large systems that

are composed of several organizations with different

objectives, inconsistent software (safety) levels are

expected. The results of this inconsistency are
schedule costs and safety risks. Hence, the

i

(D[--

1

z

b-

©

c-i

inconsistency needs to be resolved so that one

accepted development process can be applied. The

inconsistency problem is discussed next.

3. THE INCONSISTENCY PROBLEM

3.1 Inconsistent Views

Large programs entail several organizations that

have impact on the software (safety) levels.

Unfortunately, these organizations often have

different views and responsibilities, which may
conflict with each other, often as a result of

changing requirements that affect revisions at

multiple levels, e.g., within the architecture,

software, or safety constraints. Hence,

resynchronization is needed.

The three organizations that are related to the

software (safety) levels are the software

development, system architecture, and safety
groups, as shown in Figure 3. The software group

follows a process to develop the software. System

architecture (with software representation) partitions

the system and decides which software resides on

which platforms. Usually, a single, consistent

process is followed for the software developed on
the same platform. The safety group analyzes the

system and derives software (safety) levels as

requirements.

If the problem of inconsistent software (safety)

levels is not resolved, the software may not be

developed appropriately. If the inconsistency is not
resolved in a timely manner, schedule will be

slipped, and cost will be increased. Moreover, if the

inconsistency is not resolved correctly, the software

development process can be inadequate. In short, the

inconsistency problem needs to be resolved
correctly and in a timely fashion in order for the

system to be built.

4. THE APPROACH

4.1 The Basis

A basic philosophy we took is that the

inconsistency is expected. Therefore, the existence
of all the software levels shall be recorded. From

there, the inconsistency can be identified. Only if we

can recognize the inconsistency can the
inconsistency problem be addressed and resolved.

There are two types of inconsistencies. The first

type is referred to as the tolerable inconsistency

where the software developers follow a process that

exceeds the current process requirements. This

tolerable inconsistency implies that developed

software can be used in later phases when a higher

level is required (software levels are interpreted as

A > B > C > D > E, e.g., level A is higher than level

B, etc.) The second type of inconsistency is

intolerable, where the process that the developers

follow does not meet the current process

requirements for safety certification. Intolerable
inconsistencies must be identified and resolved.

Safety Level
• J ,

i

Software

Development

System
Architecture

Desflm

Safety
Analysis

FIGURE 3. DIFFERENT VIEWS OF SOFTWARE
(SAFETY) LEVELS

4.2 The Process of Managing Inconsistent

Software (Safety) Levels

To manage the inconsistent software (safety)

levels, three major steps are proposed: (1)
maintaining software (safety) levels associated with

different organizations, (2) cross-checking the

recorded software (safety) levels and identifying the

inconsistency areas, and (3) resolving the

inconsistency by involved organizations and
engineers.

A process is defined to manage the inconsistency

problem, as shown in Figure 4. The process is

iterative, since the system development itself is

iterative. A central repository, e.g., the Requirement

Management System database, is maintained as
which is the center of the process. Configuration

controlof the databaseis necessaryto ensurethe
overallconsistencyof the software(safety)levels.
Crosscheckingdifferent software(safety)levels
will identifythe inconsistentareas.To resolvethe
problemof inconsistencyinvolvesthe teamwork
effortsof softwareengineers,systemengineersand
safetyengineers.

4.3 Maintaining the Software (Safety) levels

Because inconsistency is expected, all the
differences can be managed. The strategy is to

record all the software levels resulting from

different organizations, recognize any inconsistency,

and deal with the intolerable inconsistency

problems. The different software (safety) levels (due

to the various organizations) are recorded in the

Requirements Management System database. Three

different software (safety) levels are maintained, the

"Assigned Software Level" (ASL), the "Assessed

Architecture Level" (AAL), and the "Development

Assurance Level" (DAL). A detailed description of

each of the levels is addressed below. The goal of

managing the inconsistency is to assure that ASL _<

AAL < DAL (software levels are interpreted as A >

B > C > D > E, i.e., level A is higher than level B,

etc.).

The ASL focuses on the severity effects and

hazard mitigation. The ASL is assigned based on the

system safety assessment results, e.g., the fault trees,
as described in Section 2. Note that this ASL serves

as the minimum acceptable software (safety) level,

as it is based solely upon the referenced safety

analysis and functional mitigation. The ASL is

implementation independent. The AAL is used to
reflect design constraints from architectural

allocation of software capabilities. To prevent

software developed at a low level process from

corrupting software developed at a higher level

process, several mechanisms are considered, such as

the firewall concept. However, to reduce the

complexity of the inconsistent process throughout

the whole system, a "safety system high" concept is

used. The AAL is determined based on the highest

severity level of software assigned to that platform.

For example, to simplify the development process

management, all software developed on a platform
certifiable to level B is developed to level B, even if

the software has an assigned safety level or ASL of
D.

The incremental strategy has been widely used for

large safety-critical systems. Not only because a

program needs to improve as the equipment and
technology improve, but also because the safety

concern is changing as the phases proceed and the

system becomes operational in a production sense.
To prevent rework efforts as much as possible, the
DAL can be used to demonstrate the achievement of

compliance to final phase requirements. This DAL
is committed to by software development and is a

development strategy to meet or surpass the current
AAL requirement. To accommodate the incremental

strategy, a separate set of the three software (safety)

levels is maintained. An advantage of maintaining

different software (safety) levels is that it helps an

individual organization to focus on its own tasks. In

particular, the software development team only

needs to focus on the DAL and develops the

software to the assigned DAL. It is the safety

engineers responsibility to assure the relationship of
ASL < AAL < DAL.

5. RESULTS

5.1 Identified Anomalies

Anomalies are the intolerable inconsistencies.

This section describes the anomalies that are

identified during the implementation of the process,

and a general process of how to resolve these

anomalies. Two types of anomalies are recognized,

e.g., internal and external. The internal anomalies
are due to the sharing of the same software

requirement by different software configuration

items. For example, a system service function may

be used in several subsystems that are on different

platforms. Different failure effects may be
estimated, since different safety concerns are

applied to different subsystems. As a result,
different ASLs are assigned for the same software

requirement. The internal anomalies can be resolved

by assigning the highest software (safety) level to

the soRware being concerned. In other cases, similar

design may be used on platforms at different

certification levels. In those cases, the safety level

for the requirements allocated to the similar design

carries a dual designation, say "B/D". It is then
understood that

._ SystemSafetyAssessment

System
Architecture

Design
Software
Allocation

CrossChecking
software (safety) levels

__ Resolve intolerable
inconsistent software

._ Software (safety) levelsDevelopment

FIGURE 4. PROCESS OF MANAGING INCONSISTENT SOFTWARE (SAFETY) LEVELS

those requirements must be examined for two

processes. 6. CONCLUSION

External anomalies are caused due to the

inconsistency. The identified external anomalies are:

(1) The DAL for a particular entry in the database is
denoted as N/A (non applicable) or the value is

missing, while the corresponding ASL (and/or AAL)

has a level assigned. This occurs especially when

COTS (Commercial Off The Shelf) products are

used. (2) One of the software (safety) levels (AAL,

or DAL) has two values assigned, while the other

one has only one level. (3) The DAL is lower than
the AAL and ASL.

