NASA/CP-1999-209704/VOL1/PT1

1999 NASA High-Speed Research Program Aerodynamic Performance Workshop

Volume I-Configuration Aerodynamics
Edited by
David E. Hahne
Langley Research Center, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- Email your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI

Help Desk at (301) 621-0134

- Telephone the NASA STI Help Desk at (301) 621-0390
- Write to:

NASA STI Help Desk
NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320

1999 NASA High-Speed Research Program Aerodynamic Performance Workshop

Volume I-Configuration Aerodynamics

Edited by
David E. Halme
Langley Research Center, Hampton, Virginia

Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington D.C., and held in Anaheim, California

February 8-12, 1999

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-2199

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information (CASI) 7121 Standard Drive
Hanover, MD 21076-1320
(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161-2171
(703) 605-6000

PREFACE

Abstract

The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization) and High-Lift. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program.

The work performed in the Configuration Aerodynamics (CA) element of the High-Speed Research Program during 1998 was presented in the following sessions:

Propulsion Integration
Analysis Methods
Design Optimization
Testing
The work performed in the High Lift (HL) element of the High-Speed Research Program during 1998 was presented in the following sessions:

High-Lift Configuration Development
Tools and Methods Development
The proceedings for the Aerodynamic Performance Annual Review are published in three volumes:

Volume I, Parts 1 and 2 Configuration Aerodynamics
Volume II, Parts 1 and $2 \quad$ High Lift
AP Review Chairperson: David Hahne
NASA Langley Research Center

CONTENTS

Preface iii
Part 1
VOLUME I - CONFIGURATION AERODYNAMICS
Propulsion Integration Session
Isolated Nozzle Analysis Using OVERFLOW 1
Tin-Chee Wong (AS\&M) and Karen A. Deere and S. Paul Pao (NASA Langley)
PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment 21
C. F. Shieh, Alan Arslan, P. Sundaram, Suk Kim (The Boeing Company, Phantom Works), and Mark J. Won (NASA Ames)
Nacelle/Diverter Design and Airframe Integration 67
Steve Chaney and Robyn Wittenberg (BCAG), Mike Malone, Steven Speer, and Arsenio Dimanlig (Northrop-Grumman)
Analysis Session
Improvements to the Unstructured Mesh Generator MESH3D 213
Scott D. Thomas (Raytheon ITSS), Timothy J. Baker (Princeton University), and Susan E. Cliff (NASA Ames)
Assessment of CFD Predictions of Flat Plate Skin Friction 253Robert M. Kulfan (Boeing Commercial Airplane Group)
Progress Toward Viscous Drag Calculations, Part I: Flow Over Flat Plate With No Pressure Gradient 301
Hamid Jafroudi (Alpha STAR Corporation) and Raul Mendoza, Peter Hartwich, and Shreekant Agrawal (The Boeing Company, Phantom Works)
Progress Toward Viscous Drag Calculations, Part II: Flow With Pressure Gradient Over TCA Symmetric Wing/Body Configuration 365
Hamid Jafroudi (Alpha STAR Corporation) and Raul Mendoza, Peter Hartwich, and Shreekant Agrawal (The Boeing Company, Phantom Works)
OVERFLOW: Facts on Friction 401
Scott Lawrence (NASA Ames)
Canard Effectiveness Predictions 417Doug Wilson, Greg Stanislaw, and Servando Flores (Boeing Commericial Airplane Group) andMax Kandula, Gerald Fargo, and Anthony Saladino (Dynacs Engineering)
Canard Integration Wind-Tunnel Tests and Computational Results 473
Todd E. Magee, Paul Kubiatko, Suk C. Kim (The Boeing Company, Phantom Works) and Hamid Jafroudi (Alpha STAR Corporation)
Unstructured Navier-Stokes Analysis of Wind-Tunnel Aeroelastic Effects on TCA Model 2 621
Neal T. Frink and Dennis O. Allison (NASA Langley), and Paresh C. Parikh (Paragon Research, Inc.)
Automated Euler/Navier-Stokes Grid Generation/Grid Perturbation for Wing/Body Configurations 641
David Saunders (Raytheon), James Reuther (MCAT), and Stephen Edwards (U. C. Davis)
Design Optimization Session
Nacelle/Diverter Integration into the Design Optimization Process Using Pseudo, Warped, and Real Nacelles 685
Susan E. Cliff (NASA Ames), James J. Reuther (MCAT), David A. Saunders and Mark J. Rimlinger (Raytheon)
A PTC Optimization and Control Surface Interference Study 747
Raymond Hicks (MCAT), Susan Cliff (NASA Ames), Mark Rimlinger (Raytheon), Scott Murman (MCAT), and James Reuther (MCAT)
Multi-Configuration and Aeroelastic Shape Design 801
James Reuther (MCAT), Juan J. Alonso (Stanford University), and Steve Smith (NASA Ames)
Part 2*
Geometry-Driven Mesh Deformation 867
James Reuther (MCAT), Mark J. Rimlinger and David Saunders (Raytheon)
Progress Toward Single and Multi-Point Optimization Tool Realization 901
R. S. Conner (Boeing Commercial Aiplane Group)
Design Cycle-Time Reduction Using TLNS3D-Adjoint 995
Geojoe Kuruvila and Robert P. Narducci (The Boeing Company, Phantom Works)
Progress Towards Viscous Design Optimization Using Automatic Differentiation 1049
P. Sundaram and Shreekant Agrawal (The Boeing Company, Phantom Works)Technology Development for a Multipoint Optimization Process for an HSCT1111Robert Narducci, James Hager, Eric Unger, Geojoe Kuruvila, P. Sundaram, Peter Hartwich, GrantMartin, Raul Mendoza, Alan Arslan, and Shreekant Agrawal (The Boeing Company, PhantomWorks)

[^0]
Testing Session

Accounting for Laminar Run and Trip Drag in Supersonic Cruise Performance Testing 1163
Aga M. Goodsell and Robert A. Kennelly (NASA Ames)
NCV Flow Diagnostic Test Results (LaRC UPWT 1703) 1197
Mina Cappuccio (NASA Ames)
Flowfield Studies for the TCA/NCV Configurations 1289Raul Mendoza, Chih Fang Shieh, and P. Sundaram (The Boeing Company, Phantom Works)
Supersonic Aftbody Closure Wind-Tunnel Testing, Data Analysis, and Computational Results 1365
Jerry Allen (NASA Langley), and Grant Martin and Paul Kubiatko (The Boeing Company, Phantom Works)
Aft Body Closure - Predicted Strut Effects at M = 2.4 1473
John E. Lamar (NASA Langley) and Javier A. Garriz (ViGYAN, Inc.)
Thrust Dray Bookkeeping and the Calibration of Nacelles for Internal Drag 1513
Eric Adamson (Boeing)
HSR
High Speed Research - Configuration Aerodynamics
Isolated Nozzle Analysis Using OVERFLOW
Tin-Chee Wong (AS\&M)
Karen A. Deere (LaRC)
S. Paul Pao (LaRC)
Aerodynamic Performance Workshop
HSR Annual Aiframe Review
Annaheim, CA
February 8 - 11, 1999

LaRC conducted a code validation study for the OVERFLOW code to ascertain its accuracy for boattail drag prediction. The OVERFLOW results compared favorably with the LaRC 16 -ft TWT data, and prior CFD solutions from PAB3D and CFL3D.
The ultimate goal is to investigate the installation drag of the nacelle boattails with powered nozzles at transonic Mach numbers. The OVERFLOW solver was chosen because of its ability to accept volume overlapping structured grid for very complex airframe configurations. Structured grid components for representing the transonic nozzle boattail can be added to the BCAG grid for a TCA airframe with 2D bifurcated inlet and flow through nacelle without alteration.. The focus of this research was to determine the suitability of the OVERFLOW solver for accomplishing this ultimate goal.

This study was performed under High Speed Research II - Configuration Aerodynamics WBS 4.3.1.3.2: Propulsion Induced Effects
Milestone 4.3: Initial Propulsion Induced Effects
Coordination Responsibility: NASA Ames Research Center

Outline

- N1-S1 Rectangular Nozzle Boattail Geometry
- Review of Aerodynamic Features and Comparisons to Prior PAB3D Solutions
- Comparison of OVERFLOW Solutions to Experiment and Other CFD Solutions at $\mathrm{M}=0.9,1.11,1.20$
- Boattail Drag Prediction Assessment
- Work Plan for FY99

This presentation will first introduce the transonic nozzle boattail wind-tunnel model geometry, followed by an examination of aerody namic features based on the current OVERFLOW solutions and the solutions obtained previously using PAB3D, comparisons of Cp on the flap surface betw een the OVERFLOW solutions, wind tunnel data, and solutions from other CFD codes, an assessment of boattail drag count prediction, and a work plan for FY99.

The N1 flap has a circular are profile between its hinge line and the flap trailing edge at the nozzle exit. The nominal nozzle flap angle setting is 8 degrees in reference to the nozzle horizontal plane of symmetry. Surface slope at the trailing edge is actually 16 degrees. The Sl sidewall has a taper angle of 4 degrees. The top of the side wall is rounded by a quarter circle according to the local thickness. The computational mesh represents a quarter of the nozzle configuration with two planes of symmetry. The upstream portion of this isolated nacelle model, not show in this figure, is a pointed forebody with super-elliptic cross sections. The total model length is 64 inches. The computational mesh used here for OVERFLOW analysis, other than volume overlap between blocks, is identical to the multiblock grid used for PAB3D (LaRC) and CFL3D (Boeing-LB) computations. The nozzle internal convergent-divergent flow path and the supersonic jet exhaust flow following the nozzle exit are included in the computational domain.

Two versions of the OVERFLOW solutions are shown on the left hand side: one based on the SA turbulence model and another based on the Menter's SST model. A corresponding PAB3D solution is shown on the right hand side which is computed using a two equation k-e turbulence model and the Girimaji algebraic Rey nolds stresses. A local transonic expansioncompression pressure pattern can be seen in all three solutions. A small region of flow separation can be seen near the flap trailing edge. The nozzle internal flow path and the exhaust flow are also shown in this figure. The nozzle pressure ratio (NPR) is 5.0 for all three cases: $M=0.9,1.11$, and 1.20 . Important flow features to be demonstrated in the next three sets of flow quality figures are: flow expansion and recompression over the nozzle flap, shock boundary layer interaction, flow separation, and the formation of vortices as a result of cross flow over the top of the side wall.

An isometric view of the normalized contour over the nozzle flap is shown in this figure. The pressure pattern near the hinge line is three dimensional in nature. As the flow proceed down the flap, the confinement of the side wall causes the pressure distribution to show typical two dimensional features. A particle trace, in red color, shows the position and width of the induced vortex over the side wall.

Mach number contours for a cross section at the trailing edge of the flap are show for the same solutions at $\mathrm{M}=0.9$. The flow outside of the side wall is pulled over the top of the side wall toward the low pressure region above the nozzle flap. A strong vortex is formed inboard of the side wall. The induced change in pressure distribution on the flap surface should reflect a drag component equal to the momentum loss carried away by the detached vortex element. The difference in thickness of flow separation at the trailing edge of the flap can be seen in this figure.

The OVERFLOW solutions for $\mathrm{M}=1.11$ was computed by using the SA-turbulence model alone. The flow expansion over the flap starts at the hinge line, and continues much farther downstream over the flap. The expansion was eventually terminated by a shock. Shock boundary layer interaction has crated a flow separation which extend from the root of the shock down to the flap trailing edge. Since the NPR for the internal flow remains the same as the $\mathrm{M}=0.9$ case, the internal and exhaust flow characteristics remains the same as before.

The normalized pressure contours for the OVERFLOW and the PAB3D solutions show significant differences in pressure distribution of the flow surface where most of the drag force is produced. While the low pressure area of the OVERFLOW solution covers a much larger area, the pressurization near the trailing edge is also much stronger. The particle traces for the two solutions are also quite different. The vortex as shown by the OVERFLOW solution is more diffused in appearance. Furthermore, clear entrainment paths from a significant length of the side wall directly to the vortex core region. The PAB3D solution, on the other hand, does not show such a pattern.

The vortex strength as shown by the OVERFLOW solution appears to be much more diffused than the corresponding vortex structure in the PAB3D solution. Flow separation over the flap surface for the OVERFLOW solution appears to be much thinner than its counterpart in the PAB3D solution. However, these qualitative flow features do not tell much about the change in drag count.

In order to provide a better understanding of the quantitative nature of the vortices depicted in the OVERFLOW and the PAB3D solutions, velocity vector plots are shown in this figure. Velocity vectors of the same magnitude are located farther away from the vortex core in the OVERFLOW solution versus the PAB3D solution. Again, the significance of these patterns in terms of drag forces is not obvious with a quantitative analysis of various aerodynamic quantities such as mass flux over the side wall, momentum flux, and total circulation around the vortex.

The OVERFLOW and the PAB3D solution are very similar in this comparison. There are differences in shock position as well as the size and thickness of flow separation near the trailing edge of the nozzle flap. The shock is definitely stronger than the $M=1.11$ case, and the shock position is further downstraam on the flap surface. Again, the internal and the exhaust flow regions remain similar to the $M=0.9$ and 1.11 cases since the NPR remains the same as before: $\mathrm{NPR}=5.0$.

Other than the strong influences of the vortex, the flow expansion and compression patterns on the flap surface is decidedly two dimensional in appearance. As was in the $\mathrm{M}=1.11$ case, the OVERFLOW solution, in comparison to the PAB3D solution as shown on the right hand side, has larger regions of low pressure as well as stronger recompression hear the trailing edge. In essence, these two effects cancels each other as far as overall drag forces are concern.

Similar to the M=1.11 case, the PAB3D vortex is much stronger than the vortex in the OVERFLOW solution. The influence of the vortex on the flow field above the flap and near the side wall is evident in this figure.

Comparison of Surface Pressure Coefficients

Wind tumnel measurement data and CFD results from OVERFLOW, PAB3D, and CFL3D are shown in this figure. The CFL3D solutions were obtained by Boeing Phantom Works at Long Beach. At $\mathrm{M}=0.9$, the flow initiated supercritical expansion near the hinge line, and continued over the initial portion of the flap surface. Pressure recovery started at approximately at model station 57 . Two OVERFLOW solutions, using the SA and the SST turbulence models are shown in this figure.
Good agreement is shown comparing to wind tunnel data and pressure coefficients computed by other codes. The OVERFLOW solutions show a stronger and more extended flow expansion over a significant portion of the nozzle flap. The pressure recovery of the OVERFLOW solution achieved a higher pressure at the trailing edge of the flap in comparison to the data and the PAB3D and CFL3D solutions.

Comparison of Surface Pressure Coefficients

The nozzle boattail measurements conducted in the LaRC 16-FT transonic wind tunnel had produced an accurate database for boattail drag. However, the overall model length of 64 inches was long than most other propulsion component models tested in this turnel. At $M=1.11$, shock reflected from the tunnel wall had pressurized the base of the nozzle boattail. As a result, the measured pressure coefficient was raised to much higher values, with the strongest influence near the trailing edge of the nozzle flap. The correct value for pressure coefficient at this mach number is much better represented by the PAB3D solution.
Hence, only the CFD solutions between OVERFLOW and PAB3D can be compared. Flow expansion between the hinge line and model station 61 as predicted by the two solutions are nearly identical. Flow expansion in the PAB3D solution is termmated by a shock shortly downstream of station 61. The OVERFLOW solution shows further expansion before a shock is set up farther downstream. As was in the $\mathrm{M}=0.9$ case, the recovery pressure at the flap trailing edge is higher for the OVERFLOW solution.

Comparison of Surface Pressure Coefficients

$$
\mathrm{M}=1.20
$$

Wind tunnel measurement data and CFD results from OVERFLOW, PAB3D, and CFL3D are again shown in this figure. The CFL3D solutions were obtained by Boeing Phantom Works at Long Beach. At $\mathrm{M}=1.2$, the pressure coefficients throughout the expansion phase up to model station 61. Although both OVERFLOW and CFL3D solutions were computed by using the SA turbulence model, the shock positions are downstream and upstream of the data for the two solutions, respectively. Both OVERFLOW and CFL3D solutions show recovery pressures which are higher than the measured data near the flap trailing edge. From previous studies of nozzle boattail pressure recovery using the PAB3D code, turbulence models have a strong effect on pressure recovery characteristics in the transonic speed range.

These numbers shows a complex picture for boattail drag predictions in the transonic range. According the IMS method proposed by Hoyt Wallace (BPW), the presence of side walls would significantly modify the Mach number trends of nozzle boattail drag through the transonic range. The drag rise begins at approximately $\mathrm{M}=0.9$. Drag rises rapidly bey ond $\mathrm{M}=0.95$, and continue to rise through $\mathrm{M}=1.1$. For nozzle boattails without side walls, the drag coefficient begins to decline rapidly beyond $\mathrm{M}=1.10$. However, the drag coefficient would mantain its peak value through $\mathrm{M}=1.2$ before declining to much lower values.
The nozzle boattail measurements conducted in the LaRC 16-FT transonic wind tunnel had produced an accurate database for boattail drag. However, the overall model length of 64 inches was long than most other propulsion component models tested in this tumnel. At $\mathrm{M}=1.11$, shock reflected from the tunnel wall had pressurized the base of the nozzle boattail. As a result, the measured drag coefficient was less than half of what would be expected by using the IMS method. The correct value for drag coefficient at this mach number is much better represented by the PAB3D solution.
Drag count computed using FOMOCO and the OVERFLOW solution at $\mathrm{M}=0.9$ is 17.2 , much higher than anticipated from either the experiment or the PAB3D solution. Drag counts at $\mathrm{M}=1.11$ and 1.20 are 8.92 and 7.34 , respectively, somewhat lower than the measured values for this configuration. The source of the differences are being investigated. The most likely sources of variation are the difference between upwind and central difference schemes and differences in turbulence models used in these computations. How ever, it remains possible that procedural errors could have been made in the force integration process.
Most of the drag forces resulted from flow expansion over the deflected nozzle flap. The side wall drag contribution is small for this geometry because the taper is 4 degrees. The full scale nozzle design would require a taper of at least 8 degree for closure of a much thicker side wall. Hence, the differences in side wall drag count between a wind $t \mathfrak{l}$ model and the full scale design should be noted.

Overall Remarks

- OVERFLOW VALIDATION

»Flow feature predictions are similar to prior PAB3D solutions
» Cp distribution compared favorably with LaRC 16-FT wind tunnel data and PAB3D solutions
" Shock position and magnitude of pressure recovery are different between CFD solutions and measured data (CFL3D solution was obtained by BWP-LB)
" Variation of drag count predictions is noted in this study; numerical scheme, turbulence model, or simply procedural error in force integration may be responsible

- Aerodynamics
" Understanding of aerodynamic features can lead to nozzle boattail design improvements and drag reduction
" CFD drag prediction is a useful tool for expanding nozzle boattail drag data base beyond range of wind turnel measurements

No notes for this slide.

Future Plans

- HSR - FY99
» Add transonic nacelle grid components to TCA chimera grid constructed by BCAG (Chaney)
» Compute installed nozzle boattail drag components using OVERFLOW with SA turbulence model
" Powered effect will be included in the analysis
- Computational Methods Development
" Add chimera grid capability to PAB3D
» Compute same cases and compare all available results

The installed nacelle boattail study using OVERFLOW and a modified TCA chimera grid for Mach numbers $0.9,1.10$ and 1.20 will be completed within FY99. However, support for further studies of the installation effect, such as change in geometry or drag optimization will not be available. The proposal to extend PAB3D for chimera capability is based on its excellent ability to predict propulsion component performance for both intemal flow and configuration aerodynamics. Support for such work could come from the base program or other sources.
PIE Nacelle Flow Analysis and
TCA Inlet Flow Quality Assessment C. F. Shieh, Alan Arslan, P. Sundaram, Suk Kim
The Boeing Company, Phantom Works - Long Beach and
Mark J. Won
NASA Ames Research Center
High Speed Research Airframe Review
Anaheim, California
February 8-11, 1999

Outline
This presentation includes three topics: (1) Analysis of Isolated Boattail Drag, (2) Computation of TCA-installed
nacelle effects on aerodynamic performance, and (3) Assessment of TCA inlet flow quality.
Outline
High Speed Configuration Aerodynamics
Analysis of isolated PIE boattail drag at
$M_{\infty}=0.9$ and 1.1
Computation of TCA-installed PIE
nacelle effects at $M_{\infty}=2.4$
Assessment of TCA inlet flow quality at
$M_{\infty}=2.4$

әก!̣ออ!q0
The primary objective of this study is to analyze the effects of PIE (Propulsion Induced Effect) nacelle on TCA
aerodynamic performance using Computational Fluid Dynamics techniques. This presentation includes three (1) For the isolated boattail study, the objective is to evaluate the boattail drag at critical transonic condition and to support Milestone 4-3. (2) For the TCA-installed case, the objective is to assess the PIE nacelle effects on support Milestone 4-3. (2) For the TCA-installed case, the objective is to assess the PIE nacelle effects on aerodynamic performance at supersonic cruise condition and to support Milestone 4-14. (3) For the inlet flow quality study, the objectives are to obtain wind-tunnel test data, to evaluate the CFD computational capability for predicting the inlet flow Mach number and flow angle distributions, and to support Milestone 3-7. The wind-tunnel test was carried out by the NASA Ames Research Center and the CFD validation was performed by the Boeing Company, Phantom Works-Long Beach.

- WBS 4.3.1.3, Milestone 3-7
NA. $_{\substack{\text { AMEs } \\ \text { Research Cener }}}$
Approach
The CFL3D flow solver was used for this CFD study. For the isolated PIE nacelle boattail drag and TCA-installed
nacelle calculations, the Spalart-Allmaras turbulence model was applied. The boattail study was carried out at
transonic Mach numbers, $M_{\infty}=0.9$ and 1.1. The results were compared with those of other HSCT nacelle
configurations such as Ref. H Axi- and 2D-nacelles. For the TCA installed case, drag polar at supersonic cruise
condition, $M_{\infty}=2.4$, was calculated and compared with those of other HSCT configurations. The inlet flow quality
was computed using Baldwin-comax turbulence model and the results were compared with the wind-tunnel data
from the Test 1701 ($3 / 1-3 / 13 / 98$).

$$
\begin{aligned}
& \text { Approach } \\
& \text { - Compute boattail drag and compare the results to } \\
& \text { other isolated HSCT nacelles } \\
& \text { - TCA-installed PIE Nacelle } \\
& \text { - Compute drag and compare the result to other } \\
& \text { nacelles installed on TCA } \\
& \text { - Inlet Flow Quality Assessment } \\
& \text { - Compare CFD results to wind-tunnel test data } \\
& \text { • M, } \alpha \text {, and } \beta \text { distributions }
\end{aligned}
$$

Isolated PIE Nacelle
The primary components of PIE nacelle are illustrated. It includes a 2-D inlet and inlet ramp, 2-D nozzle with
aspect ratio 1.5, and nozzle flaps which is longer than the side-walls.
Isolated PIE Nacelle
\ldots High Speed Configuration Aerodynamics

Isolated PIE nacelle Flow Analysis CFL3D with the Spalart-Allmaras turbulence model was used for analysis. The boattail calculations were made at
subsonic cruise ($M_{\infty}=0.9$, nozzle flap 13.0 degrees) and transonic climb ($M_{\infty}=1.1$, nozzle flap 12.6 degrees) conditions.
The performance evaluation condition was set at $R e_{c}=40 \times 10^{6}$, which is consistent with previous boattail drag analysis
in HSR program. The reference case for boattail drag calculations is called the aero reference case, whose geometry is
the same as the supersonic cruise nacelle configuration with the nozzle flap angle of 4 degrees. The aero reference
nozzle was designed to match the Nozzle Pressure Ratio (NPR) requirements at transonic conditions.

$$
\begin{aligned}
& \text { Isolated PIE Nacelle Flow Analysis } \\
& \text { - CFL3D, Spalart-Allmaras Turbulence Model } \\
& \text { - 2-D Nozzle with Aspect Ratio } 1.5 \\
& \text { - Transonic Flow Regime } \\
& \text { - Subsonic cruise: } \mathrm{M}_{\infty}=0.9 \text {, nozzle flap angle of } 13.0^{\circ} \\
& \text { - Transonic climb: } \mathrm{M}_{\infty}=1.1 \text {, nozzle flap angle of } 12.6^{\circ} \\
& \text { - Performance Evaluation Point: Re }{ }_{c}=40 \times 10^{6} \\
& \text { - Aero Reference Nozzle } \\
& \text { - Supersonic cruise configuration, nozzle flap } 4^{\circ} \\
& \text { - Re-designed by Hoyt Wallace to satisfy NPR } \\
& \text { requirement at transonic conditions }
\end{aligned}
$$

Isolated PIE-2D Nacelle
Flow patterns and pressure distributions at $M_{\infty}=1.1$ are shown for the supersonic (the reference case) and the transonic boattail configurations. The boattail drag at transonic speed is defined as the difference in drag between the transonic and the supersonic (the reference case) boattail configurations at transonic flow condition. As shown in the figure, the flow expansion over the nozzle flap hinge line for the transonic boattail configuration causes a local low pressure region and, therefore, a higher pressure drag comparing with the supersonic boattail configuration.
Isolated PIE-2D Nacelle
$\times 10^{6}$

$=$| 0.300 |
| ---: |
| 0.025 |
| -0.250 |
| -0.525 |
| -0.800 |

Isolated Nacelle Boattail Drag
The PIE 2-D nacelle boattail drag is compared with previous results of Ref. H 2-D and Ref. H Axi configurations.
In general, the boattail drag at $M_{\infty}=1.1$ is approximately 4 to 5 cts . higher than the $M_{\infty}=0.9$ case. For $M_{\infty}=1.1$,
The TCA PIE 2-D boattail drag is 0.77 cts . higher than the Ref. H2-D nacelle configuration. The isolated 2-D
nacelle boattail drag is approximately 1 ct . higher than the Axi case.

Isolated Nacelle Boattail Drag					
CFL3D N-S, $(\mathrm{S}-\mathrm{A}), \alpha=0^{\circ}, \mathrm{Re}_{\mathrm{c}}=40 \times 10^{6}$					
			Transonic Nacelle	Supersonic Nacelle	Boattail Drag
$M_{\infty}=1.1$	TCA PIE 2-D ($\mathrm{AR}=1.5$)	$\begin{aligned} & \mathrm{C}_{\mathrm{Dp}} \\ & \mathrm{C}_{\mathrm{Dv}} \\ & \mathrm{C}_{\mathrm{D}} \end{aligned}$	$\begin{array}{r} 9.87 \\ 3.37 \\ 13.24 \text { cts. } \end{array}$	$\begin{aligned} & 3.06 \\ & 2.49 \\ & 5.55 \text { cts. } \end{aligned}$	$\begin{aligned} & \hline 6.81 \\ & 0.88 \\ & 7.69 \mathrm{cts} . \end{aligned}$
	$\begin{aligned} & \text { Ref. H } \\ & 2-D \\ & (A R=1.2) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{Dp}} \\ & \mathrm{C}_{\mathrm{Dv}} \\ & \mathrm{C}_{\mathrm{D}} \end{aligned}$	$\begin{array}{r} 8.42 \\ 2.10 \\ 10.52 \text { cts. } \end{array}$	$\begin{aligned} & 1.58 \\ & 2.02 \\ & 3.60 \mathrm{cts} . \end{aligned}$	$\begin{aligned} & 6.84 \\ & 0.08 \\ & 6.92 \text { cts. } \end{aligned}$
	Ref. H Axi	$\mathrm{C}_{\text {Dp }}$ C_{Dv} C_{D}	$\begin{aligned} & 7.57 \\ & 2.16 \\ & 9.73 \mathrm{cts} . \end{aligned}$	$\begin{aligned} & 1.57 \\ & 2.57 \\ & 4.14 \text { cts. } \end{aligned}$	$\begin{gathered} 6.00 \\ -0.41 \\ 5.59 \mathrm{cts} . \end{gathered}$
$\mathrm{M}_{\infty}=0.9$	$\begin{aligned} & \text { Ref. } H \\ & 2-D \\ & (A R=1.2) \end{aligned}$	$\mathrm{C}_{\text {Dp }} \mathrm{C}_{\mathrm{Dv}} \mathrm{C}_{\mathrm{D}}$	$\begin{aligned} & 2.27 \\ & 2.07 \\ & 4.34 \text { cts. } \end{aligned}$	$\begin{aligned} & 0.40 \\ & 2.08 \\ & 2.48 \mathrm{cts} . \end{aligned}$	$\begin{array}{r} 1.87 \\ -0.01 \\ 1.86 \text { cts. } \end{array}$
	Ref. H Axi	$\mathrm{C}_{\text {Dp }} \mathrm{C}_{\text {dv }}$	$\begin{aligned} & 1.07 \\ & 2.83 \\ & 3.90 \mathrm{cts} . \end{aligned}$	$\begin{aligned} & 0.21 \\ & 2.50 \\ & 2.71 \mathrm{cts} . \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.33 \\ & 1.19 \mathrm{cts} . \end{aligned}$

Isolated Boattail Drag
The isolated boattail drag at $\mathrm{M}_{\infty}=1.1$ for the PIE-2D, Ref H 2-D, and Ref H Axi configurations are summarized
here. Also shown are the results from the IMS (Integrated Mean Slope) method. In general, the boattail pressure
drag is about 6.8 cts., and it is nearly the same between the PIE 2-D and the Ref. H 2-D configurations.
Isolated Boattail Drag

TCA-Installed PIE Nacelle Analysis
To evaluate the installed PIE nacelle effects on TCA aerodynamic performance, the installation drag of the PIE
nacelles at cruise condition is analyzed and compared with the baseline nacelles. The analysis is based on the
CFL3D Navier-Stokes solutions with the Spalart-Allmaras turbulence model at $\mathrm{M}_{\infty}=2.4, \mathrm{Re}_{\mathrm{c}}=6.36 \times 10^{6}$ for the
flow-through nacelle configuration.

Lower Surface Pressure Contours for the TCA W/B/N/D Configuration
The wing lower surface pressure contours in the vicinity of the nacelles for the TCA W/B/N/D configurations with
axi and 2-D inlet nacelles are compared. Two shock systems are shown for the wing lower surface pressure
contours for 2-D inlets. They are: (1) the nacelle shocks and (2) the diverter leading-edge shocks. It appears
that the 2-D inlet has weaker diverter leading-edge shocks than the axi inlets. This is expected as the flow in the
diverter leading-edge region has been observed to be slower than the axi-inlet case. An interesting feature is
observed for the 2-D inlets with the flow expansion regions extended upstream forming two "horn" shapes near
each diverter. This effect is perhaps due to the diverter channel flow that expands over the nacelle rectangular
edges in front of the diverters.
PIE Nacelle Analysis on TCA at Cruise
The computed total pressure drag and total drag for various TCA nacelle configurations are shown. The results of PIE 2-D nacelles (nozzle aspect ratio 1.5) are compared with the axi and 2-D inlets with 2-D nozzle (aspect ratio 1.2) cases.
The total drag predictions show that the PIE 2-D nacelles have about 1.7 counts more drag than the axi and 2-D inlet nacelle configurations with nozzle aspect ratio 1.2. The pressure drag predictions show that the PIE nacelles have similar performance as the reference axi inlet/2-D nozzle case, and the reference 2-D inlet/2-D nozzle
(nozzle aspect ratio 1.2) nacelles have about 0.5 counts less pressure drag than the PIE nacelles.
PIE Nacelle Analysis on TCA at Supersonic Cruise
High Speed Configuration Aero
Total Drag for Three TCA Installed Nacelles

TCA Inlet Flow Quality Assessment
The TCA inlet flow quality assessment studies included a wind-tunnel test study and a CFD analysis. The windtunnel test study was carried out for the baseline TCA, i.e. the TCA configuration with Axi inlets/2-D nozzles nozzle aspect ratio 1.2). Details of the test procedure and test results were presented at the 3rd HSR Config Aero Testing Workshop, AMES Research Center, August, 1998. Highlights of the test data related to the CFD validations are given in this paper.
For the CFD validation, Navier-stokes solutions were obtained using CFL3D with Baldwin-Lomax turbulence model. Effects of angle-of-attack and side-slip were studied. The solutions were compared with the wind-tunnel test data. The results were used to assess the inlet flow qualities. The requirements for Mach number and flowangle variations across the inlet face are less than or equal ± 0.01 and $\pm 0.25^{\circ}$, respectively.

$$
\begin{aligned}
& \text { TCA Inlet Flow Quality Assessment } \\
& \text { - Obtainh Wpeed Contiguration Aerodynamics } \\
& \text { - } 1.675 \% \text {-scale model, } \mathrm{M}_{\infty}=2.4, R_{\mathrm{c}}=6.36 \times 10^{6} \\
& \text { - 5-hole cone probe rake for flow survey } \\
& \text { - 3rd HSR Config Aero Testing Workshop, August } 1998 \\
& \text { - Validate CFL3D Navier-Stokes Results } \\
& \text { - Assess Inlet Flow Quality } \\
& \text { - I } \Delta \mathrm{M} \mid \leq 0.01 \\
& -|\Delta \alpha| \leq 0.25^{\circ} \\
& -|\Delta \beta| \leq 0.25^{\circ}
\end{aligned}
$$

Rake Offset Arrangement The rake offset arrangements used in the wind-tunnel test are shown. The test data released for CFD validation
were based on the $2 x 4$ rake arrangement.
Rack Offset Arrangement CONE-PROBE STAGGERING FOR COMPOSITE NACELLE FLOWFIELD MAPPING
SHIFT FOR ALTERNATE PROBE LOCATION
2×4 RAKE INSTALLED TESTING
ALL DIMENSIONS ININCHES
Instrumentation Array for Inlet Flowfield Study
The instrumentation array for TCA inlet flow quality study is shown. Also shown is the wing location relative to the
array. The z-coordinates are shown in inches in full-scale. The fuselage nose (x, y, z)-coordinate is $(0,0,226.8)$.
Instrumentation Array for Inlet Flowfield Study
TCA W/B, UPWT Wind-tunnel Test \#1701

Inboard Nacelle

Inlet Flowfield Data Measurement Accuracy
The wind-tunnel data measurement accuracy for Mach number and flow angles are evaluated through wind-
tunnel data calibration. The total accuracy for measurements are ± 0.035 and $\pm 0.2^{\circ}$ for Mach number and flow
angle measurements, respectively.
Inlet Flowfield Data Measurement Accuracy

- Total accuracy of measurement includes:
- w.t. condition and force balance calibrations
- Instrumentation precision
- Data representation (curve fitting)
- Data are calibrated for
- M: 2.15 to 2.40
- $\alpha: 0^{\circ}$ to 10°
- $\beta: \pm 4^{\circ}$
- Total accuracy for measurements are:
- $\mathrm{M}: \pm 0.035$
- $\alpha, \beta: \pm 0.2^{\circ}$

TCA Nacelle Inlet Mach Number Variation, $\mathrm{M}_{\infty}=2.4, \alpha=4^{\circ}, \beta=0^{\circ}$
The computed inlet Mach number distributions and the wind-tunnel test data are shown for $\alpha=4^{\circ}, \beta=0^{\circ}$. In
general, the CFD solutions agree with the wind-tunnel data except the station $z=106.38^{\prime \prime}$ of the inboard inlet, The
maximum difference in Mach number between CFD and the wind-tunnel test data is 0.11 at that station. At the
outboard inlet, high data fluctuation is observed in testing results.

TCA Nacelle Inlet Upflow Variation, $M_{\alpha}=2.4, \alpha=4^{\circ}, \beta=0^{\circ}$
The computed inlet upflow distributions and the wind-tunnel test data are shown for $\alpha=4^{\circ}, \beta=0^{\circ}$. In general, the
CFD solutions agree with the wind-tunnel data at both the inboard and outboard inlets with the wind-tunnel test
results showing some data fluctuations.

TCA Nacelle Inlet Crossflow Variation, $M_{\infty}=2.4, \alpha=4^{\circ}, \beta=0^{\circ}$
The computed inlet crossflow distributions and the wind-tunnel test data are shown for $\alpha=4^{\circ}, \beta=0^{\circ}$. The CFD
solutions indicate that the crossflow angle variations are less than 0.3° and 0.9° at the inboard and outboard inlet,
respectively.

TCA Nacelle Inlet Mach Number Variation, $M_{\infty}=2.4, \alpha=4^{\circ}, \beta=4^{\circ}$
A comparison between the computed inlet Mach number distributions and the wind-tunnel test data is shown for
$\alpha=4^{\circ}, \beta=4^{\circ}$. The data represent the windward inlets results. Similar to the $\alpha=4^{\circ}, \beta=0^{\circ}$ case, large data
fluctuation in the wind-tunnel test results is seen at the outboard inlet. The CFD results indicate that the Mach
number variations are less than 0.04 at the inboard inlet.

TCA Nacelle Inlet Upflow Variation, $\mathrm{M}_{\infty}=2.4, \alpha=4^{\circ}, \beta=4^{\circ}$
The computed inlet upflow distributions are compared with the wind-tunnel test data are shown for $\alpha=4^{\circ}, \beta=4^{\circ}$.
The data represent the windward inlest results. At both of the inboard and outboard inlets, high data fluctuations
in wind-tunnel test results are observed.

TCA Nacelle Inlet Crossflow Variation, $M_{\infty}=2.4, \alpha=4^{\circ}, \beta=4^{\circ}$
The computed inlet crossflow distributions are compared with the wind-tunnel test data are shown for $\alpha=4^{\circ}, \beta=4^{\circ}$.
The data represent the windward inlet results. The CFD results indicate that the crossflow variations are less
than 0.4° and 0.6° at the inboard and outboard inlet, respectively.

Conclusions
The isolated PIE nacelle boattail drag calculations indicate that the PIE 2-D boattail drag is 0.77 cts. higher than
the Ref. H 2-D boattail at $M_{\infty}=1.1$. Primary source of the higher drag is due to the higher skin friction for the
larger PIE 2-D nacelle.
The study of TCA-installed PIE nacelle effects on aerodynamic performance was carried out at supersonic cruise
 than the TCA with baseline (Axi inlets / 2-D nozzles) nacelles. Similar to the isolated nacelle case, the difference in drag is due to the difference in skin friction.
The TCA inlet flow quality analysis was made to investigate Mach number and flow angle variation distributions at nacelle inlets. Both of the wind-tunnel test data and the CFD results indicate that the present baseline TCA fluctuation was observed, particularly for the data for the outboard inlet.
Conclusions

This report documents the propulsion/airframe integration (PAI) and propulsion induced effects (PIE) analyses performed by Boeing Commercial Airplane (BCA) in Seattle, and subcontractor Northrop-Grumman Corporation (NGC) in Los Angeles.

Qemeine: February 1999 HSR Airframe Technical Review
Configuration Aerodynamics Technology Development
Program Selects Best Analysis / Design Optimization Methods

Qenerine: February 1999 HSR Airframe Technical Review
OUST High Speed Aerodynamics - BCAG
After the objective and approach are discussed the report is broken down into two main
sections. The supercruise studies focussed on various configuration issues regarding
installation of the bifurcated inlet, and analysis of bleed door and flow effects on external
aerodynamics. The transonic cruise and climb studies were focussed on spillage and
bypass effects.
QSBCEINE: February 1999 HSR Airframe Technical Review
Outline

Transonic Cruise \& Climb Studies

- Plans

The primary objective for propulsion/airframe integration (PAI) work stated in the planning and control document (PCD) is to develop technology required to support the development of the High Speed Civil Transport (HSCT). The technology development includes:

1) Developing computational and empirical based tools for the aerodynamic design $\&$
dentifying the key design variables for HSCT PAI installations with the tools described above. Exercising these variables in parametric or direct design optimization studies in order to develop design guidelines for efficient nacelle installations.

The HSR PAI work performed by BCA and subcontractors has been primarily focussed on inlet integration under the wing (with the exception of the NGC nozzle boattail study). The original wing/body platform upon which these studies was based was the Reference H which had an axisymmetric inlet as the baseline configuration (also an axisymmetric nozzle). A bifurcated inlet was also designed and integrated on the Ref. H. This configuration was both tested and analyzed with CFD. In 1994 and 1995 one of the main tasks was resolving the discrepancies between the test and CFD results. At the end of 1995 a study was performed to determine the feasibility of integrating the 2 D nozzles preferred by propulsion/noise. The results indicated that this configuration would not penalize the aerodynamic performance and as a result $2 D$ nozzles were incorporated on the next HSCT baseline (TCA).

In 1995 Northrop-Grumman Corporation (NGC) was subcontracted to analyze the transonic performance of 2D nozzles with CFD. Lockheed (LMAS) was subcontracted to analyze the NASA ARC 9x7 spillage test data and begin CFD analysis of the Reference H
February 1999 HSR Airframe Technical Review

> Approach
 In 1995 Northrop-Grumma t

$$
\begin{aligned}
& \text { analyze the NASA ARC 9x7 spillage test data and begin CFD analysis of the Reference H } \\
& \text { configuration with spilling axisymmetric and bifurcated inlet nacelles. }
\end{aligned}
$$

- BCAG and subcontractors (NGC \& LMAS) primary PAI focus was inlet external
aero design and integration with diverter onto wing
Reference H based studies
$1994 \quad$ - Initiate OVERFLOW validation (2.7%-scale data ARC 9×7)
- Axisymmetric to Bifurcated inlet comparison
1995 Supersonic cruise

Approach (cont.)

[^1]$=$
February 1999 HSR Airframe Technical Review
February 1999 HSR Airframe Technical Review
Approach (cont.)
Technology Concept Airplane (TCA) based studies

Approach (cont.)
The bifurcated installation on the TCA has continued to be examined in some detail. This confirgation was fueled somewhat by the results of a BCA IR\&D test that did NOT about 2 counts higher drag). NGC has examined bleed flow effects on the bifurcated inlet at supercruise and spillage/bypass effects on the bifurcated at transonic cruise \& climb conditions.

[^2]HSCT High Speed Aero

Tools

BCAG
OVERFLOW
Finite-Difference

The bifurcated installation on the TCA was compared to the axisymmetric configuration at flight Reynolds Number using OVERFLOW results. The conclusions were the same as for wind tunnel Reynolds Number: the drag was equivalent. The other bifurcated analyses performed in 1998 at BCA involved configuration perturbations of the baseline configuration. The inlet bleed study was performed by NGC.

February 1999 HSR Airframe Technical Review

- Axisymmetric vs Bifurcated Inlet, Reynolds Number Study
- Bifurcated Inlet Shoulder Radius Study
- Bifurcated Inlet As-Tested Configuration Study
- Bifurcated Inlet Bevel Angle Study
- Nozzle Width Study
- Inlet Bleed External Aerodynamics Study

The drag polar for the bifurcated nacelle is virtually identical to the axisymmetric results over a range of angle of attack values at both wind tunnel and flight conditions.
Q EDEINE: February 1999 HSR Airframe Technical Review
HSCT High Speed Aerodynamics - BCAG
Axisymmetric vs
흧

Breakdown of the drag result into pressure and friction components confirms the constant (over a range of angle of attack values) and equal but opposite friction and pressure drag differences for the bifurcated and axisymmetric.

The nacelle force increments are shown for flight conditions. This plot confirms the results shown in the previous pressure drag polar. The bifurcated nacelle actually had a slightly smaller pressure drag then the axisymmetric but this was made up by the higher friction drag of the longer bifurcated nacelle.

