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Preface

This volume collects together 37 papers from the Eighth Goddard Conference on

Mass Storage Systems and Technologies; for the third succeeding year, it is being held in

cooperation with the IEEE Symposium on Mass Storage Systems and Technologies and

is therefore also the Seventeenth IEEE Symposium on Mass Storage Systems.

The tutorials on the first day cover storage tuning, file systems, storage area

networks (SAN), network video storage servers and the stability of optical disk media.

Over the following three days of the Conference, there are twelve sessions on various

themes: Performance, Data Management, File Systems, Emerging Technologies, Site
Reports, and Standards.

An invited panel on the third day will consider the future of current mass storage

technologies. There is intense development work and competition in the disk and tape

fields, both magnetic and optical. Magnetic hard disk continues to double its areal density

about every year, and is well ahead of tape in this respect. Tapes on the other hand, are

still the media of choice for archives, principally because of their volumetric efficiency.

Optical disk media maintain the edge in track density. For distribution, CD and DVD

have the advantage because they are replicated using an injection-molding process.

Reliable copies can be made with less labor than for any other technology in less than 4

sec per copy. Multi-layer recording is already part of the DVD specifications, and there

are other technologies over the horizon, (e.g., MFD - multi-layer fluorescent disc) which

promise up to 16 layers on a disc. The newer optical discs are already in the same league

as high-end tapes in volumetric density, and may well overtake tapes in this respect. In

the tape world, there is more activity in longitudinal recording, as exemplified by the

Linear Tape Open consortium. Experts in the fields of magnetic tape, magnetic disk and

optical media present a concise overview of these aspects of the competing technologies

with the moderator and the audience joining in with their questions, views, comments and
observations.

Denis Gabor, who was awarded the Nobel Prize in Physics in 1971, invented

holography (from the Greek holos whole and Latin and Greek -graphos written, writing,

drawing) in 1949. In holography, one stores both the amplitude and the phase of the

wavefront emanating from an object. Efforts to develop practical storage devices using

holographic techniques have been under way since the 70's, and there were papers

describing attempts to design holographic storage devices in the IEEE Symposia in the

late 80's. Market and economic factors, as well as developments in materials science,

have reached a stage where it now appears that holography may be another option for

affordable data storage. The Program Committee decided to invite a group of research

teams to report on their work towards achieving the goal of three-dimensional storage

during a special invited session on holography held on the last day of the Conference.

In view of the limited time available in the general sessions, a poster session has

been slotted to make available to the audience many of the papers that did not fit into the
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themesof the plenary sessions. Theseposterpapershave also beenincluded in this
publication.

Vendorexhibitswill continuethroughthethreedaysof thegeneralsessions.On
thefinal day,somevendorswill talk abouttheir products.

The ProgramCommitteehasworkeddiligently with the authorsof thepapersto
assist the editors in the production of this volume. Rodney Van Meter deserves
particular thanks for the Perl script, which madefor painlesspaginationof Postscript
files.

BenKobler
P C Hariharan
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Abstract

Disk subsystems span the range of configuration complexity from single disk drives to

large installations of disk arrays. They can be directly attached to individual computer

systems or configured as larger, shared access Storage Area Networks (SANs). It is a

significant task to evaluate the performance of these subsystems especially when

considering the range of performance requirements of any particular installation and

application. Storage subsystems can be designed to meet different performance criteria

such as bandwidth, transactions per second, latency, capacity, connectivity .... etc. but the

question of how the subsystem will perform depends on the software and hardware

layering and the number of layers an I/O request must traverse in order to perform the

actual operation. As an I/O request traverses more and more software and hardware

layers, alignment and request size fragmentation can result in performance anomalies that

can degrade the overall bandwidth and transaction rates. Layer traversal can have a

significant negative impact on the observed performance of even the fastest hardware

components. This paper walks through the Storage Subsystem Hierarchy, defining these

layers, presents a method for testing in single and multiple computer environments, and

demonstrates the significance of careful, in-depth evaluation of Storage Subsystem
Performance.

1 Introduction

Disk subsystem manufacturers make many claims about the performance of their
products. However, these performance claims cannot be taken out of context of the final

implementation. Rather, it is necessary to evaluate the performance of disk subsystems

within a configuration that is as close as possible to the actual configuration in which the

subsystem will ultimately be employed. Such an evaluation requires a benchmark

program that can closely mimic the access patterns of the intended applications and
provide results that are meaningfhl and reproducible.

This paper presents examples of disk I/O performance anomalies and describes the cause

of these problems as well as strategies to minimize their effects. The paper begins by

describing the hardware and software components that an I/O request must traverse in

order to move data between the computer system memory and the storage media. The

Testing Philosophy and Methodology is then presented that describes how and why the

individual components are evaluated as well as basic assumptions and tradeoffs that must



bemadein orderto providemeaningfulandreproducibleresults.Theperformanceof the
entireStorageSubsystemHierarchyis thenbeevaluatedunderidealconditions.This sets
an upper bound for performanceof the system as a whole. Knowing this upper
performancelimit, it is possibleto addressthe Impedance Matching Problem which

examines various performance anomalies and their causes. Example test results are given

throughout the paper to illustrate relevant concepts.

2 The Storage Subsystem Hierarchy

The Storage Subsystem Hierarchy describes the levels of hardware and software that an

I/O request must traverse in order to initiate and manage the movement of data between

the application memory space and a storage device. The I/O request is initiated by the

application when data movement is required either explicitly in the case of file operations

or implicitly in the case of memory-mapped files for example. The request is initially

processed by several layers of system software such as the file system manager, logical

device drivers, and the low-level hardware device drivers. During this processing the

application I/O request may be split into several inter-related "physical" I/O requests that

are subsequently sent out to the appropriate storage devices to satisfy these requests.

These physical I/O requests must pass through the Physical Connection Layer that makes

the physical connection between the Host Bus Adapter on the computer system and the

storage device. After arriving at the storage device, the I/O requests may be further

processed and split into several more I/O requests to the actual storage "units" such as

disk drives. Each Storage Unit processes its request and data is eventually transferred

between the storage unit and the application memory space. The following sections

present a more detailed description of each level in the hierarchy with respect to its

function and performance implications.

2.1 Computer System
The Computer System is a critical piece of the Storage Subsystem Hierarchy in that it

encapsulates all the software components and the necessary interface hardware to

communicate with the Physical Connection layer (i.e. the Host Bus Adapter). The

components within the Computer System include the processors, memory, and internal

busses that connect the memory to the processors and to the Host Bus Adapters. The

performance characteristics of each of these major components (i.e. the clock-speed,

number of processors, processor architecture, memory bus bandwidth, ...etc.) plays a

significant role in the overall performance of the Storage Subsystem as will be
demonstrated in a later section. However, given the fastest hardware available, the

Storage Subsystem will only perform as well as the underlying software, starting with the

Application Program

2.2 Application Program
The term "Application Program" as it is used here is any program running on the Host

Computer System that requires data movement between the memory in the host computer

and a Storage Unit. Application programs can be either typical User programs or can be

parts of the Operating System on the host computer such as the paging subsystem. In any

case, these programs have the ability to make I/O requests to any of the lower-level layers

in the hierarchy if the Operating System provides an appropriate programming interface



to do so. For example,the benchmarkprogramusedto gatherstatisticaldata for this
study can accessa storageunit through the file systemmanager,the logical volume
devicedriver(s), or throughthe disk devicedrivers. In general,Applications that can
manageand accessthe lower levels of the hierarchyachievebetter performancethan
Applicationsthat musttraversethroughthe higher level layerssuchasthe File System
Manager.

Disk Array (RAID) Controller I
I

1! It
Disk Subsystem

DiskSubsystem o_.__

Figure 1. The Storage Subsystem Hierarchy

2.3 File System Manager

The File System Manager is mentioned here for completeness but it is not used in any of

the testing performed for this paper with one exception. The File System Manager

provides a level of abstraction for the Application Program in order to simplify the
process of accessing data for the application programmer. Because of the amount of

"indirect" I/O processing that can accompany a single Application I/O request (such as

space allocation, inode lookups .... etc.), I/O performance testing "through" the File

System Manager can become enormously complex and produce misleading results.

Therefore, it is beyond the scope of this paper to include any testing through the File

System Manager or to report the performance idiosyncrasies of the File System Manager

itself. The I/O benchmark program used in this study always bypasses the File System

Manager for data movement operations. The one exception to this occurs in the testing
that was performed for multi-host access to a set of shared disks in a Windows NT

environment. For these tests, a Shared File System was necessary in order to gain



"shared" accessto the disks from all the hostsinvolved in the tests.Unfortunately,this
functionalityis notyeteasilyavailablein the Device Drivers available under NT.

2.4 Logical Volume Device Drivers
The Logical Volume Device Drivers provide a mechanism to easily group storage

devices into a single "logical" device in order to increase storage capacity, performance,

and/or to simplify the manageability of large numbers of storage devices. The Logical

Device Driver presents a single device object to the Application. The Logical Device

Driver is then responsible for taking a single I/O request from the Application (or the File

System Manager) and mapping this request onto the lower level storage devices, which

may be either actual storage devices or other logical volumes.

There are many ways to configure a logical volume that consists of multiple underlying

storage devices. One common configuration is to stripe across (also known as striping

wide) all the storage devices in an effort to increase available bandwidth or throughput

(operations per second). In a wide-striped logical volume, data is laid out on the disk in

"stripe units". A stripe unit is the amount of sequential data that is transferred to/from a

single storage device within the logical volume before moving to the next storage device

in the volume. The stripe unit can be any number of bytes from a single 512-byte sector

to several megabytes but is generally a constant within a logical volume (Figure 2).

Block3 1 Block4 Block 5
I

A sequence of 8 consecutive 16384-byte blocks on a "logical" disk. Blocks distributed across the physical disks as shown.

,o,,°"

|o°,.

Logical
Disk

°°°°°,..°°°°°.° ....

°°o°

A single 16384-byte "block" consists of 32 consecutive disk sectors, 512-bytes per sector.

Figure 2. The layout of a Logical Volume.

2.5 I/O Protocol Device Driver
The I/O Protocol Device Driver is responsible for translating the I/O request from the

upper level device drivers into a form that fits the I/O protocol used to communicate the

request to the underlying storage devices. In general, an internal I/O request consisting of

a command (read or write), a data buffer address, and a data transfer length is converted
into a SCSI command and will convey this information to the host bus adapter via the

low-level device driver and the disk devices.

2.6 Low-Level Device Driver
This device driver takes the high-level information (i.e. the SCSI command) from the I/O

Protocol Device Driver and interfaces directly with the host-bus adapter that will perform

the actual data transfer between the storage device and application memory. For example,
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given a PCI-to-FibreChannelHost Bus Adapter,this devicedriver will set up the host
busadapterwith the addressof the SCSIcommandbuffer, the applicationdatabuffer,
andthe targetdeviceand thentell thehostbusadapterto begin the operation.The host
bus adapterwill transferthe SCSI commandbuffer to the intendedtargetdevice.The
target device at some later point will requesta data transfer operationthat will be
managedin partby thehostbusadapter.At theendof theentireoperation,an interruptis
generatedto notify the Low-Level Device Driver of the completion status the I/O
operation.Undernormal circumstances,the Low-Level Device Driver then propagates
thecompletionstatusto theupper-leveldrivers,eventuallyreachingtheUserApplication
Program.

2.7 Physical Connection Layer

This layer defines the hardware that physically attaches the host-bus adapter to the

storage device. These connections can be as simple as a single 3-foot cable or as

elaborate as a multi-stage communication fabric spanning many miles. In general, there

are two types of physical connections: Parallel-busses or Channels and Serial Interfaces.

Parallel busses include SCSI and IDE, Channels include IBM 370-type Block-

Multiplexer Channels. Bus-type interfaces are most commonly used inside personal

computers and other systems for system disks and other peripheral devices that do not

require a great deal of performance (i.e. greater than I00 MB/sec). SCSI busses are also

used for larger storage configurations that extend outside the physical boundaries of a

computer cabinet. However, due to the nature of the Parallel SCSI bus architecture, the

length of SCSI busses is severely restricted when compared to that of Serial Interfaces.

The most common Serial Interfaces include Fibre Channel, USB, and FireWire, to name

just a few. For disk storage, Fibre Channel is currently the most prominent Serial
Interface. Serial Interfaces have distinct advantages over the more traditional Parallel Bus

architectures in the number of different connection topologies that are possible. These

topologies include Point-to-Point, Loop, and Switched Network (Figure 3). Furthermore,

the distance limitations of Serial Interfaces tend to be significantly longer than Parallel

Busses making it easier to implement in physically large or extended configurations.

Dire_ct _ _

Attach Loop
Parallel Switched

Bus

Figure 3. Storage Area Network Topologies.

Point-to-Point connections

dedicate a single host connection

to a single storage device. This is

not the most efficient use of a host

connection but does guarantee
access to the device _'ia that

connection.

The Loop topology, also known
as an Arbitrated Loop in Fibre Channel terms, behaves more like a traditional Parallel

Bus. However, a Fibre Channel Arbitrated Loop, for example, can more easily

accommodate multiple host computers as well as a larger number of storage devices.

There are practical limitations on the number of devices and the overall length of a Loop

but these can be overcome using a Switched Network topology.



The Switched Network topology allows for any number of options in physically
connectingthe storagedevicesto thehost computers.It is the most flexible in termsof
allowing for multiple accesspathsto a singlestoragedevice,multiplehostsharedaccess,
fault tolerance, and performance.However, this flexibility also means increased
complexity in managingall the nodesconnectedto the SAN, whether they are host
computersor disk devices.Thesemulti-host,multi-deviceconfigurationsarecommonly
referredto asStorageAreaNetworksor SANs.

2.8 Storage Device and Storage Units
The last two layers in the hierarchy are the Storage Devices and Storage Units. The

distinction is that a Storage Device is made up of one or more Storage Units but can

"appear" to be a single device. The example is that of a Disk Array which is a Storage
Device that contains several individual Storage Units (disk drives) but can appear to the

system as a single, very large, disk drive. In the case of a disk array, the I/O request is
received from the host bus adapter and is divided up into one or more I/O requests to the

underlying disk drives. Storage Units are individually addressable storage devices that
cannot be further subdivided into smaller physical units. The principal example of this is

a Disk Drive.

3 Performance Implications and the Impedance Matching Problem

Each layer of software and/or hardware between the Application and the Storage Device
adds overhead and other anomalies that can result in highly irregular performance as

viewed by the Application. Overhead is essentially the amount of time it takes for the I/O

request to traverse the specific layer. The source of overhead in each layer is specific to a

layer and is not necessarily constant within a layer.

An example of this is the overhead induced by the Physical Connection layer. A physical

connection consisting of a short cable introduces virtually no overhead since the

propagation time of a signal at the speed of light over a 3-foot distance is not significant.

On the other hand, propagation of a similar signal traversing a 20-mile storage area

network through multiple switching units will introduce noticeable overhead [2].

An interesting artifact resulting from the interaction of the components in the Storage

Subsystem Hierarchy is analogous to the Impedance Matching problem in electrical

signal on wires. The term "Impedance Matching" is used as an analogy to what happens
when there is a mismatch of operational characteristics between two interacting objects.

In an electrical circuit, an impedance mismatch has an effect on the "performance" of the

circuit in terms of its gain or amplitude at particular frequencies. In the Storage

Subsystem Hierarchy, an "impedance mismatch" has more to do with things like I/O

request size and alignment mismatches that have an effect on the performance

(bandwidth or transaction rate) of the storage subsystem as viewed by the application.

The effects of these mismatches can be viewed from several different perspectives

including the Application perspective, the Disk Device perspective, and the System

perspective. The effects of this phenomenon are presented in the sections that follow.



However, it is first necessary to describe exactly how these effects are identified and
analyzed.

4 Testing Philosophy and Methods

When approaching the problem of evaluating a storage subsystem it is important to know

and understand the operational boundaries of the applications using the storage

subsystem. Performance tests are often run on equipment and results are generated or

provided that have no real connection to the actual "application" that will be using the
storage subsystem. The evaluation of a storage subsystem is intended to answer the basic

question of how well applications perform on a storage subsystem in a given
configuration.

There are many approaches to answering this question. One way is to run the application

on a specific configuration of the equipment under evaluation. The configuration can be

"tuned" until the "performance" is optimized for a specific application. However, this is

not always easy to do nor is it an accurate method of testing performance if the behavior

of the application is not well understood under all circumstances. Furthermore, the results

obtained by testing a single application or a small set of applications may not extend

beyond those applications to other applications or even to the same application as it (the
application) scales in size, complexity .... etc.

The evaluation method advocated by this paper is based on the idea of testing the

individual components of a Storage Subsystem followed by testing various

"configurations" of these components. It is essential to first understand the performance

characteristics of the individual hardware and software components of the entire storage

subsystem before the combined performance of the overall subsystem can be accurately

assessed. Successive layers/components of the Storage Subsystem Hierarchy are then
added to the evaluation testing and the effects of each addition are recorded.

Each successive layer of the Storage Subsystem Hierarchy adds functionality and/or

performance to the application. However, a side effect of each successive layer is to add

overhead to each I/O request as well as a significant amount of complexity to the

evaluation process. The increase in complexity results from the fact that each successive

layer adds new independent variables to the performance tuning equation. As a result,

this complexity grows exponentially with each successive layer. Understanding the
effects on the performance of each of these variables as well as how the variables interact

is the goal of the evaluation process. With this information, it becomes easier to identify

the cause of performance problems and to compensate by adjusting these and other
related variables.

For example, the evaluation process would start by characterizing the performance of a
single disk drive. Multiple disk drives can then be added to the same I/O Channel in order

to test the performance limits of the host adapter. Several host adapters can then be

added, each with a sufficient compliment of disk devices so as to saturate the system bus

that connects the host adapters to the memory subsystem of the computer or to saturate

the memory bus itself. In either case, the performance of the computer system internal
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databusarchitectureis characterized.Thedisk drivescanalsobe integratedwith a disk
array(RAID) controllerandtheperformanceof the RAID controllercanbecharacterized
aswell.

5 The I/O Spectrum and Performance Metrics
There are several metrics used to gauge the performance of a disk subsystem. The I/0

Spectrum is a concept that divides the performance metrics into two basic types. At one

end of the spectrum is bandwidth and the other end is transactions per second or lOPs

(I/O Operations per second). Bandwidth is simply the maximum number of bytes

transferred per second. This is generally characterized by relatively few, very large data

transfer requests per second. IOPs is a measure of how many relatively small data

transfers can be processed by the disk subsystem per second. In general, as the size of the

requested data increases, the performance moves from lOPs to Bandwidth along the I/O

Spectrum (Figure 4.)

Transactions per second

Figure 4. The I/O Spectrum.

Related to the IOPs metric are two other metrics worth mentioning: Response Time and

Jitter. Response Time is simply the time it takes to get a piece of data once the request

has been issued, it is important to note that Response Time is not simply l/(IOPs). For

example, if a Storage Device has an IOP rating of 2,000 I/O operations per second, this

means that the storage controller can accept 2,000 lJO requests every second and that it

can simultaneously deliver 2,000 responses per second. However, once an I/O request is

received by the Storage Device the associated response may be the next response out, or

it may be the 100 th response out, or it may be the 6,000 th response out. The associated

Response Times for each of these possibilities is 1/2000 th of a second, 100/2000---, 1/20 th

of a second, or 6000/2000--,3 seconds.

Jitter is closely related to the Response Time metric. It is a measure of how much the

Response Time changes over time. For example, given 1000 I/O requests that each have

a required response time of 1/30 th of a second, jitter measures how many of the 1000

requests failed to meet the response time criteria. Jitter is important in real-time

applications that require Response Times to be consistent. Such an application is

streaming video where the individual video frames must appear before or at the correct

time, every 1/30 thof a second for example, or the frame is dropped from being displayed.

6 The I/O Benchmark Program

As previously mentioned there are many aspects of performance that are of interest and

there are many ways to gather performance data display the information in an easy to

understand format. Simply stating that a disk drive can deliver 24MB/sec or 1500

transactions per second does not convey nearly enough information. Rather, the

performance of a disk drive as a function of some other variable such as request size or

media position is more informative. Furthermore, being able to capture and display this
information in a time-correlated manner is useful in understanding the interaction of

multiple components within a Storage Subssytem. This is especially important in a

8



shared-access environment where a single computer system does not have the ability to

control access to a storage subsystem.

The I/O benchmark program used to gather this information must have several qualities:

• Highly configurable

• Generate"reproducible" results

• Generate "reproducible" usage scenarios

• Very fine degree oftunability

There are many I/O benchmarking programs readily available such as BONNIE,

IOZONE, DiskPerf, IOMeter .... etc. These programs all address different aspects of I/O
performance and were not sufficiently focused on the fine details of I/O behavior to be

used for this study. Therefore, the benchmark program used to generate the results in this

paper has been specifically developed over the past several years at the University of

Minnesota and contains features necessary to satisfy the criteria mentioned above. This

program is called xdd and is available from the web site listed in the title of this paper.

Xdd is used to measure many of the disk device performance characteristics as well as

helping to identify many of the performance anomalies that appear in more complex
configurations.

7 Testing Framework

Testing in a multiple-host environment required the creation of a framework to

coordinate testing on multiple systems concurrently[4]. The two basic functions of this
framework are:

• Accounting for the existence of multiple clocks

• Coordinating the initiation of tests to run concurrently on multiple hosts

Xdd makes use of precise time stamps to quantify and report storage performance

characteristics. Each host accessing the shared storage has its own internal sense of time,

and without a common reference clock it is impossible to interpret the relationship
between tests run on separate hosts. Thus a consistent time base is needed in order to

correlate test results generated by separate systems.

7.1 The Reference Clock

Each of the systems used for testing has a clock register that updates at a high frequency,

allowing for very precise measurement of elapsed time. The resolution of this clock

varies for different systems (ranging from 2 to 80 nanoseconds per tick or so), so clock

values are converted to a common time unit (picoseconds) for the purpose of
synchronization.

A very simple clock model to establish a common time base. It is assumed that all clocks

run at the same, constant rate. Therefore it can be assumed that conversion from a given

machine's "local time" to the common "global time" involves only the addition of a

constant to the local clock's value. With this simplified model it is only necessary to

determine the value of the constant difference between pairs of clocks.
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Onemachineis designatedto keepthe global senseof time. That machineprovidesa
servicewith which otherscommunicateto determinethe offsetsof their own clock from
theglobaltime. Eachclient initiatesarequestto theserverto get thecurrentglobaltime.
The differencebetweenthetime valuereturnedandtheclient'slocal time is recordedas
the basisfor the offset.This offset is further adjustedto compensatefor the propagation
delay required to carry the time request and its responseover the communication
medium.This propagationdelayboundstheerror in thedifferencebetweentheestimated
andtheactualoffsetbetweenthetwo clocks.This request/responseprotocolis repeateda
numberof times, and use the offset associatedthe minimum propagationdelayas the
final offsetvalue.

7.2 Coordination of Concurrent Tests

With a common time base defined, it is possible to coordinate the initiation of tests on

different host systems. Xdd is able to determine the time offset for the machine under

test. The program is provided an indication of a (global) time at which all tests are to

begin. This global time is converted to a localized start time using the offset value. Xdd

then polls the high-resolution clock repeatedly until the start time has arrived. At that

point test execution begins. Test results generated by individual hosts are buffered during

test execution, and saved to disk for later analysis.

8 Disk Device Basics

In order to understand some of these

performance anomalies, a short course in disk

devices is necessary. It is assumed that the

reader has a basic understanding of how Disk

Drives are put together in the sense that they

contain platters, heads, cylinders, sectors, and

lots of l's and O's. However, it is worth

describing some of the more subtle design

concepts of a disk drive that have an impact on

the performance. These concepts include

Zoned Bit Recording, Caching, Rotational

Latency, Seek Time, the On-board Disk

Processor Overhead, Command Queues, and

Disk Arrays.

Figure 5. Zoned Bit Recording. Note how
the outer band has more sectors than the

inner bands.

8.1 Zoned Bit Recording
The data transfer is the rate at which actual user data can be read from or written to the

media. This transfer rate can vary in such a way that depends on the physical location on

the disk media where the transfer is to take place. This is due to a recording technique

called Zoned Bit Recording (ZBR) whereby more data is written on the outer tracks of a

disk platter than on the inner tracks. This allows for more efficient utilization of the

recording area and hence greater overall capacity. ZBR is used on most current

generation disk drives. Given that a disk drive spins at a constant rate, 7200 RPM for

example, the outer zones that contain more data will transfer data at a higher data rate

than the inner zones that contain less data.
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This is clearlydemonstratedin Graphl wherethe EffectiveDataTransferRateis plotted
againstthephysicalpositionon theplatter.Eachincrementalongthe X-axis is a 500MB
segmentof thedisk. As datais readfrom segmentssuccessivelyfurther into thedisk, the
data rate at which the data is transferreddecreases.However, the decreasesare not
gradual but are distinct "steps" along the performancecurve. Eachof the horizontal
plateausis aphysicalzoneon thedisk. This graphshowsthat thereare 14distinct zones
on this diskwhich matchesthe manufacturer'sspecification.It is interestingto note that
thewidth of outerzonesis largerthanthewidth of the innerzones.

Zoned Bit Recording Bandwidth Performance Curve as a Function

of Position on Disk for a Baracuda 50 Disk Drive for

128K-byte Sequential Read Operations
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Graph 1.

8.2 Caching

When data is read off the disk media it is stored temporarily in a buffer cache before it is

sent to the host bus adapter (controller). The data transfer rate from the cache onto the

bus is normally done at the speed of the bus that is usually much faster than the transfer

rate off the media. The cache can also be used during write operations to accept

incoming data and "complete" the write operation before the data is actually written on

the media. This can speed up the process of writing small amounts of data to a disk

device by a factor of 10-100 since the requesting application does not need to incur the

additional overhead of the seek operation and rotational delay associated with writing the
data to the disk media.
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The sizeof thebuffer cachealsohasan impacton thetransferrateperformanceof a disk
drive. Considera disk with no buffer cache.The datawould thenproceeddirectly from
thebus to the mediaandwould be limited to the datatransferrateto themedia. If the
buffer cachesizewas increasedto one megabytefor example,thendatatransferscould
proceedbetweenthe cacheand the busat busspeedswhile simultaneouslytransferring
databetweenthemediaandthecacheat mediaspeeds.Buffer cachescanbeveryhelpful
when streamingdata sequentiallyoff the disk media. After data from a single read
requestis transferredinto thebuffer cache,the disk canperforma read-ahead operation
and continue to transfer subsequent data into the buffer cache in anticipation of the next

read request. Without a buffer cache and the read-ahead operation, the subsequent

request would arrive and the disk would have to wait for an entire rotation of the disk

before the data transfer could begin again.

Bandwidth Performance Curve of a Seagate Baracuda 50 Disk

Drive for Sequential Writes

25

2O

u 15
0

Request Size

_Sequential Writes

Caches ON

Sequential Writes

i Caches OFF

Graph 2.

Graphs 2 and 3 demonstrate the effectiveness of a Write Cache for purely sequential

write operations. The graph plots Bandwidth and Transaction performance as a function

of request size. It is clear that the write cache significantly improves the performance of

the disk for any size write operation. For small operations, in the 1024-byte per

transaction range, the transaction rate is approximately 14 times higher when using the

cache for write operations than having the cache disabled.

Graphs 4 and 5 further demonstrate the effects of caches on purely random transactions:

reads and writes. These graphs show that random read operations do not benefit from the

cache and closely track the performance of non-cached random write operations.

However, the cache is still effective in improving the performance of small random write

operations up to about 64Kbytes where the performance curve tracks the non-cached

performance of both reads and writes.
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8.3 Rotational Latency and Seek Time

The Rotational Latency is the time that it takes for the disk platter to rotate such that the

requested sector is directly under the read/write head. The rotational latency is simply 1
divided by the rotational speed of the disk. Rotational rates for the most common disk

drives are 5400, 7200, and 10,000 revolutions per minute. This translates to rotation

times of 11. l ms, 8.3ms, and 6ms respectively.

The seek time is the time it takes to position the read/write head over the correct cylinder

on the platter. This time can vary by a factor of 10-20 from a single track-to-track seek to

a full drive seek (from cylinder 0 to the last cylinder on the disk). Typically seek times
range from slightly less than 1 millisecond to about 20 milliseconds for a full seek. Seek

operations for write operations take longer than those for read operations because write

operations need to seek to the required cylinder and be in perfect alignment before

starting the write operation. Read operations however, can start reading before the head
completely settles.

Graphs 4 and 5 show the effects of Rotational Latency and Seek Time on read and write

performance when the I/O operations are randomly distributed over the disk. Graph 4
plots Bandwidth as a function of Request Size and also shows the effectiveness of the

Write Cache on Random Write operations. Graph 5 plots IOPs as a function of request

size for the same access pattern. It is clear that for this particular model of disk drive, the

write cache does not have any impact on performance for request sizes beyond 64Kbytes.

13



Bandwidth Performance Curve of a Baracuda 50 Disk Drive for
Random Reads vs Writes
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Graph 5.

8.4 On-Board Disk Processor Overhead

The on-board disk processor overhead is the amount of time it takes the disk drive to set

up a data transfer not including the seek time and data transfer time. This becomes critical
for small data transfers. As the data transfer size becomes smaller, the ratio of the actual

time to transfer the data to the time to set up the transfer command gets smaller. On disk

drives this is only a problem on for request sizes less than 8192 bytes. On disk arrays

however, the processor overhead is significant for data transfers as high as 512Kbytes.
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8.5 Command Queues

Most all SCSI disk devices have on-board Command Queues that allow the disk device to

queue I/O requests locally to reduce the dead-time between requests. The disk device

controllers may also have the option to re-order requests in the queue. An example of this

is seek re-ordering. As requests come into the disk device, the controller may choose to

execute those requests that have data physically located near on another and postpone the

execution of a request that requires a longer seek operation. This has two side effects.

First, the number of transactions per second is maximized by this strategy. Secondly the

order of the requests coming in is not necessarily the order in which the requests come

out of the disk device (i.e. it is not a FIFO). Thus, the response time of any particular

request is not guaranteed. It is possible, however, to disable command queues and/or alter

the caching and seek algorithms on many disk devices in order to attain the desired

behavior but it is important to note that use of the command queues can result in these
performance anomalies.

8.6 Disk Arrays

Disk arrays also know as a Redundant Array of Independent Disks (RAIDs) consist of a
Disk Array Controller and several disk drives. There are several RAID levels of which

two are of interest here: RAID level 3 and RAID level 5. In each of these RAID levels

there are several data disks and a redundant or parity disk. RAID 3 uses a dedicated

parity disk whereas RAID 5 distributes the parity data among all the disks in the array.

Another distinguishing factor between RAID 3 and 5 is that for each request that comes

into a RAID 3, every disk in the array must accessed for each of these requests. This

simplifies the internal architecture the RAID 3 and allows for maximum bandwidth. In a

RAID 5 disk array however, the disk drives can be accessed individually which

maximizes the IOPs performance but significantly complicates the internal architecture
and configuration options.

Other important factors in the bandwidth performance of a disk array are the internal

striping factor and the mode in which it is running and. The internal striping factor is the

number of bytes accessed on an individual disk within the array before proceeding to the

next disk in the stripe group. Typically, on RAID 3 disk arrays this is 1 byte and is

generally not configurable. On RAID 5 disk arrays the striping factor can range from 512

bytes to 64 Kbytes or more. Small striping factors in RAID 5 disk arrays lead to good

Transaction performance but relatively poor Bandwidth performance. Conversely, large

striping factors in RAID 5 disk arrays lead to poor Transaction performance but good
Bandwidth performance.

8.7 Logical Volumes

Even though Logical Volumes allow for scalable performance, there are performance

anomalies that occur within a Logical Volume that are not entirely obvious. These

anomalies manifest themselves as dramatic shifts in performance that are triggered

simply by a change in the amount of requested data or from the alignment of the data on

the logical volume. The following graphs, 6-10, show a variety of these performance

anomalies that are a direct example of the Impedance Mismatch problem. Each of these
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volumes was created using the Silicon Graphics XLV Logical Volume Manager and

measurements were taken from an SGI ONYX2 computer system with eight processors

and a Dual Channel Prisa PCI64 Fibre Channel Host Bus Adapter.

Bandwidth Performance of an 8-wide Striped Logical Volume

Sequential Reads, 8K, 16K,32K Stripe-widths
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Graph 9.
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Graph 6 shows the performance of three 8-wide logical volumes with difference striping

factors. This graph shows that the overall sequential read bandwidth increases as the

stripe unit size increases but so does the variability in the bandwidth. For example, the

Logical Volume using a 16Kbyte stripe unit can have its performance vary from

18MB/sec up to 44MB/sec simply by choosing a different request size (the number of

bytes requested by the application on each read operation).

Graph 7 is a more dramatic view of the same phenomenon but this time on a logical

volume using a 128Kbyte stripe size. The subsequent two graphs, 8 and 9, zoom in on the

lower end and middle of the Request Size scale. Graph 8 shows a smooth ramp-up in

performance as more data is requested. Graph 9 focuses on the dramatic performance

difference of the different request sizes. The peaks in graph 9 occur at 16Kbyte intervals

and fall on multiples of 16Kbytes. The valleys occur when the request size is not an even

multiple of 16Kbytes. The important point of each of these graphs is do demonstrate the

magnitude of this problem.

Graph 10 demonstrates another aspect of the Impedance Matching problem that has to do

with processor allocation. On this graph the peak read bandwidth for an 8-wide logical

volume is plotted against the peak performance of two groups of 8 xdd threads each

running to a single disk. One of the 8-disk xdd thread groups is assigned to a single

processor in the SGI ONYX2. The other thread group is distributed across all 8

processors in the ONYX2, one thread to each processor. It is clear that the distributed

case performs significantly better than the logical volume and the single-processor case.
The reason for this has to do with the fact that at lower request sizes more requests are

processed per second. It turns out that a single processor gets overwhelmed with

processing requests with between 6-8 of these particular disks each running at full speed.