5.2 Resolving Anomalies

The safety engineers, software development team

leads, and system engineers are informed of the

anomalies that have occurred. For each anomaly

identified, corresponding safety engineers and

software engineers work together to resolve the

problem. Once the anomalies are resolved and a
consensus is reached, a "Software Change Control

Board" reviews and approves the request for level

changes. This satisfies the issues of configuration

control for the database. Software safety engineers

assign the ASL and AAL changes that are reviewed

internally by the software safety team. Moreover,

software safety engineers participate on the

Software Change Control Board with sign-off

capability for all three software levels, i.e., ASL,

AAL, and DAL. Recall that the goal of this process
is to assure that ASL _<AAL _<DAL.

In this paper, we present a method of determining
software (safety) levels based on fault tree analysis.

The inconsistency problem resulting from the need

to operate concurrent activities to meet schedules in

building large, complex systems is addressed and a

strategy of handling it is discussed. The software

levels determined using this approach demonstrate

the safety quality of a safety-critical system.

Moreover, the approach is suitable for systems

developed incrementally. Extensions being

investigated are the relationship of software (safety)

levels to other analysis approaches, e.g., safety-

critical thread analysis and the use of software fault-

injection techniques to harden the software itself,
guided by the software level markings.

7. REFERENCES

[1] Software Considerations in Airborne Systems

and Equipment Certification, Document No.

RTCA/DO-178B, prepared by Special Committee
167 of RTCA, December 1, 1992.

[2] A System Engineering Capability Maturity

Model, Version 1.1, System Engineering Capability

Maturity Model Project, Carnegie Mellon

University Software Engineering Institute, SECMM-
95-01 CMU/SEI-95-MM-003, Nov. 1995.

[3] The Capability Maturity Model: Guidelines for

Improvement the Software Process, Carnegie

Mellon University, Software Engineering Institute,

Addison-Wesley Publishing Company, 1995.

[4] MarkC. Paulk,"How ISO9001Compareswith
theCMM", IEEESoftware,January1995.
[5] Global Position System: Theory and

Applications, Volume I and II, American Institute of
Aeronautics and Aeronautics, Inc. 1996.

[6] G. Watt, "Phase 1 Software Level Marking
Guidelines", WAAS SEN 5-2-5, 1997.

W

I

I I

I

• v,-4 I

@

I

I1: I

,j

>..,
,.J

(',1

|
W

0

©

c_

r4_

|
tll

¢)

• T,--I

©
_J

c_

c_
cJ

cJ

¢)

• _.,-I

©

_J

¢)

r._
• _,-.I

r_

©
_J

¢)
r_

¢)

©

• v,--I

|

r.v-1

ImmliiI
r

biII1

Gt_

r._

©

©

|

C_

r_

0

c_

[-.,

c_

0

o_

©

o_.,_

.o

r_
• v.-._

©

o_,_

r_

o_._

c_

r_

©

"_ t_

o_

r_

|

r_

©

©

c_

0

©

b

©

0

r_

©

c_

©

©

o

|

c_

r_

0

¢lq

tll

¢)

0
o_,-_

c_

¢)

¢)

• I I I 7_

tl

e_h

r._

0
°lml

,.c:I "a

¢)

r._

r,..q _ _ o.._ H _ __,_,
• I I I -_

.-g

l..q

|

o_,--I

,, I,,,-,,I

_o o

Appendix A - Workshop Attendees

Abshire, Gerald

Computer Sciences Corp.

Addy, Edward A.,
NASA/WVU

Agresti, Bill W.,

MITRETEK Systems

Allen, Guy,

OAO Corp.

Aires, Heidi,

Dept. of Commerce

Anderson, Barbara,.

Jet Propulsion Lab

Andolsek, Timothy G.,

Raytheon

Ayes, Heidi,

[No Organization

Registered]

Ayers, Everett,

Ayers Associates

Bae, Youn Y.,

NASA/GSFC

Baer, David R.,
NASA/GSFC

Balzy, Louis J.,
NASA/Ames Research

Center

Basili, Victor R.,

University of Maryland

Beall, Shelly,

Social Security

Administration

Becker, Greg,

Quality Systems
Solutions

Bert, Colvin,

OAO Corp.

Bhatia, Kiran,

MITRETEK Systems

Bismut, Noemie A.,
SATC

Blue, Velma D.,

DISA

Boger, Jacqueline,

Computer Sciences Corp.

Bowerman, Rebecca E.,

Pragma Systems Corp.

Brandenburg, Wilber,

SA/GSFC

Brown, Angela,

OAO Corp.

Brown, Patrick,

The MITRE Corp.

Burns, Edd,

TECHSOFT, Inc.

Butler, Sharyl A.,
NASA/JSC

Byrd, William E.,

University of Maryland -
Baltimore Co.

Callahan, John,

NASA IV&V Facility

Cannaday, Mona Lisa,

Computer Sciences Corp.

Carlson, Randall,
NSWCDD

Casadei, Alberto L.,

Westinghouse Electric

Corp.

Caulfield, Margaret I.,
NASA/GSFC

Celentano, AI,

Social Security
Administration

Chandler, Elizabeth,

NASA/GSFC

Chase, Bryant,

Social Security
Administration

Chatters, Gary,

Century Computing

Choates-Workman, Mary,
SOLIPSYS

Chu, Richard,

Lockheed Martin Corp.

Chung, John,

Computer Sciences Corp.

Collins, Miguel,

Computer Sciences Corp.

Condon, Steven E.,

Computer Sciences Corp.

Cook, John F.,

NASA/GSFC

Cooke, Robert,
NSWC

Corbin, Genie,

Social Security
Administration

Crispell, Michele,
SATC

Cuesta, Ernesto,

Computer Sciences Corp.

Cummings, Cheri,
Naval Center for Cost

Analysis

Daugherty, Marie L.,

Intermetrics, Inc.

Dawson, Jim,
Bell Atlantic

Decker, William J.,

Computer Sciences Corp.

Dhama, Harpal,

The MITRE Corp.

Dominguez, Alfonso,

Logicon Syscon

Dowen, Andrew Z.,

Jet Propulsion Lab

Dudash, Ed,

Naval Surface Warfare

Center

Eberstein,Igor,
NASA/GSFC

Eickelmann,Nancy,
NASA 1V&V

Ekros,Jens-Peder,
LinkopingUniversity-
Sweden

Elder,MatthewC.,
Universityof Virginia

Emery,DanielN.,
ComputerSciencesCorp.

Escobar,Francisco,
DatabasePlatforms,Inc.

Eubank,PaulJ.,
IRS

Fagan,DavidJ.,
DCMC-Northrop
Grumman

Feather,Martin S.,
JetPropulsionLab

Fernandes,Vernon,
ComputerSciencesCorp.

Fike, Sherri,
Ball Aerospace

Freitas,RobertL.,
NASA/GSFC

Fu,Chien-Cheng,
ComputerSciencesCorp.

Futcher,JosephM.,
NavalSurfaceWarfare
Center

Gardner,Michael,
Boeing

Garnett,PaulD.,
MountainState
InformationSystems,Inc.