[^3]Q emeine
February 1999 HSR Airframe Technical Review

$\begin{array}{r}\text { 풍 } \\ \hline\end{array}$

sfunos ،ernssasdoy

$$
\begin{aligned}
& \text { Q anerne: February } 1999 \text { HSR Airframe Technical Review } \\
& \text { AScr High Speed Aerodynamics - BCAG } \\
& \text { TCA W/B/N/D OVERFLOW Analysis: } \quad \text { Nacelle/Diverter Pressure drag } \\
& \text { Mach 2.4, Re }{ }_{\text {MAC }}=194.2 \text { \& } 6.4 \text { million (Flight \& WT) } \\
& \text { Axisymmetric }
\end{aligned}
$$

See text for previous figure.

This figure shows the wing lower surface pressure contours compared to the wind tunnel condition results. The effect of the thinner boundary layer at flight was very evident in the diverter region. The diverter shocks had a larger aft sweep angle (the average Mach Number in the diverter channel is higher) and the outboard diverter channel appeared to have an attached diverter shock instead the normal shock produced by a choked channel in the wind tunnel case.

This figure confirmed the shock angle change on the inboard nacelle installation; in fact, the shock angle was swept aft of the inlet lip confirming the design location of the diverter leading edge for flight conditions to keep the shock out of the inlet flow field.

Q EDEINE: February 1999 HSR Airframe Technical Review
HSCTHigh Speed Aerodynamics - BCAG
Axisymmetric vs Bifurcated Inlet, Reynolds Number Study
TCA W/B/N/D OVERFLOW Analysis: Outboard Nacelle Surface Pressure
Mach 2.4, $\alpha=3$ deg, Re ${ }_{\text {MAC }}=194.2 \& 6.4$ million (Flight \& WT)
This figure shows nacelle surface pressure contours for the outboard nacelle installation. In contrast to the wind tunnel detached diverter shock, the diverter shock for the flight case was clearly attached and also appears to just clear the inlet lip.

In order to understand the effect of the large shoulder radius applied to the baseline bifurcated a modified geometry was constructed with most of this effect removed. This design has the square cross section of the inlet lip carried all the way back to the maximum area and was called the 'flat-sided' configuration.
The installation on the airplane was difficult. The large increase in corner radius aft of the inlet on the baseline allows for the diverter to get out to the sides of the nacelle with
 of the modified nacelle penetrate into the lower surface of the wing much further forward and require substantial diverter modification to prevent a pinched off channel.

Qeboline: February 1999 HSR Airframe Technical Review
BSCTHigh Speed Aerodynamics - bcag
Bifurcated Inlet Shoulder Radius Study
TCA W/B/N/D OVERFLOW Analysis: Area Distribution
The relatively linear rate of area growth of the modified bifurcated inlet is evident in this figure. Both the baseline and the flat-sided have the initial growth associated with the front of the inlet, but the baseline area growth slows down considerably aft of this point before accelerating rapidly further aft to reach the maximum area. This shape resulted in the characteristic double positive pressure field observed on the wing lower surface for this configuration. The third area distribution curve is for modified nacelle that was used to model the PTC nozzle configuration (will be discussed later)

February 1999 HSR Airframe Technical Review
HSCT High Speed Aerodynamics - BCAG Bifurcated Inlet Shoulder Radius Study Bi

The diverter planform shape for the flat-sided configuration can be seen in this figure. The impact of the nearly doubled included-angle diverters was clearly evir bigh inboard and outboard nacelles had detached shocks wine (on the baseline the pressure regions at the diver leang modified nboard diverter shock remained attached. Tily as area of favorable nacelle are also evident in the fine, pistallation. The the inboard nacelle and outboard of the outboard nacelle.

This figure and the next show the inboard and outboard nacelle surface pressure results for the baseline and flat-sided nacelle installations. Both inboard and outboard modified nacelles had strong, detached shocks at the diverter leading edges. As has been noted in the original study of the baseline bifurcated nacelle, the inboard installation was just barely adequate in terms of keeping the diverter shock out of the inlet (as long as the shock was attached). The flat-sided nacelle installation required sliding the diverter leading edge forward in order to reduce the diverter angle; the angle was still double the ио! it would enter the inlet. The problem was compounded by the increased diverter angle leading to a detached shock that disrupted the inlet flowfield to an even larger extent. These flowfield effects could be inferred (without an OVERFLOW solution) by simple observation of the diverter geometry. However, the goal of this study of the fiat-sided nacelle was to assess the effect of the large amount of shoulder carving that was applied to
 as a real installation but was a useful tool for furthering our knowledge base for installing bifurcated inlets. The larger diverter shock strength of the flat-sided installation does, however, confuse the comparison of the nacelle shaping as these increased pressures lead to beneficial lift increases on the wing and penalizing drag increases on the nacelle. This is discussed in more cletail below.

$$
\begin{aligned}
& \text { Febreine: February } 1999 \text { HSR Airframe Technical Review } \\
& \text { HSCT High Speed Aerodynamics - bCAG } \\
& \text { Bifurcated Inlet Shoulder Radius Study } \\
& \text { TCA W/B/N/D OVERFLOW Analysis: Outboard Nacelle Surface Pressure } \\
& \text { Mach } 2.4, \alpha=3 \text { deg, Re MAC }=6.4 \text { million (WT) }
\end{aligned}
$$

See text for previous figure.
February 1999 HSR Airframe Technical Review

Flat-
Flat-Sided Bifurcated

Near the cruise condition, the flat-sided nacelle had an installed drag $\tilde{\sim} 1.5$ counts higher than the baseline. This figure compares the baseline and modified nacelle force increments. The plot on the right confirms the drag increase of the flat-sided installation over the baseline of 1.5 counts at cruise lift. The plots on the left show the nacelle/diverter
 modified nacelles. The nacelle/diverter drag increment was broken down into pressure
 modified nacelle in terms of the friction drag that was outweighed by the pressure component, resulting in the total being higher for the modified. The friction drag result was primarily the result of the diverter for the flat-sided installation cutting out larger portions of the wing and nacelle due the enlarged planform. The pressure drag results
 shown that the flat-sided nacelle had a drag of 0.27 counts less than the baseline (one

 increase the pressure drag.
The lower left plot indicated that, despite the higher pressures generated by the modified installation diverters, the nacelle/diverter lift increment was less than the baseline level.
 signature of the baseline bifurcated appeared to result in an increased lift interference component.

This figure revealed the reason for the remainder of the drag increase of the straight sided modification. The modified installation resulted in a significantly increased pressure drag for the inboard: 1.1 counts at $\alpha=3$ degrees. This was due to the increased diverter angle and resulting stronger shock. The outboard diverter drag also increased but to a lesser extent.
The final evaluation of the nacelle shaping applied to the baseline bifurcated (large
shoulder radius) was that it was beneficial in several ways:

1) it allowed a diverter installation with included angles equivalent to a axisymmetric
inlet installation which lowers drag, and
2) allows a inlet distortion free installation, and
3) produces a nacelle pressure field that increases the beneficial lift interference on the
wing lower surface.

Analysis of the BSWT 644 wind tunnel configuration has started in order to resolve the drag difference being measured in BSWT between the bifurcated and the axisymmetric

4) analysis of the wind tunnel internal duct (slightly different than the baseline CFD andiction of the lip bevel to assess the potential for this being a cause of
5) analysis of wind tunnel nacelle external contour measurements.

EOEINE.	February 1999 HSR Airframe Technical Review	
HSCT High Speed Aerodynamics - BCAG		
Bifurcated Inlet As-Tested Configuration Study		
TCA W/B/	OVERFLOW Analysis: Inboard Nacelle Symme Mach 2.4, $\alpha=3 \mathrm{deg}, \mathrm{Re}_{\mathrm{MAC}}=6.4$ million	Mach

The bifurcated nacelle wind tunnel internal geometry was analyzed using OVERFLOW. These analyses were conducted at the LaRC unitary test condition which results in a Reynolds Number about half that obtained in BSWT. This direction was taken in order to avoid the expense of building another grid for a study that was expected to reveal pressure drag discrepancies only.
The wind tunnel geometry was machined with a kink in the internal geometry as a result of machining requirements for the two parts which made up the nacelle. The geometry was analyzed both isolated and installed at wind tunnel Reynolds number, and compared with the baseline bifurcated nacelle OVERFLOW result. The figure shows a pressure

 drag (due entirely to pressure drag) and a slightly smaller negative lift value. The wind tunnel data is corrected only for the skin friction of the duct so both of these pressure force effects would have an effect on the data. The outboard nacelle Mach contours are shown in Figure V. The lift of the duct was nearly identical for the two configurations but

 0.4 counts should be subtracted from the wind tunnel drag levels to account for internal duct modeling differences.

See text for previous figure.

This figure shows two lip bevel variations that were generated to approximate the actual wind tunnel parts (the actual wind tunnel model parts do not, of course, have infinitely sharp leading edges as shown in this schematic). The nacelle loft lines were not machined near the leading edges (the metal becomes too thin to tolerate the cutter forces). As a
 desired line. However, as the model scale was so small (1.675\%), very small differences in

 at 6 inches aft of the leading edge. The thickness should be 0.398 inches at this point. The nacelles were reworked to a thickness of 0.45 inches and retested in the wind tunnel. installed nacelle. from the baseline were analyzed on both an isolated nacelle and an installed nacelle.

$$
\begin{aligned}
& \text { Q_EOEINE: February } 1999 \text { HSR Airframe Technical Review } \\
& \text { HSCT High Speed Aerodynamics - bCAG } \\
& \text { Bifurcated Inlet As-Tested Configuration Study } \\
& \text { TCA W/B/N/D OVERFLOW Analysis: Outboard Nacelle Surface Pressure } \\
& \text { Mach } 2.4, \alpha=3 \mathrm{deg}, \text { Re MAC }=6.4 \text { million }
\end{aligned}
$$

See text for previous figure.

The effect of the larger bevel of the wind tunnel configuration \#1 on the wing lower surface is also apparent where the higher pressure region spreads out both laterally and forward in the nacelle footprint. Higher presuregions are also seen on the wing lower were very similar to the baseline.

The final phase of the as-tested configuration study has been an analysis of the quality inboard nacelle survey are shown in the figure. Initial observation of the points indicated that they were both translated and rotated away from the baseline loft surface. This could be the result of an inaccurate reference point for the survey, or an inaccurate location of the nacelle. In order to assess the variation of the wind tunnel model from the loft, the distance from each QA point to the loft was calculated. An optimizer was then run
 point distances; the resulting coordinate transformation is shown in the figure. The resulting distances of each QA point from the loft are color coded. Although the scale is in absolute inches, observation of the points reveals that they are ALL internal relative to
 variations near the nacelle lip. Modification of the OVERFLOW grid to match these points
 angle, and increase drag. This analysis is in progress.
Q BTAENNE:
February 1999 HSR Airframe Technical Review
2 HScr High Speed Aerodynamics - вCAG
Bifurcated Inlet As-Tested Configuration Study
TCA W/B/N/D OVERFLOW Analysis: WT Model QA Variation fom Loft
Dimensions in Full Scale Inches

CFD grid modification to model QA points requires reducing the capture area,
increasing nacelle forecowl angle, and increasing nacelle drag. Analysis in progress.

Several variations of the nacelle lip bevel were analyzed. The bevel variations were designed by rotating the bevel surfaces about their leading edges to steeper angles (26, 39, 52 , and 90 degrees) and one smaller bevel angle (5 degrees bevel angle rather than the 13 degree baseline). A schematic of these bevel configurations is shown in the figure. All variants were analyzed with OVERFLOW on an isolated nacelle at wind tunnel Reynolds number; several were analyzed installed. All CFD analyses to date have modeled nfinitely sharp leading edges for the nacelles (as well as, the wing outboard panel). In reality, the wind tunnel model nacelles all have blunt leading edges as the sharpest they are usually filed to is 0.004 inches (quarter inch full scale). As the figure shows, the bifurcated lip bevel is approximately 0.004 inches tall at the base and the 90 degree rotation will provide the worst case blunt lip (entire bevel face on to the flow). It is likely
 geometry, i.e., corners chipped off.
4

The figure shows a comparison of the incremental drag (from the baseline) of the various bevel angles analyzed. As expected, the drag increments were quite small (on the order of 0.2 counts or less for four nacelles) for bevel angles less than 90 degrees. The shock detachment angle shown was the handbook value for an unswept wedge. The drag increments shown for the isolated nacelle analyses were for the entire nacelle (lip bevel plus forecowl plus nozzle). The drag increment for the one installed case included the entire nacelle, as well as, the positive lift interference effect on the wing lower surface due to increased lip bevel pressures. Initially the blunt bevel was modeled with three points on bevel surface, similar to the baseline. Examination of the OVERFLOW solution in the bevel region indicated that the stand-off shock had not been captured accurately. Several
 with 15 points. The pressure drag for the bevel surface increases from the baseline to the blunt by 0.4 counts (for one nacelle). The bevel base in these models was 0.2 inches high.
 generally been worked to achieve a 0.004 inch thickness on HSCT wind tunnel models. This would indicate that the CFD solutions completed to date (which all have infinitely sharp leading edges) could be low relative to test data by greater than 1.6 counts.

 shock that ameliorates the pressure drag increase somewhat. This analysis highlights

 was as much as 0.7 counts less than the bifurcated.
The figure shows a comparison of the incre
bevel angles analyzed. As expected, the dr
Q BUEINE:

Initially the blunt bevel was modeled with three points on bevel surface, similar to the baseline. Examination of the OVERFLOW solution in the bevel region (all isolated analyses) indicated that the stand-off shock had not been captured accurately. Several solutions with increased density on bevel were run. A solution with 9 points and one with 15 points (and an increased density internal grid) are shown in the figure. The 9 point model appears to be sufficient for capturing an accurate stand-off shock and maximum
bevel surface pressure.

The nozzle aspect ratio (width/height) has been increased to address noise problems at take-off; the new nozzle design was incorporated on the PTC nacelle installation (middle figure). The engine was unchanged so that it was necessary to retain the same nacelle height. The baseline bifurcated nacelle on the TCA (left figure) was stretched along the nacelle y axis to model this change and assess the impact of the wider nacelle. The baseline bifurcated nacelle as analyzed last year had a take-off nozzle aspect ratio of 1.2 . It was modified to match the PTC nacelle take-off nozzle aspect ratio of 1.5 ; modification resulted in maximum area increase from 6300 to 7200 in 2.

Current baseline bifurcated grid was stretched in Y only to model
wider PTC nozzle Inlet capture geom
_

An OVERFLOW analysis of the isolated AR1.5 nacelle indicated an increase in drag over
the baseline of +0.81 counts (for one nacelle). This was evenly split between the forecowl
and the nozzle $(+0.41$ counts on the forecowl, +0.40 counts on the nozzle). This drag
increase was nearly all (90%) due to pressure drag. There were larger forecowl angles on
the sides of the nacelle, and larger nozzle angles on the top and bottom (the nozle angle
doubled, 1.5 to 3 degrees). The nacelle drag increment at constant alpha was higher for
the modified nacelle as expected, based on the isolated results. The modified bifurcated
nacelle drag increment at constant angle of attack is ~ 3.6 counts higher than the baseline
at angle of attack of 3 degrees. This compares favorably with the isolated value for 4
nacelles ($3.24=4$ 4 $\mathbf{~} 0.81$). However, there was a very large increase in positive lift
interference that counteracted a large part of the drag increase and the final modified
bifurcated installed drag delta was +1.0 count at cruise (CL $=0.1$).

February 1999 HSR Airframe Technical Review
NozZle Width Study
HSCT High Speed Aerodynamics - BCAG
TCA W/B/N/D OVERFLOW Analysis: Wing Lower Surface Pressure
Mach 2.4, $\alpha=3$ deg, Re ${ }_{\text {MAC }}=6.4$ million

[^4]

This figure and the next compare the two nacelles at the inboard and outboard locations respectively. Higher positive pressure levels were seen on both the sides of the nacelle and the diverter. Also, more negative C_{p} levels were seen on the upper surface of the nozzle; this was the result of the higher nozzle boattail angles (increase from 1.5 to 3 degrees). counts (one nacelle, 0.41 counts on forecowl and 0.40 counts on the nozzle).

Nozzle Width Study

C_{p}

TCA W/B/N/D OVERFLOW Analysis: Inboard Nacelle Surface Pressure
Mach 2.4, $\alpha=3 \mathrm{deg}, \mathrm{Re}_{\text {MAC }}=6.4$ million

See text for previous figure.

The figure shows the bleed outflow port locations, the mass flow rate of each port, and the bleed plenum pressure ratio. These data were supplied to NGC for the supercruise bleed flow analysis on the bifurcated installation. These analyses will be conducted at flight Reynolds Number and will be compared to the similar analyses performed last year on the baseline axisymmetric inlet nacelle. The NGC study was still in work and a final report in progress at the time that this current document was assembled; the NGC work shown here has been extracted from monthly summary reports and is a snapshot of current

Exact locations of ports are defined in geometry file

$\mathbf{P b p}_{\mathrm{bp}}=\mathbf{P b l e e d}-$ plenum

Each of the bleed port doors was modeled by a separate grid block that was embedded in
the nacelle grid using chimera block interface methodology.

Q ETOENNE:

February 1999 HSR Airframe Technical Review

For comparison, the grid topology used in last year's bleed study on the axisymmetric nacelle is shown. The primary difference between the two analyses was that the cowl bleed on the axisymmetric was small enough that it could be captured with a transpiration boundary condition. There was a total of eighteen blocks within the whole geometry. Twelve of the blocks are used for the centerbody bleed ports, three for each port. The port grids are situated within the second nacelle section (blue grid). The cowl bleed ports, modeled with
 grids are 0 -mesh tee (blue and red grids, and aft grid is not shown) outer nacelle surface face is folded over itself The base gret (green) is a slit-O-mesh, where instead of a pole the last grid is the far field block (lower green). It is also an O-mesh topology with each front and end faces collapsed to a pole.

Q eioneine:
Hsct High Speed Aerodynamics - bCAG 999 HSR Airframe Technical Review
Bleed Port Grids

The bleed port grid blocks were first modeled on the isolated nacelle and solutions ran before doing the installed nacelle. The NPR for each port was adjusted to achieve the desired mass flow rate for that port (the NPR were not significantly different than the propulsion estimates). The bleed exhaust from ports C2 (see previous figure) was small enough to model with transpiration boundary condition; the exhaust from these ports is shown with streamlines arrows at the exit.

For comparison to the bifurcated isolated solution, last year's solution on the

C CTOEINE

_ February 1999 HSR Airframe Technical Review
Nacelle Bleed Study
Isolated Axisymmetric GCNSfv Analysis: Nacelle Surface Pressure
Mach 2.4, ReMAC $=192$ million

February 1999 HSR Airframe Technical Review
Nacelle Bleed Study
NCA W/B/N/D GCNSf Analysis: Bifurcated Nacelle Surface Pressure
Mach 2.4, $\alpha=3$ deg ReMAC $=192$ million
The bleed port grids and NPR's developed on the isolated nacelle were applied to the
installed case. The resulting grid geometry consists of 107 blocks totaling 12.5 million grid
points. The figure shows a comparison of the supersonic solutions on the installed nacelle
grid with and without the bleed port doors/exhaust. The results are very similar to those
from last year's study on the axisymmetric: the doors increase the drag of the nacelle but
this is more than made up by the thrust of the exhaust. The bleed has a small effect on
wing surface pressures.
Q ETCDENNE:
February 1999 HSR Airframe Technical Review
HSCT High Speed Aerodym

Bifurcated Nac celle Surface Pres
2 million celle Surface Pres
2 million
 t) 2

3

NORTHROP GRUMMAN -

 Mach 2.4, $\alpha=$
(BCAG N. ReMAC $=1$ deg $+1$ ricil :s!şjeu* $\varepsilon=x^{\prime} \dagger$
 -

The axisymmetric solutions with and without bleed are shown here for comparison with the bifurcated solutions. As discussed previously, the pressure drag increased on the outer nacelle surface due to bleed port doors. This is clearly evident from the high pressure regions seen on all the centerbody ports on each nacelle. Proof of the cowl bleed port and lower wing surface interaction is seen by the segmented high pressure region on the lower surface of the wing downstream of the diverter leading edge, particularly on the outboard
side of the outboard nacelle. Also note the four high pressure stripes on the forward part of side of the outboard nacelle. Also note the four high pressure stripes on the forward part of
each nacelle indicating the four cowl bleed ports.
Q ETOEINE"
Hebruary 1999 HSR Airframe Technical Review

HSTHDEINE: February 1999 HSR Airframe Technical Review
Supersonic Cruise Conclusions
OVERFLOW solutions of the bifurcated and the axisymmetric inlet nacelles on the TCA at both wind tunnel and flight conditions indicated that they had equal drag. It appears that the capability to achieve these low drag values wher fadius faired in between the penalty of a larger lip bevel, was due to the large shoulder sadion. inlet lip and the nacelle maximum area station.
Boeing IR\&D wind tunnel test 644 in BSWT indicated that the bifurcated had 2 counts more drag than axisymmetric. CFD investigation of the as sources for at $1-2$ counts of this discrepancy. Further analysis is in work (of the QA laser survey points).
The nozzle width increase implemented on the PTC will increase high-speed drag by 1 count. the bleed exhaust being larger than the drag on the bleed doors.
\& Fe二NF: February 1999 HSR Airframe Technical Review

Supersonic Cruise Conclusions
- CFD predicts bifurcated equal to axi on TCA in WT \& flt.
- Bifurcated inlet shoulder contouring beneficial (1.5 cnts)
- BCAG IR\&D test bif - axi 2 count discrepancy
- Internal duct $(0.4$ cnt $)$
- Wall thickness $(0-1)$
- QA points $(\sim 1$? $)$
- Blunt lip $(.2-.7)$
- PTC nozzle width increase cost 1 count

[^5]Transonic Cruise and Climb Studies

- Axisymmetric Inlet Spillage, Flight vs WT Rey. No.
- NGC spill vs bypass: isolated bifurcated nacelle
- NGC spill vs bypass: installed bifurcated nacelle

Wing lower surface pressure distributions are shown with and without spilling for the axisymmetric nacelle installation on the TCA (the flow through duct actually spills a small amount also, $\sim 5 \%$). The figures on the left are from NGC GCNSfv solutions at flight conditions; on the right are BCA OVERFLOW solutions at wind tunnel Reynolds Number. The pressure contours are very similar for the two codes/Reynolds Numbers. The transonic solutions have proven to be very difficult to converge. Based on the similarity between the results it may be beneficial to run at wind tunnel Reynolds Number in order to conserve computer hours and user wall clock hours (wind tunnel ~ $\mathbf{1 0 0} \mathbf{C 9 0}$ hours, flight ~ 300 hours).

The wing lower surface pressure contours compared favorably between the NGC and BCA solutions at Mach 1.2 also.

QeOEINE: February 1999 HSR Airframe Technical Review
Bifurcated Inlet Spillage / Bypass Study
TCA W/B/N/D CFD Analysis: Conditions

The range of spillage/bypass conditions for the bifurcated inlet study are shown. The spillage/ zero bypass to the minn transonic climbout (Mach 1.2) cond
bypass to 14% spillage/ 20% bypass.

[^6]$=$ Bifurcated Inlet Spillage / Bypass Study
TCA W/B/N/D CFD Analysis: Bypass Door \& Duct Geometry The bypass door geometry and location are shown in this figure. The bypass doors are located just in front of the engine face and are placed on the sides and bottom of the nacelle (the top is covered by the diverter). The compression ramps at the front of the inlet are in the transonic condition position.
Q BmeIne

The actual door angle required for the maximum bypass case was unknown, requiring varying the door angle and measuring the mass flow rate. In addition, several intermediate door positions are planned (between zero bypass and max bypass). This required relatively easily. The approach taken was to grid each door individually.
Duct Gridding

The bypass grid and solution strategy was exercised on the isolated bifurcated nacelle before installation on the TCA. An estimate of the bypass door angle (for maximum bypass) of 12 degrees was used. The surface pressure coefficient distribution is shown. The effect of the spillage is evident in the low pressures at the cowl lip (blue). The bypass doors have a high pressure at the most forward door, followed by a low pressure region aft of the doors. Note that the bypass is not even close to the desired maximum value (7\% vs. 26\%).

Q EDEENE: February 1999 HSR Airframe Technical Review
ated Inlet Spillage / Bypass Study
d CFD Analysis: Nacelle Surface Pressure
ch 0.90, Re $_{\text {MAC }}=163$ million $(\mathrm{h}=40,000 \mathrm{ft})$
Bypass Doors: 12 deg
MFRengine $=0.60$
MFRspill $=0.33$
MFRbypass $=0.07$
Ch $0.90, \mathrm{Re}_{\text {MAC }}=163$ million $(\mathrm{h}=40,000 \mathrm{ft})$
Bypass Doors: 12 deg
MFRengine $=0.60$
MFRspill $=0.33$
MFRbys $=0.07$

A similar isolated nacelle analysis was performed at Mach 1.2 with the 12 degree bypass door angle. The results were similar to the Mach 0.90 case with both the spillage and bypass flow effects evident in the pressure distributions. The bypass was again much lower than the maximum desired value ($6 \% \mathrm{vs} .20 \%$).

The Mach Number distribution through the duct is illustrated in this figure. This is a top view of a waterline cut through the center of the lower/side bypass duct (note the inset figure for orientation). The flow is locally sonic as it turns the sharp corner of the ramp, supersonic around the cowl lip, and sonic near the bypass exit. The flow remains subsonic through the inlet duct, however, it approaches Mach 0.90 in the throat region.

Mach Number contours on a waterline cut through the center of the lower/side bypass duct for Mach 1.2 are shown. The bow shock shock of the compression ramp creates subsonic flow entering the inlet duct. However, at the same location in the previous Mach 0.90 case where the flow approaches Mach 0.90 , the flow in this case goes supersonic until time separating the wall boundary layer. The choked inlet duct is clearly the reason for the low bypass flow rate: the inlet simply won't take any more flow.

The flow through the bypass doors for the Mach 0.90 case is shown. As noted earlier the bypass flow rate was much less than expected aithough the inlet duct was not choked. . Part of the reason is evident in this figure. Note the significant separation on the backside (outside) of the bypass doors. The resulting "vena contracta" reduces the effective flow area considerably, contributing to the lower than expected bypass flow rates.

A new door geometry was lofted with an elliptical nose shape to address the separation

$$
\begin{aligned}
& \text { February } 1999 \text { HSR Airframe Technical Review } \\
& \text { HSCTHigh Speed Aerodynamics - BCAG } \\
& \text { Bifurcated Inlet Spillage / Bypass Study } \\
& \text { Isolated CFD Analysis: Modified Door Geometry }
\end{aligned}
$$

Rerunning the isolated nacelle analysis at Mach 0.90 with the modified door geometry increased the bypass mass flow rate from 7% to 10%. However, as the figure shows the inlet duct was now choked.

Q GCUENAEE

Another geometry modification to the original isolated analysis was made to try to achieve higher inlet capture mass flow rate. In the case shown here the inlet compression ramp was collapsed even further than its transonic design condition. This unchoked the inlet duct and allowed an increase in the bypass mass flow rate from 7% to 11%.

[^7]
Q EOEEINE: February 1999 HSR Airframe Technical Review
Bsct high speed Aerodynamics - bcag
Bifurcated Inlet Spillage / Bypass Study
Isolated CFD Analysis: MFR vs. Bypass Door Angle
Mach 0.90, Re $\mathrm{MAC}=163$ million $(\mathrm{h}=40,000 \mathrm{ft})$
Ramp: Collapsed

[^8]HSCT High Speed Aerodynamics - BCAG \quad of

The bypass mass flow rate as a function of bypass door angle for the Mach 1.20 case is
shown. The effect of the modified door geometry is dramatic, increasing the bypass MFR
from 10% to 16% at 12 degree door angle. Beyond this door angle, the geometry with the
modified doors, flows so well that the inlet duct chokes again, limiting the maximum
bypass flow rate to $\sim 18 \%$.
February 1999 HSR Airframe Technical Review

HSCT High Speed Aerodynamics - BCAG
The nacelle external drag as a function of the bypass mass flow rate is shown for the Mach 0.90 isolated nacelle cases; the external drag excludes the inlet compression ramp and inlet internal surfaces. The drag increases linearly from 1.57 counts to 2.81 counts as the bypass MFR increases from zero to 21%. As the bypass flow increases the spillage decreases; decreased spillage reduces the beneficial lip suction induced by the spill flow as it expands around the nacelle leading edge. Note that two different drag levels were obtained at zero bypass for the original and collapsed ramp geometries. This drag level difference is discussed in the following two figures.

$=$

February 1999 HSR Airframe Technical Review

The zero bypass isolated Mach 0.90 case with the original ramp is shown here; the following figure shows the same case with the collapsed ramp. The lower drag of the collapsed ramp case is evidently due to the increased lip suction (larger high Mach region) at the nacelle leading edge. Apparently the increased wedge angle of the original ramp是 must occur at the nacelle lip.

See text for previous page.

The external nacelle drag for the isolated Mach 1.20 case is shown here as a function of (The drag increases linearly up to MFR $=15 \%$; beyond which the drag increased sharply. The drag increase is the combined effect of losing lip suction as the spillage decreases, and penetration of the bypass doors into the external flow.
2

The zero bypass installed nacelle Mach 1.20 case has been completed. Surface pressure
contours are shown in the figure. The spillage at the cowl lip (low pressure region) and
the high pressure region on the wing lower surface as seen in the BCA wind tunnel
Reynolds Number analysis done in 1997 are clearly evident. This run took 268 cpu-hours.

Q MEEENNE

∞

The surface pressure distribution for the 12 degree bypass door case is shown. This case is
 with the zero bypass case indicates the same trends as seen on the isolated nacelle:

 above the bypass doors is evident that was not present in the zero bypass case.

HSCHEETigh Speed Aerodynamics - BCAĂ 1999 HSR Airframe Technical Review
Transonic Cruise and Climb Study Conclusions
The transonic results for the installed axisymmetric nacelle done with different grids, The transonic results for the installed axisymmetric nacelle done with different grids, different codes, and at different Reynoids Numbers yielded very similar resuits. When bifurcated results.
The bifurcated inlet/ramp system as designed is clearly not adequate for anything but very low bypass rates. In order to obtain a bypass mass flow rate close to the propulsion designated maximum it was necessary to collapse the compression ramp to an unrealistic width. In addition, the bypass doors were redesigned to remove corners at the leading edge that were separating the flow and limiting the flow rate.
The relationship between bypass mass flow rate and nacelle drag has been investigated on the isolated bifurcated nacelle: the drag increases as the bypass MFR increases due to reduced spillage lip suction.
The NGC spillage/bypass study on the installed bifurcated is in progress.
February 1999 HSR Airframe Technical Review
HSCTHigh Speed Aerodynamics - BCAG
Transonic Cruise and Climb Study Conclusions

- Axi inlet spilling effects very similar at WT(BCAG-OVERFLOW) and flight
conditions(NGC-GCNS)
- NGC flight analysis of spilling bifurcated inlet in progress
- Baseline bifurcated inlet/ramp system designed to spill, NOT bypass
- Ramp and door modifications required to reach required MFR bypass
- Isolated nacelle drag increases when bypass increased
- Less spillage means less lip suction
 currently expected to be completed.

Plans

> Archive multi-year PAI analysis effort

February 9, 1999
Chart 2: AIRPLANE Advantages
The AIRPLANE process starts with an aircraft geometry stored in a CAD system. The surface is modeled with a mesh of triangles and then the flow solver produces pressures at surface points which may be integrated to find forces and moments.
Why AIRPLANE? The biggest advantage is that the grid generation bottleneck of the CFD process is eliminated when an unstructured tetrahedral mesh is used. MESH3D is the key to turning around the first analysis of a CAD geometry in days instead of weeks.
The flow solver part of AIRPLANE has proven to be robust and accurate over a decade of use at NASA. It has been extensively validated with experimental data and compares well with other Euler flow solvers. AIRPLANE has been applied to all the HSR geometries treated at Ames over the course of the HSR program in order to verify the accuracy of other flow solvers.
The unstructured approach makes handling complete and complex geometries very simple because only the surface of the aircraft
needs to be discretized, i.e. covered with triangles. The volume mesh is created automatically by MESH3D.
AIRPLANE runs well on multiple platforms. Vectorization on the Cray Y-MP is reasonable for a code that uses indirect addressing. Massively parallel computers such as the IBM SP2, SGI Origin 2000, and the Cray T3E have been used with an MPI version of the flow solver and the code scales very well on these systems. AIRPLANE can run on a desktop computer as well.
AIRPLANE has a future. The unstructured technologies developed as part of the HSR program are now targeting high Reynolds number viscous flow simulation. The pacing item in this effort is Navier-Stokes mesh generation.
AIRPLANE Advantages

- Robust and accurate Euler flow solver.
- There is a path to Navier-Stokes.

Chart 3: Baseline TCA: AIRPLANE Solution, Mach 2.4, $\alpha=3.6$
This color picture shows the surface mesh and color function on the surfaces of the TCA nacelles, diverters, and the lower surface of the wing.

[^9]

Chart 4: AIRPLANE Parallel Performance
The MPI version of AIRPLANE requires 2^N, a power of two, processors, because it uses recursive bisection to create subdomains.
Measurements show that AIRPLANE performance for large problems scales nearly ideally on the IBM SP2, the SGI Origin 2000, and
the Cray T3E.
In the figure, the number of microseconds per iteration per mesh point is shown against the number of processing elements (CPUs) on
a log-log scale. Measured values for a Cray T3E, jsimpson.gsfc.nasa.gov, are listed on the left of the figure. Ideal performance is
shown with a dashed line, obtained by successively dividing the 8 -CPU performance by 2 . AIRPLANE was applied to a mesh of over
800,000 points. The residual smoothing option was turned on, and smoothing communication was lagged at subdomain boundaries.
Scaling is nearly ideal and there is less than 5% difference from the ideal figure at the top end.
One symbol is shown for the SGI Origin 2000 (O2K), steger.nas.nasa.gov, for 32 CPUs. Performance on the O2K is known to scale
very well with the number of CPUs.
A typical mesh has about 800,000 points. It takes one to three wall seconds per iteration to run the flow solver, and one to two
thousand iterations to obtain a typical steady solution. Thus it is possible to run an alpha sweep of a dozen points in one day.
Information on MPI may be found at URL: http://www.mcs.anl.gov/mpi/mpich/index.html.

Chart 5: AIRPLANE/SYN107-MB Comparison
This color picture shows a comparison of an AIRPLANE mesh generated by MESH3D and a multi-block grid for SYN107-MB which
was assembled manually by Mark Rimlinger using Gridgen.
The geometry is the PTC (Preliminary Technology Concept) with canard, and the figure shows a cut through a constant Y plane (a waterline cut) through all the faces (triangles) of the unstructured tetrahedra and all the faces (quadrilaterals) of the structured hexahedra. The plane cuts through the middle of the canard, and it passes over the wing and under the horizontal tail.
The picture illustrates that AIRPLANE can handle complete, complex geometries and it is used to check other Euler flow computations.
Clustering of points near the tips of the canard, wing, and tail are evident in the structured grid, and this clustering gradually relaxes in the span direction off the tips. Without the H -topology constraint, the unstructured mesh is able to coarsen much sooner.

Chart 6: MESH3D

- Automatic tetrahedral mesh generation method.
- Based on a constrained Delaunay algorithm.
- Exploits edge/face swapping technique to establish
boundary surfaces.
- Requires a surface mesh which can be obtained from
GridTool/VGRID or Gridgen.
мияни

Chart 7: New Utilities for Surface Triangulation

[^10]
Chart 8: New Utilities for Perturbation of Baseline Geometry
The three new utilities (APMORPH, APSHAPER, and DEFORM3D) automate the generation of surface and volume triangulations for configurations which arise from perturbations of the baseline geometry.
APMORPH provides automated morphing of a given surface triangulation onto a slightly perturbed geometry. This is particularly useful APM ther wishe to obtain AR ARP ANE flow solution on two different configurations using almost identical meshes. Any systematic bias in the computation will then affect each solution in essentially the same way so that incremental changes in the aerodynamic performance of the two configurations will be predicted with very high accuracy.
APSHAPER facilitates the application of AIRPLANE as a design tool. The user first defines the size and placement of Hicks/Henne shape functions on the surface of the configuration. APSHAPER then deforms ve baseline surface niang the user will have the option of running the program DEFORM3D to perturb a baseline volume mesh so that it conforms with the perturbed surface triangulation that was created either by APSHAPER or by APMORPH.

Chart 9: APTRIANG -- A tool for surface mesh examination and manipulation.
This is a tool for structured surface grid or unstructured (triangulated) surface mesh examination and manipulation. It can read or write
several types of files: PLOT3D, FAST, TRISURF, AIRPLANE, GridTool/NGRID, and Gridgen. The program is text oriented, that is, it
uses an ASCII command line interface. A mesh and its attributes can be visualized by writing FAST files and then applying a graphics
program like FAST. A FAST file of edges colored by repeat count can graphically pinpoint holes.
Tables of properties that can be generated include lists of x, y, z extrema of points, edges, and faces. Component-wise and total
surface areas and enclosed volumes can be obtained. The program checks for edges used more than twice and locates holes in the
surface and gaps between components. A message indicates whether the triangulation is likely to form a water-tight surface.
Certain mesh properties can be manipulated, and small problems can be corrected. Components in multiple files can be joined
together provided they match at points along their edges, and they can be removed or renumbered. A unique point list may be
generated and redundant points and faces can be removed. Points near the symmetry plane may be snapped to lie exactly on it ($Z=0$).
Surface normals can be reversed and a consistent direction of surface normals can be enforced among all neigboring triangles.
An unstructured mesh can be derived from each structured surface grid quadrilateral face three ways: (1) regular subdivision,
(2) taking the shorter of the two diagonals, or (3) adding a midpoint and forming four triangles around the perimeter.
APTRIANG can process penetrating surfaces but neither detects nor corrects this kind of pathology. The other MESH3D tools for
handling components that cross over themselves or through each other are APMERGE and APSHAPER.
\[

$$
\begin{array}{ll}
\text { A tool for surface mesh examination and manipulation. } \\
\text { File types: } & \begin{array}{l}
\text { PLOT3D, FAST, TRISURF, AIRPLANE, } \\
\text { VGRID, Gridgen }
\end{array} \\
\text { Examines: } & \begin{array}{l}
\text { Physical extent of points, edges, faces. } \\
\text { Finds edges used more than twice. } \\
\text { Computes surface area and volume. } \\
\text { Locates holes and gaps in the mesh. }
\end{array} \\
\text { Manipulates: } \begin{array}{l}
\text { Joins components with unique point list. } \\
\text { Orients faces with consistent normals. } \\
\text { Snaps points to the symmetry plane. } \\
\text { Eliminates unused points and faces. } \\
\text { Forms a mesh from a structured grid. }
\end{array}
\end{array}
$$
\]

Chart 10: Surface Intersection and Retriangulation
carried out for a substantially smaller number of edges and triangles.
End-to-end sequences of edges at the intersections of multiple surfaces are used to clip away those triangles that ought not to be included in the surface of the aircraft. In other words, only the triangles that will be wetted by the flow field are retained.

[^11]Surface Intersection and Retriangulation

New edges are introduced.

$\operatorname{ABC}\left(\Gamma_{1}\right)$ meets PQR (Γ_{2}).

If the intersection point of edge PQ with triangle ABC (previous figure) lies close to an edge or vertex of triangle ABC then the quality of
the retriangulation will be extremely poor. A post-processing step is therefore applied to remove any unacceptably small edges that
have been created as a result of the retriangulation procedure. Suppose (present figure) that edge XY should be removed. Let R be
the mid-point of edge $X Y$ and allow this edge to collapse onto point R so that all other edges that were incident to either X or Y are now
incident to R.
The quality of the resulting triangulation can be further enhanced by using diagonal swapping to reduce the number of edges incident to
R and thus improve the triangle aspect ratio (but not in the present figure). Care must be taken to ensure that no intersection edges are
removed by diagonal swapping. Similarly, only those surface edges with dihedral angles close to 180 degrees should be swapped.

Edge $X Y$ is too small.

Chart 12: APMORPH -- Actually a combination of APTRIANG, APINTERP, APMORPH, and APDIFFER
Surface mesh generation can take days to accomplish. The following approach to surface mesh perturbation can be done in minutes.
If baseline geometry is modeled by both an unstructured mesh as well as a structured grid, then an association can be made between the mesh and the grid. If the structured surface grid is perturbed during design and still has the same dimensions and topology as the baseline grid, then the mesh with the baseline grid can be exploited to remap the old unstructured mesh to a new mesh that closely matches the perturbed grid resulting from design. The two meshes connect exactly the same way (same set of edges and faces) A detailed explanation follows.
The baseline grid is turned into a $4: 1$ unstructured mesh by making four triangles per quadriateral, using APTRIANG. A program called APINTERP finds, for the nth baseline mesh point P, the index IFACE(n) of the closest triangle ABC of the $4: 1$ mesh together with a pair of scalars ($s(n), t(n)$) which are interpolation coefficients for the closest point Q in ABC. In most cases Q is inside ABC and ($P-Q$) (n) as normal to the plane of ABC. The nearest Q does not have to be a normal projection, however. The list od from the new design grid to n ranges over the baseline mesh points is applied by a program called APMORPH to a 4. Thes final step allows the morphing process oprerve the original mesh if the design grid is identical to the baseline grid. Since $(P-Q)$ is not scaled or rotated in any way this can introduce noise which is usually expected to be small. There is no guarantee that the new mesh will precisely match a CAD geometry corresponding to the new design grid, but the result is quickly obtained and should still be useful.

> Chart 13: APSHAPER

[^12]APSHAPER

Chart 14: Volume Mesh Deformation

The computer program DEFORM3D will perturb a volume mesh based on a perturbation of its surface mesh.
Small perturbations of the flow domain can be accomplished by simply relaxing the mesh points according to a suitable physical model. One popular approach is based on a spring analogy that treats the edges of the mesh as a network of springs connected at its mesh points. The equilibrium position (i.e. position of lowest potential energy) determines the new position of the mesh points induced by the boundary deformation. Other models have been proposed (e.g. treating the flow domain as an elastic solid) but eventually all of these models break down when extreme deformation causes excessive distortion of the tetrahedral shape.
One can monitor the degree of distortion for each tetrahedron by considering a 3×3 matrix To formed by assembling three vectors, each of which represents an edge of the tetrahedron. If T_{1} represents the equivalent matrix for the tetrahedron after mesh movement then we can write $T 1=M T 0$ where M assumes the role of a shape transformation matrix. The polar decomposition theorem permits us to P is positive semi-definite matrix whose eigenvalues represent modes of pure dilatation. These eigenvalues, which are the positive square roots of the eigenvalues of $M^{\wedge} \wedge^{\top}$ (M times its transpose) provide a useful measure of cell distortion.
Volume Mesh Deformation

The computer program DEFORM3D will perturb a volume
mesh based on a perturbation of its surface mesh.

