
o

Final Report:

Safety Analysis of FMS/CTAS

Interactions During Aircraft Arrivals

Nancy G. Leveson

December 27, 1998

This grant funded research on human-computer interaction design and

analysis techniques, using future ATC environments as a testbed. The basic

approach was to model the nominal behavior of both the automated and hu-

man procedures and then to apply safety analysis techniques to these models.

Our previous modeling language, RSML, had been used to specify the sys-

tem requirements for TCAS II for the FAA. Using the lessons learned from

this experience, we designed a new modeling language that (among other

things) incorporates features to assist in designing less error-prone human-

computer interactions and interfaces and in detecting potential HCI prob-

lems, such as mode confusion. The new language, SpecTRM-RL, uses "in-

tent" abstractions, based on Rasmussen's abstraction hierarchy, and includes

both informal (English and graphical) specifications and formal, executable

models for specifying various aspects of the system. One of the goals for our

language was to highlight the system modes and mode changes to assist in

identifying the potential for mode confusion.

Three published papers resulted from this research (see attached). The

first builds on the work of Degani on mode confusion to identify aspects

of the system design that could lead to potential hazards. We defined and

modeled modes differently than Degani and also defined design criteria for

SpecTRM-RL models. Our design criteria include the Degani criteria but

extend them to include more potential problems. In a second paper, Leveson

and Palmer showed how the criteria for indirect mode transitions could be

dUN 1 5 lggg

Ca. 9 L

applied to a mode confusion problem found in several ASRS reports for the

MD-88.

In addition, we defined a visual task modeling language that can be used

by system designers to model human-computer interaction. The visual mod-

els can be translated into SpecTRM-RL models, and then the SpecTRM-RL

suite of analysis tools can be used to perform formal and informal safety

analyses on the task model in isolation or integrated with the rest of the

modeled system.

We had hoped to be able to apply these modeling languages and analysis

tools to a TAP air/ground trajectory negotiation scenario, but the develop-

merit of the tools took more time than we anticipated.

2

Designing Automation to Reduce Operator Errors

Nancy G. Leveson

Computer Science and Engineering 5j -o 3
University of Washington

Everett Palmer

NASA Ames Research Center

Introduction

Advanced automation has been accompanied, particu-

larly in aircraft, with a proliferation of modes, where

modes define mutually exclusive sets of system behavior.

The new mode-rich systems provide flexibility and en-
hanced capabilities, but they also increase the need for

and difficulty of maintaining mode awareness. While au-

tomation has eliminated some types of operator mode-

awareness errors, it has also created the potential for

new types of mode-related problems [SW95].

After studying accidents and incidents in the new,

highly automated aircraft, Sarter and Woods have con-
cluded that certain errors are non-random and pre-

dictable [SW95]: They are the regular and predictable
consequences of a variety of identifiable factors. Al-

though these errors are accentuated by poor interface

design and gaps or misconceptions in the user's mental

model of the system, an important factor is inconsistent
automation behavior.

Sarter and Woods have identified some of these pre-

dictable error forms. Leveson et. al. [LPS97] and De-

gani [Deg96] have defined taxonomies of automation fea-
tures that lead to mode confusion. This paper describes

an approach to dealing with mode confusion errors by

first modeling blackbox software behavior and then us-

ing analysis methods and tools to assist in searching the

models for predictable error forms, i.e., for features that
contribute to operator mistakes. The analysis results

can be used to redesign the automation, to change op-

erator training and procedures, or to design appropriate

human-computer interfaces to help avoid mistakes.

The approach requires a model of the blackbox behavior

that is both formal and easily readable and reviewable

by humans. The models we use are part of the software

specifications in a methodology called SpecTRM (Speci-
fication Tools and Requirements Methodology) and thus

the analysis is done directly on the system requirements

specification and does not require extra modeling ef-

fort. SpecTRM includes a suite of analysis tools to

detect errors and potentially hazardous behavior early

in system development when tradeoffs and changes can

more easily be made. In addition to providing design

guidance, this approach might provide a way of "mea-
suring" or evaluating the cognitive demands involved

in working with specific automated devices. Hansman

has suggested that automation complexity be defined in

terms of the predictability of the automation behavior

[Hans97]. This predictability can potentially be evalu-
ated on the formal SpecTRM-RL (SpecTRM Require-

ments Language) models.

The rest of the paper provides more information about

the approach and illustrates its use on a commonly re-

ported mode confusion error called a "kill-the-capture"
bust.

Mode Confusion Analysis
Most accidents related to software behavior can be
traced back to errors or omissions in the software re-

quirements, not to implementation or coding errors

[Lev95, Lut93]. Although a great deal of effort has been
expended in software engineering on finding software

design and implementation errors, much less has been

accomplished in terms of validating requirements spec-
ifications beyond executing them for a few test cases

or showing the consistency of a formal specification
with various properties of the underlying mathemati-

cal model [HL96, HLK95]. Most of the specfication er-
rors and omissions that lead to accidents are unlikely to

be found using these techniques. The testing of any

complex software is necessarily very incomplete, and

consistency with a mathematical model does not im-
ply consistency with required properties of a real world

application.

To deal with this problem, we have specified a set of

criteria for completeness and correctness of blackbox

process-control requirements specifications that are re-

lated to safety [JLHM91, Lev95]. These criteria were
derived using real accidents and industrial experience

with process-control software, and they have been vali-

dated by experimental application to the NASA Gallileo

and Voyager software [Lut92, Lut93] and through indus-
trial use. We are contining to extend the criteria, most

recently with the goal of reducing mode confusion er-
rors, and to validate them on real software [MLR97].

Processinputs1_Controlled
variables

Actuators

Disturbances

ControlledProcess

Automated
Controller

[Intoefr_ralocms°del]

] Processoutputs
Measured

_ variables

Sensors

T Set points,Control commands

Supervisor(s)[

Figure 1: Simple Control Loop Model

Process inputsControlled
variables

Act:ato __

Disturbances

Controlled Process

Automated
Controller

Internal model
of process

Internal model

of supervisory
interface

Process outputs

--1 Measuredvariables

Sensors

Z

_isplays Contro

Supervisor(s)

Internal model

of process

Internalmodel
of controller

Figure 2: Modified Model to Account for Operator Er-
ror and Mode Confusion.

To apply the criteria, a blackbox state-machine model of
the automation behavior is required. Blackbox require-

ments specifications do not contain information about

internal design (the software design if the automated

controller is a computer) but are written strictly in

terms of externally visible inputs and outputs and the

effects of these on a model of the process being con-

trolled (see Figure 1). The process model is based on:

1. Current process state inferred from measured vari-

ables,
2. Past measured and inferred process states and vari-

ables,

3. Past outputs to actuators, and

4. Prediction of future states of the controlled process.

Accidents related to requirements (behavioral) specifi-

cation occur when the internal model of the process be-

comes inconsistent with the state of the controlled pro-

cess. This inconsistency may result from an incorrect

model being specified originally (e.g., the model does

not include basic required behavior for unusual or in-

frequently occurring cases) or from the modeled system

state being updated incorrectly during execution, per-
haps as a result of incorrect input from the sensors.

To define criteria related to mode confusion, we need to
add a model of the controller-software interface to the

automated controller. We also need to consider the su-

pervisors' internal models of the expected behavior and

state of the process and of the automated controller (see

Figure 2). Accidents in this extended model may result

from any of these models being incorrect or becoming
inconsistent with the true state of the controlled pro-

cess, the automated controller, or the supervisory inter-

face (the human-computer interface). That is, accidents
may result if any of the models are or become inconsis-

tent with the state of the thing they are modeling and
decisions or actions are made on the basis of the incor-

rect model. Criteria for correctness and safety can be

specified in terms of these formal models and checked

for particular system specifications.

Of course, we are not suggesting that it is possible to

specify human mental models. Each person may have a

different mental model of the system and the automa-

tion, and these may change over time within the same
person. In fact, operators have been found to be able to

function with multiple and inconsistent models [Luc87].

However, it is possible to state some high-level abstrac-

tions about required features of correct operator men-

tal models--for example, that particular actions on the

part of the operator will result eventually in particular

changes in the automation and/or the system.

Note that we assume here that the operator's models are

correct. This assumption will obviously not always be

true. However, our approach involves first eliminating

hazards for the ideal case. Then various types of hazard

analysis can be used to determine which types of erro-

neous models will have the most serious consequences.

The resulting information can be used for automation

design, interface design, and operator training.

A previous paper described six categories of potential

design flaws that can lead to mode confusion errors:

interface interpretation flaws, inconsistent behavior, in-

direct mode changes, operator authority limits, unin-

tended side effects, and lack of appropriate feedback

[LPS97]. The rest of this paper shows an example of

this approach for one particular common cause of mode

confusion error, i.e., indirect mode changes. The ba-

sic criteria and analysis technique is being specified for-

mally [Lev97], but we include only an informal descrip-

tion here.

Indirect Mode Change Example
Indirect mode changes occur when the automation

changes mode without an explicit instruction by the op-

erator. Such transitions may be triggered on conditions

in the controller (such as preprogrammed envelope pro-

tection) or sensor input about the state of the controlled

system (such as achievement of a target value). Indirect

mode transitions create the potential for mode confu-

sion and inadvertent activation of modes by the human

controller. For example, the human controller may not

update his or her models of the state of the process and

the state of the automation and, based on these now in-

correct models, issue an incorrect control command or

fail to issue a required command.

An example of an accident that has been attributed to

an indirect mode change occurred while an A-320 was

landing in Bangalore. In this case, the pilot selection

of a lower altitude while the automation was in the AL-

TITUDE ACQUISITION mode resulted in the activation

of the OPEN DESCENT mode. It has been speculated

that the pilots did not notice the mode annunciation

because the indirect mode change occurred during ap-

proach when the pilots were busy and they were not

expecting the change [SW95]. Another example of such

an indirect mode change in the A-320 automation in-

volves an automatic mode transition triggered when the

airspeed exceeds a predefined limit. For example, if the

pilot selects a very high vertical speed that results in

the airspeed decreasing below a particular limit, the au-

tomation will change to the OPEN CLIMB mode, which

allows the airplane to regain speed.

Palmer has described another example of a common

indirect mode transition problem called a "kill-the-

capture bust" that has been noted in many ASRS re-

ports [Pal96]. Here we show the relevant parts of a

SpecTRM-RL specification of the MD-88 control logic

a. Level at 2100 ft.

b. Enter 5000 ft.

c. Set VERT/SPD

d. Enter 255

e. Approaching
4000 ft.

f. Push IAS

g. Automatic
altitude capture

h. Adjust vertical
speed

Figure 3: Flight Mode

the Example Incident

Thrust Arm Roll Pitch

SPD I VOR ALT

186 CAP HLD

SPD ALT VOR ALT

186 CAP HLD

SPD ALT VOR VERT

186 CAP SPD

SPD ALT VOR VERT

255 CAP SPD

SPD ALT VOR VERT

255 TRK SPD

CLMP ALT VOR IAS

TRK

SPD VOR ALT

255 TRK CAP

SPD VOR VERT

255 TRK SPD

Annunciator (FMA) Displays for

and describe how the problem can be detected and fixed.

In the incident, the crew had just made a missed ap-

proach and had climbed to and leveled at 2,100 feet.

Figure 3 shows the sequence of Flight Mode Annun-

ciator (FMA) values during the incident. The crew

received the clearance to "...climb now and maintain

5,000 feet ...". The Captain set the desired altitude

to 5,000 feet, set the autopilot pitch mode to verti-

cal speed with a value of approximately 2,000 feet per

minute and the autothrottle to SPD mode with a value

of 256 knots (Figure 3(c) and (d)). Climbing through

3,500 feet, the Captain called for flaps up, and at 4,000

feet he called for slats retract and pushed the IAS but-

ton (Figure 3(f)). The pitch mode became IAS, and

the autothrottle went to CLAMP mode. At this point,

altitude capture was still armed. Three seconds later,

the autopilot automatically switched to altitude cap-

ture mode. The arm window went blank, and the pitch

window showed ALT CAP (Figure 3(g)). A tenth of a sec-

ond later, the Captain adjusted the vertical speed wheel

to a value of about 4,000 feet per minute. This speed

adjustment caused the pitch autopilot mode to switch

from altitude capture to vertical speed (Figure 3(h)).