Garrett,Don,
Dept.of Commerce/
NOAA/NWS

Gaston,Ralph,
ComputerSciencesCorp.

George,LeeC.,
LockheedMartin

Godfrey,Sally,
NASA/GSFC

Goodman,H. Alan,
TextronSystemsCorp.

Gopalan,VenkatR.,
DynCorp

Gottlieb,Jordan,
SES,Inc.

Gresko,Tom,
SES,Inc.

Gross,Stephen,
TheMITRE Corp.

Haddad,Maliha,
AmericanUniversity

Hair,Bruce,
OAO Corp.

Hammer,Theodore F.,
NASA/GSFC

Hammons, Matthew A.,

TRW, Inc.

Handler, Eugene,

TRW

Harris, Chi Cha,

DCMC-Northrop
Grumman

Harris, Jeffery,

Computer Sciences Corp.

Heasty, Richard,

Computer Sciences Corp.

Hebert, Ken,

Integrated Computer

Engineering, Inc.

Hendrick, Robert B.,

Computer Sciences Corp.

Henshaw, Clark,
NSWCDD

Heyden, Michael,
Intermetrics

Holden, James J.,

PYXIS Systems

International, Inc.

Holmes, Joseph A.,
1RS

Holt, Timothy D.,
TRW

Houchens, Connie M.,

NASA/GSFC

Hull, Larry,
NASA/GSFC

Husk, Steven M.,

Boeing Information
Services

Huy, Frank, D. N.

American, Inc.

Iskow, Lawrence,

U.S. Census Bureau

Jamison, Donald,

NASA/GSFC

Jeletic, Jim,

NASA/GSFC

Jeletic, Kellyann,
NASA/GSFC

Jepsen, Paul L.,

Jet Propulsion Lab

Jing, Yin,

Computer Sciences Corp.

Johnson, Pamela,

Naval Center for Cost

Analysis

Johnson, Pat A.,
NASA/GSFC

Jordano, Tony J.,
SAIC

Joseph, Sahji,
TRW

Juristo, Natalia,
Universidad Politecnica

de Madrid

Kassebaum, Kass,

Process & Change

Management

Kasser, Joe,

University of Maryland

Kea, Howard E.,

NASA/GSFC

Kelley, Ken,
Consultant

Kelly, JohnC.,
JetPropulsionLab

Kelly, Michael,
ComputerSciencesCorp.

Kelly, William,
NASA/GSFC

KempGreenley,Kathryn
NASA IV&V Facility

Kester,RushW.,
AdaSoft

Kidd, LudieM.,
NASA/GSFC

Kierk, Isabella,
JetPropulsionLab

King, Theo E.,

Computer Sciences Corp.

Kirk, James A.,

American Century
Investments

Knight, John C.,

University of Virginia

Koslosky, Anne Marie,
NASA/GSFC

Kraft, Steve,

NASA/GSFC

Kuhn, Rick,
NIST

Kurs, Claire Z.,

Computer Sciences Corp.

Kutt, Peter H.,

Computer Sciences Corp.

Labossiere, Pamela,

Computer Sciences Corp.

Landis, Linda C.,

Computer Sciences Corp.

Lane, Allan C.,

[No Organization

Registered]

Larrabee, Robert C.,
ARINC/Pax River

Lawson, Carmen,

Aquas, Inc.

Leach, Ronald J.,

Howard University

Lear, Ronald D.,

Maryland Software

Industry Consortium

Levitt, David S.,

Computer Sciences Corp.

Lipsett, Bill,
IRS

Liu, Donald T.,

TRW

Lott, Christopher M.,
BELLCORE

Loving, Jr., Calvin E.,

Dyncorp

Lovisa, Robert P.,

Computer Sciences Corp.

Lowell, Kevin J.,

Raytheon ITSS/USGS
EROS Data Center

Lubelczyk, Jeffrey T.,
NASA/GSFC

Ludford, Joe,
White Hart Associates

Lue, Yvonne,

Computer Sciences Corp.

Luettgen, Gerald,
NASA/LaRC

MacKenzie, Garth R.,

University of Maryland

Manley, John H.,

University of Pittsburgh

Marciniak, John J.,
Marciniak & Associates

Mashariki, Amen,

Howard University

Maury, Jesse,

Omitron, Inc.

Maymir-Ducharme, Fred
Lockheed Martin

McClinton, Arthur,

MITRETEK Systems

McComas, David,

NASA/GSFC

McDonough, Dick,
WVHTC Foundation

McGarry, Frank E.,

Computer Sciences Corp.

Meyers, Akiko E.,

Computer Sciences Corp.

Mitchell, James P.,

TRW

Morisio, Maeurizio,

University of Maryland

Murray, Henry,
NASA/GSFC

Myers, Philip I.,

Computer Sciences Corp.

Nakano, Luis G.,

University of Virginia

Nestlerode, Howard,

Unisys Corp.

Nikora, Allen P.,

Jet Propulsion Lab

Norcio, Tony F.,

University of Maryland-
Baltimore Co.

O'Donnell, Charlie.,

ECA, Inc.

O'Mahony, Sheryl-Jean,
USAISSDCW

O'Mary, George W.,

The Boeing Company

O'Neill, Don,

Consultant

Obenza, Ray,

Software Engineering
Institute

Oliveros, Alejandro,
Universidad de la

Tiatanza

Ott, Inhwan,

Computer Sciences Corp

Pajerski, Rose,
Fraunhofer Center-

Maryland

Parizer,MichaelS.,
SATC

Parra,Amy T.,
ComputerSciencesCorp.

Patterson,JanineY.,
LockheedMartin Corp.

Pavnica, Paul,

Treasury - FinCEN

Peltier, Daryl A.,
NASA/JSC

Penix, John,
NASA/Ames Research

Center

Peterson, Ivars,

Science News

Pollizzi, III, Joseph A.,

Space Telescope Science
Institute

Popadiuk, Larisa C.,
SAIC

Quarles, Steve,

Computer Sciences Corp.

Ray, Keith W.,

Ki Solutions Consulting

Reid, Jon,

Computer Sciences Corp.

Reid, Mike,

Computer Sciences Corp.

Reifer, Donald,

Reifer Consultants, Inc.

Rohr, John A.,

Jet Propulsion Lab

Rosenberg, Linda H.,

SATC Unisys

Roy, Dan M.,
STP&P

Rus, Ioana,

Fraunhofer Center

Maryland

Russell, Gabriella,

Dept. of Commerce

Samson, Don,

Software Process

Technologies

Schleicher, Susan,

NSWC

Schneider, Frank L.,

Jet Propulsion Lab

Schulmeyer, Gordon G.,

PYXIS Systems

International, Inc.

Schultz, David,

Computer Sciences Corp.

Seaman, Carolyn B.,

University of Maryland-
Baltimore Co.

Sharma, Jagdish,
NOAA

Shaw, Michele A.,
OAO

Shell, Elaine,

NASA/GSFC

Shull, Forrest,

University of Maryland

Sire, Edward R.,

Loyola College

Smith, David,
SATC

Smith, Donald,
ManTech International

Corp.