Chart 15: Volume Mesh Movement and Modification
If the mesh has suffered unacceptable distortion as a result of mesh movement, remedial action is taken to restore mesh quality. Mesh $M M^{\wedge} T$ is much less than unity). Mesh enrichment is applied to those regions that have been excessively stretched (i.e. one or more of the eigenvalues of $M M^{\wedge} \top$ is much larger than unity). A three dimensional version of the edge collapse procedure is used to achieve mesh coarsening, and the Delaunay point insertion algorithm is exploited to effect mesh enrichment.
Baker, T.J. and Cavallo, P.A. "Dynamic Adaptation for Deforming Tetrahedral Meshes", Abstract submitted to the 14th AIAA CFD
Conference, Norfolk, VA, June 1999.

Navier-Stokes Mesh Generation

$$
\begin{aligned}
& \text { Layers of tetrahedra are developed by successive } \\
& \text { subdivision of the Euler type tetrahedra. } \\
& \text { Standard isotropic refinement of points } \\
& \text { outside the boundary layer. } \\
& \text { Isotropic refinement in corner regions and } \\
& \text { along salient edges is an option. }
\end{aligned}
$$

Char 17: Navier-Stokes Mesh Generation
The initial mesh consists of a layered set of low aspect ratio tetrahedra adjacent to the boundary surface and any pre-specified wake surfaces. The mesh in the layered regions is then refined by inserting more points along the normals to the boundary. The point distribution along these normals is successively refined until the mesh increment normal to the boundary is sufficiently small and enough points and cells lie within the boundary layer region.
Navier-Stokes

Chart 18: Affine Mapping of Metric for the Delaunay Test In regions where the boundary layer surface is concave it is possible for the Delaunay algorithm to generate tetrahedra whose An alternative approach, that appears to be more robust, is based on modifying the metric used in the Delaunay euclidean metric An alternative approach, that appears to the position vectors of the points P and Q . The standard metric for the Delaunay in-sphere test is based on the Euclidean metric and is applied to determine whether a point P is inside the circumsphere of tetrahedron $A B C D$ with circum-center Q. In its standard form the in-sphere test would consider poift of the figure (to simplify the drawing, point D is not shown). $d(P, Q)=|P-Q|$
The approach we have adopted is based on an affine mapping of the metric that has the effect of replacing the circum-sphere centered
 $<\mathbf{n}, \mathbf{P}-\mathbf{Q}>$ represents the oriented distance along the normal direction from \mathbf{Q} to \mathbf{P}. then the modified metric for the Delaunay in-sphere test has the form
$d(P, Q)^{\wedge} 2=\left\langle t, P-Q>^{\wedge} 2+(h / k)^{\wedge} 2<n, P-Q>^{\wedge} 2\right.$.

\[

\]

Conclusion

MESH3D
APTRIANG
APMERGE
APMORPH
APSHAPER
DEFORM3D
Navier-Stokes
\checkmark
-
-
-
-
-
-

Assessment of CFD Predictions of Flat Plate Skin Friction

HSR Airframe Technical Review
Los Angeles, California
February 9 - February 11, 1998
Robert M. Kulfan
Boeing Commercial Airplane Group

The assessment of the CFD flat plate fully turbulent flow skin friction predictions is an element of the "Viscous Drag Prediction" technology development element shown in the Configuration Aerodynamics program on a page shown in this figure.

Topics

- Variations in Viscous Drag Predictions
- Resolution Strategy
- Flat Plate Skin Friction Comparison Database
- BLB-PW CFL3D Predictions
- BCA Overflow Predictions
- Ames OVERFLOW Predictions
- Conclusions

Recent CFD validation studies have shown significant variations in viscous drag predictions between the various methods used by the NASA and industry HSCT organizations. The methods include Navier Stokes CFD codes in which the viscous forces are part of the solutions, and predictions obtained from the different fully turbulent flow flat plate skin friction drag equations used by the various organizations.
In this paper, the variation of these viscous drag predictions will be shown. The strategy developed to resolve these differences will be discussed. The first step in the resolution strategy was the development of a skin friction database for flat plate fully turbulent flow. This database will be briefly reviewed. The comparisons of CFD skin friction prediction by Boeing Phantom Works Long Beach - , BPW-LB, by Boeing Commercial Aircraft aerodynamics, BCA, and by NASA Ames will be reviewed.
The study conclusions will be summarized.

Comparison of Predicted Viscous Drags From Various CFD Codes for the TCA Wing/Body Configuration

$$
M_{\infty}=2.4, C_{L}=0.1, R_{0}=6.36 \times 10^{6}
$$

This figure illustrates the variations in viscous drag predictions for the TCA wind tunnel model wing plus body configuration. There are significant variations in flat plate theory predictions used in the inviscid CFD analyses as well as the CFD predictions obtained with the viscous analyses.

Comparison of Predicted Viscous Drags From Various CFD Codes for the TCA Wing/Body/Nacelle/Diverter Configuration

$$
M_{n}=2.4, C_{L}=0.1, R_{e}=6.36 \times 10^{6}
$$

This figure shows similiar comparisons for the wing plus body plus nacelle configuration. There is seen to be a three drag count variation in the flat plate predictions corresponding to the inviscid analyses, (numbers 1 through 4). The BLB-PW CFD predictions using CFL3D appear to match the flat plate theory predictions. The OVERFLOW predictions of BCA and Ames predict significantly lower drag levels.

This illustrates the strategy that was developed to resolve the viscous drag prediction differences. This consisted of a series of sequential activities:

- Establish a database of fully turbulent flow flat plate skin friction data to be used for the validation of the corresponding CFD predictions. Flat plate prediction methods were assessed. A modified flat plate skin friction prediction method was developed that accurately represents the mean of the test data and captures both the Reynolds number and Mach number variations of this mean.
- The second step includes the comparison of the CFD predictions of fully turbulent flow flat plat viscous drag with the mofified flat plate theory. The results of this activity is the subject of this paper.
- A symmetric model representation of the HSR TCA configuration was defined and will be fabricated and tested to obtain data for validation of CFD viscous drag predictions on an HSR type configuration, Supersonic tests are planned in the Boeing Polysonic Wind Tunnel to obtain supersonic drag data at moderate Reynolds numbers The model was also planned to be tested in the NASA Langley NTF tunnel to obtain data for a wide range of Reynolds numbers.
- The final element is to recalculate the drag of the TCA to see if the variations between the theories has vanished and the theory predicts the test results. -The elements that are crossed out have been canceled by reduction in program funding

Why the Interest in Flat Plate Turbulent Boundary layers ?

\author{

- First Step in Evaluating Navier Stokes Prediction Methods
 - Help Sort Out Appropriate Turbulence Models
 - Good Estimate of Viscous Drag of HSCT Type Configurations (Easy, Quick, Robust and Accurate)
 - PD Drag Prediction Methods
 - Extrapolation of Wind Tunnel Data to Flight Conditions
 - δ Predictions Used to Size Diverter Height
 - δ^{*} plus CF Predictions Used to Calculate Spillage and Internal Drag of Flow-Through Nacelles
 - Quick Estimate of Surface Temperature
 - Provides Physical Insight into Viscous Flow Characteristics
}

It is felt that the first step in validating the viscous drag predictions of any Navier Stokes code is to make sure that predictions of the local and average skin friction drag and boundary layer must match the "simple" flat plate measured test data over the range of Mach numbers and Reynolds for which the codes will be used. This process will help to evaluate the applicability of of the various turbulence models.
Because HSCT configurations have rather thin wings, slender bodies and low cruise lift coefficients, experience has shown that flat plate skin friction calculations provide good estimates of the viscous drag of HSCT type configurations. The predictions are easy, quick, robust and quite accurate.
The current PD viscous drag prediction methods are based on flat plate skin friction drag calculations. Currently wind tunnel data is extrapolated to flight conditions using flat plate friction drag predictions.
Flat plate estimates of the boundary layer thickness are used as the preliminary criteria for specifying the boundary layer diverter height for the HSCT nacelle installations. Boundary layer displacement thickness predictions together with CF calculations are used to calculate the spillage and internal drag of wind tunnel flow though nacelles.
Local skin friction calculations corrected for local dynamic pressure effects can be used to estimate local surface temperatures.

The boundary layer thickness information presented in this note also provides some physical insight in to the fundamental features of turbulent flat plate flow.

Flat plate skin friction data was obtained from a number of experimental sources. These data cover a wide range of Mach numbers and Reynolds numbers. Comparisons were made with various flat plate theories to select the theory that most closely matches the test data. The results of these assessments are presented in the Reference shown below.
The flat plate theories are based on the reference temperature method. This method assumes that the incompressible skin friction equations apply to supersonic Mach numbers provided that the density and viscosity are calaculate at some reference temperature that represents the variation of temperature across the boundary layer.
This figure shows the comparison of the modified Shultz / Grunow equation with incompressible test data. Statistical analysis of the differences between the test data and corresponding Cf predictions shows that the mean of the differences is $\Delta \mathrm{Cf}=-.000000671$ which corresponds to an average difference of 0.13%. The standard deviation of data about the mean is approximately 0.7 counts of drag ($\Delta \mathrm{Cf}=0.000067$) which corresponds to 2.8% of the corresponding predicted value.
The modified Shultz / Grunow equation therefore appears to provide an accurate estimate of incompressible local skin friction coefficient over the entire range of Reynolds Numbers covered by the test data.

[^13]

This figures shows some of the compressible flow skin friction datya used to validate the flatplate theories. This compares the compressible skin friction predictions obtained using two commonly used T^{\star} methods, the Monaghan T^{*} and the Sommer-Short T^{\star} method. The Sommer-Short T^{*} equation results in compressible skin friction values consistently higher than predicted using the Monaghan method. It was for this reason that the Boeing US SST program switched from the Monaghan method to the Sommer-Short method. The full scale SST performance predictions were obtained from wind tunnel data corrected to full scale conditions. Wind tunnel skin friction drag is higher than the full scale conditions. Using higher skin friction values calculated by the Sommer -Short method resulted larger skin friction corrections. This resulted in higher L/D assessments for the SST.

Evaluation of Reference Temperature Equations

Monagham

Sommer and Short

Kulfan

Statistical analyses were made of the differences between Cf predictions and the corresponding test data as shown in this figure. The theoretical predictions were obtained using three different T^{*} equations.
The "scatter" in the test - theory increments are essentially equal. The mean of the differences between the test and theory, however differs between the predictions obtained using the different T^{*} equations.

The "mean" of the theory - test differences obtained using the Monaghan T^{*} equation is approximately 1% low. The "mean" of the theory - test differences obtained using the SommerShort T* equation is approximately 1% high. The constant for the Kulfan T^{*} equation was therefore chosen to be the average of the Sommer-Short and the Monaghan constants.
This essentially resulted in a mean error between the test data and the theoretical predictions of zero.

The test data scatter about the mean has a standard deviation of about 4.5\%. This large scatter is in part due to the variations of Reynolds number of the test data. The Reynolds number for the test data 10^{6} to 10^{7}.

The T^{*} equations can also be used to convert the compressible skin friction to equalivent incompressible data. This transformation procedure, as shown in the Figure, "collapses" all of the test data about the incompressible skin friction curve. This approach can provide a convenient means to assess the accuracy of the theoretical methods to account for compressibility effects simultaneously over a range of Mach numbers and Reynolds numbers.

Conclusions - Flat Plate Database Developemnt

- Modified Incompressible Equations and Improved T* T Method Predict "Mean" of Available Flat Plate Skin Friction Drag Measurements
- New Methods Presented That Appear to Provide Good Estimates of Boundary layer Thickness and Displacement Thickness
- Compressibility Effects Have Very Little Effect on The Shape or Height of the Turbulent Flat Plate Velocity Profile.
- Boundary Layer Displacement Thickness Increases Rapidly With Mach Number
- Comparisons of Navier Stokes CFD Predictions of Flat Plate Turbulent Skin Friction Drag and Boundary Layer Growth, With the Test Data and / or Theory Presented in This paper, is considered to be a Necessary and Vital Step to Validating the Codes For HSCT Viscous Drag Predictions .
- Need Additional / Quality Experimental CF Data:
- Locate Available Existing Data
- Symmetric Model Tests
- Segmented Axisymmetry Body of Revolution
- Utilize TU-144 Flight Test Data
- ???

The modified incompressible CF equations and the improved T^{*} equation presented in the reference paper appeared to consistently match the test better than the other flat plate CF methods currently in use on the HSCT program. It was recommended that the methods presented there, be adapted as the official HSCT flat plate calculation methods.
The boundary layer thickness, and displacement thickness calculations methods presented in that paper seem to be validated by the existing data.
Compressibility effects were shown to have little effect on either the shape or height of a turbulent boundary layer. The displacement thickness however varies rapidly with increasing Mach number.
A modified Shultz / Grunow incompressible local skin friction equation and the modified Prandtl / Schlichting average skin friction were used with the Kulfan T^{*} equation in the studies reported in this paper to evaluate the CFD predictions of fully turbulent flow flat plate skin friction drag.

BPW-LB Skin Friction Analyses Analyses

- Code: CFL3D
- Average Skin Friction, CF
- Turbulence Models:
*Baldwin - Lomax
*Spalart - Allmaras
- Menter's SST
- Mach Numbers:
* 0.5
- 1.5
* 2.25
* 2.5
- Reynolds Number:
* 10^{6} to 200×10^{8}

The BPW-LB average skin friction predictions were made using CFL3D and a number of turbulence models for a range of Mach numbers and Reynolds as shown in the figure.

This compares average skin friction predictions obtained using the Baldwin - Lomax turbulence model, with the flat plate predictions. The Calculations were made for Mach $=0.5,1.5,2.25$ and 2.5

This shows the differences between the CFL3D predictions and the flat plate theory both as incremental differences, and differences in percent. The differences in the predictions are quite Mach number dependent.

The Kulfan T^{*} equation was used to transform the CFL3D predictions to incompressible skin friction data. The dash red line in this picture is the mean of the CFL3D predictions. It appears that the CFL3D predictions with the Baldwin-Lomax turbulence matched the flat plate predictions and the variation of Cf with Reynolds number

Equivalent Incompressible Average Skin Friction Calculations - BPW-LB CFL3D Code
 - Spalart - Allmaras Turbulence Model

Equivalent incompressible Average Skin Friction Calculations
\bullet BPW-LB CFL3D Code

- Menters Turbulence Model

BAC Skin Friction Analyses Analyses

- Code: OVERFLOW
- Local Skin Friction, Cf
- Average Skin Friction, CF
- Turbulence Models:
*Baldwin - Lomax
* Spalart - Allmaras
* Menter's SST
*Baldwin - Barth
- k-e
* k-w
- Grid vertical spacing variations
- Mach Numbers:
* 0.9
* 2.4
- Reynolds Number:
* 10^{5} to 6×10^{6}
* 10^{5} to 200×10^{8}

ARC Analyses

Code: OVERFLOW

Local Skin Friction, Cf
Average Skin Friction, CF

Turbulence Models:
*Spalart - Allmaras

* Menter's SST

Mach Numbers:

* 0.5
* 0.9
* 1.5
* 2.0
* 2.4

Reynolds Number:

* 10^{5} to 6×10^{6}
- 10^{5} to 200×10^{8}

Conclusions

- Modified incompressible CF equations and improved $T * / T$ method predict "mean" of available flat plate skin friction drag measurements
- BPW-LB CDL3D And BCA OVERFLOW CF predictions with the Spalart - Allmaras Turbulence Model are consistent and show a large difference in the variation of CF with Reynolds Number compared to the flat plate CF predictions
- The Spalart - Allmaras Cf predictions indicate a laminar to turbulent transition characteristic. This is the source of the large Reynolds Number variations
- The BPW-LB CFL3D CF predictions agree better with the flatp plate theory, and therfore also the test data, then the BAC OVERFLOW predictions
- Menter's SST slightly underpredicts CF at Iow Mach Numbers, But overall best predicts flat plate fully turbuient flow CF
- BAC OVERFLOW results include:
- CFD skin friction predictions vary with vertical grid spacing scheme.
- "constant grid spacing" near the wall, CF predictions appear better than "stretched grid spacing" predictions
- Initial assessment of ARC OVERFLOW predictions show significant differences in the predictions using the Spalart- Almaras and the Menter SST Turbulence Models
- Additional effort is necessary to understand and resolve the CF prediction differences

The conclusions of this study are shown in the Figure.
чэеәg 6иоך 'sэ!шеиКроләъ pәәds ч6!н
Progress Toward Viscous Drag
Flow Over Flat Plate with No P
Progress Toward Viscous Drag Calculations (Part I)
Flow Over Flat Plate with No Pressure Gradient

Alpha STAR Corporation
Long Beach, $C A$

NASA/ Industry HSR Airframe Review
Anaheim, California
February $8-11,1999$

Progress Toward Viscous Drag Calculations
High Speed Aerodynamics, Long Beach
ABSTRACT
A systematic prediction capabilities of a state-of-the-art Navier-Stokes solver employed in HSR program for
viscous drag for flow with and without pressure gradient was assumed and a computational database was
 Boeing Long Beach in two phases. In the firstphase, Navier-Stokes solutions were correlated with experimental data for flows over a flat plate without pressure gradients. In the second phase, flows with pressure gradients were considered by examining the TCA symmetric wing/body configuration. The High Speed Research (HSR), Configuration Aerodynamics community has proposed a Technical Concept Airplane (TCA) symmetrical wing/body configuration in an effort to obtain a computational database for validation of viscous drag for wind-tunnel and fligh Reynolds numbers. This model was also selected because wind-tunnel data become available for comparison in the near future. The study was performed for several turbulence models and the flow conditions $\left(M_{\infty}=0.31\right.$ to 2.40 at wind-tunnel and flight Reynolds numbers) were chosen such that they bracketed the transonic and supersonic cruise Mach numbers of an HSCT aircraft.
Outline

> The outline of my talk will be as followed: First, the objective of the study will be given. The approach to this analysis will be described. Then some brief background will be introduced. The computational grid and grid topology will be discussed. The turbulence models are used for this study are described. The computational and empirical results will be presented. Finally, the summary of the analysis will be given.
High Speed Aerodynamics, Long Beach
Outline - Computational results

- Summary

Objective
The primary objective of this study was to evaluate the viscous-drag prediction capability of the different NavierStokes codes employed in the HSR program. This study was prompted as a result of significance differences observed between various estimate in viscous-drag predictions. In addition, the study provides a computational
 и! рәдәи practical flows. To make the results of this study more relevent to the practitioner, flows with pressure gradient are

[^14]
Objective

ctive
To provide a computational database

- smooth adiabatic flat plate with no pressure gradient
- subsonic to supersonic Mach numbers
- wide range of Reynolds numbers
- \quad several turbulence models
/ipha STAR corponation

Flat Plate with No Pressure Gradient

> Introduction
> There is much confidence that Euler solutions tend to overpredict wave drag, and Navier-Stokes solutions for viscous flows predict the pressure drag quite accurately. This is concluded from comparisons with wind-tunnel data. However, for viscous drag predictions, there are discrepencies among the Navier-Stokes solutions as well as between Computational Fluid Dynamics (CFD) results and wind-tunnel data. This spurned the current systematic study of the viscous drag prediction capability of Navier-Stokes codes.

> Kulfan has compiled local and average skin-friction data from numerous wind-tunnel test data. In the process of extracting the data, statistical analyses were performed between the test data and the corresponding predictions of various fully turbulent flat plate skin-friction prediction methods. After a thorough analysis, and a critical evaluation of several empirical correlation formulae for compressible boundary layer flows, Kulfan proposed a skin-friction correlation that appears to work very well over a wide range of Mach and Reynolds numbers. These correlations are currently being used to calibrate the skin-friction prediction capabilities of CFL3D code.

High Speed Aerodynamics, Long Beach
Introduction

- Good estimate of viscous drag of HSCT type configurations
- Asembly of a database in 1960 from selected experiments
- Extrapolation of wind-tunnel data to flight conditions
- Extrapolation of wind-tunnel data to flight conditions
- Boundary layer porofile data measurements
Introduction
- First step in evaluating Navier-Stokes based viscous drag
prediction methods
- Help sort out appropriate turbulence models
- Good estimate of viscous drag of HSCT type configurations
- Asembly of a database in 1960 from selected experiments
- Extrapolation of wind-tunnel data to flight conditions
- Boundary layer porofile data measurements

Flat Plate with No Pressure Gradient
Method of Solution

[^15]
Flat Plate with No Pressure Gradient
Method of Solution

CFL3D Features
The CFL3D code is based on time-dependent conservation law form of the Reynolds-averaged Navier-Stokes formulations. The spatial discretization involves a finite volume approach. Upwind-biased differencing is applied to the inviscid flux terms. The upwinding is based on either the Van Leer flux-vector splitting or Roe flux-differencing splitting. Central differences used for shear stress and heat transfer terms. The time

 are available in the code. The turbulence models are zero-, one-, and two-equation models. In grid topology, a
 in the code.
CFL3D Features

Time-dependent conservation law form of the
Reynolds-averaged Navier-Stokes equations
Finite volume discretization at cell centers

Flat Plate with No Pressure Gradient

- FAS multigrid acceleration for both steady and unsteady flows

Local and Average Skin-Friction Coefficients
The local skin-friction coefficient is defined as the ratio of shear stress at the surface to the dynamic pressure
The average skin-friction coefficient is defined as the integral of local skin friction along the flat plate X

Where $\quad \tau_{w}=$ Local shearing stress at the surface
Using the modified Schultz-Grunow equation for incompressible flow and an appropriate reference temperature approach, the compressible local and average skin-friction become: $C_{f}=0.295 \frac{T_{\infty}}{T^{*}}\left[\log \left(\operatorname{Re}_{x} \frac{T_{\infty}}{T^{*}} \frac{\mu_{\infty}}{\mu^{\cdot}}\right)\right]^{-2.45}$
and
$C_{F}=0.463 \frac{T_{\infty}}{T^{*}}\left[\log \left(\operatorname{Re}_{x} \frac{T_{\infty}}{T^{*}} \frac{\mu_{\infty}}{\mu^{\cdot}}\right)\right]^{-2.60}$

Flat Plate with No Pressure Gradient
Local and Average Skin-Friction Coefficient (Definition)
- Local skin-friction coefficient

- Average skin-friction coefficient
$C_{F}=\frac{1}{X} \int_{0}^{X} C_{f} d X$
lpha sTAR comroounon
Flat Plate with No Pressure Gradient
Speed Aerodynamics, Long Beach
Reference Temperature Approach

reference temperature is used to calculate ρ and μ in the equations:
The modified Schultz-Grunow equation is used for computation of incompressible local skin-friction as foloow: (S=198.7 R°)
And the compressible local skin-friction can be written as

$$
\begin{aligned}
& \stackrel{\square}{~+~} \\
& C f=0.295
\end{aligned}
$$

$\mathrm{Cfi}=0.295\left[\log \left(\mathrm{Re}_{\mathrm{x}}\right)\right]^{2.45}$

Flat Plate with No Pressure Gradient
High Speed Aerodynamics, Long Beach

2

Flat Plate with No Pressure Gradient Local and Average Skin-Friction Coefficient (Empirical) Local and Average Skin-Friction Coefficient (Empirical)

- Compressible local skin-friction coefficient
$\mathrm{C}_{\mathrm{f}}=0.295 \frac{\mathrm{~T}_{\infty}}{\mathrm{T}^{*}}\left[\log \left(\operatorname{Re}_{x} \frac{\mathrm{~T}_{\infty}}{\mathrm{T}^{*}} \frac{\mu_{\infty}}{\mu^{*}}\right)\right]^{-2.45}$
- Compressible average skin-friction coefficient
$\mathrm{C}_{\mathrm{F}}=0.463 \frac{\mathrm{~T}_{\infty}}{\mathrm{T}^{*}}\left[\log \left(\operatorname{Re}_{x} \frac{\mathrm{~T}_{\infty}}{\mathrm{T}^{*}} \frac{\mu_{\infty}}{\mu^{*}}\right)\right]^{-2.60}$

Flat Plate with No Pressure Gradient
Reference Temperature Empirical Formula

 could be obtained using well known incompressible skin-friction equations by evaluation all of the fluid properties that appear in the incompressible equations at some appropriate reference temperature. For an adiabatic wall conditions the reference temperature equation can be written in the following form:

$\frac{T}{T}=1+K r . r(Y-1) M_{\infty}^{2}$
 ${ }_{\infty}$

 freestream and reference temperatures, respectively. Kr is a constant and will be determined empirically. Three different models are proposed in order to calculate the reference temperature. These formulae are shown below: $\begin{array}{ll}\frac{T^{*}}{T_{\infty}}=1+0.1198 \mathrm{M}_{\infty}{ }^{2} & \text { Kulfan } \\ \frac{T^{*}}{T_{\infty}}=1+0.1151 \mathrm{M}_{\infty}{ }^{2} & \text { Sommer and Short } \\ \frac{T^{*}}{T_{\infty}}=1+0.1246 \mathrm{M}_{\infty}{ }^{2} & \text { Monaghan }\end{array}$
Flat Plate with No Pressure Gradient

Reference Temperature Empirical Formulae
For adiabatic wall conditions, the reference
temperature equation can be written as Reference Temperature Empirical Formulae

Flat Plate with No Pressure Gradient

Velocity Profile Approximation

- Velocity profile in turbulent boundary Layer
can be approximated based on power law as:

$$
\begin{aligned}
& \frac{u}{U_{\infty}}=\left(\frac{y}{\delta}\right)^{1 / \mathrm{N}} \\
& \frac{\mathrm{u}}{U_{\infty}}=1 \\
& \text { Where }
\end{aligned}
$$

$$
u=\text { Velocity at the height } y \text { from the wall }
$$

$$
\begin{aligned}
& \mathrm{U}_{\infty}=\text { Free stream velocity } \\
& \delta=\text { Boundary layer thickness }
\end{aligned}
$$

Flat Plate with No Pressure Gradient
High Speed Aerodynamics, Long Beach
Mach Numbers and Reynolds Numbers
A series of computational runs for turbulent boundary layer were performed on smooth adiabatic flat plate with
no pressure gradient and for subsonic to supersonic Mach numbers. The range of Reynolds and Mach
numbers are listed in Table. The range of Reynolds and Mach numbers were selected such that to cover the
transonic and supersonic cruise Mach number of HSCT aircraft.

Plate with No Pressure Gradient
High Speed Aerodynamics, Long Beach
CPU Timing On HP Platform The CPU time for all three turbulence models and four levels of mesh are listed in Table. The table shows that
the CPU time for one-, and two-equations turbulence models of Spalart-Allmaras and Menter's k - ω SST are
comparable, whereas the zero-order equation of Baldwin-Lomax turbulence model uses less CPU time for
the same conditions as the other two turbulence models.

In grid topology, a single zone grid was used for the computations. The flat plate length was normalized to unity such
 grid are used for grid sensitivity study. These are coarse mesh (17×25), medium 1 mesh (33×49), medium 2 mesh (65×97), and fine mesh (129×193). The grid is uniformly distributed in the streamwise (X-direction) direction and exponentially in the narmal (Z-direction) direction to the edge of boundary layer and uniformly after that to the the upper bound.
Computational Grid

High Speed Aerodynamics, Long Beach
Single zone grid

- \quad Number of coarser grids for mesh sequencing
- \quad Mesh sequencing for global grid
- \quad Uniform in streamwise direction
- \quad Exponential in normal direction
- \quad CFL3D grid format
Computational Grid
Single zone grid

Flat Plate with No Pressure Gradient

Speed Aerodynamics, Long Beach
Flat Plate with No Pressure Gradient
High Speed Aerodynamics, Long Beach

[^16]
Single Zone Grid for Flat Plate with No Pressure Gradient
High Speed Aerodynamics, Long Beach

Ipha STAR Corporation

High Speed Aerodynamics, Long Beach
Streamwise Direction Grid
Fine Mesh 129×193

lpha STAR corpoomtion

lpha STAR ${ }^{\text {corporation }}$

Beach

Speed Aerodynamics, Long Beach Computational Grid (continued)
The computational grids are shown in the following Figures for the coarse, medium 1 , medium 2 , and the fine grid,
respectively.

Flat Plate with No Pressure Gradient
Beach
Flat Plate with No Pressure Gradient Long Beach
High Speed Aerody
Turbulence Model Equations

CFL3D has several turbulence capability. Three turbulence models of different levels of complexity are being

 single field equation. The third model is two-equation model based on Menter's k - ω shear stress transpor (SST) model. The model solves two equation simultaneously in terms of turbulence kinetic energy and rotational velocity or vorticity.
Turbulence Model Equations

Turbulence Model Equations
Zero - equation model
Baldwin - Lomax
One - equation model
Spalart - Allmaras
Two - equation model
Menter's k - ω SST
lpha STAR CORPORATION
Flat Plate with No Pressure Gradient
Computational Results

> A typical residual and drag coefficient convergence summary are plotted for Baldwin-Lomax, Spalarat-Allmaras,
and Menter's $k-\omega$ SST turbuience models.
Flat Plate with No Pressure Gradient
чэеәя 6иоา 'sэ!

Computational Results

Residual Convergence Summary for Flat Plate with No Pressure Gradient
Baldwin-Lomax Turbulence Model
CFL3D, $M_{\infty}=0.50, \operatorname{Re}_{x}=1 \times 10^{6}$

(ןenpisey) ${ }^{01} 607$
Ipha STAR ${ }^{\text {corporation }}$
Drag Convergence Summary for Flat Plate with No Pressure Gradient
High Speed Aerodynamics, Long Beach Baldwin-Lomax Turbulence Model
CFL3D, $M_{\infty}=0.50, \operatorname{Re}_{x}=1 \times 10^{6}$

Hesidual Convergence Summary for Flat Plate with No Pressure Gradient

Drag Convergence Summary for Flat Plate with No Pressure Gradient
Spalart-Allmaras Turbulence Model
CFL3D, $M_{\infty}=0.50, R e_{x}=1 \times 10^{6}$

Residual Convergence Summary for Flat Plate with No Pressure Gradient

Drag Convergence Summary for Flat Plate with No Pressure Gradient
High Speed Aerodynamics, Long Beach

The variation of local and average skin-friction with Reynolds number at $M_{\infty}=2.50$ are plotted. For this Mach
 show an acceptable agreement with the empirical data over the entire range of Reynolds numbers considered. The Spalart-Allmaras turbulence model compares reasonably well with the empirically-determined local skinfriction at $\mathrm{Re}=1 \times 10^{6}$, but slightly overpredicts the empirical values for higher Reynolds numbers. The results from Baldwin-Lomax predicts considerably higher average skin-friction than any of the empirical methods for $\operatorname{Re}<10 \times 10^{6}$. This trend is opposite to that observed for Spalart-Allmaras predictions. The average skin-friction values predicted by Menter's k- ω SST model are in good agreement with the empirical data over the full range of Reynolds numbers considered in this study. The results of the other Mach numbers indicate that, in general , the Bladwin-Lomax and SST models both agree reasonably well with the empirical average skin-friction values at $\mathrm{M}_{\infty}=0.50,1.50$ for all Reynolds numbers considered. As the Mach number increases to $M_{\infty}=2.25$ and 2.50, Menter's SST model shows the best correlation with the empirical data. The Spalart-Allmaras turbulence model, on the other hand, significantly underpredicts the empirical average skinfriction data for low Reynolds numbers $\left(\mathrm{Re}<5 \times 10^{6}\right)$ at all four Mach number.
The agreement with empirical results improves for higher Reynolds numbers, but the Spalart-Allmaras computations tend to overpredict the empirical data as the Reynolds numbers increases. The SpalartAllmaras turbulence model has a built-in transition model that simulates a laminar run with reduced local skin-friction immediately downstream of the leading edge. The extend of this region of laminar flow decreases as the free stream Reynolds number oincreases. This explains why the correlation between the Spalart-Allmaras and the empirical results is poor at low Reynolds Number.

Skin Friction for Flat Plate with No Pressure Gradient
High Speed Aerodynamics, Long Beach

A ETEFNE

Flat Plate with No Pressure Gradient

The variation of local and average skin-friction values at $\mathrm{Re}=10 \times 10^{6}$ is shown that for low Mach numbers
 the other two turbulence models. As the Mach number increases, however, the Menter's $k-\omega$ SST model seems to be in better agreement with the empirical data. In terms of average skin-friction, all three models show almost the same agreement with the empirical data (except at $M_{\infty}=0.5$, where the Baldwin-Lomax prediction is slightly lower than the other two turbulence models results)

Skin Friction for Flat Plate with No Pressure Gradient

Gradient
 High
 Flat Plate with No Press

 Speed Aerodynamics, Long Beach
Comparison of Local Skin Friction Drag

The variation of computed local skin-friction along the flat plate is presented with the Baldwin-Lomax,

 with the larger predicted average skin-friction coefficient, compared to the empirical data and the SST results, for
 with reduced local skin-friction immediately downstream of the leading edge. The extent of this region of laminar flow diminishes with increasing freestrem Reynolds number. This expalin why the match between the empirical and the Spalart-Allmaras results improves with increasing Reynolds number.

> This figure also indicates that the boundary layer flow is properly resolved in these calculations. Apart from the transitional flow close to the leading edge, all three sets of Navier-Stokes solutions predict closely matching local skin-friction results for the same local Reynolds number.
Local Skin Friction for Flat Plate with No Pressure Gradient

nоіиуодноз $\mathrm{X} V \mathrm{LS}$ mydl
late with No Pressure Gradient
Effect of Grid Sensitivity
Effect of Grid Sensitivity

 fourfold increase in accuracy.

 әцд 10 גno!ıеуәq э! grid density for zero-order equation turbulence model.

Flat Plate with No Pressure Gradient: Effect of Grid Density High Speed Aerodynamics, Long Beach
CFL3D, Baldwin-Lomax, $M_{\infty}=0.50$

No Pressure Gradient: Effect of Grid Density
High Speed Aerodynamics, Long Beach
CFL3D, Spalart-Allmaras, $M_{\infty}=0.50$

Flat Plat Velocity Profiles The flat plate computations were performed using three turbulence models. The results of boundary-layer velocity
profiles were compared with measurement of Smith and Walker at $M_{\infty}=0.31$ and $R e_{c}=6.78 \times 10^{6}$. This
results of velocity profiles from Baldwin-Lomax, Spalart-Allmaras, and Menter's $k-\omega$ SS turbulence models show
good agreement with correlation to experimental data of Smith and Walker.
lpha STAR corporation
Flat Plate with No Pressure Gradient: Velocity Profiles
Beach
Flat Plate with No Pressure Gradient

Summary

 A systematic study has been completed to evaluate the viscous drag prediction capability of CFL3D code. A boundary layer flow over smooth adiabatic flat plate with no pressure gradient for subsonic to supersonic cruise Mach number of HSCT aircraft and a wide range of Reynolds numbers.
In the study of grid sensitivity, the coarse grid was too coarse especially for the Baldwin-Lomax turbulence model. A finer grid was generated. By eliminating the coarse mesh results, the C_{1} data for all three turbulence models are on the straight line and approaches to the asymptotic value of C_{f}.
The local and average skin friction coefficients were compared with empirical formula of Sommer \& Short, Kulfan and Monaghan, for a wide range of Mach and Reynolds numbers. It was shown that for $M_{\infty}=0.50$ and 1.50 , the Spalart-Allmaras turbulence model is in good agreement with the empirical data, whereas for supersonic Mach numbers, $M_{\infty}=2.25$ and 2.50, the Baldwin-Lomax and Menter's $k-\omega$ SST turbulence model are in better agreement with empirical data. A similar trend is seen for the average skin friction coefficient $\left(C_{F}\right)$.
The comparison of velocity profiles for $M_{\infty}=0.31$ and $R e_{x}=6.78 \times 10^{6}$ and three turbulence models with experimental data of Smith and Walker, shows that the Menter's k- ω SST turbulence model is the best fit to experimental data.

Flat Plate with No Pressure Gradient

Summary

- A series of computations are performed to validate the experimental local and average skin friction for compressible boundary layer flow over smooth adiabatic flat plate with no pressure gradient for subsonic to supersonic Mach numbers and a wide range of Reynolds numbers.

$$
\begin{aligned}
& \text { In the study of grid sensitivity, the coarse grid was too coarse especially for the Baldwin-Lomax } \\
& \text { turbulence model. A finer grid was generated. By eliminating the coarse mesh results, the } \mathrm{C}_{f} \text { data } \\
& \text { for all three turbulence models are on the straight line and approaches to the asymptotic value of } \mathrm{C}_{\mathrm{f}} \text {. } \\
& \text { The local and average skin-friction coefficients were compared with empirical formula of Kulfan, } \\
& \text { Sommer \& Short and Monaghan, for a wide range of Mach and Reynolds numbers. It was shown } \\
& \text { that for } M_{\infty}=0.50 \text { and } 1.50 \text {, the Spalart-Allmaras turbulence model is in good agreement with } \\
& \text { the empirical data, whereas for supersonic Mach numbers, } M_{\infty}=2.25 \text { and } 2.50 \text {, the Baldwin- } \\
& \text { Lomax and Menter's } k-\omega S S T \text { turbulence model are in better agreement to the empirical data. } \\
& \text { A similar trend is seen for the average skin-friction coefficient }\left(C_{F}\right) \text {. } \\
& \text { The comparison of velocity profiles for } M_{\infty}=0.31 \text { and } R_{e}=6.78 \times 10^{6} \text { and three turbulences } \\
& \text { models with experimental data of Smith and Walker show that all three turbulence model agree } \\
& \text { well with the experimental data. }
\end{aligned}
$$

TCA Symmetric Wing/Body Configuration
Outline In the second phase of viscous-drag prediction, the flow with pressure gradient was analyzed. For this study
 First, the objective and brief introduction will be given. The approach to this analysis will be described. The
 described. The computational and empirical results will be presented. And finally, the summary of the analysis will be discussed.

TCA Symmetric Wing/Body Configuration
Objective In the second phase of viscous drag prediction, flows with pressure gradient are being investigated by analyzing the TCA symmetric winf/body configuration. In this study Euler solutions as well as Navier-Stokes solutions are computed. The turbulence models used are zero-equation model of Baldwin-Lomax and two-equation model of Menter's k- ω SST . The TCA symmetric configuration was analyzed at the zero-angle-of-attack and at both wind-tunnel and flight Reynolds numbers. The effects of Reynolds number on zero-lift drag were studied. The Navier-Stokes solutions were obtained at various free stream Mach numbers. A wide range of Mach numbers were considered for this study ranging from subsonic to supersonic speeds.
Objective

[^17]TCA Symmetric Wing/Body Configuration

Introduction

The prediction of viscous drag for HSCT configuration have shown significant dependencies using several CFD codes. Therefore, the High Speed Research (HSR), Configuration Aerodynamics community has proposed a Technical Concept Airplane (TCA) symmetrical wing/body configuration in an effort to obtain a computational database for validation of viscous drag for wind-tunnel and flight Reynolds numbers and a wide range of Mach numbers that covers the subsonic to supersonic range that includes the cruise condition of HSCT aircraft. The viscous drag validation is based on the computaional results of CFL3D Navier-Stokes formulations. The results obtained will be used to support the upcoming wind-tunnel test for the TCA symmetric wing/body model.
 a series of results for the prediction of viscous drag that can be used later for validation of test data. The compuation will concentrate on both Euler and Navier-Stokes modes for a series of Mach numbers in flight and wind-tunnel based on two turbulence models. The turbulence models are zero-order equation of Baldwin-Lomax and two-equation model of Menter's k- ω SST. The results of two model will be compared against the Euler solution. The comparison of results will also include the classical flat plate results of van Driest II method, and Sommer and Short for prediction of skinfriction drag. These method are based on equivalent flat plate skin-friction theory. These method are widely being used
 freestream temperature as an inputs.
 Method of Solution
A systematic study of the viscous-drag prediction capability of the CFL3D based Navier-Stokes solver was
conducted at Boeing Long Beach in two phases. In the first phase, 2-D subsonic to supersonic Navier-Stokes
solutions were correlated with the experimental data for compressible turbulent flows over a flat plate without
pressure gradients. In the second phase of this study, flows with pressure gradients were considered by
examining the TCA symmetric wing/body configuration. This configuration was selected because wind-tunnel
test data would become available for comparison in the near future.

Method of Solution

- Use CFL3D developed by NASA Langely and modified by Boeing
- Euler and Navier-Stokes formulations
- two turbulence models
- viscous and pressure drag computations
- lpha STAR CORPORATION

Computational Grid A typical volume grid is being used during this study. This is a structured, single zone wing/body grid with a C-O
topology. There are a total of 329 point in the streamwise direction and 97 points in the spanwise direction. The
grid used for all the Euler calculations had 65 points in the normal direction for a total of 2.1 million points. On the
other hand, a different Navier-Stokes grid was used every time the flow conditions changed significanly. The Navier-
Stokes grids were constructed from the Euler grid by adding 24 cells in the normal direction and clustering the points
near the surface appropriately for different Reynolds numbers. Thus, the Navier-Stokes grids increased to 89 points
in the normal direction resulting in a total of 2.8 million points.
The volume grids extend more than five body lengths in all directions, except in the spanwise direction where the grid
extends by more than 12 semispans. This type of grid was found to be adequate for all computations performed,
including the transonic calculations. A 1.675% model with a closed aftbody was used in the CFD computations.
$>$ Ipha STAR ${ }^{\text {corporation }}$
TCA Symmetric Wing/Body Configuration
47,725
363,825
2,840,257
II
10
\times
\times
\times
\times
\times
∞
$164 \times 33 \times 49=$
II
C-O topology
Computational Grid
- Coarse mesh Medium mesh
Fine mesh
- Single block with a

Volume Grid for the TCA Symmetric W/B Configuration
Euler: C-O Grid $(329 \times 65 \times 97), 2.1$ Million Points
Navier-Stokes: C-O Grid $(329 \times 89 \times 97), 2.8$ Million Points $=20,000^{\prime \prime}$
$y=10,000^{\prime \prime}$ $x=24,000$

[^18]ymmetric Wing/Body Configuration
High Speed Aerodynamics, Long Beach
Turbulence Model Equations

Turbulence Models

Mach Numbers and Reynolds Numbers

Computational Results

[^19]Computational Results - Variation of drag with Mach number at wind-tunnel
and flight Reynolds numbers

- Distribution of surface pressure

 number for wind-tunnel and flight and a wide range of Mach numbers. The plotting format is chosen such that the results from successive grid refinement should fall on a straight line. For 3-D flow the drag must be be proportional to the inverse of number of grid points to the power 2/3. It appears that the results of Baldwin-Lomax and Menter's k- ω SST models are spatially converged since they roughly fall on a straight line and an asymptotic value for finite grid density can be estimated.

[^20]

The variation of pressure, viscous, and total drag with freestraem Mach number are shown in three consequtive
 predict similar pressure drag. At the subsonic Mach numbers, the Navier-Stokes solutions show the effect of the boundary layer displacement: higher pressure than the Euler solution, as expected.
The results of viscous drag show that the SST solution has the least drag throughout the Mach number range. The Baldwin-Lomax solution has higher drag, and the shape of the curve matches the SST prediction. The equivalent flat plate methods predict even higher drag, and they do not predict the shift near $M_{\infty}=1.0$.
 made in the Bladwin-Lomax formulation; namely, that the boundary layer flow is self-similar. These assumptions are compatible with the correlations by van Driest II and by Sommer and Short which are for boundarylayer flows without pressure gradient.

> The total drag is shown in here. At subsonic Mach numbers, the SST predictions match the Euler/flat plate predictions better than the B-L predictions. However, this is a fortuitous result of two errors(in C_{D} and C_{D}) canceling. At supersonic Mach numbers, SST predicts the lowest drag, followed by B-L and the Euler/flat plate predictions.

