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Navier-Stokes Equations in Aeroacoustics

• Noise can be predicted by solving Full (time-dependent) Compressible

Navier-Stokes Equation (FCNSE) with computational domain extended

to far field _-- but this is not feasible.
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The fluctuating near field of the jet produces propagating pressure waves that

produce far-field sound. The fluctuating flow field as a function of time is needed
in order to calculate sound from first principles. Noise can be predicted by solving

the full, time-dependent, compressible Navier-Stokes equations with the

computational domain extended to far field --- but this is not feasible as indicated

above. At high Reynolds number of technological interest turbulence has large

range of scales. Direct numerical simulations (DNS) can not capture the small
scales of turbulence. The large scales are more efficient than the small scales in

radiating sound. The emphasize is thus on calculating sound radiated by large

scales.
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SUBSONIC JETS

• Developmentofthecoherentstructure Is _ controlled
by the 8tmuhal number

• The structure is both axisymmetrlc and thme-dlmensionaJ
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The large-scale structure in the initial region of the jet, where most of the noise is

produced is modelled by extending ideas from the nonlinear stability theory. The
large-scale component is modelled as

= zm,.IA. (x)l exp[/ =n(x)-U¢Or.t+iN¢] +CC (1)

The transversal profile is taken as the eigen function given by the locally-parallel

linear stability theory. For a review on this approach see Mankbadi (1 992, Applied
Mechanics Reviews). The amplitude and phase are determined from nonlinear

theory. Results of this theory as seen above indicates that the development of the

large structure is largely controlled by the Strouhal number. At large-enough

amplitudes the process is nonlinear in the sense that one mode can generate/cancel
other modes, which represents a possible technique for noise control. The results
also indicates that the three-dimensional mode of the structure could dominate the

axisymmetric one, depending on the Strouhal number, initial conditions, and axial
location.

25--2



• PREDICTION OF SUBSONIC JET NOISE USING LIGHTHILL'S

THEORY
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Polar distribution of the =hear noise intemity/_ for n = O.
(.) S¢ = 0.18; (b) St = 0.-_0; (¢) 3: = 0.80.
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Polar dbtribudon of the =hear nohe intensity/,.(W m -s) for a = I.
(=) St = o.ts; (b) St = o._; (c) st = o.so.

The above shows the directivity of the axisymmetric modes and that of the first
helical modes. These results are from Mankbaldi and Liu (1984) in which

Lighthill's (1952) theory is used to calculate the shear noise produced by the large-

scale structure in the initial region of the jet.

,°

25-3



SUPERSONICJET NOISE
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EXCITATION OF DISTURBANCE MODES IN AXISYMMETRIC JET AT r = 1

The large scale structure is calculated using the full Navier-Stokes equations.
Gottlieb & Turkel scheme is applied to shear flows. The numerical scheme is

fourth-order accurate in space and second-order accurate in time. The results are

validated by comparing the predicted growth of input disturbance against the

results of the linear stability theory. As the amplitude of disturbance becomes large
nonlinearity come into effect and the linear stability theory is no longer valid.
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The small scale turbulence is modelled following Smagorinski's (1 963):

• #. =q26q13 - 2VRS #

where qR 2 is the energy of the residual turbulence,

1 .o_:u_' + c3<u/> )

is the strain rate of the resolved scale, and v R is the effective viscosity of the
residual field. Here we take

v R = (Cs_2v/2Srn Snn m y

C s = 0.23

(2)

(3)

(4)

and A is the filter width.

The above figure shows the radial distribution of the mean flow axial velocity at
several streamwise locations.
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FOURIER COMPONENT OF NEAR-FIELD

SOUND SOURCE

This figure shows the Fourier component of the near-field sound source (Strouhals number =
0.5) of a supersonic jet at Mach number 1.5 as seen by an observer in the far-field at 30 ° to
the jet axis.
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FUTURE PLANS

• Subgrid-Scale Models:

Compressibility Effects--Erelbacher (1990)

Dynamical -- Moin et al. (1992)
One-Equation Model-- Hortituti (1985)

• Validation of the near field against experimental results

• Far-Field Sound:

Lilley (1974)
Linearized Euler Equation

• Validation of the far-field sound against experimental data
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