When the request processing is distributed across multiple processors, a higher overall
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performancerateis observed. Also, since the single-processor case closely follows the 8-

wide XLV case, it can be concluded that the performance limitations of the XLV logical

volume is due to a problem with having all the XLV request processing funneling
through a single processor.

Not all Logical Volume software is created equal though. Graphs 11 and 12 show the

performance curves for a 4-wide Windows NT Logical Volume striped set of disks. The

performance of this logical volume does exhibit some performance variation but not

nearly as dramatic as the variations seen in the XLV logical volume. Graph 12 focuses on

a small part of Graph 11. This shows the variation to be about 4MB/sec as opposed to the
80MB/sec seen in Graph 9.

The conclusion here is that the Logical Volume performance variations shown in the past

several graphs is a function of the Logical Volume software and associated

implementation parameters. A more detailed analysis of these Logical Volume

performance anomalies is presented detail in [2]. The purpose of these graphs is to

demonstrate that things can go wrong and how they go wrong.
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8.8 Storage Area Network Performance Results

At this point the testing and evaluation process becomes more complex. When testing a

storage subsystem on a single, isolated computer system, it is possible to correlate events

(I/O requests, interrupts, data transfers, ...etc.) in time at a very high resolution. This is

possible because all the performance benchmark application runs on a single computer

using a single "reference clock" where all events are based on that single reference clock.

In a Storage Area Network however, it is necessary to run the benchmark application

from multiple computers simultaneously, each accessing the same Storage Subsystem.

Each computer system has its own reference clock from which events local to a computer

system can be correlated. However, the notion of a "global" reference clock must be
established in order to cross correlate events in time over all the systems. In other words,

there must be a single reference clock on which to base all the events that occur on the

Storage Area Network in order to understand the interactions between computer systems

accessing a single Storage Subsystem. The generation of this global clock, discussed in

section 7, is therefore critical to the evaluation testing process of these SAN

configurations.

A simple test was run using two hosts accessing a single set of 16 disk drives configured

as a single logical volume through a file system shared between two Windows NT PC

computers. Each PC computer had two Fibre Channel connections to the logical volume.
The first test consisted of sequentially reading a 1.6GB file using 2MB per request from 2

hosts reading the same file. The file was read three times with results reported for each
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Performance of Individual I/O Operations for 2 Hosts Accessing a

Shared File System with 2MB Read Operations
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pass. The net result showed each host was able to read the entire file at an aggregate rate

of 73MB/sec. Graph 13 shows the instantaneous bandwidth performance of each I/O

operation for both hosts. The graph is crowded but it does show that the performance

limits of each host remained in a well-defined band from 50-90MB/sec/op.

Performance of Individual I/O Operations of 2 Hosts Accessing a
Shared File System using 4MB Read Operations
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Graph14howevershowstheutility of displayingthetime-stampedoperationdata.In this
testthe samefile wasbeingreadby thesametwo hostsbutwith 4MB readrequests.The
first half of the I/O operationslook very consistent.(Thereis a small "blip" at the 1/3ra
and2/3rapointson this graphthatindicatewhenthesecondandthird readpassesstarted.)
However,abouthalf way throughthesecondpassof readingthefile therewasanunusual
drop in performancethat is very evidentin thegraph.Bothhostcomputerssawthe same
performancedecreaseandat thesametime. It is alsoapparentthat neitherhostcomputer
recoveredfrom this performanceproblem.It is alsonotknownwhatcausedthis anomaly
but furtheranalysisof thetimestampdatamayrevealanaccesspatternissuerelatedto a
cachingidiosyncrasyof thedisks.

9 Concluding Remarks
This paper shows that there is a large variation in performance for logical volumes caused

by the Impedance Matching problem. This is primarily a result of having the I/O request

traversing too many levels in the Storage Subsystem Hierarchy. The I/O request at each

level can get resized and/or re-aligned in space and time. By the time the I/O request gets

to the storage subsystem, it appears are many smaller requests distributed across many

devices. Furthermore, what the application sent over as a "parallel" request can be broken

up into a series of smaller, serialized requests to the storage subsystem. The results are

demonstrated in a series of graphs that show what happens to the performance as seen by

the application when a series of large requests are made to subsystems with different

configurations.

These are just some of many examples of the manifestation of the Impedance Matching

problem within a Storage Subsystem. Other Impedance Matching-like problems occur in
the caches used on the disks arrays and disk drives with respect to their size and caching

algorithms, multi-host Storage Area Networks, and the ever-changing bandwidths and

latencies of the subsystem interfaces. These are all areas that are ripe for investigation

given an adequate test and evaluation framework.

It was also demonstrated to some extent the value of having a testing framework with a

highly resolved, global clock for the purpose of evaluating and analyzing the

performance of a Shared Storage Subsystem in a Storage Area Network environment.
This testing framework will become more critical as the systems become more complex

and less predictable whereby more real-time empirically-based analysis will be required

to resolved problems in large SAN configurations.

System testing

10 Future Work

Future and ongoing work includes but is not limited to:

• Integrating these techniques and testing framework with File

efforts

• Developing ways to collect subsequently study "real world" storage system

activity data

Improving and expanding the capabilities of the testing software to other

operating environments

Incorporating other storage devices such as tape drives into this testing framework
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Computational power is getting cheap. Thus, it can be argued that the real cost of

computing today lies in reliably storing, and rapidly moving, big data. This article will

introduce some principles and methods with which to fine-tune I/O and storage in RAID

(Redundant Array of Independent Disks) storage systems.

The existence of an important but unrecognized or under-appreciated RAID

capacity/performance relationship should be noted here. It is common to recommend a

hardware size for a system predicated on the predicted capacity required by the operation.

However, users have performance requirements that must often supersede their capacity

requirements. For this reason, in correctly analyzed and sized data storage

configurations, one will often find more physical system capacity than is strictly required

by the I/O and storage workload. The extra capacity is not unnecessary overhead; it is

capacity needed to fulfill both the users' storage requirements and the users' performance
requirements.

The statements above are expressed in the RAID hardware as:

• Capacity requirements dictate the number of RAID luns needed

• Performance requirements dictate the number of disks needed per RAID lun

With those important considerations in mind, we move on.

Traditional highly available RAID technology provides redundant disk resources in a

number of disk-array configurations that render the storage system more available and

improves reliability and performance. Each level of RAID offers a different mix of

performance, reliability and cost. Which level of RAID to use is completely dependent

on the individual situation. No single RAID level is best for every situation. However,

five of the most commonly used configurations are:

Level 0: Striping. The various disks in the array each get portions of a file, which is

reconstructed upon retrieval. In this way, RAID 0 is similar to XLV striping in that it

stripes the data across all the drives but doesn't offer any parity or redundancy. Thus, in

the event of a failed drive, all data across the stripe is lost. Advantage: faster access due
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to parallel operation of the accesses. Disadvantage: if there is a problem with one of the

disks, no data is accessible.

In addition, RAID level 0 striping is done on the RAID hardware. XLV does the striping

in software. This distinction is important, as some competitors conduct their RAID parity

calculations via software on their CPU's, not in the RAID array.

Level 1: Mirroring. In this simple hardware-mirroring format, all disk contents are

mirrored on another disk in a simple primary/secondary relationship. Usually done in

conjunction with RAID level O, this guarantees security and performance.

Advantage: parallel I/O requests can be fulfilled simultaneously.

Disadvantage: data storage costs are doubled.

Level 3: RAID 3 is supported in disk configurations of 4+l and 8+1 due, primarily, to the

architecture of most of the RAID controllers (Clariion and Ciprico) that support RAID 3.

Parity is contained on one drive, with the data drive heads accessed in lock-step

sequence. This promotes extremely high bandwidth to large, sequentially accessed files

such as image, graphical, video and satellite data sets.

The performance-price paid for the extremely high bandwidth produced by the physical

configuration (single parity drive and multiple head movements) is that RAID 3 will

service 3-4 threads of concurrent I/O's very well, but will chock on 8-9 I/O threads. It's

also the case with RAID 3 that random I/O's or smaller, more numerous I/O's will

degrade performance.

Level 5: In RAID 5 all the drives operate independently. RAID 5 is good for reads, for

small I/O's, for many concurrent I/O's, and for random I/O's. Thus, its characteristics

are just the opposite of RAID 3 characteristics.

In RAID 5 the parity blocks are distributed across all disks, together with other data.

RAID 5 spreads the parity among all of the drives, but within one single, physical I/O it

writes parity to only one drive. The next physical I/O writes the parity to a different

drive, thus rotating parity. Simultaneously, the data blocks are being written to the other

drives which make up the RAID 5 lun. Thus, it might appear that parity disk bottlenecks

would be minimized.

However, any advantage or efficiency gained would be offset by the RAID 5 parity and

data distribution calculation on writes. Writes are particularly demanding for RAID 5.

To offset this write-performance degradation, memory (cache) can be added to each of

the storage processors (SP). The amount of cache is dependent upon the number of disk

drives owned by the SP plus the size of the I/O's from the application, the number of

concurrent I/O's from the application, and the mix or reads versus writes.

Physical Parity Needs Summary:

26



RAID 0 requires9%extraspacefor paritybecauseit doesn'toffer any parity.

RAID 1 requires 100% extra space because it is simply direct hardware mirroring.

RAID 1/0 space requirements are almost identical to RAID 1 because it, too, is basically
a mirroring system.

RAID 3 requires 20% extra space in a 4+1 configuration, and 11% extra space in an 8+1
configuration.

RAID 5 can run 3 to 16 drives, so the extra space required is calculated as:

1 / Total # drives in lun. So a 15+1 RAID 5 lun would need 6-1/4% extra space.

RAID levels 1 and 1/0 need 100% more space. RAID level 3 needs 11% or 20%

depending on the configuration. RAID 5 needs 6-1/4% to 33% depending on the
configuration.

40/30/30 Rule

Fine-tuning the RAID system begins with recognition of the 40/30/30 performance rule.

The 40/30/30 performance rule states that 40% of the performance it's possible to extract

from the system is within the hardware set-up; 30°,4 is found in the system software, and
another 30% reside in the application software.

This document will concentrate on exploiting the 30% of the fine-tuning opportunity to

be found within the application software. After analyzing the application to reveal the

characteristics of the application, answers regarding the remaining 70% (40/30) should
become more clear as well.

Analyze the Application

Inspection of the application reveals valuable data about the characteristics of the I/O

load under which the application is operating. Specifically, the overview will reveal the
following broad characteristics:

• Large or small I/O's

• Sequential or random I/O's
• Number of concurrent I/O's

• Percentage mix of Reads and Writes in the I/O

• Direct, buffered, or raw I/O to the filesystem/volume. That is, the method (calls) used

within the application code (program) to actually execute the reads/writes/opens, etc.

A more detailed analysis of the application will reveal:

• Transaction I/O size and type (Fixed and large are easier)

• An indicated RAID level to use (5, 3, 10, or 1)(An instance of the 40% rule)

• Number of disks to use in each single RAID lun (lun = logical unit number)(4+l
versus 8+1, mirror, etc.)
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• Write cachingor write buffering (Caching is battery backed-up and protected, write

buffering is not protected)

• Cache page size (transaction I/O)

• Percentage mix of reads and writes

• Number of concurrent I/O's

• Whether the I/O is network-based or local

• Whether the data to the filesystem/volume is raw, buffered, or direct. That is, the

method (calls) used within the application code (program) to actually execute the

reads/writes/opens, etc.

Of these, it has been common to find that the two most important considerations are:

• Sequential versus random I/O

• Raw, direct, or buffered type of I/O to the filesystem/volume

The aggregate weight of the above parameters should define the size of the RAID luns

and the write caching parameters to use.

Application Analysis Applied

.
The number of concurrent I/O's bears a direct relationship to the RAID level chosen.

Because there can't be one RAID lun for one application and another RAID lun for

some other application, the choice must be made between optimizing the environment

for fewer, larger I/O's or for more numerous, smaller I/O's.

It follows from this that transaction size is an important factor in selecting the RAID

level to use: small I/O's (<32K) are classically linked to RAID 5, RAID 1, or RAID

1_0 luns. Large, sequential I/O's (>256K) are classic to RAID 3. I/O's between 32K

and 256K fall into a gray area and decisions are application-dependent.

. RAID 3 is good for sequential I/O's, but probably not for more than 3-4 concurrent
I/O's. RAID 3 heads are locked together and step out across the drives together to

write sequential I/O very well. However, RAID 3 heads don't perform random I/O

well and are particularly slow for random writes.

3. Large Sequential I/O is best suited for direct I/O to the filesystem. Near raw

performance and the benefits of having a XFS filesystem can result.

4. RAID 5, RAID 1 and RAID 1_0 are generally the best choices for random I/O and for

more than 70% of read-based applications.

Observations about RAID

1. Creation of an optiondrive (creating one giant partition encompassing the entire disk

drive) is recommended.
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2. Disk thrashingwill probablybeproducedby:

A° Creating an external xfslog on the same RAID lun when "fx'ing" RAID. Doing

this will cause the heads to 'Ping-Pong' from the extreme inner portion of the

drives (when updating the data in the xfslog) to the extreme outside of the drives

(to continue writing or reading). ("fx" is an interactive, menu-driven disk utility

that creates partitions sizes, disk drive parameters, and writes the volume label of

the device.)

(The author wrote a script that eases the "fx'ing" part. It allows one to "fx" in one

execution; all RAID attached to the system as an optiondrive. The script will also

perform the command tag queuing (CTQ) setup at the same time. Once "run_fx"

has executed, it documents exactly what was just done and, if executed in 'query

mode', provides configuration documentation regarding the partition setup on all

luns. Part of the 'rktools' tolls set, the script works on Fibre RAID and JBOD and
SCSI-2 RAID and JBOD.

B. The creation of more than 3 concurrently active partitions on the same lun is not

recommended. It doesn't matter how many partitions are created, the criticality

lies in how many partitions are accessed simultaneously. Having more than 3

partitions active simultaneously can cause disk thrashing and thus, poor I/O
performance.

More Observations about RAID

, Always enable CTQ when "fx'ing" RAID. While setting the appropriate CTQ depth

is very important when using threaded or buffered filesystem I/O, CTQ'ing is not
applicable when the I/O is single-threaded.

CTQ depth -- 256 / Total # luns owned by the DPE (Disk Processor Enclosure).

o It is monumentally important to select the appropriate stripe unit size (whenever

possible, select an even stripe width I/O) and lun interleaving when creating XLV

striped volumes. For instance, if there are two busses with four luns per bus,

interleave on the volume element line. (XLV devices provide access to disk storage

as logical volumes. A logical volume is an object that behaves like a disk partition,
but its storage can span several physical disk devices. XLV can concatenate disks

together to create larger logical volumes, stripe data across disk to create logical

volumes with greater throughput, and plex (mirror) disk for reliability). It is also the

case that with an XLV striped volume having multiple luns; each lun could have its

own XLV thread of I/O. For instance if you have an XLV striped volume made up of

4 luns, then the stripe group = 4. If you create even stripe width I/O's an application

I/O will fit evenly across all four luns in one physical I/O. This will create up to 4

threads of I/O one to each device. If you had two application threads doing this, you

would have two application I/O threads feeding multiple XLV I/O threads.
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. Calculation for even stripe width I/O. Application I/O size = (# of luns * stripe unit).

Thus, if the XLV stripe lun group is 4, and the stripe unit is 2048 blocks, the

applications' I/O size = 4MB.

Two Ways to Scale I/O

1. Use even stripe widths from the application program.

. Use more threads of I/O from the application program. Threads could be from the

use of posix threads (a set of IEEE standards designed to provide application

portability between Unix variants) in the application program, or they could be from

running more application program processes.

Underlying Ur-Truth

Until the saturation point is reached, creating more sustained I/O will produce the best

overall I/O results.

Summary

Despite, or because of, the massive proliferation of data and our ability to stockpile it in

terabyte quantities, many data-intensive operations have trouble quickly and efficiently

accessing the information they need. Such operations need to maximize data retrieval,

optimize throughput performance, and enhance the performance of both I/O and storage

systems. Fortunately, correctly tuned RAID I/O and storage systems can significantly

enhance the availability, reliability and performance of the data storage system without

significantly increasing the overall system cost.
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Abstract

Data archivists expect information storage media to have a lifetime greater than ten years.

Furthermore they desire the ability to predict when the media will fail in order to plan for

its replacement. Archival lifetime predictions are based on accelerated aging studies,

where the media are subjected to conditions of high temperature and high humidity. The

rate of failure is measured and the data extrapolated to obtain rates of failure under

ambient conditions. This extrapolation is reasonable provided the degradation process is

activated and the Arrhenius relationship holds. However this may not be the case for the

complicated materials packages in optical data storage media. A primary concern for the

polymeric materials is any phase transition, such a glass transition or a beta relaxation,

that may occur at temperatures between ambient and the accelerated aging conditions. It

is not clear how one extrapolates through those transitions. These phase transitions can

give rise to large changes in the rates of diffusion for water, oxygen and other agents of

degradation. Furthermore, for polymers, such as polycarbonate, the mode of failure is

often hydrolysis and the degradation products can catalyze further hydrolysis, an

autocatalytic degradation. The polymer degradation will change the phase transition

temperatures. The degradation products may also plasticize the polymer, causing further

changes in diffusion rates. We provide here a simple analysis of accelerated aging

techniques and discuss other factors that may be involved.

Optical Data Storage Media

DVD is an emerging optical data storage technology that may find application in data

archiving. DVD disks are complicated materials packages consisting of a 0.6 mm

polycarbonate substrate coated with a recording layer or layers. For double-sided disks,

two disks are laminated with a polymeric adhesive layer. In DVD-R the recording layer

is a dyed-polymer with a gold reflective layer. The recording layer in DVD-RW is a

phase change alloy surrounded by dielectric layers. These material packages are similar

to the corresponding compact disk formats, CD-R and CD-RW, except the materials are

tuned to red lasers rather than 780 nm lasers. We may draw on the experience for the CD

formats to gain a sense for the reliability of the DVD formats. The block error rate was

measured as a function of time for CD-R disks exposed to 8% relative humidity and

either 60°C, 80°C or 100°C [1]. The rate of degradation of the block error rate under

these conditions led to a prediction of a data storage lifetime of 100 years, comparable to
the best CD-ROM disks. The materials package for DVD-R is different from CD-R. The

substrate is thinner which would make it more sensitive to any mechanical changes

arising from polycarbonate hydrolysis. The recording layer contains a different dye,
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whichabsorbstheredlaserinsteadof the 780 nm laser. The chemistry of the degradation

of the dyes used for DVD-R has not been systematically studied. However accelerated

aging studies of naphthalocyanine or cyanine dyes, sensitive to infrared lasers, suggested

that the rate of degradation was reaction kinetics limited [2-3]. If the dyes for DVD-R

are sensitive to degradation by oxygen or to moisture, it is expected that the degradation

would be reaction kinetics limited. However, for more aggressive penetrants, such as

ozone, the degradation may very well be mass transport limited. A systematic study of

dye degradation by different penetrants would allow a rational accelerated aging strategy

to be developed.

In DVD-RW the phase change alloys (In-Ag-Sb-Te) are sensitive to oxidation. The

penetrants must diffuse through the polycarbonate and through pinholes in the protective

layer (ZnS-SiO2) to get at the alloy. Water would adsorb on the alloy surface, creating an

electrolyte for the reduction of oxygen and the oxidation of the alloy [4]. This process

disbonds the protective layer, exposing more of the alloy surface to corrosion. The result

would be random defects that would increase the bit error rate as the corrosion sites grow.

Clearly, this mode of degradation would be mass transport limited.

Polycarbonate

Under exposure to high temperature and high humidity conditions polycarbonate

substrates hydrolyze to break the carbonate ester linkage, Eq. (1). The products are

carbon dioxide and two new phenol end groups. Ester hydrolysis can be catalyzed by

acids or by bases. Although phenol and carbon dioxide are acids, they are very weak

acids. It is expected they would have a minimal effect on the rate of hydrolysis. The

kinetics for polycarbonate substrate hydrolysis under high temperature and high humidity

conditions was reported earlier [5]. Plots of the degree of polymerization as a function of

aging time were linear, indicating the degradation process was not autocatalytic. The

activation energy for hydrolysis was 70 + 4 kJ/mol, which was close to the activation

energy (59 kJ/mol) for the hydrolysis of diphenyl carbonate [6]. In the course of

accelerated aging experiments, the polycarbonate was degrading. There was no
determination of the effect of this degradation on the physical properties on the substrate,

such as the mechanical properties or the rate of diffusion of penetrant molecules. There

is a report that the bisphenol A monomer, liberated by hydrolysis, can diffuse to the

surface [7]. The effect of bisphenol A on the degradation of optical disk recording layers

is not understood.

CH_H k CH_CH3 CH_H3
H20

+ C02

(1)
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Thediffusion of smallmoleculepenetrantsinto polycarbonatehasbeenstudied[10]. At
low partial pressurewater showsa dual mode soption,consistingof Henry's law and
Langmuircontributions.Eq.(2) [8]:

a@
A = Kp + _ (2)

l+bp

where p is the partial pressure, K is the Henry's law constant, a is the Langmuir capacity

and b is the Langmuir affinity. The Henry's law contribution is temperature dependent as

is the solubility of the penetrant in polycarbonate. The Langmuir contribution arises from

occupation of excess volume. The excess volume depends on how the substrate was

processed. At 25°C the solubility of water in polycarbonate is 0.35%, while the solubility

of oxygen is 0.056%. The activation energy for diffusion of water is 26 kJ/mol, while the

activation energy for oxygen diffusion is 32 kJ/mol. This information should be collected

for other penetrant gases, such as ozone or the gases in the Battelle class II environment.

Note that the activation energy for transport is significantly lower than the activation

energy for the hydrolytic degradation. In extrapolating from high temperature conditions

to ambient conditions, one wonders whether the mode of degradation may change from
mass transport limited to reaction kinetics limited conditions.

Aging Studies: Analysis

Accelerated aging studies are used to predict the archival lifetime of information storage

media. The strategy is to determine the rate of degradation at elevated temperatures or in

environments containing elevated levels of potential degradants. Often the degradation is

measured by a system metric, such as increase in bit error rate. The data are then

extrapolated to ambient conditions. Typically, this involves a variety of assumptions such

as an Arrhenius temperature dependence for the rates. However, these assumptions may

be invalid depending on the underlying physical phenomena governing degradation or if

the extrapolation passes through a phase transition, such as a glass transition in a

polymeric component. Another problem is that many degradation processes, such as

polymer hydrolysis or corrosion can be autocatalytic, i.e. the product of the degradation
process can catalyze further degradation. A predictive model of archival lifetime must be

based on an understanding of the chemical and physical processes leading to failure.

This model must also account for the effect of these processes on the degradation of the
system performance.

To demonstrate possibilities for analysis of accelerated aging strategies, we consider an

example in two extreme limits: mass transfer limited degradation and kinetically limited

degradation. The geometry that we examine consists of a large (effectively infinite in the

lateral directions) plate or disc of the protective material of thickness d (i.e., the

polycarbonate substrate, backed by the data storage material in a recording layer). We

consider only degradation of the data storage materials as the results of reaction with a

penetrant that must move through the substrate. In addition we make some general
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assumptions:(1) Thesystemis at steadystate. (2) Masstransferis one-dimensional.(3)
The systemcan be treatedas containingonly two components:the penetrantand the
substratematerialand,therefore,adequatelymodeledwith binary Fickiandiffusion. (4)
Thesubstratematerialis stationary(notdiffusing). (6) Onlya singledegradationreaction
occurs,and reaction productscan by neglectedin the analysis. (7) The degradation
reactionoccursat the interfacebetweenthe substrateand the datastoragelayer. The
proprietyof theseassumptionsis discussedbelow.

First we considerthecasewheredegradationis kineticallylimited. Thismeansthatthere
is alwayssufficientpenetrantat the interfacebetweenthe substrateandthe datastorage
layer for the rate of degradationto be governedby reactionkinetics. Hence,we need
only examinethe kinetics of the degradationreaction. If we assumethat the reaction
exhibits Arrhenius temperaturedependence,then the rate of degradation,R, shows the

same temperature dependence, and we have:

R _ e -e_/r (3)

where Er is the activation energy for the reaction, and T is the absolute temperature. This

simple relation prescribes that accelerated aging tests at temperature To can be used to

predict the degradation rate at temperature T via:

(4)

If the penetrant concentration at the outer surface of the substrate, Cp, is varied in an

accelerated aging test (e.g., by varying the ambient humidity) in the kinetically limited

system, then Eq. (4) will be modified simply by including the ratio of concentrations

raised to the appropriate reaction order, n, on the right-hand side. That is:

I nR T.c.,
_\ Cpo./

V ( 1 1"_-])

exPl Er|'7"---_ I I_"
L ',So _:JJ

(5)

Hence, knowledge of the reaction order (n) and the activation energy for the degradation

reaction (Er) is all that is required for aging analysis.

If degradation is mass transfer limited, then the rate of degradation is governed by the

rate at which penetrant can diffuse to the interface between the substrate and the data

storage layer. The degradation reaction can be viewed as occurring spontaneously. The

degradation rate is then equal to the mass transfer rate of penetrant. Therefore, under the

assumptions given above we have [9]:

-D c

R =---_ ln(1 -Zp,)
(6)
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whereDpc is the effective binary diffusivity of the penetrant and Zps is the ambient mole

fraction of the penetrant at the outer surface of the substrate. The diffusivity in Eq. (5) is

a relatively strong function of temperature. It is reasonable to assume that [10]:

Dpc o_ e -_.1 r (7)

where Ea is the activation energy for diffusion. Hence, the analogue of Eq. (5) for

predicting aging at temperature T and ambient mole fraction Zps from data at To and ZpsO
in this limiting case is:

!ln(1-Zps)ex rE(1 1 ] _ (8)

That is, knowledge of the activation energy for diffusion (Ea) is sufficient for the

accelerated aging analysis. Eq. (8) also suggests the possibility of accelerated aging tests,
valid under our fairly restrictive assumptions.

The dependencies on ambient penetrant concentration in Eqs. (5) and (8) are quite

different indicating the importance of knowing which mode of transport and degradation

dominates. The temperature dependencies in the two equations are very similar, although

the difference in magnitudes of the two activation energies should make it possible to
distinguish whether the process is mass transfer or reaction limited.

In reality, the degradation process probably occurs somewhere between the two extremes

of mass transfer limitation and reaction kinetics limitation. In addition, it is important to

examine the applicability of our general assumptions. The assumption that the system is

at steady state and that transport is one-dimensional are acceptable for the case where the

degradation is heterogeneous - occurring only at the interface between the substrate and

the recording layer. The assumption that the system can be treated as containing only

two components is clearly over-restrictive. Many species can diffuse through the

substrate and cause degradation. The diffusion rates for each of these species will be

different. In addition, the reaction products generated by the degradation reactions may

actually promote further degradation. Including all of the possible degradation reactions

and species involved would complicate the analysis considerably. The basic forms of the

results (Eq. (5) and (8)) would be similar but with a spectrum of activation energies and
reaction orders. Furthermore, it may be necessary to account for some movement of the

substrate itself as it swells under the influence of the penetrant.

The assumption that the degradation occurs only at the interface between the substrate

and the recording layer is also overly restrictive. Penetrants will diffuse into the

recording layer and degradation will occur throughout the material. Furthermore,

degradation of the substrate (e.g., hydrolysis) will also occur. Including this

homogeneous degradation will necessitate performing a non-steady state analysis of the

process. That is, the analysis would require examination of the basic mass transfer
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equationin the material. Under the assumptionslisted above(i.e., Fickian transport,
constantdiffusivity, binarysystem,stationarysubstrate)that is:

0% = Dr,, V2Cp "1"- Vp

9t
(9)

where rp is the rate of reaction of the penetrant. However, it may be possible to include

the diffusivity give by Eq. (7) in such a way as to provide a type of time-temperature

superposition for aging studies. For example, if we assume that the rate of reaction of

penetrant is first order in the concentration of the penetrant (i.e., rp=-kcp), then the

solution of Eq. (9) may be formally written as:

Cp

I

= -klek"f(r,t ' )dt'+ ek'f(r,t)
0

(10)

where we have assumed that there is no penetrant in the material initially, andf(r,t) is the

solution of:

V 2 (11)=Dp_ f

with boundary conditions as specified for cp and a homogeneous initial condition. That

is, f(r,O is the solution of the mass transfer problem in the absence of reaction. Now we

imagine conducting an aging experiment at a temperature T0, with the goal of extracting

information on the degradation that would occur at (lower) temperature T. The rate of

degradation should be proportional to the concentration of penetrant in the sample, so we
need to examine how the solution given by Eq. (10) varies with temperature.

Temperature enters parametrically in this solution in two places: through the rate

'constant', k, and through the effective binary diffusivity, Dpc. For the former, it is

reasonable to assume an Arrhenius dependence:

k(T)=k o ex E r "_0- (12)

where ko is the rate constant at temperature To. For the diffusivity, we define a new time

scale, s through:

ds:D    dt (13)
D,,c(r0)

This is a simple re-scaling of time if the temperature T is constant, and Eq. (11) can be

thought of as defining a material time, if T is varying with time. From Eqs (11) and (13),

we find:

f(r,t, r)= f(r,s, To)
(14)
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That is, in theabsenceof reaction the mass transfer scales with temperature, so that we

can conduct experiments on the accelerated time scale s at temperature To and extract

information about degradation on (longer) time scale t at temperature T. The relation

between the time scales is given simply by Eq. (13) -- requiring only knowledge of the

temperature dependence of the effective diffusivity. Furthermore, the transformation

remains valid irrespective of any phase changes that may occur in the material between r

and To; all that is required is that the mass transfer remain Fickian.

In the presence of reaction, we must combine Eqs. (1 l) through (14) to obtain:

,s' , r,,)ar

(15)

k0IexL(-'--')l/,
+e t L 't_, rjJl f(r,s, _)

where s is given by Eq. (13). Unfortunately, the simple time re-scaling that we have for

the no-reaction case does not apply here. That is, we cannot write the right-hand-side of
Eq. (15) as a simple transformation Of Cp(r,t, To).

Finally, although our assumption that the mass transfer behavior is Fickian would at first

seem to be innocuous and generally acceptable, mass transfer in polymeric materials is

known to be anomalous -- displaying a wide variety of nonlinear behaviors that are not

described by Fick's law [11]. Incorporating nonlinear behavior into an accelerated aging
analysis strategy presents many difficulties and possibilities for research. Given all of the

above, it is clear that a more complete (and complicated) analysis is required.

Aging Studies: Experimental Needs

High temperature and high humidity

accelerated aging studies are undertaken

under the assumption that water and

oxygen are the reactants that are causing

failure. This may be true in many cases,
however there are other trace substances in

the atmosphere, particularly air pollutants,

that may cause degradation. In response to

this, Battelle has specified testing

Table 1. Battelle Class II Conditions [l]

Temperature 30°C

Humidity 70%

NO2 200 ppb

C12 10 ppb

H2S 10 ppb

conditions to accelerate failure for the copper in electronics in an office environment --

Battelle Class II Environment [12]. These conditions have been used in accelerated aging

studies on metal particle magnetic tape [13]. The saturation magnetization was measured

as a function of time exposed to Battelle Class II conditions. There was a concern that

the iron particles in MP tape would be susceptible to corrosion and this would limit
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archival lifetime [14]. The corrosionproblemhas largely beensolvedby coatingthe
particleswith an amorphousaluminum oxide [15-17]. However tapesfrom different
vendorscan have vastly different ratesof corrosion [18]. Furthermore,there was a
concernabout the reproducibility of this experiment[19]. Sidesand Sprattused an
impingingjet geometrythat gavemorecontrol of the deliveryof the corrosivegasesto
the tapesamples[20]. However,no onehassystematicallydeterminedthe role of each
componentin the gasmixtureplaysin thedegradation.Furthermore,theseconditionsdo
not includesomeof themoreaggressivesubstances,e.g. ground level ozone, present in

many urban environments. Similar studies should be performed on optical data storage

media.

Conclusions

A fundamental understanding of the chemical and physical processes that lead to failure

in optical disks must underpin the accelerated aging studies used to predict the archival

lifetime. Only with an understanding of the kinetics of degradation and mass transfer can

rational models be developed for lifetime prediction.
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Abstract

The demand for consolidated, widely accessible data stores continues to escalate. With

the volume of data being retained mounting as well, a variety of markets are recognizing

the advantage of shared data in terms of both cost and performance. Traditionally,

common access has been addressed with network-attached fileservers employing data

sharing protocols such as the Network File System (NFS). A new approach, poised to

deliver high bandwidth access by multiple, heterogeneous platforms to a common storage

repository at reduced cost, is beginning to emerge. Storage Area Networking (SAN) is an

open-storage architecture designed to eliminate many of the traditional bottlenecks

associated with secondary and tertiary storage devices. Conventional high performance

computing (HPC) sites and compute-intensive production sites can benefit from such

architectures as the need to share computational input and output data sets expands and

the mix of computational platforms continues to diversify.

Recognizing the potential value of SAN solutions in their overall data management

roadmap, the Storage Technologies Knowledge Based Center of the Department of

Defense commissioned a research project in mid-1999 to evaluate the functionality and

performance of emerging SAN technologies. The initial focus has been on SAN file

systems that offer management of disk-resident data. The desire, however, is to expand

the effort to include other traditional data storage functions such as backup, hierarchical

storage and archiving using tape technologies. The underlying goal is high bandwidth

and reliable access to data with guaranteed long-term retention while presenting a

seamless and transparent interface to the users regardless of data location. Operational

stability and ease of administration are key requirements as is overall data integrity.