Climbing through 4,500 feet, the FMA was as shown

in Figure 3(h), and the approaching altitude light was

on. As the altitude passed through 5,000 feet at a verti-

cal velocity of about 4,000 feet per minute, the Captain

remarked, "Five thousand. Oops, it didn't arm." He

pushed the ALT HOLD button and switched off the au-

tothrottle. The aircraft continued to climb to about

5,500 feet and the ALTITUDE-ALTITUDE voice warning
sounded repeatedly.

To identify and fix the problem, we use a formal model.

A SpecTRM-RL model has two parts: a graphical model
of the state machine and a specification of the logic on

the transitions. Figure 4 shows part of the graphical

SpecTRM-RL state machine model of the MD-88 verti-

cal control logic needed to understand the incident and

how to fix the software to avoid it. In order to keep the

model small enough to fit in the paper, only parts of

it are shown but during system engineering a complete

model would be constructed. The graphical model has
three main parts: the input-output interface (where the

supervisory interface is one part), the operating modes

of the automation itself (in this case the autoflight sys-

tem), and the process model which includes both the

process (aircraft) operating modes and models of the

aircraft components.

In the supervisory interface, square boxes denote in-

I)nts and outputs having finite state values. Circles rep-

resent numbers. Note that this model represents the
automated controller's view of the state of the inter-

face, not necessarily the real state of the controls and

displays. A complete safety analysis would evaluate if
and how discrepancies between the two could occur and

also whether such discrepancies could lead to hazardous

system states.

The state transition logic is specified in SpecTRM-RL

using a form of logic tables we call AND/OR tables. A

transition can be taken if any of the columns of the table
evaluates to true. A column evaluates to true if all the

(non-blank) rows in a column are true. Figure 5 shows

the relevant transition logic for the example.

The problem occurs because the transition to ALT CAP
mode results in a transition of the capture mode to UN-

ARMED before the altitude has actually been acquired.

Although this is annunciated to the pilot by the Arm an-

nunciator changing to blank when pitch mode changes
to ALT CAP, the absence of an indicator is well known

to be an error-prone way to notify the pilot of a mode

change.

How could this be detected from examining the logic?

In general, an indirect mode change is one that occurs

without an explicit pilot action to change the mode. The

vertical control logic for the example has three mode
transitions that do not require direct pilot input: (1)

the transition from ANY to ALT CAP, (2) the second col-

umn of the transition from ANY to ALT HOLD, i.e, when

the altitude is acquired and the pitch is in mode ALT

CAP, and (3) the second column of the transition from
ARMED to NOT ARMED. Each of these mode transitions

is triggered by a change in a controlled system variable

or by internal mode change within the automation.

We will assume that the pilot's mental model includes

a cause and effect relationship between arming the al-
titude capture and eventually (although it may not be

immediately) acquiring that altitude and holding it:

set altitude and pull ALT --* ... --* ALT HOLD.

Formal analysis will show that there is a path through

the logic starting with the pilot pulling the altitude knob

that does not result in the ALT HOLD state (specifically,
this occurs when the automation is in the modes NOT

ARMED and ALT CAP and the pilot does something that

changes the pitch mode, in this case adjusting the ver-

tical speed wheel).

One way to fix the problem is to change the transition

logic to that shown in Figure 6. Note that although the
second column of the transition table from ANY to ALT

HOLD still does not require direct pilot input, the transi-

tion is not indirect by our definition because it satisfies

the pilot model of the transition logic above. The tran-

sition from ANY to ALT CAP is still indirect, but there is

no longer a path through the vertical control logic that

violates the expected cause and effect relation between

arming the capture and capturing the altitude when it is

acquired. We note that this solution may violate other
goals or desired behaviors of the autoflight system--the

designers would have to determine this when deciding

what solution to use. In addition, a more sophisticated

solution may be required, e.g., a hysteresis factor may

need to be added to the mode transition logic to avoid

too rapid or "ping-ponging" transitions between pitch
modes.

Finding indirect mode transitions does not mean the

software must be changed. The identified criteria are

simply clues for determining where to look for potential
problems. The designers may decide that no real prob-

lem exists and make no changes or they may decide not

to change the automation but instead to make changes
in the interface design or in pilot training.

In general, it is not feasible to make all mode transitions

direct in any sophisticated automated controller. The

goal instead is to simplify the required pilot model of
the automation behavior as much as possible. In this

case, the pilot expects a direct mode transition from set-

ting a target altitude and arming the altitude capture to

eventually attaining capturing altitude, changing to ALT
HOLD mode, canceling the ARM command. Any paths in

the automation logic that will violate this assumption

will be a source of potential mode confusion, even if the

mode change is annunciated. Of course, the pilot may

have more sophisticated knowledge of the automation

logic and know that adjusting the vertical speed wheel

will cancel the previously given altitude capture com-

mand. However, ,this knowledge assumes a much more

S

U

P

E

R

V

I

S

0

R

Y

I

N

T

E

R

F

A

C

E

SUPERVISORY

MODE

CONTROLS

DISPLAYS

Manual

AP Button AutothrottleButton
Alt Hold V ert Spd IAS Button Verfi'cai Speed
Button Button wheel

¸Thrust Arm Roll Pitch

Altitude
Dial

©

OTHER INPUTS

AND OUTPUTS

(omitted for space reasons)

AUTOFLIGHT

OPERATING

MODES

Autothrottle Autopilot Thrust

_Capture _

I A_ned I
V _

[NotAted]

Arm Roll Pitch

AIRCRAFT

OPERATING MODES

I

I LevelFlight

I I I I

AIRCRAFT

COMPONENT

MODELS

Slats Flaps

t_q Unknown(

Engine Controller

OPERATING MODES

Engine Model

Figure 4: Part of the Graphical State Machine Model of the MD-88 Vertical Control Logic

PITCH

MODE

AND

OR

Pilot adjusts

V/SPD wheel

Pilot pushes
V/SPD button

RESULT:

Change Pitch annunciator to VRT SPD

I

[AP in-mode On
AND 1Pilot pushes IAS

RESULT:

Change Pitch annunciator to IAS

Autothrottle goes to CLAMP mode

AND

OR

AP in-mode On 1 1

Pitch in-mode Any

Pilot pushes HOLD

AIt acquired

In-mode ALT CAP

RESULT:

Change Pitch annunciator to ALT HOLD

AP in-mode On

Difference between MCP t.arget
I altitude, current alt, vert velocity

_ condition to start levehng off

I Capture in-mode Armed

RESULT:

Start leveling off

Change Pitch annunciator to ALT CAP

AND

CAPTURE

MODE

Armed]

[Not Armed I

Not Armed]

OR

Pitch in-mode

ALT CAP

RESULT:

Change Arm annunciator to blank

AND

Not Armed

OR

Pilot sets new higher alt]_Pilot pulls ALT

RESULT:

Change Ann annunciator to ALT

Figure 5: Transition Logic for the Pitch and Capture Modes

AND

AP in-mode On

Pitch in-mode Any

Pilot pushes HOLD

AIt acquired

Capture in-mode ARMED

RESULT:

Change Pitch annunciator to ALT HOLD

Not Armed I

OR

Pilot pushes ALT _
AND Pitch in-mode

ALT HOLD

RESULT:

Change Arm annunciator to blank

Figure 6: Revised Transition Logic for the Pitch and

Capture Modes

complex model of automation behavior on the part of

the pilot and makes the automation behavior more dif-

ficult to predict. The number of ASRS reports on this

error leads us to believe that this assumption is not re-
alistic.

Several caveats are important here. First, we are only

guessing at the MC-88 software logic on the basis of the

observed behavior. The real software specifications or

code would have to be examined to determine what logic

is actually implemented. Second, making the change we
have recommended may not be feasible (or correct) due

to other tmmodeled parts of the logic that depend on the

ARMED mode: A real development project would have

the entire logic modeled and would be able to make the

appropriate tradeoffs and design decisions.

REFERENCES

[Deg96] Degani, A. Modeling Human-Machine Sys-
tems: On Modes, Error, and Patterns of In-

teraction. Ph. D. thesis, Georgia Institute of

Technology, 1996.

[Hans97]

[HL961

Hansman, John. Personal communication.

Heimdahl, M. P. E. and N. Leveson. Com-

pleteness and consistency analysis of state-

based requirements. Transactions on Software

Engineering, June 1996.

[HLK95] Heitmeyer, C., Labaw, B., and Kiskis, D. Con-
sistency checking of SCR-style requirements

specifications. Int. Symposium on Require-

ments Engineering, York, 1995.

[JLHM91] Jaffe, M.S, Leveson, N.G., Heimdahl,
M.P.E., and Melhart, B.E.. Software require-

ments analysis for real-time process-control

systems. IEEE Transactions on Software En-

gineering, SE-17(3):241-258, March 1991.

[Lev95] Leveson, N.G. Safeware: System Safety and
Computers. Addison-Wesley Publishing Co.,
1995.

[Lev97] Leveson, Nancy G. Mode Confusion Modeling
and Analysis, in preparation.

[LPS97] Leveson, N.G., Pinnell, L.D., Sandys, S.D.,

Koga, S., and Reese, J.D. Analyzing Software
Specifications for Mode Confusion Potential.

Proc. Workshop on Human Error and System

Development, Glascow, March 1997.

[Luc87] Lucas, D.A. Mental models and new technol-
ogy. New Technology and Human Error, John

Wiley & Sons, 1987, pp. 337-340.

[Lut92] Lutz, R.R. Analyzing software requirements
errors in safety-critical, embedded systems.

Software Requirements Conference, 1992.

[Lut93] Lutz, R.R. Targeting safety-related errors dur-
ing software requirements analysis. Proc. Sig-

soft '93: Foundations of Software Engineer-

ing, 1993.

[MLR97] Modugno, F., Leveson, N.G., Reese, J.D.,
Partridge, K., and Sandys, S.D. Integrated

Safety Analysis of Requirements Specifica-

tions. Requirements Engineering Journal, to

appear.

[Pal96] Palmer, E. "oops, it didn't arm" - a case study
of two automation surprises. NASA Technical

Report, 1996.

[SW95] Sarter, N. D. and D. Woods "How in the world
did I ever get into that mode?": Mode error

and awareness in supervisory control. Human

Factors 37, 5-19.

[SW95] Sarter, N. D. and D. Woods Strong, silent,
and out-of-the-loop. CSEL Report 95-TR-01,

Ohio State University, February 1995.

Modeling Controller Tasks for Safety Analysis*

Molly Brown and Nancy G. Leveson

Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350

{molly, leveson}@cs, washington, edu

Abstract

As control systems become more complex, the use of

automated control has increased. At the same time, the

role of the human operator has changed from primary

system controller to supervisor or monitor. Safe de-
sign of the human-computer interaction becomes more

difficult.

In this paper, we present a visual task modeling lan-

guage that can be used by system designers to model

human-computer interactions. The visual models can
be translated into SpeeTRM-RL, a blackbox specifica-

tion language for modeling the automated portion of

the control system. The SpecTRM-RL suite of analysis

tools allow the designer to perform formal and infor-

mal safety analyses on the task model in isolation or
integrated with the rest of the modeled system.

1 Introduction

Increased complexity of control systems and advances

in computer technology have combined to give automa-

tion a more authoritative role in control systems. As a

result, many of these control systems rely on both hu-
man and automated controllers. For these controllers

to interact effectively, the human-computer interaction

must be carefully designed.

We began looking at these issues while working
with the Terminal Area Productivity (TAP) Project

at NASA Ames [PPC97]. The TAP Project is design-
ing terminal area procedures for air traffic using data
links in addition to voice contact to communicate tra-

jectories and routing information between the air traf-
fic controller and the aircraft.

Traditionally, HCI design has focused on the human

user's point of view: what functionality is needed to

support the tasks the human must accomplish. There

*The research described has been funded by NASA
Grant NAG-l-1894.

have been numerous models for human task analysis

developed to identify the knowledge and steps required
to perform each human task.

Unlike traditional task modeling methods that focus

on analyzing specific aspects of the HCI design, such

as user goals or knowledge representation, our model-

ing technique has a more general focus. Our technique
allows the designer to model the steps required to com-

plete the task so she can study how these steps interact

with the rest of the system. Specific environment cues

required to complete a task are modeled as conditions

on transitions between steps in a task. Depending on

the visualization created to inspect the model, the an-

alyst can focus on the knowledge needed throughout
the task, on the steps required to complete the task or

on some other model aspect of interest.