[^21]TCA Symmetric Model: Pressure Drag vs. Mach Number
High Speed Aerodynamics, Long Beach
nd Navier-Stokes, $329 \times 89 \times 97$ C-O Grid
$\alpha=0^{\circ}, \operatorname{Re}_{c}=6.36 \times 10^{6}$

ICA Symmetric Model: Viscous Drag vs. Mach Numiber
CFL3D, Euler and Navier-Stokes, 329 $\times 89 \times 97 \mathrm{C}-\mathrm{O}$ Grid
$\alpha=0^{\circ}, \operatorname{Re}_{\mathrm{c}}=6.36 \times 10^{6}$
 2.4

TCA Symmetric Model: Total Drag vs. Mach Number
O Beach

TCA Symmetric Wing/Body ConfigurationComputational Results (continued)
The variation of drag with freestream Mach number at the flight Reynolds numbers are shown in a sequence of
figures. As it is seen in these figures the trend is similar in pressure drag as for the wind-tunnel Reynolds number.
On the other hand, the viscous drag predictions have a different trend than at the wind-tunnel Reynolds
number: B-L predicts the highest drag for $M_{\infty}<1.4$. The SST model predicts the lower total drag than B-L,
but that the two Navier-Stokes predictions are higher than the Eulerfflat plate for subsonic Mach numbers and
lower for supersonic Mach numbers.

Yphas stak comonamon
TCA Symmetric Model: Pressure Drag vs. Mach Number
High Speed Aerodynamics, Long Beach
CFL3D, Euler and Navier-Stokes, $329 \times 89 \times 97$ C-O Grid
$\alpha=0^{\circ}$, Flight Reynolds Numbers

Mach Number, M_{∞}

TCA Symmetric Model: Total Drag vs. Mach Number CFL3D, Euler and Navier-Stokes, $329 \times 89 \times 97$ C-O Grid

[^22]

Summary

A series of computational runs were performed for TCA symmetric wing/body configuration at zero angle-of-attack for prediction of viscous drag at subsonic to supersonic Mach numbers both for the wind-tunnel and flight Reynolds numbers and a wide range of Reynolds numbers. The turbulence models of Bladwin-Lomax and Menter's k- ω SST were used. The freestream Mach number chosen for this study are $0.50,0.90,1.10,1.20,1.50,180,2.10$, and 2.40 . The results obtained for the windtunnel $\left(\mathrm{Re}_{\mathrm{c}}=6.36 \times 10^{6}\right)$ and the flight Reynolds numbers $\left(R e_{\mathrm{c}}=221.2 \times 10^{6}, 163.3 \times 10^{6}, 172.8 \times 10^{6}\right.$, $174.7 \times 10^{\prime} 168.1 \times 10^{1} 170.0 \times 10^{6}, 156.7 \times 10^{6}$, and 211.7×10^{6}).
The results of wind-tunnel and the flight Reynolds numbers for surface pressure coefficients show good agreement for the range of Mach numbers (0.5-2.4).
The results of surface pressure coefficients from two turbulence models obtained from CFL3D Navier-Stokes solutions were also compared. The results show good agreement using BaldwinLomax and Menter's k- ω.
The results of pressure drag coefficients between two turbulence models show a good agreement with each other for all Mach numbers and both wind-tunnel and flight Reynolds numbers. The results of Euler solutions are under-predicted compared to Navier-Stokes and equivalent flat-plate theory. The viscous and the total drag coefficient are over-predicted using Baldwin-Lomax and van Driedt II and Sommer and Short estimates.
Similar trend is seen for the flight Reynolds numbers for pressure, viscous, and total drag coefficients.
Finally, the wind-tunnel test data are needed to validate the results obtained for the surface pressure coefficients as well as the drag coefficients.

TCA Symmetric Wing/Body Configuration
High Speed Aerodynamics, Long Beach
Summary

- A series of computational runs were performed for TCA symmetric wing/body configuration at zero
 wind-tunnel and flight Reynolds numbers and a wide range of Reynolds numbers.

The results of wind-tunnel and the flight Reynolds numbers for surface pressure coefficients show good agreement for the range of Mach numbers (0.5-2.4).

The results of surface pressure show good agreement using Baldwin-Lomax and Menter's k- ω turbulence models for the wind-tunnel condition. turbulence models for the wind tunnel condition.

ן
 higher viscous and total drag compared to Menter'sk- ω SST model.

- Similar trend is seen for the flight Reynolds numbers for pressure, viscous, and total drag coefficients.
- Finally, the wind-tunnel test data are needed for validation of surface pressure coefficients and drag.

This paper presents results of three minor studies into the behavior of the OVERFLOW with respect to the prediction of skin friction drag on wing bodies at cruise Mach number and wind tunnel Reynolds number. The studies include a preliminary assessment of the behavior of the two new 2-equation turbulence models introduced with the latest version of OVERFLOW (v. 1.8f), an investigation into potential improvements in the matrix dissipation scheme currently implemented in OVERFLOW, and an analysis of the observed sensitivity of the code's skin friction predictions to grid stretching at solid surface boundaries.

This schematic describes what is believed to be the current understanding of the sources of CFD drag prediction uncertainties, at least for the prediction of cruise Mach number wing/body configuration performance.
For "reasonable" grids and algorithms, pressure drag appears to be relatively consistently predicted, whereas skin friction drag can be quite variable. The factors that might potentially cause this variability are shown as: code, grid, algorithm, and turbulence model. Of these factors, the code itself is not thought to cause uncertainty. Whereas poor choices of grid and algorithm have been found to produce a wide range of skin friction drag estimates, it is the author's belief that the processes currently in use employ choices for these parameters that are suitable to reduce the uncertainty in friction drag predictions to acceptable levels (<1 count) for wing/body configurations. For these parameters, poor choices can, to some extent, be identified without experimental comparison. For example, using artificial dissipation at the wall gives different results than scaling dissipation down near the wall; in the absence of experimental data, it is reasonable to conclude that the latter results are the more accurate. With a few exceptions (e.g., the low Reynolds number laminar flow produced by the Spalart-Allmaras model) the same cannot be said for the variation associated with the use of different turbulence models. Thus, the choice of turbulence model appears to have become the primary source of uncertainty in CFD drag predictions.

The outline of the presentation is shown here. The structure is intended to address elements of the previous figure, namely turbulence model, grid, and algorithm effects on friction drag.

The version of OVERFLOW exercised in this study is v1.8f. This version includes two new (to OVERFLOW) 2-eq turbulence models: the k -w model developed by Wilcox and the SST model (Menter), which is a modification of the Wilcox model.

The results shown here, for a Mach 2.4 flat plate, indicate that the two new models produce significantly different local skin friction levels at moderate to high Re. In fact, the k-w model tends to track the local skin friction produced by the Spalart-Allmaras (S-A) model, whereas the SST model tracks the Baldwin-Lomax (B-L) skin friction.

At low Re , there is a wide variation observed between the four models used and this variation has a substantial effect on the behavior of the average skin friction distributions. In particular, the average skin friction generated by the S -A model is severely affected by the laminar run region at low Re. This results in a much lower slope with Reynolds number than any of the other models.

This bar chart indicates results of the four turbulence models (plus two modifications of the S-A model) in application to the TCA wing/body. The grid used is a single-zone C-O topology grid truncated at the sting location ($\mathrm{x}=3148^{\prime \prime}$). The dimensions of the grid are $97 \times 241 \times 65$ and the wall spacing provides an average $y+$ at the surface of approximately 0.7 . Stretching was applied beginning at the third point off the surface.
The B-L and S-A (as implemented in OVERFLOW, SA93) models show approximately two counts of variation. This is caused by the presence of the laminar flow region near the wing leading edge over most of the span. Application of the original, or classic, S-A model (SA92), produces fully turbulent flow from the leading edge and similar integrated friction drag to that obtained with the B-L model. Overtripping, as suggested by Spalart, can also be used to cancel the effect of the laminar flow, though this process requires the specification of trip lines within the CFD grid. In addition, results are quite sensitive to a length parameter that must be specified by the user, which limits the usefullness of this approach as a predictive tool.
Note that the variation with turbulence model is increased by virtually an order-of-magnitude with the addition of the 2 -eq. models. It should be noted that the k -w model is known to be sensitive to freestream turbulence levels specified in the code. This effect has not been adequately investigated here.

In an attempt to localize the sources of the friction drag differences, local skin friction has been plotted at four equally spaced span stations. Styles are applied in a manner similar to the flat plate case. It is apparent that the local skin friction on the lower surface (higher levels) behaves somewhat flat platelike in a relative sense. That is, the $\mathrm{S}-\mathrm{A}$ and k -w models produce similar distributions and the B-L and SST produce similar distributions, but lower than those of the other models. The behavior on the upper surface is more complicated, indicating a variation in the response of the various models to pressure gradient. Also, the outboard section ($\mathrm{z}=550^{\prime \prime}$) is complicated by low Re effects.

Skin friction drag predictions for the TCA wing/body are shown here for 12 different solution processes. Variables include turbulence model, code, and grid. For each turbulence model, variations tend to be modest (<1 count of frag), except for the SST model which indicates a significant sensitivity to grid. Overset grid solutions were computed by Chaney at BCAG.

In order to localize the sensitivity to grid observed with the SST model, local skin friction coefficients are plotted at the four span stations previously used.
Results are shown here at $z=100^{\prime \prime}$ for three turbulence models, including the SST model. Some chatter is observed in the overset grid results because this station passes through the wing/collar overlap region. Also of interest is the lack of laminar flow observed in the SA93 results. This is caused by the proximity of the fuselage boundary layer, which provides an influx of "turbulence" sufficient to numerically "trip" the wing boundary layer. Some grid sensitivity is observed in all three plots, but slightly more sensitivity is apparent in the SST distributions.

At $z=250$ ", the grid sensitivity of the SST model appears to be more severe than at the inboard station. The overset result produces high skin friction on both the upper and lower surfaces. Results for the two versions of the S-A model appear to be insensitive to grid and code at this span location. The SA93 model exhibits the characteristic undershoot or laminar flow region near the leading edge on both upper and lower surfaces at this location.

Near the outer edge of the inboard wing section, the grid sensitivity of the SST model is more modest, especially on the lower surface. Again, little grid or code sensitivity is observed with either S-A model.

Finally, on the outboard wing, the grid sensitivity of the SST model is nearly gone. Some sensitivity to code (or grid) is observed with the SA93 model, but it is of a relatively small magnitude and is limited to a relatively small area.

The OVERFLOW code provides essentially three algorithm dissipation options. In terms of three criteria of interest in the HSR program, none of the algorithm options is entirely satisfactory. Each has a critical drawback: the scalar dissipation method produces velocity profiles with overshoots near the boundary-layer edge, the upwind method has convergence problems in many cases, and the matrix dissipation tends to produce skin friction significantly lower than the other methods.

The matrix dissipation scheme is similar to the scalar method in that a second/fourth dissipation operator is applied. However, it is applied to a difference of flux-like terms rather than conserved variable-like terms. With the scalar dissipation method, the user is given the option of modulating the dissipation near the wall to lessen its impact on the flow at the wall and, thus, the skin friction. This has been found to be critical to obtaining accurate friction drag estimates from OVERFLOW. In the present version of OVERFLOW, the matrix dissipation scheme has no such option.

If an option is implemented for the matrix dissipation method analogously to what is done for the scalar dissipation, results are obtained as shown here. Skin friction results are observed to align with the scalar and Roe results, and velocity profiles are obtained which are virtually indistinguishable from those obtained using Roe. Convergence histories with the modified matrix method (Matrix-1) are similar to those obtained with the original matrix scheme. However, the convergence histories for the flat plate problem don't provide a good example of the problems that can be experienced with the Roe scheme.
Preliminary calculations using Matrix-1 on the TCA wing/body indicate that the skin friction and profiles are improved in that case as well; however, it was observed to be somewhat less robust than the scalar method and the Roe method, so further work is required.

OVERFLOW Pseudo-Finite-Volume
 Effect of Volume Averaging on Grid Sensitivity

Simple Flat Plate Example (neglecting streamwise averaging)

For stress at secondary point 2 :

$$
\left.\frac{\partial u}{\partial y}\right)_{2}=\frac{u_{3}-u_{2}}{\Delta y}
$$

OVERFLOW: $\Delta y^{*}=\left(\Delta y_{2}+\Delta y_{3}\right) / 2=\left(\Delta y_{3}+2 \Delta y_{2}+\Delta y_{1}\right) / 4$

$$
\Delta y^{*}=\Delta y+(\gamma-1) \Delta y / 4
$$

For stress at secondary point 3 :
OVERFLOW:

$$
\Delta y^{*}=\gamma \Delta y+(\gamma-1)^{2} \Delta y / 4
$$

There is a sensitivity to stretching (γ) everywhere, but especially at points where there is a sharp change in stretching

NASA Ames Aesearch Conter
HSP ATPFobruary. 198914

Finally, the sensitivity of OVERFLOW skin friction drag predictions to grid stretching at the wall has been known for several years. However, the underlying cause of the sensitivity has not been clearly understood. In attempt to provide a better understanding of the problem, a simple analysis was undertaken using a flat plate example.

The pseudo-finite-volume approach taken by OVERFLOW applies flux conservation to implied volumes (shown as dashed red line) for which geometry information is determined using averages of the geometries of the surrounding "true" volumes. As a result, for the evaluation of the shear stress at the pseudo-cell face, an average of Δy from the surrounding grid cells is effectively used rather than the actual Δy that would be used in a more formal finite-volume approach. The error introduced through this approximation is proportional to $(\gamma-1)^{2}$ in regions where the growth factor, γ, is constant. This is a relatively modest error as long as γ is small ($1<\gamma<1.2$).
The real problem occurs at the wall where the grid is effectively reflected to get boundary information. As such, $\gamma=1$ at the wall, which introduces a discontinuity in γ, and the error in $\Delta \mathrm{y}$ incurred by averaging increases by a factor of $1 /(\gamma-1)$. The error can be reduced again by extrapolating into the wall rather than reflecting, but the error is not completely eliminated without changing the way the fluxes are evaluated. It is not clear at this time, to what extent the code needs to be modified to address this problem.

Conclusions OVERFLOW's new turbulence models add to existing uncertainty in CFD friction drag predictions - models produce significantly different flat-plate C_{i} distributions \Rightarrow experimental comparison (local or integrated) - two-equation model(s) appear much more sensitive to grid than Spalart-Allmaras (one-eq.) -controlled overset/single grid study
Matrix dissipation can probably be modified (ala scalar) to produce "good" skin friction. Jacobian averaging is believed to be the source of OVERFLOW's sensitivity to grid stretching. \rightarrow move averaging into flux routines

Conclusions are drawn from the work presented.
Uncertainty appears to be increased by the new turbulence models available in the new version of OVERFLOW. The uncertainty stems from differences in flat plate skin friction levels, as well as some observed grid sensitivities with the SST model. Presumably, the k -w model would exhibit similar tendencies if applied with the grids used here. It is felt that some of the differences in flat plate skin friction predictions could be sorted out through the use of experimental data, such as existing flat plate local skin friction and/or integrated skin friction through the symmetric model test. The source of the grid sensitivity of the 2 -eq. models could be identified with controlled grid studies involving overset and single-zone grids on a simple geometry.
It is believed that modifications to the matrix dissipation method currently implemented in OVERFLOW could be effectively applied to correct skin friction underpredictions, though further work is needed to establish exactly how the modifications could be applied to maximize the robustness of the resulting algorithm.
Finally, simple analysis indicates that the sensitivity displayed by OVERFLOW to grid stretching at the wall is caused by the volume averaging used. The solution to the problem appears to involve moving the averaging into the flux routines to provide "flux-specific" averaging, though the performance penalty that would be incurred is unknown.
C
HSR Airframe Workshop, February 8-11, 1999
Task 32-Configuration Aerodynamics
Canard Effectiveness Predictions

Boeing
Boeing
Boeing
Dynacs Eng.
Dynacs Eng.
Dynacs Eng.

Doug Wilson
Greg Stanislaw
Servando Flores
Max Kandula
Gerald Fargo
Anthony Saladino
$\frac{2-2}{8}$

This page intentionally left blank.
Outline - Background

- Objectives
- Approach
- Methodology
- Results:
- Flow Visualization
- Forces/Moments for Isolated Planforms
- Forces/Moments for Installed Canard
- Conclusions \& Lessons Learned
The results were intended to support various other analyses such as the canard position study being performed at Boeing Phantom Works-Long Beach and the CFD validation studies planned to utilize the aft-body closure test data to be obtained in 1999.

Text for Background

$$
\text { obtained in } 1999 .
$$

Background

- Canard is used for:
- control
- trim
- structural mode control.
- Controls are typically sized by low-speed CLmax.
- TI wants to optimize canard planform.
- S\&C needs planform and Mach effects on CLmax.
- S\&C is interested in how to use CFD at high AoA.
- Results are applicable to horizontal and vertical tails.
- Study was supported by CA, TI, HL ITD's.
Background
- Canard is used for:
- control
- trim
- structural mode control.
- Controls are typically sized by low-speed CLmax.
- TI wants to optimize canard planform.
- S\&C needs planform and Mach effects on CLmax.
- S\&C is interested in how to use CFD at high AoA.
- Results are applicable to horizontal and vertical tails.
- Study was supported by CA, TI, HL ITD's.
HSCT Aerodynamics
Text for Objectives
The objectives are listed on the following slide. They include both configuration
(demonstration and selection of methods).
- Determine maximum control effectiveness and trim efficiency
of two canard planforms.
Objectives
- Determine elevator effectiveness on both planforms
(for structural mode control)
- Determine whether isolated results predict installed behavior. Compare Euler and Navier-Stokes solutions
(to support other canard-wing-body analyses).
Evaluate effect of Mach number and Reynolds number
on canard effectiveness.

Text for Approach

The objectives were addressed with an interwoven matrix of analyses. Since it was desired to tie in with other HSR high-speed canard integration studies, the "PTC Canard on TCA Wing/Body" configuration was utilized. One crucial aspect of the approach involved using a consistent method (CFD code, turbulence model, grid) for obtaining the Navier-Stokes solutions so that effects of planform, Mach and Reynolds number could be obtained. Another part of the strategy involved scoping the problem so that the isolated planform studies could be run on the SGI-R10000 workstation available in-house at Dynacs Engineering. This consideration entered into the decision to do much of the analysis on an isolated planform rather than an installed canard, and also in selecting the highest Reynolds number considered. Most of the installed w/b/c analyses were performed on the NASA Cray C-90.
The reasons for focusing on the Mach 0.9 case rather than a lower Mach number were: (1) the TI study focused on high-speed trim drag and canard effectiveness
 amenable to solution at the higher Mach number, and (3) known related studies would also be in this speed regime.

- Select planforms based on TI feasibility study.
- Analyze isolated planforms with Euler \& Navier-Stokes codes.
- Choose method for installed analyses based on isolated results.
- Use same geometry as other "PTC-on-TCA" studies.
- Size problem to fit on SGI-R10000 workstation.
Focus on transonic case ($\mathrm{M}=0.9$).
- Evaluate selected conditions at low speed ($\mathrm{M}=\mathbf{0} \mathbf{0} 24$).
HSCT Aerodynamics Run times on the SGI-R 10000 were approximately 10.8 hours for a isolated N-S
solution and 3.6 hours for an isolated Euler solution. The installed w/b/c N-S
solution took approximately 40 hours on the SGI R-10000, or 7 hours on the Cray
C- 90 .

Text for Methodology

Methodology
- OVERFLOW code used for Euler and N-S solutions.
- Spalart-Allmaras turbulence model used initially, but did not converge on some cases; switched to Baldwin-Barth.
- ARC3D central-difference algorithm (default) was used; did not converge for some low-Mach Euler solutions.
- LU-SGS/Roe algorithm was tried for low-Mach Euler to improve convergence, but results appeared questionable.
- Grid for isolated planform (similar for installed canard): 245c x 59s x 55 n ($\mathrm{N}-\mathrm{S}$, same for all Re) 245c x 59s x 38n (Euler)
+ = ~2 at Re = 10E6 (based on canard MAC)

Text for Installed Geometry The canard surface was installed on the TCA wing/body in the location used for
the "TCA Canard Integration Test" (LaRC UPWT 1705). Details of the
installation and CFD model are discussed later with the installed results.

Exposed geometry of the installed canard is given below: | Installed Canard | | $\begin{array}{l}\text { Geometry (Exposed) } \\ \text { Baseline canard }\end{array}$ |
| :--- | :--- | :--- |
| $\begin{array}{lll}\text { Item } & \text { Canard-2 }\end{array}$ | | |
| semi-span, in. | 199.69 | 286.74 |
| surface area, ft 2 | 223.70 | 220.62 |
| aspect ratio | 1.238 | 2.588 |
| taper ratio | 0.275 | 0.30 |
| leadingedge sweep, deg. | 54.2 | 40 |
| trailing edge sweep, deg. | -25.3 | 0 |
| MAC, in. | 170.74 | 89.69 |
| root chord, in. | 241.77 | 170.3 |

> The isolated geometry was intended to be equivalent to the nominal exposed installed geometry so direct comparisons of installed and isolated characteristics could be made. However, some unintentional differences appeared in the geometry used for the isolated analyses. Most significantly, the isolated
> planforms had a somewhat higher aspect ratio than the exposed installed canards: 9% greater for the Baseline, and 4\% greater for Canard-2.

> The isolated geometry is listed below: Isolated Canard Geometry 239.16
294.40 294.40
1.349 1.349
0.23 54.2 -23.5
200.9 288.88 leading edge sweep, deg. trailing edge sweep, deg MAC, in.
root chord, in.
Text for Isolated Geometry

Text for Surface Pressures on Baseline
The following figure shows surface pressures on the Baseline planform at 4 deg . and 30 deg. angles of attack, for both the the Navier-Stokes and Euler solutions. The pressure patterns predicted by both solvers are similar, though it can be seen that the Euler solution displays slightly stronger gradients, particularly in the vicinity of the leading-edge vortex. The Spalart-Allmaras turbulence model was used for the $\mathrm{N}-\mathrm{S}$ solutions in this figure.
Surface

Pressures on Isolated Baseline

Text for Surface Streamlines on Baseline

The surface streamlines on the Baseline planform show the formation of the
leading edge vortex. The Navier-Stokes solution shows evidence of vortex
breakdown at the 30 deg. AoA condition, while the Euler solution is still well breakdown at the 30 deg . AoA condition, while the Euler solution is still well
organized.

[^23]Upper
Surface

Lower
Surface

Text for Surface Streamlines on Canard 2
The surface streamlines on the "Canard 2" planform show the formation of the
leading edge vortex at low angle of attack (AoA $=4$ deg), but the vortex has
largely broken down at the 30 deg. AoA condition. Both the Navier-Stokes and
Euler solutions show evidence of major separation, though the Euler solution
predicts a more organized flow.
Off-Surface Streamlines for Isolated Canard-2 Planform $\mathrm{M}=0.9, \alpha=4$ and $30^{\circ}, \mathrm{Re}=10 \mathrm{E} 6$
OVERFLOW Code
(upper surface shown)

Euler

Navier-Stokes (S-A)
HSCT Aerodynamics
Text for Results--Effects of Viscosity/Turbulence Model and Planform on Lift
The basic lift curves for the two planforms are shown here, as predicted by three methods: Euler, Navier-Stokes (N-S) with the Spalart-Allmaras (S-A) turbulence model, and N-S with the Baldwin-Barth (B-B) turbulence model. The lift predicted using the S-A turbulence model is significantly higher than with the B-B model. This is particularly noticeable on the Baseline planform, where the S-A results are nearly as high as the Euler levels.
Initial predictions were performed with the S-A model, but convergence was poor at high AoA, especially for conditions with deflected elevators. The B-B model was utilized because of its more robust convergence characteristics; the large variation in CLmax was unexpected by the authors. At low AoA (4 deg. and less) the N-S predictions converged with the Euler predictions for both turbulence models. Estimates from DATCOM are also included on this figure. The DATCOM results are shown as a band because there are two sets of design curves for different thickness distributions, and the current planforms fell near the dividing line. The DATCOM results fall on top of the B-B curve for Canard-2, but closer to the S-A curve for the Baseline, so the DATCOM estimates cannot be taken to consistently support either set of results.

HSCT Aerodynamics
Text for Results--Effects of Viscosity/Turbulence Model and Planform on Pitching
Pitching moment for the two planforms are shown here plotted against lift, as
predicted by three methods: Euler, Navier-Stokes (N-S) with the Spalart-Allmaras
(S-A) turbulence model, and N-S with the Baldwin-Barth (B-B) turbulence model.
The specific stability levels predicted for these control surface planforms are not
critical, since the canard pivot point can be selected to minimize hinge moments;
however, they are a good indication of the differences in the solutions because
small changes in pressure distribution near the leading or trailing edge will show up
in pitching moment more clearly than in lift.
The moment reference point is at $50 \% \mathrm{MAC}$, so the airfoil is unstable about this point. The sharp break in the curve near CLmax indicates that the vortex lift near the leading edge has saturated, so the center of lift moves aft with increasing AoA. The Euler predictions are seen to be more stable (actually, less unstable) than the viscous predictions except at low lift levels. The two N-S solutions predict similar
characteristics except for the lift level at which the pitching moment curve breaks. The B-B model predicts an earlier vortex burst than does S-A.
Effect of Viscosity/Turbulence Model and Planform

Baseline Canard

Text for Results--Effects of Reynolds Number

The effect of Reynolds number was explored for the Baseline planform. Two
Reynolds numbers were studied: 10E6, and 1.76E6 (based on MAC). These
numbers were chosen primarily for computational practicality; 10E6 was the
highest Reynolds number which could practically be run on the SGI workstation
with good grid characteristics, while the 1.76 E 6 level provided the same chord
Reynolds number (for the canard) as in the associated wing-body-canard studies
(the Reynolds number in wing-body-canard analyses was also chosen to fit on the
SGI, with a resulting Re of 6 E 6 based on wing MAC). In practice, the 1.76 E 6
number is representative of the canard conditions which would be encountered in
typical wind tunnel tests.
Varying Reynolds number caused a neglible change in results with the B-B
turbulence model, and only a small difference in the results with the S-A model.

Text for Results--Effects of Planform and Mach

Solutions were generated at Mach 0.9 and 0.24 with the Baldwin-Barth
turbulence model. An interesting observation is that CLmax for the Baseline
planform is essentially the same at the two Mach numbers, while CLmax for
Canard 2 is reduced substantially at the lower Mach number. The significance of
this prediction is that the controls are typically sized by low-speed conditions
such as takeoff rotation or high-alpha recovery, so the lower CLmax of the
Canard 2 configuration would require it to be larger than the Baseline.
DATCOM levels are shown on this figure as well. DATCOM also predicts that
the Baseline is more effective at low Mach than Canard-2, although the
DATCOM levels at low Mach are substantially higher than CFD predictions.
HSCT Aerodynamics
Effect of Planform and Mach
Baldwin-Barth Turbulence Model, Re=10E6

\circlearrowleft
Baseline Canard
Y $\because \rightarrow \pi=$
Text for Results--DATCOM predictions of CLmax
On several of the preceding charts, estimated values of CLmax from DATCOM
(reference below) are presented. Some insight can be gained by looking at the
curves from DATCOM for low-aspect wings. The Baseline planform falls in a
region which permits a fairly wide variation in CLmax, depending on the
thickness gradient over the front 6% of the wing and on the point of maximum
thickness, in addition to the more familiar quantities of leading edge sweep,
aspect ratio, and taper ratio. These quantities all affect the stability of vortex
flow, and relatively small changes can change the estimated CLmax significantly.
By contrast, the Canard 2 planform falls in a region which is less sensitive to
changes in these quantities.
It might be expected that the differences between turbulence models, which affect
vortex stability, would also show greater variation for the Baseline planform than for Canard 2. This result was observed.

[^24]
DATCOM Results

Text for Results--Effect of Planform on Drag (Isolated Canard)

Although not shown, it was found that the Euler predictions for drag agreed well
with the Navier-Stokes pressure drag results at low angles of attack.

Text for Results--Effect of Planform on Elevator Effectiveness (Isolated Canard)
The isolated planforms were also analyzed with the elevator deflected 5 deg. and
20 deg. The 5 deg. analyses were intended to provide data to support structural
mode control analyses, and were analyzed with an Euler code at Mach 0.9 only.
Looking at the results for a 5 deg. elevator deflection shown in the following figure, it is apparent that the "Canard 2" elevator provides much more lift for a
small deflection than the Baseline elevator ($0.10 / \mathrm{deg}$. vs. $0.066 / \mathrm{deg}$., based on Euler analyses).
$=$
Effect of Planform on Elevator Effectiveness
$\mathbf{M}=\mathbf{0 . 9}$
Euler Solutions

$-\square$	$\delta_{\text {elevator }}=0^{\circ}$
$--\square-$	$\delta_{\text {elevator }}=5^{\circ}$

Canard-2

Text for Results--Effect of Planform on CLmax with Deflected Elevator

The 20 deg. results addressed CLmax with deflected elevator, and were analyzed
with the N-S code using the Baldwin-Barth turbulence model at Mach 0.9 and
Mach 0.24 .
At Mach 0.9 , the CLmax achieved with deflected elevator appeared slightly greater for the Baseline planform than Canard 2. This result isn't very conclusive due to the sparsity of data points.

Text for Results--Effect of Planform on CLmax with Deflected Elevator (Cont.)
It might be noted that the level achieved here is well below the CL= $=1.66$ (based
on exposed horizontal tail area) used to size the aft tail of the TCA. The tail-
sizing value was derived from available low-speed experimental data, and
suggests that the N-S solutions presented here may be underpredicting CLmax.

Baseline Canard
HSCT Aerodynamics
The following figure shows installed control effectiveness for the two canard planforms at Mach $0.9,3.7 \mathrm{deg}$. AoA. The results presented are integrated over the entire wing/body/canard, and reduced with TCA wing parameters. For small canard deflections (-4 deg . to +4 deg .), the canard surface was projected into the body surface to simulate a perfect side-of-body seal. The side of body was not recontoured to provide a wiping surface. For larger deflections (10 deg . and up), the canard planform was modified to leave a 4 in . gap (airplane scale) between the canard and body at zero deflection; the modified canard was then deflected to the desired position. This gap was large enough to be gridded succesfully, but felt to be small enough to not greatly affect the answer. The exposed area was reduced somewhat by this trimming, so the reduced area was used as the area reference for those data using the trimmed geometry. It might be noted that this 4 in . gap would be equivalent to a 0.067 in . ($1 / 16 \mathrm{in}$.) gap on 1.675% model.
The result at zero deflection for Canard 2 is anomalous. This solution was examined in detail, but no explanation for the behavior was found. Canard 2 provides greater pitch trim
Text for Results--Effect of Planform on Installed Canard Control Effectiveness contributes little to airplane lift.

Effect of Planform on Installed Control Effectiveness Baldwin-Barth Turbulence Model, Re=10E6 | $-\boldsymbol{O}-$ Baseline Canard |
| :---: |
| $-\boldsymbol{- a}-$ Canard-2 |

The anomalous behavior at zero deflection for Canard 2 can again be seen, and
make it non-productive to compare the curves at low canard deflections. From
the higher deflections it can be seen that Canard 2 creates less drag to trim a given
pitching moment at constant AoA.
Effect of Planform on Installed Trim Drag
Baldwin-Barth Turbulence Model, Re=10E6

Q BTEENNE
Text for Results--Canard-Wing Interference Effects
The following figure illustrates the effect of canard-wing interference. This comparison is only shown for the Baseline canard because the anomalous behavior seen with Canard-2 at zero deflection made it difficult to interpret the results.
The first plot shows incremental lift due to canard deflection. One curve shows lift integrated over the exposed canard surface only, while the other is integrated over the entire wing/body/canard. It can be seen that the incremental wing/body/canard lift is nearly zero, implying that the canard lift is canceled by induced effects on the wing. The second plot shows incremental moment about the wing 50\% MAC reference point due to canard deflection. Again, one curve represents moment integrated over the exposed canard only, while the other is integrated over the wing/body/canard. The interference effects are much smaller for moment than for lift, especially for small deflections. At the largest deflections, the w/b/c pitching moment is reduced by approximately 25% compared to what would have been predicted from the exposed canard alone. It should be noted that these solutions do not include the effect of canard downwash acting on the horizontal tail, which would generally increase canard control effectiveness.
HSCT Aerodynamics
Canard - Wing Interference Effects

$=$
Text for Results--Installed vs. Isolated Canard Lift
The lift behavior of the isolated canard planform was compared to the lift on the
exposed surface of the installed canard to determine how well isolated results would
predict installed behavior. For the installed cases, canard lift is calculated by
integrating over the exposed canard area and coefficients are referenced to those
areas. Recall that for the large canard deflections (10 deg. and greater) the canard
geometry was trimmed to clear the side of body, so a smaller reference area was
used for those points. The installed curve, which was derived by deflecting the
canard, was shifted so that zero "local α " corresponded to zero lift.
For the Baseline planform, the installed lift levels are $\sim 10 \%$ lower than the isolated
predictions, while for Canard 2 the curves are intertwined. The dip in the Canard 2
data at AoA of ~ 5 deg. corresponds to the anomalous result at zero canard
deflection mentioned earlier.
The lift of the installed Baseline canard was somewhat lower than the isolated
planform. This may be due to the unintentional difference in geometry mentioned
earlier, which led to a higher-aspect ratio on the isolated canards. The difference is
much more significant on the Baseline than Canard 2. Also, it might be expected
that lift on the exposed canard might be reduced at large deflections due to the large
side of body gap at those deflections, again more significant on the Baseline.
Text for Results--Installed vs. Isolated Canard Lift
The lift behavior of the isolated canard planform was compared to the lift on the
exposed surface of the installed canard to determine how well isolated results would
predict installed behavior. For the installed cases, canard lift is calculated by
integrating over the exposed canard area and coefficients are referenced to those
areas. Recall that for the large canard deflections (10 deg. and greater) the canard
geometry was trimmed to clear the side of body, so a smaller reference area was
used for those points. The installed curve, which was derived by deflecting the
canard, was shifted so that zero "local α_{c} " corresponded to zero lift.
HSCT Aerodynamics
HSCT Aerodynamics $\left.\begin{array}{ll}\text { Lift on Installed Canard vs. Isolated Surface } \\ \text { M=0.9, Re }=1.76 E 6 \text { (based on canard chord) }\end{array}\right\}$

Text for Results--Streamlines from Deflected Canard at Subsonic Cruise
Streamlines were traced from the canard for various deflections. For It was found
that the tip vortex passed above the wing, but the canard-body junction vortex
turned down sharply behind the canard and passed under the wing. The flow
through the gap between the canard and body can be seen in these streamlines.
This solution was run at an airplane AoA of 3.7 deg . with a canard deflection of
10 deg. Similar results were observed at higher and lower canard deflections.
It is not known whether this canard-body junction vortex would interfere with the
nacelle inlet flow, or whether the vortex is strong enough to be of concern for inlet performance.

$$
\begin{aligned}
& \text { Qefoevne: } \\
& \text { TCA Wing/Body/Canard Off-Surface Streamlines } \\
& \text { M=0.9, } \alpha=3.7^{\circ}, \delta(\text { canard })=10^{\circ}, \text { Re=6.04E6 } \\
& \text { OVERFLOW (Navier-Stokes/Baldwin-Barth) }
\end{aligned}
$$

Baseline
Canard
Canard-2
Text for Conclusions

> Conclusions are summarized on the following slide. Perhaps the most notable conclusion is that CLmax predictions are sensitive to turbulence models even for these thin airfoils with sharp, highly-swept leading edges, and that this variation and lack of specific experimental validation makes CFD-based conclusions tentative.
In general, the analyses supported the conclusions that the Baseline planform is better for CLmax at low Mach, especially with deflected elevator, while the Canard-2 planform provides a higher CLalpha, greater $\delta C L / \delta e l e v a t o r, ~ a n d ~ l o w e r ~$ drag at moderate lift levels. These trends are consistent with estimates from DATCOM, but the CFD levels were generally lower.
It was also concluded that lift on the exposed surface of the installed canard followed the trends observed on the isolated planform. The w/b/c pitching moment due to canard deflection was $0-25 \%$ lower than would be predicted from lift on the exposed canard surface, but the canard lift was esentially
cancelled by the effect of canard downwash acting on the wing/body.

Conclusions: - Predicted CLmax is sensitive to turbulence model, even
for these sharp, highly-swept leading edges.

- Variation in CFD results makes conclusions tentative.
- Planform trends are generally consistent with DATCOM.
- CLmax at low Mach is greater for Baseline than Canard 2 .
- Elevator effectiveness (dCL/dסe) is greater for Canard 2.
- Installed pitch control behavior can be estimated from
isolated characteristics.
Text for Lessons Learned
The major lesson learned was that to use CFD with confidence in this regime,
additional attention must be paid to validation of predictions against relevant
experimental results.
Another lesson is that extra care must be taken to ensure that the geometries are as intended for the purposes of the study before significant data are generated. This lesson is especially applicable when numerous individuals are involved in planning and executing the study.

$$
\begin{aligned}
& \text { Turbulence model must be validated for comparable } \\
& \text { geometry at relevant flow conditions. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Care must be taken to ensure desired geometry, } \\
& \text { especially when there are numerous participants. }
\end{aligned}
$$

Canard Integration Wind-Tunnel Tests and Computational Results

Todd E. Magee, Paul Kubiatko, Suk C. Kim
The Boeing Company, Phantom Works
Long Beach, California 90807
Hamid Jafroudi
Alpha STAR Corporation
Long Beach, California 90807

Abstract

This paper presents experimental and CFD investigations into the effect of canard integration on the TCA (Technology Concept Aircraft) aerodynamic performance and Stability \& Control. Specifically, results from the Supersonic Canard Integration Wind Tunnel Test (Test 1705) at the NASA Langley UPWT (Unitary Plan Wind Tunnel) and the Transonic Canard Integration Wind Tunnel Test (Test 508) at the NASA Langley 16foot Transonic Wind Tunnel are presented. Comparisons of this test data with extensive CFL3D computational fluid dynamic (CFD) solutions are shown, as well as the results of a CFL3D directional stability \& control study for the full TCA configuration (wing/body/canard/empennage). CFL3D shows good correlation with the test data for all configurations tested, except the ACC (alternate controls concept) canard configuration at a canard incidence angle of 4°. Navier-Stokes results for both the Baldwin-Lomax and Menter's $\kappa-\omega$ SST models are also shown. The CFL3D directional stability study indicates that the interaction of the PTC (Preliminary Technology Concept) canard tip vortices with the tail of the aircraft have a significant effect on directional stability. This tip vortex interaction is similar to low speed results which indicate a strong correlation between canard tip height and the angle-of-attack at which representative HSCT configurations become directionally unstable. Conditions for the studies presented in this paper range from $M_{\infty}=0.6,0.9$, and 1.1 for the transonic studies to $M_{\infty}=2.4$ for the supersonic studies. Reynolds numbers for all studies were approximately 4 million/ft.

Hamid Jafroudi
Alpha STAR Corporation
High Speed Research Airframe Review

Outline

The topics listed in this chart outline the extensive canard integration work that has been completed by
the Boeing Phantom Works organization for the High Speed Research (HSR) program in 1998. The
objective is to determine the effect of canard integration on aircraft performance and stability \& control
through experimental (wind tunnel) and computational (CFD) investigations. We will take an incremental
approach by focusing on specific canard issues in each of the four topics listed on the following page.
By the end of the paper it will be apparent what data and investigations will be required to understand
the performance and stability \& control of the complete configuration.
The paper will begin with a presentation of the results from the Supersonic Canard Integration Wind Tunnel Test (Test 1705) that was conducted at the NASA Langley Unitary Plan Wind Tunnel (UPWT) in April 1998. Once the supersonic wind-tunnel results have been presented, comparisons will be shown with CFL3D Navier-Stokes and Euler results for both overset and patched grid topologies, as well as comparisons with Baldwin-Lomax and Menter's $\kappa-\omega$ SST turbulence models. The third topic for this
 Langley 16 -foot Transonic Tunnel in September/October 1998. Finally, the last topic will discuss the effect of canard integration on the directional stability characteristics of the full configuration (wing/body/canard/empennage) through Euler computations with CFL3D. At the end of the paper, the remaining canard integration work will be outlined from now until the end of the HSR program in September 1999.
Outline High Speed Aerodynamics, Long Beach
Tunnel
for Overset and Patched
Results
CFL3D Performance
Grid Topologies

- The Transonic Canard Integration Wind Tunnel Test
(16TT Test 508)
- CFL3D Canard-On Directional Stability Characteristics
- Future Work (Now until September 1999)

The Supersonic Canard Integration
Wind Tunnel Test (UPWT Test 1705)
Supersonic Canard Integration Test Information
The Supersonic Canard Integration Test was conducted at the NASA Langley Unitary Plan Wind Tunnel,

 representation of the Baseline Technology Concept Aircraft (TCA) with a truncated aftbody and four onepiece nacelle/diverters. Model 52 is comprised of the Model $2 b$ with two new forebodies that were fabricated to integrate several canard configurations. The test was conducted at a Mach number of 2.4, angles-of-attack from -4° to 12° and sideslip angles from -6° to 6°. The Reynolds number used at the UPWT was 4 million/ft.
Supersonic Canard Integration Test Information
High Speed Aerodynamics, Long Beach
Section 2

sKep 子fṬ它
uncated
odies to
Q BCOED
Supersonic Canard Integration Test Objectives The objectives of the Supersonic Canard Integration Test are outlined in the following chart. Essentially, the purpose of the test was to obtain a data base for CFD code validation for canard integration at the supersonic cruise condition. Both wing/body/canard and wing/body/canard/nacelle/diverter data were obtained in this experimental study. The effect of the canard on the tail could not be analyzed in this investigation, since the 1.675% model is too large to integrate a tail for the 4-ft test section of the UPWT. Any aftbody would have been shock reflected in the UPWT at a Mach number of 2.4 . The second

 structures could also result in performance penalties and stability \& control problems. The last two objectives from the test were to determine the effect of canard location on performance and determine the influence of canard location on the S\&C characteristics of the configuration.
The NASA Langley Unitary Plan Wind Tunnel
The wind-tunnel facility utilized for this experimental invesigation was the NASA Langley UPWT. The UPWT is a closed-circuit (continuos flow) pressure tunnel with two test sections that are 4 - ft square by 7 -ft long. This test utilized test section \#2, which has a Mach number range of 2.3 to 4.63 . The Mach number variation is obtained through an asymmetric sliding block which allows the throat-to-test-section
 major elements of the UPWT facility are 74.6 MW drive system, a dry air supply system, an evacuating system, a cooling system, and extensive ducting to connect both tunnel test sections. The average freestream conditions for test section \#2, during this test entry, were $\mathrm{M}_{\infty}=2.4, \mathrm{Re}=4 \times 10^{6} / \mathrm{ft}, \mathrm{Po}=3039 \mathrm{psfa}$, $\mathrm{To}=125^{\circ} \mathrm{F}$, and $\mathrm{q}=838 \mathrm{psfa}$. For additional information on the UPWT please refer to Reference 1.
The NASA Langley Unitary Plan Wind Tunnel

High Speed Aerodynamics, Long Beach
8 $8-$
1.675\% Baseline TCA Model 2b and Model 52 Hardware This chart shows the model hardware utilized for Test 1705. The existing Baseline TCA Model 2 b is shown in the center of the photograph. Two new forebodies and canard planforms comprise Model 52. They were fabricated for this test entry. In the lower left is forebody \#1 which was fabricated to integrate the PTC (Preliminary Technology Concept) canard. This forebody has a $\pm 4^{\circ}$ wiping surface, so that the canard will have no gap between the canard and the side-of-body for $\pm 4^{\circ}$ range of canard deflections. The metal blocks located near forebody \#1 are used to attach the canards to the forebody for the desired deflections in this test. Only the mid-mounted PTC canard can be attached to forebody \#1. In the upper left corner of the photograph is forebody \#2. This forebody allows integration of the PTC canard at low(-20° dihedral) and high(15° dihedral) mounting locations and the integration of a larger ACC (alternate controls concept) canard at a low(-15° dihedral) mounting location. The ACC canard is also located closer to the wing. Forebody \#2 does not have sealed deflection capability. Instead, there
 and what the canard deflection angle is. During the test this gap was filled and unfilled with body filler material to determine the affect of the gap on the results. Next to forebody \#2 is as forebody adapter that mates both forebody \#1 and \#2 to the Model 2 b wing strongback.