When complete solutions will be available and just how robust the family of products

will be remains unclear. The magnitude of this challenge is realized when considering

that production use of these technologies will entail serving numerous, likely
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heterogeneous clients managing a variety of file sizes (tens of kilobytes to multiple

gigabytes) and dealing with a mix of applications and access patterns.

As a starting point for the testing, the Center established an environment that features a

pair of SGI TM OriginVM2000s, two SGI 320 Windows NT® platforms and a fibre channel

switch fabric with shared connectivity to over one terabyte of RAID storage. This

configuration is expected to grow in number and types of computers (operating systems)
as well as with the addition of fabric-attached tape technologies. This preliminary report

deals with using the environment to evaluate third-party SAN file systems and related

infrastructure technologies. It is a snapshot in time with only initial testing completed.

More comprehensive, on-going status and plans, observations and performance data are

available on-line at

http://www.patuxent-tech.com/SANresearch

During this stage of the evaluation, each file system product is being exercised to

determine its performance under load, its operability and scalability as a function of

clients and traffic, and its overall functionality and usability. The motivation is to assess

the readiness of SAN file systems to move into production and set realistic timeframe

expectations for making such a transition. Although this initiative is conducted under the

auspices of the Department of Defense, this research should prove relevant to any large

data center operation.
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I Introduction

Several definitions of a Storage Area Network (SAN) exist as related to common, shared

repositories of data. The implementation of interest is one that permits true data and/or

file sharing among heterogeneous client computers. This differentiates them from SAN

systems that permit merely physical device sharing with data partitioned (zoned) into

separate file systems. Refer to Figure 1 for a depiction of a notional SAN system. The
architecture is broken into three basic elements: SAN clients, a switch fabric and shared

storage. The software orchestrating the architecture is what unites the components and

determines exactly how these elements behave as a system. The optimum vision is a

single file system managing and granting access to data in the shared storage with high

bandwidth fibre channel links facilitating transfers to and from the storage.

S
S %

Heterogeneous
Clients

Switch

Fabric

Future

Storafje

//_ Devices

Shared

RAID Storage

Bandwidth/Cfients/Capacity
y

Figure I. Notional Storage Area Network (SAN)

The advantages of the topology are readily apparent:

• File transfer performance as seen by the client compares with that of directly
attached storage.

• The switch fabric can be expanded horizontally by adding switches (client and
storage ports) to increase overall system bandwidth.

• Individual fibre channels can be added, combined and striped across to increase

bandwidth between an individual client and storage.
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• Multiple routes through the fabric between the clients and storage avoid single

point failures and/or isolating data.

• Storage depth can be increased by adding or using higher density devices.

• The fabric topology can be expanded to include other storage technologies such as

tape drives either directly or by using bridges.

The functioning of the common file system along with how files are opened, closed, read,

written, etc. is fundamental to the operation of the SAN. File system control and

metadata can co-exist with one of the application clients or be hosted on a dedicated

computer. Metadata and locking information can be stored locally or on the SAN itself.

A variety of implementations are technically feasible, each with its own functionality and

performance implications.

2 Requirements Analysis and Test Planning

Recognizing the potential value of SAN solutions in their overall data management

roadmap, the Storage Technologies Knowledge Based Center of the Department of
Defense commissioned a research project in mid-1999 to evaluate the functionality and

performance of emerging SAN technologies. The initial focus has been on SAN file

systems that offer management of disk-resident data. The desire, however, is to expand
the effort to include other traditional data storage functions such as backup, hierarchical

storage and archiving using tape technologies. The underlying goal is high bandwidth
and reliable access to data with guaranteed long-term retention while presenting a

seamless and transparent interface to the users regardless of data location. Operational

stability and ease of administration are key requirements as is overall data integrity.

When complete solutions will be available and just how robust the family of products

will be remains unclear. The magnitude of this challenge is realized when considering

that production use of these technologies will entail serving numerous, likely

heterogeneous clients managing a variety of file sizes (tens of kilobytes to multiple

gigabytes) and dealing with a mix of applications and access patterns.

2.1 Requirements Drivers

A SAN file system, when deployed in the production environment, will be expected to

maintain a very high level of performance, interoperability, maintainability and

availability. Accordingly, the research effort is evaluating the attributes presented in

Table 1 relative to the file system products under test. Note that this list reflects the

current testing bias. Future activity will stress the interaction of the disk-based SAN

technologies with a broad range of other storage functions such as Hierarchical Storage

Management (HSM) software, backup software and magnetic tape devices.

2.2 Product Selection

The initial focus has been on researching and testing currently available third-party SAN

file systems. Although on the surface the market appears rich with SAN file system

offerings, only four products currently are ready for evaluation that meet the Center's

criteria and configuration restrictions. They are listed in Table 2.
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Table 1 - Requirements Drivers

Item Parameters

1 Shared concurrent reading and writing of a single file

2 High performance throughput for a wide range of file sizes, with an emphasis on
small files

3 Appropriate locking mechanisms at file and sub-file level

4 Sustainable client bandwidth ranging from 500 megabytes/sec to 1 gigabyte/sec

5 High aggregate bandwidth through entire fabric (effectively equal to the number

of clients times the desired per-client bandwidth)

6 Low latency for data access

7 Scaling in terms of number of clients, amount of storage, metadata management

and maximum number of files supported

8 Transparent integration of file system into existing systems, allowing ease of use

9 Existing user base with support for a variety of common applications

10 Heterogeneous mix of operating systems

11 Ability to serve clients not directly attached to the SAN fabric

12 Additional file system functionality such as executable support, ability to use file
system to boot from, etc.

13 SAN volume management features

14 HSM support

15 Backup support

16 Comprehensive set of administrative tools for configuration, monitoring and

troubleshooting, allowing ease of maintainability and operation
17 Full range of security features

18 Highly available and high-integrity overall operation

Table 2 - SAN File System Products

Product Developer

CentraVision TM File System (CVFS)

SANergy TM

DataPlow TM SAN File System (SFS)

Global File System (GFS)

MountainGate Imaging Corporation/Advanced

Digital Information Corporation (ADIC)

Mercury Computer Systems, Inc./Tivoli

Systems

DataPlow, Inc.

University of Minnesota with support from

NASA, the Department of Defense and several

corporations.

A separate initiative is evaluating SGI's Clustered SAN Filesystem (CXFSTM). Note too

that the market is already experiencing consolidation as evidenced by ADIC's acquisition

of MountainGate, Tivoli's acquisition of the SANergy unit of Mercury, and Hewlett®
Packard's acquisition of Transoft Networks, Inc.
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Selectionfor this roundof testing was based on a combination of factors. The primary

criteria used were:

• Architectural diversity and technical approach.

• Support for heterogeneous clients running the most recent versions of target

operating systems with emphasis on the latest versions of IRIX TM.

• Existence of a product roadmap noting client operating support plans and

addressing operational issues.

Given the overall excitement about SAN technologies and the projected growth of the

market [ 1], other products will warrant evaluation as they mature. Candidates include the

Concurrent Data Networking Architecture TM (CDNA) TM by DataDirect Networks, Inc.

and FibreNet by Transofl Networks. Also under review are products from the

VERITAS® Software Corporation and the EMC Corporation.

2.3 Testbed Configuration

As a starting point for the testing, the Center established an environment that includes

two SGI Origin2000s and two dual controller SGI RAID systems (over 1 terabyte of raw

storage) interconnected via two 16-port switches: one Storage Technology Corporation

unit (Brocade Communication Systems, Inc., OEM) and the one Brocade unit (reference

Figure 2).

LAN ............... . ............. -, .......
......... r ............... ,'" "

SGI SGI

OriginrU2000 Origin2000 SGI 320 SGI, 320

Shared RAID

Figure 2. SAN Research Testbed Configuration
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Each SGI Origin2000 hasa pair of dual channelPrisahost bus adapters(HBA) for
connectivityto the switch fabric. Two SGI 320NT systemsalso areincludedfor those
file systemproductsdependentupona separate,NT-basedmetadatacontroller. They also

facilitate heterogeneous SAN client testing. One of the SGI 320s uses an Emulex HBA;

the other uses a Qlogic card. Both SGI 320s can, as an option, be booted under Linux.

Low-bandwidth communication between the various computers is via traditional

100BASE-T LAN technology. Overall connectivity is flexible and changeable to support
the testing requirements as they evolve.

Each RAID system (two total) is configured with four 8+1 RAID 3 logical units (LUN),

with two LUNs assigned to each controller. Sustainable bandwidth peaks at 75

megabytes/sec per LUN. Configured usable storage is 576 gigabytes with some disks left
unbound.

Table 3 provides a list of the key components with respective product numbers.

Table 3 - Research Testbed Hardware and Software Components

Vendor Component

OriginT_2000

SGI 320

Storage Technology Corporation

Brocade Communication Systems, Inc.
SGI RAID

IRIX Operating System
Prisa NetFX-XIO64 HBA

Windows NT

Red Hat TM Linux

Emulex LP7000 HBA

Qlogic 2200F
Fibre Channel Switch 4000

SilkWorm® 2800

SP THOR Disk Controller

9GB Barracuda (ST 1917FC)

2.4 Test Planning

The test planning is being shaped by the following objectives:

• Characterize the performance of the individual SAN file system products as a

function of file access demands including the ability to stripe files across HBAs,
switches and storage elements.

• Explore hot spots and scalability of the products as a function of load and file

system fragmentation.

• Compare the performance of SAN file systems to the native file system and
traditional file sharing techniques.

• Evaluate operational attributes of the different SAN configurations with respect to
administration, availability and maintenance.

• Investigate mechanisms for serving SAN-based data to clients indirectly attached
to the fabric via a server (such as NFS).

The projected outcome of the SAN testing is a qualitative and quantitative critique of the

products under review measured against the requirements drivers outlined in Section 2.1.

47



The experimentsare beingconductedover a rangeof operatingconditions. The test
casesenvisionedrangefrom thesimplestof constructs--singlechannelwritesandreads
from a singleOrigin2000---to multi-channel,multi-client mix load scenarios. In some
casesthe testspurposelyoverextendthe capability of the systemin orderto assessthe
functionalityand performanceduring saturationor when limited bandwidth is forcedto
beallocatedacrossseveralactiveclient channels.

2.4.1 Qualitative Testing

Qualitative review will consider the predictable list of product attributes. Of interest is:

* Quality of the documentation

• Ease of installation and configuration

• Ease of use

• Availability of administrative tools for monitoring and troubleshooting

• Transparency to user
• Fault tolerance

• Diagnostic capabilities

• Security features

• Volume management features

• File locking capabilities

2.4.2 Quantitative Testing

Quantitative testing on the other hand will be more performance oriented and is focused

on calibrating two fundamental characteristics of the SAN file systems: metadata

management and file system throughput as a function of load. The tests are being

designed to present stressful yet operational-like conditions. Where possible, industry

recognized benchmarks will be used. Several variables, many of which interact, will

likely affect the performance of the different products. Most important perhaps are those
that are administrator definable when building and instantiating a given file system.

Given that the number and type of client access patterns will vary greatly by installation,

it is critical to understand how and whether a file system can be tuned to optimally handle

the expected workload. Adjustable parameters typically include the following:

• Record (block) size or the subdivision of file

• Stripe width or the size of the data block written to a given logical (or physical)

disk in a group of disks that compose a file system

• Mapping of logical (or physical) disks to RAID controllers and HBAs.

2.4.2.1 Metadata Management

The metadata management tests are being designed to measure the number and type of

metadata operations that can be accommodated in a given time for single and multiple-

client scenarios. This is critical given the assumption that a single, common file system

is responsible for data flow in a SAN with potentially a large number of users. The key

issue is whether there are any hard scaling limitations in terms of number of clients or

number of files. Also important is determining under what conditions latency becomes

unacceptable from an access-to-first-byte perspective.
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Thesetestsarecomingfrom two sources.Onesourceis project-specificscriptsrun from
single,isolatedclientsand/orfrom multipleclientsconcurrently.Thescriptswill initiate
a large number of metadata-relatedoperationswithout the associateddata I/0 while
calculatingthetimeperoperation.Examplesof metadataoperationsinclude:

* File open/close
Get/setfile attributes
Create/deletefile
Renamefile
Make/deletedirectory

Third partybenchmarksarealsobeingconsideredasthesecondsource.For instance,
PostMark,a benchmarkby NetworkAppliance,Inc., is acandidate.It is publicly
availableat

http://www.netapp.com/

2.4.2.2 File System Throughput

Throughput tests are being developed to measure sustainable transfer rates as a function

of number of clients and access patterns, both directly to clients on the SAN, and also to

clients not directly attached to the SAN fabric. A mix of test programs will be used,

some publicly available, such as SGI's lmdd, while others will be simple C programs
written specifically for this project. Also being considered is taskMaster, vxbench and

lmbench, taskMaster is useful for simultaneously running variants of the same command

on multiple computers.It is available on the GFS website:

http://www.globalfilesystem.org/

vxbench, developed by the VERITAS Software Corporation, provides for multi-threaded

testing. Lmbench is a performance analysis tool distributed by BitMover, Inc., at:
http://www.bitmover.com/lmbench

Data will be gathered to measure the behavior of the file systems under normal conditions

as well as stress in the midst of allocates, de-allocates, reads and writes, and

fragmentation. The method for exercising a file system is multi-step:

1. Measure data transfer rates for a small subset of file sizes, transfer sizes, and

access patterns using nominal file system build parameters. Repeat the test while

adjusting the build parameters until an optimum performance point is determined.

2. Once the optimum build parameters are set, exercise the file system for individual
and multiple clients by initiating:

a. Single client, single process operations using different file and host block

sizes for both reads and writes, sequential and random.

b. Single client, multiple process operations to either the same or different

files, for a predetermined subset of file and host block sizes for sequential

versus random accesses, read contention and write contention, and the

classic single writer, multiple readers.

c. Multi-client operations running the same basic script against the same or
different files for a predetermined subset of file and host block sizes for

sequential versus random accesses.
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.
Execute a final set of tests to determine the benefit of configuring multiple file

systems with different build parameters as a method to increase total SAN

throughput in mixed workloads.

3 SAN File Systems Overview

The SAN file system products being evaluated share certain fundamental characteristics

that under optimal conditions tend to even out their performance. The objective of all the

SAN file systems, at least from the Center's perspective, is to eliminate file servers

between clients and storage with minimum or no impact to the controlling applications.

Control information is typically separated from data traffic and in some architectures the

two are isolated on completely separate networks. Clients have connectivity to storage

via a switch fabric layer that provides the performance of directly attached disks. This

allows data to be transferred at relatively high percentages of peak fibre channel

bandwidth (100 megabytes/sec per link). All the approaches under test permit multiple

HBAs per SAN client, increasing the potential bandwidth per client to a multiple of the

base fibre channel rate. Also, the file systems are typically exportable, providing access

to SAN resident data by clients that are not directly connected to the SAN switch fabric.

Figure 3 depicts generic SAN data and control flow. The diagram shows the fundamental
transactions that usually occur--exchange of metadata between requesting SAN client

and a third-party metadata manager followed by the data transfer between the client and

shared storage via the fibre channel fabric.

"Step One _

Client

requests
read

access to

file.

Ir--.-------T, '

=/_ Metadata

Meladala t

f
step
Data is

transferred

directly between
client and share_

storage.

Step Two

Access request is

granted and

metadata is passed

to requesting client.

Figure 3. Generic File System Data and Control Flow
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Differencesin the productsshow up in two primary aspectsof the designs.The first
aspectis theapproachtakento dealwith the file systemmetadataboth in termsof where
it is stored(locally or on the SAN) and whether it is centralizedor distributed. The
metadatadesignhasdirecteffectsonperformance,scalingandavailability. The second
aspectis therelationof the SAN clientsoftwareto thehostoperatingsystem.How client
softwareis positionedin thesoftwarestackimpactsperformanceandalsotiesdirectly to
the easeof porting it to new revisionsand/orto different operatingsystems. Table 4
summarizesthekeyattributesof theproductsbeingtested. Subsequentsectionselaborate
on theoveralldesignapproachof each

Table 4 - Product Summary of Key Attributes

Product

CentraVision

File System

SANergy

DataPlow

SFS

GFS

SAN File

S_¢stem Desi_gn

Proprietary

Proprietary

Proprietary

Open Source

Metadata

Management
Centralized

Centralized

Centralized/

Distributed

Distributed

1.1.1.1 Supported

Operatint_ Systems
IRIX 6.2 to 6.5

NT 4.0

IRIX (all current releases)

Solaris (all current releases)
Mac 8.0+

NT 4.0

AIX (all current releases)

Compaq Tru64 UNIX TM (all

current releases)

IRIX 6.2, 6.3, 6.5
Solaris 7 and 8

Linux

GFS is notably not heterogeneous but inclusion is warranted given the current popularity

of the open source model of software development. To date, CVFS and SANergy have
been installed and initial testing has started.

3.1 CVFS (Version 1.3.8)

CVFS is a distributed file system designed specifically [2] for fibre channel and SAN

technology. CVFS provides sharing of common network storage across multiple

heterogeneous systems. The CVFS file system is a hybrid implementation transferring

data directly between fabric-attached storage and the SAN client's application, while
using TCP/IP transports under a client/server model for control and metadata. CVFS is

designed for sequential bulk-data file transfers (megabyte or greater) that are typically
streamed into an application. This exploits the read-ahead capabilities and serial nature

of the I/O schema. Performance equals or surpasses that of the local file system for well-
formed I/O.

The key element of the CVFS is the File System Services (FSS). The FSS is a user-level

application that acts as a server for the file system clients. It is responsible for the file

system's name space, file allocation, bandwidth management, virtual file management

and configuration. The FSS is a POSIX compliant (IEEE Std 1003.1-1990), multi-

threaded application that runs on either an IRIX or NT-based host. SAN clients
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communicatewith the FSSfor allocates,reads,writes,etc. overa typical LAN to obtain

access to SAN-resident data in a fashion similar to interchanges with the local operating

system. Once acknowledged, file extents are passed from the FSS to the requesting client

via the LAN, then data is transferred directly between the client and the shared storage

via the fibre channel fabric. All communication packets between the FSS and its clients

conform to network endian with 64-bit extensions. It does not need to run on a

workstation that is physically connected to Fibre Channel fabric because it communicates

with the clients via TCP/IP sockets. Metadata is stored using the FSS host's native file

system and local system disk. Note also that the FSS host also can be a SAN client.

On the client side, CVFS is written as a file system driver operating at the kernel level in

order to transparently attach CVFS managed storage to the client operating system. In

IRIX, this is the Virtual File System (VFS) layer; in Windows NT, it is the File System

Driver (FSD) layer. Each port provides a completely native interface and is written

specifically for the candidate platform. The remainder of client software, however,

provides for significant code re-use. Each client operates as if it is directly attached to

local storage. The data resides on the managed storage in CentraVision file format. In

general, the stored data format can be considered raw data. CVFS uses 64-bit
"containers" and accommodates both "big-endian" and "small-endian" file structures.

CVFS looks like a local file system with utilities such as cvfsck to check the file system

for consistency. Currently, CVFS mounts the NT file system as a network drive.

However, in a forthcoming release, the NT version will have a local drive

implementation. On IRIX, it currently appears as a local-drive. The final result is that all

clients (no matter what platform) perceive the data as native.

Several administrative decisions that directly impact performance must be made when

building a CVFS file system:

• Disks (LUNs) are specifically labeled as CVFS entities.

• Disks (LUNs) are assigned to Stripe Groups. This assignment allows for

increasing both the bandwidth and storage depth of a given file system.

• Block size and Stripe Group Breadth are adjustable, permitting tuning of the file

system versus the application/user access patterns.
• Affinities can be established so that specific files can be stored in the most

performance favorable fashion.

Another important operational consideration is CVFS behavior in the event of failures.

When a client fails, transactions by the client in transit are accepted into the FSS and are

committed to the metadata files. All connections are then cleaned-up with the failed

client. When the client re-establishes contact, the client's picture of the SAN is re-

established through normal system recovery operations. To the user and to the file

system there are no apparent seams to the FSS picture other than the possible transactions

lost on the client (that didn't make it to the server) during the failure.

Currently, FSS switchover to a redundant server is a manual operation. However, the
release of a more resilient version is imminent. The new FSS design requires that the

metadata be placed on a shared storage device, either the SAN itself or any device
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accessibleby at least two servers. Also in the new version, the FSS becomes a journaled

file system. This feature provides for hard-crash integrity and very rapid recovery time.

Any platform that supports the FSS can be a participant in the fault tolerant

configuration. NT and IRIX servers can freely exchange server responsibilities. When a

primary and one or more secondary FSSs are configured, the secondary FSSs are poised

to take over the service. They are fully operational and have complete access to file

system metadata including in-process I/O transactions. If the primary fails, a vote is

executed to determine which secondary can take over. There are two ways the vote is
stimulated:

• Lack of response from the primary server--if a client or administrator tries to

access the FSS and it is does not respond.

• No update to the Arbitration Control Block on the shared metadata Stripe Group -
a running FSS must update its respective "heart-beat" block on the metadata

Stripe Group.

For additional information regarding CVFS refer to

http://www.centravision.com/

3.2 SANergy (Version 1.6)

SANergy is a hybrid of conventional networking and direct attached storage [3]. Now

patented, it is an operating system extension built on standard system interfaces.

SANergy fully supports the user interface, management, access control, and security

features of the native host file systems, providing all the file system management, access

control and security expected in a network. SANergy clients can be heterogeneous with

data being freely shared by all clients attached to shared storage.

SANergy operations center around the Metadata Controller (MDC) that provides

centralized metadata management. The Version 1.6 SANergy MDC is based on a

Windows NT environment and the NT File System (NTFS). NTFS inherently provides

key features such as security, transaction logging and journaling. SANergy intercepts

data transactions, then separates and accelerates them using high-bandwidth transports

typically fibre channel. Metadata is intertwined with the real data on the shared storage

system. Hence, metadata traffic is mixed with data transfers through the switch fabric.

The metadata is exchanged between the MDC and SAN clients using standard LAN

technologies. NFS is a UNIX client requirement necessitating the NT-based MDC to run

an NFS server application. CIFS is used to communicate with NT clients. When a file

operation is requested by a SAN client, extent information is retrieved from the

appropriate NTFS volume and is passed back to the requester via the MDC. SANergy

supports locking primitives down to the byte level with coordination provided by the
MDC.

On the client side, SANergy acts as a layered filter driver. It sits on top of the file

system(s) either handling an I/O request directly, or passing it on to its natural path, or

both. The code is kernel/driver code and is loaded like any other device driver. Since it

is wrapped around the primary drivers supplied by the operating systems, SANergy's

exposure to any major systems internal change is minimized. Clients have no
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prerequisiteknowledgeof NTFS. Rather, all they need is the block location and order,

information that is provided by the MDC. Ultimately data is delivered in a format

acceptable to and usable by any application built for cross platform environments.

When building a SANergy file system several operational considerations arc worthy of

note:

• Disks (LUNs/volumes) are labeled, partitioned and formatted as NTFS file

systems using the NT Disk Administrator, a process that writes over any disk

resident file and/or configuration information. The MDC must be connected to

the switch fabric regardless of whether it is also participating as a SAN client.

• Disks (LUNs) can be assigned to Stripe Sets that allows for both increasing the

bandwidth and storage depth of a particular file system. Stripe size is fixed at

64KB.

• NTFS supports multiple partitions (file systems) per volume.

• File record size is adjustable, permitting tuning of the file system versus the

application/user access patterns.

The SANergy architecture is flexible in that the MDC can also be an active SAN client.

Perhaps the biggest differentiator for SANergy however is the range of supported SAN

client operating systems as noted in Table 4. Also, a new version of SANergy (2.0)

recently has been released. It supports failover, a critical requirement in operational

environments, and also a Sun UFS-based version of the MDC. Failover is handled by an

additional product called XA. Any machine running SANergy software also can run the

XA software with any XA machine watching any number of MDCs. Should one fail, it

will become the MDC for whatever volumes that were owned by the failed machine.

Plus, it will send "remap" messages to other SANergy clients (with or without XA

software) to remap any mapped shares to the new MDC. The new Sun MDC reportedly

provides the key features of the NT version while improving greatly on the striping

options allowed when establishing the SAN file system. Although SANergy is most

powerful in large file applications, a version is being developed that will be more

amenable to small file applications.

For more information, refer to the SANergy web site at

http://www.sanergy.com/

3.3 DataPlow (Version 1.2)

The DataPlow SAN File System (SFS) is a distributed file system with full operating

system integration. A key design feature of DataPlow SFS is the separation of metadata

into two fundamental components - the higher level namespace-oriented information

managed by a metadata server and the more detailed, extent-level data stored directly on

the shared disks. File operations require a SAN client to communicate with the metadata
server to obtain the location of the more fine-grained information that the client reads

directly from the shared storage. In order to facilitate heterogeneous environments, SFS

software stores metadata on the server and shared disks in a format that is operating

system independent.
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The metadataserver canbe hostedby any one of the SAN clients or it can be free

standing. In either case, all SAN clients must have TCP/IP connectivity with the

metadata server. SFS clients are able to share SAN file data with LAN and WAN-based

clients of any platform through use of traditional protocols such as NFS, CIFS, and
HTTP.

If configured for high-availability, metadata server functionality can failover to a

secondary server should the primary fail. Just as critical, the failure of an individual SFS

client should not harmfully affect the entire SAN. The metadata server simply

disconnects the client and releases locks held by the client. Traditional techniques

(journaling, file system utilities, etc.) help ensure overall data integrity.

Several administrative options are available when building an SFS file system:

• SFS is able to utilize various commercial volume managers. This flexibility
permits numerous striping and mirroring configurations that accommodate a wide

range of bandwidth, scalability, cost, and availability requirements. Volume

managers that support multiple operating system platforms can be used in

conjunction with SFS software to enable heterogeneous file sharing.

• File system block size is adjustable. The block size parameter is used when

tuning for small files and reduced fragmentation.

• File systems may be partitioned into several segments in order to exploit

parallelism during block allocation and de-allocation. Depending upon the

physical device configuration, segmentation further enhances parallelism during

data transfers. Segmentation is hidden from users and applications.

DataPlow SFS supports common operations such as synchronous and asynchronous

buffered I/O. Additionally, SFS provides support for direct I/O, a caching policy that

bypasses the system buffer cache in order to achieve near raw performance. SFS invokes

direct I/O either after an explicit system call request by the user application or

automatically once file request sizes reach a predetermined size.

Currently, SFS operates in IRIX and Solaris environments. Additional client

implementations are in development. Also in development are HSM interfaces such as

DMAPI to improve backups, restores, etc.

For additional information refer to

http://www.dataplow.com/

3.4 GFS (Antimatter Anteater)

GFS is a distributed file system based on shared, network-attached storage [4]. GFS is

built on the premise that a shared disk file system must exist within the context of a

cluster infrastructure of some kind for proper error handling and recovery and for the best

performance. SAN clients service only local file system requests and act as file managers
for their own requests; storage devices serve data directly to clients. GFS uses callbacks

from clients requesting data held exclusively by another client, so that the client holding

the data exclusively releases it some time after the request. This implies direct client-to-
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client communication.Overall thedesignpermitsaggressivemetadataanddatacaching
resultingin GFSperformancebeingonaparwith localLinux file systemslike ext2fs.

GFSprovidestransparentparallel accessto storagedeviceswhile maintainingstandard
UNIX file systemsemantics--userapplicationsstill seeonly a single logical devicevia
thestandardopen, close, read, write andfcntl. This transparency is important for ease of

use and portability. However, GFS allows some user control of file placement on

physical storage devices based on the appropriate attributes required such as bandwidth,

capacity, or redundancy.

The GFS structure and intemal algorithms differ from traditional file systems,

emphasizing sharing and connectivity in addition to caching. Unlike local file systems,

GFS distributes file system resources, including metadata, across the entire storage

subsystem, allowing simultaneous access from multiple machines. Device Locks are

mechanisms used by GFS to facilitate mutual exclusion of file system metadata [5]. They

also are used to help maintain the coherence of the metadata when it is cached by several

clients. The locks are implemented on the storage devices (disks) and accessed with the

SCSI device lock command, Dlock. The Dlock command is independent of all other

SCSI commands, so devices supporting the locks have no awareness of the nature of the

resource that is locked. The file system provides a mapping between files and Dlocks.

To allow recovery from failures, each GFS machine writes to its own journal. When a

GFS machine modifies metadata, this is recorded as a single transaction in that machine's

journal. If it fails, other machines notice that its locks have timed out, and one of the

other machines replay the failed machine's logs and re-boots the failed machine. Other

machines in the GFS cluster can keep accessing the file system as long as they do not

need any metadata in the failed client's journal.

As an alternative to disk-based locks, GFS also can use a lock daemon running on any

machine accessible to the GFS cluster over IP. Hence, special SCSI disks with DLOCK

firmware are not required to run GFS. GFS can also be run without locks as a local file

system. Lastly, lock handling has been modularized so that GFS can use almost any

globally accessible lock table. This positions GFS to exploit the coming developments in

Linux clustering, where highly scalable clusters will be available (to thousands of nodes)

with fully recoverable, distributed lock manager technology.

Currently GFS is only operational in a Linux environment. An open source operating

system, such as Linux, is ideal for developing the new kernel code required to implement
the GFS constructs [6], [7]. However, development of other UNIX variants is likely in

the future, including FreeBSD and IRIX.

For additional information on GFS refer to

http://www.globalfilesystem.org/
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4 Initial Observations

Testing to date has dealt largely with establishing the basic functionality of the SAN

environment and understanding the nuances introduced by the switch fabric environment.

Some key activities have included:

• Learning the capabilities and restrictions of the "plug and play" functionality of
fibre chanel switches, HBAs and storage devices.

• Establishing the most advantageous RAID configuration with the objective being

to maximize the disk throughput available to the various file systems.

• Determining proper procedures for sequencing equipment on-line to ensure that
the fabric is operational.

• Using the information available from the fibre channel switches to manage and
monitor the fabric activity and status.

Time also has been spent investigating the benchmarking products commonly available

for the various areas of quantitative testing to be carried out. By using standard

benchmarking products, results can be presented in a way allowing comparison with
other industry-sanctioned testing and evaluation efforts.

The CentraVision File System and SANergy have been installed on the testbed and

preliminary experiments have been conducted. CVFS has been exercised hosting the

FSS both on the SGI IRIX and Windows NT computers. SANergy has been tested

exclusively with a Windows NT-based MDC. Performance testing of simple read/write

operations has yielded similar results with both CVFS and SANergy delivering a

relatively high percentage of peak bandwidth for large sequential file operations.

Additionally both seem to operate as advertised and data sharing across heterogeneous

platforms works as evidenced by a rather simple test of exchanging a PDF file. More

extensive testing is required and planned, as detailed earlier.

5 Future Testing

Testing beyond the initial configuration and file system products is already being

planned. A greater emphasis on archiving and backup technologies is envisioned. Items
currently being considered are:

• Additional/different SAN file systems. Notably absent from the discussion are

offerings from some of the more prominent companies in the storage and

networking industry, specifically the VERITAS Software Corporation and the

EMC Corporation. Developments by these and other companies are being

monitored for possible inclusion in future testing.

• Additional/different client hardware and operating systems.

• Additional/different disk storage devices.

• Additional fibre channel switch devices.

• Data flow to/from tape systems attached to the switch fabric.

Future activities will rely in part on an expanded test environment. Several technologies
- hardware and software - are under consideration.
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6 Test Results

Given the continuing and evolving nature of this research effort, a web site has been

established to deliver a variety of timely information on-line at

http://www.patuxent-tech.com/SANresearch

It will provide operational reviews of each of the products under test including a pro/con

style evaluation as well as any future evaluations that are planned. Also available will be
relevant vendor comments regarding the evaluations in addition to public domain plans

for future product feature sets especially as they pertain to any noted shortcomings.

Market impressions and links to relevant websites also will be provided.
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Abstract

Over the last decade, processors have made enormous gains in speed. But increase in the speed of

the secondary and tertiary storage devices could not cope with these gains. The result is that the

secondary and tertiary storage access times dominate execution time of data intensive computations.

Therefore, in scientific computations, efficient data access functionality for data stored in secondary

and tertiary storage is a must. In this paper, we give an overview of APRIL, a parallel runtime

library that can be used in applications that process tape-resident data. We present user interface

and underlying optimization strategy. We also discuss performance improvements provided by the

library on the High Performance Storage System (HPSS). The preliminary results reveal that the

optimizations can improve response times by up to 97.2%.

1 Introduction

We address the problem of managing the movement of very large data sets between dif-

ferent levels of a hierarchical storage system. It is now widely acknowledged that the data

set sizes manipulated by scientific codes are getting larger as programmers have access to

faster processors and larger main memories. The data sets whose sizes exceed main memo-

ries should be stored in secondary and tertiary storages. Although the prices for secondary

storage devices are decreasing, tertiary storage devices are becoming increasingly attrac-

tive especially for applications that require vast amount of storage capacity which cannot be

satisfied by secondary storage devices and for applications which cannot afford the cost or

system complexity of a large number of disk drives. There has been a considerable amount

of work in addressing the flow of data to and from secondary storage devices (e.g., mag-

netic disks) [ 1, 2, 3, 4, 5, 6, 7, 8, 9]. There has also been a significant amount of work on

the management of large scale data in a storage hierarchy involving tertiary storage devices

(e.g., tapes devices) [10, 11, 12, 13, 14]. Striping has been studied to improve the response

time of tertiary storage devices [ 15, 16].