Our modeling methodology takes a system-centric

view compared to the human-centered view of other
task analysis methods. With a tighter coupling be-
tween the human and automated controllers in com-

plex systems, the human controller must be viewed as

a part of the entire system, therefore the interaction be-

tween the human and the computer should be viewed
in the context of the entire system.

Our modeling technique focuses on formally analyz-

ing a model of the controller's tasks independently and

in the context of the complete control system model.

Throughout the evolution of our method, we had three

goals:

• To create a reasonable model of the actions of the

human controller.

• To develop a model that can be formally analyzed

with respect to safety concerns.

To interface the model of the human controller tasks

with formal models of the rest of the complex sys-
tem.

To realizethesegoals,wecreateda visual task
modelinglanguagethat allowsthe analystto easily
representthe necessaryinformationaboutthe con-
troller'stasks.Thesetaskmodelscanbetranslated
into theblackboxrequirementsspecificationlanguage
SpecTRM-RLand analyzedusinga suiteof anal-
ysis tools. SpecTRM-RLwasdevelopedto model
all the componentsof controlsystems,thereforethe
SpecTRM-RLmodelof thecontrollertaskscanbein-
tegratedwith themodelof theothercomponentsin
thecontrolsystem.

Therestof thepaperisorganizedin thefollowing
way:Section2describestheSpecTRMtoolsuiteand
SpecTRM-RLmodelinglanguage;Section3 describes
ourapproachto achievingthe goalswesetfor our-
selves;Section4 explainstheexamplemodelthat we
usethroughoutthepaperto illustrateourtaskmodel-
ingmethodology;Sections5and 6describethevisual
taskmodelinglanguageandhowthesemodelsarecre-
ated;Section7 demonstrates how the safety analysis

tools can be applied to these models; Section 8 dis-

cusses other work in the area of task modeling and
analysis; and Section 9 discusses the contributions of

this work and possible future questions to explore.

2 SpecTRM

The Software Safety Group at the University of Wash-

ington has developed a methodology for software spec-
ification called SpecTRM (Specification Tools and Re-

quirements Methodology). Complex system develop-

ment relies on multiple disciplines: system engineers,

software engineers, human factors experts and ap-

plication experts. SpecTRM takes a global system

viewpoint to provide an environment to assist multi-
disciplinary teams. With a single consistent model of

the complex system, analysts from each discipline can

focus on the aspect of the system that is of interest to
them.

The center of SpecTRM is SpecTRM-RL (SpecTRM

Requirements Language), a formal requirements spec-
ification language for modeling blackbox behavior of

control systems [Lev98]. SpecTRM-RL supports a

wide-range of problem-solving strategies and tasks dur-

ing system development and evolution.
Models written in SpecTRM-RL can be analyzed by

the SpecTRM suite of tools. The SpecTRM tools were

developed to detect errors and potentially hazardous

behavior. The tool set is being expanded but currently
includes:

• Model execution

• Automated formal analyses, such as consistency and

completeness checks

• Automated tools to help with model exploration

during forward and backward analyses

• Deviation analysis to test the robustness of system

design to abnormal inputs

• Visualization tools to allow a wide-range of views of

the executing model

These tools provide a flexible framework in which many

complimentary analyses can be performed on a single

model to help ensure total system safety.

3 Approach

We do not attempt to model erroneous human behav-
ior, but limit our models to the expected controller

behavior (both nominal and off-nominal) as defined in

operational procedures. The models also include ex-

ternal inputs representing qualities of the environment

that give rise to the human controller's decisions.

In many cases, the exact triggering conditions of a

task are not necessary to have a meaningful model of

the system. Any external or internal conditions that

are particularly salient to the executing task are ex-

plicitly modeled while all other environmental effects

are grouped into external conditions.
We quickly found that SpecTRM-RL models were

not the most effective way to specify human tasks for

system designers and human factors experts. For one

thing, it was difficult to separate nominal from off-

nominal behavior using the SpecTRM-RL notation. It
was also difficult to see communication flow between

the different components in the model. These limita-
tions in expressibility led us to the development of a

visual modeling language that has the characteristics

lacking in SpecTRM-RL but remains easily translat-

able to SpecTRM-RL for analysis purposes.

4 Handoff Procedure Example

Throughout this paper, we will be using our model
of a handoff procedure to illustrate our task modeling

language. A "handoff", or a change of aircraft con-

troller, occurs whenever an aircraft is changing from

one controlling sector to another. The handoff pro-
cedure involves communication between the controller

currently controlling the aircraft, the next controller

to control the aircraft, and the pilot. Our model of

this procedure includes the required tasks from each

controller's point of view and the pilot's point of view.

The handoff procedure model also includes a model of

the radio used by the pilot to control the frequency to
which she listens for controller communication. The

radio component is included in the model because it

isanintegralpartofthehardware/softwareportionof
thesystemduringthehandoffprocedure.

Wechosethis modelto demonstrateour model-
ingandanalysistechniquebecausethemodelis com-
plexenoughto haveinterestingcharacteristicswhile
remainingclearenoughto be easilyunderstoodby
readerswhoarenot familiarwith air trafficcontrol.
Thehandoffprocedureconsistsofmultiplecomponents
eachwithvarietyoftasksto completeandinteresting
interactionswithothercomponents.

5 Description of Visual Modeling Lan-

guage

Figures 1, 2 and 3 show the visual model for current

implementation of the handoff procedure in air traffic

control systems.

The key on Figure 1 displays the components of the

visual modeling language. States are used to represent
each step required to complete a higher-level task. To

change from one state to the next in the model, a tran-

sition must occur. Changing the current model state

represents the completion of one subtask and the be-

ginning of the next subtask. An event is the triggering
condition for a transition and an action results from

completing a transition. The default, or start, state
is denoted by an arrow head on the left side of the

state. For example, in the Current Controller model of

Figure 1 the state Aircraft being controlled by current
controller is the start state. The model can transition

to the state Initiating handoff if the event Conditions

for handoff occur fires. In this example, there is no

resulting action from the transition.
Color is used in the model to differentiate between

events and actions. The events triggering a transition
are shown in blue text above the transition, while any

actions resulting from the transition are shown in red

text beneath the transition. A green outline around
event or action text denotes that this is a communi-

cation point between two entities in the model. For

example, in Figure 1 there is a green outline around
the action Initiate Handoff in the Current Controller

model and a green outline around the event Initiate
Handoffin the Next Controller model. The green out-

line denotes that the action of initiating a handoff in
the Current Controller model causes a transition to
occur in the Next Controller model.

Task positioning is used to represent relationships

among the steps in a task. The normative actions are
seen on the main horizontal axis of each controller's

task model. Any non-normative behavior diverges
from the main axis until the situation has been cor-

rected and the normative procedure resumes. For ex-

ample, in the Next Controller model of Figure 1, reject-

ing the handoff is not the expected or nominal behavior

of the Next Controller. The events, states and actions

required to handle this sequence of subtasks are shown
below the main axis of the Next Controller's behaviors.

When the off-nominal steps have been completed, the
model can return to a state on the main horizontal axis

to represent returning to the nominal behavior.

The visual modeling language also allows the sys-

tem designer to represent the relationship among the

tasks that are being carried out by the model entities.

To accurately represent the load on the human con-
troller, the system designer must understand these re-

lationships accurately. The system designer must un-

derstand which tasks are sequential and which tasks

can be performed in any order. The Pilot model, Fig-

ure 2, shows how these task relationships are repre-

sented. The action Issue frequency change must occur

before the Pilot can perform the subtasks to change the

radio frequency and read back the Next Controller's

frequency to the Current Controller. The branching in
the transition arrows shows how changing the radio fre-

quency and performing the read back are executed in

some undetermined order. These tasks could be per-

formed in parallel or in a sequential order chosen by

the Pilot. The system designer must understand these

possible interactions to ensure that the tasks do not
overload the Pilot no matter what order she chooses

to execute the tasks.

6 Construction of Task Models

The basis of the visual model is a task analysis. The

task analysis identifies the major tasks of the con-

troller components in the system then breaks these
high level tasks into subtasks, down to the level of

the key presses, voice communications, display cues,

etc. involved in performing the task. From the task

analysis, the visual model is created. The visual model
easily represents the temporal relationships among the

tasks carried out by a single component in the model

and the relationships among multiple components in
the model.

The SpecTRM-RL model is created based on the

visual model. The conversion is a straightforward pro-

cess of converting the visual relationships to a text-
based modeling language. Whereas the visual model-

ing language uses entities, states, events and actions to

represent the system, the SpecTRM-RL model decom-

poses the system into components, operating modes,

and input/output interfaces. A component is a por-

tion of the system with a well-defined interface to the
rest of the system. Each high-level system entity and

Current Controller

Aircraft I_mg it' "" t PrqNmH I Wailing for next
In Inng

controlled by co(_o_lr's

hx_"_l°Wl Noresponee I II

r

Condillon+ Io1 Tra_tdl

I-landoff kmu_hq. w_ for
accepted ch,m_to madback

pio, _ pio_

_. _

Next Controller

ou=,o, .r_*v_"
airspace

Ccr_itio_,

or re"t_x_
Relecting i _ occur

Ploll

--: I _-_'-_ -" I Ioccur Accepting ¢ordn_ Received pilot's
handoff t'-'_"'_-_ _ I pflol's initi_

contact initiai conlact
_/_3'

Figure 1: Model of Current Controller and Next Controller Tasks

K.,T-_i st.jEv.n,AoonICommun_.too_on,1
Pilot

Pilot _)n'l_ls ac_'e

freq. - sets to oJrrerd

m,-

Plot corrects ac_ve
freq - sets to next

controller's freq. contro,_er's freq.

Pilot returns to/ . I _ e_ered I Pilot has set I
Pilot tuned to _'_ _ I incorrect I

Lu°k°'J__J _1 I,*.odbY'r_I
A Pi_ _"_'_°m A I Pilot enters Pilotenters
T new freq. in new Imq. in T I new freq. in new freq. in /

L active radlo standby radio | i m_mdio _vem_o _

i Pilot hasset 1newlTeq n

I'1 ._._22_-,_" _ correcl I-I Newfreq. _ contactwith r

c...roo,co,0.,, ,:;

PBOt recewe_
acknow, from

controller

Waiting for]_acknow,

Pilot returns to

previous freq.

f Received no]_ac_w.

Figure 2: Model of Pilot Tasks

theexternalenvironmentbecomea componentin the
SpecTRM-RLmodel.Forthehandoffprocedure,the
componentsin theSpecTRM-RLmodelaretheCur-
rent Controller,the NextController,the Pilot, and
the Radio.Thestatesin thevisualmodeltranslate
to operating modes in the SpecTRM-RL model. For

example, from the visual model shown in Figure 3
the Radio component has two operating modes: Fre-

quency 1 Active/Frequency 2 Standby and Frequency 2

Active/Frequency 1 Standby.

Translating the communication interfaces is slightly

more difficult. The events in the visual model map to

input interfaces for the SpecTRM-RL model compo-
nents. If the event was marked as a communication

point with another entity in the visual model (denoted

by the green outline around the event label), the cor-

responding input will come from another SpecTRM-

RL component. Otherwise, the event will map to an

input from the external environment. Actions in the

visual model translate to the output interfaces for the

SpecTRM-RL components.

7 Analysis of Models

The human procedure model, along with SpecTRM-

RL models of the other parts of the system, can be used

in the safety analysis of the human-computer interac-

tion. The SpecTRM tool set currently allows model
execution, various types of safety analysis, and visual-
ization.

7.1 Model Execution

Because the task models are executable, the system

designer can inspect the specified dynamic interaction
between the system components, including both the

operators and the automated components. In this way,

procedural errors, possible inconsistencies in the pro-

cedures, or incomplete procedural specifications can be
detected. We found that model execution helped us to

find several errors in the specification.