Quanine

1.675\% Model 52 with Mid-Mounted PTC Canard

Q BTEEANE"
1.675\% Model 52 with Low-Mounted ACC Canard

The following photograph shows the low-mounted canard configuration with nacelles, installed in the UPWT test section \#2.
1.675\% Model 52 with Low-Mounted ACC Canard

$$
\square=x-\cdots=-=-x
$$

xn cm

$$
\infty
$$

-

$$
5
$$

$=$ i:

1
Close-up of the LownMounted ACC Canard
This view shows a close-up of the ACC canard installed on Forebody \#2. The ACC canard has 15°
anhedral and the gap between the canard and the side-of-body is clearly shown. Testing with the gap
filled and unfilled with body filler material found that the gap adds an additional count of drag to the
configuration.

(x ETAT

Test Techniques Utilized During UPWT 1705
The following test techniques were used during Test 1705 to satisfy the test objectives.

UPWT
High Speed Aerodynamics, Long Beach Force \& Moment (6-component)

- To validate CFD, obtain performance data and S\&C data
Laser Vapor Screen (LVS)
- To determine the influence of canard tip vortex and wake on the
wing and nacelle flowfields
Ultra-Violet Oil Flow
- To determine the influence of the canard on the wing surface flow
topology and for CFD validation
Sublimation
- To assess the state of the boundary layer on the wing and canard
Schlieren Photographs
- To assess the influence of canard induced shock systems
The following instrumentation was utilized during test 1705. A NASA Langley sting (350-19A) and balance (UT-65A) was utilized during this test entry. During the test the dynamic limit on normal force and pitching moment was exceeded at about 11° angle-of-attack with the PTC canard at $\pm 10^{\circ}$ incidence

 considered medium-term repeatability. Pressure instrumentation was utilized to make body cavity corrections, as well as nacelle base pressure corrections. The UT-65A balance had three thermocouples installed (front, middle and back) to monitor temperature gradients along the balance. Angle-of-attack was measured with an accelerometer on the strut and then corrected for flow angularity and sting bending.
Transition Trip Dot Locations on Model 2b and Model 52 To ensure turbulent flow over the majority of the model, artificial transition elements were employed.
The chart on the following page shows the location of these transition elements on the configuration.
The sublimation technique was utilized to ensure the effectiveness of these transition elements. The
location and size of the artificial transition elements are tabulated on the chart.

Sublimation Results Sublimation was employed during this test entry to determine the effectiveness of the trip dots. The HSR program has achieved the state-of-the-art with this test technique. The sublimation paint consists

 a $\mathrm{Re}=4$ million/ft to assess the state of the boundary layer. This was Run 13 of Test 1705. A trip height of 0.012 inches was used during this run with 2 dots on either side of an isolated dot removed on the inboard and outboard wing, as well as in the middle of the canard to show the full extent of laminar flow.

 mounted vertically. The run lasted approximately 25 to 30 minutes taking hasselblad pictures every 30 seconds and video for the whole 30 minutes.
Sublimation Results
\square High Speed Aerodynamics, Long Beach
Sublimation Results (Continued)
The results of the sublimation run indicate that the flow on the canard transitions promptly at the trip
dots. The transition characteristics for the upper and lower wing are almost exactly the same as that for
the wing/body from previous test entries. There was concern that the canard may influence the
transition characteristics of the inboard upper and lower wing, but for the conditions tested with
sublimation there appeared to be very little influence of the canard on the inner wing.
Sublimation Results (Continued)

Results
- Flow transitions at trip dots on the upper and lower canard
surface
- Some paint remained on the upper surface of the canard
(near the tip) until the film ran out
- Wing transitioned similar to previous test results
PTC
을
Mounted surface of the ublimation image on the upper image matches those taken during previous tests without the canard present.

Sublimation of Model 52 with Mid-Mounted PTC
Canard (Cont.)
This photograph shows the sublimation for the upper surface of the PTC canard. The turbulent wedge
originating from the isolated trip dot spreads immediately indicating prompt transition.
$\begin{gathered}\text { Sublimation of Model } 52 \text { with Mid-Mounted PTC Canard } \\ \text { (Continued) }\end{gathered}$
UPWT 17igh Speed Aerodynamics, Long Beach

Short-Term Repeatability
The short-term repeatability for Test 1705 was approximately ± 0.5 drag counts over most of the lift
coefficient range considered. Toward the higher lift coefficients, there are a few outliers and near $C_{D o}$
the repeatability is around ± 0.1 counts. The short-term repeatability indicates the level of precision of
the force and moment measurements. The results indicate that we are within our specified tolerance of
± 0.5 drag counts.

The following plot shows the level of medium-term repeatability for Test 1705. As mentioned earlier,
since the same balance installation was used in Test 1703 and 1705 , comparisons between these two
tests are considered medium-term repeatability. Again, these types of comparisons give an indication of
the quality of the data. The plot shows the drag residual of individual data points from a $3^{\text {rd -order cubic }}$
spline representation of the two sets of data. The data generally shows a ± 0.5 drag count medium-term
repeatability with some outliers as you go above the cruise lift coefficient of $C_{L}=0.1$.

Test-to-Test Drag Comparison (UPWT Tests
1705, 1687, and 1679)
This chart shows a drag polar comparison for wing/body/nacelle/diverter for several test entries of the Model 2 b with two different forebodies. The current test is using Forebody \#1 and test 1687 and 1679 are using the Model 2 b forebody. Test 1705 and Test 1687 agree very well with each other indicating that the wiping surface in Forebody \#1 has very little or no impact on the performance of the configuration tested. The test 1679 data does not agree as well with the others, but it is still within the tolerance of our measurements (± 0.5 drag counts). The test-to-test comparison shown indicates that the current test data is of high quality and consistent with previous test entries.
estセloĐTest Drag Comparison (UPWT Tests 1705, 1687, and 1679)

Drag Polar Comparison (MOdel 20 vS. Model 52)
A comparison of the Model $2 b$ and Model 52 Forebody \#1 is shown on the following page from Test
1705 data for the wing/body. A mean line is fit through both series of data. The difference between the
two mean lines is well within the tolerance of the data. This indicates that the wiping surface in
Forebody \#1 has no effect on the performance.

Stability \& Control Characteristics for Test 1705
The longitudinal stability and control characteristics for the PTC and ACC canard configurations (wing/body/nacelle/diverter) are shown in the following plot of pitching moment coefficient vs. angle-ofattack. While the slope of the curves are essentially the same (the same longitudinal stability) the ACC canard configuration shows a $-\mathrm{C}_{m 0}$ shift and a greater pitch-up at higher angles-of-attack than the PTC canard configuration. This is believed to be the result of a larger canard planform and more closely coupled nature of the ACC canard with the wing. Control effectiveness (incremental pitching moment per degree of canard deflection) appears to be the same for both the ACC and the PTC canard. Additionally, control effectiveness appears to be the same between positive and negative canard deflection angles.

Stability \& Control Characteristics for Test 1705 (Cont.)
This chart shows a comparison of the directional stability for the PTC and ACC canard configurations (wing/body/nacelle/diverter) with respect to the canard-off configuration. Yawing moment coefficient is plotted vs. sideslip angle for a representative angle-of-attack of 4°. While all configurations are directionally unstable (typical of vertical tail-off data), the ACC canard configuration shows a further decrease in directional stability with respect to the canard-off configuration. The PTC canard configuration shows a small increase in directional stability with respect to the canard-off configuration.
Laser Vapor Screen Set-up for Test 1705
The set-up for Laser Vapor Screen flow visualization is simple. First, vapor is introduced into the tunnel by injecting water just downstream of the test section. Next, a laser sheet is produced from an Argon laser and an optics package that illuminates a given cross-section of the wind-tunnel test section The model is than translated through this laser light sheet and photographs are taken, from a 80 mm

 model at which still photographs were taken. The location of the ACC and PTC canards are shown, with the PTC canard located closer to the nose-tip. There are 20 longitudinal stations for which photographic data was obtained. Throughout the flow visualization, continuos video is taken from a video camera that is mounted on the strut. The video camera has a more axial view, while the camera has an oblique view of the illuminated cross-section.

Laser Vapor Screen Shows Canard Tip Vortex Trajectory
PTC Mid-Mounted Canard, $i_{c}=10^{\circ}, \Gamma_{c}=0^{\circ}, M_{\infty}=2.4$, $\operatorname{Re}=4 \times 10^{6} / \mathrm{ft}, \alpha=8^{\circ}, \beta=3^{\circ}$

pt 4619 / dot 12
Laser Vapor Screen Results
This chart summarizes the laser vapor screen flow visualization for Test 1705.

Laser Vapor Screen Results (Cont.)
This chart also summarizes the laser vapor screen flow visualization for Test 1705.
Laser Vapor Screen Results (Cont.)
O For $\beta=3^{\circ}$ and $\alpha=8.0^{\circ}$ the two canard tip vortices on
the leeward side of the aircraft coalesce, while the
windward side tip vortices spread and are located
directly over the fuselage at the last LVS station
O For $\beta=3^{\circ}$ and $\alpha=3.5^{\circ}$ the two canard tip vortices do
not pass over the fuselage, but are barely visible at
the last LVS station

The Influence of the ACC Canard Tip Vortex on
the Wing Lower Surface
In this chart an ultra-violet oil flow comparison is made between the ACC canard configuration (wing/body/nacelle/diverter) and the same configuration without the canard. The left photograph shows the lower wing surface for the configuration without the canard and the right photograph shows the lower wing surface for the configuration with the ACC canard. For the ACC canard configuration the canard is deflected 4° and the canard has 15° anhedral. Both images are for a freestream Mach number of 2.4, angle-of-attack of 3.5°, and a Reynolds number of 4 million/ft (essentially, the cruise condition). In the right photograph the interaction of the ACC canard tip vortex can be seen on the inboard lower surface

 wing is clearly evident in this comparison.
The Influence of the ACC Canard Tip Vortex
Surface
Beach

rodynamics
ACC Canard-Induced Shock Systems
Here a comparison of shock systems on the configuration with and without the ACC canard is made through close examination of Schlieren photographs. The configuration (wing/body/nacelle/diverter) without a canard is shown in the left photograph and the configuration with an ACC canard at an incidence angle of 4° is shown in the right photograph. The condition for these photographs were a freestream Mach number of 2.4, angle-of-attack of 3.5°, and a Reynolds number of 4 million/ft
 edge shock off of the canard below the configuration, but only a trailing-edge shock off of the canard above the configuration. This trailing-edge shock off of the canard above the configuration also seems to interact with the wing. This is evident by the dark line above the configuration very near where the wing is located. In the view without the canard there is no such dark line evident near the wing. This

 the trailing-edge shock interaction shown in this comparison.
ACC Canard Induced Shock Systems
——_ High Speed Aerodynamics, Long Beach

$\mathrm{Re}=4.0 \times 10^{6} / \mathrm{ft}$

 $\alpha=3.5^{\circ}, \beta=0^{\circ}$,
W/B2/N/Df, Run 52, Pt 2459
Supersonic Canard Integration Test
Conclusions
The next two charts outline some of the major conclusions from the Supersonic Canard Integration Wind
 section after the comparisons with CFD results have been made. The test showed that the wiping
 canard configurations were tested with and without the gap between the canard and the side-of-body
 throughout the entire test. The flow visualization techniques clearly showed the trajectory of the canard
 showed the superior qualities of the UV-oil technique in obtaining surface streamlines at 3 angles-of-

 higher angles-of-attack and a - C_{mo} shift. The directional stability of the PTC canard configuration was found to be slightly better than the ACC canard configuration, partly due to the closely coupled ACC canard with the wing.
The test was a success due to the exceptional efforts of the Test Engineer, Floyd Wilcox, and the entire LARC UPWT staff.
Supersonic Canard Integration Test Conclusions
Wiping surface (forebody \#1) has small impact on performance

- Change is less than 0.5 counts with respect to Model 2 b
Data quality is good and consistent with previous tests
- Short term repeatability ≤ 0.5 drag counts
- Medium term repeatability ≤ 0.5 drag counts (some outliers)
- Long term repeatability (agreement superb between Test 1705 and 1687)
Gap between canard and side-of-body is worth 1 drag count
UV-oil technique provides very good results for 3 different
angles-of-attack with just one application of the paint.
LVS results were good, the canard tip vortex trajectory can
clearly be seen in the photographs and video tape.
Canard Integration Test Conclusions (Cont.)
ACC and PTC canard have approximately the same
effect on the longitudinal stability
- ACC has more pitch-up at higher angles of attack
- ACC canard has a $-C_{m o}$ shift equal to 2° of i_{c}

The closely coupled ACC canard reduces the
directional stability while the mid-mounted PTC
canard improves directional stability
O Test was a success because of the exceptional efforts
of Floyd Wilcox and the entire LARC UPWT staff

CFL3D Performance Results for Overset and
Patched Grid Topologies
 CFD code validation. This section of the paper addresses CFD comparisons with the performance data of Test 1705. At the end of this section the performance conclusions of the test will be presented. Initially (before the test), overset Euler + Van Driest flat plate skin-friction solutions were generated for comparisons with the test data. After the test, overset Navier-Stokes solutions were to be generated for refined comparisons with the data. The overset approach was undertaken because they would provide rapid turnaround on the great number of canard configurations that needed to be generated. The CFL3D overset Navier-Stokes solutions initially did not work, so we decided to use patched NavierStokes solutions, while we figured out the difficulty with the overset solutions. During this time we łеәฝ6 әцł dOf SuO!
 Navier-Stokes solutions using CFL3D was solved and now both techniques are available.

CFL3D Performance Results for Overset
and Patched Grid Topologies
Overset Grid Generation Allows Rapid Analysis This chart summarizes the initial approach taken by the Boeing company to analyze the PTC and ACC
 the grid generation and to allow integration of existing grids for additional aircraft components (i.e., nacelles, flaps, and empennage) as will be shown in the last section of the paper. A C-O grid topology was used for the wing/body and an $\mathrm{H}-\mathrm{O}$ grid topology was used for the canard. A total of 1.4 million grid points were used to define the wing, body, and canard. The grid indices are shown for each grid. For
 direction. For the canard grid, l is in the streamwise direction, j is in the normal direction, and k is in the roll direction.
An automated canard grid generation has been developed by David Yeh of the Boeing Long Beach High-Lift group based on the HYPGEN grid generation code. It will integrate a canard at any given mounting location (i.e., high, mid, or low) and axial station, and will rotate and deflect the canard to any dihedral and incidence angles. Once the canard is placed in the appropriate location, an $\mathrm{H}-\mathrm{O}$ grid is generated by the code. The grid generation on a C-90 takes less than 10 minutes of wall clock time.
The CFL3D version 4.1 flow solver was used in the Euler mode to obtain the CFD solutions. Van Driest II flat plate skin friction results were added to the Euler results for comparisons with the test data. All solutions were generated on a Cray C-90 computer. The FOMOCO (Force and Moment Computation) code was used to get accurate inviscid force and moments by generating a zipper grid between the overset grids. These are the same routines utilized by the OVERFLOW code to integrate forces and moments.
Overset Grid Generation Allows Rapid Analysis
OGrid

$$
\begin{aligned}
& \text { Variable canard mounting positions (i.e., high, mid, or low) } \\
& \text { Variable canard dihedral and incidence angles } \\
& \text { Takes less than } 10 \text { minutes (wall clock) on C-90 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { OFlow Solver } \\
& \text { - CFL3D v4.1, Euler + Van Driest II flat plate skin friction } \\
& \text { - Solutions obtained on C-90 (vn) } \\
& \text { OFOMOCO used to integrate forces/moments }
\end{aligned}
$$

Baseline TCA Wing/Body/Canard Overset Grid This chart shows a typical wing/body/canard overset grid utilized by Boeing for comparisons with the
Test 1705 data. The red region shows the canard grid and the black region shows the wing/body grid.
Note that only every other point in the grid is shown in this chart.
Baseline TCA Wing/Body/Canard Overset Grid

Forebody Region

Q BTOEINE

CFD)

(Experiment vs.

Drag Comparison: ACC vs. PTC Canard This chart shows a comparison between experimental drag polars and CFD overset Euler results + Van
Driest II skin friction for the baseline TCA model with and without the PTC and ACC canard at $M_{\infty}=2.4$,
Re $=4$ million/ft and an $i_{\mathrm{c}}=4^{\circ}$. Trip drag was not removed from the experimental data in this chart, so only
incremental comparisons can be made. Incremental agreement is good between CFD and experiment
for the PTC canard, but the incremental agreement between CFD (Euler + Van Driest II flat plate skin
friction) and experiment for the ACC canard at an incidence angle of 4° is poor. In fact, the wind-tunnel
data for the ACC and PTC canard configuration (wing/body/canard) at 4° incidence angle shows the
same value of drag at a $\mathrm{C}_{\mathrm{L}}=0.09$. This was unexpected since the ACC canard planform is significantly
larger than the PTC planform. It was theorized that the Euler + flat plate skin friction results were not
accurately modeling the viscous nature of the canard wake and tip vortices. Therefore, this type of
computation was not suitable for predicting the favorable interaction of the ACC canard wake and tip
vortices with the wing. To investigate this theory, patched Navier-Stokes solutions were undertaken
using Baldwin-Lomax and Menter's $\kappa-\omega$ SST turbulence models for both the PTC and ACC canard
configurations.

Patched Grid Solutions Initially, we avoided patched Navier-Stokes solutions due to the lengthy grid generation process required
for the large number of configurations we wanted to analyze. This problem was significantly alleviated
when Eric Unger of the High Speed Aerodynamics group at long Beach developed a procedure to
rapidly generate patched grids for different canard deflections, once an initial patched grid was
constructed. Using Boeing proprietary grid generation software the initial patched wing/body/canard grid
takes approximately 2 days to construct from an existing wing/body grid. The patched grids for the
alternate canard deflections are then constructed in a manner of minutes using CSCMDO to perturb the
surface geometry and volume grid.
The flow solver used for the patched grid Navier-Stokes solutions was CFL3D version 4.1. In this study
two turbulence models were utilized; the Baldwin-Lomax algebraic model and the Menter's $\kappa-\omega$ SST two
equation model. All computations were generated on a Cray C-90. The objectives for the patched
Navier-Stokes solutions were to determine the cause of the anomalous results obtained for the ACC
canard at 4° incidence angle and to determine which turbulence model agrees best with the supersonic
canard integration wind-tunnel data.
Patched Grid Solutions
Patched Grid Generation
• Initial patched grid generated from single block
wing/body grid (COWF2 / MACGS)
\quad - Takes ~ 2 days to generate

- Alternate canard deflections obtained by
perturbation of grid using CSCMDO
\quad - Takes a couple of minutes to generate
Flow Solver
• CFL3D v4.1, Navier-Stokes
• Turbulence Models: Baldwin-Lomax \& k- $\omega \mathrm{l}$
• Computations conducted on Cray C-90 (vn)
ACC Canard Configuration Patched Grid
This chart shows a typical patched wing/body/canard grid for the ACC canard configuration utilized for
the current study. The grid consists of 11 blocks with a total of 3.5 million grid points. The grid for the
symmetry plane and the block boundaries for the blocks in the field are shown. Each color represents a
different block. The PTC canard grids utilized in this study were slightly different. They consisted of 7
blocks with a total of 2.4 million points for the PTC wing/body/canard configuration and 24 blocks with a
total of 7.9 million points for the PTC wing/body/canard/nacelle/diverter.
ACC Canard Configuration Patched Grid Topology
Trip Drag \& Laminar Run Corrections
To make accurate absolute comparisons between the patched Navier-Stokes computations and the
 following page list the trip drag and laminar run corrections for each element (i.e., wing/body, nacelles, and canards). The value of the trip drag and laminar run for the wing/body was obtained from BCAG.
 component values are determined based on the number of trip dots on the component compared with the number of trip dots on the wing/body. For example,
PTC Canard Trip Drag = (Number of Dots on the Canard / Number of Dots on the wingbody)*(trip drag on the wing-body)
The laminar run for each component was determined in a similar manner except laminar run area was
 G'己 Kəəеш!холdde suo! counts will be removed from the data. It should be noted that results obtained from NASA Ames using

 wing/body configuration. Therefore, when looking at the following charts the corrected and uncorrected data reflect the BCAG and NASA Ames trip drag results, respectively.
Trip Drag \& Laminar Run Corrections

* Values Obtained from Kevin Mejia (BCAG)
Drag Polars for the PTC Canard on TCA W/B/N/D
Configuration
This chart compares the corrected (trip drag \& laminar run) drag polar wind tunnel data with Navier-
Stokes solutions using Baldwin-Lomax and Menter's $\kappa-\omega$ SST turbulence models for the PTC canard
configuration (wing/body/canard/nacelle/diverter) at $M_{\infty}=2.4, \mathrm{Re}_{\mathrm{c}}=6.36 \times 10^{6}(4$ million $/ \mathrm{ft})$, and $\mathrm{i}_{c}=0^{\circ}$. From
the expanded view about the cruise condition $\left(\mathrm{C}_{\mathrm{L}}=0.1\right)$ the Menter's k -w SST model agrees very well
with the corrected data, while the Baldwin-Lomax turbulence model is closer to the uncorrected data
(~ 2.0 drag counts high).
Drag Polars for the PTC Canard on TCA W/B/N/D Configuration
CFL3D (Navier-Stokes with B+L \& SST Turbulence Models), UPWT Test 1705 $M_{\infty}=2.40, \operatorname{Re}_{\mathrm{c}}=6.36 \times 10^{6}, \mathrm{i}_{\mathrm{c}}=0^{\circ}, \Gamma_{\mathrm{c}}=0^{\circ}$

Drag Polars for the PTC Canard on TCA W/B/N/D
Configuration (Cont.)
This chart compares the corrected (trip drag \& laminar run) drag polar wind-tunnel data with Navier-
Stokes solutions using Baldwin-Lomax and Menter's $\kappa-\omega$ SST turbulence models for the PTC canard
configuration (wing/body/canard/nacelle/diverter) at $M_{\infty}=2.4, \mathrm{Re}_{\mathrm{c}}=6.36 \times 10^{6}\left(4\right.$ million/ft), and $\mathrm{i}_{c}=4^{\circ}$. From
the expanded view about the cruise condition $\left(\mathrm{C}_{\mathrm{L}}=0.1\right)$ the Menter's $\kappa-\omega \mathrm{SST}$ model does not agree as
well with the corrected data (~ 2.5 drag counts low), while the Baldwin-Lomax turbulence model agrees
very well with the uncorrected data.
Drag Polars for the PTC Canard on TCA W/B/N/D Configuration

CFL3D (Navier-Stokes with B-L \& SST Turbulence Models), UPWT Test 1705
$M_{\infty}=2.40, \mathrm{Re}_{\mathrm{c}}=6.36 \times 10^{6}, \mathrm{i}_{\mathrm{c}}=4^{\circ}, \Gamma_{\mathrm{c}}=0^{\circ}$

Polars for the ACC Canard on TCA W/B Configuration This chart compares the corrected (trip drag \& laminar run) drag polar wind-tunnel data with Navier-
Stokes solutions using Baldwin-Lomax and Menter's $\kappa-\omega$ SST turbulence models for the ACC canard
configuration (wing/body/canard) at $M_{\infty}=2.4, R e_{c}=6.36 \times 10^{6}\left(4\right.$ million/ft), and $i_{c}=0^{\circ}$. From the expanded
view about the cruise condition $\left(C_{L}=0.1\right)$, the Menter's $\kappa-\omega S S T$ model is 1.5 drag counts lower than the
corrected data, while the Baldwin-Lomax turbulence model agrees very well with the uncorrected data.

PTC Canard on TCA W/B
Configuration
This chart shows the inviscid and viscous components of the drag coefficient versus angle-of-attack for
the Baldwin-Lomax and Menter's $\kappa-\omega \mathrm{SST}$ turbulence models for the PTC canard configuration
(wing/body/canard) at $\mathrm{M}_{\infty}=2.4, \mathrm{Re}_{\mathrm{c}}=6.36 \times 10^{6}\left(4\right.$ million/ft), and $\mathrm{i}_{\mathrm{c}}=0^{\circ}$. The difference in drag between the
turbulence models is solely due to the viscous drag coefficient, while the pressure for each is exactly the
same. This is a typical result that is seen in the computations shown in this section.

Results The conclusions of the performance data from Test 1705 and the computational results show that for the cruise condition ($\mathrm{C}_{\mathrm{L}}=0.1$) the Menter's $\kappa-\omega$ SST turbulence model generally agrees well with the corrected canard configuration data at canard $i_{c}=0^{\circ}$, but significantly under-predicts the drag (~ 2.5 drag counts low) for PTC canard $i_{c}=4^{\circ}$. The Baldwin-Lomax turbulence model generally agrees with the
 it over predicts the drag by approximately 2 counts.
Canard drag increments predicted using overset grids in CFL3D + Van Driest II flat plat skin friction agree fairly well with all of the test data except for the ACC canard configuration at an $i_{c}=4^{\circ}$. This study

 solutions are required for the ACC canard configuration at an $i_{c}=4^{\circ}$. This condition has yet to be run using patched Navier-Stokes grid topologies for either the Baldwin-Lomax or the Menter's k-w SST
 an $i_{c}=4^{\circ}$ provide the same drag.

[^25]Summary of CFL3D Performance Results
At the cruise condition $\left(\alpha=3.5^{\circ}\right)$, Wind Tunnel data -
Trip Drag + Laminar Run agrees best with $k-\omega$
model for $i_{c}=0^{\circ}$
Agreement not as good at $i_{c}=4^{\circ}(\sim 2.5$ counts $)$
Canard drag increments predicted using overset
grids in CFL3D + flat plate skin friction agree fairly
well with test data except for the ACC canard at an
$i_{c}=4^{\circ}$
The ACC canard at $i_{c}=4^{\circ}$ is the only case that
remains to be run with the patched $N S$ grid
Both overset and patched grid methodologies allow
rapid solutions through a range of i_{c}^{\prime} 's
Summary of CFL3D Performance Results
At the cruise condition $\left(\alpha=3.5^{\circ}\right)$, Wind Tunnel data -
Trip Drag + Laminar Run agrees best with $\mathrm{k}-\omega$
model for $\mathrm{i}_{\mathrm{c}}=0^{\circ}$
Agreement not as good at $\mathrm{i}_{\mathrm{c}}=4^{\circ}(\sim 2.5$ counts $)$
Canard drag increments predicted using overset
grids in CFL3D + flat plate skin friction agree fairly
well with test data except for the ACC canard at an
$\mathrm{i}_{\mathrm{c}}=4^{\circ}$
The ACC canard at $\mathrm{i}_{\mathrm{c}}=4^{\circ}$ is the only case that
remains to be run with the patched NS grid
Both overset and patched grid methodologies allow
rapid solutions through a range of $\mathrm{i}_{\mathrm{c}}^{\prime} ’$

After the supersonic canard integration data was obtained, the same kind of data was obtained for transonic Mach numbers. Here the effect of selected optimized transonic flap settings was added to determine the effect of canard integration on transonic performance for realistic transonic configurations. Here again data was not obtained with the tail on, since the model used did not have one.
4 High Speed Aerodynamics, Long Beach
The Transonic Canard Integration
Wind Tunnel Test (16TT Test 508)
Transonic Canard Integration Test Information
The Transonic Canard Integration Wind-Tunnel Test (Test 508) was conducted from $9 / 13 / 98$ thru
$10 / 2 / 98$ at the NASA Langley 16 -foot Transonic Tunnel. It was a two-shift operation (15 days) and a 145
runs were completed. Two models were used during Test 508 similar to the Supersonic Canard
Integration Test (Test 1705) except Model 5 was used instead of Model 2 b . The Baseline TCA Model 5
was used because it had various transonic flaps (baseline and the Mach 0.9 optimum) that could be
tested with the canards from Model 52 . The Model 5 is a 1.675% representation of the baseline TCA
configuration. The test conditions for this entry were; $M_{\infty}=0.6,0.9, \& 1.1$, angles-of-attack from -4° to
12°, sideslip angles from -6° to 6°, and Reynolds number of approximately 4 million/ft.
\[

$$
\begin{aligned}
& \text { Transonic Canard Integration Test Information } \\
& \text { High Speed Aerodynamics, Long Beach } \\
& \text { Test facility: LaRC 16-foot Transonic Tunnel } \\
& \text { Test date: } 9 / 13 / 98-10 / 2 / 98 \\
& \text { Test duration: } 15 \text { two-shift days } \\
& \text { Models } \\
& \text { • Model } 5-1.675 \% \text { Baseline TCA with truncated } \\
& \text { aftbody and one-piece nacelle/div } \\
& \text { • Model } 52 \text { - Model } 5 \text { with two new forebodes to } \\
& \text { accomodate several canard configurations } \\
& \text { Test conditions: } \\
& \text { • } \mathrm{M}_{\infty}=0.6,0.9,1.1, \alpha=-4^{\circ} \text { to } 12^{\circ}, \beta=-6^{\circ} \text { to }+6^{\circ} \\
& \text { • Re }=4 \text { million/ft }
\end{aligned}
$$
\]

Transonic Canard Integration Test Objectives
The objectives of Test 508 were the same as Test 1705 except now certain transonic flap settings would
be utilized in addition to all of the PTC and ACC canard settings tested in Test 1705 .
The NASA Langley 16-foot Transonic Wind Tunnel
This photograph shows an aerial view of the NASA Langley 16 -foot Transonic Wind Tunnel (16 TT).
The NASA Langley 16 -foot Transonic Tunnel is a closed-circuit single-return atmospheric wind tunnel
that has a slotted transonic test section with a Mach number range from 0.1 to 1.3 . For a detailed
description of the 16 TT , please refer to Reference 2 .

1.675\% Model 5 with PTC Mid-mounted Canard
Installed at 16TT

[^26]1.675\% Model 5 with PTC Mid-mounted Canard Installed at 16TT

were Fabricated
Canard Parts
for Test 508 The next two charts show the additional model parts that were fabricated for Test 508 . In the first chart,
the mid PTC canard was existing from Test 1705 , but the high and low PTC canards were fabricated
due to fitting problems discovered during Test 1705 when using the mid PTC canard in the high and low
positions. The second chart shows the mounting hardware for the high and low PTC canard that was
fabricated for Test 508 .

Additional PTC Canard Parts were Fabricated for Test 508

Test Techniques Utilized During 16TT Test 508

[^27]Test Techniques Utilied During 6 TT Test 508
Force \& Moment (6-component)

- To validate CFD, obtain performance data and S\&C data
Ultra-Violet Oil Flow*
- To determine the influence of the canard on the wing surface flow
topology and for CFD validation
Sublimation
- To assess the state of the boundary layer on the wing and canard
Shadow Graph Photographs
- To assess the influence of canard induced shock systems
* Time limitations prevented obtaining this data
similar to the
Instrumentation for 16TT Test 508
t is very

the facing page. instrumentation used for the Supersonic Canard Integration Test (Test 1705)
Sublimation for Canard Upper Surface
The photograph on the facing page shows the sublimation image for the upper surface of the PTC
canard at a Mach number of 0.9 and an angle-of-attack of 3.5°. There are some questions as to the
validity of the method, since it took as long to get on point as it did for the length of time spent on
condition. The time spent on condition was approximately a couple of minutes. From the image on the
facing page, the flow appears to be fully turbulent after the trip dots. This can be seen by the
characteristic turbulent wedge seen originating from the isolated trip dot.

16TT Test 508 Post-Test Analysis and Status
The final data has not been delivered as of the date of this presentation, because of a problem with the model leveling and up-flow angularity during the test. The data engineer was out sick with Meningitis during Test 508, resulting in the upflow corrections not being made during the test. The 16TT staff is currently working on putting these corrections into the data. The sublimation from the test indicates that
 technique at the 16TT for Mach 0.9. The Shadowgraph system did not appear to work very well for determining the shock structures at Mach 0.9 and 1.1 at the 16TT. Finally, the test was plagued with trip

 flow environment or the model changes during the test.

Oinal data not delivered yet because of problems with
model leveling and upflow angularity during the test
Sublimation results indicate 0.006 " trip dots are
effective, but many questions remain as to the validity
of the sublimation test technique at the $16 T \mathrm{~T}$ and
transonic trip and transition in general
Post-test analysis will begin after the workshop and
shall be complete in two months
Shadow graph not suitable for determining shock
structures at Mach 0.9 and 1.1 at $16 T T$

Majority of test conducted without a data engineer
to make corrections to data
Inboard trip dots on the wing consistently had to be
replaced (similar problem noted in Test 496)
CFL3D Canard-On Directional Stability
Characteristics This final section will present a CFD study focused on the full configuration
(wing/body/canard/empennage) directional stability characteristics. Currently, there is no high speed
data available for the affect of canard integration on the directional stability characteristics of the full
configuration. This CFD study was undertaken in hopes of a better understanding of the directional S\&C
of the full configuration.

CFL3D Canard-On Directional
Stability Characteristics
Objectives The objectives of this study were to use the CFL3D Euler solver to determine if there
are any adverse directional characteristics at transonic speeds when the forward mounted
canard (Preliminary Technology Concept size and longitudinal position) is located in either the
high or low radial position.
This study was a small subset of the originally planned study which intended to use the
CFL3D Euler solver to map out the canard design space, with respect to the impact on lateral-
directional stability characteristics, by varying the canard planform, canard location (both
longitudinal and radial), canard dihedral/anhedral, canard deflection, angle-of-attack, sideslip
angle, and Mach number. This larger study was envisioned to be complementary to the
concurrent Boeing-Seattle study which was focused on using CFD to obtain isolated canard
aerodynamic characteristics and the investigation of historical HSCT canard wind-tunnel data.
By combining the results of both the Long Beach and Seattle studies, it was hoped that the
aerodynamic characteristics of canards and their influence on the rest of the airplane
configuration could be better understood and the results provided to TI to help define the
Technology Configuration.
OBJECTIVES

Using CFL3D (Euler), investigate the effect of canard
placement on the high-speed directional stability
characteristics of a HSCT full configuration (W/B/E).

Combine results with Boeing-Seattle (Dynacs) canard
study, and previous canard experimental database
(Reference H modular controls model, TCA canard
integration model) to understand canard influence on
the overall aircraft characteristics to support the
Technology Configuration airplane downselect.
-
TCA: Directional Stability Derivative
Variation with Angle-of-Attack

[^28]TCA: Directional Stability Derivative

Background-1 This figure illustrates the effect of canard tip waterline location on the angle-of-attack at
which tail-on directional stability becomes negative (unstable) for a representative HSCT
configuration at low speeds. The figure demonstrates the adverse impact on directional
stability when the canard waterline is moved from a low-mount configuration (waterline 180)
to a high-mount configuration (waterline 300). Although the experimental data shown is at
low speeds, a similar trend is expected at transonic and supersonic speeds. The focus of the
study, discussed in this paper, is on verifying whether this trend is present at transonic
speeds. If the trend is observed, then the contributing factors causing the trend will be
investigated.
BACKGROUND-1
Effect of

Canard Tip Height
On Yaw Stability

Angle of
Attack
(deg.)

8
Low-speed wind tunnel data indicates a strong correlation
between canard tip height and the angle-of-attack at
which a representative HSCT configuration becomes
directionally unstable
Approach-1
The next two slides outline the approach taken for this study. Using the overset grid topology method to model the canard and forebody, grids could be generated rapidly for
 study because of it's recent success in rapidly evaluating canard placement aerodynamic effects for the canard integration wind-tunnel test.
The originally proposed study focusing on canard vertical location, canard deflection,
 this was not feasible, a much smaller subset which focused on a high-mount and low-mount PTC sized canard and longitudinal location was selected. The high-mount canard was configured with 15 degrees of dihedral while the low mount canard was configured with 20 degrees of anhedral. The amount of canard deflection at either radial location was limited by the CFL3D constraint that the canard grid cannot go beyond the crown line of the fuselage grid. For the hig- mount configuration the maximum deflection was +4 degrees; and for the рәџəן! low-mount canard was also modeled in order to have a similar deflection with the high-mount
 unд әдәм suo! at Mach=0.9 and angles-of-attack of $1,3.5$, and 5 degrees. In order to determine the directional stability effects of the canard, solutions at a sideslip angle of 3 degrees were also
 attack, and sideslip angles resulted in 16 CFD solutions.
APPROACH-1

APPROACH-2

CFL3D (Euler) Results This slide provides an outline of the CFL3D results that will be shown in the remainder of
this paper. The yawing moment coefficient variation with angle-of-attack will be presented for
the canard-off, high-mount canard (deflected +4 degrees), and the low-mount canard
(deflected +4 and -8 degrees) configurations. Side-by-side comparisons will be presented
showing the particle trace trajectories, at an angle-of-attack of 3.5 degrees, for the high-mount
vs. the low-mount canard canards deflected +4 degrees and the low-mount canard deflected
+4 degrees vs. the low-mount canard deflected -8 degrees. Additionally, side-by-side
pressure contours showing the the incremental pressure between the aforementioned canard
deflected configurations and a canard-off configuration at an angle-of-attack of 3.5 degrees
will be shown.
Yawing Moment Coefficient vs. Angle-of-Attack
This slide shows the CFL3D (Euler) predicted variation of yawing moment coefficient with

 Mach $=0.90$. All canard-on and canard-off configurations were modeled with the vertical tailon and the nacelles-off. The nacelles were removed from the configuration in order to reduce the number of solution iterations required for convergence. Directional stability is determined
 degrees.
The data show that the variation of directional stability with angle-of-attack is affected by both canard vertical location and deflection. For the low-mount canard at either deflection, directional stability is shown to increase with increasing angle-of-attack. For the high-mount canard, directional stability is shown to decrease with increasing angle-of-attack. While the

 bias towards increasing with increased angle-of-attack.

Reference H: Directional Stability Derivative
Variation with Angle-of-Attack This slide shows the variation of the directional stability derivative with angle-of-attack for
the Reference H configuration with two different undeflected mid-mount canard (dihedral $=0$
degrees) and canard-off configurations at Mach 0.90 . The data was obtained for the
Reference H configuration at the 16 'TT wind-tunnel using the alternate controls model and is
the only full-configuration, canard-on experimental data available. The CFL3D results shown
on the previous slide show similar trends as the experimental data in this figure. Specifically,
the variation of directional stability with angle-of-attack for the canard-off configuration is
relatively constant over the range of angles-of-attack evaluated using CFL3D, and the affect
of the canard is a significant change to the variation of directional stability with angle-of-
attack. Although the canards tested were mid-mount with 0 degrees of dihedral, their affect
on directional stability is similar to the low-mount canard results observed in the previous
slide.
Reference H: Directional Stability Derivative

Particle Traces over the TCA W/B/E with PTC
Canard (Top View)
The following three slides show the top, front, and side view comparisons of the canard wing-tip vortex trajectories between the high-mount canard with +4 degrees of deflection and
 sideslip angle of +3 degrees.
The windward (right-hand) canard-tip vortex for both the high and low-mount canard is shown to remain on the windward side of the aircraft downstream to the empenage. However, for the low mount-canard, the canard-tip vortex interacts with the leading-edge of
 high-mount canard, the windward canard-tip vortex is shown to remain high enough to not interfere with either the wing or the fuselage until it approaches near the empenage, at which
 tip vortex interaction on yawing moment will be discussed in the next set of slides.
The leeward (left-hand) canard-tip vortex for both the high and low-mount canard is shown to move outboard and does not have much interaction with the fuselage or empenage; although the low-mount canard-tip vortex has significant interaction with the wing leadingedge.

Particle Traces over the TCA W/B/E with PTC Canard

low-mount canard $\left(i=4^{\circ}\right)$

Particle Traces over the TCA W/B/E with PTC Canard (Side View)
CFL3D Euler, $M_{\infty}=0.9, \alpha=3.5^{\circ}, \beta=3.0^{\circ}$
low-mount canard $\left(\mathrm{i}=4^{\circ}\right)$

PTC Canard

The following three slides show incremental pressure data as contours, solid surface (positive pressures), and solid surface (negative pressures), respectively, for the high-mount

 pressure data was obtained by subtracting the canard-off solution from the canard-on solutions. The solid surface incremental pressure plots were separated into positive and negative pressure ranges to help identify the magnitude of the subtle incremental pressures observed.
It is clear from the incremental pressure data that the windward high-mount canard-tip vortex has a significant effect on the aft fuselage and vertical tail while the windward and leeward low mount canard-tip vortices have a significant effect on the wing leading-edge. The result of the interaction of the windward high-mount canard-tip vortex is a reduction in the pressure (increased suction) on the right-hand side of the airplane and an increase in the pressure (reduced suction) on the left-hand side of the airplane. Both of these effects cause a

 the overall yawing moment even further. This would explain the reduction in directional stability with angle-of-attack observed for the high-mount canard.
The interaction of the low-mount canard-tip vortices with the wing leading-edges does not appear to cause a significant change in the total yawing moment level at this angle-of-attack

[^29]ΔC_{p} on the TCA W/B/E with PTC Canard
Long Beach

low-mount canard ($\mathrm{i}=4^{\circ}$)

$\underbrace{\Delta C_{p} \text { on the TCA W/B/E with PTC Canard (positive values) }}_{\text {CFL3D Euler, } M_{\infty}=0.9, \alpha=3.5^{\circ}, \beta=3.0^{\circ}} \begin{array}{r}\text { High Speed Aerodynamiss, Long Beach } \\ \Delta C_{p}=C_{p} \text { canard on }-C_{p} \text { canard off }\end{array}$

$\underbrace{\Delta C_{p} \text { on the TCA W/B/E with PTC Canard (negative values) }}_{\text {CFL3D Euler, } M_{\infty}=0.9, \alpha=3.5^{\circ}, \beta=3.0^{\circ}} \begin{array}{r}\text { High Speed Aerodynamics, Long Beach } \\ \Delta C_{p}=C_{p} \text { canard on }-C_{p} \text { canard off }\end{array}$

Canard $\left(i=4^{\circ}\right)$

Particle Traces over the TCA W/B/E with PTC
Canard (Top View) The following three slides show the top, front, and side view comparisons of the canard

 sideslip angle of +3 degrees.
These figures indicate that for the low-mount canard deflected -8 degrees, the canard-tip vortex from the windward canard (right-hand) wraps around the fuselage and passes on the
 tip (left-hand) gets entrained by the wing circulation and is forced to go straight back to affect the outboard tip of the horizontal tail. As discussed previously for the low-mount canard
 appear to have a significant interaction with the wing leading edge and little interaction with either the aft fuselage or empennage.
Particle Traces over the TCA W/B/E with PTC Canard

$\underbrace{\text { Particle Traces over the TCA W/B/E with PTC Canard }}_{\text {CFL3D Euler, } M_{\infty}=0.9, \alpha=3.5^{\circ}, \beta=3.0^{\circ}}$,
low-mount canard $\left(i=-8^{\circ}\right)$

Particle Traces over the TCA W/B/E with PTC Canard (Side View)
CFL3D Euler, $\mathrm{M}_{\infty}=0.9, \alpha=3.5^{\circ}, \beta=3.0^{\circ}$
low-mount canard $\left(i=4^{\circ}\right)$

PTC Canard

 The following three slides show incremental pressure data as contours, solid surface (positive pressures), and solid surface (negative pressures), respectively, for the low-mount
 pressure data was obtained by subtracting the canard-off solution from the canard-on solutions. The solid surface incremental pressure plots were separated into positive and
 observed.
The incremental pressure data shows that the windward canard-tip vortex, for the -8

 the aft, left-hand side of the airplane, an increase in the total yawing moment of the configuration is expected. This was shown to be the case earlier in the yawing moment variation with angle-of-attack figure.
The interaction of the canard-tip vortices with the wing leading-edges for the +4 degrees
 yawing moment level at this angle-of-attack as the yawing moment of the canard-off and canard-on configurations are almost the same.