The Department of Energy's ASCI plan draws an outline of the expected storage require-

ments for large-scale computational challenges. According to this plan, a large scientific

application today is producing 3-30 terabytes of simulation datasets for a run, requiring 3

petabytes of archive capacity. These sizes are excepted to grow to 100-1000 terabytes per

run and to 100 petabytes of archive capacity in the year 2004. Even with the assumptions
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of aggressive improvements in the evolution of storage devices, the data accesses in these

applications will take a significant proportion of the overall execution time [17]. On top of

this, aggregate data sizes may require the employment of tertiary storage devices. Many

of these applications do not demand the entire datasets to be accessed at a given time. So,

having means to access portions of the tape-resident datasets efficiently may decrease the

time spent in data accesses significantly.

In this paper, we present APRIL, a parallel run-time library, that can be used to facilitate

the explicit control of data flow for tape-resident data. Our library can be used by appli-

cation programmers as well as optimizing compilers that manipulate large scale data. The

objective is to allow programmers to access data located on tape via a convenient inter-

face expressed in terms of arrays and array portions (regions) rather than files and offsets.

In this sense the library can be considered as a natural extension of state-of-the-art run-

time libraries that manipulate disk-resident datasets (e.g., [2, 18]). The library implements

a data storage model on tapes that enables users to access portions of multi-dimensional

data in a fast and simple way. In order to eliminate most of the latency in accessing tape-

resident data, we employ a sub-filing strategy in which a large multi-dimensional tape-

resident global array is stored not as a single file but as a number of smaller sub-files,

whose existence is transparent to the programmer. The main advantage of doing this is that

the data requests for relatively small portions of the global array can be satisfied without

transferring the entire global array from tape to disk as is customary in many hierarchical

storage management systems. In addition to read/write access routines, the library also sup-

ports pre-staging and migration capabilities which can prove very useful in environments

where the data access patterns are predictable and the amount of disk space is limited.

The main contributions of this paper are as follows:

• The presentation of a high-level parallel I/O library for tape-resident data. APRIL

library provides a simple interface to the tape-resident data, which relieves the programmers

from orchestrating I/O from tertiary storage devices such as robotic tapes and optical disks.

• The description of the implementation of the library using HPSS [19] and MPI-IO

[3]. We show that it is both simple and elegant to build an I/O library for tape-resident data

on top of these two state-of-the-art systems. In this paper, however, we focus on a single

processor performance.

• The presentation of preliminary performance numbers using representative array re-

gions and sub-file sizes. The results demonstrate that the library is quite effective in exploit-

ing the secondary storage - tertiary storage hierarchy without undue programmer effort.

Section 2 gives an overview of the APRIL library. Section 3 describes sub-filing and its

use in the library. Section 4 briefly explains the implementation and Section 5 presents the

user interface. Section 6 gives preliminary experimental results and Section 7 concludes

the paper with a summary and an outline of future work.
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2 Library Overview

The library provides routines to efficiently perform I/O required in sequential and parallel

applications. It can be used for both in-core and out-of-core applications. It uses a high-

level interface which can be used by application programmers and compilers. For example,

an application programmer can specify what section of an array she wants to read in terms

of lower and upper bounds in each dimension, and the library will fetch it in an efficient

manner, first from tape to disk and then from disk to main memory. It provides a portable

interface on top of HPSS [19] and MPI-IO [3]. It can also be used by an optimizing com-

piler that targets programs whose data sets require transfers between secondary storage and

tertiary storage. It might even be possible to employ the library within a database manage-
ment system for multi-dimensional data.

At the heart of the library is an optimization technique called sub-filing, which is explained

in greater detail in the next section. It also uses collective I/O using a two-phase method,

data pre-staging, pre-fetching, and data migration. The main advantage of sub-filing is that

it provides low-overhead random access image for the tape-resident data. Sub-filing is in-

visible to the user and helps to efficiently manage the storage hierarchy which can consist

of a tape sub-system, a disk sub-system and a main memory. The main advantage of the

collective I/O, on the other hand, is that it results in high-granularity data transfers between

processors and disks, and it also makes use of the higher bandwidth of the processor inter-
connection network.

In general, a processor has to wait while a requested tape-resident data set is being read

from tape. The time taken by the program can be reduced if the computation and tape I/O

can be overlapped somehow. The pre-staging achieves this by bringing the required data

ahead of the time it will be used. It issues asynchronous read calls to the tape sub-system,

which help to overlap the reading of the next data portion with the computation being

performed on the current data set. The data pre-fetching is similar except that it overlaps

the disk I/O time with the computation time.

3 Sub-filing

Each global tape-resident array is divided into chunks, each of which is stored in a sep-

arate sub-file on tape. The chunks are of equal sizes in most cases. Figure 1 shows a

two-dimensional global array divided into 64 chunks. Each chunk is assigned a unique

chunk coordinate (xl, x2), the first (upper-leftmost) chunk having (0,0) as its coordinate.

For the sake of ensuing discussion we assume that the sub-files corresponding to the chunks

are stored in row-major as depicted in the figure by horizontal arrows.

A typical access pattern is shown in Figure 2. In this access a small two-dimensional

portion of the global array is requested. In receiving such a request, the library performs
three important tasks:

• Determining the sub-files that collectively contain the requested portion,

• Transferring the sub-files that are not already on disk from tape to disk, and

• Extracting the required data items (array elements) from the relevant sub-files from
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Figure 1" A global tape-resident array divided into 64 chunks.

Figure 2: An access pattern (shaded portion) and its cover.

disk and copying the requested portion to a buffer in memory provided by the user call.

In the first step, the set of sub-files that collectively contain the requested portion is called

cover. In Figure 2, the cover contains the sub-files (1,2), (1,3), (1,4), (2,2), (2,3), (2,4),

(3,2), (3,3), and (3,4). Assuming for now that all of these sub-files are currently residing

on tape, in the second step, the library brings these sub-files to disk. In the third step, the

required portion is extracted from each sub-file and returned to the user buffer. Note that

the last step involves some computational overhead incurred for each sub-file. Instead, had

we used just one file per global array this computational overhead would be incurred only

once. Therefore, the performance gain obtained by dividing the global array into sub-files

should be carefully weighed against the extra computational overhead incurred in extract-

ing the requested portions from each sub-file. Our preliminary experiments show that this

computational overhead is not too much.

Parallel reads by multiple processors pose additional problems. Consider now Figure 3(a)

where four processors are requesting four different sub-columns of a region. The underly-

ing cover contains 28 sub-files. After bringing these sub-files from tape to disk, we have a

problem of reading the required sub-portions (sub-columns) for each processor. As stated

by del Rosario et al. [20], collective 1/(9 is a technique in which processors perform I/O on
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Figure 3: (a) An access pattern involving four processors. (b) The global array with each

sub-file marked with the number of processors that share it.

Figure 4: Successive array accesses.

behalf of each other in order to reduce the time spent in disk-I/O at the expense of some

extra communication. Two-phase I/O is a specific implementation of collective I/O, which

uses the information available about the access and storage patterns. It employs two phases.

In the first phase, the processors access the data in a layout conformant way (to exploit spa-

tial locality on disk as much as possible) and in the second phase they re-distribute the data

in memory among themselves such that the desired access pattern is obtained. While it is

quite straightforward how to use collective I/O when we have a single file, in our multiple

file case it is not clear how to utilize it. One simple approach might be to use collective

I/O for each sub-file on disk. In our example, that would mean calling a collective I/O

routine 28 times. A better alternative might be to read the data from disk to memory in

two steps. In the first step, the processors that have exclusive access to some sub-files per-

form these independent accesses. In the second step, for each of the remaining sub-files,

we can perform collective I/O using only the processors that request some data from the

sub-file in question. Considering Figure 3(b), this collective I/O scheme corresponds to

first reading the sub-files marked '1' and then collectively (using two processors) reading

the sub-files marked '2'. We plan to implement this last collective I/O strategy in the future.

During successive reads from the same global file it might happen that the same sub-file

can be required by two different reads. Assuming that the sub-file in question still resides

on the disk after the first read, it is unnecessary to read it again from tape in the second

read. In such a case only the other (additional) sub-files required by the current access are

read from tape. The situation is shown in Figure 4 for three scenarios. In each case, the
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Figure 5: (a) Library architecture. (b) Pre-fetching, pre-staging, and migration.

first portion read is marked ' 1' and the second portion read is marked '2'. The shaded parts

around the second portions correspond to additional sub-files that are needed for the second

read. In other words, the library effectively uses the storage hierarchy.

4 Implementation

We are implementing the APRIL library on top of HPSS [19] and MPI-IO [3]. The connec-

tions between different components are shown in Figure 5(a). In a read call, the sub-files

are first read from tape to disk using HPSS and then from disk to main memory using MPI-

IO. As mentioned earlier, we employ collective I/O between disk and memory. In a write

call the direction of data-flow is reversed. Figure 5(b) shows the corresponding storage

levels for each action described in the following sections.

To store the information about the file and the chunks, we are currently using the Postgres95

database [21]. When a new file is created, the user may enter the necessary information

about the chunks. The detailed information about the file creation is given in Section 5.

Then this meta-data is stored in the database for later usage. When a user opens a previously

created file, the corresponding meta-data about the file and the chunks are read from the

database and cached in the memory. Then the following accesses uses this meta-data. The

database is informed about the changes when the file is closed. In other words, the database

is accessed only in file open and file close.

5 User Interface

The routines in the library can be divided into four major groups based on their functionality

- Initialization/Finalization Routines, File Manipulation Routines, Array Access Routines,

and Stage/Migration Routines. Table 1 lists some of the basic routines in the library and

their functionalities. All the routines listed here are the low level instructions, which should

explicitly be called by the user. We are currently adding high level routines to our library,
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Table 1" Some of the library routines.

I1 Initialization/Finalization Routines [1

Rout ine Func tional ity !

T_INITIALIZE Initializes the library structures

T_FINALIZE Finalizes the library structures

File Manipulation Routines

Rout ine Func tional ity

T_OPEN Opens a tape-resident global file for read/write

T_CLOSE Closes a tape-resident global file

T_REMOVE Removes both the sub-files of the file and the corresponding info.
Array Access Routines

Rout ino Func tiona iity
T-READ_SECTION Reads a rectilinear section

T-WRITE_SECTION Writes a rectilinear section

Stage/Migration Routines

Rout ine Func tiona iity
T_STAGE_SECTION

T_STAGE_WAIT

T-PREFETCH_SECTION

T-PREFETCH_WAIT

T-MIGRATE_SECTION

Stages a rectilinear file section from tape to disk

Waits for a Stage to complete

Pre-fetchs a rectilinear file section from tape (or disk) to memory
Waits for a Pre-fetch to complete

Migrates a rectilinear file section from disk to tape

which will call the low level routines implicitly.

Initialization/Finalization Routines: These routines are used to initialize the library buffers

and meta-data structures and finalize them when all the work is done. The routine to ini-

tialize the system has the format

int T_INITIALIZE 0.

This routine initializes the connections to the HPSS and the database. It returns a positive

number upon successful completion. Similarly, int T_FINALIZE 0 closes the above men-
tioned connections.

File Manipulation Routines: These routines are used for creating files, opening existing

files, closing open files and removing all the chunks and the information related to a global

file. T_OPEN is used for creating new files and for opening existing files. It returns a file

handle for later referral to the file. The synopsis of T_OPEN is as follows:

T_FILE T_OPEN (char *filename, char *mode, T_INFO *tapeinfo).

'Filename' stands for the name of the file to be opened. 'Mode' indicates whether the file

is opened for read, write, or read/write. 'Tapeinfo' is the structure used for entering the

necessary information about the file and chunks. It has fields for the elementsize, number

of dimensions, the size of each dimension of the chunk and the size of each dimension of

the global file.

Array Access Routines: These routines handle the movement of data to and from the tape
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int main(int argc,

{
T_FILE exfile;

T_INFO exinfo;

int start[2];

int end[2];

char **argv)

/* Initialize the library */

T_INITIALIZE();

/* Open the file for read. The exinfo will be filled by the library.

For creating the file (i.e. if the file is opened for the first time),

information about the file should be supplied to T_OPEN via exinfo.*/

exfile = T_OPEN ("file_l","r", &exinfo);

start[0] = 0;

start[l] : 0;

end[0] : 24000;

end[l] = 80;

/* Perform the operation */

T_READ_SECTION (&exfile, &buf, starts, ends);

/* Close the file */

T_CLOSE (&exfile);

T_FINALIZE ( ) ;

}

Figure 6: An example code for reading from a two dimensional file.

subsystem. An arbitrary rectilinear portion of a tape-resident array can be read or written

using these access routines. Let us focus now on T_READ_SECTION. The signature of

this routine is

int T_READ_SECTION (T_FILE *fd, void *buffer, int *start_coordinate,

int *end_coordinate)

'fd' is the file descriptor returned by T_OPEN. 'Start_coordinate' and 'end_coordinate' are

arrays that hold the boundary coordinates for the section to be read. There are as many

elements as the dimensionality of the associated tape-resident global array. This command

reads the corresponding elements and stores them in 'buffer'. As discussed earlier, what

actually happens here is that the relevant sub-files are read from tape to disk (if they are

not on the disk already), and the required sections are read from these sub-files on disk

and forwarded to the corresponding positions in the buffer in main memory. An example

code for T_READ_SECTION is given in Figure 6. In this example, a 24000 x 80 portion of

the file is read to the buffer. The syntax for the T_WRITE_SECTION routine is almost the

same except that the direction of the transfer is reversed.

Stage/Migration Routines: These routines are used to stage and migrate the data between
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thetapesandthedisksub-system.Thecommand
int T_STAGE_SECTION(T_FILE*fd, int *start_coordinate,int *end_coordinate)

immediatelyreturnsand startsa datastagingoperationin the backgroundfrom tape to
disk. It returnsan integerto theapplicationwhich canbe interpretedasa descriptorfor
the associatedpre-stageoperation.Note thatwhat is actuallyperformedhereis to bring
therelevantsub-files from tape to disk. Note also that there is no 'buffer' parameter in the
signature. The routine

int T_STAGE_WAIT (int pre-stage_descriptor)

can be used to wait for a previously initiated pre-stage operation to complete.

int T_PREFETCH_SECTION (T_FILE *fd, void *buffer, int *start_coordinate,

int *end_coordinate)

is used to start a pre-fetch operation from disk to memory. The parameters are the same as

for T_READ_SECTION. It returns an integer which can be used as a pre-fetch descriptor
in a later T_PREFETCH_WAIT call.

int T_MIGRATE_SECTION (T_FILE *fd, int *start_coordinate, int *end_coordinate)

starts to migrate the relevant sub-files (i.e., those corresponding to the section described in

the signature) from disk to tape. It should be used with care as these sub-files may contain

portions of data that will be requested by a later library call.

6 Experiments

The experiments are performed using the HPPS at the San Diego Supercomputing Cen-

ter (SDSC). We have used the low level routines of the SDSC Storage Resource Broker

(SRB) to access the HPSS files. SRB is a client-server middleware that provides a uniform

interface for connecting to heterogeneous data resources over a network and accessing
replicated data sets [22].

We experimented with different access patterns in order to evaluate the benefits of the li-

brary. Table 2 gives the start and end coordinates (on a two dimensional global array) as

well as the number elements read/written for each access pattern (A through H). Note that

the coordinate (0,0) corresponds to the upper-left corner of the array. In each case, the ac-

cessed array consists of 50000 x 50000 floating point elements (10 GB total data). We used

two different sub-file (chunk) sizes: small (1000x 1000 elements) and large (2000x2000
elements).

Table 3 shows the performance results obtained. For each operation (read or write) we

give the response times (in seconds) for a naive access strategy and the gains obtained

against it using our library which employs sub-filing. The naive strategy reads/writes the

required portion from/to the array directly, i.e., it does not use sub-filing and the entire

50000x50000 array is stored as a single large file. For the sub-filing cases we show the

percentage reduction in response time of the naive scheme. For example, in access pattern

A, the sub-filing with small chunk size improved (reduced) the response time for the read

operation by 85.2%. Figures 7 and 8 show the results obtained in graphical form. Note that

the y-axes on the figures are logarithmically scaled.
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Table 2: Access patterns.

Access

Pattern

Pattern Information

Start

Coordinate

End

Coordinate

(1000,1000)A (0,0)

B (0,0) (4000,1000)

C (0,0)

D (5000,5000)

(24000,1000)

(6000,6000)

E (0,0) (50000,80)
(0,0)

G
H

(0,0)

(6000,6000)

(80,50000)

(1000,4000)

(80O0,8000)

Total

floating

points

24 * 106

1 * 106
4 * 106

4 * 106

4 * 10 _

4 * 106

Table 3: Execution times and percentage gains.

Acc.

Ptr.

A

B

C

D

E

F

G

H

Write Operations
Times

w/o

chunking

2774.0

2805.9

Small

Chunk

Gain (%)

96.1

83.8

Large

Chunk

Gain (%)

94.5

84.9

Read Operations

Times

w/o

chunking

784.7

810.1

Small

Chunk

Gain (%)

85.2

Large

Chunk

Gain (%)

77.1

43.2 55.6

-240.5 -172.42960.3 8.8 37.9 793.3

3321.2 96.7 95.4 798.4 84.1 79.7

151.7 -3525.1 -2437.6 165.2 -3229.3 -2623.9

138723.3 96.0 97.2 39214.1 85.9 88.5

11096.3 95.9 96.4 3242.9 88.3 88.6

5095.2 91.2 96.5 1612.9 76.6 89.9
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Figure 7: Execution times for write operations.
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Figure 8: Execution times for read operations.

In the patterns A and D, where a 4 MB square chunk is accessed on the left corner and

around the middle, respectively, the small chunk size outperforms the large chunk size as

the latter accesses extra data elements that do not belong to the required portion. In the

pattern H, on the other hand, increasing the chunk size reduces the number of 1/O calls

which in turn results in the best response time. In B and G, 16 MB of data are accessed in

orthogonal directions. In G, since we access a sub-column portion of a row-major array,

we need to issue 4000 I/O calls in the naive case. In B, the naive strategy issues only 1000

I/O calls to access the same volume of data. Consequently, the impact of sub-filing is more

pronounced in G. By comparing the response times of A, B, C, and E, we note that the re-

sponse times are dominated by the number of I/O calls (in the naive version) and of chunks

(in the sub-filed versions-that also corresponds to I/O calls-) rather than by the volume of

data accessed. Finally, in the pattern F (whose response time in the naive case was calcu-

lated using interpolation from A and G), the sub-filing strategy has the best performance of
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all andbringsa97.2%improvementin writecalls.

In accesspatternE,however,thenaivestrategyoutperforms the sub-filing. The sub-filing

strategy has two drawbacks for this access pattern. First, the naive strategy completes the

whole access with a single I/O call, whereas the sub-filing strategy requires 50 calls to

different sub-files to satisfy the access. Secondly, a high percentage of data read by the

sub-filing is not used to satisfy the request. As a result of these two drawbacks, the naive

strategy performs better than the sub-filing for this access pattern. However, we show in

Section 6.1 that by chosing an appropriate sub-file size, the sub-filing strategy can perform

as good as the naive strategy even for the access pattern E. Note that, HPSS allows the

users to access portions of the data residing in tape. The response time of the naive solu-

tion for the access pattern E will increase dramatically for the tape architectures, where the

granularity of access is a file, because the whole file should be brought to the disk from tape.

An important aspect of our library is its handling of random I/O accesses. When we com-

pare the times for the access patterns A and D, we see that there is a 20% increase in the

response time of the naive strategy for the write operation. On the other hand, the times for

sub-filed versions remains the same.

Overall, the sub-filing strategy performs very well compared to the naive strategy which

performs individual accesses to a large file, except for the cases where the access pattern

and the storage pattern of the array match exactly. For large chunk size the average im-

provement for writing is 93.48%, and for reading it is 73.48%. These data show that, in

average our library brings substantial amount of improvement over the naive strategy. The

next section shows even in the case where the access and storage pattern match exactly, a

suitable chunk shape allows our scheme to match the response time of the naive strategy.

6.1 Adaptive Chunk Size
The preliminary results show that our library can bring substantial amount of improvement

over the naive case. In the access pattern E, however, the naive strategy performs better. In

this section, we experiment with a different chunk size to explore the possibility of match-

ing the performance of the naive scheme in this access pattern.

In the new experiments, the chunk size is set to 50000× 80 floating points, which is similar

to the access pattern E. The other parameters remain as in Section 6. The response time for

write operation drops to 148.9 seconds, which is 1.85% better than the naive scheme. For

read operation, the response time is 166.2 seconds, which is 0.61% worse than the naive

scheme. These results show that our library can perform as good as the naive scheme even

in cases, where the access pattern and storage pattern exactly match.

7 Conclusions and Future Work

We presented a portable interface to the tape-resident data. The interface makes it easier

for the user to specify the tape I/O required in sequential and parallel applications. The
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experience gained during its design and development will, hopefully, also help in reaching

a set of standard routines for accessing the tape-resident data. We are in the process of

implementing the library. We completed the read, write, pre-stage, and pre-fetch routines

and made some initial experiments with them. We are currently implementing different mi-

gration routines and collective I/O strategies and will later experiment with I/O-intensive

applications that manipulate tape-resident data.
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Abstract

We present a unique new implementation of MPI-IO (as defined in the recent MPI-

2 message passing standard) that is easy to use, fast, efficient, and complete. Our

implementation is layered over the High-Performance Storage System, using HPSS's
third-party transfers and parallel I/O descriptors.

1 Introduction

The MPI-2 standard [9] includes a chapter devoted to parallel I/O functions, often called

"MPI-IO." Several partial or complete implementations have appeared (e.g., ROMIO [ 13],

PMPIO [2], Sun MPI [11], and Fujitsu's MPI-2 [7]). This paper describes a new MPI-IO

implementation that has several important and unique features:

• It provides large-scale scientific applications with an easy-to-use, high-performance,

portable interface to petabyte archival storage systems.

• It shows good performance and very high utilization of the underlying storage sys-

tem. Our tests have demonstrated peak MPI-IO bandwidth of up to 197 MB/s for

collective read operations and up to 173 MB/s for write operations, out of a maxi-

mum available bandwidth of 207 MB/s on our test platform. Even though our test

platform is small (see Sec. 3.1), this compares favorably with, for example, the 150

MB/sec maximum throughput reported for PDS/PIO on the Intel TFLOP [ 10], both

in terms of absolute performance and efficiency.

*This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract number W-7405-Eng-48.
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• It uses a unique I/O mechanism known as third-party transfer in the High Perfor-

mance Storage System (HPSS) archival storage system [1, 12, 14]. That is, the trans-

fer of data from one processor to another may be arranged by a third processor, which

does not participate in the actual movement of the data.

• It fully implements every MPI-IO function, including shared file pointers, error han-

dlers, and automatic conversion between data representations.

• It is designed to work with any MPI-1 library, provided user applications are com-

piled with mpio. h. This header file defines all needed MPI-2 extensions for MPI-

IO, including macros that enable MPI-IO to have access to the arguments given to

MPI datatype constructors.

• It is thread-safe (as long as the underlying MPI library is also thread-safe).

Our MPI-IO implementation is a new user interface first provided with release 4.1 of HPSS.

HPSS is an archival storage system that is designed to manage very large files on both disk

and tape. HPSS is a joint project of IBM and several U.S. national laboratories, with a

significant number of production installations.

The focus of our implementation has been to provide an efficient and scalable standard

interface to the HPSS file system, providing the full functionality of the MPI-IO specifi-

cation. We exploit HPSS I/O descriptors (Sec. 2.2), file striping, MPI-IO file hints, and

third-party transfers to parallelize collective I/O. We shelter the user from HPSS details

and constraints as much as possible. We utilize a threaded and distributed work model to

minimize the latency of interactions with HPSS and to support the potential concurrency of

nonblocking I/O. Our results affirm the promise of scalable performance with low overhead

costs for layering MPI-IO over HPSS.

2 MPI-IO implementation

Our implementation of MPI-IO is specifically designed to run over HPSS and to take ad-

vantage of its third-party transfer capabilities. We have described this implementation else-

where [5]; this section summarizes the design.

2.1 MPI-IO background

Two significant features of MPI-IO are collective I/0 and access to discontiguous data

chunks I using MPI datatypes. In a collective transfer, a group of processes in an application

each perform a special MPI-IO read or write call, which can be implemented in such a

way that information about each of the separate calls can be shared. Hence the library

1We use the term "chunk" to refer to a contiguous sequence of bytes in a file or memory.
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cancoordinaterequestsfrom multipleprocesses,andmergetheserequeststo improvethe
locality of accesseswithin thefile, potentiallyeliminatingmanyneedlessdisk accesses.
MPIdatatypesprovideamechanismfor describingcommonstaticmemoryaccesspatterns
(e.g.,slicesof multidimensionalarrays,recordswith arbitrarygaps,etc.) [3]. Usingone
datatypeto addressdiscontiguousregionsof a file and anotherto addressregionsof a
memorybuffer,asinglecall caneffectthecomplexdatamovementbetweenthem.

2.2 MPI-IO/HPSS implementation

The basic HPSS client API includes a mechanism for specifying third-party transfers using

data structures called lODs (for "I/O descriptors"). An IOD specifies a transfer between a

file and one or more client processes, and has two sides: one side describes a sequence of

file chunks, and the other describes a sequence of client process memory chunks. Hence,

file chunks accessed by multiple client processes can be collected into a single IOD that

can be passed to HPSS through an hpss_ReadList or hpss_WriteList call.

IODs are a very flexible mechanism for describing parallel data transfers, but constructing

an IOD requires quite a bit of detailed coding, and the interface is only usable for accessing

HPSS files. In addition, use of the hpss_ReadList/WriteList interface requires an

application to manage client mover threads, which connect application processes to remote

storage devices via sockets to carry out data transfers. To offer applications a simpler and

more portable programming interface, we have implemented MPI-IO on top of the HPSS

IOD mechanism. The main tasks of our MPI-IO library are to manage the client mover
threads and to convert MPI-IO requests into IODs.

To optimize collective I/O, it is necessary to submit I/O requests to HPSS from a single

IOD. This means that collective MPI-IO calls must forward requests from many tasks to

a single thread, which merges them to form an IOD. Our implementation does this using

a set of server threads with one server thread running within each process of a parallel

application. Each MPI-IO file is a single HPSS file; HPSS handles striping internally. One

of our implementation's server threads is assigned to handle all collective operations on a

given open file handle. However, different open file handles may be managed by different

servers, so no single process bears the burden of managing all the open files. The server

thread for each process is created when the application initializes MPI-IO, and a server

thread only manages file handles for the parallel job that spawned it.

When an application makes a collective data access request, each process in the application

forwards its part of the request to the server thread managing the request's file handle,

which assembles an IOD and submits it to HPSS. HPSS carries out the data transfer to all

participating processes (in parallel if possible) and then returns. Note that although control

of the request is centralized at the server thread, the data itself does not flow through the

server; with third-party transfer the data can move directly between storage devices and
processes in parallel.

Our implementation attempts to translate collective MPI-IO requests into IODs that transfer
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dataasefficiently aspossible. SinceHPSSsequentializesseparateaccessrequestsfor a
givenfile handle,describingasmuchof atransferaspossiblein asingleIOD improvesthe
opportunitiesfor parallelismandtherebyimprovesperformance.In the idealcaserequests
canbe mergedinto atransferwhosefile descriptorlist containsa singleelement(i.e., the
mergedtransferaccessesasinglecontiguouschunkof thefile) andwhoseclient descriptor
list uniformlystripesthetransferreddataacrosstheclient processes.Furthermore,optimal
performanceis achievedif the client side stripingexactlymatchestheHPSSfile striping
specifiedthroughtheHPSSclassof service.

Ourimplementationrecognizeswhenit canmergecollectivetransferrequestsfrom multi-
ple processesinto a requestto accessa singlecontiguousregionof a file. If the requests
cannotbemergedinto asinglecontiguousaccess,theIOD will requirea separatefile de-
scriptor for eachdiscontiguouschunk of the access.However,the file descriptorlist of
anHPSSIOD is limited to 64 descriptorelementsat thetime of thetestsreportedhere.
Whena transferrequiresan IOD with morethan64 file descriptors,our implementation
automaticallydividestherequestinto multipleIODswith 64or fewerfile descriptors.

Moreover,the implementationrecognizeswhenthe collection of client memorychunks
can be describedcompactlyby a regularly "striped" pattern. Our implementationalso
recognizeswhenit candescribetheclienttransfermappingasuniformly distributedacross
theparticipatingclient processes.This simplifies the client source/sinkdescriptorgiven
to HPSSby usinga "striped"address.If theHPSSfile is stripedacrossthesamenumber
of devicesas the numberof participatingprocesses,and if the chunk sizeof the client
distributionmatchesthechunksizeof theHPSSfile stripe,HPSSwill beableto achievea
one-to-oneconnectionbetweenits moversandourMPI-IO client moversfor thetransfer,
allowingmaximalconcurrency.

If a transferis not uniformly distributedacrossthe clients,eachcontiguouschunkof the
transferperclientrequiresaseparatedescriptorin theIOD.Forthesecases,wearrangethe
transferdescriptionsothatif therearen client processes, a maximum of n client descriptors

will be used. For each client that accesses discontiguous regions of the file, however,

this will result in multiple file descriptors. To summarize, irregular client distributions

and/or discontiguous accesses to the file (e.g., holes in the file) will result in suboptimal

performance.

3 Performance

This section reports the performance of our implementation on the platform described in

Section 3.1. We begin by describing the test methods, and then we report the results of

these tests. We conclude the section with a discussion of these results.
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Figure 1" The test platform.

3.1 The test platform

An important feature of HPSS is its support of third-party data transfer. In this I/O model, a

single process can issue a request to HPSS that will cause data to flow between the storage

system and multiple processes on multiple compute nodes. (Recall that "third-party" refers
to the fact that the process initiating a request need not be either the source or the destina-

tion of the data.) Using third-party transfer can simplify the management of parallel gO

transfers and reduce the number of times data is copied in a given operation. For example,

a read request causes data to move between a single logical file and multiple destination

processes. Third-party transfer allows this to happen with no need for intermediate buffer-

ing or shuffling of data between nodes. In this respect third-party transfer is similar to

Kotz's disk-directed I/O technique [6]. When a file is striped over multiple storage devices,

and different nodes are accessing different stripes, a single I/O request can initiate parallel

transfer of data. Of course, the degree of parallelism will depend on how well the striping
matches the data distribution on the nodes.

The main components of our hardware test platform are a parallel computer, two RAID

storage devices, an interconnection network, and an HPSS server (see Fig. 1). Application

code runs on a 16-processor SMP cluster consisting of four IBM RS/6000 SP 604 High

Nodes that each contain four 112-MHz PowerPC 604 processors. Each node has its own

HIPPI adapter card. The four HIPPI cards are connected through a crossbar switch to

two Maximum Strategy Gen5 XL RAID systems. Each of these systems is configured

to operate as two independent RAID devices, each with its own HIPPI connection. The

maximum theoretical HIPPI bandwidth between the two RAIDs and the SMP cluster is 400

MB/second. However, the adapter cards on the SMP nodes do not stream data at full HIPPI

rates, and the maximum observed bandwidth from a given card depends on the number of

simultaneous connections. IBM reports that a single connection can sustain 31.5 MB/s,

and that four connections through the same adapter sustain 51.8 MB/s [4]. Furthermore,

MaxStrat has suggested there is a maximum theoretical transfer rate through a single HIPPI
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adapterchanneloneachRAID systemof 80MB/s [8], with lessthan70MB/s in practice.
Wediscusstheeffectof theselimitationsfurtherin Section3.4.

3.2 Test methodology

We tested the MPI-IO code using a program that let us vary four parameters:

• Stripe factor: The number of devices over which a file is striped. For these tests, we

used striping factors of 1, 2, 4, and 8. As noted above, our two RAID systems behave

as four independent RAID devices. For n-way striping, the HPSS stripes are evenly

distributed across the four RAID logical devices. We use a striping unit (number of

contiguous bytes within each stripe segment of a file) of 8 MB.

• File size: The size of the file was varied from 1 KB to 64 MB.

• Chunk size: The size of contiguous chunks that are interleaved in the file. We tested

chunk sizes ranging from 1 to 16 MB in power-of-two increments.

• Number of MPI processes: We used 1, 2, 4, 8, and 16 processes; we limited the

number of processes to stay within the number of CPUs available on our test system.

In addition to this test program, we evaluated MPI-IO with three more tests. The first com-

pares native and nonnative data representation, the second compares blocking and non-

blocking I/O, and the third measures performance tuning.

We configured the HPSS storage classes and used appropriate hints to hps s_Open so that

the files we were writing would require minimum allocation and metadata overhead. We

configured our test environment to enable the HPSS IPI protocol (third-party transfers),

which sends data over the HIPPI network connection. Through particular choice of HPSS

class of service and MPI-IO "hints," we configured HPSS to optimize transfers of large files

for large-chunk accesses, with large chunks), knowing that this would be inappropriate for

small files and small chunks. A production HPSS system would provide configurations

appropriate for a variety of file and access needs, beyond what we used in our testing.

In the performance plots in the following section, each data point represents an average

of five (in a few cases, four) test measurements. For write operations the test program

overwrites a file that has already been created and written. Therefore, write timings do not

include the time needed to allocate file blocks. Equivalently, we could have preallocated

the file before writing.

One limitation of the experiments presented here is that the file size never exceeds 256 MB.

However, HPSS does not cache file data, so caching effects should be inconsequential. It

is reasonable to expect that transfer of larger files will perform similarly to the largest files

reported on here; future experiments on a new testbed will be conducted to verify this.
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Figure 2: Baseline performance: 1 client process, stripe factor=l.