7.2 Safety Analysis Tools

The SpecTRM tool set has multiple fully automated or

partially automated analyses that can be performed on
the models to help identify possible unsafe aspects of

the system requirements. Consistency and complete-

ness analysis identifies inconsistencies in the specifica-

tion and conditions not accounted for in the specifica-

tion [HL96]. For example, the automated completeness
check on this model found that the Pilot's behavior is

not completely specified. During the handoff proce-
dure, the model does not show how the Pilot should act

if she reads back an incorrect frequency. This incom-

pleteness in the specification is likely to be the result

of an oversight of the system designer as she builds the

model, but the completeness check aids the analyst by

highlighting these possible oversights.

Deviation Analysis provides a way to evaluate

the specification for robustness against incorrect in-

puts [RL97a, RL97b]. The analyst denotes potential

hazardous outputs that she wants to check for and hy-

pothesizes deviations in the inputs, for example, that
measured speed is lower than actual speed. The Devi-

ation Analysis tool will determine whether the devia-

tion can lead to a hazardous state and, if not, whether

the hypothesized deviation plus other conditions could
lead to a hazard.

Our Backward Analysis tool allows the system de-

signer to start from a hazardous state and work back-
ward to determine if and how that state could be

reached. Critical points in the design are identified
that can be modified to avoid the hazardous state. For

example, a backward analysis of the handoff procedure
model found that the Pilot model can reach the haz-

ardous state Pilot Tuned To Unknown Frequency.

7.3 Visualization Tools

Our IBToolKit (Interface Builder Tool Kit) allows the

system designer to create visualizations that can be
linked to a SpecTRM-RL model [Pin97]. In addition

to simply showing the results of the model executing

in a visual format, visualizations can be created that

highlight specific system qualities. These types of visu-

alizations can aid in the design of automated systems

to maximize the strengths of both the human and au-
tomated controllers.

One example of a visualization that we created for
the handoff procedure is shown in Figure 4. In this vi-

sualization, the cognitive demands on the pilot during

task execution are highlighted as the model executes.

The states Pilot has not changed frequency and Fre-

quency not read back are highlighted in red to denote
the current state of the model. From this visualization,

the system designer can see that the pilot had to detect

a change in her environment in order to transition out
of the Under firm control of current controller state.

Another possible visualization would be a display of

the cockpit. As the portions of the tasks are com-

pleted by the pilot interacting with the cockpit con-

trols, the corresponding areas of the cockpit could be

highlighted. This visualization assists the system de-

signer in determining whether the actions involved in
the task support the cognitive processes required of the

pilot.

8 Related Work

Task analysis models such as Hierarchical Task Anal-

ysis (HTA) lAD67] focus on steps required by the hu-

man to complete the given task. In HTA, tasks can
be broken down into subtasks and there is no restric-

tion on the level of decomposition. The view is very

human-centered since this model was initially proposed

to represent tasks for the purpose of training new users

of applications. The focus is on the steps that must be

completed by the human to accomplish a task with-

out consideration for the operations of the computer.

HTA is very flexible, but this flexibility often leads to

ambiguity and inconsistency among models.

Many task models have been based on the Goals,

Operators, Methods and Selection Rules (GOMS)

framework [CMN83]. In the GOMS methodology, the

user's goals are decomposed into subgoals that have op-

erators (behaviors) and methods (sequences of behav-
iors) associated with them. The goals are decomposed

into four different levels of description. This model fo-

cuses on error-free performance and models the tasks

down to a very detailed description of the keystroke
level of behavior.

Task Analysis for Knowledge Descriptions (TAKD)

takes a different approach to task modeling by focusing

on the knowledge required by people to complete the

tasks [DJ89]. The TAKD method allows the knowledge
needed to complete a task to be represented by a multi-

level abstraction that traces the high-level knowledge

down to the low-level steps necessary to complete the

task. Johnson et al. developed another task analysis
approach, Task Knowledge Structures (TKS), based

on TAKD [JJ91]. The TKS methodology represents
tasks for the purpose of defining what tasks need to be

supported by the system design. Unlike many other

task models, TKS is a tool for designing systems, not

just evaluating existing designs.

Executable task models have been developed and

used for modeling human-computer interaction. Yost

used the Soar/TAQL to model the Sisyphus-93

elevator-configuration task [Yos96]. To achieve an ex-
ecutable model, Yost began with a knowledge-level

model of the task, refined this model to a problem-

space model, then created the symbol-level model that

is executable. The symbol-level model of the task

was executed to help understand what problem-solving

steps are involved during the completion of the task.

The Programmable User Model (PUM), another exe-

cutable model, provides a constrained cognitive archi-
tecture that can be programmed to simulate the user's

execution of some set of tasks using a proposed inter-

face [YGS89]. PUMs are meant to aid the interface

designer in creating more usable designs by highlight-

ing psychological considerations.

Joint human-computer controlled systems change
the human controller's function from an active con-

troller to a supervisor and error handler. However, au-

tomation design has not changed to support the human

controller's new role as a monitor of system behavior

and backup controller in case of emergency [SW95].
The Operator Function Model (OFM) provides a tool

to help improve automation design so that the human

controller tasks are supported [Mit96]. The OFM de-
scribes the required operator behavior by representing

the operator functions, subfunctions and information

needed by the operator for each activity.

9 Contributions and Future Work

We are in the process of testing this technique by mod-

eling the controller tasks in the new air traffic control
system being developed by the TAP Project at NASA

Ames. We believe that the development of these tools

will provide system designers and analysts with a more
rigorous method of analyzing the assigned controller

tasks for safety. The SpecTRM tool set provides au-

tomated analysis capabilities to the systems designer

while the visual modeling language and flexibility of

the IBToolKit allows the system designer to make de-

sign decisions with much better knowledge of the effect
of these decisions on overall system safety.

There is future work to be done in the areas of special

analyses on these types of models. We would like to see
if we can use the models to assist in task allocation.

Another problem we would like to explore using the
models is mode confusion.

We would also like to continue exploring the flexi-
bility in model analysis that is provided by the visual-

ization tools. We are currently working on an interac-

tive visualization of the ground procedures of the TAP

FAST-system with datalink capabilities. This visual-

ization to experiment with the use of an interactive

model in system design.

References

lAD67] J. Annett and K.D. Duncan. Task analysis
and training design. Occupational Psychol-

ogy, 41:211-221, 1967.

[CMN83] S.K. Card, T.P. Moran, and A. Newell. The
psychology of human-computer interaction.

Lawrence Erlbaum Associates, 1983.

[DJ89] D. Diaper and P. Johnson. Task anal-
ysis for knowledge descriptions: theory

and applications in training. In J. Long

[HL96]

[JJ91]

[Lev98]

[Mit96]

[Pin97]

[PPC97]

[RL974

[RL97b]

[sw951

[YGS891

[Yos96]

and A. Whitefield, editors, Cognitive er-

gonomics and human-computer interaction.

Cambridge University Press, 1989.

M.P.E. Heimdahl and N.G. Leveson. Com-

pleteness and consistency analysis of state-
based requirements. Transactions on Soft-

ware Engineering, June 1996.

H. Johnson and P. Johnson. Task knowledge

structures: psychological basis and integra-

tion in to system design. Acta Psychologica,

78(1-3):3-26, 1991.

N.G. Leveson. The SpecTRM-RL language.

In preparation, 1998.

C.M. Mitchell. Task-analytic models of hu-

man operators: Designing operator-machine

interaction. Technical report, Georgia Insti-

tute of Technology, 1996.

L.D. Pinnel. Visualizing requirement speci-

fications: A toolkit for rapid prototyping of

interfaces. Ph.D. qualifying project report,
1997.

T. Prevot, E. Palmer, and B. Crane. Flight

crew support for automated negotiation of
descent and arrival clearances. Technical re-

port, NASA Ames Research Center, 1997.

J.D. Reese and N.G. Leveson. Software devi-

ation analysis. In International Conference

on Software Engineering, May 1997.

J.D. Reese and N.G. Leveson. Software de-

viation analysis: A safeware technique. In

AIChe 31st Annual Loss Prevention Sympo-

sium, March 1997.

N.D. Sarter and D. Woods. How in the world

did I ever get into that mode?": Mode error

and awareness in supervisory control. Hu-
man Factors, 37:5-19, 1995.

R.M. Young, T.R.G. Green, and T. Simon.

Programmable user models for predictive
evaluation of interface designs. In Confer-

ence on Human Factors in Computing Sys-

tems (CHI '89), pages 15-19, May 1989.

G.R. Yost. Implementing the Sisyphus-93

task using Soar/TAQL. International Jour-

nal of Human-Computer Studies, 44(3-4),
1996.

Analyzing Software Specifications for Mode Confusion Potential*

Nancy G. Leveson
L. Denise Pinnel

Scan David Sandys

Shuichi Koga
Jon Damon Reese

Computer Science and Engineering

University of Washington

Seattle, WA 98195-2350

{leveson, denisep, sds, skoga, j dreese}©cs, washington, edu

Abstract

Increased automation in complex systems has led

to changes in the human controller's role and to new

types of technology-induced human error. Attempts

to mitigate these errors have primarily involved giv-

ing more authority to the automation, enhancing op-

erator training, or changing the interface. While

these responses may be reasonable under many circum-

stances, an alternative is to redesign the automation

in ways that do not reduce necessary or desirable func-

tionality or to change functionality where the trade-

offs are judged to be acceptable. This paper describes
an approach to detecting error-prone automation fea-

tures early in the development process while significant

changes can still be made to the conceptual design of

the system. The information about such error-prone
features can also be useful in the design of the operator

interface, operational procedures, or operator training.

Introduction

Today's large, complex systems often incorporate

both human and automated control and monitoring.

These jointly controlled systems are starting to expe-
rience accidents related to a lack of coordinated activ-

ity between the various controllers. One particularly

problematic feature of these new designs is a prolifera-

tion of modes, where modes define mutually exclusive

*The research described has been partly funded by NSF
Grants CCR-9396181 and CCR-9520813 and NASA Grant
NAG-l-1495.

sets of system behavior.

The new mode-rich systems provide flexibility and

enhanced capabilities, but they also increase the need

for and difficulty of maintaining mode awareness,

which can lead to new types of mode-related prob-

lems. This paper describes an approach to dealing

with mode-confusion problems by analyzing the ex-
ternal blackbox behavior of the automation for poten-

tially error-inducing features. The results can be used

to make tradeoff decisions during the early develop-

ment stages of the system.

While automation has eliminated some types of

mode-awareness errors, it has also created the poten-

tial for new types of errors. Sarter and Woods extend
the classic definition of mode error and distinguish be-

tween errors of commission (where an operator takes

an inappropriate action) and errors of omission (where

the operator fails to take a required action) [SW95].

The first automated systems tended to have only

a small number of independent modes, and functions

were associated with one overall mode setting. In ad-

dition, the consequences of operator mode awareness
problems tended to be minor, partly because feedback

about operator errors was fast and complete enough

that operators were able to recover before the errors

caused serious problems (Rasmussen's concept of error

tolerance) [Ras90].

Studies of less complex aircraft automation show

that pilots sometimes lose track of the automation be-

havior and experience difficulties with directing the

automation, primarily in the context of highly dy-

namic and/or non-normal situations [SW95]. Sarter
and Woods conclude that in most cases, these prob-

lems are associated with errors of commission, that

is,witherrorsthat requirea pilotactionin orderfor
theproblemto occur.Thistypeoferroris theclassic
modeerroridentifiedanddefinedbyNorman--anin-
tentionisexecutedinawaythatisappropriateforone
modebut thedeviceis actuallyin a differentmode.
Becausetheoperatorhastakenanexplicitaction,he
or sheis likely to checkthat the intendedeffectof
theactionhasactuallyoccurred.Theshortfeedback
loopsallowtheoperatorto repairmosterrorsbefore
seriousconsequencesresult.Thistypeoferrorisstill
theprevalentoneonrelativelysimpledevicessuchas
wordprocessors.

Incontrast, studies of more advanced automation in

aircraft like the A-320 find that mode errors of omis-

sion are the dominant form of error [SW95]. In this

type of mode error, the operator fails to take an ac-

tion that is required, perhaps because the automation
has done something undesirable (perhaps involving a

mode change) and the operator does not notice. In

other words, the operator fails to detect and react

to an undesired system behavior that he or she did

not explicitly invoke. Because the mode or behavioral

changes are not expected, the operator is less likely

to pay attention to the relevant indications (such as

mode annunciations) at the right time and detect the

mode change or undesired behavior.