00808
0.808
$0=000$
$\mathbf{n}=\mathbf{1}$
ΔC_{p} on the TCA W/B/E with PTC Canard (positive values)
CFL3D Euler, $M_{\infty}=0.9, \alpha=3.5^{\circ}, \beta=3.0^{\circ}$
$\Delta C_{p}=C_{p \text { canard on }}-C_{p \text { canard off }}$
0.200
0.150
0.100
$\mathbf{0 . 0 5 0}$
$\mathbf{4} 0.000$
canard $\left(\mathrm{i}=-8^{\circ}\right)$
low-mount canard ($\mathrm{i}=4^{\circ}$)
0.200
0.150
0.100
0.050
0.000
-

Summary of CFL3D Study Results In summary, directional stability was shown to be affected by both canard radial location
and canard deflection. The high-mount canard was shown to adversely affect the variation of
directional stability with angle-of-attack, reducing the total yawing moment at a +3 degree
sideslip angle. Conversely, the low-mount canard was shown to favorably affect the variation
of directional stability with angle-of-attack, increasing the total yawing moment at a +3 degree
sideslip angle. Canard deflection, for the low mount configuration, was shown to have a
significant effect on the level of directional stability, but not the variation with angle-of-attack.
The interaction of the windward canard-tip vortex with the aft fuselage and empenage was
shown to be the main cause of the different effects observed.
SUMMARY of CFL3D STUDY RESULTS Canard vertical position affects the directional
stability variation with α

- High-mount: decreasing directional stability
- Low-mount: increasing directional stability

Future Work (Now until September 1999)
There are three tasks remaining for the canard integration work under HSR. First, the Supersonic
Canard Integration Wind Tunnel test post-test report needs to be completed. Second, the Transonic
Canard Integration Wind Tunnel test data needs to be delivered and the post-test report needs to be
written. Finally, patched Navier-Stokes solutions are required for the ACC canard configuration at an
$\mathrm{i}_{\mathrm{c}}=4^{\circ}$ so that this anomalous high speed data at $\mathrm{M}_{\infty}=2.4$ can be investigated.O
O Run CFL3D for the ACC canard configuration at an $i_{C}=4^{\circ}$
References

1. Jackson, Charlie M.; Corlett, William A.; Monta, William J.: "Description and Calibration of the
Langley Unitary Plan Wind Tunnel," NASA TP-1905, 1981.
2. Capone, Francis J.; Bangert, Linda S.; Asbury, Scott C.; Mills, Charles T. L.; Bare, E. Ann; "The
NASA Langley 16-foot Transonic Tunnel - Historical Overview, Facility Description, Calibration,
Flow Characteristics, and Test Capabilities," NASA TP-3521, September 1995.

Unstructured Navier-Stokes Analysis of Wind-Tunnel Aeroelastic Effects on TCA Model 2

Neal T. Frink and Dennis O. Allison NASA Langley Research Center

Paresh C. Parikh Paragon Research, Inc.

Aerodynamic Performance Workshop HS R Annual Airframe Review

Anaheim, CA
February 8-11, 1999

Unstructured Navier-Stokes Analysis of Wind-Tunnel Aeroelastic Effects on TCA Model 2

A method is presented which accounts for aeroelastic effects in Navier-Stokes computations of low aspect-ratio wind-tunnel models. It is applied and validated in this presentation on the TCA Model 2 configuration.

Outline

- The Problem
- Objective
- Approach
- Methodology \& Procedures
- Results
- Summary

The Problem: Wind-Tunnel Aeroelastic Effects

The issue to be addressed is how to account for the effects of wind-tunnel model deformation in numerical computations of low-aspect ratio planforms without relying on measured model deformation data.

During wind-tunnel tests of the low aspect ratio planforms characteristic of HSR configurations, the load induced displacement and twist of the thin outer wing panels tends to unload those panels. This results in a decrease in lift and increase in pitching moment. The variation of drag with lift is not adversely affected. Thus, it is important to include the model deformation within numerical computations to remove the noted aeroelastic-induced inconsistencies.

Objective

- To improve CFD correlations with TCA Model 2 UPWT data by coupling a simple calibrated structural model* into Navier-Stokes computations of windtunnel configuration
- Validate over a range of experimental test points using a single point calibration of structural model
* This approach has been successfully applied to high aspect-ratio Advanced Subsonic Transport configurations

Objective

The aim of this work is to demonstrate a simple technique which accounts for aeroelastic deformations experienced by HSR wind-tunnel models within CFD computations. With improved correlations, CFD can become a more effective tool for augmenting the post-test understanding of experimental data.
The present technique involves the loose coupling of a low-level structural representation within the ELAPS code, to an unstructured Navier-Stokes flow solver, USM3Dns. The ELAPS model is initially calibrated against bending characteristics of the wind-tunnel model.

The strength of this method is that, with a single point calibration of a simple structural representation, the static aeroelastic effects can be accounted for in CFD calculations across a range of test conditions. No prior knowledge of the model deformation during the wind-on test is required.
This approach has been successfully applied to the high aspect-ratio planforms of subsonic transports. The current challenge is to adapt the procedure to low aspect-ratio planforms typical of HSR configurations.

Approach

- Set up 6-plate ELAPS structural model of TCA Model 2
- Input geometric and material characteristics to ELAPS
- Perform pre-test bending calibration of wind-tunnel model
- Compute USM3Dns/ELAPS coupled N-S solution of TCA
- W/B/N/D/E at Mach 2.4, $\alpha=3.5^{\circ}, R e_{e}=6.4 \mathrm{M}$
- Manually move viscous grid with POSTGRID and restart sol'n
- Integrate F\&M for W/BN/D
- Compare $\alpha=3.5^{\circ}$ solution with Pitching Moment data
- Scale calibrated wing deformation until PM data is matched
- Run additional AOA's with final calibration and validate with other test point data
- F\&M and wing deflection/twist measurements

Approach

This slide outlines the overall approach. Additional details will be described in the remaining slides.
The approach is to construct a 6-plate structural representation of the TCA Model 2 with the Equivalent Laminated Plate Solution (ELAPS) code. The ELAPS model requires some geometric and material characteristics to be prescribed as input. This model is calibrated by a pre-test model bending procedure.
A coupled USM3Dns/ELAPS Navier-Stokes solution will be generated on the full W/B/N/D/E configuration at the cruise point, Mach 2.4 and angle of attack 3.5 degrees. Force and moments will be integrated only over the W/B/N/D portion for comparison with the Model 2 data. Grid movement will be performed manually using the POSTGRID code, which is part of the VGRIDns unstructured grid generation system.
The $\alpha=3.5^{\circ}$ solution will be compared with the experimental pitching moment data in order to fine tune the ELAPS calibration. Once the calibration is complete, the method will be tested at other angles of attack to validate the generality of the procedure. Correlations will be made against experimental force/moment and wing deflection/twist data.

The TetrUSS System

The flow computations are performed using the Tetrahedral Unstructured Software System (TetrUSS). This is a modular set of codes for solving Euler and Navier-Stokes problems on complex configurations. The system is based on tetrahedral volume elements which are extremely flexible for modeling the most complex of configurations.
TetrUSS consists of a geometry setup tool, GridTool, tetrahedral grid generator, VGRIDns/POSTGRID, flow solver, USM3Dns, and graphical analysis tool, VIGPLOT. These tools been relatively easy to use by a broad range of users. Because of it's loose coupling, other codes have have also been utilized within the framework by various users as denoted by parenthesis.
The TetrUSS system supports additional engineering capabilities such as interacting boundary layer (Euler/IBL), aeroelasticity, iterative design, and propulsion effects. These capabilities will be described in more detail in the next slide.

Modular TetrUSS Capabilities

Modular TetrUSS Capabilities

TetrUSS includes a modular capability for computing aeroelastic effects, iterative design, and/or interactive boundary layer. Each component is maintained independently and is coupled to the system by pre- and postprocessing utilities. The capabilities can all be used simultaneously, or in any combination.
During the script-driven update cycle, a solution file is written by the flow solver and is used by the sub-modules. Both the aeroelastic and design features involve grid movement, whereas the IBL feature generates transpiration boundary condition velocities.
The aeroelastic component converts the loads from the flow file into input for the structural code. The present options for structural modeling include a coupling with the ENSAERO system and the ELAPS code. Higher-level Finite Element Model (FEM) structural representations can be input through ENSAERO via modal or stiffness matrices.

While higher-order structural modeling is an option of this system, the present work is focused on utilizing a low-order structural representation through a simple plate model in the ELAPS code.

USM3Dns - Salient Features

- Tetrahedral cell-centered, finite volume
- Euler and Navier-Stokes
- Spalart-Allmaras turbulence model with wall function
- Time Integration - Implicit GS and Explicit RK
- Roe's upwind FDS with flux limiting
- Platforms
- Cray vector machines with multitasking
- Massively parallel computers or loosely coupled workstations
- Coming capabilities
- Advanced 2-eqn turbulence models (in testing)
- Low-Mach preconditioning (in testing)
- Time-accurate moving grid (planned)

USM3Dns - Salient Features

USM3Dns is a tetrahedral cell-centered, finite volume Euler and NavierStokes flow solver. Turbulence is modeled by the Spalart-Allmaras oneequation model. The sublayer region of the boundary layer can also be modeled analytically by a wall function in order to reduce near-wall grid density.
Solutions are advanced in time by either an implicit Gauss-Seidel scheme or the Jameson Runge-Kutta explicit time-stepping. Cell flux is computed with the Roe's Flux Difference Splitting (FDS), which can be limited by either a MinMod or SuperBee limiters.
USM3Dns will run on Cray vector processors with multitasking efficiencies of 6 out of 10 processors. Another Message Passing Interface (MPI) version of the code will run on massively parallel computers or loosely coupled workstations. Superlinear performance has been demonstrated on an Origin 2000 with 150 processors.
Additional capabilities such as 2-equation k-epsilon and Reynolds stress turbulence models, and low-Mach preconditioning have been implemented and are currently being tested in a non-release version of USM3Dns. The current plan is to a add time-accurate moving grid capability.

ELAPS Structural Code

- ELAPS - Equivalent Laminated Plate Solution
- Computationally efficient method based on plate model
- Employs Rayleigh-Ritz method with a global displacement polynomial function
- Less cumbersome to use than FEM
- Suitable for preliminary aeroelastic effects
- Easily coupled with USM3D
- Deformed surface points displaced vertically
- Volume grid moved manually* (at this time) via. POSTGRID
* Can be easily automated in the future

ELAPS Structural Code

The ELAPS code, developed by Dr. Gary Giles at NASA LaRC, is based on an equivalent laminated plate technology. For the present work, it can be applied to set up a computationally efficient polynomial plate representation of the wing planform. The Rayleigh-Ritz method is used to generate a polynomial function of vertical displacement over the wing planform.
While one could utilize a more complex finite-element model in the TetrUSS system, the advantage of the present approach is in its simplicity and rapid set up time.
Grid movement involves moving both the thin-layered 'viscous' tetrahedra as well as the outer 'inviscid' cells. This function is performed manually with the POSTGRID code at this time, but could be easily automated in the future.

Twist Calibration Procedure for Structural Plate Representation of Wind-Tunnel Model

Twist Calibration Procedure

This slide describes a simple pre-test calibration procedure of the ELAPS structural representation. Weights are hung a selected points on the outer wing panel of the wind-tunnel model. Measurements of model deformation are recorded at several locations on the configuration.

A simple solid plate representation is constructed of the model structure within the ELAPS code. Preliminary estimates of material properties are also prescribed. Simulated point loads are applied to the ELAPS model which produce an initial "computed" twist distribution which is compared to the measured values. The material properties are adjusted within ELAPS until there is reasonable agreement between the twist deformations from the computed and measured data.

Once this calibration is achieved, the coupled ELAPS model is then included in the Navier-Stokes computations across the test polar.

Point-Load Calibration of TCA Model 2b in UPWT

This slide illustrates how the weights are applied to the inverted TCA Model $2 b$ in the Unitary Plan Wind Tunnel. The inset photo depicts the recording of a measurement of tip deflection.
The plots contain the measured twist distribution induced by point loads applied at the 72 -percent and 87 -percent span stations. The dashed line is the raw "uncalibrated" ELAPS twist distribution based on the prescribed geometric and material properties of the model. The solid "calibrated" line was derived by adjusting the material properties in the 6-plate ELAPS model until a reasonable approximation of the measured data was obtained. As can be observed in the plots, some discrepancies do remain particularly at the tip with the inboard load point.

Changes to ELAPS Calibration Strategy

- Initial N-S calculations with standard pre-test calibration procedure achieved about a 40-percent improvement in pitching moment correlation at $\alpha=3.5^{\circ}$
- Adjusted calibration of 6-plate ELAPS model by doubling its surface displacements
- achieved close match with pitching moment data at $\alpha=3.5^{\circ}$
- Found last minute oversight in calibration
- Bending calibration done on Model 2b from T1846 (solid wing)
- Correlations made with Model 2a from T1671 (has flap cutouts)
- T1671 measured deformations twice that of T1846

Changes to the ELAPS Calibration Strategy

After the initial Navier-Stokes calculation using the calibrated ELAPS model, the correlation with the experimental pitching moment had improved only 40percent. It was initially assumed that the robustness of the 6-plate ELAPS model was not adequate to yield a straight forward calibration for low-aspect ratio planforms. A further adjustment was then made by doubling the surface displacements produced by the ELAPS model. This yielded a close match with the experimental pitching moment data at $\alpha=3.5^{\circ}$.

The source of this shortcoming was later determined to be an oversight on which Model 2 was calibrated. The bending calibration was performed on the Model 2 b from T1846 which had a solid wing structure, whereas the experimental data was taken from Model 2 a of T 1671 which was considerably more flexible due to leading- and trailing-edge flap cutouts. After a last minute check of optically measured model deformation data from the two tests, it was determined that twist measurements differed normally by a factor of two. Additional calculations will be made after the workshop to resolve this inconsistency.

Solution Characteristics

- Thin-Layer Tetrahedral Grid
- 1,428,427 cells (897,078 in 'viscous' layer)
- Average y^{+}of 1 st node is 20.1 , and cell centroid is 4.5
- Approx. 18 tetrahedra across mid-chord BL
- Flow conditions
- $M=2.4, \alpha=3,3.5,4, \& 5 \mathrm{deg}, \quad R e_{c}=6.4 \times 10^{6}$
- Flow model
- Full Reynolds-averaged Navier-Stokes
- Spalart-Allmaras turbulence model
- Wall function below first node (y^{+}approx. 20)

Solution Characteristics

A tetrahedral grid of 1.4 million cells was generated with VGRIDns. The average y^{+}obtained by averaging the values at the first node above the surface on all viscous surfaces was 20.1. Noting that the distance of the centroid of a first layer tetrahedral viscous cell above the surface is $1 / 4$ that of the first node, the average y^{+}at the cell centroids was 4.5 .
The flow conditions are Mach 2.4, $\alpha=3,3.5,4, \& 5$ degrees, $\operatorname{Re}_{\mathrm{c}}=6.4$ million. The computations incorporate the full Reynolds averaged Navier-Stokes equations above the first layer of tetrahedral cells using the Spalart-Allmaras turbulence model, and model the flow within the first layer (below y^{+}approx. 20) using a wall function.

HSR Technology Concept Airplane

Tetrahedral Viscous Grid $(1,428,427$ cells $)$

HSR Technology Concept Airplane

This slide depicts the surface and symmetry plane grid used in the computation. Note the clustering of the 'viscous' cells along the fuselage/symmetry plane boundary. All solutions were computed on the full W/B/N/D/E configuration, but forces and moments were integrated only over the truncated W/B/N/D geometry for comparison with supersonic wind-tunnel data.

Regarding movement of the nacelle/diverters under aeroelastic deformation, no special treatment was applied. TetrUSS has a capability for slaving the movement of components. But this could not utilized for TCA due to the tight integration of nacelle/diverter with the wing. Fortunately, the required nacelle movement was very small.

Solution Strategy

- Run 700 cycles on initial "rigid" grid
- Run additional 500 cycles to generate "rigid" reference sol'n
- Move grid using preceding flow solution
- Move surface grid front with PREELAPS utility
- Move volume grid with POSTGRID
- Restart USM3Dns from rigid solution for another 100 to 150 cycles with USM3Dns
- repeat process 3 times to converge aeroelastic solution
- Resource requirements
- Memory: 250MW
- CPU time: 12.5 C90 hours per AOA for initial 700 cycles; 7 hours to converge aeroelastic solution

Solution Strategy

The aeroelastic solutions were generated through a series of restart runs beginning with a partially converged 'rigid' solution, and continuing after each movement of the grid. The grid was moved manually with POSTGRID. A total of three movements/restarts were required to converge the aeroelastic deformation at each angle of attack. Each case required 250 megawords of memory and 20 hours of Cray C-90 time.

Effect of Calibrated USM3Dns/ELAPS on F\&M Correlation

Effect of Calibrated USM3Dns/ELAPS on F\&M Correlation

This slide presents the CFD correlations with force and moment data from UPWT T1671. Note that the 'rigid' USM3Dns result over-predicts lift and significantly under-predicts pitching moment. The drag coefficient is in good agreement and includes corrections for nacelle base pressure and for trip drag by the k^{2} method.
The ELAPS calibration point is denoted by the solid triangle on the pitchingmoment curve. The remaining open triangles were computed with USM3Dns using the calibrated ELAPS model. Note the good agreement of both the lift curve and the pitching moment with experimental data. Note further the excellent agreement with the CFL3D computation presented by Kuruvila, et al. The CFL3D result was computed on a deformed structured grid which matched the optically measured shape of the wind tunnel model.
Thus, the present approach offers a simplified technique for addressing aerodynamic deformation effects of low-aspect ratio wind-tunnel models in CFD computations without prior knowledge of those deformations.

References

Kuruvila, G., Hartwich, P. M., Baker, M. L.: "Effect of Aeroelasticity on the Aerodynamic Performance of the TCA", 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop, NASA CDCP-1006, Volume 1, Part 2, pp. 1589-1648

Twist Deformation on TCA Model 2 W/B/N/D

This slide conveys the correlation of computed and experimentally measured changes to spanwise distribution of wing twist at the four angles of attack. The general agreement is good, but the computed curves do not reflect the inflection present in the experimental curves. In particular, the changes in twist are under-predicted in the mid-span region and over-predicted near the tip.

Vertical Wing Displacement on TCA Model 2 W/B/N/D

UTWT Run 1671/85, $\mathrm{M}=2.4, \mathrm{Re}_{\mathrm{c}}=6.4 \times 10^{6}$

Vertical Wing Displacement on TCA Model 2 W/B/N/D

A comparison of the experimentally measured and computed spanwise distribution of vertical displacements are presented here for the four angles of attack. The experimental displacements were measured optically at several spanwise locations on the wing surface. Time did not permit us to extract the computed displacements at the same locations, thus, the leading- and trailingedge values are included on this figure. Note that the computed displacement curves tend to bracket the experimental ones, with the exception that the tip is over predicted.
The results on this and the prior two slides suggest that while the simple 6plate structural representation does not resolve all of the details of the aeroelastic phenomenon, it does result in a good estimate of the aggregate aerodynamic performance loads on the configuration.
A better detailed modeling might be achieved either by gaining more experience with the ELAPS model, or by applying a similar calibration procedure to a higher-order structural model.

Summary

- Applied simple point-calibrated structural model to include WT aeroelastic effects in N-S computations of low aspect-ratio HSR planform
- Demonstrated coupled system of unstructured N-S flow solver (USM3Dns) and low-level structural code (ELAPS) with movement of 'viscous' grid
- Improved N-S correlations with TCA Model 2 over range of test points
- Force and moment test data
- CFL3D solution with measured deformations
- Reasonable agreement of twist and displacement with data

Summary

The objective of this work was to demonstrate a simple technique which accounts for aeroelastic deformations experienced by HSR wind-tunnel models within CFD computations with a view toward improving the effectiveness of CFD as tool for augmenting the post-test understanding of experimental data.
Such a method has been validated herein using an unstructured Navier-Stokes flow solver, USM3Dns, and a low-level polynomial plate rendition of the structure through the ELAPS code. Technical challenges such as modular coupling of codes and movement of 'viscous' grids on a complex geometries have been overcome. The supporting results demonstrate that the aggregate aerodynamic performance loads are well predicted. While there is some deficiency in distributed quantities, the agreement of computed twist and displacement of the wing are in reasonable agreement with the data.
In summary, the present approach offers a simplified technique for addressing aerodynamic deformation effects of low-aspect ratio wind-tunnel models in CFD computations without prior knowledge of those deformations.

$$
\begin{gathered}
\text { Automated Euler/Navier-Stokes } \\
\text { Grid Generation/Grid Perturbation } \\
\text { Wing/Body Configurations }
\end{gathered}
$$

February, 1999
Configuration Aerodynamics Technology Development Program Selects Best Analysis / Design Optimization Methods : Demonstrate Significant L/Dmax Gains Demon____ L_

Realistic Aerodynamic

$$
\begin{array}{|c|}
\hline \text { Nacelle / Diverter } \\
\text { Design Integration } \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \hline \text { Tech. Baseline } \\
& \text { Development } \\
& \hline
\end{aligned}
$$ L...........

Əəәəs umoa spouləw
Viscous Drag Prediction
Cruise Point Optimization
Multi-Point Optimization
S\&C CFD Predictions
Goals
Objectives
Challenges
Approaches
Program

$$
\begin{array}{|c|}
\hline \text { Aero S\&C } \\
\text { Development } \\
\hline
\end{array}
$$

Introduction
Automated Euler/Navier-Stokes

Grid Generation/Grid Perturbation

This document describes the single-block wing/body grid generation package developed at NASA Ames Research Center during
解 remains incomplete following experience with a prik of a C-O-type tip treatment has also been incorporated, but this option resolution.)
It is well known that a C-H topology is adequate for plain wings, but less well-suited to wing/bodies. The present implementation has been refined enough that it probably represents the best that can be done for wing/bodies given the single-block restriction and the automation requirement. In combination with the single-block design code's pseudo-nacelle option for supersonic applications, this grid generator played a key role in the successful creation of the January 1997 Ames 01-03 refinement of the TCA-6 High Speed Civil SYN107-MB multiblock dears later, initial efforts to optimize the full Ames 01-03 wing/body/nacelle/diverter configuration with the indeed found by SYN87-SB with its pseudo-nacelle approximation.
Recent incorporation of a Navier-Stokes capability was prompted by the potential for application to the optimization of HSCT wing flap/slat settings. The gridding is ready, but viscous flow calculations are still not an option in SYN87-SB at the time of writing. Indeed, it is not clear that such a capability is practical in view of the large memory requirements and limited potential for distributed processing (limited to autotasking on CRAY C90-class supercomputers). Nonetheless, automated Navier-Stokes gridding for any likely wing/body configuration represents a potentially valuable capability which, at least, can be used in conjunction with the . encountered in these initial viscous solutions.
Automated Wing/Body Euler/Navier-Stokes Gridding, February 1999
TNITLOO - Nomenclature \& History

- Capabilities, Performance, \& Limitations
- Basic Design: C-H Topology, 8 Sub-blocks
- Body Surface Grid Strategy
- Indirect Navier-Stokes Strategy
- Rapid Grid Perturbation
- Reusable Software Utilities
- Illustrations
Representative Example

[^30]Automated Wing/Body Euler/Navier-Stokes Gridding, February 1999

Nomenclature and History
The basic package is now known as (subroutine) GRIDWB, which is employed without change by two programs: SYN87-SB and CH GRID.
The adjoint-based wing/body design code, SYN87-SB, is an outgrowth of the OPT67 finite-difference wing/body design code which employed an adaptation of the WBGRID package from Lockheed (Burris and Raj?) linked to a wing/body adaptation of the single-block flow solver, FLO67. Several years of grid generation development on behalf of SYN87-SB have produced a complete rewrite of WBGRID, with the symmetry plane's outer boundary shape-a reversed D-literally the only recognizable fragment remaining.
Early in 1997, the gridding portion of SYN87-SB was extracted as a stand-alone wing/body grid generator, CH_GRID. This simplified further development by eliminating the encumbrance of the flow and adjoint solvers, the ghost nacelle scheme, and the grid perturbation option. However, in mid-1998, translation to Fortran 90 with a view to making the software independent of grid size via dynamic allocation of workspace led to resurrection of the grid perturbation capability in CH_GRID in order to ease maintenance of the two programs.
Initial efforts to produce Navier-Stokes-type grids focused on adapting the elliptic smoothing portions of the basic Euler method to cope with drastically tighter spacing and correspondingly more extreme stretching. In essence, this meant an alternative to the index-based "foreground" control of orthogonality at the boundaries and "background" control of spacing. An option for arc-length-based decay of orthogonality control was incorporated in the ELLIP2D utility and variations were tested at great length via the CGRID airfoil grid generator. Actually, the eventual scheme used a hybrid arc-length/index-based formulation to decay the orthogonality terms away from the boundaries, among other refinements. However, results remained marginal at best, with instabilities very likely in boundary layer regions and very limited spreading of the orthogonality into the grid interior. No satisfactory method was found to decay the orthogonality control terms smoothly in a way which influenced the full thickness of the boundary layer region without also affecting opposite boundaries adversely. While the final scheme remains an option in ELLIP2D, it did not appear worthwhile to incorporate comparable capability in either ELLIPQ3D (for smoothing 3-space grid planes) or ELLIP3D (for grid volumes, where the analogous scheme would have been unacceptably expensive in terms of storage and computation).

[^31]
Current Capabilities
The single-block gridding within SYN87-SB and CH_GRID handles either a plain wing on a wall, or a wing/body configuration. The left wing and left half fuselage are treated; zero yaw is assumed. Geometry inputs consist of planar streamwise cuts for the wing, and planar body cross sections (point definitions not related to the surface grid dimensions). Input wing sections may be normalized or not. Output wing sections (possibly perturbed) may be normalized/unpitched, normalized/pitched, or full-scale/pitched. Here, pitch (about the leading edge) means the local angle of attack-sometimes referred to improperly as local twist.
Wing/body intersection calculations are protected by an option to fudge the body sections if the wing drops below the fuselage The intersection consists of many line/surface intersection points, each calculated rapidly and robustly via a safeguarded Newton iteration on t, u, and v using piecewise linear wing lines and bilinear or bicubic parametric body surface interpolation with derivatives.
Planform cranks or other desirable wing surface grid stations may be specified as inputs. These are blended smoothly into the nominal wing grid stations, which are controlled with sine/cosine inputs to allow clustering towards the root and/or tip.
In anticipation of significant leading and trailing edge deflections, the mean-line slopes of each wing surface grid section are carefully extrapolated into the sheets fore and aft of the wing. Spanwise irregularities observed along the leading edge as a result of discrete choice of leading edge points have been eliminated by continuous calculation of the true leading for each (rounded) wing station.
Arbitrary flap/slat hinge lines are handled at the "PERTURB" level above GRIDWB, but no attempt is made to resolve the streamwise edges of flaps or slats-the surface grid just smears these regions. A related class of "variable center" shape functions (Tows perturg pumps to be imposed along lines parallel to sures as shocks off nacelle/diverter leading edges.
 for getting away from spanwise perturbations along constant x / c lines was frequently expressed at the time.)

Performance

Performance-wise, using 100 volume grid smoothing iterations, a typical $193 \times 49 \times 65$ Euler grid takes about 150 CPU seconds from scratch on a CRAY C90. For a $305 \times 97 \times 65$ viscous grid, the initial Euler-spacing grid (which must be the same dimensions) takes about 800 seconds on a 225 MHz SGI R10000 processor, or $900+$ seconds on a 195 MHz Origin 2000 , using 200 smoothing iterations. The conversion from Euler spacing to Navier-Stokes spacing takes less than 6 seconds on any of these systems. Note that essentially none of the full grid generation vectorizes, while DO-loop-level parallelization via autotasking on a C90 is not appropriate. Warping the initial full grid, on the other hand, does vectorize.
edge, and face perturbations into the interior in less than 3 seconds (Euler, C90) or less than 9 seconds (Navier-Stokes, R10000)
Automated Wing/Body Euler/Navier-Stokes Gridding, February 1999
Automated Wing/Body Euler/Navier-Stokes Gridding, February 1999

As indicated above, the left wing and left half fuselage are treated; zero yaw is assumed. Geometry inputs consist of planar cuts for the wing and body-that is, point definitions. The long-desirable capabilty of gridding directly from CAD surface definitions remains as far from reality as ever. The design application complicates the CAD/CFD interface greatly, because the communication needs to be two-way. The control points of the NURBS curve/surface representations should become the design variables to avoid introducing approximations in the transfer of design results back to CAD/CAM systems. However, preliminary experience at Ames with 2D airfoil design via NURBS curve control points as design points has not been particularly encouraging. (Hicks-Henne-type shape functions, while capable of introducing spanwise waviness, are much more benign in the chordwise direction, whereas working with B-spline control points is not unlike working directly with section grid points as design variables in their tendency to introduce high-frequency irregularities.) Treating wing surfaces similarly at Ames has been limited to an oblique all-wing transport application where a handful of defining sections were represented as NURBS curves, with carefully optimized blending of thickness and chord in the spanwise direction. All section curves used the same knots to allow the lofting of (x, y) s to be performed via lofting of control points. There are no plans to pursue such approaches for the single-block methodology.

control surfaces-the surface grid just smears these regions.

While wing flaps and slats may have arbitrary hinge-lines, no attempt is made in the gridding to resolve the streamwise edges of the
Wing tip resolution is poor in the $\mathrm{C}-\mathrm{H}$ topology. A C-H/C-O gridding option to improve the tip handling was implemented in 1995 and has been carried along since, but is presently somewhat incomplete. It would require a boundary condition change in the singleblock flow solver, and there has been little incentive to pursue the option, although that remains a possibility.

Fuselage resolution is inevitably the weakest aspect of the single-block approach. Cell skewing is unavoidable on the nose, and especially below the root leading edge of low-mounted wings. The $3 D$ elliptic smoothing normally overcomes all negative cell volumes in the flow field, even though the 3D transfinite interpolation used to initialize the volume grid always produces odd skewing when a body is present, and particularly in the presence of cranked wing planforms, but positive cell volumes everywhere is the only explicit measure of grid quality. The aft body is also normally poorly resolved in deference to more-or-less steady growth of grid spacing between the root trailing edge and the far downstream boundary. The aft-most body station is captured precisely, however.

The wing/body grid generation is not parallelized. In principle, the 8 -sub-block topology could be taken advantage of once all the block face boundaries are established for the initial full grid, by distributing smoothing of the sub-blocks among processors. For pure grid generation (perhaps to be handed on to a parallelized flow solver), the typical times of 150 seconds and 800 seconds for Euler and Navier-Stokes grids make such a possibility of parallelism an unnecessary complication. For the design application, the initial full grid represents a small fraction of the total run time. Use of a very rapid grid perturbation scheme and the absence of parallelized flow and adjoint solvers again makes parallelizing the initial volume grid smoothing a pointless complication. On the other hand, the typical Euler grid of $600,000+$ points requires $50+$ Mwords on a CRAY C90, so the far larger memory requirements of a single-block/singleprocessor scheme with a (yet to be incorporated) Navier-Stokes solver on a ~ 2 million-point grid may well make single-block viscous design by optimization effectively impractical for quite some time.
SNOILVLIWIT

- Left Wing + Left Body Only (No Yaw)
- Geometry I/O is Planar Cuts-not CAD Surfaces
- Edges of Wing Flaps \& Slats are not Resolved
- Wing Tip and Body Extremes are Weakly Resolved
- Cell Skewing is Inevitable On \& Near the Fuselage
- Parallelization is Not Practical
- Vast Memory Requirements May Make Viscous
Single-Block Design by Optimization Impractical

Basic Design: C-H Topology \& 8 Sub-Blocks
The single-block $\mathbf{C - H}$ topology is an obvious choice for a wing on a wall, although the C-H/C-O variation mentioned above , ald flow solver which has not been implemented in SYN87-SB for lack of demand on HSCT applications. This is increasingly unlikely in view of the advances made with multiblock techniques.
Inclusion of a fuselage capability pushes the single-block topology to its limits. Retention of that topology has the advantage of enabling fully automated grid generation and avoiding the use of a far more complex multiblock flow solver. Through a series of refinements starting with a much-improved body surface grid strategy (more on which below), the topology limitations have been overcome probably as well as is likely to be done anywhere given the automation requirements.
Reliable elimination of all negative-volume cells in the flow-field grid, along with precise control of grid increments at key boundary locations, have been achieved mainly through the introduction of additional sub-block boundaries and enhanced elliptic smoothing utilities featuring orthogonality control. For instance, a boundary sheet forward of the wing leading edge, properly smoothed, enabled overcoming grid lines which crossed the forward part of the fuselage nose. This sheet later became essential for capturing the slopes of deflected wing leading edge slats. The present 8 sub-block scheme is the natural result of the need for precise control of initial radial increments at the wing leading edge, wing trailing edge, and far downstream wake boundary, for each In the spang root, the wing tip, and the beyond-the-tip outer boundary. These initial increments are specified as fractions of local chord. direction, the direction, the variation is mostly linear, but the 2-D smoothing utility permits nonlinear variation of the initial increment where appropriate, such as in the C grid at the wing tip.
The following illustration shows the 8 -sub-block C-H topology of the single-block grid applied to the TCA wing/body. The grid dimensions are $193 \times 49 \times 65$ as recommended for Euler solutions. The outer boundary radius has been set to half the vertical range, although it could be smaller. The interior edges orthogonal to the wing tip at the trailing edge are constructed with 5 -point splines. Other radial edge boundaries are similar, with slopes of leading and trailing edge deflections captured in the sheets forward and aft of the wing. (No flap or slat deflections are present in this figure.) A "fan" is barely visible in the symmetry plane aft of the fuselage; it completes the sweep by default, although this can be controlled otherwise.

C-H Topology \& 8 Sub-Blocks, Continued

 In addition to the more powerful elliptic smoothing, the starting guesses for the sub-block interiors have also been improved withthe implementation of a 3D TFI (transfinite interpolation) utility using Soni-type optimal blending functions. Even so, these starting
guesses can be surprisingly skewed by the body, particularly in the presence of wing planform cranks, so an extra boundary plane has
been introduced for TFI3D purposes at the end of the fuselage, normal to the wake sheet, as a partial fix.
The price paid for additional sub-block boundaries is the potential loss of smoothness in the grid lines across boundaries. Specifying
orthogonality at these boundaries helps in some regions but is not appropriate at others. (For instance, the sheet in front of a swept wing
should not force the initial lines away from/parallel to the wing leading edge to be normal to the fuselage or the boundary edge forward of
the tip-parallel to the leading edge is more appropriate.) Fortunately, Euler solvers tend to be insensitive to such sub-block boundary
discontinuities. As a check, the current radial-redistribution option has been applied using Euler rather than Navier-Stokes spacings as a
way of smoothing some of these discontinuities, but the effect on the computed force/moment coefficients was negligible. In the N-S
case, the radial redistribution has the effect of smoothing the grid lines across some of these boundaries. Converged N-S solutions have
been obtained so far only via the multiblock solver, FLO107-MB, since an N-S option has yet to be installed in SYN87-SB, so N-S
experience is limited at this time.
Further grid illustrations appear at the end of this document.

Automated Wing/Body Euler/Navier-Stokes Gridding, February 1999
Indirect Navier-Stokes Grid Strategy
As indicated in the history above, the indirect approach to achieving Navier-Stokes-type spacing was resorted to following unsatisfactory results with attempts to achieve direct arc-based control (as an alternative to index-based control) of spacing and orthogonality in the elliptic smoothing. Convergence in the boundary layer region was unreliable, even with extreme under-relaxation, and the orthogonality barely extended beyond the boundary layer at best.
The elliptic smoothing with Euler-type spacing works so well that retaining it held great appeal. Growing the grid dimensions following the initial Euler gridding was also considered, but soon abandoned as too complex. Starting with the correct \mathbf{N}-S dimensions means nominally that redistribution is required in only one direction. However, simply redistributing each radial line independently is not sufficient. (The extreme skewing that can result is perhaps best seen by considering a spanwise vertical plane along the wing trailing edge, where the azimuthal distribution along the body section must surely be taken into account by the radial lines near the body.) More careful blending is required, as will be explained.
With an initial full grid in hand, the radial redistribution starts by copying the second set of input controls to the working variables and regridding all of the radial edges of all sub-blocks. A hybrid geometric/Vinokur scheme is used for precise control before and after redistribution: typically, the first 20 points in the (nominal) N-S boundary layer have geometric spacing with growth factor 1.1 , while an overlapping Vinokur distribution (controlled by the first and last increments) is imposed beyond the boundary layer region. The same scheme for Euler grids typically uses just 4 points geometrically spaced at the surface and a similar growth factor of 1.1 (all variable inputs, of course).
Experience showed that blending sub-block face distributions across planform cranks is a bad idea producing skewed cells and negative volumes in the case of TCA-6. Therefore, any or all of the crank stations specified as inputs may be flagged as additional redistribution boundaries.
The second main step is to blend pairs of radial edges of each sub-block face via arc-length-based weighting to produce new faces.
The final step is to blend the new radial distributions of the sub-block faces into the sub-block interiors. Consider the subblock volume above the wing, with face boundaries forward of the leading edge, above the trailing edge, at the wing tip and wing root plus the wing surface and its opposite at the far outer boundary. A new interior radial distribution emanates from a point say ($i, 1, k$) on the interior of the wing surface. This relative distribution (beyond the boundary layer region, that is) is formed as a 2D transfinite interpolation-type combination of the relative radial distributions emanating from points (ile, $1, k$), (itu, $1, k$), ($i, 1,1$), and ($i, 1$, ktip), where the nomenclature should be obvious.
an

Automated Wing/Body Euler/Navier-Stokes Gridding, February 1999

Rapid Grid Perturbation Even with a fully-automated grid generator and adjoint-based gradients for the aerodynamic objective function, the possibility of hundreds of design variables makes full grid generation for every change of a variable out of the question. (The geometric derivatives required for each adjoint-based derivative of the objective function are actually computed by finite differencing in the design code.) Therefore, it is essential to have an accurate and efficient means of perturbing/warping/morphing the initial grid.
Such a warping capability is an integral part of GRIDWB. The wing/body intersection and suface gidding combination with 2D or quasi-3D warping of other sub-block boundaries, all of the sub-block faces cang are sufficiently rapid that, in very efficiently. The face perturbations are then interpolated into the sub-block interiors, and this too is very efficient For instp" mode typical Euler case ($193 \times 49 \times 65$) takes just $\mathbf{2 . 8 3}$ seconds of CRAY C90 CPU time to perturb the grid.
Grid warping uses the initial relative interior arc lengths in order to interpolate boundary perturbations into the interior. For the 1D case, a single pass through the interior points adjusts them for given new end points. The 2D and quasi-3D cases perturb the interior in two stages, by first calculating 1D-type edge perturbations from just the corner perturbations, then calculating a second set of edge perturbations that move the interim edges to the desired edges. These two sets of edge perturbations are interpolated into the face interior via independent arc-length-based combinations of the contributions from the two pairs of opposite edges corresponding to the index directions. The two stages can be combined in a single vectorizable pass through the interior grid points. Analogously, the 3D warping case is performed in three stages:

(1) Determine face perturbations corresponding to corner perturbations (only).