Smith, George F.,

[No Organization

Registered]

Smith, Vivian A,,
FAA

Snell, Scott,

Computer Sciences Corp.

Spence, Bailey,

Computer Sciences Corp.

Spivey, Cynthia M.,
NASA/GSFC

Squires, Burton E.,
Consultant

Stapko, Ruth,
SATC

Stark, Michael,

NASA/GSFC

Steinberg, Sandee,

Computer Sciences Corp.

Strauss, Dan,

Social Security
Administration

Subotic, Anders,

Linkoping University

Sykes, Marl,

Computer Sciences Corp.

Tesoriero, Roseanne,

University of Mary land

Thompson, Sid,

Unisys Corp.

Thornton, Thomas H.,

Jet Propulsion Lab

Travassos, Guilherme H.,

University of Maryland

Trimble, John,

Howard University

Tsagos, Dinos,
DoD

Vane-Harris, Tarik,

Howard University

Vu, Tien-Nhat,
Erricsson

Communications

Waligora, Sharon R.,

Computer Sciences Corp.

Wallace, Dolores R.,
NIST

Walsh, Chip,
IRS

Walter, Stephen O.,

Computer Sciences Corp.

Washington, LaVerne B.,

DCMC-Northrop
Grumman

Webby, Richard G.,

University of Maryland

Wells,Donna,
UnisysCorp.

Wetzel,PaulE.,
QSI

Whitesell,StevenA.,
ComputerSciencesCorp.

Wilson,RobertK.,
JetPropulsionLab

Wortman,Kristin,
ComputerSciencesCorp.

Wyatt, ValerieS.,
MountainState
InformationSystems,Inc.

Wynne,Denise,
NASD

Yakimovitch,Danil,
Universityof Maryland

Yin, Meng-Lai,
RaytheonSystemsCo.

Youman,Charles,
Blue CrossBlue Shield
NCA

Zelkowitz,Mary,
Universityof Maryland

Zhang,Zhijun,
Universityof Maryland

APPENDIX B m STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are organized

into two groups. The first group is composed of documents issued by the Software Engineering

Laboratory (SEL) during its research and development activities. The second group includes

materials that were published elsewhere but pertain to SEL activities. The Annotated

Bibliography of Software Engineering Laboratory Literature contains an abstract for each

document and is available via the SEL Products Page at http://sel.gsfc.nasa.gov/doc-

st/docs/bibannot/contents.htm.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,

September 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop, September

1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer

and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Revision 3),

W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations, K. Freburger and

V. R. Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in

the Goddard Space Flight Center (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop, November
1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R) System

Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-005, A Study of the Musa Reliability Model A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop, November

1980

SEL-80-007, An Appraisal of Selected Cost�Resource Estimation Models for Software Systems,

J. F. Cook and F. E. McGarry, December 1980

SEL-99-001

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,

V. R. Basili, 1980

SEL-81-011, Evaluating Software Development by Analysis of Change Data, D. M. Weiss,

November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of Medium

Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, December 198 I

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engineering

Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., August

1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Methodology for

Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora, F. E.

McGarry, et al., June 1992

SEL-81-305SPI, Ada Developers" Supplement to the Recommended Approach, R. Kester and

L. Landis, November 1993

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,

D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers." Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop, December

1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From the

Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description

(Revision/), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, M. G. Rohleder,

and F. E. McGarry, October 1983

SEL-82-1306, Annotated Bibliography of Software Engineering Laboratory Literature, D.

Kistler, J. Bristow, and D. Smith, November 1994

SEL-83-001, An Approaeh to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, et

al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D. N. Card, F. E. McGarry,

G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-99-001

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop, November

1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revision 1),

C. W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Laboratory

(SEL), W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop, November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision I), L. Landis,

F. E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card, R. W. Selby, Jr.,

F. E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray

Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies. Testing, CLEANROOM, and Metrics,

R. W. Selby, Jr. and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F. McGarry, and

C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop, December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics SoJhcare Development, R. Wood

and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M. Stark,

August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE) Tutorial,

J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers. Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop, December
1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software

Development, S. Perry et al., March 1987

SEL-87-002, Ada ® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM), W. W. Agresti,
June 1987

SEL-99-001

SEL-87-004, Assessing the Ada ® Design Process and Its Implications." A Case Study,

S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop, December
1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle, L.

Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers." Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase Analysis,

K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop, November

1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study, S. Godfrey and

C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/

Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry, November

1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/Goddard,

C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop, November
1989

SEL-89-008, Proceedings of the Second NASA Ada Users'Symposium, November 1989

SEL-89-103, Software Management Environment (SME) Concepts and Architecture (Revision 1),

R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-301 Software Engineering Laboratory (SEL) Database Organization and User's Guide

(Revision 3), L. Morusiewicz, February 1995

SEL-90-001 Database Access Manager for the Software Engineering Laboratory (DAMSEL)

User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002 The Cleanroom Case Study in the Software Engineering Laboratory: Project

Description and Early Analysis, S. Green et al., March 1990

SEL-90-003 A Study of the Portability of an Ada System in the Software Engineering

Laboratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004 Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experiment

Summary, T. McDermott and M. Stark, September 1990

SEL-99-001

SEL-92-002,

Database, G.

SEL-92-003,

SEL-92-004,

1992

SEL-93-001,

SEL-90-005, Collected Software Engineering Papers. Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop, November
1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Management

Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,

E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model, S. Green,

November 1991

SEL°91-005, Collected Software Engineering Papers." Volume IX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop, December
1991

SEL-91 - 102, Software Engineering Laboratory (SEL) Data and Information Policy (Revision 1),

F. McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler and

K. Jeletic, January 1992

Data Collection Procedures for the Software Engineering Laboratory (SEL)

Heller, J. Valett, and M. Wild, March 1992

Collected Software Engineering Papers." Volume X, November 1992

Proceedings of the Seventeenth Annual Software Engineering Workshop, December

Collected Software Engineering Papers: Volume XI, November 1993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie, M. Stark, et

al., November 1993

SEL-93-003, Proceedings of the Eighteenth Annual Software Engineering Workshop, December
1993

SEL-94-001, Software Management Environment (SME) Components and Algorithms,

R. Hendrick, D. Kistler, and J. Valett, February 1994

SEL-94-003, C Style Guide, J. Doland and J. Valett, August 1994

SEL-94-004, Collected Software Engineering Papers: Volume XII, November 1994

SEL-94-005, An Overview of the Software Engineering Laboratory, F. McGarry, G. Page, V. R.