Errors of omission are closely related to the role

change of the operator from direct control to monitor,

exception handler, and supervisor of the automation.
As these roles change, the operator tasks and cognitive

demands are not necessarily reduced, but instead tend

to change in their basic nature. The added or changed

cognitive demands tend to congregate at high-tempo,

high-criticaiity periods [SW95]. While some types of
errors and failures have declined, new error forms and

paths to system breakdown have been introduced.

Some of these new error forms are a result of mode

proliferation without appropriate support. Providing

support has been complicated by some unexpected

changes in operator behavior in working with com-

plex automation. For example, during long periods of

flight, pilots do not have to monitor the mode annun-
ciations continuously. Instead, they need to predict
the occurrence of mode transitions in order to attend

to the right indications at the right time. A-320 pilots

have identified this new type of monitoring behavior
in surveys conducted by Sarter and Woods. However,

the automation and interfaces have been designed as-

suming conventional monitoring.

Simply calling for systems with fewer or less com-

plex modes is unrealistic: Simplifying modes and au-
tomation behavior often requires tradeoffs with in-

creased precision or efficiency and with marketing de-

mands from a diverse set of customers [SW95]. How-

ever, systems may exhibit accidental complexity where

the automation can be redesigned to reduce the po-
tential for human error without sacrificing system ca-

pabilities. Where tradeoffs with desired goals are re-

quired to eliminate potential mode confusion errors,

hazard analysis may be able to assist in providing the
information necessary for appropriate decision mak-

ing.

To identify and evaluate potential tradeoffs, we

need to understand why the problems occur. Acci-

dents in high-teeh systems are related to complex-

ity and coupling [Per84, Lev95]. Perrow distinguishes

between accidents caused by component failures and
those, which he calls system accidents, that are caused

by interactive complexity in the presence of tight cou-
pling. High-technology systems are often made up

of networks of closely related subsystems (some of

which may involve humans). Conditions leading to

accidents emerge in the interfaces between subsystems
and in their interactions, and coupling causes distur-

bances to progress from one component to another.

Computers have exacerbated the problems by allowing

new levels of complexity and coupling with more inte-

grated, multi-loop control in systems containing large

numbers of dynamically interacting components. In-

creased complexity and coupling make it difficult for

the designer to consider all the system hazards, or
even the most important ones, or for the operators to
handle all normal and abnormal situations and distur-

bances safely.

Some of the increased complexity has been the re-

sult of what Sarter, Woods, and Billings have called

technology-centered automation [SW95]. Too often,
the designers of the automation focus on technical as-

pects and do not devote enough attention to the cog-
nitive and other demands on the operator. Software

engineers building embedded controllers are rarely

taught or understand the set of cognitive processing
activities associated with maintaining situation and

mode awareness and how their designs can affect these

human activities. Instead, they tend to focus on the

mapping from software inputs to outputs, on mathe-
matical models of required functionality, and on the

technical details and problems internal to the com-

puter. Little attention has been given to evaluating
software in terms of whether it provides transparent

and consistent behavior that supports operators in

their monitoring and control tasks. In fact, the pri-

mary focus in software engineering and in artificial

intelligence has been on producing automation that

canfunctionautonomouslyandnotonsupportingco-
operationandcommunicationbetweenhumansand
computers.

Theresultof technology-centeredautomationhas
beenwhatWienercalls"clumsyautomation."If it is
truethatmode-relatedproblemsarecausedbyclumsy
orpoorlydesignedautomation,thenchangingthehu-
maninterface,training,or operationalproceduresis
not theobvious,orat leasttheonlysolution:"Train-
ingcannotandshouldnotbethefix for baddesign"
[SW95].Instead,if wecanidentifyautomationdesign
characteristicsthat leadto modeawarenesserrorsor
thatincreasecognitivedemands,thenwemaybeable
to redesigntheautomationwithoutreducingsystem
capabilities.In addition,knowingthecausesof in-
creasedcognitiveloadwill makechangesin training
or interfacedesignmoreeffective.Theapproachcho-
senwill dependuponsuchfactorsasrelativecosts,
perceivedeffectiveness,andrequiredtradeoffs.

Toaccomplishthisgoal,designersneedto beable
to identifyproblematicdesignfeatures.Ourresearch
goalis to identifydesignconstraintson theautoma-
tionbasedonknowncognitiveconstraintsonthehu-
manoperatorandengineeredor naturalenvironmen-
tal constraints.Thefirst stepin accomplishingthis
goalistoidentifythetypesoferrorsthathumansmake
in highlyautomatedsystems.Usingthisinformation,
wecananalyzetheblackboxbehaviorspecifiedin the
automationrequirementsto predictwhereerrorswill
occurandusethis informationto designtheautoma-
tionandtheoperatorprocedures,tasks,andinterface.
At first,wearesimplygoingto analyzecurrentde-
signs,but our longtermgoalis to identifysoftware
designcriteriaandtechniquesthatwill helpto create
betterdesignsfromthebeginning.

Forourproposedanalysisapproachto work,hu-
manerrorsmustbenon-random.Afterstudyingacci-
dentsandincidentsin thenew,highlyautomatedair-
craft,SarterandWoodshaveconcludedthat certain
errorsarepredictable[SW95]:Theyaretheregular
andpredictableconsequencesof a varietyof identi-
fiablefactors.Althoughtheyare "accentuated"by
poorinterfacedesignandgapsor misconceptionsin
the user'smentalmodelof the system,mismatches
betweenexpectedandactualautomationbehavioris
notnecessarilyrelatedtoaninadequateoperatormen-
tal modelbut canalsoresultfrominconsistentau-
tomationbehavior.SarterandWoodsidentifysome
oftheseerrorforms.Deganihasalsoidentifiedsome
featuresthatleadtomodeconfusion[Deg96],andJaffe
[JL89,Lev95]hasidentifiedgeneralrequirementscom-
pletenesscriteriato eliminatesometypesof human-

computerinteractionerrors.
Wewantto buildontheworkofSarterandWoods,

Degani,andJaffeto find thefactorsor "predictable
errorforms"that relateto automationdesignandde-
visewaysto identifythesefactorsin softwarerequire-
mentsspecifications.Ourapproachis to modelsoft-
wareblackboxbehaviorandprovideanalysismeth-
odsandtoolsto searchthemodelsforpredictableer-
ror forms.In additionto providingdesignguidance,
thisapproachmightprovidea wayof "measuring"or
evaluatingthe cognitivedemandsinvolvedin work-
ing with specificautomateddevices.Hansmanhas
suggestedthat automationcomplexitybedefinedin
termsof thepredictabilityof theautomationbehav-
ior [Hans97].Thispredictabilitycanpotentiallybe
evaluatedusingourapproach.

Analyzingdesignsrequiresanappropriatemodel-
ing andspecificationlanguage.This languagemust
bebothformallyanalyzableandreadablewithoutad-
vancedmathematicaltraining.Whileautomatedtools
maybe necessaryto analyzesomeaspectsof large
andcomplexmodels,webelieve(andourempirical
evidencesupportstheview)that themostimportant
errorswill be foundby humanexperts[MLRPS97].
Therefore,oneofourgoalsin thedesignofourmodel-
inglanguageandtoolsis toprovidesupportin human
navigationandunderstandingofcomplexmodelsand
specifications.In addition,anypotentialdesignflaws
detectedbyautomatedtoolswill needto beevaluated
by humans.Thus,readabilityof themodelsisalsoa
requirementfor humanprocessingof theanalysisre-
sults. Finally,theeconomicsof systemdevelopment
areunlikelyto allowfor specialformalmodelsto be
built. Instead,ouranalysistoolsworkdirectlyonsys-
temandsoftwarerequirementsspecifications.

In thefollowingsections,wedefinetheconceptof
a "mode"morecarefully,describeourmodelinglan-
guage,describecriteriafor detectingsometypesof
modeambiguity,anddemonstratehowthesecriteria
mightbeusedin analyzingtheblackboxbehaviorof
theautomation.Thelanguageandanalysisareillus-
tratedusingamodelofaNASArobotbuilt to service
tilesontheSpaceShuttle.
Definition of a Mode

A mode defines a mutually exclusive set of system

behaviors. One convenient way to describe behavior

is to use state machine models. A machine or sys-

tem can be thought of as having a set of states. The

behavior of the system can be described by the possi-
ble transitions from one state to another. Those state

transitions are triggered by events, conditions, or sim-

ply the passage of time (which can be thought of as an

event).Asanexample,thefollowingtableshowsthe
possibletransitionsbetweenstatesgiventwosystem
modes:startupmodeandnormaloperationmode:

Startup
Normal

a b c d e

c b d e a

c d a e a

Table 1: A simple state machine with two modes

The startup and normal processing modes in this
machine determine how the machine will behave. For

example, if the conditions occur that trigger a transi-
tion from state c, the machine will transfer to state d

if it is in startup mode or to state a if it is in normal

processing mode.

A basic tenet of linear control theory is that ev-

ery controller contains a model of the general behav-
ior and current state of the controlled system. This

model may be embedded in the control logic of an
automated controller or in the mental model of a hu-

man controller. The model is updated and kept con-

sistent with the actual system state through various

forms of feedback from the system to the controller.

When the controller's model of the system diverges

from the actual system state, erroneous control com-

mands (based on the incorrect model) can lead to an

accident [Lev95]. The situation becomes more compli-
cated when there are multiple controllers because the

models of the various controllers must also be kept

consistent. A pilot, for example, must not only have
a valid model of aircraft behavior but must also have

a model of the automated systems' behavior in order
to monitor or control the automation as well as the

aircraft.

Mode confusion errors result from divergent con-

troller models. See figure 1. Note that there are sev-

eral sources of inconsistency due to improper feedback.

In attempting to categorize factors that predict
mode errors, it is useful to distinguish between dif-

ferent types of modes. Degani classifies modes into

three types [Deg96]:

1. Interface modes specify the behavior of the inter-

face. They are used to increase the size of the

input or output space.

2. Functional modes specify the behavior of the var-
ious functions of the machine.

3. Supervisory modes specify the level of interaction

or supervision (manual, semi-automatic, or auto-

matic).

We also define three types of modes, but classify them

differently. The modes are defined with respect to the
control component being specified:

1. Supervisory modes determine who or what is con-

trolling the component at any time. Control loops

may be organized hierarchically, with multiple

controllers or components, each being controlled
by the layer above and controlling the layer be-

low (see Figure 1). In addition, each component

may have multiple controllers (supervisors). For

example, a flight guidance system may be issued

direct commands by the pilot(s) or by another

computer that is itself being supervised by the

pilot(s). The robot motor controller (MAPS) de-
scribed in the next section can be in either manual

supervisory mode and controlled by a human op-

erator, or it can accept control instructions from

another computer called the "planner." Mode-
awareness errors related to confusion in coordina-

tion between the multiple supervisors of a control

component can be defined in terms of these su-

pervisory modes.

2. Component operating modes control the behav-

ior of the control component itself. They may

be used to control the interpretation of the in-

terface (Degani's interface modes) or to describe

its required process-control behavior. For exam-
ple, MAPS operation may be enabled or disabled

at any time, depending on whether it is safe for
MAPS to move the robot.

. Controlled-system operating modes specify sets of

related behaviors of the controlled system and are

used to indicate its operational state. For ex-

ample, the MAPS model of the robot indicates
whether it is in a moving mode (between work

areas), in a work mode (in a work area and ser-

vicing tiles, during which time the robot is not

controlled by MAPS but by the planner) or is in

an unknown mode (which means that MAPS does
not know whether the robot is in moving mode or

work mode).

The Modeling Language

Most software errors leading to accidents can be

traced to incorrect or incomplete specifications rather

than to incorrect implementations. While develop-

ing hazard analysis techniques, we have been trying

to understand how to design specification languages

that will facilitate analysis (by both humans and au-

tomated tools) of system and software requirements

_ iiii_ii_' :ii_ ii :i i ii ill i,

T
Controls Displays

Operator 2 i il i_ii

1 1
Controls Displays I

Analog
Displays

Sensors

L
....................................