(2) Determine further face perturbations corresponding to perturbing the interim edges to the final edges.
(3) Determine further face perturbations corresponding to perturbing the interim faces from stage 2 to the final faces.
The pairs of perturbations-a different weighting for each stage, because only in the final stage are the contributions from the the three index
directions independent. These three stages can also be combined in a single vectorizable pass through the interior grid points.
In the stand-alone case (CH_GRID), a "check warp" option is incorporated to exercise the grid perturbation scheme. In this case following completion of the full grid, the first variable ${ }^{1}$ is perturbed by the input " h " and the grid is immediately regenerated in "warp" mode. If the scale factor associated with the first variable is also input as zero, then the perturbation is actually zero, and the resulting grid should be identical to the initial grid. Any difference, no matter how slight, would introduce spurious effects during a gradient calculation in the design code. Perfecting the warping option for the new indirect mode required considerable care setting up all the subblock boundaries. Edge distributions actually have to pass through the Euler stage before N-S redistribution to get the exact match reqd.
CH_GRID also retains the design variable and constraint inputs of the design code, as it may be used to perturb geometry and/or check constraints without doing any grid generation.
Automated Wing/Body Euler/Navier-Stokes Gridding, February 1999
RAPID GRID PERTURBATION

-

- Grid Warping is Included so that the GRIDWB
Module is Common to CH_GRID and SYN87-SB
- Wing \& Body are Regridded from Scratch;
Most Other Sub-block Faces can be Warped
- Sub-block Volumes are Warped in 3 Stages:
- (1) Corner Motion (Only) Produces Interim Faces
-(2) Edge Motion Produces Further Interim Faces
-(3) Face Motion Produces Desired Faces
- Face Deviations from Each Stage are Arc-length
Blended into the Interior in 1 Pass which Vectorizes

Reusable Software Utilities

The GRIDWB single-block grid generation package that is common to CH_GRID and SYN87-SB represents a good example of reusable software in action. While GRIDWB contains 7,367 lines of application-specific source code of which 4,169 are Fortran , he raing components-about two-thirds of the bulk-are general-purpose, argument-driven utilities: more than 50 Fortran 77 and Fortran 90 numerical subroutines ($16,264 / 7,850$ lines of source/code) are suitable for other applications.
Three sets of 2D, quasi-3D, and 3D gridding utilities are of interest to grid generators:
() The transfinite interpolation routines TFI2D, TFIQ3D, \& TFI3D serve for cheap algebraic filling of grid interiors given the ans. For the plane and surface cases, the Soni-type blending functions at point (i, j) are derived from the intersection of the號解 planes through the point. Application of the converged blending functions is a three-stage process ${ }^{3}$ which can be performed in a single vectorizable pass through the volume points.
(2) The elliptic smoothing routines ELLIP2D, ELLIPQ3D, \& ELLIP3D have evolved substantially from the TTM2D and -3D routines that were part of WBGRID, mainly in their addition of Sorenson-type "foreground" orthogonality control to the Thomas-Middlecoff-type "background" spacing control. The automatic array feature of Fortran 90 has enabled all three to be fully argumentdriven without the need for reuse of available workspace via common blocks that made the Fortran 77 versions less portable. The option in ot geometry surfacs. It (the
 tends to perform well if the boundary faces are in good shape. All 3 utilities perform SLOR iterations which do not vectorize expensive, ә.
(3) The grid perturbations routines WARP2D, WARPQ3D, \& WARP3D are detailed above, and are very efficient
2 "Two- and Three-Dimensional Grid Generation for Internal Flow Applications of CFD", AIAA 85-1526
Best described in the "projectors" section of "Numerical Grid Generation" by Thompson, Warsi, and Mastin (1985), pp. 315-326
Automated Wing/Body Euler/Navier-Stokes Gridding, February 1999

50+ GRIDWB Components are General Purpose Fortran 77 \& Fortran 90 Numerical Utilities

16,264 Lines of Source Code/7,850 Lines of Fortran
are General Purpose Utilities

Automated Wing/Body Euler/Navier-Stokes Gridding, February 1999

Further Illustrations (2)
The upper surfaces of the TCA- 6 wing and body are shown for the same $193 \times 49 \times 65$ Euler grid along with the wake sheet, the $i=$
ile sheet forward of the leading edge, and the corresponding sheet beyond the wing tip.
The wing surface grid has captured the planform crank at the $z=480.416$ " station as well as an artificial crank at $z=125$ " beyond
which wing grid section lines are essentially planar and virtually unaffected by possible fuselage diameter perturbations. This prevents
unintended spanwise motion of pseudo-nacelle effects during HSCT optimization.
Once-troublesome crossing of grid lines at the nose (worst for shorter, rounder noses) is eliminated by a combination of 2D and quasi-
3D elliptic smoothing of the sheet forward of the leading edge. Note that specifying orthogonality at the "water-line" edge along the side
of the nose is not appropriate for swept-wing cases because of the consequences very near the root, where following the leading edge
sweep is more critical. The same is true along the edges fore and aft of the wing tip.
Automated Wing/Body Euler/Navier-Stokes Gridding, February 1999
TCA-6 Wing/Body Upper Surface

Further Illustrations (3)

The remaining illustrations are shown in groups of three in order to compare a standard $193 \times 49 \times 65$ Euler grid with Navier-Stokessized grids before and after redistribution of the interim large Euler-type grid. Clearly, the radial redistribution of the interim Euler-type解
 layer of the N-S grid with the typical $193 \times 49 \times 65$ Euler grid is therefore more meaningful, and is for the most part quite favorable.
The interim Euler grid must have the same dimensions as the final Navier-Stokes-type grid. The dimensions here are $297 \times 97 \times$ 65 , with jcrown $=65$. Other key $\mathrm{N}-\mathrm{S}$ inputs are nblayer $=20$ and rblayer $=1.1$, vs. nblayer $=4$ and rblayer $=1.1$ for the smaller Euler grid. (The first nblayer points off the $j=1$ surface for every radial grid line are spaced geometrically using the growth factor rblayer. The are 0.00001 ino They are 0.00001 of local chord for the N -S case in this example.
The case shown is a small business jet rather than an HSCT, to help illustrate the flexibility of the grid package. Growing a bulge on he aft body via optimization to match an experimental wing pressure distribution, then freezing the bulge during further optimization, is a proven technique for improving the effectiveness of the single-block methodology on such configurations with aft-body-mounted nacelles.
The first set of bizjet illustrations shows most of the body surface grid. Note that the N-S grid spacing, with more streamwise points as well as more radial points beyond the boundary layer region, compares favorably with the standard Euler grid spacing.

Further Illustrations (4)
The cross-stream plots show i grid planes at approximately 80% wing x / c. The traditional spanwise resolution prevents the C-H
topology from bunching k planes at the body surface, where the flow calculations are therefore strictly inviscid and rather crude at best.
The two Euler-type grids achieve fair orthogonality at the body surface and symmetry plane $(k=1$), but much of this is lost in the
Navier-Stokes form as a result of pulling the radial points towards the wing. This is unlikely to have a significant effect, but quantitative
results are not available.

Further Illustrations (5)
Two sets of three wing-section plots show the mid-span $k=25$ grid planes, where $k t i p=49$. In the first set, the influence of the
fuselage is still apparent. The excellent orthogonality of the radial Euler grid lines at the wing surface attained by the $3 D$ elliptic
smoothing is fully preserved in the $N-S$ grid. Smoothness across the three interior sub-block faces (above and below the trailing
edge, and forward of the leading edge) is also respectable in all three cases.

CFD Performance Improvements Over TCA presented in terms of drag count improvement compared with the TCA baseline configuration at Mach $2.4, \mathrm{C}_{\mathrm{L}}=$ 0.1 , in chart 2 . The three candidate designs are designated by the organization from which they were derived. n, BCAG Group's design from Seattle, and BLB represents the design from Boeing Long Beach. All CFD methods are in unanimous agreement that the Ames 1-03 configuration has the largest performance improvement, followed closely by the BCAG configuration, with a much smaller improvement attained by Boeing Long Beach.
The Ames design was obtained using the single-block wing/body code SYN87-SB with its "pseudo" nacelle option-an elaborate technique for incorporating nacelle/diverter effects into the design optimization process. This technique uses AIRPLANE surface pressure coefficient data with and without the nacelles/diverters.
It is reasonable to expect that further improvements could be achieved by including the "real" nacelles directly into the optimization process by use of the newly-developed multiblock optimization code, SYN107-MB, which can handle full configurations.
CFD Performance Improvements over TCA

Chart 3
Methods of Incorporating Nacelle/Diverter Effects into the Design Process Three methods have been used to incorporate the nacelle/diverter effects into the optimization procedures. The first method, which has been used extensively on several HSR configurations for the past several years, is called the "pseudo" nacelle method. This term means there are no nacelles or diverters actually present in the optimization process, but the effects of having nacelles and diverters present are incorporated by using information obtained from the differences between AIRPLANE solutions for wing/body and wing/body/ nacelle/diverter configurations.

[^32]
0
Chart 4

> Method Advantages and Disadvantages
> A few advantages and disadvantages for each of the methods are given. The "pseudo" nacelle method has the advantage that each (single-block $\mathrm{C}-\mathrm{H}$) grid is generated automatically from sectional wing and body planar cuts within the optimization code. The need for AIRPLANE nacelles-on and -off solutions, which should be updated periodically to maintain the accuracy of the nacelle/diverter approximation, is a drawback. However, the AIRPLANE solution about a complete configuration is easier to obtain than a structured grid solution since the user only needs to generate an unstructured surface grid. After an initial surface triangulation is generated, the volume grid is generated automatically, and all subsequent surface meshes for intermediate designs can be morphed to the new geometry.
The "warped" nacelle method has the disadvantage of warping the nacelles during wing design. (The nacelle (he block can ber wing shape changes.) This method was thought to be adequate for small perturbations in the nacelle and diverter regions, and was applied to the Ames 1-03 design which already had significant surface contouring in the nacelle and diverter regions. The method was used only during the period when SYN 107-MB was being modified to maintain precise nacelle and diverter shapes during optimization.

[^33]Advantages and Disadvantages
Method
"Pseudo"
若

10

Procedure for Incorporating Pseudo Nacelle/Diverter Effects into SYN87-SB
The procedure for incorporating the pseudo nacelle/diverter effects into SYN87-SB requires several steps in
order to model both the "nacelle on wing" and "wing on nacelle" effects properly. The first step is to obtain an AIRPLANE solution for the complete configuration with nacelles and diverters at the design angle of attack. This angle of attack is the angle which provides the design lift coefficient for the complete configuration. After arriving at the design alpha, α_{d}, AIRPLANE is run without nacelles and diverters at this same angle of attack. These two solutions are used to provide the third step whereby the "wing on nacelle" effects, also referred to as the "buoyancy effects", are incorporated into SYN87-SB. The external surface geometry files and surface
pressure coefficients obtained for the nacelle and diverter are input into SYN87-SB. The geometric surfaces are used to interpolate the effects of the wing changes onto the nacelles. As the flow field changes below the wing in the vicinity of the nacelles during optimization, the changes in the pressures are measured by interpolating the flow solution onto the AIRPLANE surface nacelle and diverter geometries to establish a change in forces on the nacelles which captures the "wing on nacelle" effects. The two AIRPLANE solutions are also used to capture the "nacelle on wing" effects, whereby the differences in the pressure distributions on the lower surface of the wing with and without nacelles and diverters are interpolated onto the SYN87-SB structured wing/body grid. The accuracy of both types of effects deteriorates as the wing shape evolves, so periodic updates are required for the data input from AIRPLANE. The next step is to optimize using D/L as the objective function, but prior to this a mini-polar which includes the design lift coefficient for a single-point design must be obtained to find a
minimum C_{D} so that (L/D) max occurs at α_{d}. This minimum C_{D} is included in the drag çoefficient computations so that true improvements to L/D can be attained. Without this shift in the drag coefficient value, the optimization code can "exploit the design" by modifying the lift coefficient to find the $(\mathrm{L} / \mathrm{D})_{\max }$. The final step is to update the nacelle/diverter information periodically by evaluating intermediate designs, with and without nacelles and diverters, using AIRPLANE. The frequency with which the nacelle/diverter effects should be updated is not known. However, since these effects will vary as the configuration shape is modified, they should be updated as often as practical.
Procedure for Incorporating Pseudo Nacelle/
Diverter Effects into SYN87-SB

\Rightarrow "wing on nacelle" or "buoyancy" effects
a) nacelle/diverter external surface geometry files
b) nacelle/diverter surface Cps

[^34]Chart 6
AIRPLANE Nacelle/Diverter Grids and Solutions Used for the "Pseudo" Nacelle Method
This figure illustrates the actual nacelle and diverter grids that were extracted from the AIRPLANE wing/body/ nacelle/diverter solutions. The nacelles have a very dense distribution of grid points over the entire surface,

[^35] corrections to the wing/body coefficients computed by SYN87-SB.

Incorporation of "Nacelle on Wing" Effects Into SYN87-SB, Mach 2.4, alpha 3.756

This figure compares a lower wing surface solution from SYN87-SB (including the nacelle/diverter correction)
with the corresponding wing/body/nacelle/diverter AIRPLANE unstructured grid and solution. The AIRPLANE
solution (lower half of the picture) has the nacelles and diverters removed in order not to obscure the erid on the
wing in the vicinity of the nacelles. The AIRPLANE grid is very dense on the lower surface, producing the crisp nacelle shocks shown. The shocks in the SYN87-SB solution (upper half of picture) are not as crisp because of the coarser grid used. A denser grid would capture the nacelle effects more accurately, but may also produce a more aggressive shaping of the lower wing surface that may be less likely to hold up in a viscous flowfield.

Intermediate Design Cps: AIRPLANE Mach 2.4, alpha 3.756
The AIRPLANE lower surface pressure coefficients are shown for the intermediate designs computed during the
design of the Ames 1-03 configuration. This chart illustrates the importance of updating the nacelles-on/-off
pressure data used by SYN87-SB. The nacelle shocks are weakened during the course of the design process, and
the changes between designs should eventually become negligible. Note that both the shocks which emanate from
the nacelles and the shocks reflected by the adjacent nacelle continue to be weakened during optimization.

Chart 9
Baseline TCA: AIRPLANE Solution Mach 2.4, alpha 3.6
nt on the ure of the Ames 1-03

 he nacelles is shown. is shown ressures with the the vicinity of Compare these
configuration at the same lift coefficient

Chart 10

$$
\begin{aligned}
& \text { Ames 1-03: AIRPLANE Solution Mach 2.4, alpha } 3.756 \\
& \text { This figure shows significant reductions in the nacelle shock strengths on the lower surface of the wing and on } \\
& \text { the sides of the nacelles. This reduction in shock strength is a result of extensive shaping of the wing in this } \\
& \text { region. This chart should be compared with the previous chart of the baseline TCA configuration. This chart } \\
& \text { and the previous chart show the effectiveness of the pseudo nacelle method in reducing the shocks on the wing } \\
& \text { lower surface and the nacelles. }
\end{aligned}
$$

Warped Nacelle Method
The Ames 1-03 design was further optimized using an interim version of the newly developed SYN107-MB. Multiple-block grids about the Ames 1-03 complete with nacelles and diverters were generated. The multiblock code was being enhanced to maintain the contours of the original nacelle shape, but this required extensive modification to the code and several months of code development. The code could be used during this interim period of time, but the nacelle shape could be distorted as a result of following the shape changes applied to the wing. This was thought to be acceptable for the mature design of the Ames $1-03$ since the wing was already extensively modified, and only a limited warping of the nacelles was expected.
Warped Nacelle Method

- Used during interim while multiblock code
extended to maintain shape of nacelle/
diverter geometries
- Applicable to mature designs where the
majority of wing shaping is complete and
limited nacelle warping is expected
- Initial multiblock CFD grid includes
nacelles/diverters as for rigid method, but
perturbed grids can distort nacelle blocks
Chart 12

Chart 13
SYN107-MB Lower Surface Grid and Solution Used with "Warped" and "Rigid" Nacelle The multiblock grid shown in the previous chart is shown in this chart with the nacelles and diverters removed in order to compare it with the single-block and AIRPLANE grids shown in chart 7. The SYN107-MB grid shown here is denser than the SYN87-SB grid but still much coarser than the AIRPLANE grid. The increased density of the grid relative to the SYN87-SB grid will cause a more aggressive shaping of the lower wing in the nacelle/diverter region.
SYN107-MB Lower Surface Grid and Solution
Used with "Warped" and "Rigid" Nacelle Methods
Pen

Pressure Drag Comparisons, Wing/Body/Nacelle/Diverter
This chart shows a drag reduction of This improvement was obtained aft 1-03 configuration Ames 1-03 results are shown for both the scalar and CUSP (Convective Upwind and Split Pressure) dissipation schemes. The approximate 0.5 count shift in the drag between schemes is expected because the shocks are more crisply captured and the losses in total pressure at the leading edge of the wing are reduced with the CUSP dissipation scheme. The CUSP dissipation results are more accurate, but require more time to obtain a converged solution. The computation for the 6-08 design shown in the figure and all the optimization runs leading to this design used the CUSP dissipation method. The improvement for the 6-08 design is therefore measured against the Ames 1-03 CUSP solution.

SYN107-MB Warped Nacelle Design Comparison, Wing/Body/Nacelle/Diverter

 $\mathrm{M}=2.4$, no internal or base nacelle forces, entire fuselage
Chart 15

$$
\begin{aligned}
& \text { Wing/Body Pressure Drag Comparisons (Ames } 6-08 \text { vs. Ames } 1-03 \text {) } \\
& \text { The wing/body component forces for the Ames } 1-03 \text { and the } 6-08 \text { (warped nacelle) d } \\
& \text { output files and plotted to show that a drag reduction of only about } 0.25 \text { counts impr } \\
& \text { the changes in pressures on the wing. }
\end{aligned}
$$

Chart 16 Nacelle/Diverter Pressure Drag Comparisons (Ames 6-08 vs. Ames 1-03)
The nacelle and diverter component forces are plotted similarly for the Ames 1-03 and 6-08 warped nacelle
design. Note that more than a count of drag improvement is attributable to the nacelles and diverters. This
unfortunately indicates that the wing was being shaped to warp the nacelles in a beneficial way. However, the
nacelles must be constrained to maintain their original shape and thus the majority of this improvement cannot
realized.

SYN107-MB Warped Nacelle Design Comparison, Nacelle/Diverter $\mathrm{M}=2.4$

Chart 17
$X=2500$ 980608 vs. Ames 1-03, $X=2500$ and $X=2600$ are shown in this figure. The pressure distributions are displayed for just the wing/body, whereas the complete geometry including the nacelles and diverters are depicted in the figure. The wing exhibits aggresssive shaping in this region.

Chart 18 Geometry and Pressure Distribution Comparisons (Ames 980608 vs. Ames $\mathbf{1 - 0 3}, \mathrm{X}=\mathbf{2 7 0 0}$
and $\mathrm{X}=\mathbf{2 8 0 0}$)
Pressures and geometry comparisons near the trailing edge of the wing are shown. The extensive camber
changes result in a wavy upper surface pressure distribution and relatively small changes are seen in the lower
surface pressures.

Chart 20
Geometry and Pressure Distribution Comparisons (Ames 980608 vs. Ames 1-03, Z=365 and $Z=442$)
The cut at $Z=365$ cuts through the outboard nacelle. The pressure distributions are not significantly different. The strength of the nacelle shocks cannot be compared since they are outside the plot range. The $\mathrm{Z}=442$ station is located outboard of the outboard nacelle. Here the nacelle shock is reduced slightly for the 6-08 design.

Chart 21
Comparison of the $\mathbf{6 - 0 8}$ configuration with Deformed and Original Nacelles

Comparison of the 6-08 Configuration with Deformed and Original Nacelles

 $\mathrm{M}=2.4$, no internal or base nacelle forces, entire fuselage

SYN107-MB 1-03 SCALAR
SYN107-MB 6-08 Deformed nacelles, SCALAR SYN107-MB 6-08 Original nacelles, SCALAR

Rigid Nacelle Method

By late October 1998, SYN107-MB had been modified to permit optimization of the wing while maintaining the original shapes of the nacelles and diverters. This method, like the warped nacelle method, requires a complete surface and volume grid in a multiblock format with one-to-one grid abutments between adjoining blocks, and each block must be dimensioned with $2^{n}+1$ points so that multigrid flow and adjoint solutions can be obtained. The rigid nacelle method requires additional inputs to the AEROSURF surface paneling subsystem that pertain to the nacelles and diverter geometry. Radial nacelle cuts and sets of diverter cuts are required for the rigid method that are not required for the warped method, in addition to the planar wing and body cuts needed for all methods. These cuts of the nacelles and diverters are necessary for AEROSURF to obtain proper component intersections and a fully-paneled representation of the complete configuration for use by the grid perturbation scheme, whereas the warped nacelle method used a previous version of AEROSURF which paneled only the wing/body components.
This latest method maintains the essential shape of the nacelles, and repositions each nacelle such that the diverter height is maintained at the leading edge during optimization. The diverters are forced to zero height at the trailing edge by minor warping towards the nacelle centerlines. The nacelles maintain the original roll angle with the upper aft nacelle surfaces adjusted to match the wing trailing edge angle. The wing surface paneling around the diverters is also much more involved, and is done in stages starting with the paneling of the plain wing. The entire process of intersecting and paneling all components of the TCA three-surface configuration nevertheless takes just 1 CPU second on an SGI Origin2000-class processor. Some of the resulting 54 surface patches are shown in the following figure.
Chart 23 eh as geometry definition that serves as a template to move the surface CFD mesh points such that they will conform to
he exact geometry representation. The mapping between the parametric patches and the CFD mesh is calculated as a preprocessing step (program UV_MAP) using the baseline configuration.

Chart 24

[^36]
SYN107-MB Rigid Nacelle Design Comparison, Wing/Body/Nacelle/Diverter

 $\mathrm{M}=2.4$, no internal or base nacelle forces, entire fuselage
wing/body components compared with the Ames 1-03 design.

SYN107-MB Rigid Nacelle Design, Wing/Body Drag Comparison

$\mathrm{M}=2.4$, entire fuselage
$\cdots \quad$ Ames 1-03, SCALAR
$\cdots-A_{-} \quad$ Ames $12-10$ design, SCALAR

Chart 26
SYN107-MB Rigid Nacelle Design, Nacelle/Diverter Drag Comparison
The nacelle and diverter component forces without the internal drag for the Ames 1-03 and the 12-10 (rigid
nacelle designn have been plotted to show that a alage increase in lift on the nacelles and diverters is achieved
along with a drag improvement. The large shift in lift coefficient without incurring any drag penalty is
responsible for producing the majoity of the improvement for the complete configuration (see chart 24). The
data from this chart combined with that of the previous chart indicate that the performance gain for this design is
evidently from improved "wing on nacelle" effects.

SYN107-MB Rigid Nacelle Design, Nacelle/Diverter Drag Comparison

$\mathrm{M}=2.4$, no internal nacelle forces

\longrightarrow Ames 1-03, SCALAR

- - Ames 12-10 design, SCALAR

Chart 28 Geometry and Pressure Distribution Comparisons (Ames 12-10 vs. Ames 1-03, X=2700
and $\mathrm{X}=\mathbf{2 8 0 0}$)
The pressure distributions here show changes similar to those shown in the previous chart. The upper surface
pressures are more wavy, and the lower surfaces show an increase in pressure from the nacelle shocks. The
geometry differences are much smaller at these axial locations than at the previous locations, with little or no
changes at $\mathrm{X}=2800$. The trailing edge was not modified.

$00^{\circ}{ }^{-}$	S10-	010	500°	000	S0\%	Or\%	s10	020

> Geometry and Pressure Distribution Comparisons
Ames 981210 vs. Ames $1-03, X=2700$ and $X=2800$

view as seen before in the cross-stream cut views.

Chart 30
Geometry and Pressure Distribution Comparisons (Ames $\mathbf{1 2 - 1 0}$ vs. Ames $\mathbf{1 - 0 3}, \mathbf{Z = 3 6 5}$ and
$\mathbf{Z = 4 4 2)}$
The changes to the geometry and the pressure distributions at these span stations (through the outer nacelle and
outboard of it) appear small.

Chart 31
Summary
The majority of improvements achieved over the TCA design were found using the pseudo nacelle method with SYN87-SB and AIRPLANE nacelle/diverter effects. This method after several years of development to account for the both the "wing on nacelle" and "nacelle on wing" effects has proven to do a very good job of incorporating these effects into the optimization procedure.
The warped nacelle method was largely ineffective, and is now superseded by the rigid nacelle method.
> nacelle method, but this may be attributed to the larger number of grid points used on the lower surface of the
wing for the rigid nacelle method than was used for the pseudo nacelle method. The configuration resulting from the rigid nacelle design method showed a negative improvement in the wing
body performance, with all of the improvements on the nacelles and diverters. This implies that the
performance gain is attributable to improved "wing on nacelle" effects.
Coarser grids similar to those used with the pseudo nacelle method could result in more realistic designs since the
nacelle shocks are more dispersed and may be more similar in location and strength to viscous nacelle shocks.
KIPUUUUNS

- Majority of TCA improvements found using pseudo nacelle method
- Warped nacelle method ineffective-superseded by rigid nacelle
design capability
- Rigid nacelle design led to more aggressive wing shaping than pseudo
nacelle method

[^37]A PTC Optimization and Control Surface Interference Study
HSR Airframe Technical Review
Anaheim, California February 8-12, 1999
Raymond Hicks
Susan Cliff
Mark Rimlinger
Scott Murman
James Reuther
This report considers the effect of canard and horizontal tail vertical position on the aerodynamic characteristics of the PTC configuration in the first problem followed by an optimization run with canard and tail incidence and wing camber design variables and finally an PTC configuration. This final study will show the aerodynamic interference between the canard, wing and horizontal tail.
Outline

- Effect of canard and horizontal tail vertical position
- Trim opt. with canard and tail incidence
- Trim plus performance opt. with canard and tail incidence and wing camber
- Component buildup
This figure shows the effect of the vertical position of the horizontal tail on the wing drag of the PTC configuration without nacelles and diverters and with the canard fixed at the baseline position. The analysis was conducted at a constant lift coefficient of 0.0995 and Mach 2.40 using the Euler design code SYN107MB. Note that the wing lift increases nearly lineanly with increasing tail posit decreases with increasing
indicated by 0.00 on the position. The total change
 figura te adols you maintain c
used to 002 jo uo!

This figures shows the variation of the drag of the horizontal tail as a function of vertical position of that control surface. Note the

 increasing tail
of the tail and
the wing at the position

rmh - 4

rmh - 6

Total configuration drag is plotted against canard vertical position in this figure. The horizontal tail was fixed at the baseline position for these calculations. The two most obvious differences between these data and those shown for the horizontal tail position changes are the
smaller drag changes associated with moving the canard compared with moving the tail and the more significant break in slope. In fact,
the slope changes sign at the baseline position for canard movement. If the drag changes were larger it might be worth spending a little
time to try to understand the sign change. The range of vertical movement for the canard is smaller than for the tail due to less body
height at the canard location available to move the canard compared with that for the tail. ared with that for

This figure shows the variation of total configuration drag as a function of optimization search step. Search steps are used on the abscissa rather than optimization iteration because the false steps (increasing objective function) can be seen. When optimization iteration is used only the final search step is observed and the data tend to look smoother. This type of plot shows that the optimization algorithm takes several steps in the search direction which do not result in an improvement in the objective function. The objective function is defined in the figure and the design variables were canard and tail incidence angle. The rotation axis for the canard and tail was 70% of the root chord which is approximately 50% of the tip chord of each surface. Note that there were three steps with increasing drag and several steps with no drag decrease before reaching the final value. The objective function for this case is composed of two terms representing an effort to trim the aircraft while minimizing drag. The weighting factor multiplying the moment term is an order of magnitude greater than the drag weighting factor but the moment coefficient is squared so the drag term is actually larger than the moment term. This optimization problem was conducted at constant cruise lift so the angle of attack changed during optimization. This optimization run resulted in a drag decrease of nearly 3.0 counts while reducing the pitching moment to near trim. The moment data will be shown in the next figure. The center of gravity was located quite far aft at 2304.71 inches from the nose. This center of gravity position produced a decrease in canard incidence and an increase in tail incidence for trim. Both drag and pitching moment move in the desired direction for this aft c.g. position when the canard load is decreased and the tail load is increased.
rmh - 8

The pitching moment history shown in this figure has approximately the same trend as the drag data shown in the previous figure with similar false steps and the number of steps required to reach a final level of pitching moment. Note that the pitching moment did not reach pitching moment could have been forced to a smaller value by increasing the weighting factor on the moment term in the objective function definition or decreasing the magnitude of the drag term weighting factor or both but the result would have produced less drag reduction. A better method of controlling pitching moment while reducing drag would be to impose a hard constraint on pitching moment with a drag objective function. This capability was not available in the design code at the time of this investigation.
rmh - 9

The angle of attack data shows a nearly monotonic decrease during the optimization process resulting primarily from an increasing tail is smaller than the horizontal tail by nearly a factor of 2 so the increasing load on the tail more than offset the decreasing load on the canard. The same false steps noted earlier for the drag and pitching moment are visible here but are smaller. The angle of attack decreased by approximately 0.20 degrees to maintain the cruise lift coefficient of 0.0995 . If this problem had been conducted at constant angle of
attack the configuration lift would have increased in response to the increasing tail load during optimization. rmh - 10

A lift-drag ratio history is shown in this figure. The data shows that the lift-drag ratio increased from 12.85 to 13.28 during the optimization process. This is a fairly substantial increase from the use of only two design variables and would not be possible if the drag
and pitching moment did not require the same direction of movement of the canard and tail. As discussed previously, this increase is only
realizable when the center of gravity is located in an aft position. When a forward location is used the horizontal tail load decreases while
the canard load increases resulting in a decrease in the lift-drag ratio. This decrease occurs for two reasons. First, when the canard load
increases a down-load is produced on the tail by the canard flow field and second, a reduced tail load makes it necessary for the wing to
carry more load resulting in more induced drag for the wing. It has been shown previously that it is desirable to increase the tail load to reduce the total drag.
rmh - 11

When wing camber is added to the set of design variables and the problem is conducted at fixed angle of attack the optimization results shown here and in the next few figures is obtained. Wing camber was represented by a uniformly distributed set of sine functions 10% chord and ending at 90% chord. The objective function consisted of two terms as before but the first term contained the lift-drag ratio instead of the drag coefficient. The center of gravity was located at the same aft position as for the last problem. The most significant differences between this problem and the problem shown in the last set of figures is that the angle of attack was held constant at 3.85 degrees and the lift-drag ratio was used during optimization with a resulting increase in configuration lift and drag. Note that the drag increased by approximately 1.50 counts during optimization while a drag reduction was obtained when lift was held constant. The abscissa is optimization iteration instead of search step for this set of figures resulting in a smoother trend for the data. Note that the drag increases and then decreases before settling to a fairly constant value.
rmh - 12

The pitching moment data shown here exhibit a nearly monotonic decrease toward trim reaching a value near zero after only five
optimization iterations. As noted previously, the final value of pitching moment is not precisely zero because of the use of a penalty function to achieve trim.
rmh - 13

The lift coefficient history shown here exhibits a nearly monotonic increase during the optimization process similar to that observed for
the pitching moment. Again a nearly constant value is achieved after only five optimization iterations. The lift coefficient increases faster
than the drag coefficient giving an increase in the lift-drag ratio and a decrease in the objective function as shown in the next two figures.
The increasing lift coefficient is due to the increasing tail load required to achieve trim.
rmh - 14

The lift-drag ratio history is shown here. Note that the lift-drag ratio increased from 12.85 to approximately 13.38 , a larger increase than hat observed for the constant lift problem discussed previously. The optimization code had the ability to change the wing camber during design unlike the previous problem where only canard and tail incidence were used as design variables so the greater increase noted here ignificant given the larger design space for the present problem. that observed f
design unlike the
is really not sig
rmh - 15

The variation of the objective function during optimization is shown here. Again a nearly monotonic decrease is observed with the final value achieved after only five iterations. It is interesting that the optimization algorithm runs out of ability to achieve gain after only five that observed when different than

A brief optimization study was conducted using the incidence of the canard and wing camber and thickness as design variables. The changes to the wing were primarily camber changes since the wing thickness was constrained at 252 uniformly distributed locations from wing station 101 to the tip and from near the leading edge to near the trailing edge at eleven wing stations. Wing camber and thickness changes were accomplished by use of SIN 2 functions located at 11 spanwise stations on the upper and lower surfaces with the functions 10 -percent chord. Design changes were confined to the wing between station 101 and the tip. The objective function was 10 (D/L) for this problem. The changes in the lift-drag ratio for 12 optimization iterations are shown in this figure. Note that a large change in the lift dragratio occurs during the first optimization iteration after which a more modest increase is achieved for the next 6 or 7 iterations. Another

 compared with approximately 0.5 when the tail incidence is included in the design variable set. This again shows the importance of carrying a positive load on the tail.
rmh - 17

The canard incidence angle as a function of optimization iteration is shown here. Note that the angle decreases monotonically from the
baseline value of 0.0 degrees to -2.0 degrees during design. The canard load was still positive with an incidence of -2.0 degrees. The $\stackrel{0}{\square}$ consistent -әप!ssod ㄴ..

 드̃ 를 0
0
0
0
0

This figure contains data that was part of a study of the effect of center of gravity position on optimization results. Three different center of gravity positions were investigated. The first cg position studied is the baseline position of 2304.71 inches. Optimization runs were conducted at constant lift so any changes in drag are directly related to changes in configuration lift-drag ratio. The optimization code was run until a local minimum was found as indicated by a termination message from NPSOL. The objective function was $500\left(\mathrm{C}_{\mathrm{D}}\right)+$ $5000\left(\mathrm{C}_{\mathrm{M}}\right)^{2}$ and the design variables were the canard and tail incidence angles. When the cg position is such that the initial pitching moment is nose up the changes in canard and tail incidence angle give a decrease in drag and pitching moment simultaneously. When the cg is moved forward to a position where trim occurs for the baseline configuration the canard and tail incidence changes during optimization are in the same direction as when the cg position is aft so the drag decreases by nearly the same magnitude for both cg ио!̣วәир ә!!soddo әчו pue ио!̣епns! of change for both the canard and tail incidence angles during optimization as might be expected; the canard incidence increases while the tail incidence angle decreases. These changes produce an increase in configuration angle of attack of approximately 0.20 degrees. The configuration drag increases by 12.0 counts as the optimization code moves the configuration toward trim. The changes that occurred during optimization to the pitching moment and drag coefficients and the terms in the objective function equation were a little surprising as shown here. These are the initial and final values resulting from an optimization study carried out until the changes in the objective function became negligible with further iterations. Despite the smaller initial value for the pitching moment term the optimization code worked pitching moment much harder than drag as indicated by the increase in the drag term and drag coefficient and the decrease in the pitching moment term and pitching moment coefficient. Changes in the weighting factors would give different results but little information would be gained by conducting a weighting factor study. Penalty function methods are fairly well understood by the engineering community so this study was concluded at this point.
rmh - 19

This data shows results from a component-build-up study using the PTC configuration without nacelles and boundary layer diverters. The analysis code FLO107MB was used during this study. Initially, configuration components were "turned off" by imposing flowthrough boundary conditions on selected components without eliminating thickness to avoid generating a new grid for each configuration. However, the components are thin so the grid displacement around each flow-through component was not considered to
 the Euler code AIRPLANE was conducted for verification. Drag polars for 5 different combinations of configuration components are shown here. The wing/body has the lowest drag, as expected. Addition of the vertical tail causes a drag increase of less than 1.0 count.
 shown in the figure. When the canard is added to the wing/body/vertical-tail configuration without the horizontal tail the drag increase is negligible. The drag and lift of the canard increase in the right proportions to maintain lift-drag ratio over the small range of angles of attack shown in this figure. This will become more apparent when the lift curves are presented in the next figure. Adding the canard to the wing/body/vertical-tail/horizontal-tail gives a drag increase of approximately 1.0 count showing that the interaction between the canard and the horizontal tail is greater than that of the canard with the other components. The canard produces a download on the horizontal tail causing a reduction in lift at a given angle of attack resulting in a polar shift in the direction of higher drag. It is interesting that the canard seems to produce a greater download on the horizontal tail than on the wing given the greater distance between the canard selected components removed. These results verified the results shown here and in subsequent figures.
rmh - 20

This figure compares AIRPLANE and FLO107MB calculation for all configurations shown in the previous figure except the wing/body. milar results regarding the drag increments between the various configurations but AIRPLANE consistently shows higher drag for all and has a magnitude of approximately 1.5 drag counts
rmh - 21
Component Build-Up M=2.4, CL $=0.1$

Lift curves for the 5 component combinations discussed above are shown in this figure. Note that the lift-curve slopes for all configurations are nearly parallel with the main difference between configurations being the effective camber of each component combination. The wing/body/vertical-tail/canard has the greatest effective camber while the wing/body/vertical-tail/horizontal-tail/canard has the least effective camber. This again shows that the canard produces a download on the horizontal tail for these incidence angles and

 made more favorable by appropriate changes in the incidence and/or camber and the vertical position of the canard and horizontal tail.
rmh - 22
$\begin{aligned} \text { PTC Component Buildup } & \text { - No Nacelles } \\ \text { FLO107 Analysis, } M & =2.40\end{aligned}$

α
Selected component lift and drag coefficient data are shown in the following table. The component aerodynamic coefficients are based on component areas for these data. The following effects are noted from the data in this table.

1) Adding the vertical tail has little effect on the wing and body
2) Adding the canard to the wing/body/vertical-tail/horizontal-tail increases lift and drag on the body and decreases lift and drag on the wing.
3) The canard increases the download on the horizontal tail by more than a factor of 4 and decreases the drag on the horizontal tail.
rmh - 23
Component buildup for PTC configuration - no nacelles
FLO107-MB, M $=2.40$, Alpha $=3.85$ deg. $\begin{array}{lc}\text { wing/body } & \\ \text { Body } & \text { CL } \\ \text { Wing } & 0.01101 \\ \text { wing/body/vertical } & 0.08931 \\ & \\ \text { Body } & \text { CL } \\ \text { Wing } & 0.01101 \\ \text { Vertical Tail } & 0.08931 \\ \text { wing/body/horizontal/vertical } \\ & 0.00005 \\ \text { Body } & \text { CL } \\ \text { Wing } & 0.01091 \\ \text { Horizontal Tail } & 0.08931 \\ \text { wing/body/horizontal/vertical/canard } \\ & -0.0540 \\ \text { Body } & \text { CL } \\ \text { Wing } & 0.01214 \\ \text { Horizontal Tail } & 0.08639 \\ \text { Canard } & -0.02268 \\ & 0.05985\end{array}$

CD
0.00132
0.00608
0.00007 CD
0.00133
0.00608
0.00180 CD
0.00136
0.00587
0.00120
0.00408
This figure shows the effect of component buildup for the PTC configuration on the drag coefficients at Mach 0.90 . These data were generated for the original grid with small flux leaks and the non-zero thickness for the canard and tails discussed above. The trends in the lift and drag coefficients shown above for Mach 2.40 are similar to those shown here for Mach 0.90 . The increased download on the horizontal tail generated by the canard is still present and the interference drag due to the canard and tail is similar to that observed at Mach 2.40. Note the sum of the drag increments due to adding the canard and vertical tail separately to the configuration is smaller than

 be acceptable and the interference drag between the canard and tail of approximately 1.1 counts might be eliminated or substantially reduced. Also the horizontal tail effectiveness might be improved by moving it out of the wakes from the canard and wing.
rmh - 24

The lift-curve data shown here are similar to that shown for Mach 2.40 with the wing/body and wing/body/vertical-tail having nearly
identical lift curves and the canard adding camber to the configuration due to it's positive load. The horizontal tail decambers the
configuration due to it's download without the canard and even more substantial decambering occurs when the canard is present due to
the induced download on the tail by the canard.
rmh - 25

This brief study using the PTC 3-surface configuration without nacelles and diverters has revealed some interesting results. The
calculations were performed by use of the Euler codes SYN107MB and FLO107MB. The canard was found to reduce the lift on the
horizontal tail by a factor of more than 4 at the cruise flight conditions. The total drag of the configuration decreases with decreasing
vertical position of the canard and horizontal tail. These results have been verified by use of the Euler code AIRPLANE and the Navier-
Stokes code OVERFLOW. The center of gravity position was found to have a large effect on the canard and tail incidence angles for
trim.
rmh - 26
Conclusions

- 30 inch decrease in tail vertical position reduces drag 1.8 counts
- Canard vertical position has negligible effect on drag
- AIRPLANE, SYN107 and Overflow predict similar results

[^38]Multi-Configuration and Aeroelastic
Shape Design

Multi-Configuration and Aeroelastic Shape Design

 This presentation describes the advances being made with the Aerodynamic Shape Optram at NASA Ames Research Center. The main authors for this work are James Reuther (MCAT, Inc./NASA Ames), Juan Alonso (Stanford University), and Steve Smith (NASA Ames), all of whom played crucial roles in the development of the Aeroelastic Shape Optimization (AESO) capability. James also integrated the new capabilities presented herein for HSR applications.[^39]
Motivation
The motivation for on-going development of ASO and MDO methods comes from several realizations. First, high-fidelity ASO implementations are inherently complex if they are applied to realistic aircraft design problems. Not only do these methods bring all the difficulties associated with applying CFD to complex geometries such a mesh generation, parameter setting, convergence criteria, challenges. Among these new complexities are mesh motion, aerodynamic and manufacturing constraints, multiple design poin uвा!səp pue 'ио!̣еэ! space parameterization. As any CFD expert can te high performance computing. Such algorithms which require many years to develop cannot justify the expense of their development if they are not flexible enough to apply to many different problems.
Recent advances in the ASO field have been both expensive and difficult, requiring the maturation of sensitivity analysis in particular. All indications are that these difficulties and expenses will only continue to be amplified as the field advances. Yet despite the need to support development costs, programs that can leverage advantages from these technologies tend not to be long-lived. Thus the AS and MDO technologies must be developed within a flexible architecture such that they can continue to be developed in the face of changing goals and applications.

Given these Conditions New ASO Software Must be
Flexible/Recyclable
Objectives
The present work addresses several issues that either apply to HSR directly or allow ASO and MDO technologies to be more flexible in their applicability. The leading objectives are to develop a flexible design environment, allow multiple geometries, grids and design ariables for multiple design points, alow multiple

- Allow Multiple Geometries, Multiple Grids and/or
Multiple Design Points
- Allow Multiple Disciplines with Accurate Coupling
Develop Multi-Disciplinary Sensitivity Analysis
Flexible Design Environment Ingredients
A flexible design environment requires modular software components with well-defined application programming interfaces (APIs). The APIs make it possible to plug in various components and substitute alternatives as needed with little or no new coding. In particular, the different disciplines communicate via a common interface or database, which in the case of the ASO and CSM (stuctures) dis external surfaces of the intersected basic geometry common interface is defined as a set of parametric patches constructed on the external surfaces of the intersected basic geomer components.

[^40]
Common Geometry Interface Based on
Outer Mold Lines (OML) of Vehicle
An example of an API is shown in the chart. In this case, a list of standard calls has been defined to transfer information to and from promotes interchangeability of solvers without sacrificing computational efficiency.

OML Geometry Interface
The OML geometry interface or database that is common to the CFD algorithm and the CSM solver is shown in the figure for a high speed transport application. The patches on the external surfaces of the intersected airframe components are created by the AEROSURF geometry engine winin the ASO modul. On CrD side, the par CFD surface mesh points to be mapped to each perturbation (and hence volume grid perturbation) during optimization by enabling the CFD surface mesh poich to be mapped to each newly paneled surface as the be mapped from the solver nodes to the OML and hence to the CFD grid.

For more than one reason, schemes which simply transfer information directly between solver surface grids without underlying

 applicability, or flawed, or both. The common geometry interface ensures that the different disciplines are treating identical geometries, with exact agreement when the design process is complete. The common OML also facilites force- and work-equivalent transfer of loads and displacements, the importance of which is discussed below. Ulimaty, a CAD wased geoney engill be hard to using a single 225 MHz SGI R 10000 processor.
Multiple Geometries The need for multiple geometries at multiple design points is illustrated by the HSCT, which must be modeled with deflected wing
 multiple CFD grids, and to activate the resign ing. The design variables that are appropriate are then applied. The sequence of genning the geometry engine, perturbing the CFD surface and volume mesh points, and running the CFD solver as needed is applied only to the working data. After the sequence is completed, the next design point is processed similiarly. Each design point
contributes to the composite objective function in some weighted fashion
In addition to allowing, say, flaps to be deflected at some design point(s) while remaining undeflected at the cruise point, the new capability allows a given geometry component to be designed in the presence of different configurations. Ane the compromise design. wing being designed in the presence of different nacelles or different fuselages such that it represented the best compromise design.

- Permits Design Variables to be Active/Inactive for

[^41]Multiple Geometries Flow Chart This chart illustrates how multiple design points with different geometries are handled by the optimization method. Everything from or each design point in series. This ensures fand adjoint solvers via the OML interface, along with one-way communication from the flow solver to the adjoint solver (the flow state variables being required for the adjoint calculation).

Multiple Geometries: TCA Flap Scheduling
This figure shows two flow calculations on the three-surface TCA configuration, one supersonic with no flap deflections, the other
transonic with flaps deflected. The two calculations are from snapshots taken during a multipoint design run.