Basili, et al., December 1994

SEL-94-006, Proceedings of the Nineteenth Annual Software Engineering Workshop, December
1994

SEL-99-001

SEL-94-102, Software Measurement Guidebook (Revision 1), M. Bassman, F. McGarry,

R. Pajerski, June 1995

SEL-95-001, Impact of Ada in the Flight Dynamics Division at Goddard Space Flight Center,

S. Waligora, J. Bailey, M. Stark, March 1995

SEL-95-003, Collected Software Engineering Papers: Volume Xlll, November 1995

SEL-95-004, Proceedings of the Twentieth Annual Software Engineering Workshop, December
1995

SEL-95-102, Software Process Improvement Guidebook (Revision 1), K. Jeletic, R. Pajerski,

C. Brown, March 1996

SEL-96-001, Collected Software Engineering Papers. Volume XIV, October 1996

SEL-97-001, Guide To Software Engineering Laboratory Data Collection And Reporting,

September 1997

SEL-97-002, Collected Software Engineering Papers." Volume XV, October 1997

SEL-98-001, SEL COTS Study Phase 1 - Initial Characterization Study Report, A. Parra, August
1998

SEL-99-00 l, Collected Software Engineering Papers." Volume XVI, February 1999

SEL-RELATED LITERATURE

l°Abd-EI-Hafiz, S. K., V. R. Basili, and G. Caldiera, "Towards Automated Support for

Extraction of Reusable Components", Proceedings of the IEEE Conference on Software

Maintenance-1991 (CSM 91), October 1991

15Abd-E1-Hafiz, S. K., V. R. Basili, "A Knowledge-Based Approach to the Analysis of Loops",

IEEE Transactions on Software Engineering, May 1996

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Satellite

Simulation: A Case Study", Proceedings of the First International Symposium on Ada for the

NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Measuring Sot_ware Technology", Program

Transformation and Programming Environments. New York: Springer-Verlag, 1984

1Bailey, J. W. and V. R. Basili, "A Meta-Model for Software Development Resource

Expenditures", Proceedings of the Fifth International Conference on Software Engineering. New

York: IEEE Computer Society Press, 1981

8Bailey, J. W. and V. R. Basili, "Software Reclamation: Improving Post-Development

Reusability", Proceedings of the Eighth Annual National Conference on Ada Technology, March
1990

l°Bailey, J. W. and V. R. Basili, "The Software-Cycle Model for Re-Engineering and Reuse",

Proceedings of the A CM Tri-Ada 91 Conference, October 1991

SEL-99-001

IBasili, V. R., "Models and Metrics for Software Management and Engineering", ASME

Advances in Computer Technology, January 1980, vol. 1

Basili V. R., Tutorial on Models and Metrics for Software Management and Engineering. New

York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology", Proceedings of the First

Pan-Pacific Computer Conference, September 1985

7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of Maryland,

Technical Report TR-2244, May 1989

7Basili V. R., Software Development: A Paradigm for the Future, University of Maryland,

Technical Report TR-2263, June 1989

8Basili. V. R., "Viewing Maintenance of Reuse-Oriented Software Development", IEEE

Software, January 1990

13Basili, V. R., "The Experience Factory and Its Relationship to Other Quality Approaches",

Advances in Computers, vol. 41, Academic Press, Incorporated, 1995

14Basili, V. R., "Evolving and Packaging Reading Technologies", Proceedings of the Third

International Conference on Achieving Quality in Software, Florence, Italy, January 1996

14Basili, V. R., "The Role of Experimentation in Software Engineering: Past, Current, and

Future", Proceedings of the Eighteenth Annual Conference on Software Engineering (ICSE-18),

March 1996

16Basili, V. R., "Evolving and Packaging Reading Technologies", Journal of Systems and

Software, 1997, 38:3 - 12

l Basili, V. R. and J. Beane, "Can the Parr Curve Help With Manpower Distribution and

Resource Estimation Problems?", Journal of Systems and Software, February 1981, vol. 2, no. 1

13Basili, V. R., L. Briand, and W. L. Melo, A Validation of Object-Oriented Design Metrics,

University of Maryland, Computer Science Technical Report, CS-TR-3443, UMIACS-TR-95-40,

April 1995

15Basili, V. R., L. C. Briand and W. L. Melo, "A Validation of Object-Oriented Design Metrics

as Quality Indicators", 1EEE Transactions on Software Engineering, October 1996

15Basili, V. R., L. C. Briand, and W. L. Melo, "How Reuse Influences Productivity in Object-

Oriented Systems, Communications of the A CM, October 1996

14Basili, V. R., G. Calavaro, G. Iazeolla, "Simulation Modeling of Software Development

Processes", 7th European Simulation Symposium (ESS '95), October 1995

13Basili, V. R. and G. Caldiera, The Experience Factory Strategy and Practice, University of

Maryland, Computer Science Technical Report, CS-TR-3483, UMIACS-TR-95-67, May 1995

9Basili, V. R., G. Caldiera, and G. Cantone, "A Reference Architecture for the Component

Factory", A CM Transactions on Software Engineering and Methodology, January 1992

SEL-99-001

10Basili, V. R., G. Caldiera, F. McGarry, et al., "The Software Engineering Laboratory--An

Operational Software Experience Factory", Proceedings of the Fourteenth International

Conference on Software Engineering (1CSE 92), May 1992

]SBasili, V. R., S. E. Condon, K. E1 Emam, R. B. Hendrick and W. L. Melo, "Characterizing and

Modeling the Cost of Rework in a Library of Reusable Software Components", International

Conference on Software Engineering (ICSE-19), May 1997

l Basili, V. R. and K. Freburger, "Programming Measurement and Estimation in the Software

Engineering Laboratory", Journal of Systems and Software, February 1981, vol. 2, no. 1

12Basili, V. R. and S. Green, "Software Process Evolution at the SEL", IEEE Software, July

1994, pp. 58 - 66

14Basili, V. R., S. Green, O. Laitenberger, F. Shull, S. Sorumgard, and M. Zelkowitz, "The

Empirical Investigation of Perspective-Based Reading", University of Maryland, Computer

Science Technical Report, CS-TR-3585, UMIACS-TR-95-127, December 1995

3Basili, V. R. and N. M. Panlilio-Yap, "Finding Relationships Between Effort and Other

Variables in the SEL", Proceedings of the International Computer Software and Applications

Conference, October 1985

4Basili, V. R. and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in the SEL

Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R. and B. T. Perricone, "Software Errors and Complexity: An Empirical

Investigation", Communications of the A CM, January 1984, vol. 27, no. 1

lBasili, V. R. and T. Phillips, "Evaluating and Comparing Software Metrics in the Software

Engineering Laboratory", Proceedings of the ACM SIGMETRICS Symposium/Workshop. Quality

Metrics, March 1981

3Basili, V. R. and C. L. Ramsey, "ARROWSMITH-P--A Prototype Expert System for Software

Engineering Management", Proceedings of the IEEE/MITRE Expert Systems in Government

Symposium, October 1985

Basili, V. R. and J. Ramsey, Structural Coverage of Functional Testing, University of Maryland,

Technical Report TR- 1442, September 1984

Basili, V. R. and R. Reiter, "Evaluating Automatable Measures for Software Development",

Proceedings of the Workshop on Quantitative Software Models for Reliability, Complexity, and

Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R. and H. D. Rombach, "Tailoring the Software Process to Project Goals and

Environments", Proceedings of the 9th International Conference on Software Engineering,

March 1987

5Basili, V. R. and H. D. Rombach, "TAME: Tailoring an Ada Measurement Environment",

Proceedings of the Joint Ada Conference, March 1987

SEL-99-001

5Basili, V. R. and I4. D. Rombach, "TAME: Integrating Measurement Into Software

Environments", University of Maryland, Technical Report TR- 1764, June 1987

6Basili, V. R. and H. D. Rombach, "The TAME Project: Towards Improvement-Oriented