Controlled

PROCESS

Actuators

Figure 1: An example of a simple multiple-controller process-control system. To simplify the diagram, we have

shown only one digital (computer) controller. In complex systems there may be several human, digital, or analog
controllers at each level of hierarchical control and also more hierarchical levels than shown here. Note that each

controller has several mental or logical models of the machine or process it is controlling as well as its interfaces.

These models must be kept consistent for correct and safe monitoring and control.

specifications.Wehavefoundthateffectiveerrorde-
tectionrequiresspecificationsthatarereadableandre-
viewablebyhumandesignersandapplicationexperts
aswellasanalyzablebyautomatedtools.

Ourfirstlanguage,RSML(RequirementsStateMa-
chineLanguage),wasdesignedwhilespecifyingthe
systemrequirementsforTCASII, anairborneaircraft
collisionavoidancesystem,for the FAA [LHHR94].
Usingthe lessonslearnedfrom thisexperienceand
others,wearedesigninga toolkit calledSpecTRM
(SpecificationToolsandRequirementsMethodology)
that includesa requirementsspecificationlanguage
SpecTRM-RL.UnderneathSpecTRM-RLthereis a
formalstatemachinemodelcalledRSM[JLHM91]
uponwhichwehavedefineda setof correctnessand
completenessdesigncriteriaforsafety-criticalprocess-
controlsystemspecifications.

OneofourgoalsforSpecTRM-RListo incorporate
featuresto assistindesigninglesserror-pronehuman-
computerinteractionsandinterfacesandin detect-
ingpotentialcommunicationproblems,suchasmode
confusion.Althoughthenotationhaschangedfrom
RSML,thesystembehavioris still representedusing
hierarchicalandorthogonalstatemachines.Because
themajorityof theerrorsanddifficultyin reviewing
ourTCASII modelstemmedfromtheuseofinternal,
broadcastevents,wehaveeliminatedthisfeature.We
havealsoincludedfeaturesto assistin findingcommon
dangerousomissionsanderrorsin process-controlre-
quirementsspecifications.Thelanguagedesignisnot
quitecomplete,butFigure2showspartof anexam-
plespecificationforaNASArobotbuilttoservicetiles
on theSpaceShuttle.Thesoftwarerequirementsare
takenfromamaster'slevelprojectat theCMUSoft-
wareEngineeringInstitutefor part of a robot that
wasbeingdesignedandconstructedin theRobotics
Department[MMR92].Thesystemcomponentused
astheexamplein thispaperiscalledMAPS(Mobility
andPositioningSoftware).

Becauseourspecificationsareblackbox,theymust
describetherequiredbehaviorof thecomponent(in
thiscaseMAPS)in termsonlyofinputs,outputs,the
relationshipbetweenthese,anda modelof thecon-
trolledsystem.Thespecificationsdonotincludeany
informationabouttheimplementationor internalde-
signof thecomponent,simplythe input to output
functionit computesspecifiedin termsof operating
modes,an internalmodelof thecontrolledsystem,
andaninternalmodeloftheinterfaceswithits super-
visor(s)andthecontrolledprocess(es).

Aswithmanycomplexcontrolsystems,thisrobot
hasmultiplecontrollersandmultiplelevelsofcontrol.

MAPSis a a mid-levelcontroller responsible for is-

suing movement commands to the motor controller,

which controls the mobile base of the robot (see Fig-

ure 3).

MAPS in turn can be controlled either by a hu-
man operator or by an onboard computer called the

planner. The operator controls robot movement and

positioning using a hand-held joystick. The planner

can also control robot movement but does so by pro-

viding MAPS with a specification of the desired des-
tination and route. Thus there are two supervisory

modes: joystick and planner (see Figure 2). Either the

human controller or the planner may assume control

at any time, but the human controller is responsible

for supervising the behavior of the robot at all times

to prevent accidents, even when it is under planner
control. Because of the distributed control structure,

multiple possibilities for mode confusion exist.

The supervisory interface consists of the controls
by which a supervisor directs the control component

(in this case MAPS) and the displays by which the

component relays information back to the supervisor.

(Note that displays are not limited to visual displays;
they can also include aural and other types of com-

munication.) The operator can control MAPS using a

joystick with two buttons and a keyboard, as shown in

Figure 2. MAPS provides information to the operator

via a graphical user interface. The MAPS behavioral

requirements use only information about the content
of the interface, not the specific layouts or design of the

controls and displays (which is specified elsewhere).

The communication interface with the planner is spec-

ified similarly.

In addition to the supervisory interface, there is
an interface with the controlled system (other robot

components), which includes the inputs and outputs
between MAPS and the various sensors and actua-

tors. These interface models are simply the view that

MAPS has of the interfaces--the real interface(s) may
contain different information due to various types of

incorrect design or failures. By separating the as-
sumed interface and the real interface, we are able

to model and analyze the effects of various types of
errors and failures.

The MAPS operational modes are:

• ENABLED or DISABLED: MAPS operation is en-

abled only if the safety circuit has signalled that
the robot is in a safe state, the operator has de-

pressed the deadman switch, and the robot's ma-

nipulator arm is stowed.

• OFF or OPERATIONAL: MAPS may be turned off

or it may be operational.

SUPERVISORY

MODES

CONTROLS

MAPS)

"_ Planner

Joystick Keyboard Button 1

r t[I[
Button 2

[

DISPLAYS

PLANNER

INTERFACE

ROBOT

INTERFACE

GUI

I
Route Destination Position

[il
Movement Values

h I

MAPS OPERATING

MODES Disabled("_ Operational

ROBOT OPERATING

MODES _ UnknOwn _ / [_nwor_,eaI I_etw_eowor_ar_as[_o_o

ROBOT MODEL Stabilizer Legs
Motor Controller

MOTOR OPERATING MODES

Motor Model

Figure 2: A partial specification of MAPS

OPERATOR

GUI JOYSTICK

,It

_ _ _ i: _ _ _ _!_ _

RoBo jJJY/ \
i

r

I

I

MOTOR STIFF SCANNER SAFETY '
I

CONTROL LEGS CIRCUIT ,
I

I

t

f

PLANNER

(High-level

Controller)

MANIPULATOR

Figure 3: A high-level view of MAPS

The MAPS operational modes are relatively simple;

a typical flight management component has a large

number of such modes, leading to more potential for
mode confusion.

The controlled system (in this case the robot) is

described (within the MAPS model) in terms of its

operating modes and a model of its relevant states.
The robot controlled by MAPS is either MOVING or

STOPPED (performing inspection and maintenance) or
its operating mode is UNKNOWN. MAPS only controls

motion; the servicing of the tiles is controlled by the

planner. The robot is also either IN-A-WORK-AREA,

BETWEEN-WORK-AREAS, or its location is UNKNOWN.

The commands that MAPS issues will depend on these

operating modes.

The last section of the MAPS high-level specifica-
tion is the internal model of the state of the robot.

Note that the interface and robot models are simply
the internal models that MAPS has of the assumed

state of the interface controls and displays and the as-

sumed state of the robot, not their actual, physical
state. The internal model may not be consistent with

the real interface and robot states due to various types

of errors and failures. For MAPS, the physical com-

ponents of the robot that need to be modeled in order

to specify the control algorithm are the stabilizer legs,

the safety circuit, the manipulator arm, and the motor
controller. Hierarchical control is common in complex

systems: In this case, MAPS provides commands to
the motor controller, which itself has operating modes
and a state model.

The language enforces certain constraints to pre-

vent design features that are known to lead to acci-

dents. For example, in SpecTRM-RL, all components

of the controlled system model (e.g., the robot model)
must have an UNKNOWN state, which is the default for

startup and for transitions from any type of temporary

or partial shutdown to normal processing. The con-

trolled system can usually continue to change state

when the computer is shut down, and the software

model of the process must be updated at startup or
restart to reflect the actual process state. Many ac-

cidents have occurred in systems where the software

assumed the status of the process had not changed

since the computer was last operational and issued
commands based on this erroneous information.

As with all state-machine models, transitions are

governed by external events and the current state of

the modeled system. In SpecTRM-RL, the conditions
under which transitions are taken are specified sep-

arately from the graphical depiction of the state ma-
chine. We have found that the behavior of real systems

is too complex to write on a line between two boxes.
Instead we use a form of logic table we call AND/OR

tables. Figure 4 shows an example specification of a
transition.

Once a blackbox model of the required system be-

havior has been built, this model can be evaluated as

to whether it satisfies design criteria that are known
to minimize errors and accidents.

Design Criteria and Analysis

Jaffe [JLHM91] originally identified 26 complete-
ness criteria for requirements specifications, which we

have now extended to close to 50 criteria [Lev95].

[Planner [--_ Joystick

Condition:

A
N
D

References:

ENTERED Enabled

Operator Selects Joystick Mode
Safety Circuit IN-STATE Safe
Joystick IN-STATE Neutral

OR

Figure 4: An example of a transition definition in SpecTRM-RL. The supervisory mode transitions from PLANNER

to JOYSTICK if the enabled state is entered or if the following three conditions are true: the operator selects
JOYSTICK mode, the safety-circuit is in state SAFE, and the joystick is in the NEUTRAL position.

These criteria include a mixture of absolute criteria

as well as heuristics for finding flaws that frequently

lead to accidents. Many of these are related to human-

computer interaction such as providing appropriate

feedback during graceful degradation and completely

specifying preemption logic when multi-step operator
inputs can be interrupted before they are complete.

A few of the Jaffe criteria were derived from mathe-

matical completeness aspects of the underlying formal

RSM model, but most resulted from the experience

Jaffe had in building such systems over a large num-
ber of years. These lessons learned were used to define

design criteria for the formal RSM model. In attempt-
ing to extend the criteria (design constraints) to cover

mode-confusion errors, we have taken the same ap-

proach.

Using the results of Sarter and Woods' studies of

A-320 accidents and incidents along with other reports

of mode-related error and building on the five types

of mode-confusion design features identified by De-

gani, we have identified approximately fifteen design
features of blackbox automation behavior not in our

original Jaffe criteria that can lead to operator mode
confusion or mode awareness errors. The work is in

the preliminary stages, and the list will undoubtedly

change as we investigate further. In this section, we
illustrate the approach by describing a few items on

the preliminary list and demonstrate their application

to MAPS (where applicable).

Applying our criteria to a complex control system
will almost surely identify a large number of behav-

iors that could lead to mode confusion. Getting rid

of all such behaviors would most likely result in an

overly simple control system that does not satisfy

many of its goals. Instead, this information should

be used to eliminate accidental complexity (i.e., the
same functionality can be achieved but in a less error-

inducing manner), to provide information for safety

tradeoff analyses (perhaps by applying hazard analy-

sis to the identified behaviors), and to design inter-

faces, operational procedures, and operator training

programs. For example, accidents most often occur
during transitions between normal and non-normal

operating modes or while operating in non-normal

modes. Therefore, the non-normal mode transitions

should be identified and have more stringent design

constraints applied to them.

The rest of the paper describes six of our categories

of potential design flaws: interface interpretation er-

rors, inconsistent behavior, indirect mode changes, op-
erator authority limits, unintended side effects, and

lack of appropriate feedback. Additional criteria can

be found in [Lev95] and others will be described in
future papers.

Interface Interpretation Errors

Interface mode errors are the classic form of mode con-

fusion error: the computer interprets user-entered val-

ues differently than intended or it maps multiple con-

ditions onto the same output depending on the active

controller operational mode and the operator inter-

prets the interface erroneously. The latter is Degani's
two plant state, one display flaw.

A common example of an input interface interpre-
tation error occurs with many word processors where

the user may think they are in insert mode but instead

are in command mode and their input is interpreted

differentlythantheyintended.
Anexampleof anoutputinterfacemodeproblem

wasidentifiedby Cooket.al, in a medicaloperat-
ing roomdevicewith twooperatingmodes:warmup
andnormal[CPWM91].Thedevicestartsinwarmup
modewhenturnedonandchangesfromnormalmode
to warmupmodewhenevereitherof twoparticular
settingsareadjustedbytheoperator.Themeaningof
alarmmessagesandtheeffectofcontrolsaredifferent
in thesetwomodes,butneitherthecurrentdeviceop-
eratingmodenorachangeinmodeareindicatedto the
operator.In addition,fourdistinctalarm-triggering
conditionsaremappedontotwo alarmmessagesso
thatthesamemessagehasdifferentmeaningsdepend-
ing on theoperatingmode.In orderto understand
whatinternalconditiontriggeredthemessage,theop-
eratormustinferwhichmalfunctionisbeingindicated
bythealarm.