3.3 Performance results

We first show the read and write performance for independent operations with various file

sizes. Figure 2 shows the baseline performance for MPI-IO: the throughput for a single

process for a given file size with 1-way striping (i.e., no striping: only a single RAID is

accessed). Thus, we can anticipate the maximum throughput of n processes using collective

I/O with n-way striping to be n times this baseline performance.

For parallel or collective I/O, there are at least two possible ways to measure the I/O band-

width. One is to take the average of the I/O times on the participating processes and divide

this into the total amount of data moved in the operation. A second way is to take the I/O

time as the interval between the earliest start time and the latest completion time of the

processes. We chose the second method, which is more conservative. We inserted a barrier

before each process began timing its portion of each collective I/O operation, so all the

processes began each operation at about the same time.

Figure 3 shows the read and write performance for collective operations with various chunk

sizes. These results are for parallel jobs with 16 MPI processes, where each process reads

or writes a fixed amount of data. For these tests, we used only 8-way striping, but we vary

the size of the contiguous chunk of data written by each process from 1 to 16 MB. The

file size is 256 MB. At the largest reported chunk size of 16 MB there is just one chunk

per process; all the other data points show transfers in which there are multiple chunks

per process. These plots show the effectiveness of collective I/O, particularly as the chunk

size is increased. Grouping the requests allows HPSS to handle accesses from multiple
processes in parallel.
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Figure 3: Collective write and read performance for varying chunk sizes

(stripe factor = 8, number of processes = 16, file size = 256 MB).

In Figures 4 and 5 we show how varying the number of tasks and the stripe factor affects

performance. The purpose of these tests was to explore what parameters gave the best

performance on our system. For these tests, we fixed the chunk size at 16 MB and we

only present data for collective operations. We vary the number of tasks from 2 to 16, and

we vary the stripe factor from 2 to 8. The results show that collective I/O performance

continues to improve as the stripe factor and the number of processes increases.

In a separate test we measured the performance of converting numeric formats during read-

ing and writing. Using MPI_LONG_.DOUBLE and converting between native format and

MPI-2's "external32" representations, we found that the combined effect of the extra buffer-

ing and the numeric conversion proper resulted in a slowdown from 12.0 MB/s to 0.8 MB/s

for writes and from 14.3 MB/s to 1.3 MB/s for reads (the chunk size was 8 MB for 64-bit

native, 16 MB for 128-bit external32).

We measured the impact of using nonnative instead of native data representation. We used

a chunk size of 8 or 16 MB (depending on the size of MPI_LONG_DOUBLE: in native

representation, it is 64 bits; in external32 representation, it is 128 bits), one MPI process,

and a stripe factor of 1. We used external32 as the nonnative representation to test. For

our platform, only MPI_.LONG_.DOUBLE types require a data conversion from native to

external32. However, conversion requires that the data be buffered, which in itself impacts

the performance. We isolated the buffering costs by transferring MPI_BYTE data, which
cause the data to be buffered but not converted. The difference in performance resulted in

a slowdown from 12.0 MB/s to 1.7 MB/s for writes and from 14.3 MB/s to 3.0 MB/s for

reads. We found the additional effect for conversion by transferring MPI T,ONG_DOUBLE

data. This resulted in a further slowdown to 0.8 MB/s for writes and to 1.3 MB/s for reads.
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We also examined the performance of blocking versus nonblocking I/O and the potential

speedup of overlapping computation with I/O. We used a test that performed a floating

point calculatation sequence for 16 million iterations, and then wrote the results of these

calculations to a file. We constructed the calculation sequence so that the I/O and calcu-

lation times were approximately equal. We used 4 processes, a stripe factor of 4, and a

chunk size of 16 MB, so the file size was 64 MB. We compared the time elapsed using se-

quential compute-then-write with the time elapsed when we overlap the compute and write

phases using nonblocking I/O. We observed that the overlapped compute/write time (3.1

secs) was approximately 62% of the compute-then-write time (5.0 secs). We experimented

with more MPI processes and stripe factors, but found that the best overlap was achieved

with the four-process case. We believe this is due to contention among the threads that be-

long to each process when there are insufficient CPUs to assign to each active thread. That

is, when there are more than 4 processes, each with multiple active threads, the processes

are competing for the 4 CPUs per SMP node. When there is a single multithreaded process

per node, there are 4 CPUs available for scheduling these threads.

Lastly, we constructed a test to utilize what we had learned about how to tune performance.

We achieved maximum aggregate throughput for this test platform using collective I/O with

32 processes, 8-way striping and 8 MB chunks: we were able to read a 256 MB file at 197
MB/s and write it at 173 MB/s.

3.4 Analysis

The tests that vary file and chunk size show better performance for larger file sizes and

chunks. This is expected since HPSS is designed for very large files and transfer sizes. It

is worth examining what HPSS parameters contribute to performance variations, although

we've alluded to some of these earlier.

Recall that we configured our test environment to use the IPI protocol for HPSS transfers.

However, when the chunks are smaller than the HPSS stripe size, HPSS does not use the

IPI protocol over HIPPI; instead, it uses TCP/IP over HIPPI. This is because HPSS defines

its own blocks that are separate from, and typically larger than, the disk blocks that the

storage devices uses. Transfers that do not fill a complete HPSS stripe block require special

handling; to improve performance in this case we would need to collect data chunks into

larger blocks. Performance peaked when the size of each chunk was 8 MB, our HPSS

configuration's stripe size. For example, Fig. 3 shows that the performance of both reads

and writes falls somewhat when the chunks grow from 8 to 16 MB.

Another source of performance variation is the contiguity of the data being accessed. For

these tests, we deliberately avoided the use of MPI datatypes that contained holes (inac-

cessible regions) for the file types. That is, when the requests for all tasks are merged in

a collective operation, they always form a single contiguous block of file data. Therefore,

the limit on IOD length is not exceeded. Another discontiguity penalty is the metadata that

is kept by the HPSS bitfile server and its limit on file fragmentation. For example, with
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even a single hole per filetype, the bitfile server is forced to keep two metadata records per

filetype-sized chunk written, one describing the data and one describing the hole. Further-

more, the bitfile server has an upper bound (2K) on the number of fragments (metadata

records) it can maintain per file. The creation and maintenance of the metadata hits the

write performance severely and the read performance significantly. For the example of a

single hole per filetype, writing and reading data with consecutive filetypes which are now

discontigous, we see as little as only 10% of the contiguous performance.

Other HPSS configuration details that impact performance are how well the HPSS striping

matches the distibution or striping of data over the client processes. This includes matching

the size of a striping unit to the size of data being transferred by each client, as well as just

matching number of clients and striping units. We see optimal performance when there is

a 1-1 correspondence, as in the performance of 8 processes with 8-way striping which is

better than the performance of 16 processes with 8-way striping.

Outside of HPSS, other limiting factors are the number of devices and connections avail-

able. Although there is a connection to each node, this is multiplexed to 4 CPUs on each

node. Similarly, although there is a connection to each logical device, the IPI configuration

of an 8-way stripe requires multiplexing of accesses to two stripe units per device.

On our testbed peak performance is limited by the HIPPI connections. Our measured read

throughput of 197 MB/s is near the maximum aggregate performance of the HIPPI adapters
on the compute nodes, which is 51.8 MB/s x 4 = 207.2 MB/s.

Although our results demonstrate scalability over the stripe factors and CPUs available for

our tests, past performance is no guarantee of future returns. As the number of processors
available increases, it is unlikely that all of those processors will have HIPPI interfaces

available, and that would require additional data management, and possibly transferring

data among nodes to maintain the collective I/O model we have implemented. HPSS is
addressing this issue as well.

In summary, users will pay penalties for the flexibility of MPI-IO nonnative data repre-

sentations and discontiguous accesses. The payoffs of collective I/O and concurrency of

computation and I/O may ameliorate some of those penalties.

4 Future work

We are currently working on changes to improve the performance, and will be carrying out

further experiments on larger testbeds and production systems.
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5 Conclusions

We have examined the performance of a new MPI-IO implementation using third-party

transfer and collective parallel I/O capabilities in the High Performance Storage System.

Our implementation uses these capabilities to optimize file accesses from multiple pro-

cesses in a parallel job. We have found the performance to be quite good, at least when

reasonably large chunks are used.

Our implementation could be improved by optimizing it further to handle very finely in-
terleaved data accesses. Other MPI-IO implementations use collective buffering to achieve

this goal. Currently, our implementation does no data caching or buffering.

A further benefit of this implementation is that it adds to the list of platforms on which

MPI-IO is supported efficiently, giving parallel programmers access to petabyte archives

via a standard portable interface.
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Abstract

Phoenix is a fault-tolerant real-time network-attached storage device (NASD). Like

other NASD architectures, Phoenix provides an object-based interface to data stored

on network-attached disks. In addition, it features many functionalities not available in
other NASDs. Phoenix supports both best-effort reads/writes and real-time disk read

accesses required to support real-time multimedia applications. A standard cycle-

based scan-order disk scheduling algorithm is used to provide guaranteed disk I/O

performance. Phoenix ensures data availability through a RAID5-1ike parity mech-

anism, and supports service availability by maintaining the same level of quality of

service (QoS) in event of single disk failures. Given a spare disk, Phoenix automat-

ically reconstructs the failed disk data onto the spare disk while servicing on-going

real-time clients without degradation in service quality. Phoenix speeds up this re-

construction process by dynamically maintaining additional redundancy beyond the

RAID5-style parity on the unused space left on the disks. Phoenix attempts to im-

prove the reliability of the disk subsystem by reducing its overall power consumption,

using active prefetching techniques in conjunction with disk low-power modes. This

paper describes the design and implementation details of the first Phoenix prototype.

1 Introduction

An emerging network file system architecture, called Network-Attached Storage Device

(NASD) architecture, separates the processing of metadata such as access permission check

and file directory lookup, from actual data movement between disks and client machines.

Storage devices that are directly attached to the network off-load the data movement pro-

cessing burden from network file servers, and thus improve the overall system scalability.

This architecture contrasts with the conventional network file-systems in which there is no

separation of metadata processing and data-storage. In NASD architecture, clients still send

their access requests to network file servers, which after necessary checks and translations
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Phoenix units Network File Server

Figure 1" Instead of attaching disk drives to the backplanes of the network file server machines, the

NASD architecture uses storage devices that can be directly attached to high-speed LANs, and thus

is able to exploit the aggregate bandwidth on the LAN for data transfers between disks and client

machines.

return cryptographically secure object capabilities. From this point on, clients use object

capabilities to directly access the data residing on network-attached storage devices with-

out involving network file servers. By distributing the bandwidth-intensive data transfer

function across the network, the NASD architecture becomes more scalable than tradi-

tional server-attached storage architecture, both with the number of client machines as well

as with the increasing link speed of the LANs. Figure 1 shows how NASD devices inter-

act with client machines directly. Phoenix units constitute the storage system part of the

NASD architecture. The complete NASD architecture is realized by augmenting Phoenix

units with a file-server.

Phoenix is a Linux-based network-attached storage device built from off-the-shelf PC hard-

ware, Fast Ethemet adapter and a set of Ultra-SCSI disks. Phoenix supports the following

features:

• An object-based SCSI-like API.

• Bandwidth-guaranteed disk access, which is essential to real-time multimedia appli-

cations, e.g. MPEG streams in video-server applications.

• Both real-time disk reads and best-effort disk reads/writes.

• QoS guarantees that remain valid across single disk failures, specifically reconstruc-
tion of the contents of the failed disk onto a new disk while maintaining QoS for the

existing streams.

• Utilization of unused space on disks to speed up the reconstruction process.

• Active prefetching and use of disk low-power mode to reduce disk failure probability.

This paper presents the detailed design and implementation decisions that went into the

construction of the first Phoenix prototype. Section 2 reviews related projects in the area of

NASD. Section 3 describes the data access interface which Phoenix provides to its client
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applications. Section 4 presents an overview of the design of Phoenix and its major archi-

tectural features. Section 5 discusses in detail the implementation of the Phoenix prototype

under Linux. Section 6 discusses optimization features implemented in Phoenix. Section 7

reports performance measurements from the first Phoenix prototype. Finally, we conclude

with a summary of major innovations in Phoenix and an outline of the planned work in
Section 8.

2 Related Work

One of the early systems that adopted the idea of network-attached storage device is the

RAID-II system built at Berkeley [ 1]. The focus of this work was to address the bus/memory

bandwidth limitations of the disk array's host machine, by moving data directly between

the network and the disks with minimal host involvement. Katz [2] discussed the concept

of network and channel-based storage systems where networking and storage access are

tightly integrated as a single entity, van Meter [3] provided a survey on the research ar-

eas of network-attached peripherals and the impacts of such devices on operating system

design. Petal [4] uses a set of block-level storage servers that collectively manage a large
set of physical disks to provide clients the abstraction of distributed virtual disks that tol-

erate and recover from disk, server and network failures. Frangipani [5] is a distributed

file system that is built on top of Petal's distributed virtual disk service to provide scalable

network file service. GFS [ 17] aims at providing a serverless file-system that integrates net-

work attached storage and fibre-channel-based storage area network. This setup provides

client computers full access to all storage devices on the network resulting in higher data
availability.

The idea of separating high-level file system processing from low-level storage manage-

ment opened up the possibility of customized optimization for file metadata processing

and file data movement. The NASD project at CMU [6, 7] focused on the reduction of the

file server load by providing clients an object-based access interface, which is more general

and flexible than the file-based and block-based interfaces supported by file systems and

disk devices, respectively. This project also addressed the important security issues in the

NASD architecture. More recently, projects at U.C. Berkeley [8], CMU [9] and University

of Maryland / U.C. Santa Barbara [10] all explored the idea of performing a limited form

of computation inside disk drives to improve the overall system performance by reducing

the data traffic between disk devices and clients. Similar ideas have been used to improve

the efficiency of the disk storage system itself rather than that of the clients, for example,
HP's AutoRAID system [11].

There have been several real-time storage server projects such as SUNY Stony Brook's

SBVS [12], Microsoft's Tiger server [14], Starlight's StarWorks [13], and IBM's Tiger

Shark parallel file system [15]. All the above systems took the more traditional network

file system architecture rather than the NASD architecture. Some of these enhanced their

scalability by deploying a clustered system architecture, but all data transfers had to go
through the file servers.
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Powermanagementbyreducingdiskpowerconsumptionhasbeenstudiedfor mobilecom-
puters[20,21], however,theprimarygoal thereis to extendthebatterylife. Similar ideas
appliedto NASDcanreduceheatingeffectsby optimizingpowerconsumption,potentially
increasingthereliability of thedisksubsystem[22].

Phoenix is heavily influenced by SBVS in terms of its overall architecture and internal

design. It is one of the first, if not the first, NASDs that support fault-tolerant real-time

object-based accesses. It provides high level of service availability as well as data avail-

ability. It also attempts to improve the reliability of the overall system by use of prefetching

techniques. In addition, it supports both server push and client pull file accesses to accom-

modate the requirements of distributed multimedia applications.

3 Data Access Interface

The programming abstraction exposed to the clients by a Phoenix device is a set of logi-

cally contiguous objects whose internal structure such as disk layout is completely hidden

from user applications. Clients may create, delete, access and modify objects. Each object

has associated attributes like object-id, size, etc. The mapping from files and directories to

objects is performed by a separate machine that serves as a network file server.

Phoenix supports both best-effort and real-time bandwidth-guaranteed disk accesses. The

clients specify the data items of interest via a tuple: a unique object identifier, a block offset

within the object and the number of blocks. For real-time disk accesses, an additional pa-

rameter, the bandwidth requirement in terms of 4K blocks/sec, must be specified. Clients

can access data in either the client-pull or server-push mode. In the server-push mode, data

may build up and thus exhaust buffers on the client side due to software/hardware glitches
or mismatches in disk/network bandwidth scheduling granularities. To address this prob-

lem, Phoenix supports a general skip command interface with which a client application

could request the Phoenix server not to send any data for N cycles, where N is a user-

supplied parameter.

Table 1 summarizes the list of commands supported by Phoenix. createsp is used to

create special objects at installation time and is the only one that cannot be done remotely.

Executing this command is similar to creating a partition table on a fresh disk. Special

objects maintain metadata information about a Phoenix device and the objects it contains.

User objects are created and deleted with create and delete. Attributes of an object

are set and read with setattr and getattr commands. All clients, real-time as well

as non-real-time, use the read command to read data objects. The type parameter can

have values server-push, client-pull and best-effort, denotingthe mode of

data access. For real-time clients in the client-pull mode, read command performs just the

initial set-up for reads. To actually read the data in the object, they use the puli command.

Data is written to an object using the write command. An object's size has to be declared

in advance and cannot be changed dynamically. However, this restriction is not important
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Command I Parameters Return Value

createsp/create attributes, perms objid/status
delete objid, perms status

read objid, offset, range, rate, perms, type strmid/status

write objid, offset, range, perms, data status

getat tr objid, perms attributes/status

setattr objid, attribute name, value status

pul I strmid, range, perms data/status

skip strmid, cycles, perms status

getdeviceinfo perms deviceInfo

shutdown/bootup perms status

Table 1: The set of commands supported by Phoenix, their arguments and return values.

because a conventional file is organized as a chain of objects with new objects added on file

growth. Commands s hu t down and boo tup perform the remote shutdown and bootup of
a Phoenix system.

4 Phoenix System Architecture

4.1 Basic Design

In Phoenix each storage object is striped across a software-controlled disk array in a se-

quentially interleaved fashion, with a RAID-5 style of parity to protect data against single

disk failures. Two special objects keep the metadata about a Phoenix device and individ-

ual objects on the device. The Devicelnfo object contains the device type, capacity, free

space, block size, permissions, the starting location and size of the ObjectList object, etc.

The ObjectList object contains a list of attributes for each object striped on the disk array

including its size, starting offset, permissions, etc. Phoenix uses a fixed stripe unit size of

4 KBytes, which is independent of objects and the requested access rates to them.

Phoenix uses a cycle-based disk scheduling algorithm to provide disk bandwidth guaran-

tees. In each I/O cycle, Phoenix retrieves from disks an amount of data for each real-time

stream corresponding to its bandwidth reservation. Within an I/O cycle, initially real-time

disk access requests are serviced in the scan order based on blocks accessed from the disks,

and then the best-effort access requests are served in a partial scan order (explained in sec-

tion 5.2). This ordering reduces the disk head seek overhead, simplifies the scheduling of

non-real-time accesses and also makes it possible to perform I/O cycle utilization measure-

ments required for admission control. A fixed percentage of the I/O cycle is reserved for

best-effort traffic to guarantee that best-effort requests never starve. An explicit dynamic

measurement-based statistical admission control, similar to the one used in SBVS, ensures

that Phoenix can admit as many requests as possible while meeting the QoS guarantees to

its clients. To maintain the continuity of data flow, Phoenix employs a double buffering

scheme where the disk subsystem fills up one set of buffers with data while the other set is

being emptied out onto the network.
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4.2 Failure-Tolerant Real-Time Disk Service

An innovative feature of Phoenix is its ability to maintain the QoS guarantee to real-time

clients across single disk failures. In contrast, conventional disk arrays put more emphasis

on data availability and render the disks' service unavailable during the failure recovery

period. Phoenix, on the other hand, continues to provide guaranteed disk bandwidth to

real-time applications by treating reconstruction-related disk accesses as best-effort traffic.

Disk failures are detected by associating a timeout with each request issued to the disk

array. On failure detection, Phoenix switches to failure mode. In failure mode, the reads

which should be served by the failed disk are redirected to the corresponding block on

the parity disk. After reading a complete stripe group, Phoenix re-builds the block on the

failed disk through parity. The parity computation leads to an increase in the I/O cycle time.

However, the parity computation is partially overlapped with the disk accesses to improve

the performance.

4.3 Failure Recovery

While in failure mode, Phoenix sends periodic SCSI inquiry commands to detect the ex-

istence of spare disk. On successful detection, a switch is made to the recovery mode.

To shorten the recovery phase, Phoenix denies all best-effort access requests in this mode.

During the recovery period, a dummy stream called reconstruction stream is started to re-

construct the data of the failed disk onto the spare disk by making use of parity. Disk I/Os

associated with the service of the client real-time streams also computes the portions of

data on the failed disk using parity. The question is whether to write such computed data

back to the spare disk (called the piggyback approach) or not (called the non-piggyback ap-

proach). Experiments with both the approaches were conducted and finally the piggyback

approach was chosen for implementation [19]. The piggyback approach reuses the efforts

involved in servicing real-time streams to do the disk reconstruction.

5 Implementation

5.1 Hardware Components

The first Phoenix prototype has been implemented on a PentiumPro 200-MHz PC with 128

MBytes of physical memory. The prototype has a 1-GByte IDE disk to hold the Phoenix

kernel, swap space, and basic utilities programs. In addition, it is connected to an array

of five Seagate ST34371W 4-GByte Ultra Wide SCSI disks physically mounted within an

external disk case via an Adaptec 2940 Ultra-Wide SCSI adapter sitting on a 33-MHz PCI

bus. Data is striped across the SCSI disk array, with a striping unit of 4 KBytes (which is

also the minimum retrieval size for all disk accesses) and one of the disks designated as

the parity disk. The prototype is connected to a switched Fast Etheruet through an Intel

PRO/100+ PCI adapter.
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Figure 2: Software Architecture of Phoenix depicting various modules, data structures and inter-

actions between them. The arrows depict the basic data flow.

5.2 Software Architecture

The Phoenix kernel is based on Linux 2.2.12. The interaction between the Phoenix sub-

system with the Linux kernel is limited to memory management for allocation of buffers,

scheduling of timers, kernel socket code for the network subsystem, and the generic SCSI

controller driver for sending SCSI commands to the disk. The device-specific portion of

the SCSI driver was left untouched. Because of the modular software architecture, it is

expected that porting Phoenix to other hardware/OS platforms and Linux versions should

be relatively straightforward.

The software architecture of the Phoenix kernel is shown in figure 2. Phoenix kernel code

is activated by a startup user-level program that makes a system call with some configura-

tion parameters. From this point onwards, Phoenix remains in the kernel mode. The kernel

consists of a timer-driven upper-half which comprises the disk scheduler, the request man-

ager and the admission controller, and the disk interrupt-driven lower-half comprising the

low-level disk manager. The buffer manager supports other subsystems. The network sub-

system is a timer-driven module that is invoked once every network cycle [16] to send data

to the clients, and to accept new requests from the clients.

To implement cycle-by-cycle disk scheduling, the upper-half is invoked once every I/O

cycle to prepare the disk schedule for every disk and initiate the lower-half to start disk

request processing. Thereafter, the lower-half issues the next disk request from the SCSI

callback function once the previous request finishes, until the access requests for all the
disks are completed.

Since the disk scheduler can not determine in advance the number of non-real-time requests
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to bescheduledfor service,it preparesaseparateschedule,calledbest-effort-schedule,for
theserequests.Oncethe lower-half is donewith thereal-timerequestsfor an I/O cycle,
it invokesthe best-effortschedulerto dynamicallyschedulerequestsfrom thebest-effort
schedule.Best-effortaccessrequeststhat remainunservicedat theendof thecurrentI/O
cycleareprocessedin laterI/O cycles.Newbest-effortrequestsareaddedto thebest-effort
schedulein scanorderafter theseleft-overrequests.Theorderingof left-overrequestsis
not alteredto avoidtheir starvation.Thus,thesetof requestsarrivingwithin an I/O cycle
are put in scanorder and thosearriving acrossI/O cyclesareput in FIFO order. This
orderingis termedaspartial scan order.

5.2.1 Data Structures

StreamInfo and RequestInfo lists maintain the information regarding the on-going

real-time streams, and best-effort read and write requests. The DeviceInfo and the

Obj ec tLi s t structures are in-memory copy of the Devicelnfo and ObjectList stored on

the disks (refer to section 4.1). RequestQ is used by the network subsystem to queue

new client requests. The corresponding ReplyQ is the ControlQ of the buffer man-

ager. After processing the best effort requests, the request manager queues them up in

the BestEffReqQs which are then picked up by the disk scheduler. Schedule is the

schedule prepared by the upper-half to be used by the lower-half in the next disk I/O cycle.

BE_Schedule, also prepared by the upper-half, is used to hold the best-effort requests

scheduled to be sent to the disks. The various queues maintained by the buffer manager are

discussed in section 5.2.5. The network subsystem, the upper-half and the lower-half all

are executed from bottom halves of the timer or disk interrupt service routines. Since no

two bottom-halves can execute concurrently, the consistency of any shared data structure

among bottom-half processing modules is guaranteed.

5.2.2 Admission Control

The admission control module implements a measurement-based statistical admission con-

trol algorithm to determine whether to admit a new real-time stream. The module exports

admi t_s t ream ( ) function which uses the following equation to predict the total service

time after admitting the new (N + 1th) stream based on the past service time measurements

for the on-going N streams.

Pred_Service N+I = Current_ervice N + Std_dev N + Increase_Seek_Time +

(Current_ervice N * (Requested_ate/Total-Rate N))

Std_dev N is the standard deviation from the current service time (averaged over past few

I/O cycles), Current_Service N, for N streams. Increase_Seek_Time is the increase in

the seek time per I/O cycle if the new stream is admitted. Tot al_Rate N is the summation

of rates of all the on-going real-time streams. If the predicted service time for N + 1

streams is less than the I/O cycle share reserved for real-time streams, then the new stream

is admitted, otherwise it is rejected. While Phoenix is operating in the failure or recovery

mode, the admission control simply rejects all new stream/best-effort read/write requests.
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5.2.3 Request Manager

This module exports the function process_requests (), which takes client requests

from the RequestQ and processes them based on their types. Table 1 lists all the pos-

sible requests. All requests are first validated, createsp, create, delete and se-

tattr involve updating the DeviceInfo and Obj ectList data structures, getattr

and getdeviceinfo just access these structures for sending information to the clients.

Best-effort read and write requests are processed and queued in the BestEf fReqQs

list and an entry is made in the RequestInfo list. Client Write requests are bro-

ken into stripe group writes and for each such stripe group write, OLD_DATA_READ and

OLD_PAR I TY_READ requests are put into the Be s t E f f ReqQ s. These reads in turn trig-

ger the actual writes. The parity block is read to keep it updated with new block writes.

Every real-time read request is validated by the admission control and then an entry is

inserted into the StreamInfo list. pull and skip simply update a counter in the

S treamInfo structure, which is periodically checked by the network subsystem to de-

cide whether to send data to the client or not. shutdown closes down Phoenix by writing

the in-core copy of the DeviceInfo and Obj ectList structures to the disks, cleaning

up all required data structures. Bootup initializes Phoenix by reading the disk-copy of

these data structures into memory.

5.2.4 Disk Scheduler

The disk scheduler exports the function update_schedule ( ) which prepares the next

I/O cycle's disk schedule to be served by the lower-half. The disk scheduler first puts the

real-time requests in the Schedule data structure. It reads 5treamInfo structure to re-

trieve the rate and current pointer information for on-going real-time streams. For each real-

time stream, the disk scheduler schedules 2 * da ta_ra t e -unc on sumed_bu f_s i z e

amount of reads (rounded off to complete parity groups). To reduce disk seek overhead,

the disk scheduler tries to use a retrieval size as close to the maximum retrieval size (64

KBytes) as possible.

Unlike real-time requests, the exact number of non-real-time requests which will make the

I/O cycle utilization optimal can not be pre-determined. To handle this, the disk sched-

uler fills up enough non-real-time requests in a separate BE_schedule in a partial scan

order. When all real-time requests scheduled in an I/O cycle are completed, the disk

scheduler invokes get__next_BE_request ( ) to get the next best-effort request from

the BE_schedule into the Schedule. This allows the lower-half to get as many non-

real-time requests as it can serve and thus keep the I/O cycle optimally utilized.

In failure mode, the disk scheduler shifts the requests which should be served by the failed

disk to the parity disk. It also puts inquiry- commands in the disk schedule to probe pre-

configured I/0 locations to detect if a spare disk is available. On detection of a spare disk,

the system switches to recovery mode. In the recovery mode, the disk scheduler sched-

ules reads associated with data reconstruction, which in turn trigger reconstruction-related
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writes. The ranges of the disk blocks which the current streams are accessing are stored in

the Au t oRe cons t Range s and are termed as active blocks. The reconstruction of active

blocks is piggybacked with the continual service of real-time streams. The disk scheduler

schedules stripe-group reads for reconstruction of inactive blocks (not accessed by the ex-

isting real-time clients). Once the reconstruction of such inactive blocks is over and that

of active blocks is not complete, the reconstruction stream starts with the reconstruction of

the active blocks.

5.2.5 Buffer Manager

Figure 2 shows various queues maintained by the buffer manager. Each on-going stream

has an RTQ structure, which is allocated using allocate_rtq(). This points to the

linked list of the data buffers (shown in figure). Each node in the list can store a complete

parity group, i.e., num_disks *retrieval_si ze bytes. These buffers are allocated us-

ing bmgr_get_buf fer ( ). RTQ [ 0 ] is a special stream used to store the data read by the

reconstruction stream. Write requests are allocated write buffers linked in the BEWri teQ

using bmgr_allocate_write-buf fer ( ) • Each such buffer has 4 parts - OLD_DATA,

NEW_DATA, OLD_PARITY and NEW_PARITY. Best-effort reads are allocated a data buffer

linked in the BEReadQ. Recons truc t i onQ stores the reconstruction data to be written

to the spare disk. Both the best-effort read buffers and the reconstruction buffers are allo-

cated using bmgr_get_buffer ( ) routine. ControlQ stores the control messages for

the clients.

5.2.6 Disk Manager and Generic SCSI Driver

The disk manager exports the dmgr_start ( ) function, which is called by the upper-half

to trigger the next disk I/O cycle. This function issues the first set of requests to all the

disks and then immediately returns. The completion of these requests is indicated by a call

to scsi_done ( ) which is the main part of this module, scsi_done ( ) issues the next

request and processes the reply received from the disk.

Issuing a disk request involves getting the next request from the disk schedule based on

diskid and slotid of the reply, constructing the next command to be sent to the disk,

and then sending out the actual disk request (with an associated timeout to detect possible

disk failures). Processing a reply involves checking the reply for error_codes, switch-

ing to failure mode in case of disk failure detection, and then performing further reply

processing termed as post-processing. Switching to failure mode involves schedule recom-

putation for the current I/O cycle where the real-time reads scheduled for failed disk are

shifted to the parity disk. The next request is issued just before the post-processing stage so

as to overlap the post-processing (e.g. parity computation, etc.) with the next disk access.

The post-processing constitutes queueing up the required buffers with the buffer manager,

updating relevant data structures, performing parity computations if required and queueing

up further disk requests.
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A subtlechangewasmadeto thedisk requestissueschemedescribed above based on recon-

struction experiments. The request processing rate is not uniform across the disks. Thus,

some disk might have processed more reconstruction-read requests than other ones, leading

to accumulation of buffers. To avoid this buffer accumulation, Phoenix tries to balance the

number of reads across the disks. In effect, in every I/O cycle, the first set of requests to the

disks is sent out in the reverse order of the length of the disks' pending requests queues.

Another technique used to ensure uniform disk service progress is to slow down the leading

disk. The leading disk is defined as the disk which has processed maximum number of

requests from its schedule. This leading disk keeps changing dynamically as an I/O cycle

proceeds. No more requests are sent to this disk as long as it remains the leading disk. Since

4 disks are sufficient to optimally utilize an UltraWide SCSI bus, not scheduling the fifth

disk does not have significant impact on performance. In a typical setting, the number of

leading disks can be determined based on supported SCSI bus bandwidth, the total number

of disks and the difference between the processing rates of the disks. The main concept is

to avoid request scheduling for the disks which are going faster than the other disks without

affecting the overall performance.

5.2.7 Network Subsystem

The function do_net_io_cyc l e ( ) of the network subsystem is invoked once every net-

work cycle. It looks at the StreamInfo and RequestInfo structures, dequeues data

from the buffer manager and sends it to the clients. It also sends them the new control

messages queued in the ControlQ of the buffer manager. It processes the new client

requests and puts them in the Reques tQ. This module works by making socket-layer sys-

tem calls from within the kernel to send out UDP packets over the network. This subsystem

is relatively independent of the rest of the system and can be fairly easily replaced by other

real-time network subsystems, e.g., Rether [16].

6 Optimization Features

6.1 Dynamic Replication to Reduce Reconstruction Time

To reduce the data reconstruction time, Phoenix employs a dynamic replication scheme that

uses unutilized storage space in the disk array to mirror a part or all of the utilized portion

of the disk array. The extent of the disk array's utilized portion that gets replicated depends

on the size of the unused space. Here, a disk array consists of three parts viz. utilized

& mirrored (UTM), utilized & parity-protected (UTP), and unutilized & mirrored (UUM)

(figure 3). Both the UTM and UUM are reconstructed via 1 : 1 reads and writes, whereas

the UTP portion is reconstructed via (N - 1) : 1 reads and writes, where N is the parity
group size, plus a parity computation. The mirroring scheme chosen, called Declustered

Replication, distributes the replication for each disk across all other disks to increase read

parallelism. To minimize seek overheads, replication unit is chosen to be the disk's maxi-

mum retrieval size (64 KBytes).
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Figure 3: Dynamic Declustered Replication. Each disk in the array is partitioned into 3 parts:

UTM, which is reconstructed from the mirrored copy replicated across other disks, UTP, which

is reconstructed from parity, and UUM, which stores mirror copies of other disks' UTM portions.

UTM and UTP together represent the part of a disk that is being utilized.

To implement dynamic replication, additional replication writes are scheduled for client

writes to maintain the replication consistency. During the reconstruction phase, the disk

scheduler tries to use the existing mirror copy to reconstruct the data. Reconstruc-

t ionQ is used to temporarily store this data. The reconstruction of UTM and UTP is done

in parallel to ensure optimal performance. Also, excessive UTM reads in short time may

lead to write buffer accumulation and are therefore thwarted appropriately. Reconstruc-

tion related measurements on Phoenix prototype indicate significant performance gains

achieved by the use of this approach. The benefits are expected to increase further as the

number of disks in the parity group increases.