Software Environments", IEEE Transactions on Software Engineering, June 1988

7Basili, V. R. and H. D. Rombach, Towards A Comprehensive Framework for Reuse. A Reuse-

Enabling Software Evolution Environment, University of Maryland, Technical Report TR-2158,

December 1988

8Basili, V. R. and H. D. Rombach, Towards A Comprehensive Framework for Reuse." Model-

Based Reuse Characterization Schemes, University of Maryland, Technical Report TR-2446,

April 1990

9Basili, V. R. and H. D. Rombach, "Support for Comprehensive Reuse", Software Engineering

Journal, September 1991

3Basili, V. R. and R. W. Selby, Jr., "Calculation and Use of an Environment's Characteristic

Software Metric Set", Proceedings of the Eighth International Conference on Software

Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R. and R. W. Selby, "Comparing the Effectiveness of Software Testing Strategies",

IEEE Transactions on Software Engineering, December 1987

3Basili, V. R. and R. W. Selby, Jr., "Four Applications of a Software Data Collection and

Analysis Methodology", Proceedings of the NA TO Advanced Study Institute, August 1985

5Basili, V. R. and R. Selby, "Comparing the Effectiveness of Software Testing Strategies", IEEE

Transactions on Software Engineering, December 1987

9Basili, V. R. and R. W. Selby, "Paradigms for Experimentation and Empirical Studies in

Software Engineering", Reliability Engineering and System Safety, January 1991

4Basili V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software Engineering",

IEEE Transactions on Software Engineering, July 1986

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across

FORTRAN Projects", IEEE Transactions on Software Engineering, November 1983

2Basili, V. R. and D. M. Weiss, A Methodology for Collecting Valid Software Engineering Data,

University of Maryland, Technical Report TR- 1235, December 1982

3Basili, V. R. and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering

Data", IEEE Transactions on Software Engineering, November 1984

1Basili, V. R. and M. V. Zelkowitz, "The Software Engineering Laboratory: Objectives",

Proceedings of the Fifteenth Annual Conference on Computer Personnel Research, August 1977

Basili, V. R. and M. V. Zelkowitz, "Designing a Software Measurement Experiment",

Proceedings of the Software Life Cycle Management Workshop, September 1977

SEL-99-001

lBasili, V. R. and M. V. Zelkowitz, "Operation of the Software Engineering Laboratory",

Proceedings of the Second Software Life Cycle Management Workshop, August 1978

lBasili, V. R. and M. V. Zelkowitz, "Measuring Software Development Characteristics in the

Local Environment", Computers and Structures, August 1978, vol. 10

Basili, V. R. and M. V. Zelkowitz, "Analyzing Medium Scale Software Development",

Proceedings of the Third International Conference on Software Engineering. New York: IEEE

Computer Society Press, 1978

13Basili, V. R., M. Zelkowitz, F. McGarry, G. Page, S. Waligora, and R. Pajerski, "SEL's

Software Process-Improvement Program", 1EEE Software, vol. 12, no. 6, November 1995,

pp. 83 - 87

12Bassman, M. J., F. McGarry, and R. Pajerski, Software Measurement Guidebook, NASA-GB-

001-94, Software Engineering Program, July 1994

9Booth, E. W. and M. E. Stark, "Designing Configurable Software: COMPASS Implementation

Concepts", Proceedings of Tri-Ada 1991, October 1991

10Booth, E. W. and M. E. Stark, "Software Engineering Laboratory Ada Performance

Study--Results and Implications", Proceedings of the Fourth Annual NASA Ada User's

Symposium, April 1992

10Briand, L. C. and V. R. Basili, "A Classification Procedure for the Effective Management of

Changes During the Maintenance Process", Proceedings of the 1992 IEEE Conference on

Software Maintenance (CSM 92), November 1992

]°Briand, L. C., V. R. Basili, and C. J. Hetmanski, "Providing an Empirical Basis for Optimizing

the Verification and Testing Phases of Software Development", Proceedings of the Third IEEE

International Symposium on Software Reliability Engineering (ISSRE 92), October 1992

l lBriand, L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with

Optimized Set Reduction for Identifying High Risk Software Components, University of

Maryland, Technical Report TR-3048, March 1993

]2Briand, L. C., V. R. Basili, Y. Kim, and D. R. Squier, "A Change Analysis Process to

Characterize Software Maintenance Projects", Proceedings of the International Conference on

Software Maintenance, Victoria, British Columbia, Canada, September 19 - 23, 1994, pp. 38 - 49

9Briand, L. C., V. R. Basili, and W. M. Thomas, A Pattern Recognition Approach for Software

Engineering Data Analysis, University of Maryland, Technical Report TR-2672, May 1991

14Briand, L., V. R. Basili, S. Condon, Y. Kim, W. Melo and J. D. Valett, "Understanding and

Predicting the Process of Software Maintenance Releases", Proceedings of the Eighteenth Annual

Conference on Software Engineering (ICSE-18), March 1996

14Briand, L., Y. Kim, W. Melo, C. B. Seaman, V. R. Basili, "Qualitative Analysis for

Maintenance Process Assessment", University of Maryland, Computer Science Technical Report,

CS-TR-3592, UMIACS-TR-96-7, January 1996

SEL-99-001

16Briand, L., Y. Kim, W. Melo, C. Seaman, and V. R. Basili, Q-MOPP: Qualitative Evaluation

of Maintenance Organizations, Processes and Products, Journal of Software Maintenance."

Research and Practice, 10, 249- 278 1998

13Briand, L., W. Melo, C. Seaman, and V. R. Basili, "Characterizing and Assessing a Large-

Scale Software Maintenance Organization", Proceedings of the 17th International Conference on

Software Engineering, Seattle, Washington, U.S.A., April 23 - 30, 1995

l lBriand, L. C., S. Morasca, and V. R. Basili, "Measuring and Assessing Maintainability at the

End of High Level Design", Proceedings of the 1993 IEEE Conference on Software Maintenance

(CSM 93), November 1993

12Briand, L., S. Morasca, and V. R. Basili, Defining and Validating High-Level Design Metrics,

University of Maryland, Computer Science Technical Report, CS-TR-3301, UMIACS-TR-94-75,

June 1994

13Briand, L., S. Morasca, and V. R. Basili, Property-Based Software Engineering Measurement,

University of Maryland, Computer Science Technical Report, CS-TR-3368, UMIACS-TR-94-

119, November 1994

13Briand, L., S. Morasca, and V. R. Basili, Goal-Driven Definition of Product Metrics Based on

Properties, University of Maryland, Computer Science Technical Report, CS-TR-3346,

UMIACS-TR-94-106, December 1994

]SBriand, L., S. Morasca, and V. R. Basili, "Property-Based Software Engineering Measurement,

IEEE Transactions on Software Engineering, January 1996

15Briand, L., S. Morasca, and V. R. Basili, Response to: Comments on "Property-Based Software

Engineering Measurement: Refining the Additivity Properties", IEEE Transactions on Software