A morecomplexexampleoccursin aproposedA-
320accidentscenariowherethecrew directed the au-

tomated system to fly in the TRACK/FLIGHT PATH AN-
GLE mode, which is a combined mode related to both

lateral (TRACK) and vertical (FLIGHT PATH ANGLE)

navigation:

When they were given radar vectors by the

air traffic controller, they may have switched
from the TRACK to the HDG SEL mode to

be able to enter the heading requested by

the controller. However, pushing the button

to change the lateral mode also automati-

cally changes the vertical mode from FLIGHT

PATH ANGLE to VERTICAL SPEED--the mode

switch button affects both lateral and verti-

cal navigation. When the pilots subsequently
entered "33" to select the desired flight path

angle of 3.3 degrees, the automation inter-

preted their input as a desired vertical speed
of 3300 ft. This was not intended by the pi-
lots who were not aware of the active "inter-

face mode" and failed to detect the problem.

As a consequence of the too steep descent,
the airplane crashed into a mountain [SW95].

Several design constraints can assist in reducing in-

terface interpretation errors. The first is that any

mode used to control interpretation of the supervi-

sory interface should be annunciated to the operator

(that is, it should be part of the displays interface in

our modeling language). More generally, the current
operating mode of the automation should be annun-

ciated (should be in the displays interface) as well as

being part of the operating modes. In addition, any

change of operating mode should trigger a change in

the current operating mode reflected in the interface

(and thus displayed to the operator), i.e., the annunci-
ated mode must be consistent with the internal mode.

Consistency between displayed and current mode is, of

course, an obvious design constraint and a violation al-
most always signals an error in the requirements spec-
ification. The first constraint should hold for almost

all systems as well.

Degani notes a third type of interface confusion er-

ror that results from mapping a single input control ac-

tion to multiple internal mode changes, depending on
the order of the control actions. He calls this circular

mode transitions. For example, pushing a button on a

device with a small input interface (e.g., a watch with

one or two buttons) will often cycle through the possi-

ble modes, going to the next mode with the next but-

toil push. A possible design constraint here is that if a

control input is used to trigger a mode transition, then
it must be associated with only one mode change, that

is, the mapping from control inputs to mode changes

is one-to-one (a mathematical function). Note that

it is unlikely that one would want to require that the

function be bijective, because that would eliminate the

possibility of all indirect mode changes. For some sim-

ple devices, even the constraint that the function be

injective (one-to-one) may be impossible to enforce,
and feedback about the current mode is the only pos-

sible solution to the problem.

Another design constraint related to these types of

interface interpretation errors is that interpretation of

the supervisory interface should not be conditioned on

modes (an example is the accident related to the inter-

pretation of "33" described earlier). This constraint
is much stronger than the first three and may not al-

ways be feasible or desirable to enforce. However, our

analysis tools will highlight these transitions to the

designer/analyst so that appropriate scrutiny can be
applied to that part of the design. Degani's circular

mode transition is a subcase of this design constraint.

In the MAPS design, while MAPS movement is be-

ing supervised by the automated planner, the opera-
tor is removed from process control and acts simply

as a safety monitor. There are six conditions under

which MAPS will stop the movement of the robot:

(1) the robot reaches the work area, (2) MAPS is dis-

abled, (3) MAPS enters planner mode, (4) MAPS en-
ters joystick mode, (5) the safety circuit detects an

unsafe condition, or (5) the deadman is released (Fig-

ure 5. Three of these actions involves the operator

directly the selection of the joystick mode, selection

of the planner mode, and the release of the deadman

switch--and the operator will know why the robot

wasstopped.In a fourthcase,thesafetycircuitsig-
nalsanunsafestateandanerrormessageisgenerated
andsentto theoperatorinterfaceto indicatewhythe
robotstopped.But theoperatorcannotdifferentiate
betweentheothertworeasons,andMAPScanenter
theDISABLEDmodewithoutindicatingthereasonto
theoperator.A straightforwardsolutionis simplyto
provideadditionalstatusmessagesto thedisplay.

Inconsistent Behavior

A more complex type of mode-confusion error, which
is more often related to errors of omission than the

interface errors mentioned above, is triggered by in-
consistent behavior of the automation. Carroll and

Olson define a consistent design as one where a simi-

lar task or goal is associated with similar or identical

actions [CO88]. Consistent behavior makes it easier
for the operator to learn how a system works, to build

an appropriate mental model of the automation, and
to anticipate system behavior.

An example of inconsistency was detected in an

A-320 simulator study involving a go-around below

100 feet above ground level. Sarter and Woods found

that pilots failed to anticipate and realize that the

autothrust system did not arm when they selected

TOGA (take off/go around) power under these condi-
tions because it did so under all other circumstances

where TOGA power is applied [SW95]. Another ex-
ample of inconsistent automation behavior, which was

implicated in an A-320 accident, involves a protection

function that is provided in all automation configu-

rations except the altitude acquisition mode in which

the autopilot was operating.
Consistency is particularly important in high-

tempo, tlighly dynamic phases of flight where pilots
may have to rely on their automatic systems to work as

expected without constant monitoring. Even in more

low pressure situations, consistency (or predictability)

is important in light of the evidence from pilot surveys

that their normal monitoring behavior may change on

advanced flight decks [SW95].
Pilots on conventional aircraft use a highly trained

instrument scanning pattern of recurrently sampling

a given set of basic flight parameters. In contrast,

some A-320 pilots explained that they no longer have
a scan anymore but allocate their attention within and

across cockpit displays on the basis of expected behav-

ior. Their monitoring objective is to verify expected
automation states and behaviors. If the automation

behavior is not consistent, mode errors of omission

may occur where the pilot fails to intervene when nec-

essary:

Note the fundamental difference between

these two monitoring strategies. In the case

of a standard pattern, the pilot's attention

allocation is externally guided while moni-

toring on advanced aircraft requires mental
effort on the part of the pilot who has to
determine on his own where to look next un-

der varying task circumstances. Based on his

expectations, the pilot only monitors part of
all available data. Parameters that are not

expected to change may be neglected for a

long time. A standard instrument scan, on

the other hand, serves to ensure that all rel-

evant parameters concerning airplane behav-
ior will be monitored at certain time intervals

to make sure that no unexpected and maybe

undesirable changes occur [SW95].

In our previous design criteria and analysis tools,
we include a check for nondeterminism in the software

behavior, that is, we check to determine whether more
than one transition can be taken out of a state under

the same conditions [HL96]. But consistency in this

case requires more than simple deterministic behavior
on the part of the automation. If the operator provides

the same inputs but different outputs (behaviors) re-

sult for some reason other than what the operator has

done (or even may know about), then the behavior is

inconsistent from the operator viewpoint even though
it is not mathematically inconsistent. More formally,
inconsistent behavior results from two state transition

functions of the form:

tl :SXio xx---, {s x O}'

t2 : s x io x y _ {s x O}"

where s E E is a state, io is an operator input, O is an

output, and x and y can be states, reference values,

supervisory interface values, etc.

We have identified several different design con-

straints related to various types of inconsistency. How-

ever, there may be reasons why having such inconsis-
tencies is necessary or reasonable. Again, our tools

can point out such potential problems to the de-

signer/analyst who must make the final decision about
whether the automation should be changed. Because

consistency may be most important during critical sit-
uations or when the behavior is related to a safety

design constraint, our hazard analysis tools may be
able to assist with these decisions and our new intent

specifications [Lev97] (a form of Rasmussen's means-
ends hierarchy adapted for software) can be used to

MAPSOPERATING
MODES Disabled(

IEnabled IDisabledI

Condition:

A

Supervisory-Mode ENTERED Planner
Supervisory-Mode ENTERED Joystick
Dead-Man-Switch- Open()
Safety-Circuit IN-STATE Unsafe
Robot-Location IN Robot-Between-Work-Area

Maps-Operating-Modes IN-MODE Off

References:

OR

II

Figure 5: Example of the conditions under which robot movement is stopped

trace such behavior back to its original system goals

and safety constraints to identify any reasons for the

specified inconsistent behavior.

Indirect Mode Changes

Indirect mode changes occur when the automation

changes mode without an explicit instruction by the
operator. Such transitions may be triggered on condi-

tions in the controller (such as preprogrammed enve-

lope protection) or sensor input about the state of the

controlled system (such as achievement of a prepro-

grammed target or an armed state with a preselected

mode transition).
Like many of the other mode-confusion problems

noted in this paper, indirect mode transitions create
the potential for mode errors of omission and of inad-

vertent activation of modes by the operator. Again,

the problems are related to changes in scanning meth-
ods and difficulty in forming expectations of uncom-

manded or externally triggered behavior.

Behavioral expectations are formed based on the

operators' knowledge of input to the automation and
on his or her mental model of the automation's de-

signed behavior. Gaps or misconceptions in the op-
erator's mental model may interfere with predicting

and tracking indirect mode transitions or with under-

standing the interactions between different modes.

An example of an accident that has been attributed

to an indirect mode change occurred while an A-320

was landing in Bangalore. In this case, the pilot se-
lection of a lower altitude while the automation was

in the ALTITUDE ACQUISITION mode resulted in the
activation of the OPEN DESCENT mode. It has been

speculated that the pilots did not notice the mode an-

nunciation because the indirect mode change occurred

during approach when the pilots were busy and they

were not expecting the change [SW95]. Another exam-

ple of such an indirect mode change in the A-320 au-
tomation involves an automatic mode transition trig-

gered when the airspeed exceeds a predefined limit.

For example, if the pilot selects a very high vertical

speed that results in the airspeed decreasing below

a particular limit, the automation will change to the
OPEN CLIMB mode, which allows the airplane to regain

speed. As a final example, Palmer has described an ex-

ample of a common indirect mode transition problem

called a "kill-the-capture bust" that has been noted

in hundreds of ASRS reports [Pal96]. Leveson and
Palmer have modeled an example of this problem in

SpecTRM-RL and shown how it could be detected and

fixed [LP97].

Another example of indirect mode change can be

found in the MAPS specification. In this scenario,

MAPS is in ioystick supervisory mode and it receives

a message from the planner that the robot has reached

the work area. This message will cause MAPS to tran-
sition from ENABLED to DISABLED mode (see Figure 5)

without any explicit instruction from the human oper-

atorandwithoutinformingtheoperatorof themode
change.If theanalystdecidesthat this is a poten-
tially dangerousscenario,theproblemcanbesolved
byaugmentingthetransitionANY----* IN-WORK-AREA

as seen in Figure 6.

In general, there are four ways to trigger a mode

change:

1. Operator explicitly selects a new mode.

2. Operator enters data (such as a target altitude)

or a command that leads to a mode change:

(a) Under all conditions.

(b) When the automation is in a particular
state.

(c) When the controlled system model or envi-

ronment is in a particular state.

3. Operator does not do anything but the transition

is triggered by conditions in the controlled sys-
tem.

4. Operator selects a mode change but the automa-

tion does something else, either because of the

state of the automation and/or the state of the

controlled system.

The formal definitions are obvious and are omitted

here. Degani also notes these types of indirect mode

changes, but he gives them different names and clas-
sifies them differently than we do.

Operator errors associated with indirect mode

changes are a phenomenon found primarily in ad-

vanced automation. Early automation tended to in-

volve only a small number of independent modes.

Most functions were associated with only one over-

all mode setting. We probably do not want to go back
to automation that will change mode only in response

to direct operator input, but design constraints are
desirable that limit such indirect transitions and elim-

inate it when possible. Our analysis methods highlight

mode changes that are independent of direct and im-
mediate instructions from human supervisors, and our

tools may also be able to assist the analyst in identi-

fying the most hazardous indirect mode changes.

Operator Authority Limits

Interlocks and lockouts are often used to ensure safety.

Interlocks are commonly used to prevent hazardous

system states by enforcing correct sequencing of events
or actions or to isolate two events in time. A lockout

makes it impossible or difficult to enter a hazardous
state.

Authority limiting is a type of lockout or interlock

that prevents actions that could cause the system to

enter a hazardous state. Such authority limitations

must be carefully analyzed to make sure they do not

prohibit maneuvers that may be needed in extreme

situations. Recent events have involved pilots "fight-

ing" with the automation over control of the aircraft
after observing unexpected or undesirable aircraft or
automation behavior.