6.2 Active Prefetching to Lower the Power Consumption

To reduce the probability of disk failures due to overheating [22], Phoenix tries to reduce

the overall power consumption of the disk subsystem. Phoenix employs an active prefetch-

ing technique by exploiting real-time applications' regular data access patterns. Rather than

leaving the unused bandwidth in each I/O cycle wasted, Phoenix uses the spare bandwidth

to prefetch data for each real-time stream, in order to skip some I/O cycles every once in

a while. In these skipped I/O cycles, Phoenix puts the disks in the low-power mode and

thus lowers the power consumption of the disk array. Switching between low-power and

normal operating modes involves only electronic components rather than mechanical parts

[ 18]. Therefore, mode switching power consumption is negligible as compared to power

saving achieved. Consequently, active prefetching can ensure that the power consumption

of a Phoenix device is proportional to the number of active streams being serviced at that

time.

As Phoenix switches to the low-power mode, the upper-half no longer remains timer-

driven. When the disk manager is done with its I/0 cycle, it invokes the upper-half directly.

The scheduler now schedules read requests for all the streams making sure that streams

are prefetched fairly. When enough data is accumulated, the disk manager puts the disks

in low-power mode and does not invoke the upper-half. The network subsystem keeps

consuming the data and when the data level falls below a certain threshold, the network

subsystem invokes the upper-half.
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7 Performance Measurements

The throughput of the system was measured in terms of the number of MPEG- 1 streams it

can support. Phoenix supports a maximum of 52 streams in normal mode, 42 streams in

failure mode and 36 streams in reconstruction mode. Thus, Phoenix services a maximum

of 36 guaranteed RT streams across failures/reconstruction and an additional 16 guaranteed
RT streams but not across failures.

Figure 4 shows the variation of raw reconstruction time (no streams in the system) as the

disk utilization increases. A significant gain in reconstruction performance suggests use of

dynamic replication. Reconstruction up to 50% disk utilization is totally based on replica-

tion and then onwards, reconstruction uses parity as well as mirrored data.

Figure 5 shows the variation of reconstruction time as the number of MPEG-1 streams

increases. The length of these streams is constant and the streams are uniformly spread

across the disks. The disk utilization is kept at 66% (equal UTM and UTP portions). When

there are no client streams, the reconstruction is solely due to the reconstruction stream.

The reconstruction time is minimum in this case. The reconstruction time increases with

the number of real-time clients because of seek and request processing overheads.

Simulations were done to gauge the potential reduction in power consumption, and thus

the increased reliability that can be achieved using active prefetching. The fraction of total

time available for keeping the disks in low-power mode is shown in figure 6. As the number

of streams reduces, the power consumption can also be reduced almost linearly.

8 Conclusions

This paper described in detail the design and implementation of a Linux-based network at-

tached storage device, which exports an object based API, supports real-time reads and
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best-effort reads/writes, provides uninterrupted real-time disk service in the event of a

single disk failure, performs on-line disk reconstruction while using the active real-time

streams, exploits full disk bandwidth and disk space all the time to speed up failed disk

reconstruction, and increases the reliability of the disk subsystem by reducing its power

consumption. Extensive measurements on the first Phoenix prototype were made to vali-

date the design decisions (described in [19]). In future, the prototype will also be integrated

with a real-time network subsystem [16] and a file-system.
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Abstract

We describe a real implementation of a software component that manages caching

of files from a tertiary storage management system to a large disk cache developed for

use in the area of High Energy Physics (HEP) analysis. This component, called the

Cache Manager, is a part of a Storage Access Coordination System (STACS), and is re-

sponsible for the interaction with a mass storage system that manages the robotic tapes

(we used HPSS). The Cache Manager performs several functions, including managing

the queue of file transfer requests, reordering requests to minimize tape mounts, mon-

itoring the progress of file transfers, handling transient failures of the mass storage

system and the network, measuring end-to-end file transfer performance, and provid-

ing time estimates for multi-file requests. These functions are described in detail, and

illustrated with performance graphs of real-time runs of the system.

1 Introduction

Like so many other scientific disciplines, HEP experiments produce huge amounts of data

that, given the usual budget constraints, need to be stored in robotic tape systems. For

instance, the STAR experiment at Brookhaven National Laboratory that will start collecting

data by mid 2000, will generate 300 TB of data over the course of three years. Storing such

amounts of data in disks is certainly unreasonable and also a waste of financial resources

since most of the data will not be used often, yet they need to be archived. In practice

all the data will be stored in tapes and the amount of available disk space will amount to

a few percent of the total space needed to store all the data. Given the fact that retrieval

of data from tapes is much slower than from disk, the need for smart cache management

*This work was supported by the Office of Energy Research, Office of Computational and Technology
Research, Division of Mathematical, Information, and Computational Sciences, of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.
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systems, that coordinate both the retrieval of data from tapes and the use of the restricted

disk cache, is real [3, 2, 1]. With this goal in mind we developed STACS (Storage Access

Coordination System) [4] to be used by the STAR experiment. STACS was designed to take

advantage of the fact that the particle collisions, recorded by the STAR measuring devices,

are independent of each other, and therefore the processing of each collision's data can be

done in any order. This provides the ability to choose the order of caching of data from

tape to disk cache, so as to optimize the use of the cache by multiple users. In addition,

since we know ahead of time all the files needed for processing for all the users currently

in the system, we can order the scheduling of file transfers to minimize the number of tape

mounts.

This paper is organized as follows. In section 2, we start by briefly describing the

application domain of High Energy Physics and how the particular needs of that domain

influenced the design of STACS. We briefly discuss the architecture of STACS, and de-

scribe the process of executing queries. In section 3, we describe in detail the component

responsible for interacting with the system that manages the tapes (we used HPSS), called

the Cache Manager. In this paper, we emphasize many of its features, including the support

of a request queue, the reordering of file transfers to minimize tape mount, and the handling

of errors and system failures. We conclude in section 4.

2 The STACS Architecture

We describe in this section the components of STACS, and the reasons for the modular

architecture of the system. First, we need to describe briefly the application domain, the

kind of queries applied to the system, and what is expected from the application's point of

view.

2.1 HEP Application Domain

In the HEP STAR experiment, gold nuclei are collided against each other inside an accel-

erator and the results of such collisions are recorded by a very complex set of measuring

devices. Each collision is called an event and the data associated with each event is in the

order of 1-10 MB. It is expected that the experiment will generate 108 such events over 3

years. The raw data recorded by the measuring devices are recorded on tapes. They are

organized in files, each about 1 GB in size. The data then undergo a "reconstruction" phase

where each event is analyzed to determine what particles were produced and to extract

summary properties for each event (such as the total energy of the event, momentum, and

number of particles of each type). The number of summary elements extracted per event

can be quite large (100-200).

The amount of data generated after the reconstruction phase ranges from about 10%

of the raw data to about the same size as the raw data, which amounts to about 30 - 300

TBs per year. Most of the time only the reconstructed data is needed for analysis, but the

raw data must still be available. It is against the summary data that the physicists run their

queries searching for qualifying events that satisfy those queries. All queries are range

queries (for example, 5 GeV < energy < 7 GeV, or 10 < number of pions < 20). For each
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query,STACShasto determinewhichfilescontainthereconstructeddata(or therawdata
if theyarerequested),andto scheduletheircachingfrom tapefor processing.

Giventhefact that thedifferentevents(collisions)areindependentof eachother,it is
irrelevantfor the physicistswhetherthey receivethe qualifying eventsin the order they
weregeneratedor anyotherorder,as longastheyreceiveall qualifying events.So,what
the physicistsneedis a away to map their queriesto the qualifying eventsstoredin the
tapesystemand to efficiently retrievethoseeventsfrom tapeto their local disk so that
theycanrun their analysis programs. STACS was designed with this in mind. It is typical

that physicists form collaborations, where 10-100 users study the same region of the data.

Therefore, there is good likelihood that queries of different users will overlap in the files

that they need. STACS is designed to maximize the use of files once they are cached to

disk, by striving to make each file available to all application programs that need it.

2.2 STACS

The STACS architecture consists of four modules that can run in a distributed environ-

ment: a Query Estimator (QE) module, a Query Monitor (QM) module, a File Catalog

(FC) module and a Cache Manager (CM) module. All the communication between the

different modules is handled through CORBA [5]. The architecture of the system is shown

in Figure 1. The purpose of this paper is to describe in detail the capabilities provided by

the CM. However, to put this in context we describe briefly the function of each module
next.

The physicists interact with STACS by issuing a query that is passed to the QE. The

QE utilizes a specialized index (called a bit-sliced index) to determine for each query all

the events that qualify for the query and also the files where these events reside. This

index was described in [4]. The QE can also provide time estimates before executing a

query on how long it will take to get all the needed files from the tape system to local disk.

The estimate takes into account the files that are currently in the disk cache. If the user

finds the time estimate reasonable then a request to execute the query is issued and the

relevant information about files and events is passed to the QM. The job of the QM is to

handle such requests for file caching for all the users that are using the system concurrently.

Since the users don't care about the order they receive the qualifying events the QM is

free to schedule the caching of files in the way that it finds most efficient (for instance,

by requesting first the files that most users want). The QM uses a fairly sophisticated

caching policy module to determine which files should reside in cache at any time. The

QM marks each file requested by one or more queries with a dynamic weight proportional

to the number of queries that still need that file. The caching policy uses this weight to

maximize the usage of the cache by queries. Any files that happen to be in cache and can

be used by an application are passed to the application as soon as it is ready to accept the

data (i.e. when it is not busy processing the previous data). Files are removed from cache

only when space is necessary. The files with the lowest weight are removed first. A more

detailed description of the caching policy is also given in [4].

After the QM determines which files to cache, it passes the file requests to the CM one

at a time. The CM is the module that interfaces with the mass storage system, which in

the case of STAR is HPSS. It is the job of the CM to make sure that the files requested
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by the QM are properly transferred to local disk. When a request reaches the CM a file is

identified by a file id (rid), a logical name. To be able to transfer the file from HPSS to local

disk the CM needs to convert the file logical name into a real physical name. This mapping

can be obtained by consulting the FC, which provides a mapping of anfid into both a HPSS

file name and a local disk file name (the full path of the file). It also includes information

about the file size and the tape id (tid) of the tape where the file resides.

To visualize the operation of STACS, we include here a graph of a real run of the system

processing multiple files (Figure 2) for a single query. The x-axis represents time. Each

jagged vertical line represents the history of a single file. It starts at the bottom at the time

it was requested, to the time it was cached to HPSS cache, to the time is was moved to the

shared cache, to the time it was passed to the requesting query, and terminates (at the top)

after the application finished processing all the events it needs from that file. As can be

seen, initially a request for two files was made (one to process, and one to pre-fetch), and

only after the first file was processed the application made a request to cache another file.

3 The Cache Manager

The CM performs mainly two functions: it transfers files from the mass storage system

(HPSS) to local cache and purges files from local cache. Both actions are initiated by the

QM. The transfer of files requires a constant monitoring. The CM performs a variety of
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Figure2: Trackingof files requested by a query.

different actions towards that end. It measures various quantities, such as the transfer rate

of each file, it keeps track of the amount of cache in use, and (whenever a transfer fails) it

detects the type of failure by parsing the PFTP output looking for errors.

3.1 File Transfers

The CM transfers files from the mass storage system (HPSS) to local cache using the paral-

lel file transfer protocol (PFTP). The CM is multithreaded and can handle many file requests

at the same time (in fact, there is a different thread for each PFTP request). Since the num-

ber of PFTPs that HPSS can handle concurrently is limited (by the memory available to

HPSS) the CM needs to make sure that it doesn't swamp HPSS with too many concurrent

PFTPs. This is a required feature because the HPSS system is a resource shared by many

users and as such all users have to make sure they don't use more than their share. And

even though the HPSS system administrator can block PFFP requests from any user, the

system will work better if the users stay within their PFTP quotas. The CM handles this

for all its users by queuing the file requests that it receives from the QM and never serving

more than the number of PFTPs allocated to it. Thus, STACS and in particular the CM,

performs the function of serving its users in a fair fashion, by not allowing any single user

to flood the system with too many file caching requests. In STACS the number of allowed

PFTPs can be changed dynamically by the system administrator, while the cache manager

is running. If this limit is reduced, it simply stops issuing PFTPs until the number of PFTPs

in progress reaches the new limit.
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3.2 Queue Management

Since the CM builds up a queue of file requests that cannot be served while the number of

PFTP requests is at its maximum, opportunities arise for rescheduling the order of requests

in the queue so that files from the same tape are asked together one after another. The

idea is that the transfer rate from HPSS to local cache will increase if the number of tape

mounts is minimized. This is particularly important if the number of tape drives is small

and the network bandwidth between HPSS and local cache is large. The goal is to have

an aggregated transfer rate as high as possible and that can be achieved by minimizing the

"idle" transfer periods during tape mounts. Obviously this gain obtained by rescheduling

the queued requests comes at a cost, the cost of bypassing older requests in the queue and

instead serving younger requests just because they happen to be from a more "popular"

tape. We leave the responsibility of deciding how much rescheduling to do to the STACS

administrator and that can be done by dynamically changing a "file clustering parameter"

that characterizes the clustering of requested files according to the tape they reside in. Thus,

choosing the parameter to be, say, 5 means that if a file from some tape was just transferred

to local cache, then on average 4 more files from the same tape will be requested (this only

holds true in an infinite queue, but it's a good approximation). Choosing the parameter to

be 1 means that no rescheduling will be done and the files in the queue are served in a first

come first serve order. Figures 3 and 4 show the order the files were requested versus the

tape they reside in for two runs of the same set of queries. The "file clustering parameter"s

used were 1 and 10 respectively. The important thing to notice is that in figure 3 there is a

constant changing of tapes.

3.3 Query Estimates

One of the most interesting, and also the most difficult to implement, features of the CM

is the capability of estimating how long the files needed for a query will take to transfer to

local cache. Even though the users get the time estimate through the QE, the real estimates

are done by the CM and passed to the QE. The estimates are done by checking which subset

of the set of files needed for a query are in cache (call that X), which are already scheduled

to be cached, and are in the CM queue (call that Y) and which still have to be requested

(call that Z). The CM can use the current transfer rate to estimate how long the files needed

will take to transfer. If the current transfer rate happens to be zero, either because no files

are being transferred or because the network is temporarily down, then a default transfer

rate is used. We describe in Section 3.5 how the actual transfer rates are obtained over

time. So far, we used the maximum transfer rates obtained when the system is heavily

loaded as the default transfer rate values. In the future, we plan to tune the default transfer

rate dynamically, averaging the maximum transfer rates for the last 24 hours (or whatever

default period is preferred).

To get a best case estimate, assuming this query gets top priority, we need only to divide

the sum of sizes of files not in cache by the transfer rate Tr, i.e. (s(Y) + s(Z))/Tr where

s(Y) and s(Z) are the sum of sizes of files in set Y and set Z respectively.
However, we also want to get a realistic estimate. We achieve this as follows. For the X

files that are in cache we assume they continue to be available to the application since they
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Figure 3: File request order in the absence of file clustering. Files are requested on a first

come first serve basis. Each point in the x-axis corresponds to a new file request.

will be marked as needed. For the Y files in the CM queue, we have two cases to consider.

If the set Z is empty then we don't need to consider the set of files in the queue that come

after all the flies in set Y. Call the set of remaining files in the queue Y' (we only need to

consider the files in the queue from the first file to the last file in Y). Then the estimate is

s(Y')/Tr. If on the other hand the set Z is not empty then we need to take into account

that all the files in the queue need to be processed before any files in the set Z. We call

the set of files in the queue T. Let then the number of queries in the system be q. For our

estimate, we assume that each of the queries will be served in a round robin fashion, and

that there is no file overlap between the queries. Then for the Z files we need qs(Z)/Tr,

assuming that all files have similar sizes. So the total time estimate is (qs(Z) + 8(T))/Tr.

Of course these estimates are only reasonably good if the system doesn't run out of

cache space (in which case the file transfers have to stop until some files can be purged)

and if the number of queries stays the same during the period that the query in question is

being processed. Figures 6 and 5 show a comparison between the estimated time and the

real time for the same set of twenty queries run from the same initial state (no files initially

cached), with the difference that in one case the queries come 5 minutes apart and in the

other case they come 20 minutes apart. In these runs the processing time per event (the time

spent processing an event by the application) was chosen very small so that the amount of
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Figure 4: File request order with a file clustering parameter of 10 files per tape. As many

as 10 successive requests from the same tape are made if they are found in the queue.

time the QM holds a file in cache is negligible when compared with the transfer time. The

queries were designed to complete in about 20 minutes each. Figure 5 shows the estimates

when the same set of queries arrive 20 minutes apart. This time is enough to transfer all the

files needed by the query before the new query comes in. As a consequence the estimates

are very accurate. They are biased towards shorter transfer times because the CM used the

default transfer rate to calculate the transfer times, and the default transfer rate was chosen

as the maximum transfer rate that the network supports. That default is not sustained for

longer periods and hence the shorter time estimates.
On the other hand, in figure 6 the queries arrived 5 minutes apart. In addition, we did not

take into account the number of queries that were in the system when a new query started.

Since there was not enough time to finish a query before a new query arrives (we chose

the queries so that they request approximately the same number of files every time), the

requests for files pile up in the CM. This explains why successive time estimates grow larger

and larger; the requests for files pile up faster than the CM can serve them. We can also

see that the estimates were very poor and fell short of the real transfer times, because the

estimate did not account for the number of queries in the system. This gave us the insight to

take the number of queries into account, a feature that is now being implemented. We note

that even so, the fact remains that when an estimate is done the CM knows nothing about
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Figure 5" Comparison between estimated time and real transfer time when the queries run

alone in the system.

the queries that will come in the future. Because of the round robin policy we currently use,

such queries will request some files before all the files for previous queries were requested.

Nevertheless, our estimates are pretty accurate since they are based on a measured transfer

rate, the files in cache for that query, the number of files in the queue, the actual sizes of

files, and the current load on the system, measured as the number of concurrent queries
being processed.

3.4 Handling PFTP Errors

The most important functionality of the CM is the handling of transfer errors. Sometimes

the PFTP transfer fails, either because HPSS misbehaves or breaks down, or because the

network is down or even because the requested file doesn't exist in HPSS. So to make sure

that the file was successfully transferred to local disk the CM starts by checking the PFTP

output looking for the string "bytes transferred" (this string also appears at the end of a ftp

transfer). If that string is not found the CM parses the PFI'P output looking for possible

error messages, and depending on the result different paths are taken. For instance, if the

file doesn't exist on HPSS the CM just reports the fact to the QM. If on the other hand, the

transfer error was due to some HPSS error (say, an I/0 error) the CM removes the partially

transferred file from disk, waits a few minutes, and then tries again to transfer the same file.
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Figure 6: Comparison between estimated time and real transfer time when there is sharing

of resources between queries.

This functionality of the CM is very important because it insulates the rest of the system

and the user's application from HPSS and network transient failures. All the user perceives

is that the file may take longer to cache or that it doesn't exist. This situation is shown in

Figure 2. It shows two gaps in the file transfers, one long and one shorter. This was due to

an HPSS server failure that was then restored. The CM checked HPSS periodically till it

recovered and then proceeded with file transfers.

The possible errors or reasons that cause a PFTP to fail are the following:

• File not found in HPSS. This is an irrecoverable error. The CM gives up and informs

the QM.

• Limit PFTPs reached. This happens if other users use more than their share of allo-

cated PFTPs. When this happens it is impossible to login to HPSS. The CM handles

this by re-queuing the file request and trying again later.

• HPSS error. Some are recoverable (like an I/O error or a device busy error), others are

not (a non existing file, or a wrong read permission). The CM handles the recoverable

errors by trying again up to 10 times. This is a default number that can be changed

dynamically. The assumption is that if a transfer fails 10 times then something is

really wrong with the file. Another approach, which we did not implement, is to
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Performance:

Figure 7: This graph shows several quantities that STACS can display dynamically and that
characterize the overall status of the system.

have a timeout mechanism where no more PFTP retrials would be done once the
timeout limit was reached.

3.5 Measurements

The CM keeps track of various quantities that characterize its status at any time. One of

those, and probably the trickiest one to measure, is the transfer rate between HPSS and

local cache. When a PFTP is launched the requested file transfer may not start right away.

This is particularly true if the file happens to be on tape instead of being in the HPSS own

cache. In that case the tape has to be mounted before the transfer can really start. This fact

is not known to the CM. After the transfer occurs the CM can find out how much time was

really used in transferring the file and how much time was used in mounting the tape and

seeking to the right place on tape, but that information comes too late to be of any use in

estimating the instantaneous transfer rate. The CM can give very accurate measurements of

the instantaneous transfer rate by following a different approach: it periodically (say, every

15 seconds or whenever a file transfer ends) checks the local size of all the files currently

being transferred. By measuring the total number of bytes transferred between now and the

previous measurement and the amount of time elapsed, it can give an accurate value for the

transfer rate. To smooth out quick fluctuations, it gives a moving average of the transfer
rate measured over the last, say, 10 measurements.

Other quantities the CM keeps track of are the number of PFTPs pending, the amount

of cache used by the files in local cache, and the amount of cache reserved for the requests

currently in the queue. In addition to these measurements by the CM, the QM keeps track of

information related to the status of queries. Specifically, it keeps also track of the number of

queries waiting to be served or being served, and also the amount of cache actively being

used, i.e., cache used by files that are being currently processed by some query. In this
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context, a query is considered as being served if it is currently processing a file, or if it has

a file in local cache to process.

All these quantities can be displayed dynamically when the system runs and can be used

by the STACS administrator to tune the policies of the system to overcome bottlenecks. For

example, one of the parameters that can be set dynamically is how much pre-fetching to

perform on behalf of each query. If there is a lot of available disk cache, and the PFTP

queue is small, one can increase the number of pre-fetches, so that queries have at least
one additional file in cache as soon as they finish processing a file. An example of such

measurements displayed for a particular run are shown in Figure 7.

Another reason for keeping track of these measurements performance, is to observe

whether the system resources are "balanced", i.e. used well for a typical query mix. In

particular, it is important to understand where the bottlenecks are, and if some resources

(tape drives, disk cache, and network resources) are underutilized. Accordingly, this can be

used as a guide for adding the right kind of resources to the system to achieve better system

performance.

3.6 Recovery from Crashes

One of the very important, even if rarely used, features of the CM is the capability to

recover from crashes and return to its state before the crash. By crash we mean a real crash

of the CM, which although very unlikely (we have run the CM for weeks without a glitch)

cannot be put aside, but also the situation where the machine where the CM runs needs

to be rebooted. Given the fact that a set of queries can take days to process it's of utmost

importance that the system can return to its state before a crash without the users having

to relaunch all the queries again. The CM does this by logging to a "recovery" file the list

of requests that were not served yet. Once a new request arrives, information about it (file

id and query id) is logged to a file, and after a request is served (a file is transferred) the

associated information is removed from the same file. If the CM happens to crash or the

system where it runs needs to be shut down, the CM can easily return to its previous state

by reading the "recovery" file, and checking if the files were correctly transferred and are

currently in cache. For any files not correctly transferred or not transferred at all, the CM

relaunches the logged requests.

4 Conclusions

We described in this paper a real implementation of a storage access queuing and monitor-

ing system to be used in high energy physics applications. The system is practically ready

to be deployed and has been in a testing phase for the last few months. The system has been

tested against a 1.6 TB federated database of synthetic data stored in 170 tapes. We have

demonstrated the value of such a system in insulating the user's application from the de-

tails of interacting with a mass storage system. Specifically, the system enables the user to

submit a query of what is needed, and the system finds all the files that need to be read from

tape, schedules their caching so that files can be shared by multiple users, minimizes tape

mounts, handles transient errors of the mass storage system and the network, and monitors

performance. Such a system is particularly valuable for long running tasks (many hours)
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of 100's of files, where restarting a job because of a failure is not a practical option. Future

plans include the application of the system in distributed multi-site grid infrastructure. In

this setup, there can be multiple sites that have mass storage systems, and each site may

have a shared disk cache for its local users. We envision the Cache Manager's functions to

be associated with each storage resource in the system. An open (and difficult) problem is

how to coordinate these distributed resource managers in order to support multiple users at

various sites in the most efficient way. We also plan to apply this technology to application
areas other than high energy physics.
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Abstract

In this paper we present a middleware infrastructure, called DataCutter, that en-

ables processing of scientific datasets stored in archival storage systems across a wide-

area network. DataCutter provides support for subsetting of datasets through multi-

dimensional range queries, and application specific aggregation on scientific datasets

stored in an archival storage system. We also present experimental results from a pro-
totype implementation.

1 Introduction

Increasingly powerful computers have made it possible for computational scientists and en-

gineers to model physical phenomena in great detail. As a result, overwhelming amounts

of data are being generated by scientific and engineering simulations. In addition, large

amounts of data are being gathered by sensors of various sorts, attached to devices such as

satellites and microscopes. The primary goal of generating data through large scale simula-

tions or sensors is to better understand the causes and effects of physical phenomena. Thus,

the exploration and analysis of large datasets plays an increasingly important role in many

domains of scientific research. Simulation or sensor datasets generated or acquired by one

group may need to be accessed over a wide-area network by other groups. Software support

is needed to allow users to obtain needed subsets of very large, remotely stored datasets.

We present a middleware infrastructure, called DataCutter, that enables processing of

scientific datasets stored in archival storage systems across a wide-area network. DataCutter

provides support for subsetting ofdatasets through multi-dimensional range queries, and ap-

plication specific aggregation on scientific datasets stored in an archival storage system. We

discuss an implementation of the Virtual Microscope application [2] using DataCutter. The

Virtual Microscope is representative of data-intensive applications that involve browsing

and processing large multi-dimensional datasets. Other examples include satellite data pro-

cessing systems [7] and water contamination studies that couple multiple simulators [20].

We also provide experimental performance results for a prototype implementation.

*This research was supported by the National Science Foundation under Grant #ACI-9619020 (UC Sub-
contract # 10152408), and the Office of Naval Research under Grant #N6600197C8534.
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2 Motivation and Overview

Over the past several years we have been actively working on data intensive applications

that employ large-scale scientific datasets, including applications that explore, compare, and

visualize results generated by large scale simulations [20], visualize and generate data prod-

ucts from global coverage satellite data [7], and visualize and analyze digitized microscopy

images [2]. Many scientific applications generate and use datasets consisting of data val-

ues associated with a multi-dimensional space. Scientific simulations typically generate

datasets with at least three spatial dimensions and a temporal dimension. Satellite data and

microscopy data generally have two (or more) spatial dimensions and a temporal dimension.

Applications frequently need to access spatially defined data subsets via a spatial range

query, which is a multi-dimensional box in the underlying dataset space. Spatial subsets

can encompass contiguous regions of space, as for retrieving satellite data covering a par-

ticular geographical region. Spatial subsets can also be defined once features of interest are

categorized using spatial indices. For instance, subsetting can be carried out to retrieve sim-
ulation data associated with shocks in fluid simulations, or tissue regions with particular cell

types in microscopy datasets.
There are various situations in which application-specific non-spatial subsetting and data

aggregation can be applied to targeted data subsets. Some data analysis require values for

only some of variables at a data point. For example, a computational fluid dynamics sim-

ulation dataset can be organized so each data element contains velocity, momentum, and

pressure values. An analysis code may only use the pressure value at a grid point, and may

ignore values for velocity and momentum. In other cases, there may be a need to obtain

an application-dependent low resolution view of a dataset. For example, a hydrodynamics

simulation may generate and store flow data (e.g., velocity values) at fine time steps. The

analysis may need to be performed using coarser time steps, which requires the stored ve-

locity values to be averaged over several time steps. In these cases, aggregation and trans-

formation operations could be applied to data elements at the data server where they are

stored, before returning them to the client where the analysis program is run.

In some cases data analysis can be employed in a collaborative environment, where co-

located clients access the same datasets and perform similar processing. For instance, a

large group of students in medical training may need to simultaneously explore the same

set of digitized microscopy slides, or visualize the same MRI and CT datasets. There may

be a large number of overlapping regions of interest, and common processing requirements

(e.g., same magnification level for microscopy images, or same transfer functions to con-

vert scalar values into color values) among the users employing the analysis tools (clients

of the data server). In these cases, caching reused dataset portions closer to the clients (i.e.,

on the same local area network) can provide significant performance benefits.

We have developed the Active Data Repository (ADR) [6] framework to use for de-

veloping parallel applications that make use of large centralized scientific datasets. ADR

provides support for accessing subsets of multi-dimensional scientific datasets via range

queries, and allows users to integrate user-defined processing of large centralized datasets

with storage and retrieval on distributed memory parallel machines with multiple disks at-

tached to each node. ADR is designed as a set ofcustomizable and internal services. Through

the use of customizable services, users can specify and implement application specific dataset
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Figure 1: Architecture of the data management/manipulation framework.

indexing, and user-defined aggregation and transformation operations used in processing

one or more datasets. The internal services provide support for common operations such

as memory management, data retrieval, management of multiple datasets, and query plan-

ning and scheduling of processing on a parallel machine. A number of applications have

been developed using ADR and good performance has been demonstrated [6, 20]. How-

ever, the continuing increase in the capabilities of high performance computers and sensor

devices implies that datasets with sizes up to petabytes will be common in the near future.

Such vast amounts of data require the use of archival storage systems distributed across a

wide-area network. Data analysis, on the other hand, is usually performed on machines at an

application scientist's local institution. Efficient storage, retrieval and processing of multi-

ple large scientific datasets on remote archival storage systems is therefore one of the major

challenges that needs to be addressed for efficient exploration and analysis of these datasets.

There is a large body of hardware and software research on archival storage systems,

including distributed parallel storage systems [19], file systems [23], image servers [22],

and data warehouses [18]. Several research projects have focused on digital libraries and

geographic information systems [3, 14] that access collections of archival storage systems,

high-performance I/O systems [9] and remote I/O [11, 21]. In addition to many end-point

solutions, the Grid [8, 10, 13] has been emerging in recent years as infrastructure to link

distributed computational, network and storage resources, and to provide services for uni-

fied, secure, efficient and reliable access. Several research projects have focused on provid-

ing services in a Grid environment, such as Globus [12], which provides services to access

computational resources, and the Storage Resource Broker (SRB) [21 ], which provides uni-

form UNIX-like I/O interfaces and meta-data management services to access collections of

distributed data resources. However, providing support for efficient exploration and pro-

cessing of very large scientific datasets stored in archival storage systems in a Grid envi-

ronment remains a challenging research issue, and the necessity of infrastructure to provide

such support was recognized in recent Grid forums [16].

We are developing an infrastructure to make it possible to explore and analyze scien-

tific datasets stored on archival storage across a wide-area network. Figure 1 illustrates the

framework architecture. It consists of two major components: DataCutters and Proxies. A

proxy provides support for caching and management of data near a set of clients. The goal

is to reduce the response time seen by a client, decrease the amount of redundant data trans-
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ferredacrossthewide-areanetwork,andimprovethescalabilityof dataservers.Ourprior
work onproxiescanbefoundin [5].

The newmiddlewareinfrastructure,calledDataCutter,providessupportfor processing
of scientificdatasetsstoredin archivalstoragesystemsin awide-areanetwork.DataCutter
providesacoresetof services,ontop of whichapplicationdeveloperscanimplementmore
application-specificservicesorcombinewith existingGridservicessuchasmeta-dataman-
agement,resourcemanagement,andauthenticationservices.Our maindesignobjectivein
DataCutteris to extendandapply thesalientfeaturesof ADR (i.e. supportfor accessing
subsetsof datasetsvia rangequeriesanduser-definedaggregationsandtransformations)
for very largedatasetsin archivalstoragesystems,in a shareddistributedcomputingen-
vironment.In ADR, dataprocessingis performedwherethedatais stored(i.e. at thedata
server).In aGridenvironment,however,it maynotalwaysbefeasibleto performdatapro-
cessingat the server,for severalreasons.First, resourcesat a server(e.g.,memory,disk
space,processors)may besharedby manyothercompetingusers,thus it may not beef-
ficientandcost-effectiveto performall processingat theserver.Second,datasetsmaybe
storedondistributedcollectionsof storagesystems,sothataccessingdatafrom acentralized
servermaybevery expensive.Moreover,distributedcollectionsof sharedcomputational
andstoragesystemscanprovideamorepowerfulandcost-effectiveenvironmentthanacen-
tralizedserver,if theycanbeusedeffectively.Therefore,to makeefficientuseof distributed
sharedresourceswithin theDataCutterframework,theapplicationprocessingstructureis
decomposedinto a setof processes,calledfilters. DataCutter uses these distributed pro-

cesses to carry out a rich set of queries and application specific data transformations. Filters

can execute anywhere (e.g., on computational farms), but are intended to run on a machine

close (in terms of network connectivity) to the archival storage server or within a proxy

(see Figure 1). Filter-based algorithms are designed with predictable resource requirements,

which are ideal for carrying out data transformations on shared distributed computational

resources.

Many filter-based algorithms were originally developed and analyzed by our group for

Active Disks [1, 24]. These filter-based algorithms carry out a variety of data transforma-

tions that arise in earth science applications and applications of standard relational database

sort, select and join operations. In the DataCutter framework we are extending these algo-

rithms and investigating the application of filters and the stream-based programming model

in a Grid environment.

Another goal of DataCutter is to provide common support for subsetting very large datasets

through multi-dimensional range queries. Very large datasets may result in a large set of

large data files, and thus a large space to index. A single index for such a dataset could be

very large and expensive to query and manipulate. To ensure scalability, DataCutter uses a

multi-level hierarchical indexing scheme. In the following sections we describe the Data-

Cutter infrastructure, in particular the indexing and filtering services, and present an imple-

mentation of the Virtual Microscope [2] using DataCutter.
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Figure 2: DataCutter system architecture.