Engineering, March 1997

l lBriand, L. C., W. M. Thomas, and C. J. Hetmanski, "Modeling and Managing Risk Early in

Software Development", Proceedings of the Fifteenth International Conference on Software

Engineering (ICSE 93), May 1993

5Brophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-Oriented

Design Methods", Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the

Implementation Phase of a Large Ada Project", Proceedings of the Washington Ada Technical

Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size", Computer

Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estimation",

Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D. N., "A Software Technology Evaluation Program", Annais do XVIII Congresso

Nacional de Informatica, October 1985

SEL-99-001

5Card, D. N. and W. W. Agresti, "Resolving the Software Science Anomaly", Journal of Systems

and Software, 1987

6Card, D. N. and W. W. Agresti, "Measuring Software Design Complexity", Journal of Systems

and Software, June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical Study of Software Design

Practices", IEEE Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering View of

Flight Dynamics Analysis System", Parts I and II, Computer Sciences Corporation, Technical

Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules",

Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D. N., F. E. McGarry, and G. T. Page, "Evaluating Software Engineering Technologies",

IEEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization",

Proceedings of the Eighth International Conference on Software Engineering. New York: IEEE

Computer Society Press, 1985

IChen, E. and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engineering

Methodologies", Proceedings of the Fifth International Conference on Software Engineering.

New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for Assessing

Software Prototypes", A CM Software Engineering Notes, July 1986

15Condon, S., R. Hendrick, M. E. Stark, W. Steger, "The Generalized Support Software (GSS)

Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at

Goddard Space Flight Center", Addendum to the Proceedings of the Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA 96), San Jose,

California, U.S.A., October 1996

15Devanbu, P., S. Karstu, W. L. Melo and W. Thomas, "Analytical and Empirical Evaluation of

Software Reuse Metrics, Proceedings of the 18th International Conference on Software

Engineering (1CSE-18), March 1996

2Doerflinger, C. W. and V. R. Basili, "Monitoring Software Development Through Dynamic

Variables", Proceedings of the Seventh International Computer Software and Applications

Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of Maryland,

Technical Report TR- 1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S. and C. Brophy, "Experiences in the Implementation of a Large Ada Project",

Proceedings of the 1988 Washington Ada Symposium, June 1988

SEL-99-001

5Jeffery, D. R. and V. R. Basili, Characterizing Resource Data. A Model for Logical Association

of Software Data, University of Maryland, Technical Report TR-1848, May 1987

6Jeffery, D. R. and V. R. Basili, "Validating the TAME Resource Data Model", Proceedings of

the Tenth International Conference on Software Engineering, April 1988

16Kontio, J., The Riskit Method for Software Risk Management, Version 1.00, University of

Maryland, Computer Science Technical Report, CS-TR-3782, UMIACS-TR-97-38, (Date)

16Kontio, J. and V. R. Basili, Empirical Evaluation of a Risk Management Method, SEI

Conference on Risk Management, 1997

15Kontio, J., G. Caldiera, and V. R. Basili, "Defining Factors, Goals and Criteria for Reusable

Component Evaluation", CASCON '96 Conference, November 1996

15Kontio, J., H. Englund, and V. R. Basili, Experiences from an Exploratory Case Study with a

Software Risk Management Method, Computer Science Technical Report, CS-TR-3705,

UMIACS-TR-96-75, August 1996

15Lanubile, F., "Why Software Reliability Predictions Fail", IEEE Software, July 1996

]6Lanubile, F., "Empirical Evaluation of Software Maintenance Technologies", Empirical

Software Engineering, 2, 97-108, 1997

l lLi, N. R. and M. V. Zelkowitz, "An Information Model for Use in Software Management

Estimation and Prediction", Proceedings of the Second International Conference on Information

Knowledge Management, November 1993

5Mark, L. and H. D. Rombach, A Meta Information Base for Software Engineering, University of

Maryland, Technical Report TR-1765, July 1987

6Mark, L. and H. D. Rombach, "Generating Customized Software Engineering Information

Bases From Software Process and Product Specifications", Proceedings of the 22nd Annual

Hawaii International Conference on System Sciences, January 1989

5McGarry, F. E. and W. W. Agresti, "Measuring Ada for Software Development in the Software

Engineering Laboratory (SEL)", Proceedings of the 21st Annual Hawaii International

Conference on System Sciences, January 1988

7McGarry, F., L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production Software

Environment", Proceedings of the Sixth Washington Ada Symposium (WADAS), June 1989

13McGarry, F., R. Pajerski, G. Page, et al., Software Process Improvement in the NASA Software

Engineering Laboratory, Carnegie-Mellon University, Software Engineering Institute, Technical

Report CMU/SEI-94-TR-22, ESC-TR-94-022, December 1994

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource Quality on

the Software Development Process and Product", Proceedings of the Hawaiian International

Conference on System Sciences, January 1985

SEL-99-001

15Morasca, S., L. C. Briand, V. R. Basili, E. J. Weyuker and M. V. Zelkowitz, Comments on

"Towards a Framework for Software Measurement Validation", IEEE Transactions on Software

Engineering, March 1997

3page, G., F. E. McGarry, and D. N. Card, "A Practical Experience With Independent

Verification and Validation", Proceedings of the Eighth International Computer Software and

Applications Conference, November 1984

12porter, A. A., L. G. Votta, Jr., and V. R. Basili, Comparing Detection Methods for Software

Requirements Inspections." A Replicated Experiment, University of Maryland, Technical Report
TR-3327, July 1994

5Ramsey, C. L. and V. R. Basili, "An Evaluation of Expert Systems for Software Engineering

Management", IEEE Transactions on Software Engineering, June 1989

3Ramsey, J. and V. R. Basili, "Analyzing the Test Process Using Structural Coverage",

Proceedings of the Eighth International Conference on Software Engineering. New York: IEEE

Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on

Maintainability", IEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., "Design Measurement: Some Lessons Learned", IEEE Software, March 1990

9Rombach, H. D., "Software Reuse: A Key to the Maintenance Problem", Butterworth Journal of

Information and Software Technology, January/February 1991

6Rombach, H. D. and V. R. Basili, "Quantitative Assessment of Maintenance: An Industrial Case

Study", Proceedings From the Conference on Software Maintenance, September 1987

6Rombach, H. D. and L. Mark, "Software Process and Product Specifications: A Basis for

Generating Customized SE Information Bases", Proceedings of the 22nd Annual Hawaii

International Conference on System Sciences, January 1989

7Rombach, H. D. and B. T. Ulery, Establishing a Measurement Based Maintenance Improvement

Program." Lessons Learned in the SEL, University of Maryland, Technical Report TR-2252, May
1989

10Rombach, H. D., B. T. Ulery, and J. D. Valett, "Toward Full Life Cycle Control: Adding

Maintenance Measurement to the SEL", Journal of Systems and Software, May 1992

14Seaman, C. B., V. R. Basili, "Communication and Organization in Software Development." An

Empirical Study", University of Maryland, Computer Science Technical Report, CS-TR-3619,

UMIACS-TR-96-23, April 1996

15Seaman, C. B, V. R. Basili, "An Empirical Study of Communication in Code Inspection",