Various types of authority limits are used to pre-

vent operator error or to provide protection when the

operator cannot or does not take proper action. For

example, automation on advanced aircraft often has
the ability to detect and prevent or recover from pre-

defined unsafe aircraft configurations such as a stall.

Once a hazardous state is detected, the automation

has the power to override or limit pilot input.

Some accidents and incidents in highly automated

aircraft have involved pilots not being able to over-
come the protection limits or the pilots not being

aware that the protection functions were in force. For

example, the pilots during one A-320 approach dis-

connected the autopilot while leaving the flight direc-

tors and the autothrust system engaged. Under these

conditions, the automation provides automatic speed

protection by preventing the aircraft from exceeding
upper and lower airspeed limits:

At some point during the approach, after

flaps 20 had been selected, the aircraft ex-

ceeded the upper airspeed limit for that con-

figuration by 2 kts. As a consequence, the

automation intervened by pitching the air-

plane up to reduce airspeed back to 195
kts. The pilots, who were not aware that

the automatic speed protection was active,
observed the uncommanded automation be-

havior. Concerned about the unexpected

reduction in airspeed at this critical phase

of flight, they rapidly increased thrust to
counterbalance the automation. As a conse-

quence of this sudden burst of power, the air-

plane pitched up to about 50 degrees, entered

a sharp left bank, and went into a dive. The

pilots eventually disengaged the autothrust
system and its associated protection function

and regained control of the aircraft [SW95].

Various design criteria are related to authority lim-
its. For example, information about any modes or

states where the operator input is ignored or limited

must be provided in the supervisory interface. In ad-

dition, the analysis tools can examine the specified

software behavior and detect exceptions to following

_ [In-Work-Areal

Condition:

References:

A

N ReceivePlanner-At-Work-AreaMessage] _D Supervisory-Mode IN-MODE Planner

Figure 6: Modified transition to the IN-WORK-AREA mode.

operator requests. Again, the information in the in-

tent specification is useful in determining whether such

design features are intentional and whether they are
related to identified hazards.

Unintended Side Effects

Mode ambiguity can also arise when an action in-

tended to have one particular effect has an additional

effect, i.e. an unintended side effect. An example oc-
curred in the Sarter and Woods A-320 simulator study

where it was discovered that pilots were not aware that

entering a runway change after entering data for the

assigned approach results in the deletion of all pre-
viously entered altitude and speed constraints even

though they may still apply.

This type of design flaw differs from indirect mode

changes in that the unintended change is not in the

mode but in some other type of information, such as

reference values. Degani describes this type of prob-

lem in terms of a mode/reference value interaction,

but more generally the same problem occurs when
any operator entry (for example, an input value rather

than a mode change) has unintended side effects.
Unintended side effects can contribute to mode con-

fusion, and often need to be evaluated by the design

team. If a decision is made to keep the behavior,

proper feedback constraints may be required to pre-

vent the type of confusion that seems to result.

Lack of Appropriate Feedback

Many of the original Jaffe criteria or the newly defined
criteria mentioned above are related to providing ap-

propriate feedback (e.g., providing feedback about the

status of interlocks and lockouts and providing grace-

ful degradation). In general, operators need to have

the information necessary to understand the mode

transitions taken, i.e., the conditions that trigger tran-

sitions. Operators need not only to track the current
active modes and to understand their implications,

but they also need to keep track of other automa-

tion and system status information that may result
in the indirect activation of modes. The difference

between these design constraints and those requiring
mode transition annunciations described in the section

on interface interpretation errors is that in this case

the automated system must not simply notify the op-
erator that a mode change has already occurred (an-

nunciate the present mode), but it must provide the

information necessary for the operator to predict or

anticipate mode changes.

Incomplete feedback is often implicated in accident
scenarios. For example, in the A-320 Bangalore acci-

dent, the pilot flying (PF) had disengaged his flight

director during the approach and was assuming that

the pilot-not-flying (PNF) would do the same thing

[SW95]. The result would have been a mode configu-
ration in which airspeed is automatically controlled by

the autothrottle (the SPEED mode), which is the rec-

ommended procedure for the approach phase. How-

ever, the PNF never turned off his flight director, and
the OPEN DESCENT mode became active when a lower

altitude was selected. This indirect mode change (ex-

plained above) led to the hazardous state and eventu-

ally the accident. But a complicating factor was that

each pilot only received an indication of the status of

his own flight director and not all the information nec-

essary to determine whether the desired mode would

be engaged. The lack of feedback or knowledge of the
complete system state contributed to the pilots not

detecting the unsafe state in time to reverse it.

Where automation has the ability to take au-

tonomous actions (i.e., those not directly commanded

by the operator), information interchange becomes

crucialin coordinatingactivitiesandindetectingmis-
matchesbetweenexpectedandactualsystembehav-
ior. A behavioraldescriptionof thesoftware,aspro-
videdin SpecTRM-RL,is usefulin determiningex-
actlywhatinformationtheoperatorneedsto monitor
andcontroltheautomatedsystem.

Theproblemsof providingsalientfeedbackare,of
course,muchmorecomplicatedthansimplyidentify-
ing the informationthat needsto beconveyed,but
identificationis animportantstepin theprocess.In
our originalJaffecriteria,weidentifieddesigncon-
straintsonbasicfeedbackto thecomputeraboutthe
stateofthecontrolledprocessandsometypesofoper-
atorfeedbackrequirements,but theseneedto beaug-
mentedwith a completesetof requirementson the
feedbackto the operatoror automationsupervisor.
An exampleconstraintis that operatorsmusthave
accessto all informationoncriticalmodetransitions
inorderto predictandmonitorthosetransitions.

Oneimportantaspectof usingfeedbackfor error
detectionis theneedforindependentinformation.Er-
rorscanonlybefoundthroughdiscrepanciesin redun-
dantinformation.Onewayto detectthat automated
equipmentisnotoperatingcorrectlyisforoperatorsto
detecta discrepancybetweentheautomationbehav-
iorandtheirmentalmodelof howtheythinktheau-
tomationshouldwork.However,operatorsoftenhave
limitedunderstandingof complexautomationbehav-
iororareafraidto stepin.

In addition,oftenanerrorisonlydetectableusing
someinformationaboutthestateoftheenvironment
or thecontrolledprocess.However,if theerroneous
behavioris occurringbecausetheautomationiscon-
fusedabouttheenvironmentorsystemstate,thenit
obviouslycannotprovidethisinformationto theoper-
ator.That is,theautomationmayshowonlyconsis-
tentinformationbecauseit doesnotknowthereisan
errorin its systemmodel.Therefore,it isnotsurpris-
ingthat SarterandWoodsfoundthat pilotsmostly
founderrorsthroughinformationgivenin nonauto-
mateddisplaysandinstruments(i.e.,basedonobser-
vationsbetweendesiredandactualaircraftbehavior,
not on indicationsof the nominalstatusof theau-
tomatedsystems).Thesamephenomenonis truefor
othertypesofsystems.Theproblemiscomplicatedby
thefactthatoperatorscannotalwaysseewhattheau-
tomationisdoingandcanonlytell bydirectlyobserv-
ingthereactionof thesystemor bygettingfeedback
fromsomeindependentdisplay.Providingindepen-
dentfeedbackandprovidingmorefeedbackonwhat
theautomationisdoingcanalleviatetheseproblems.

Conclusions and Future Work
Wehaveoutlinedanapproachto reducingpotential

modeconfusionerrors.Thesoftwarerequirementsare
modeledusinga hierarchicalstatemachinelanguage
andthenanalyzed(manuallyor with automatedas-
sistance)to identifyviolationsof a setof designcon-
straintsassociatedwith mode-confusionerrors.The
approachwasillustratedwithamodelofthesoftware
controllinga NASArobotanda descriptionof a few
ofourcurrentlyidentifiedsoftwaredesignconstraints.

Thisworkis still in the preliminarystages.We
needto completeandpartiallyvalidateoursetofcon-
straintsbyexaminingmoreaccidentsandincidentsto
determinewhetherthecurrentsetwouldidentifythe
factorsinvolved.Oncewearefairly confidentabout
ourlist,weplantovalidatethefeasibilityof applying
theconstraintstorealspecificationsbybuildingapro-
totypeanalysistoolandapplyingit to a modelof an
advancedaircraftFMS(probablynot theA-320,from
whichmanyoftheconstraintswereoriginallyderived).
A possiblestepafterthatwouldbeto useincidentre-
portsfromoneor moreofthereportingsystems(e.g,
ASRS,CHIRP,or EUCARE)for that aircraftto see
if ourpredictionsareaccurate.

References
[CO88] Carroll,J.M.andOlson,J.R.Mentalmodels

in human-computerinteraction,in M. He-
lander(Ed.)Handbook o/ Human-Computer

Interaction, Elsevier Science Publishers, pp.

45-65, 1988.

[CPWMgl] Cook, R.I., Potter, S.S., Woods, D.D. and
McDonald, J.M. Evaluating the human en-

gineering of microprocessor-controlled oper-
ating room devices. Journal of Clinical Mon-

itoring, 7, pp. 217-226, 1991.

[Deg96] Degani, A. Modeling Human-Machine Sys-
tems: On Modes, Error, and Patterns o/ In-

teraction. Ph. D. thesis, Georgia Institute of

Technology, 1996.

[Hans97] Hansman, John. Personal communication.

[HL96] Heimdahl, M. P. E. and N. Leveson. Com-

pleteness and consistency analysis of state-
based requirements. Transactions on Soft-

ware Engineering, June 1996.

[JLHM91] Jaffe, M.S, Leveson, N.G., Heimdahl,
M.P.E., and Melhart, B.E.. Software re-

quirements analysis for real-time process-

control systems. IEEE Transations on Soft-

wareEngineering,SE-17(3):241-258, March
1991.

[JL89] Jaffe, M.S. and Leveson, N.G. Impli-
cations of the man-machine interface for

software requirements completeness in real-

time, safety-critical software systems. Pro-

ceedings of IFAC/IFIP SAFECOMP 89,
Dec. 1989.

Leveson, N.G. Safeware: System Safety and

Computers. Addison-Wesley Publishing Co.,
1995.

Leveson, N.G. Intent Specifications. in

preparation.

[LHHR94] Leveson, N. G., M. Heimdahl, H. Hildreth,
and J. Reese. Requirements specification for

process-control systems. IEEE Transactions

on Software Engineering, September 1994.

[LP97] Leveson, N.G. and Palmer, E. Identifying
Indirect Mode Transitions: 'Oops, it didn't

arm' as a case study, in preparation.

[MMR92] Madsen, M., Murphy, J.S., Rosso-Llopart,
M. MAPS Software Requirements Specifica-

tion. School of Computer Science, Carnegia

Mellon University, June 1992.

[MLRPS97] Modugno, F., N. Leveson, J. Reese,
K. Partridge, and S. Sandys. Integrated

safety analysis of requirements specifica-

tions. Third IEEE Interational Symposium

on Requirements Engineering, 1997.

[Pal96] Palmer, E. "oops, it didn't arm" - a case
study of two automation surprises. NASA

Technical Report, 1996.

[Per84] Perrow, C. Normal Accidents: Living with
High-Risk Technology. Basic Books, Inc.,

New York, 1984.

[Ras90] Rasmussen, J. Human error and the problem
of causality in analysis of accidents. In D.E.
Broadbent, J. Reason, and A. Baddeley, ed-

itors, Human Factors in Hazardous Situa-

tions, pages 1-12, Clarendon Press, Oxford,
1990.

[SW95] Sarter, N. D. and D. Woods "How in the
world did I ever get into that mode?": Mode

error and awareness in supervisory control.

Human Factors 37, 5-19.

[Lev95]

[Lev97]

[sw951

[SW95]

Sarter, N. D. and D. Woods Strong, silent,

and out-of-the-loop. CSEL Report 95-TR-

01, Ohio State University, February 1995.

Sarter, N. D., Woods, D.D. and Billings,

C.E. Automation Surprises. in G. Sal-

vendy (Ed.) Handbook o] Human Fac-

tors/Ergonomics, 2nd Edition, Wiley, New

York, in press.