3 DataCutter

The architecture of DataCutter (Figure 2) is being developed as a set of modular services.

The client interface service interacts with clients and receives multi-dimensional range queries

from them. The data access service provides low level I/O support for accessing the datasets

stored on archival storage systems. Both the filtering and indexing services use the data ac-

cess service to read data and index information from files stored on archival storage systems.

The indexing service manages the indices and indexing methods registered with DataCutter.

The filtering service manages the filters for application-specific aggregation operations. In

the following sections we describe the indexing and filtering services in more detail.

3.1 Indexing

A DataCutter supported dataset consists of a set of data files and a set of index files. Data

files contain the data elements of a dataset; data files can be distributed across multiple stor-

age systems. Each data file is viewed as consisting of a set of segments. Each segment con-
sists of one or more data items, and has some associated metadata. The metadata for each

segment consists of a minimum bounding rectangle (MBR), and the offset and size of the

segment in the file that contains it. Since each data element is associated with a point in an

underlying multi-dimensional space, each segment is associated with an MBR in that space,

namely a hyperbox that encompasses the points of all the data elements contained in the seg-

ment. Spatial indices are built from the MBRs for the segments in a dataset. A segment is

the unit of retrieval from archival storage for spatial range queries made through DataCut-

ter. When a spatial range query is submitted, entire segments are retrieved from archival

storage, even if the MBR for a particular segment only partially intersects the range query

(i.e. only some of the data elements in the segment are requested).

One of the goals of DataCutter is to provide support for subsetting very large datasets

(sizes up to petabytes). Efficient spatial data structures have been developed for indexing

and accessing multi-dimensional datasets, such as R-trees and their variants [4]. However,

storing very large datasets may result in a large set of data files, each of which may itself

be very large. Therefore a single index for an entire dataset could be very large. Thus, it

may be expensive, both in terms of memory space and CPU cycles, to manage the index,

and to perform a search to find intersecting segments using a single index file. Assigning an

index file for each data file in a dataset could also be expensive because it is then necessary

to access all the index files for a given search. To alleviate some of these problems, Dat-

aCutter uses a multi-level hierarchical indexing scheme implemented via summary index
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files and detailed index files. The elements of a summary index file associate metadata (i.e.

an MBR) with one or more segments and/or detailed index files. Detailed index file entries

themselves specify one or more segments. Each detailed index file is associated with some

set of data files, and stores the index and metadata for all segments in those data files. There

are no restrictions on which data files are associated with a particular detailed index file for

a dataset. Data files can be organized in an application-specific way into logical groups, and

each group can be associated with a detailed index file for better performance. For example,

in satellite datasets, each data file may store data for one week. A detailed index file can be

associated with data files grouped by month, and a summary index file can contain pointers

to detailed index files for the entire range of data in the dataset. DataCutter uses R-trees as

its default indexing method. However, the infrastructure allows users to add new indices

and indexing methods (through the use of C++ class inheritance).

3.2 Filters

In DataCutter, filters are used to perform non-spatial subsetting and data aggregation. Filters

are managed by the filtering service. A filter is a specialized user program that pre-processes

data segments retrieved from archival storage before returning them to the requesting client.

Filters can be used for a variety of purposes, including elimination of unnecessary data near

the data source, pre-processing of segments in a pipelined fashion before sending them to

the clients, and data aggregation. Filters are executed in a restricted environment to control

and contain their resource consumption. Filters can execute anywhere 1, but are intended to

run on a machine close (in terms of network connectivity) to the archival storage server or

within a proxy (see Figure 1). When run close to the archival storage system, filters may

reduce the amount of data injected into the network for delivery to the client. Filters can

also be used to offioad some of the required processing from clients to proxies or the data

server, thus reducing client workload.
Filters are written in a stream-based programming model, originally developed for pro-

gramming Active Disks [1]. A filter consists of an initialization function, a processing func-

tion, and a finalization function. The initialization function is run when the filter is first in-

stalled on the data server. The processing function is run repeatedly as new data arrives at

the filter input ports (via streams). The finalization function is run when the filter terminates

(either by consuming the data on all its input streams or by calling exit).

The programming model for filters is built around the notion of a stream abstraction. A

stream denotes a supply of data to or from the storage media, or a flow of data between two

application components, such as between two separate filters or between a filter and a client.

Streams can be of two types - file streams and pipe streams. File streams are a sequence of

ranges in files, and constitute the primary access method for data residing in secondary or

archival storage. Pipe streams are a representation of a unidirectional flow of data between

any two components of the application, and are used for both control interaction and data

transfer. The stream-based programming model provides and enforces a standard interface

for accessing streams [1]. Streams deliver data in fixed-size buffers whose size is fixed at

Filters do not migrate state, and are not written in a platform independent language such as Java, but rather

are compiled for the target platform and placed by the DataCutter filter service at runtime.
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thetimethestreamis created.Thesizeof thestreambuffercannotbechangedafterits cre-
ation.A filter may,optionally,containscratchspace,which isallocatedon its behalfbefore
it is initializedandis automaticallyreclaimedafterit exits. Filtersspecificallycannotdy-
namicallyallocateanddeallocatespace,whichallowsthefiltering serviceto betterperform
schedulingandbuffermanagementandenableexecutionin environmentswith limited re-
sources(e.g.,memory).

Communicationbetweena filter and its environmentis restrictedto its input andout-
put streams.Thesourcesandsinks for thesestreamsarespecifiedby theclient program
asapartof filter installation.A filter cannotdetermine(orchange)whereits input stream
comesfrom or whereits outputstreamgoesto. This hastwo advantages.First,a filter does
notneedto handlebufferingandschedulingfor its own communication,therebyreducing
thecomplexityof filters. Second,filterscanbe transparentlyexecutedin proxiesor other
convenientlocationsasresourceconstraintsat theclient and/orserverchange.

4 An Example: the Virtual Microscope using DataCutter

In this section we describe an implementation of the Virtual Microscope application [2] us-
ing the DataCutter infrastructure.

4.1 The Virtual Microscope

The Virtual Microscope is a client-server software system, which is designed to realisti-

cally emulate a high power light microscope. The data used by the Virtual Microscope are

digitized images of full microscope slides at high power. Digitized images from a slide ef-

fectively form a three-dimensional (3D) dataset because each slide may contain multiple

focal planes, each of which is a 2D image. Images are stored at the highest magnification

level, and the size of a single slide typically varies from 100MB to 5GB, compressed. At

a basic level, the system is required to provide interactive response times similar to a phys-

ical microscope, including continuously moving the stage and changing magnification. A

typical query allows a client to request a 2D rectangular region at a particular magnifica-

tion from within the bounds of a single focal plane. The processing for the query requires

projecting high resolution data onto a grid of suitable resolution (governed by the desired

magnification) and appropriately compositing pixels that map to a single grid point, to avoid

introducing spurious artifacts into the displayed image. The Virtual Microscope can support

completely digital dynamic telepathology [2], as well as enabling new modes of operation

that cannot be achieved with a physical microscope, such as simultaneous viewing and ma-
nipulation of a single slide by multiple users.

4.2 The Original Implementation

The original Virtual Microscope system is composed of two components; a client to gener-

ate queries and display the results (i.e. images), and a server, implemented with the Active

Data Repository, to process the queries. A protocol has been defined between the client and

the server for exchanging queries and results. The server is composed of a frontend and a

backend. The frontend interacts with clients; it receives queries from clients and forwards
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Figure 3: Process of applying filter and stream-based programming model.

them to the backend. The backend consists of one or more processes (when run on a parallel

machine). The processing of a query is carried out entirely in the backend.

In order to achieve high I/O bandwidth, each focal plane in a slide is regularly partitioned

into data chunks, each of which is a rectangular subregion of the 2D image. When the host

machine is a parallel machine with multiple disks attached to each processor, data chunks
are declustered across all the disks to achieve I/O parallelism. Each pixel in a chunk is as-

sociated with a coordinate (in x- and y-dimensions) in the entire image. As a result, each

data chunk is associated with a minimum bounding rectangle (MBR), which encompasses

coordinates of all the pixels in the chunk. An index is created using the MBR of each chunk.

Since the image is regularly partitioned into rectangular regions, a simple lookup table, con-

sisting of a 2-dimensional array, serves as an index.

During query processing, the backend process finds the chunks that intersect the query

region, and reads them from the local disks. In the original server implementation, each

data chunk is stored in compressed form (JPEG format). Hence, each retrieved chunk is

first decompressed. Then, it is clipped to the query region. Afterwards, each clipped chunk

is subsampled to achieve the magnification (zoom) level given in the query. The resulting

image blocks are directly sent to the client. The client viewer assembles and displays the

image blocks from each of the backend processes to form the query output.

4.3 An Implementation using DataCutter

Developing an application with the DataCutter infrastructure requires partitioning of a dataset

used by the application into segments, and building spatial indices on the segments. Dat-

aCutter provides default interfaces to create and search R-trees. In this implementation of

the Virtual Microscope, we employed the data chunks in the original implementation as the

segments, and used the default R-tree indexing method of DataCutter. Each focal plane con-

sists of a partitioned set of data files, each with a single detailed index file, and one summary

index file is created to index all focal planes in a slide.

The next step in developing the application is to implement the application specific pro-

cessing using filters and the stream-based programming model. Figure 3(a) illustrates the

general steps for implementing an application using filters. First, the application processing

structure is decomposed into a set of filters. An important issue is how to choose the number

of filters for implementing the application processing. For instance, the original server im-
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v_ zoom: :lair () {

// Allocate from pre-allocated scratch space

bufOut = AllocFr_z&t_(getOutputStreamBufferSize( ) ) ;

}
VM zoom: :pzoGeme(stream_t &st) {

DC_t rearnBu f fer *bur;

VMQuery *query;

VMChunk *chunk;

// receive and extract the query

bur = 8t._nm[O|.zeltd();

query = VMUnpackQuery(buf) ;

// while more data to read from input stream

while ((buf = et._mulrl|.zee4()) != NULL) {

// extract chunk and perform zoom

chunk = VMUnpackChunk{buf) ;

zoom_chunk (chunk, query) ;

// pack into buffer and write to output stream

bufO_t = VMPackChunk(chunk);

mt._Zm(O| ._Ite (&bu four ) ;

Pr_k:zltch (chunk- >Da ta ) ;

}
}
VM zoom: :£_ulize() {

FreeToeozatch(bu fOur } ;

}

void VM_zoom: : zoom-chunk (VMChunk *chunk,

Vl_}uery *query) {

int rel_zoom = query->Zoc_/chunk->Zoom;

int width = chunk- >width/rel zoom;

int height = chunk->Height/rel_zo(_m;

int size = width*height*PlXELSIZE;

char *pSrc = chunk->Data;

char *pDst = chunk->Data = _11o_zlt_{size);

// subsample the image block

for {j = height; j>O; --j) {

for (i = width; i>O; --i) {

me_py(pDst, pSrc, PIXELSIZE) ;

pSrc += reI_zocm*PIXELSIZE;

pDst += PIXELSIZE;

}
pSrc += rel_zoom*chunk.Width*PIXELSIZE;

}
// update chunk metadata

chunk->Zoom = query->Zoom;

}

Figure 4: Zoom filter pseudo-code, which performs subsampling of an image chunk based
on the query magnification (zoom).

plementation could be considered a single filter. In choosing the appropriate decomposition,

we need to consider the complete data flow path from data generation to ultimate consump-
tion as well as the target machine configuration, which can be a distributed collection of

heterogeneous machines. The main goal is to achieve efficient use of limited resources in

a distributed and heterogeneous environment. We are currently developing techniques and

guidelines to assist in this important step.

The selected decomposition of the Virtual Microscope system into filters is shown in

Figure 3(b). The figure only depicts the main dataflow path of image data through the sys-

tem; other streams related to the client-server protocol are not shown for clarity. In this
implementation each of the main processing steps in the server is a filter:

• read-data: Each full-resolution rectangular image block (i.e. data chunk) that intersects the

query window is read from disk, and immediately written to the output stream before the next
read operation.

• decompress: Image blocks are read individually from the input stream. The block is decom-

pressed using JPEG decompression and converted into a 3 byte RGB format, and the block's

metadata header is changed to indicate the image block's new format. The image block is then
written to the output stream.

• clip: Uncompressed image blocks are read from the input stream. Portions of the block that

lie outside the query region are removed, and the clipped image block is written to the output
stream.

• zoom: Image blocks are read from the input stream, one block at a time. Using the requested

magnification in the query, image blocks are subsampled to achieve the desired magnification.
The resulting image block is written to the output stream.

• view: Image blocks are received for a given query, collected into a reply required for the Java
client, and sent to the client.

Figure 4 illustrates the high-level code for the zoom filter. Implementation of the filters

is done through C++ class inheritance and virtual functions. The DataCutter infrastructure
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Figure 5: The 2-dimensional dataset and queries used in the experiments. The solid and

dashed lines show different partitionings of the dataset into files for the experiments. The

table shows transmitted sizes for qs.

provides base classes and virtual functions for initialization, processing, and finalization

operations in filters, as well as functions to set scratch space size and stream buffer size (not

shown in the figure). The zoom filter has two input streams and one output stream. It reads

the query from stream 0 (st.ins[0]) and data from stream 1 (st.ins[1]), and subsamples the

received data chunks using the zoom_chunk function. The zoom filter uses scratch space

to store the results during subsampling and to pack the subsampled chunk into the output

buffer. The result is written to the output stream (st.outs[0]), which connects the filters zoom

and view.

As is discussed in Section 3, streams between filters deliver the data in individual fixed-

size buffers. In the current implementation we send data chunks in stream buffers, and the

size of the buffer is chosen to be the maximum size of a chunk in the dataset. This allows us

to reuse code from the original Virtual Microscope implementation with little modification.

5 Experimental Results

We have developed a prototype implementation of the DataCutter services. Using this pro-

totype, we have implemented a simple data server for digitized microscopy images stored

on the IBM HPSS system [ 17] at the University of Maryland. The implementation is based

on the functionality of the Virtual Microscope and uses the filters described in Section 4.

Our HPSS setup has 10TB of tape storage space and 500GB of disk cache, and is ac-

cessed through a 10-node IBM SP with 4 multiprocessor (1 4-processor and 3 2-processor)

and 6 single processor nodes. In all of the experiments, we use a 4GB 2D image dataset, in

JPEG compressed format (90GB uncompressed), created by stitching together small dig-

itized microscopy images. This dataset is equivalent to a digitized slide with a single fo-

cal plane that has 180K x 180K RGB pixels. The 2D image is regularly partitioned into

200 x 200 data segments and stored in the HPSS as a set of files. For all experiments we

use 5 different queries, each of which covers 5 x 5 segments of the image (see Figure 5).

Execution times presented in this section are the response time seen by the visualization

client (including submitting a query and receiving the results) and are the average of pro-

cessing each query 5 times. One node of the IBM SP is used to run the indexing service,

and the client was run on a SUN workstation connected to the SP node through the depart-
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Figure 6: Query execution time with the dataset organized into 1 × l, 2 x 2, 4 × 4 and

10 x 10 files. Load shows the time to open and access the files, which contain segments that

intersect a query. Computation shows the sum of the execution time in the indexing service,

for searching segments that intersect a query, and in the filtering service, for processing the

retrieved data via filters. All filters and the indexing service were run on the same SP node.

ment Ethemet. We experimented with different placements of the filters by running some

of the filters (and the filtering service) on the same SP node where the indexing service is

executed, as well as on the SUN workstation where the client is run.

The first experiment isolates the impact of organizing the dataset into multiple files. Fig-
ure 6 shows the results when the 2D image is partitioned into 1 x 1, 2 x 2, 4 x 4 and 10 x 10

rectangular regions, and all data segments in each region are stored in a data file. Figure 5

illustrates the partitioning of the dataset into 1 x 1 (entire rectangle), 2 x 2 (solid lines), and

4 x 4 (dashed lines) files. Each data file is associated with a detailed index file, and there

is one summary index file for all the detailed index files for each partitioning. As is seen

in the figure, the load time decreases as the number of files is increased. This is because

of the fact that HPSS loads the entire file onto disks used as the HPSS cache when a file is

opened. When there is a single file, the entire 4GB file is accessed from HPSS for each of

the queries- in these experiments, all data files are purged from disk cache after each query

is processed. When the number of files increases, only a subset of the detailed index files

and data files are accessed using the multi-level hierarchical indexing scheme, decreasing

the time to access data segments. Note that the load time for query 5 for the 2 x :2 case

is substantially larger than that of other queries, because query 5 intersects segments from

each of the four files (Figure 5), hence the same volume of data is loaded into the disk cache

as in the 1 x 1 case. The load time for that query is also larger than that in 1 x 1 case because

of the overhead of seeking/loading/opening four files instead of a single file. The computa-

tion time, on the other hand, remains almost the same, except for the 10 x 10 case, where it

slightly increases. Each query intersects more files as the dataset is partitioned more finely.

As a result, the overhead from opening and accessing a large number of detailed index files

can increase the computation time. These results, demonstrate that applications can take

advantage of the multi-level hierarchical indexing scheme by organizing a dataset into an

appropriate set of files. However, having too many files may increase computation time,

potentially decreasing overall efficiency when multiple similar queries are executed on the
same dataset.
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denote the filters read_data, decompress, clip, zoom, and view respectively. {server}-

{client} denotes the placement of the filters in each set.

Next, we consider varying the placement of the filters under different conditions. Fig-

ures 7 and 8 show query execution times for different filter placements under varying pro-

cessing requirements (i.e. the subsampling factor) and varying server load, where the server

is the machine where the read_data filter is run. The different server loads in Figure 8 were

emulated by artificially slowing down the set of filters running on the server machine. Fig-

ure 7 shows the query execution times when the image is viewed at the highest magnifica-

tion (no subsampling) and when the subsampling factor is 8 (i.e. only every 8th pixel in each

dimension is displayed). As is seen from the figure, when there is no subsampling, query

execution times remain almost the same whether the zoom filter is run at the server or at

the client, because the volume of data transfer between server and the client is the same in

both cases. When queries require subsampling, the placement of the zoom filter affects per-

formance, since the volume of data sent from the server to the client decreases if the zoom

filter is executed at the server. As is also seen from the figure, running the filters at the server

(RDCZ-V) achieves better performance than running them at the client (R-DCZV) as would

be expected since the client is a less powerful machine than the server.

Figure 8 shows query execution times when the server load changes. As is seen in the

figure, as the server load increases (or the client becomes faster), running the filters on the

client machine achieves better performance. The experimental results show that the decom-

position of an application processing structure into filters and placement of the filters are im-

portant factors that affect overall performance. One of our long term goals in this work is to

devise methodologies for a wide range of data-intensive applications for efficient restruc-

turing of application processing structure into filters with the stream-based programming

model, as well as developing cost models for filters to achieve efficient execution under

changing processing requirements and system resource availability.

The query execution times for the original optimized Virtual Microscope server versus

the prototype filter implementation using DataCutter are shown in Figure 9. In this experi-

ment the entire dataset is loaded from HPSS and stored on a single local disk on a SUN Ultra

1 workstation since the original server is implemented to access datasets stored on disks.

The loading of the dataset took 4750 seconds (1 hour 19 minutes). The original server is

run as a single process, and all filters in the DataCutter implementation are executed on the

same SUN workstation where the dataset is stored. In both cases the client is run on an-
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Figure 9: Query execution times for the original server and the server implemented using

the DataCutter with filters. The subsampling factor is 8 in all queries.

other SUN Ultra 1 workstation connected to the local Ethernet segment. As is seen from

the figure, the filter implementation does not introduce much overhead compared to the op-

timized original server. The percent increase in query execution time ranges from 6% to

30% across all queries. We should note that the timings do not include the time for load-

ing the dataset, which can substantially increase for larger datasets and datasets stored in

archival storage systems across a wide-area network. In addition, the use of filters in Data-

Cutter takes advantage of pipelining and threaded execution, especially when the filters are

run on multiprocessor architectures, resulting in overall higher performance.

6 Conclusions and Future Work

In this paper we have presented a middleware infrastructure, called DataCutter, to provide

support for processing of large datasets stored in archival storage systems in a wide-area

network environment. DataCutter provides support for subsetting of very large datasets

through spatial range queries via hierarchical multi-level indexing, and user-defined aggre-

gation and transformation on datasets via filters. We are in the process of developing stan-

dard interfaces and a client API for the DataCutter services. We also have several active
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projectsthatinvolve theuseof DataCutterservicesandproxies.In ajoint projectwith the
dataintensivecomputingenvironmentsgroupattheSanDiegoSupercomputingCenter,we
are interfacingDataCutterwith the StorageResourceBroker (SRB)[21]. Our goal is to
makeit possiblefor SRBclientsto performspatialsubsettinganddataaggregationondis-
tributeddatacollectionsaccessiblethroughtheSRB. In a projectwith TheUniversityof
MarylandGlobal LandCoverFacility [15], we areintegratingDataCutterandtheActive
DataRepository(ADR) with the GLCF dataserversto makeit possibleto visualizeand
generatedataproductsfrom LandsatThematicMapper(TM) datasetsstoredin HPSS.We
will extendourproxy infrastructureto cachedataondisksaswell asin memory,andin-
tegrateproxieswith ADR sothatclientscangeneratedataproductsusingADR anddata
cachedon thedisks. DataCutterwill providesupportfor accessingsubsetsof TM datasets
from HPSS.We alsoplanto work ondevelopingdistributedstream-basedalgorithmsvia
useof filtersandcarryout performancestudiesfor awiderrangeof dataintensiveapplica-
tions.
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Abstract

Many applications, that need mass storage, manipulate data sets with KB - MB

size objects. In contrast, mass storage devices work most efficiently for the storage
and transfer of large files in the MB - GB range. Reflecting these device charac-

teristics, mass storage systems typically have a file level granularity. To overcome

the impedance mismatch between small objects and large files, we propose a move

towards mass storage systems with object granularity. With an object granularity sys-
tem, the application programmer stores and retrieves objects rather than files. The

system internally maps and re-maps these objects into files. The system can adapt to

changing object access patterns by re-mapping objects. This allows the application

to be more efficient than if it were built on top of a traditional file granularity mass
storage system, employing a fixed mapping of objects to files.

In this paper we report on investigations on the potential benefits of object granu-

larity systems. We present an architecture that incorporates solutions to the scalability

and fragmentation problems associated with object granularity.

1 Introduction

For some applications, the application dataset is so large that data storage on tape is an

economic necessity. Examples where datasets can be in the Terabyte scale are high energy

physics data analysis and satellite image analysis. Such applications can be built on top

of a mass storage system, which controls data movement between tape storage and a disk

farm that serves both as a staging pool and as a cache, this disk farm is called the disk cache
below.

Tape drives work efficiently if the data on them are accessed in terms of MB - GB size

files. Reflecting these hardware characteristics, mass storage systems generally have a file

granularity, with the expectation of managing large files. Conversely, in many mass storage

applications, the application-level data consist of objects with sizes in the 1 KB - 1 MB
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range. The application designer must map the application-level objects to files on tape, with

every file containing many objects. This mapping is usually done when the mass storage

system is being filled, and no re-mapping is done over the lifetime of the dataset. Though

such a fixed mapping to large files allows the mass storage system to function efficiently,

it can cause application-level inefficiencies. The inefficiency will be especially high if the

application often needs a small subset of the objects in a file.

To overcome the impedance mismatch between small application level objects and the

large files desired on tape, we propose a move towards mass storage systems with object

granularity, that hide the underlying files.

In a mass storage system with object granularity, the application programmer stores and

retrieves objects rather than files. Caching and migration inside the system are also object-

based. The system internally maps and re-maps objects to files. By re-mapping objects,

the system can adapt to changing application-level object access patterns. This allows the

application to be more efficient than if it were built on top of a mass storage system with

file granularity, employing a fixed mapping of objects to files.

While the potential benefits of an object granularity system are clear, so are its potential

problems. The size of the indexing and scheduling tasks associated with managing objects,

rather than files, will be some orders of magnitude larger. Also, there is an obvious danger

of data fragmentation on tape and in the disk cache.

In this paper we report on investigations on the potential benefits of object granularity

systems. We present an architecture that incorporates solutions to the scalability and frag-

mentation problems associated with object granularity. This architecture incorporates a

commercial object database, Objectivity/DB [ 1] and a traditional file granularity mass stor-

age system (for example HPSS). By using these standard components, the implementation

cost of our object granularity mass storage system is kept low.

We show that object granularity systems outperform file granularity systems for appli-

cations in which the following conditions are met.

1. Sparse access condition: The application data access patterns have to be so diverse

or unpredictable that a fixed mapping of objects to files will lead to inefficiencies. We

quantify this condition as follows. Take the initial, fixed mapping to files as created

(and optimised) by the application designer. Any query will 'hit' a certain number

of files in this initial set. Now consider the objects, in these hit files, that are actually

needed by the query. These objects should make up 30% or less of all objects in the

files, on average, for the sparse access condition to hold.

2. Repetitive access condition: The application data access patterns should also be

such that object (sub)sets selected at the application level are read not once, but a few

times over a period of time.
Our work was driven by the problem of Petabyte-scale data analysis in the next-generation

high energy physics experiments at CERN (see for example [2]). This is one application

area where the above two conditions hold.

2 Overview of the architecture

We developed an architecture for an object granularity mass storage system that contains

solutions to the scalability and fragmentation problems mentioned above. This architecture
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shouldbeseenasanexistenceproof for a systemwith objectgranularity.Systemswhich
employdifferentsolutionstotheobjectgranularityproblemsmayalsobefeasible.Wehave
investigatedsomealternatives,butdonotclaim to havesurveyedall possiblesolutions.

2.1 Software components

Our work is part of a larger research project, aimed at exploring database technology op-

tions for the storage and analysis of massive high energy physics datasets [3]. Our ar-

chitecture is based on software solutions being pursued in this project [4]. We use the

Objectivity/DB object database product [1 ], which is interfaced [5] to a generic file gran-

ularity mass storage system, like HPSS. We develop new software components that 1) add

an abstraction layer, which provides object granularity mass storage, on top of the object

database, and 2) control file movement between disk and tape, and the management (re-

mapping, deletion) of data in the disk cache. In line with the work in [5], HPSS only acts

as a file stager, its disk pool management functions are not used. As such, the choice for

HPSS as a software component is not critical, and it could be interchanged with another

file granularity mass storage system.

2.2 Filling the system with objects

Our object granularity mass storage system provides an 'append only' storage model, in

which new objects can be added at any time, but in which objects become read-only once

added. The application programmer fills the mass storage system by supplying chunks to

it. A chunk is a set of objects (typical size 10 MB - 10 GB), which is initially mapped, by

the system, to a single file on tape. This chunk model gives the application programmer a

degree of control over the initial mapping to files on tape that is similar to that found with

a traditional file granularity mass storage system. We found that retaining such control

is important. Object re-mapping can in principle compensate fully for a bad or random

initial mapping of objects to files. But performing such a re-mapping will take significant

system resources. It is better to save these resources in advance by allowing the application

programmer to encode advance knowledge about access patterns into the chunks.

The mapping of an object to a chunk is retained throughout the lifetime of the object.

During this lifetime, the object can be (re)mapped to many different files.

2.3 Object addressing

Once stored, an object is uniquely identified by

its chunk identifier and its sequence number in-

side the chunk. Sequence numbers run from 1 to

n for a chunk with n objects, and reflect the ob-

ject storage order inside the original chunk file,

which was determined by the application pro-

grammer. Figure 1 shows a visual example of

object addressing.

Chunk 1 Chunk 2

\
Chunk 1, object 2

Figure 1: Example of logical

object addressing

137



Our system maps the objects in chunks to

physical files. Figure 2 shows an example of

such a mapping. The system allows many files

to be present for any chunk. Every file present

for a chunk holds a subset of the objects in that

chunk. In a running system, the number of files

per chunk typically ranges from 1 to 20, de-

pending on the access patterns to the objects in

the chunk. The subsets of objects held by the

Chunk 1, file 1

Chunk 1, file 2 /Same
object!

Chunk 2_ file 1

Figure 2: Example of physical

mapping of objects to files

different files may overlap, and generally do overlap, so that some objects in a chunk are

physically present in multiple files.

Files never mix objects from two or more chunks. This strict chunk-level separation

makes indexing and scheduling problems much more manageable. The system does not

maintain a single global index for looking up in what files an object is contained. Instead,

there is a file-level index for each file, which can be used by sub-queries to read objects

from the file, and by schedulers to quickly determine the exact set of objects in a file. All

file-level indices are kept on secondary storage.

Our system does not require that the above 'files' are actual files managed by a filesys-

tem. In our prototyping efforts using the software components described in section 2.1, the

'files' are actually (sets of) ODMG containers in the Objectivity/DB database.

2.4 Object access

The application programmer can access stored objects by executing a query against the

store. A query specifies a set S of object identifiers, with the intention that all these objects

must be visited, and a query function, which is a piece of executable C++ code (typically

a loadable shared library). To execute the query, the system first computes the set C' of all

chunks that contain one or more objects identified in S. For every chunk, the system runs

a sub-query over the objects in this chunk. This sub-query iterates through all objects in S

which are in its chunk. For every object, the programmer-supplied query function is called.

The query function is handed the object identifier and a reference to an in-memory copy of

the object. The application programmer can optionally supply code that is to be executed

at the start and the end of the query and of any sub-query.

Iteration by a sub-query always happens in the order of the sequence numbering of the

objects in the chunk, this order was determined by the application programmer when the

chunk was added to the system. The fixed iteration order allows the system to ensure fast

data access and to prevent fragmentation.

The scheduling of sub-queries is outside the control of the application programmer: this

is done by the system to ensure that the sub-query is synchronised with any necessary file

staging operations preceding it. Many queries, and their sub-queries, can run in parallel. In

applications with highly CPU-intensive application code, as found in high energy physics,

tens to hundreds of sub-queries may be running in parallel on a CPU farm.

When a sub-query is scheduled to start its iteration, it first determines which files on

disk should be accessed in order to read all objects that it needs to visit. To choose this

set of files, the sub-query compares the set of objects it needs to the sets of objects present
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in thedifferent filesof its chunk.Thesesetcomparisonsareimplementedascomparisons
betweensetsof objectidentifiers,theobjectidentifiersof all objectsin a file areobtained
by accessingthefile-levelindexof thatfile. Sometimes,becauseof anoverlapin theobject
setscontainedin thefiles, therearemanyoptionsin choosingasetof fileswhichtogether
containtheneededobjects.If thereis achoice,thesub-querywill alwayschoosethesetof
fileswith thesmallestsumof file sizes.This choiceminimisesanydiskefficiencylosses
becauseof sparsereadingwhenaccessingthefiles,and,moreimportantly,it yieldsthebest
possibleinputfor thecachereplacementalgorithm(section4.3),in whichfile accessstatis-
tics play an importantrole. Whenthesub-querycomesto visiting aparticularobjectthat
is containedin severalof thechosenfiles, it will readthatobjectfrom thesmallestof these
files. The choicefor the smallestfile is immaterialto the cachereplacementalgorithm,
which workswith file levelaccessstatisticsandignoresobject-leveldetails.Thesmallest
file is chosenbasedon theassumptionthatthisusuallyminimisestheoverall sparsenessof
reading,sooptimisingtheI/O performance.

2.5 Re-mapping of objects

Many mechanisms are possible for the re-mapping of objects to files. We chose a mecha-

nism based on an object copy, rather than an object move operation. Using a copy operation

has some advantages: in particular, a copy operation does not affect concurrently running

sub-queries accessing some of the objects being copied. The use of move operations would

require a strong synchronisation between these sub-queries: this makes the implementation

more complex and might be a source of performance loss, caused by lower concurrency and

more locking traffic. A disadvantage of copying is that the resulting duplication implies less

efficient use of scarce storage space, in particular in the disk cache.

Object re-mapping is done during

sub-query execution, while the sub-

query iterates through its objects. Re-

mapping is always from a file (staged)
on disk to another file on disk. In the

simplest case, shown in figure 3, some

objects from a single existing file are

copied into a new smaller file. The

original file can then be deleted. The

end result of such a re-mapping and

New file [IO0000[

Existingfile

Figure 3: Simplest case of object re-

mapping: the (grey) objects read by a

sub-query are copied into a new file

deletion is that disk space previously occupied by the cold (non-queried, white) objects

is freed, while all hot (queried, grey) objects are still present. Thus, we can effectively
cache more hot objects on disk.

Re-mapping decisions are based on the 'densities' of the hot objects in the existing files.

For example, if an existing file contains 95% hot and 5% cold objects for a sub-query, then

the hot objects in this file will never be copied to a new file, as the storage efficiency in the

existing file is already near-optimal. The densities are determined at the start of the sub-

query, using the file indices. From this information, a re-mapping function is computed,

which can be used to quickly decide, for each object accessed by the sub-query, whether
this object should be re-mapped.
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Figure 4: Overview of the complete storage architecture

Figure 3 shows the simplest case of re-mapping. In more complicated cases, the copy-

ing of some objects into the new file can be suppressed because they are already present in

another small file. More details on the optimisation problems involved can be found in [6].

2.6 Complete storage architecture

Figure 4 shows the complete storage architecture of our system, with both the tape and

disk storage layers. The tape contains two different pools of files: 1) the original chunk

files and 2) smaller files created by re-mapping. The original chunk files are created on

tape when the application programmer adds chunks to the system (section 2.2). These files

are never updated or deleted. As the original chunk files are always retained, all other files

on disk and tape can be deleted, whenever more space is needed, without running the risk

of loosing objects. The smaller files on tape are all first created on disk, by re-mapping

operations, and later migrated down to tape.