Multiple Disciplines
In order to allow for multiple high-fidelity disciplines to be treated in a coupled design process, some of the basic capabilities have now been developed. Aeroelastic shape optimization (AESO) has served as a proof-of-concept problem, but many other MDO problems may be considered (such as treatment of radar cross-section issues via a computational electromagnetics module). The focus of our
implementation is to use high fidelity for each of the disciplines involved throughout the design process, because anything less can too easily lead to "optimal" solutions that are not trustworthy.
Considerable research has already been conducted on the multidisciplinary optimization (MDO) of flight vehicles. The paper by Sobieszczanski-Sobieski and Haftka (Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments) provides a comprehensive discussion of much of the work completed to date. These efforts have ranged from the development of techniques for discipline coupling to actual demonstrations on real-world design problems. In most cases, these research efforts have shown the importance of inter-disciplinary coupling, as well as the inability of sequential disciplinary optimization to achieve the true global optimum of a coupled system. Unfortunately, the fidelity in the modeling of the various component disciplines in these preliminary design tools has remained at a relatively low level. Therefore, while useful at the conceptual design stage, these tools cannot accurately represent a variety of nonlinear phenomena, such as wave drag, which can play a key role during the detailed design phase.
On the other hand, the ASO techniques used in the HSR program to date have had their own share of problems. In the case of aerodynamic wing design, planform and thickness constraints have often been artificially imposed so that structural weight, fuel volue, and takeoff/landing requirements would not be adversely affected by the changes in the wing shape. These constraints were typically guided by the result of low-fidelity multiphary mosign and performance neglecting the coupling between various isiphles, de ASO to produce infeasible designs. In addition, improvements in aerodynamic performance resulting from span load changes cannot be accurately quantified in view of their unknown impact on the structural weight. The goal of the current research is to establish a new framework for high-fidelity MDO. The important contributions presented to support such a framework are:

[^42] An OML geometry database which serves as both an interface to the optimization algorithm and an interface for communication between disciplines.
Sophisticated coupling algorithms that link each discipline to the OML such that information transfer between the disciplines is consistent and conservative.
A framework for the computation of coupled sensitivities.

- Sensitivity Analysis

Possible

- Adjoint Aerodynamic Sensitivities
- Finite Difference Structural Sensitivities
Multiple Disciplines Flow Chart
This chart summarizes the high-fidelity MDO algorithm proposed in this research. Note that the common OML interface or database is used to transfer all information between the multiple disciplines (two in this case). Coupling between the CSM adjoint and the CFD adjoint has not been implemented yet, but the other components are in place.

High-Fidelity CFD
In order to obtain the necessary level of accuracy, high-fidelity modeling is being used from the start for both the aerodynamic and structural subsystems. Euler and Reynold Averaged Nound in AIA A Paper 96-0094 (Aerodynamic Shape Optimization of Complex details of the multiblock solver, FLO107-MB, can be found in AIAA Paper 96-0094 (Aerodynanic shape Optimizadion of Complex elatforms has been described in AIAA Papers 96-0409 (Jameson \& Alonso) and 97-0101 (Reuther, et al.). Flow solver characteristics are summarized in the chart.
High-Fidelity CHD
- FLO107-MB: Parallel Multiblock RANS Flow Solver
- Scalar or CUSP Dissipation Schemes
5-Stage Runge-Kutta Algorithm
- Multigrid

- MPI Parallel Implementation
Sample Business Jet Navier-Stokes Solution

This figure shows the complex nacelle and empennage geometry components treated by FLO107-MB for the three-surface TCA

Structural Models Two different finite element methods (FEM) have been used for the description of the behavior of structures. The first is a linear FEM
model that uses brick elements which are appropriate for solid wind tunnel configurations. The second is a linear FEM that uses truss
and triangular plate elements to model the structural components of aircraft configurations. Given these choices of the physical
models for the disciplines involved, it will be possible to capture many of the key trade-offs present in the aero-structural design
problem.
The figure shows the wing structural model for the business jet illustrated above. The upper and lower wing skins have been removed
on one side to reveal the underlying structure. The colors represent levels of stress (red being high magnitude and blue low). The
individual triangular elements can also be seen in the figure. This calculation was performed with our second FEM solver, suited to
realistic aircraft structures rather than wind tunnel models. In the future, a commercial CSM package such as NASTRAN will be tried
instead of our simpler demonstration code.

Transfer Equations
Within the framework described previously, the optimization of aero-structural systems requires, at a minimum, the solution of the structure provides surface deflections that change the aerodynamic properties of the initial configuration. ary designs must have exact geometric agreement by the end of the design process.
In order to tackle the fidelity of the coupling, we have chosen to ensure that the transfer of the distributed pressure forces and moments from the CFD calculation to the CSM nodal load vector is both consistent and conservative as defined in the approach developed by
 moments in the CSM load vector, f . Conservation addresses the important issue bus be equal to the associated work performed by the undergoing a describes the motion of every surface point in the CFD mesh as a function of the nodal displacements of the structural model,

$\delta \mathbf{r}=[\eta]^{T} \delta \mathbf{q}$

extrapolations to the OML as described by Brown. The virtual work in the CSM model can be represented as

$$
\delta \mathrm{W}_{C S M}=\mathbf{f}^{T} \delta \mathbf{q}
$$

while the virtual work performed by the fluid acting on the surface of the CFD mesh is given by
$\delta \mathrm{W}_{C F D}=\int_{\partial \Omega} p \mathbf{n}^{T} \delta \mathbf{r} d S+\int_{\Omega} \Omega \mathbf{b}^{T} \delta \mathbf{r} d V$
Here, \mathbf{b} represents a distributed body force per unit mass, if it exists, and $\partial \Omega$ is the CFD mesh surface that describes the interface between the fluid and the structure. For a conservative scheme, $\delta \mathbf{W}_{C F D}=\delta \mathbf{W}_{C S M}$, and the consistent and conservative load vector is given by:

$$
\mathbf{F}^{T}=\int_{\partial \Omega} p \mathbf{n}^{T}[\eta]^{T} d S+\int_{\Omega} \mathbf{b}^{T}[\eta]^{T} d V
$$

Transfer Equations

- Transfer of CSM Nodal Displacements to OML Database

Pressure and Displacement Transfer
In order to enable communication between the aerodynamic and structural solvers, a standardized OML surface representation of the configuration of interest is required. Solutions from each of the disciplines (aer
Each AEROSURF point is associated with a point on the surface of the CSM model in a preprocessing step. During optimization, the displacements for each AEROSURF point are calculated by first using the CSM basis functions to interpolate the CSM nodal displacements at the projected AEROSURF point. Then extrapolation functions are used to carry the displacements from the CSM mesh to the OML. When the CSM solver dictates a new position for the structure, the locations in three-dimensional space of all the AEROSURF points are updated by adding the deflections to the jig-shape points. This update process effectively constructs new parametric patches to represent the surface of the perturbed configuration. In a similar fashion, during a preprocessing step, every point on the surface of the CFD mesh is associated with an AEROSURF patch and a parametric location within that patch. The CFD
 surface mesh points can be obtained by straightforward evaluation of their parametric locations on the corresponding AEROSURF patches. As can be seen, AEROSURF plays a central role in the transfer of displacements from CSM to CFD.

to Obtain
OML
on the
Pressures Integrated
OML Point Loads
OML Loads Transferred to the
Using the $[\eta]$ Matrix
$*$
Pressure and Displacement Transfer (Continued)
Furthermore, the AEROSURF database also plays a similar role in the transfer of pressure information from the CFD calculation to "the structural load vector. The thesh the contain the desired information. The pressure integrations in the last equation above are then performed with the same accuracy as can be achieved if the integration were to occur directly on the surface of the CFD mesh. The underlying assumption is that the mesh resolution of the AEROSURF database is comparable to, if not better than, that of the CFD surface mesh. This has always been the case in our design efforts. The coupling between aerodynamic and structural solvers in order to obtain an aeroelastic solution is achieved in an explicit, sequential, iterative fashion by exchanging information at regular intervals during the convergence process. This coupling is greatly simplified by the fact that only static aeroelastic solutions are considered in this work, and the issue of time accuracy is inconsequential.

Displacement Transfer Using CSM Nodal Displacements and the $[\eta]$
Matrix, New Locations for the OML Points are Found

- WARP-MB is Used to Perturb the CFD Volume Mesh

Coupled Sensitivities

The proposed high-fidelity MDO framework also needs a strategy, to perform design changes in a way that minimizes the need for
expensive function evaluations. Detailed shape optimization of aerodynamic surfaces for transonic wing design problems requires a
parameter space of O (100) or larger. (See, for instance, Wing Design by Numerical Optimization, by Hicks and Henne (Journal of
Aircraft, 15:407-412, 1978), and Improved Method for Transonic Airfoil Design-by-Optimization, by Kennelly (AIAA Paper 83-
1864).) This requirement combined with the enormous cost of each function evaluation renders the use of zeroth-order methods, such
as random searches and genetic algorithms, inefficient for this problem. The alternative of using a response surface whereby a
polynomial fit of the design space is constructed prior to optimization is also plagued with intractable computational costs since the
number of function evaluations required is proportional to the square of the number of design variables.

[^43]When compared with zeroth-order methods, gradient-based algorithms shift the computational burden from evaluating the cost function to calculating values of its gradient. The most direct way to estimate gradients is the finite-difference approach in which a separate function evaluation is required for each design variable in the problem. By using gradient information, the total number of function evaluations is greatly reduced. However, given the large computational cost involved in each function evaluation, the finitedifference method has proven to be unaffordable for the aerodynamic design of complete configurations. This limitation of the finitedifference method has provided the motivation to develop new methods of obtaining sensitivity information for aerodynamic design problems. In particular, the adjoint technique has proven extremely valuable in making these kinds of calculations possible.
The computation of sensitivities for the aero-structural problem has components of both ASO and structural optimization techniques. However, if the true sensitivities of the design problem are needed, the coupling terms cannot be neglected. For example, the
sensitivity of the stress in a given element of the CSM model to an aerodynamic twist variable has a component that depends on the change to the geometry of the structural model and a second component that depends on the changing load vector applied to the structure. Both of these contributions are significant and must be accounted for. Although in the results presented here a simplified penalty function is used to obtain a first cut at the aero-structural design problem, we feel it is important to place the mathematical framework for coupled sensitivities on a more solid footing. It will inevitably turn out that the choice of the use of an adjoint approach will depend upon the problem at hand. Since we seek a flexible design environment, the possibility of using a coupled adjoint must be admitted. The following explication is adapted from AIAA Paper 99-0187, A Coupled Aero-Structural Optimization Method for Complete Aircraft Configurations, by Reuther, Alonso, Martins, and Smith.
Sensitivities

$R_{a s}=\binom{R(\mathbf{w}, \mathbf{q}, \mathcal{F}, \mathcal{P})}{S(\mathbf{w}, \mathbf{q}, \mathcal{F}, \mathcal{P})}=0$
$\delta I=\frac{\partial I^{T}}{\partial \mathbf{w}} \delta \mathbf{w}+\frac{\partial I^{T}}{\partial \mathbf{q}} \delta \mathbf{q}+\frac{\partial I^{T}}{\partial \mathcal{F}} \delta \mathcal{F}+\frac{\partial I^{T}}{\partial \mathcal{P}} \delta \mathcal{P}$
$\delta R_{a s}=\left[\frac{\partial R_{a s}}{\partial \mathbf{w}}\right] \delta \mathbf{w}+\left[\frac{\partial R_{a s}}{\partial \mathbf{q}}\right] \delta \mathbf{q}+\left[\frac{\partial R_{a s}}{\partial \mathcal{F}}\right] \delta \mathcal{F}+\left[\frac{\partial R_{a s}}{\partial \mathcal{P}}\right] \delta \mathcal{P}$
$=0$
$\psi_{a s}=\binom{\psi_{a}}{\psi_{s}}$

Coupled Sensitivities (Continued)

ctural displacement field and structural parameters of the structural model, w denotes the flow solution, and F represents the gn parameters of the undeformed aircraft shape, the aeroelastic objective function whose sensitivity we seek becomes I (w, q, F The variations in I are subject to the constraint $R_{u s}(\mathbf{w}, \mathbf{q}, F, P)=0$, where $R_{u s}$ designates the set of aero-structural equations and be partitioned as shown in the preceding chart. Here, R denotes the set of fluid equations and S the set of structural equations. variation δI can be expressed as shown. In order to eliminate $\delta \mathbf{w}$ and $\delta \mathbf{q}$ from the above equation, the constraint $\delta R_{a s}=0$ can oduced, where $\delta R_{a s}$ is defined in the chart. This calls for the partitioned Lagrange Multiplier $\Psi_{a s}$ where Ψ_{a} is the portion of the int associated with the fluid, and Ψ_{s} is the portion of the adjoint associated with the structure. It follows that the first expression

Coupled Sensitivities (Continued)

Now, if Ψ is chosen as the solution of the aero-structural adjoint equation shown, the expression for δI simplifies to $\delta I=G_{F} \delta F+G_{p} \delta$ P where G_{F} and G_{P} are derined as shown. Hence, the sought afloph problem shown for Ψ and Ψ

Now, since the creation of a completely coupled aero-structural adjoint would compromise our objective of developing a flexible MDO framework, we can rewrite a lagged form of the equations as shown, where ${ }^{\sim} \Psi_{s}$ and ${ }^{\sim} \Psi_{a}$ are updated via outer iterations. This implies that existing adjoint solvers for both the aerodynamics and structures can be used subject to convergence of the iteration. The additional right-hand-side forcing terms can then be updated in the same way as has been presented earlier for the state equations. Thus, the OML geometry can serve to couple both the state and co-state equations.

Beyond employing a coupled adjoint, the alternative of using a coupled direct approach also exists. The development follows the one above very closely in terms of the coupling. However, since prefactoring of the CFD Jacobian matrix is problematic, the approach will not be much cheaper than using finite differencing. An alternative to either the adjoint or the direct approaches is the use of a decomposed optimization strategy such as multi-level optimization (see A Practical Approach to MDO and its Application to an HSCT Aircraft, by Baker and Giesing, AIAA Paper 95-3885) or collaborative optimization (see Decomposition and Collaborative Optimization for Large-Scale Aerospace Design, by Kroo, in Multidisciplinary Design Optimization: State of the Art, SIAM, 1996). Exploring all of these various possibilities will form the basis of our future work.

For the purposes of the present work where a coupled adjoint has yet to be implemented, the sensitivities are obtained without coupling. The aerodynamic adjoint is used to obtain aerodynamic sensitivities and finite differences are used to obtain the structural sensitivill This approximation inherently implies that gradient information for a combined aerodynamic plus structural objective function wili not completely accurate. The earlier example of exploring how wing twist affects structural stress levels highlights our current limitation. if it Without the coupling, we will capture only the portions of the sensitivities that result from structural changes. The loading will act as were frozen. Future works and on MDO, (

Demonstration Problem (1):
 Wind Tunnel Business Jet Model, Low Sweep

 Results of the application of our initial aero-structural design methodology are presented for two existing wind tunnel business jet above. In addition, some of the results used the Euler equations, while others used the Reynolds Averaged Navier-Stokes equations to model the fluid flow. First, results of the rigid and aeroelastic analysis of two different wind tunnel models representing typical complete configuration business jets are presented and compared with the available experimental data. The CFD meshes used for each of the two modelscontain the wing, body, pylon, nacelle, and empennage components. The mesh for the first model (model A) uses 240 billon cells. The large mesh sizes are required for解 wings. It should be mentioned that viscous and structural effects are resolved only on the wing surface; all other surfaces in the model are assumed to be inviscid and rigid. All calculations were run using 48 processors of an SGI Origin2000 parallel computer. A total of 1.3 hours (model A) and 2.0 hours (model B) of wall clock time were required for the rigid-geometry solutions, while 1.4 hours and 2.1 hours were required for the aeroelastic calculations. The structural model is the linear FEM model with brick elements which more closely approximates the behavior of the wind tunnel model structure. Experimental wind tunnel data are available for the two models at flight conditions as follows: Model $\mathrm{A}, \mathrm{M}=0.80, \mathrm{Re}=2.5$ million and cruise C_{L}, and Model $\mathrm{B}, \mathrm{M}=0.80, \mathrm{Re}=2.4$ million and cruise C_{L}. Aeroelastic updates were performed every 10 multigrid iterations of the flow solver. A total of 400 iterations were used to ensure an aeroelastically converged solution. All solutions were calculated at a fixed C_{L} by incrementally adjusting the angle of attack.

- Interaction Between Aerodynamics and Structures

- Compressibility Drag vs. Structural Performance

Demonstration Problem (1) (Continued):
 Wind Tunnel Business Jet Model, Low Sweep

The accompanying figure shows a comparison of the pressure distributions for the rigid wing, the aeroelastic wing, and the wind tunnel data for model A. The sectional cut is near mid-span where wind tunnel measurements were available. The figure shows that for this case the aeroelastic deformation of the wing is so small that virtually no difference between the two computed results exists. In fact, the maximum tip deflection of the model was calculated to be only 0.3% of the wing span. Agreement with the sparse wind tunnel data indicates that the CFD is capturing the right trends present in the tested configuration. The fact that the differences between the computed rigid and elastic wings are so small leads to the conclusion that the wind tunnel data from this test probably need not be corrected for bending. Thus, since the outboard wing tip is not twisting much, large differences in the pressure distribution do not appear. If these calculations had been performed before test entry, the confidence level on the tunnel data could have been increased.

Figure 5: C_{p} distribution at near wing tip station. Navier-Stokes calculations, $M=0.80, R e=2.5$ million —_, Aeroelastic solution

- - -, Solid geometry solution
+++ , Wind tunnel data

Demonstration Problem (2):
 Wind Tunnel Business Jet Model, Higher Sweep

The next figure shows a similar comparison of pressure distributions for rigid, aeroelastic, and wind tunnel data from model B. It is immediately clear that the deflections predicted by the aeroelastic calculation have a much larger impact on the pressure distributions than in the case of model A. The changes in the pressure distributions show all the typical signs of aeroelastic relief in swept-back wings: a decrease in the twist of the outboard sections of the wing with the consequent forward motion of the shock location and alterations in the spanload distribution.
Although the aeroelastic solution does not agree fully with the experimental data for model B, it is clear that the aeroelastic effects change the solution in the correct direction to improve the agreement. Additional discrepancies are believed to be caused by inaccuracies in the Baldwin-Lomax turbulence model. It is also evident that this wind tunnel model is flexible enough that significant aeroelastic effects are present in the wind tunnel data. In view of the small increase in cost of the aeroelastic solutions, it is clear that this type of analysis is preferable for the comparison between experimental and wind tunnel data in order to eliminate some of the uncertainties causing the differences.

0.00	0.10	0.20	0.30	0.40	0.50	0.60	070	080	0.90	1.00
					X/C					

Figure 7: C_{p} distribution at near wing tip station. Navier-Stokes calculations, $M=0.80, R e=2.4$ million ——, Aeroelastic solution

- - -, Solid geometry solution +++ , Wind tunnel data
Demonstration Problem (3):
Aerodynamic Shape Optimization of a Flight Wing-Alone Geometry (Rigid)

Before presenting aeroelastic results using the second structures model, the aerodynamic shape optimization of a rigid geometry is shown as a baseline representative of our earlier works. The structural model is completely inactive.

The geometry to be optimized is the wing of a typical business jet having the smaller wing sweep of model A above. The flow field is computed using the Euler equations. A multiblock mesh following a $\mathrm{C}-\mathrm{H}$ topology is constructed around the configuration with a total of 32 blocks and 750,000 cells. A total of 133 design variables are used to parametrize the surface of the wing. Hicks-Henne perturbation functions combined with exponential functions at the wing trailing edges were distributed across the entire span of the wing to provide full geometric flexibility. Thickness constraints typical of our previous works are imposed in order to maintain the structural soundness of the final outcome of the design process. These constraints include spar depth constraints at 10% and 80% viume at 40%. It should be noted that these thickness constraints are the results of low-fidelity analyses and are derived from years of accumulated experience by
aerodynamic and structural designers. The objective function is the wing C_{D} at a fixed cruise C_{L} of 0.35 and a fixed M_{∞} of 0.82 . Note that these flight conditions represent a significant increase in both Mach number and lift coefficient over those for which the original baseline wing was designed. It is therefore expected that improved aerodynamic designs should be aitain 2000 parallel computer using optimization. All wing-alone design calculations presented hereafter were carried out on an SGI Origin2000 parallel computer 16 processors.

The results of this single-point shape optimization process can be seen in the accompanying figure which shows the initial and final

 pressure distributions for several span stations along the wing. Similar results have been presented in AIAA Paper 95-0123, Aerodynamic Shape Optimization of Wing and Wing-Body Configurations Using Control Theory, by Reuther and Jameson. Notable features are the decrease in induced drag due to the shifting of the spanload towards the tip and the decrease of wave drag that results from the weakening or disappearance of the shock waves on the upper and lower surfaces. Note that at the location of the front spar orinatl 95.6 counts to 65.6 counts.

8a: span station $z=0.194$

8c: span station $z=0.581$

8b: span station $z=0.387$

8d: span station $z=0.775$

Figure 8: Typical Business Jet Configuration. Drag Minimization at Fixed C_{L}.
Rigid Design, $M=0.82, C_{L}=0.35,133$ Hicks-Henne variables. Spar Constraints Active.
Rigid Analysis at Fixed C_{L}.

- - -, Initial Pressures
——, Pressures After 20 Design Cycles.
Demonstration Problem (3):
Aerodynamic Shape Optimization of a Flight Wing-Alone Geometry (Rigid)
(Continued)
<Continued on the next page.>

Figure 10: Spanwise Stress Distribution for the Rear Spar.
Comparison of the Rigid Design and the Baseline Design.
Wing Alone Configuration.
Rigid Design, Drag Minimization at Fixed C_{L}.
Aeroelastic Analysis at Fixed C_{L}.
Demonstration Problem (3):

Figure 9: Spanwise Load Distribution.
Comparison of the Rigid Design and the Baseline Design.
Wing Alone Configuration.
Rigid Design, Drag Minimization at Fixed C_{L}.
Aeroelastic Analysis at Fixed C_{L}.
Demonstration Problem (4):
Aero-Structural Shape Optimization of a Flight Wing-Alone Geometry
The idea in this wing-alone design case is to incorporate some basic elements of the aero-structural interaction present in the existing
design methodology. Despite the fact that development of the complete coupled sensitivity analysis is not yet implemented, several
results of interest can be shown which establish the soundness of the procedure. In this particular case, we utilize the geometry of the
previous example, the same CFD mesh, and the same set of aerodynamic shape variables, but include the second structural model and
a composite objective function. The artificial thickness constraints are removed, leaving only the leading edge radius and included
trailing edge angle constraints. The design is now set up with both the coefficient of drag and the L^{2} norm of the stress in the structure
as a combined cost function. This combined penalty function method can be thought of as a first cut approach to minimizing total
drag in the presence of structural constraints. The ASO adjoint system is used to calculate the gradient of the aerodynamic cost
function C ${ }_{\mathrm{D}}$ and finite differencing is used to calculate the gradient contribution from the structural changes. While these sensitivities
are not fully accurate because of the lack of coupling, they provide our first approximation for solving the AESO (AeroElastic Shape
Optimization) problem. The weights between the two components of the objective function were arbitrarily chosen such that the
stress penalty was equal to about 40\% of the drag penalty. This choice resulted in an optimized design where the L^{2} norm of the
stress in the structure remained largely unchanged.

[^44]

14a: span station $z=0.194$

14c: span station $z=0.581$

14b: span station $z=0.387$

14d: span station $z=0.775$

Figure 14: Typical Business Jet Wing Configuration. Drag + Stress Minimization at Fixed C_{L}. Aeroelastic Design with Stress Penalty Function. $M=0.82, C_{L}=0.35$ 133 Hicks-Henne variables. Spar Constraints Inactive.
Aeroelastic Analysis at Fixed C_{L}.

- - -, Initial Pressures
——, Pressures After 13 Design Cycles.
Demonstration Problem (4):
Aero-Structural Shape Optimization of a Flight Wing-Alone Geometry
The following figure shows that the design has dramatically changed the loading distribution by moving part of the load outboard. This has a corresponding tendency to increase the load ar the wing
 surface has been increased from the original design. However, since the final design in this case is less than one count higher in drag than that achieved in the previous case, this weak lower surface shock must not be incurring a significant drag penalty.

Figure 15: Spanwise Load Distribution.
Comparison of the Aeroelastic Design and the Rigid Design.
Wing Alone Configuration.
Aeroelstic Design, Drag + Stress Minimization at Fixed C_{L}. Aeroelastic Analysis at Fixed C_{L}.
Demonstration Problem (4):
Aero-Structural Shape Optimization of a Flight Wing-Alone Geometry
(Continued)
The final figure illustrates the benefit of adding the stress penalty function to the design problem. The spanwise stress on the rear spar at
the planform break has been reduced slightly in the optimized configuration. Assuming that no other constraints were placed on the
problem, it would then be possible th shift the load on the wing outboard, while thickening the inboard sections so as to keep the wing
weight approximately constant. With a more accurate description of the cost functions and constraints in the problem, these kinds of
trade studies will allow the designer to make better-informed choices about the development of the configuration.

Figure 16: Spanwise Stress Distribution for the Rear Spar.
Comparison of the Aeroelastic Design and the Rigid Design.
Wing Alone Configuration.
Aeroelstic Design, Drag + Stress Minimization at Fixed C_{L}. Aeroelastic Analysis at Fixed C_{L}.
Conclusions
The work presented here represents our first step towards the establishment of a high-fidelity multidisciplinary environment for the
design of aerospace vehicles. The environment is in its infancy and should continue to evolve during the coming years. At its core, it
consists of the following key elements:

- High-fidelity modeling of the participating disciplines (RANS flow models for the aerodynamics and linear finite element model current shape of the configuration and the physical solutions from the participating disciplines.
A force- and work-equivalent coupling algorithm designed to preserve a high level of accuracy in the transfer of loads and displacements between aerodynamics and structures.
- A framework for the computation of coupled sensitivities of the aero-structural design problem.
This design environment has been used to perform RANS aeroelastic analysis of complete configuration flight and wind-tunnel models with an additional cost which is less than 10% of the cost of a traditional rigid-geometry CFD solution. These solutions can be used to determine a priori whether significant aeroelastic corrections will or will not be needed for the resulting wind tunnel data.
In addition, simplified design cases have been presented that include the effect of aeroelastic deformations in the design process. These cases have shown that our design methodology is able to predict the correct trades between aerodynamic performance and structural properties present in these types of wing design problems. A structural stress penalty function added ape optimization ofrag alowed elimion ond artificial constraints but also produces designs where aerodynamic performance is balanced with a measure of wing structural weight.
Conclusions
- Steps Toward a Flexible Design Environment

Future Work
Further work will focus on the continued development and application of the MDO framework outlined here. Topics requiring
significant research include sensitivity analysis, optimization strategy, Navier-Stokes-based design, use of commercially available
CSM codes, multipoint design, and CAD integration. The multiple-geometry capability is indispensable for treating the multipoint
"core" problem that represents the final major Configuration Aerodynamics activity of the HSR program before it winds down at the
end of FY99. (Performances at Mach 2.4 , Mach 1.1 , and Mach 0.9 are to be optimized both sequentially and simultaneously.) The
aeroelastic capability may also be applied as part of the Ames "extended" variation of this multipoint problem.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 07704-0188
Public reporting burden for this collection of information is estimated to sverage 1 hour per response, inchucing the time for reviewing instructions, searching existing data sources, gathering and maintaining the dala neoded, and completing and reviewing the colloction of information. Send comments regarcing this burden estimate or any other aspect of this 			
1. AGENCY USE ONLY (Leave blank)	2 REPORT DATE December 1999	3. REPORT TYPE AND DATES COVERED Conference Publication	
4. Tire And subtitle 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop Volume I-Configuration Aerodynamics			5. FUNDING NUMBERS537-07-51-10
6. AUTHOR(S) Edited by David E. Hahne			
7. PERFORINING ORGANIZATION NAME(S) AND ADDRESS(ES) NASA Langley Research Center Hampton, VA 23681-2199			8. PERFORMING ORGANIZATION REPORT NUMBER L-17911A
9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, DC 20546-0001			10. SPONSORINGMONITORING AGENCY REPORT NUMBER $\begin{aligned} & \text { NASA/CP-1999-209704/ } \\ & \text { VOL1/PT1 } \end{aligned}$
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTIONAVAILABILITY STATEMENT Unclassified-Unlimited Subject Category 02 Distribution: Nonstandard Availability: NASA CASI (301) 621-0390			12b. DISTRIBUTION CODE
13. ABSTRACT (Madmum 200 words)NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Peiformance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.			
14. SUBJECTTERMS High-speed research; High-Speed Civil Transport			15. NUMBER OF PAGES 865 16. PRICE CODE A99
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION of abstract Unclassified	20. LIMITATION OF ABSTRACT UL
NSN 7540-01-280-5500			Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. $239-18$ 298-102

[^0]: *Part 2 is presented under separate cover.

[^1]: The Technology Concept Airplane (TCA) incorporated 2 D nozzles but retained the axisymmetric inlets. A complete CFD and wind tunnel assessment of this configuration was completed in 1996. In addition, the lessons learned from the Ref H bifurcated installation were applied in designing a bifurcated inlet installation on the TCA. CFD analysis of this configuration proved that the bifurcated could be installed for the same drag as the axisymmetric. Comparison of the axisymmetric and bifurcated inlets on the TCA was extended to transonic conditions in 1997. BCA analyzed both inlet configurations with transonic compression surfaces (ramps or centerbody) to simulate proper spillage conditions; these analyses were performed at wind tunnel Reynolds Number. The axisymmetric and bifurcated inlet installations were found to have equivalent aerodynamic performance at transonic conditions. Flight Reynolds Number transonic analyses were performed on the axisymmetric configuration by NGC (the bifurcated analysis started in 1998 is still in progress). NGC also performed an analysis of the inlet boundary layer bleed flow effect on the external aerodynamic characteristics of the axisymmetric inlet configuration at Mach 2.4. The effect of the bleed doors and exhaust flow was negligible.

[^2]: OVERFLOW has continued to be used extensively in BCA HSCT high-speed aerodynamics. It has proven to be a robust and accurate flow solver across the Mach and Reynolds Number range of interest. NGC used their in-house code GCNSfv which is very similar to
 produce equivalent results. All of the CFD results presented in this report have been run with the Spalart-Allmaras turbulence model.

 GCNSfv is based on the ARC3D thin-layer Navier-Stokes algorithm created at NASA Ames. The solution method is an implicit, node-based finite-volume scheme. Complex geometries are analyzed by using multi-block structured grids. The boundary conditions concs 1 is class 3 is
 Chimera V sequencing
 Spalart-Allmaras model, and the Baldwin-Barth model. GCNSfv offers a wide variety of boundary conditions including propulsion specific conditions such as characteristic

 әz!!! оұ әроэ әцך sмо!!e uo!pez!
 queue.

[^3]: This figure shows a comparison of the wind tunnel and flight, nacelle and diverter pressure drag results from the OVERFLOW solutions. The difference in diverter drag both atthes do difference for the outboard installation (one nacelle/diverter pressure drag differences shown in the ne very similar to axisymmetric channel for the wind tunnel case appeared not to have corrupted the force results that led to the conclusion that the bifurcated and axisymmetric inlet nacelle drag values were equal.

[^4]: The OVERFLOW analysis of the modified bifurcated inlet installed on the TCA has been әләм suо!

 shown. The elevated pressure levels due to the nacelles.

[^5]: A brief comparison of the BCA and NGC 1997 results for spillage affects on the axisymmetric nacelle installation are discussed. progress to date on a spillage and bypass study on the bifurcated installation on the TCA. This study was still in progress and a final report in work at the time that this current document was assembled. The review presented here has been assembled from NGC's monthly summaries and represents a snap-shot of work in progress.

 The previous study of the axisymmetric nacelle installation at transonic conditions considered only spillage, which is the current design method for dumping the inlet air fow that the engine doesn't need. This year a parametric study was initiated with NGC to trade spillage vs bypass on the bifurcated inlet and determine effects on external aerodynamic characteristics.

[^6]: MFR=Mass Flow Ratio, normalized by inlet capture flow. Alip $=3687.95$ in 2

 Eta=Pressure recovery at fan face.
 Positions supplied in geometry files.

 Compression Ramp:

[^7]: A third modification of the baseline Mach 0.90 run was made with the original door
 bypass flow rate was increased considerably from 7% to 18%.

[^8]: The relationship of the bypass MFR to the bypass door angle for the Mach 0.90 case is shown. With the collapsed ramp and the modified door geometry opened to 20 degrees the
 highest bypass flow rate of 21% was achieved.

[^9]: The mesh for this case complete, complex geometries.

 The AIRPLANE process used today at NASA is the result of efforts initiated by Antony Jameson and Tim Baker, and it has been augmented by several other contributors.

 ## References (taken from AIRPLANE source code):

 (2) A.Jameson,T.J.Baker and N.J.Weatherill,"Calculation of Inviscid Flow over a Complete Aircraft",AIAA Paper 86-0103,January 1986 3) A. Jameson, "Computational Transonics", Comm. Pure Appl. Math., Vol. 16, 1988, pp. 507-549. January 1987.
 4) A. Jameson, "Computational Aerodynamics for Airat , "Computational Aerodynamics for Aircraft Design", Science, Vol. 245, 1989, pp. 361-371.
 5) T. J. Baker, "Three Dimensional Mesh Generation by Triangulation of Arbitrary Points Sets", AlAA Paper 87-1124-CP, June 1987.
 6) T. J. Baker, "Developments and Trends in Three-Dimensional Mesh Generation", Appl. Num. Math. 5, 1989, pp. $275-304$.
 (7) T. J. Baker, "Construction of Tetrahedral Meshes Around Complex Three Dimensional Shapes", Conference on Supercomputing in
 Fluid Flow, Lowell, Mass., October 1989.
 (6) T. J. Baker, "Developments and Trends in Three-Dimensional Mesh Generation", Appl. Num. AIA Paper 87-1124-CP, June 1987.
 (7) T. J. Baker, "Construction of Tetrahedral Meshes Around Complex Three Dimensional Shapes", Conference on Supercomputing in
 Fluid Flow, Lowell, Mass., October 1989.
 6) T. J. Baker, "Developmensts and Trends in Three-Dimensional Mesh Generation", Appl. Num. AA Path. 5, 1989, pp. 275-304. 1987.
 (7) T. J. Baker, "Construction of Tetrahedral Meshes Around Complex Three Dimensional Shapes", Conference on Supercomputing in
 Fluid Flow, Lowell, Mass., October 1989. Fluid Flow, Lowell, Mass., October 1989.

[^10]: TRISURF is used prior to MESH3D to create surface triangulations of the symmetry plane and the far field boundaries. The output from urface triangulation (aircraft configuration, symmetry plane, and far field boundaries) can

[^11]: A typical situation is illustrated in the figure. Edge BC of triangle ABC on surface $\Gamma 1$ intersects triangle $P Q R$ on surface $\Gamma 2$, and edge ins these intersection points. There are a number of different cases to consider. For example, two edges of triangle ABC may intersect the face of triangle PQR , or the intersection point X may lie on the dge AB. A more pathological case occurs when the edges of two triangles, one from each of two different surfaces, are coincident.
 sequence of edges comprising their intersection.

[^12]: The perturbed surface may be used to generate a new mesh with MESH3D. If a volume mesh already exists for the original mesh it will
 be quicker to apply DEFORM3D. Another alternative is to apply APSHAPER to a wing alone, then APMERGE to join it to a fuselage, then MESH3D.

[^13]: Reference: Kulfan, R. M., "Historic background on flat plate turbulent flow skin friction and boundary layer growth", HSR Airframe Technical Review, Feb 1998

[^14]: considered in the second part of this presentation, that is the flow over TCA symmetric wing/body configuration.

[^15]: A systematic study of the viscous-drag prediction capability of the CFL3D based Navier-Stokes solver was

 pressure gradients. In the second phase of this study, flows with pressure gradient were considered by
 test data would become available for comparison in the near future.

[^16]: The streamwise (X-direction) and normal (Z-direction) direction grids are shown in the following Figures for turbulent flows over flat plate.

[^17]: - flow over TCA symmetric wing/body configuration
 - subsonic to supersonic Mach numbers
 - wide range of Reynolds numbers
 - two turbulence models
 - To provide a computational database

[^18]: Ipha STAR CORPORATION

[^19]: were performed for subsonic, transonic and supersonic freestream Mach numbers $(0.50,0.90,0.95,1.05$,
 aerodynamic chord for wind-tunnel and a series of flight Reynolds numbers $\left(221.2 \times 10^{6}, 163.3 \times 10^{6}\right.$, $171.9 \times 10^{6}, 172.8 \times 10^{6}, 172.8 \times 10^{6}, 174.7 \times 10^{6}, 168.1 \times 10^{6}, 170.0 \times 10^{6}$, and 211.7×10^{6}). Two turbulence models were used for this study. The results include the Euler solution for comparison.

 A typical convergence summary are plotted for Menter's $k-\omega$ SST turbulence model for the wind-tunnel and the flight Reynolds numbers at subsonic Mach number.

[^20]: - Ipha STAR CORPORATION

[^21]: | pha star comemounow

[^22]: The computational results of two turbulence models for the surface pressure coefficients were also compared and plotted for Mach numbers of $0.50,0.90,1.10,1.80,2.10$, and 2.40 , respectively, for the computational wind-
 $\mathrm{k}-\omega$ SST turbulence models. This supports the pressure drag results

[^23]: Text for Surface Pressures on Canard 2

 $$
 \begin{aligned}
 & \text { The following figure shows surface pressures on the "Canard 2" planform at } 4 \\
 & \text { deg. and } 30 \text { deg. angles of attack, for both the Navier-Stokes and Euler solutions. } \\
 & \text { Again, the pressure patterns predicted by both solvers are similar, and again the } \\
 & \text { Euler solution displays slightly stronger gradients, particularly in the vicinity of } \\
 & \text { the leading-edge vortex. The vortex is not as well defined as for the Baseline } \\
 & \text { planform. The Spalart-Allmaras turbulence model was used for the N-S solutions } \\
 & \text { in this figure. }
 \end{aligned}
 $$

[^24]: Reference: "USAF Stability and Control DATCOM (Data Compendium),"
 McDonnell Douglas Corporation, Douglas Aircraft Division, Revised April 1978,
 USAF Contract F33615-76-C-3061

[^25]: From the computational analyses undertaken in this section, it has been determined that both the overset and patched grid methodologies allow rapid solutions through a range of canard incidence angles.

[^26]: The photograph on the facing page shows the mid-mounted PTC canard configuration installed in the 16-foot Transonic Wind Tunnel.

[^27]: The test techniques utilized for Test 508 are described in the following chart. The Ultra-Violet oil flow echnique was not used due to time limitations during the test. The Shadow Graph technique was used during Test 508, but the results were not suitable for determining the shock structures at Mach 0.9 and 1.1 at the 16 TT.

[^28]: sideslip) with angle-of-attack for the Technology Configuration Airplane (TCA) with both the
 stability is stable and fairly constant with angle-of-attack up to approximately 7 degrees alpha,
 the configuration, it will have some effect on the directional stability variation with angle-ofattack as illustrated in the next figure.

[^29]: as the yawing moment of the canard-off and canard-on configurations are almost the same.

[^30]: The preliminary illustration below shows the upper surfaces of a $193 \times 49 \times 65$ Euler grid for the TCA- 6 wing/body configuration.
 O

[^31]: Instead of a direct approach to Navier-Stokes grid stretching, an indirect approach has been implemented with far greater success. All the quality (in terms of orthogonality at the wing surface) of the underlying Euler grid is retained in the redistributed Navier-Stokes grid. In fact the indirect option, which is very cheap computationally, can also overcome the main visual weakness of the direct Euler results namely a tendency to pull the C lines too much towards the wing surface in the quadrants above and below the wing), although the effect on Euler solutions is minimal. Further details of the direct and indirect approaches follow.

[^32]: The second method utilized the incorporate the real nacelles into the optimization process by using a multiple-block mesh which includes the wing surfaces, the grid blocks representing the nacelles may be deformed when the volume grid is perturbed to follow the shape of the wing. This method is referred to as the "warped" nacelle method, and was thought to be suitable for mature designs for which the majority of the wing shaping in the nacelle and diverter region of the
 wing had been performed with the "pseudo" nacelle method and only minor warping of the nacelles would be
 The third method, which required extensive work to incorporate the nacelle and diverter geometries properly into the optimization process, is called the "rigid" nacelle method. This more recent version of SYN107-MB ensures that as the lower wing shape evolves, each nacelle/diverter is moved as a rigid body during the process of maintaining the original diverter height at its leading and trailing edges.

[^33]: The "real" nacelle method, which should be the most effective and robust method, has the advantage that the nacelles and diverters are modeled accurately within the optimization code, and their positions relative to the wing are maintained throughout the design process. This required extensive alterations to the AEROSURF geometry paneling package within SYN107-MB in order to find new diverter/wing and diverter/nacelle intersections as the nacelle/diverter positions are adjusted to follow lower wing shape changes, and to panel the wing surface around the diverter cutouts.

[^34]: solutions for intermediate designs

[^35]: surface triangulations using the former AIRPLANE mesh generation code, MESHPLANE. The diverters were somewhat coarsely gridded since adding additional points to the diverter also caused triangulation difficulties in MESHPLANE. The current version of the AIRPLANE mesh generator, MESH3D, does not have these limitations. The surface pressure distributions were integrated during optimization to obtain force and moment

[^36]: SYN107-MB Rigid Nacelle Design Drag Comparison, Wing/Body/Nacelle/Diverter thickness and camber) as were applied with the warped nacelle method which produced the $6-08$ design. The
 result of this rigid nacelle design is the $12-10$ design, with approximately 0.6 count drag reduction over the
 Ames 1-03 configuration.

[^37]: Differences in designs may be due to grid density differences rather
 than method differences
 Coarse grids may produce more realistic designs-dispersed nacelle
 shocks may be more similar to viscous shocks in strength/location

[^38]: Penalty function optimization is not precise

[^39]: The description starts with the motivation for continued ASO/MDO development. Objectives of the current work are then presented. A list of ingredients deemed necessary for a flexible design environment is discussed, and the HSR requirement for different geometries at different design points is explained. Multiple design disciplines within a high-fidelity design environment are demonstrated. Finally, progress so far is summarized and planned future work is outlined.

[^40]: ing intensive computations which have been parallelized where possible. In addition, all the present multiprocessor systems performing intensive computations which have been parallelized where possible. In addion, aln the prid deal Adoption of the MPI message passing interface standard provides flexibility in terms of computing platforms-normally ASO modules are flexible in terms of problem size through their use of dynamic memory such that no recompilation is with larger problems.

[^41]: Permits Component Design in the Presence of
 Different Configurations
 $-\quad$ Wing design in the presence of different engines

[^42]: The use of high-fidelity modeling of two disciplines (Reynolds-Averaged Navier-Stokes aerodynamics and linear FEM structures).

[^43]: If we assume that the basic topology of the structure (i.e., the number of spars, the number of ribs, the choice of materials, etc.) is not altered during the design, the design space should be smooth. Although many alternative global optimization strategies exist, for the aero-structural problem of interest, a gradient-based procedure holds the most promise. Gradient-based optimization algorithms can be shown to converge only to a local optimum. If the cost function of the aero-structural problem is sufficiently multi-modal, these algorithms can fail to achieve the global optimum. Nevertheless, when used in conjunction with lower-fidelity MDO tools that provide a reasonable starting point for the optimization, they can yield significant and credible improvements in the design.

[^44]: The next figure depicts the pressure distributions before and after the design process. Once more, the resulting pressure distributions and changes to the sections look similar to those from the previous case. Hoter, the are san chord location is not present. Since
 we are解 highest stress level is recorded in the rear spar.