Proceedings of 19th International Conference on Software Engineering (ICSE-19), May 1997,

pp. 96-106

16Seaman, C. B and V. R. Basili, "An Empirical Study of Communication in Code Inspections",

University of Maryland,

SEL-99-001

16Seaman, C. B, V. R. Basili, "Communication and Organization in Software Development: An

Empirical Study", IBMSystems Journal, Vol. 36, No. 4, 1997

16Seaman, C. B, V. R. Basili, The Study of Software Maintenance Organizations and Processes

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada", Proceedings of the 1987

Conference on Object-Oriented Programming Systems, Languages, and Applications, October

1987

5Seidewitz, E., "General Object-Oriented Software Development: Background and Experience",

Proceedings of the 21st Hawaii International Conference on System Sciences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life Cycle

Approach", Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X", Ada

Letters, March/April 1991

10Seidewitz, E., "Object-Oriented Programming With Mixins in Ada", Ada Letters, March/April

1992

12Seidewitz, E., "Genericity versus Inheritance Reconsidered: Self-Reference Using Generics",

Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and

Applications, October 1994

4Seidewitz, E. and M. Stark, "Towards a General Object-Oriented Software Development

Methodology", Proceedings of the First International Symposium on Ada for the NASA Space

Station, June 1986

9Seidewitz, E. and M. Stark, "An Object-Oriented Approach to Parameterized Software in Ada",

Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., "On Designing Parametrized Systems Using Ada", Proceedings of the Seventh

Washington Ada Symposium, June 1990

llStark, M., "Impacts of Object-Oriented Technologies: Seven Years of SEL Studies",

Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and

Applications, September 1993

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse",

Proceedings of TRI-Ada 1989, October 1989

5Stark, M. and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle", Proceedings

of the Joint Ada Conference, March 1987

15Stark, M., "Using Applet Magic (tm) to Implement an Orbit Propagator: New Life for Ada

Objects", Proceedings of the 14th Annual Washington Ada Symposium (WAdaS97), June 1997

]3Stark, M. and E. Seidewitz, "Generalized Support Software: Domain Analysis and

Implementation", Addendum to the Proceedings OOPSLA '94, Ninth Annual Conference,

Portland, Oregon, U.S.A., October 1994, pp. 8 - 13

SEL-99-O01

l°Straub, P. A. and M. V. Zelkowitz, "On the Nature of Bias and Defects in the Software

Specification Process", Proceedings of the Sixteenth International Computer Software and

Applications Conference (COMPSAC 92), September 1992

8Straub, P. A. and M. V. Zelkowitz, "PUC: A Functional Specification Language for Ada",

Proceedings of the Tenth International Conference of the Chilean Computer Science Society,

July 1990

7Sunazuka, T. and V. R. Basili, Integrating Automated Support for a Software Management

Cycle Into the TAME System, University of Maryland, Technical Report TR-2289, July 1989

13Thomas, W. M., A. Dells, and V. R. Basili, An Analysis of Errors in a Reuse-Oriented

Development Environment, University of Maryland, Computer Science Technical Report,

CS-TR-3424, UMIACS-TR-95-24

16Tesoriero, R., M. Zelkowitz, A Model of Noisy Software Engineering Data (Status Report),

Proceedings of the Twentieth International Conference on Software Engineering, April 19 - 25,
1998

16Tesoriero, R., M. Zelkowitz, WEBME: A Web-based tool For Data Analysis and Presentation,

IEEE internet Computing

16Thomas, W. M., A. Dells, and V. R. Basili An Analysis of Errors in a Reuse-Oriented

Development Environment, Journal of Systems Software, 38:211 - 224, 1997

10Tian, J., A. Porter and M. V. Zelkowitz, "An Improved Classification Tree Analysis of High

Cost Modules Based Upon an Axiomatic Definition of Complexity", Proceedings of the Third

IEEE International Symposium on Software Reliability Engineering (ISSRE 92), October 1992

Turner, C. and G. Caron, A Comparison of RADC and NASA/SEL Software Development Data,

Data and Analysis Center for Software, Special Publication, May 1981

10Valett, J. D., "Automated Support for Experience-Based Software Management", Proceedings

of the Second lrvine Software Symposium (ISS_92), March 1992

5Valett, J. D. and F. E. McGarry, "A Summary of Software Measurement Experiences in the

Software Engineering Laboratory", Proceedings of the 21st Annual Hawaii International

Conference on System Sciences, January 1988

14Waligora, S., J. Bailey, and Mike Stark, "The Impact of Ada and Object-Oriented Design in

NASA Goddard's Flight Dynamics Division", July 1996

3Weiss, D. M. and V. R. Basili, "Evaluating Software Development by Analysis of Changes:

Some Data From the Software Engineering Laboratory", IEEE Transactions on Software

Engineering, February 1985

5Wu, L., V. R. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software Systems",

Proceedings of the Joint Ada Conference, March 1987

SEL-99-001

IZelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects", Proceedings of

the Twelfth Conference on the Interface of Statistics and Computer Science. New York: IEEE

Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Experimental Computer Science

Research", Empirical Foundations for Computer and Information Science (Proceedings),
November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study", Proceedings of

the 26th Annual Technical Symposium of the Washington, D.C., Chapter of the ACM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development", Journal of Systems

and Software, 1988

8Zelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With Syntax

Editors", Information and Software Technology, April 1990

14Zelkowitz, M. V., "Software Engineering Technology Infusion Within NASA", IEEE

Transactions On Engineering Management, vol. 43, no. 3, August 1996

SEL-99-001

NOTES:

1This article also appears in SEL-82-004, Collected Software Engineering Papers: Volume I,

July 1982.

2This article also appears m SEL-83-003, Collected Software Engineering Papers: Volume II,

November 1983.

3This article also appears m SEL-85-003, Collected Software Engineering Papers: Volume III,
November 1985.

4This article also appears m SEL-86-004, Collected Software Engineering Papers: Volume IV,

November 1986.

5This article also appears m SEL-87-009, Collected Software Engineering Papers." Volume V,
November 1987.

6This article also appears m SEL-88-002, Collected Software Engineering Papers: Volume VI,

November 1988.

7This article also appears m SEL-89-006, Collected Software Engineering Papers." Volume VII,
November 1989.

8This article also appears in SEL-90-005, Collected Software Engineering Papers: Volume VIII,

November 1990.

9This article also appears in SEL-91-005, Collected Software Engineering Papers: Volume IX,

November 1991.

10This article also appears in SEL-92-003, Collected Software Engineering Papers: Volume X,
November 1992.

l lThis article also appears in SEL-93-001, Collected Software Engineering Papers: Volume XI,

November 1993.

12This article also appears in SEL-94-004, Collected Software Engineering Papers." Volume XI1,

November 1994.

13This article also appears in SEL-95-003, Collected Software Engineering Papers. Volume Xlll,
November 1995.

14This article also appears in SEL-96-001, Collected Software Engineering Papers: Volume XIV,

October 1996.

15This article also appears in SEL-97-002, Collected Software Engineering Papers." Volume XV,
October 1997.

16This article also appears in SEL-99-001, Collected Software Engineering Papers: Volume XVI,

March 1999.

SEL-99-001