As shown in figure 4, re-mapping operations can be done recursively: if a new query

yields a smaller set of hot objects, a still-smaller file can be made, and the larger file can be

deleted.

3 Bursty sequential reading

As noted in section 2.4, the high energy physics requirement of using highly CPU-intensive

query function code implies that the system should allow for tens to hundreds of sub-queries

running concurrently on a CPU farm, all accessing files containing objects. Re-mapping

operations may scatter the objects needed by a sub-query over many files. In tests with our

system, a sub-query generally reads objects only from a single file, but sometimes from a

few files, and in extreme cases from up to 10 files.

Taking everything together, in a running system there could be concurrent access to a
few hundreds of files on disk. We use an optimisation we call but'sty sequential reading to
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guaranteea goodparallel I/O performance.This optimisationworksat thefile level, and
hastwo parts.First, theobjectsin afile arealwaysreadsequentially,possiblysparsely,in
the orderin which theyarestoredin the file. This sequentialreadingis easyto achieve:
in the original chunkfiles the objectorderingis by definition the sameasthe sub-query
iterationorder,and all re-mappingoperationspreservethe objectordering. The second
part of the optimisationis that, in every file, the sub-queryreadsthe neededobjectsin
burstsof about 1MB. Theobjectsreadin theseburstsarebufferedin memoryuntil they
aredeliveredto thequeryfunction.Theburstysequentialreadingoptimisation,which we
implementedon top of theObjectivity/DBdatabaseC++ binding,is sufficientto achieve
goodparallelI/O performance.Disk throughputsarenearthemaximumpossiblethrough-
putsachievablewith pure sequentialreading,as specifiedby the disk manufacturers.It
shouldbenotedthatthe Objectivity/DBarchitecture,which employsno centraldatabase
engine,alsocontributesto theRoodI/O scalabilitywe found.

60

¢..

<

og 50 1O0 150 200 240
Number of sub-queries running

Figure 5:I/0 scalability with bursty sequential reading

Figure 5 shows the results of some parallel I/O tests of our sub-queries with bursty

sequential reading. The tests were performed on a 256-CPU HP Exemplar supercomputer.

We ran up to 240 sub-queries concurrently. Each sub-query uses almost all of the power of

a single CPU to execute application code. The two curves are for application code spending

1 • 103 MIPSs per MB read, and 2 • 103 MIPSs per MB read. Each sub-query reads its

objects interleaved from 3 files, while also re-mapping (copying) every tenth object into

a new file. Every sub-query is executed on its own in a private UNIX process. Multi-

threading inside UNIX processes was not used, though it is in principle supported by the
database and OS software used.

Both curves in figure 5 show very smooth I/O scaling, indicating efficient use of the

available disk resources. In the lower curve, the system remains CPU bound. In the up-

per curve, with less computation per MB read, the system becomes I/O bound above 160

concurrently running sub-queries: at that point, the available I/O resources (16 disks in 4
striped file-systems) are saturated.

Note that these good scalability results were achieved with only a single optimisation

layer on top of a commercial object database product. A special purpose parallel I/O library
was not needed.
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Figure 6: System components and their interactions

4 Components and policies of the architecture

Figure 6 shows the different active components (rounded rectangles) in our architecture,

and their responsibilities and interactions with each other. The components invoke schedul-

ing algorithms (not shown) to make optimisation and scheduling decisions. The query

component, and its production of sub-queries, have already been discussed in section 2.4.

Below, the remaining components are discussed, along with some of the scheduling algo-

rithms.

4.1 Sub-query

As already discussed in section 2.4, a sub-query performs the reading of selected objects

in a single chunk, and executes the query function against them. The sub-query can also

perform a re-mapping operation when it is running. When started by its parent query, a sub-

query will immediately examine the (indices of) the files on disk to determine if all objects

it needs are present on disk. If not, the sub-query 'blocks', it will suspend its execution to

wait until all objects are present. It is the responsibility of the file migrator (see below) to

ensure that blocked sub-queries eventually become un-blocked.

When a sub-query, possibly after having been blocked, finds all needed objects present

on disk, it computes from which files to read these objects, and whether to do any re-

mapping. After locking these files against deletion by cache replacement, the sub-query

requests permission from a central scheduler (not shown in figure 6) to start reading objects.
The central scheduler ensures that not too many sub-queries will do intensive disk I/O at

the same time. For example, on the system configuration in section 3, a good limit would

be to bound concurrency to some 400 sub-queries. When permission to read is obtained,

the sub-query will first request some free disk space if re-mapping is to be done. Then, the

sub-query iterates over the needed objects in its chunk. Objects are read from existing files,

fed to the query function, and possibly written to a new file in re-mapping.

142



4.2 File migrator

The file migrator manages the tape drive(s) in the system, and migrates files disk and tape.

The file migrator examines all blocked sub-queries to decide which file to stage next.

Many hundreds of sub-queries may be blocked at the same time. Sometimes, many sub-

queries (of different queries) are all blocked, waiting for the staging of objects from the

same chunk. The file migrator partitions the blocked sub-queries into clusters. Every

cluster is a group of blocked sub-queries waiting for objects in the same chunk. For every

cluster, the file migrator identifies a single file on tape, whose staging would allow all sub-

queries in the cluster to un-block. This pooling of tape requests from different queries is

known as query batching, and it can lead to dramatic savings [7], especially for workloads

with many concurrent large queries.

In any tape-based system, it is important to minimise the randomness of tape I/O as

much as possible, because tape mounts and seeks are expensive operations. After an inves-

tigation of altematives, we chose the following policy that aggressively minimises mounts

and seeks. The policy cycles over all tapes in the system in a fixed order. When the next

tape is reached, and a tape drive becomes available for reading, the file migrator looks if

any of the files needed by the current clusters are on this tape. If so, the tape is mounted.

Then, any needed files are staged in the order of their position on tape. This results in a

sequential pattern of seeking and reading on the tape. When the last file has been staged,

the tape is rewound and unmounted. The fixed cycling order ensures that sub-queries are

never blocked indefinitely.

4.3 Space allocator

The space allocator manages two pools of files: the files on disk and the small pool of files

created by re-mapping on tape. Both these pools can be seen as caches, and so are managed

by cache replacement policies.

For the pool of files on disk, the cache replacement policy has to achieve some conflict-

ing aims. Firstly, a recently used file of course has to be retained as long as possible. But

secondly, a file from which objects were recently re-mapped should be deleted as quickly

as possible, so that the goal of the re-mapping operation, creating a tighter packing of hot

objects in the cache, is actually achieved. Thirdly, if a query with a size many times that of

the disk cache size is executed, no attempt at caching these files on disk should be made,

but they should be deleted as quickly as possible, to maximise the available cache space for

smaller queries. A special policy called 'usage based cooling' was developed to reconcile

these conflicting aims. Because of space limitations, we refer the reader to [6] for a detailed

discussion of this policy.

For the pool of smaller files on tape, the following management policy is used. A

set of tapes is reserved exclusively to hold these small files. One tape at a time is filled,

files are written on the tape sequentially. When all tapes in the pool are full, the oldest

tape is recycled: all files on it are deleted and writing starts again from the front of the

tape. The above scheme amounts to a 'least recently created' cache replacement policy.

Of course, a policy closer to 'least recently used' would potentially be more effective at

maintaining a set of useful files on tape, if a way could be found to keep the associated
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free space fragmentation on tape in check. To investigate the potential benefits of other

replacement policies on tape, we used simulation to determine the performance of 'least

recently used' replacement under the (unrealistic) assumption that there is no performance

loss due to fragmentation. We found that a 'least recently used' policy simulated under this

assumption outperformed 'least recently created' with factors of 1.0 (no improvement) up

to 1.2 over our range of test workload parameters. From this small improvement factor we

conclude that our simple 'least recently created' tape replacement policy is an appropriate

choice. A better policy may be possible, but it is unlikely to be better by more than a factor

1.2.

4.4 Writing of small files to tape

Chunk reclustering is done by copying some of the small files on disk, which were produced

by re-mapping, to tape. When the space allocator determines that a file is soon to be

replaced (deleted) from the disk cache, it invokes an algorithm to decide whether the file

is to be copied to tape. If the file is to be copied, the space allocator includes this file in a

batch of write requests to the file migrator, and will then hold off deleting the file from disk

until it has been copied to tape.
There is no obvious method of deciding whether or not a file should be copied to tape

before deletion on disk. Obviously, only the 'best' files should be copied to tape, but when

the space allocator offers a file up for consideration, it has already decided itself that this

is one of the 'worst' files it has on disk! We have tried to find a good selection method

as follows: we simulated a system in which (unrealistically) all files would be copied, at

zero cost, to a very large tape pool before deletion from disk. Then, we examined the

files that were actually staged back onto disk in the simulation, to find some identifying

characteristics. However, we failed to find a good predictive identifying characteristic that

could be used in a selection heuristic. In the end, we used a simple heuristic based on the

observation that very large files should obviously not be written back to tape, because the

initial chunk files already present would allow for the staging of large object sets at similar

costs. We introduced a size cut-off: all files smaller than 20% of the chunk size are selected

for copying to tape. This value of 20% was determined in a tuning exercise. We found that

40%, for example, works almost as well. We tried some more refined heuristics but found

no heuristic that was noticeably better.

5 Benefits of object granularity

To assess the benefits of object granularity, we used simulation over a large workload pa-

rameter space. In these simulations we compared the performance of our object granularity

mass storage system with that of a file granularity system, over a range of application work-

loads and hardware parameters. The chunks of the object granularity system appeared as

initial files on tape in the file granularity system. The workloads satisfied the sparse and

repetitive access conditions formulated at the end of section 1. The workloads are multiuser

workloads, with query sizes ranging from 0.03% to 6% of the complete dataset size, with

an average of 0.34%. In our simulations, the disk cache size ranged from 2% to 20% of the
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Figure 7." Dependence of different speedup factors on several parameters. Every.

speedup factor shown in a graph is the average over all combinations of the

parameter values on the x-axes of the other two graphs. The rightmost graph

shows the dependency on the sparseness of access, on the x-axis is the measure

defined in section 1, the average percentage of objects which are needed by a

query in every chunk that the query hits.

dataset size. For details on the simulation workloads used, we refer to [6].

To assess the benefits, we determined the speedup factor of our object granularity sys-

tem over the normal file granularity system. We found that the speedup factor is depen-

dent on many workload and hardware parameters. We found speedup factors from 1 (no

speedup) to 52. As expected, speedups are higher when workloads more often access the

same sets of objects. For workloads with a high repetition factor, i.e. if on average at least

4 queries visit the same object set, speedups are typically a factor 2 - 4. Other forms of

repetitiveness, for example if new queries access subsets of the object sets visited by older

queries, also improve the speedup.

Again as expected, following the reasoning behind the sparse access condition in sec-

tion 1, the speedup over file granularity systems is higher if access to the chunks is more

sparse. Speedups in excess of 10 are found if, on average over all queries in the workload

and all chunks in the system, a query 'hits' less than 10% of the objects in every chunk that
it hits.

5.1 Dependence on workload parameters

Figure 7 illustrates the dependence of the speedup factors on various system and workload

parameters. All these graphs plot averages of speedup factors over parts of the parame-

ter space, and so de-emphasise some of the more extreme cases. Curves for physics and

generic workloads [6] are shown: in a physics workload, new queries access subsets of the

object sets visited by older queries, this corresponds to what happens in high energy physics

data analysis. In a generic workload the object sets selected by (sequences of) queries are

completely independent. For comparison, figure 7 also shows speedup curves for doubling

IThe workloads used for the tests discussed below differ from those in [6] only in that a new value, 9%,
was added to the range of the parameter 'average percentage of objects needed in a chunk that is hit by a
query'.
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thediskcachesizein thebaselinesystem.

5.2 Benefits of keeping a pool of small files on tape

We found that the re-mapping of files on disk, followed by the deletion of original files

on disk, contributed most to the speedup, by improving the storage efficiency in the disk

cache.

The speedup contribution of having a pool of small files on tape was lower. The small

files on tape do save tape resources, because staging in a smaller file can often substitute

for staging in the much larger original chunk file. However, the resources needed to write

the small files to tape in the first place are considerable. Typically half to all of the time

saved by reading small files in stead of larger ones is spent in writing the small files. Figure

8 shows simulation results for our system with and without the optimisation of keeping a

pool of small files on tape. The speedup contribution of having small files on tape was

often only a factor 1.2 or lower. We found that this speedup depended strongly on the size

of the disk cache: the smaller the disk cache, the larger the gains of maintaining a pool of

small files on tape. For disk cache sizes of 4% or less than the application data set size,

we sometimes found worthwhile speedup factors, from 1.5 to 2.1, depending on workload

parameters.
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Figure 8: Average speedups with and without the optimisation of keeping a pool

of small files on tape, for generic workloads

6 Towards object granularity

The architecture presented in this paper is a viable one, but not the only possible solution or

even provably the best solution for an object granularity mass storage system. It therefore

makes sense to review the design process that led towards the architecture in this paper, so

as to distinguish between largely arbitrary design choices on the one hand and some forced

moves on the other hand.
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The challenge in moving towards a system with object granularity is to make the grain

size smaller, so as to increase chances for optimisation, without making the grain size so

small that the system design collapses under the increased complexity, or the I/O perfor-

mance breaks down due to increased fragmentation. Our solution centres around introduc-

ing an intermediate level of granularity. Our system has objects, files, and chunks: three

levels compared to the two, objects and files, discernible in applications that use file granu-

larity systems. We perform tasks like migration and cache replacement at the intermediate

file level, rather than the object level. This way, many of the drawbacks of true object gran-

ularity, like the risks of fragmentation and a too heavy load on the scheduling algorithms,

can be avoided. Of course, it was not clear from the start of the design exercise whether the

supposed benefits of object granularity, opportunities for successful optimisations, could

be preserved when taking this route!

Working from the decision to have an intermediate file level, it is relatively easy to draw

a first picture of data movement and layout, like the one in figure 4. Based on this picture

one can make a list of all processes that have to be steered by the system implementation.

Most these processes interact with each other, and this makes the creation of an optimised

design very difficult. To make any progress at all, we decided to take the risky approach

of completely disregarding these interactions at first, and decomposing the system into

a few weakly interacting active components and scheduling algorithms. The creation of

the individual components would then be followed by a 'big bang' integration step. Of

course, this 'big bang' design method has a deservedly bad reputation. Before embarking

on it, we spent considerable time in searching for more stepwise methods (without much

success), analysing the associated risks, and developing techniques to mitigate these risks.

We mitigated risks by making robustness of individual system elements an important design

goal. We designed the active components and scheduling algorithms so that they would

keep working, and ensure some degree of progress, no matter how bad the decisions of

other scheduling algorithms would be.

For the 'big bang' integration phase, we used a simulation-driven approach. First, the

tuning parameters in all scheduling algorithms were set to some plausible initial values,

this way we obtained a first integrated, and more or less working, version of the whole

system. Then, using simulations with likely workloads, we tuned the individual schedul-

ing algorithms to globally deliver good performance. Beyond the initial 'big bang' point

the integration phase was therefore an iterative one, with many test-adjust cycles. The

integration phase was supported by a simulation framework that allowed parameters and

algorithm details to be altered quickly. In exploring the workload and tuning parameter

space to investigate design options, we used about 600 CPU hours running some 25000
simulations.

An analysis of the above design process shows some obvious opportunities for design-

ing an object granularity system that outperforms our current one. The exact implications

of many small decisions in the system design are unknown, so reversing these decisions

may lead to a better system. Also, the grain size at the file level is fairly coarse, typically

there are at most some 20 files per chunk, and ways could be sought to obtain a finer grain

size, with possibly higher payoffs. Most importantly, given the knowledge gained in the

creation and evaluation of the current architecture, the creation of a new design that more

closely integrates the different scheduling tasks may now be a tractable problem.
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7 Related work

To our knowledge, there is no other work which takes true object granularity in caching and

staging as a goal, and develops and evaluates an architecture to deal with the associated

scalability and fragmentation problems. Our previous work [8] uses techniques similar

to re-mapping in a disk-only reclustering system. In fact, the system developed in [8]

served as a proof of concept, which gave us confidence that re-mapping could feasibly be

introduced in a mass storage system with both disk and tape. Our work [6] explores re-

mapping in the disk cache, but not keeping a set of smaller files on tape to achieve some

kind of object granularity in staging operations. Our architecture builds on experience from

existing mass storage systems [7] [9] [ 10], especially with respect to cache replacement and

staging policies.

Many systems cache data at a finer granularity when it moves upwards in the storage

hierarchy, see for example [9]. At least one existing mass storage product [ 11] structures

data into small units (atoms, like our objects), and allows the application programmer to

request (sets of) such data units, rather than complete files. To our knowledge, this product

uses a caching granularity below the staging granularity, but it does not go down to the

'atomic' level in its caching mechanisms.

Many tape based data analysis systems in use in science allow users or administrators

to optimise performance through the creation of new, smaller datasets which contain some

selected objects from the complete dataset. Queries can then be redirected to these new

datasets, or are redirected automatically. Such strategies are known as 'view materialisa-

tion', or, in high energy physics, the creation of 'data summary tapes'. View materiali-

sation strategies are similar in intent and effect to our two new optimisations. This can

lead to similarities at the architectural level, see for example [ 12] for a view materialisation

system that, though not targeted at tape based data, has some patterns in common with our

architecture. We know of no existing tape based data analysis systems in which creation

of such smaller datasets, the picking of objects for them, and their eventual deletion have

been automated to a large extent.

8 Conclusions

For the foreseeable future, the use of tape storage remains the only cost-effective option for

the massive datasets used in a number of scientific endeavours. CERN is actively pursuing

research into data management options to address the needs of its future physics experi-

ments.

We propose a move towards mass storage systems with object granularity, to overcome

the impedance mismatch between small application level objects and the large files desired

on tape. Such systems hide the mapping of objects to files from the application program-

mer, and dynamically re-map objects to files in order to improve application performance.

We have identified two conditions, the sparse access condition and the repetitive access

condition, which an application must fulfil to make the use of an object granularity mass

storage system underneath the application attractive.

We have investigated the potential benefits of object granularity mass storage systems

by developing a viable architecture for such a system. The architecture resolves scalability
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and fragmentation problems by managing files containing (sub)sets of objects, rather than

individual objects. The architecture incorporates a commercial object database and a nor-

mal file granularity mass storage system. We have evaluated the architecture through im-

plementation and simulation studies. We found speedup factors from 1 to 52. The speedup

gains of our object granularity system are mostly due to the increased cache efficiency on

disk, which is achieved through object re-mapping. The storage of files with re-mapped

objects on tape seems less attractive as an optimisation, except when disk space is very

small compared to tape space or average query size.

The architecture is shown to be a viable one, but probably not an optimal one. We have

identified some research opportunities that could lead to improvements over the current

architecture. The results obtained here will serve as a basis for future R&D at CERN.
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Abstract

The InTENsity PowerWall is a display system used for high-resolution visualization of

very large volumetric data sets. The display is linked to two separate computing

environments consisting of more than a dozen computer systems. Linking these systems

is a common shared storage subsystem that allows a great deal of flexibility in the way

visualization data can be generated and displayed. These visualization applications

demand very high bandwidth performance from the storage subsystem and associated file

system.

The InTENsity PowerWall system presents a real-world application environment in

which to apply a distributed performance testing framework under development at the

Laboratory for Computational Science and Engineering at the University of Minnesota.

This testing framework allows us to perform focused, coordinated performance testing of
the hardware and software components of storage area networks and shared file

systems.[2] We use this framework to evaluate various performance characteristics of the

PowerWall system's storage area network. We describe our testing approach and some of

the results of our testing, and conclude by describing the direction of our future work in
this area.

1 Introduction

The InTENsity PowerWall is a very high-resolution display system built in the summer

of 1999 at the Laboratory for Computational Science and Engineering (LCSE) at the

University of Minnesota. It represents the second generation of PowerWall technology,

pioneered at the LCSE in the mid-1990's. The new PowerWall is comprised of five large

fiat display screens oriented radially around a central viewing area, with each screen

displaying two rear-projected XVGA (1280x1024 pixel) panels. The high resolution of

the InTENsity PowerWall allows for detailed visualization of very large data sets. It is

also designed to allow for display of full, wall-sized images at rates in excess of 20

frames per second. Figure 1 depicts the InTENsity PowerWall screen and projector
layout.

Currently the two major applications for the PowerWall system are generation and

presentation of wall content. In "movie generation" mode, the power of either computing

environment can be harnessed to render movies for display on the wall. The rendering

software is also able to distribute its work across machines. Locating the data sets from
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Figure 1. The InTENsity PowerWall at the LCSE

which these movies are derived (as well as the movie files themselves) on shared storage

is desirable in order to avoid unnecessary data movement.

The "movie playback" mode requires a great deal of bandwidth from the storage

subsystem into the memory of the system driving the displays. For movies to appear

reasonably fluid they must be played at a rate of at least 15 frames per second, and

preferably greater. These frame rates are made possible by distributing the task of movie

display across ten machines. Given the PowerWall's 6400x2048 resolution, a single

frame using 4-byte pixels is over 50 MB of data. Thus, over one gigabyte per second

aggregate bandwidth is needed to sustain a full-resolution InTENsity PowerWall movie

at 20 frames per second.

The InTENsity PowerWall can be driven by either of two distinct computing

environments. The first consists of a pair of high-end SGI computers: an Onyx and an

Onyx 2, each with two Infinite Reality TM graphics engines. These systems are used

primarily for continued support of our existing PowerWall software and hardware base

thereby easing the transition to the new InTENsity PowerWall format. Each of these

systems has multiple Fibre Channel interfaces providing high bandwidth access to the

storage subsystem. The second computing environment consists of a cluster of ten 4-

processor SGI Visual PC 540 workstations. Each workstation sends video output to one

of the ten panels on the wall. Two Fibre Channel interfaces on each workstation provide

access to the storage subsystem.

A fairly complex storage area network was required to meet the performance and

connectivity requirements of the InTENsity PowerWall. The result of our design is a

storage system that is both capable and flexible. It is also an excellent environment in

which to test performance characteristics of emerging storage area network hardware and

software technologies. Our existing applications naturally stress storage systems in a

number of ways. Yet we believe that application level testing like this is not sufficient to

understand the complexity that comes into play to yield a given level of storage system

performance. Instead, a more focused and closely controlled test environment is needed.
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We will describe in this paper the framework we have developed for performing just this
kind of controlled testing in a storage area network environment.

2 The LCSE Storage Area Network

We have constructed a storage area network that connects the systems involved with
driving the PowerWall with a common set of disks via a Fibre Channel fabric. We

designed this storage area network (SAN) with two main goals:

• Maximizing bandwidth available between hosts and disks

• Maximizing connectivity between hosts and disks

The hosts on the SAN consist of the two "large" Silicon Graphics ONYX systems and 12
"small" Intel-based Windows NT machines. All the hosts are connected to over 5

terabytes of disk storage through a fabric of four 16-port Fibre Channel switches (see
Figure 2).

One of the large hosts is an 8-processor Silicon Graphics Onyx 2 which has four 2-port

Prisa Fibre Channel adapters connected to the fabric. The second large host is a 4-

processor Silicon Graphics Onyx with a total of four Fibre Channel ports connected to the

fabric. Each of these machines has two Infinite Reality TM graphics engines for rendering

images and/or for displaying movies on the InTENsity PowerWall.
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Figure 2. The LCSE storage area network supporting the InTENsity PowerWall

The small hosts are all 4-processor SGI Visual PC model 540 workstations (VizPC's).

The graphics outputs of ten VizPC's are used to drive the ten panels of the InTENsity

PowerWall. The remaining two VizPC's are used for development and for control of the
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wall. These machines also expand the computing capability of the cluster, and serve as

redundant spares in the event of a failure of one of the wall-driving machines. Each of the

VizPC's has a single 2-port Qlogic Fibre Channel host-bus adapter; all of these Fibre

Channel ports are connected to the fabric.

Four 16-port Fibre Channel switches implement the fabric. Two of the switches are

Ancor MK-II's, and the other two are Brocade Silkworm's. Wherever a Fibre Channel

host bus adapter or a drive enclosure has two ports to the fabric, one is connected to an
Ancor switch and the other connects to a Brocade switch. Our configuration allows all

hosts access to all disks through at least one path through the fabric.

The storage portion of our storage area network is made up of two generations of Seagate
Fibre Channel disks enclosed in three types of drive enclosure. Our newest drives,

Barracuda 50's, make up the majority of our storage. Ten JBOD enclosures made by
JMR hold 80 of these disks. An additional 18 of these drives are enclosed in two Ciprico

JBOD boxes. Finally we have two 12-drive MTI JBOD's filled with 18GB Barracuda

drives.

3 PowerWall Applications
As mentioned earlier, two current PowerWall applications drive the high performance

requirements of its shared storage subsystem. The first application is the generation of

movies for display on the InTENsity PowerWall. The second application is the display of

the generated movies. Each of these has fairly well-behaved I/O characteristics.

3.1 Movie Generation

Movie generation is a process of rendering movie frames from a very large, time-varying
3-Dimensional data set. Each data set contains many instances of a single volume of data,

each instance representing the state of the volume as it evolves over time. The view of the

volume is determined through an interactive process, whereby low-resolution image

frames are generated and reviewed until a desired viewing location and angle are found.

The resulting view information is then saved as a "key frame." A sequence of these key

frames define a "flight path" though the data set in space and time. View information for

the remaining frames of a movie are defined by interpolation between key frames.

Once the frames along the movie path have been defined the final rendering process is

initiated. This process involves rendering full resolution images for display on all ten

panels of the wall for each frame in the movie path. Figure 3 depicts a path that rotates

around the volume three times before repeating itself.

The data being rendered tends to be on the order of several gigabytes for an instance of a

single volume and terabytes for an entire data set. As such, it is currently not possible to

render the entire data set using in-core rendering techniques. The data set is therefore

organized as a fixed-size hierarchy of sub-volumes. The size of these sub-volumes is a

tunable parameter that can be matched to the characteristics of the system doing the

rendering; typically they're in the range of 1 MB to 16 MB apiece. This organization

allows for efficient data access by the rendering process, which has been designed to run

in parallel across many processors and computers in a clustered-computing environment.
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The outputof eachrenderingstepis a singlepanel-sizedimage;at four bytesperpixel,
thiscomesout to 5 MB of dataoutputperstep.By usinga sharedstorageresourcefor the
originaldatasetandthe resultingmovieframestorage,separatehostsystemscanperform
anyrenderingstepwithoutconcernfor excessdatamovement.
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Figure 3. A movie path; each tick represents a frame's view of the volume

3.2 Movie Playback

This application consists of transferring up to ten independent streams of movie frames

from the disk subsystem to the display. The streams are synchronized so that

corresponding frames on separate screens are shown together. The movie player allows

the display frame rate to be adjusted, subject to the limits imposed by the host systems'

ability to keep pace with the data transfer rates required. The movie player makes use of

read-ahead and asynchronous I/O techniques to maximize the effective data transfer rate
and hence, the frame rate.

4 Testing Approach

There are different aspects of performance (such as bandwidth, requests per second,

request completion time) that may be of interest for a given situation. But it is inadequate
to express any performance metric as a single number, such as 1000 transactions or

20MB per second. Rather, the performance of a single disk (for example) should be

expressed as a function of some other variable, such as request size or media position.

This is because these other variables can have significant impact on the value of the

metric being measured. Furthermore, being able to review a series of measurements in a

time-correlated manner is useful in understanding where and when various performance

anomalies occur in a storage subsystem. This is especially important in a shared-access

environment where a single computer system does not have the ability to exclusively
storage subsystem access.
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To perform the evaluation of the various system components we have leveraged our

existing tools and experience in testing raw storage system performance. The xdd

program is a utility developed at the LCSE to assist in determining performance
characteristics of the storage devices, both individually and in groups (i.e. logical

volumes). The xdd program offers a very fine level of control and produces highly

reproducible results, making it more suitable than some other available benchmarking

programs for our purposes.

Our approach to performance testing attempts to take into account the all components of

the system under test. Where possible, we perform tests that specifically exercise one

component to understand its contribution to the overall system performance. This reflects

our philosophy that the performance behavior of a complex system can only be
understood atter first understanding the performance of its components. Our testing

attempts to evaluate simple cases, gradually making them more complex. As anomalies in

behavior are noted, we consider all components in attempting to determine the cause.

Based on this, our approach to understanding the performance of the storage area network

was to do a series of single host tests, then move on to more complex tests involving

multiple hosts accessing shared storage area network resources concurrently.

For our storage area network, the kinds of components that can impact performance

include:

• Components internal to a computer system These include architectural features

which place limits on performance. They also include limits imposed by operating

system software.

• Components at the system/storage interface. This covers host bus adapters

(HBA's) and their drivers, which are typically developed somewhat

independently of any particular type of hardware or operating system

• Components making up the fabric. This includes the hardware (switches, hubs,

media) that make up the communication channel as well as the way in which

those components are interconnected.

• Storage devices. Each storage device type has characteristics such as speed and as

on-device cache size that can have sometimes surprising effects on performance.

When multiple hosts join to share access to common storage on a storage area network,
the interactions become much more complex than the single host case. One host's

activities involving the fabric or one or more storage devices can have large and

unpredictable impact on the performance. So in addition to the above, we are interested

in:

• The shared file system software. We consider this separate from the operating

system because in the storage area network case this component is distributed

among a number of host systems.

With a firmer understanding of the behavior of the components of our storage area

network, we can get a better grasp on interactions that can complicate the performance

picture. We have a much better basis for explaining storage system performance.
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5 Single Host Testing

The first step in this performance evaluation process is to characterize the performance of

a single host system connected to a logical volume through the fabric in isolation (i.e.

through the fabric without any other traffic).

This establishes a baseline for further tests. These and all other tests described herein

were performed using a single CVFS volume comprised of sixteen 50 GB drives, eight

drives in each of two Ciprico JBOD's. Each of these JBOD's has two channel connectors,

for the A and B ports of the drives within the enclosure. We connect both channels to the

fabric. In addition, both of the Fibre Channel ports on each SAN host are connected to the
fabric.

We observed immediately that the performance we were getting from the file system was

not close to what we had expected. After some analysis we determined that the way the

striping of the volume had been automatically laid out was less than ideal. Laying out the

volume the way we had intended yielded a considerable improvement in some of the

performance numbers. (Note: All performance results listed here are for read operations.)
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Figure 4. Effect of stripe layout on performance

Next we did some experimenting with the host bus adapter. Our development system had

two Fibre Channel HBA's installed, and this gave us an additional option on testing. It

allowed testing for the one host case to be performed using either two ports from a single
adapter, or one port from each of two adapters. We found that this too made a difference

in the rate at which data could be read from disk (see figure 5a).

We did a some testing to examine the effect of varying file system striping parameters on

overall file system performance. CVFS allows the file system logical block size to be

changed at file system build time. It is also possible to define what they call the "stripe
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breadth," meaning the number of file system blocks that are read/written to a given disk

in a stripe before moving on to the next drive in the stripe. We tried a number of

configurations of this: 32x32K, 16x32K, 8x32K, and 16xl6K. The performance curves

for these combinations are show n in figure 5b.
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8

Figure 5a. Improved performance due to

use of multiple HBA's

Figure 5b. Affect of different stripe

breadths on read performance

This deserves a little further explanation. By reducing the effective stripe breadth the

number of bytes transferred to and from a disk drive for a given operation was reduced.

The effect of this was to increase performance for the mid-range request sizes (between

128KB and 2MB). The reason for this has to do with the size of the cache on the

individual disk drives. Smaller transfers more readily fit in the cache, allowing it to be

utilized more efficiently. Larger transfers, meanwhile, tend to overrun the disk cache,

thereby losing performance benefit the cache might have offered.

6 Multiple Host Testing

Testing the shared file system sottware was more complex than testing the underlying

storage subsystem and required the creation of a framework to coordinate testing on

multiple systems concurrently. The two basic functions of this framework are:

• Accounting for the existence of multiple clocks

• Coordinating the initiation of tests to run concurrently on multiple hosts

Our performance testing utilities make use of precise time stamps to quantify and report

storage performance characteristics. Each host accessing the shared storage has its own
internal sense of time, and without a common reference clock it is impossible to interpret

the relationship between tests run on separate hosts. Thus a consistent time base is needed

in order to correlate test results generated by separate systems. We are also able to make

use of a common clock to coordinate initiating tests on multiple hosts simultaneously.
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6.1 Reference Clock

Each of the systems used for testing has a clock register that updates at a high frequency,

allowing for very precise measurement of elapsed time. The resolution of this clock

varies for different systems (ranging from 2 to 80 nanoseconds per tick or so), so clock

values are converted to a common time unit (picoseconds) for the purpose of
synchronization. 1

We use a very simple clock model to establish a common time base. We assume that all

clocks run at the same, constant rate. We therefore assume that conversion from a given

machine's "local time" to the common "global time" involves only the addition of a

constant to the local clock's value. With this simplified model we must only determine

the value of the constant difference between pairs of clocks.

One machine is designated to keep the global sense of time. That machine provides a
service with which others communicate to determine the offsets of their own clock from

the global time. Each client initiates a request to the server to get the current global time.

The difference between the time value returned and the client's local time is recorded as

the basis for the offset. This offset is further adjusted to compensate for the propagation

delay required to carry the time request and its response over the communication

medium. This propagation delay bounds the error in the difference between our estimated

and the actual offset between the two clocks. We perform this request/response protocol

a number of times, and use the offset associated the minimum propagation delay as the
final offset value.

6.2 Coordination of Concurrent Tests

With a common time base defined, it is possible to coordinate the initiation of tests on

different host systems. We extended our existing testing software to determine the time

offset for the machine ruder test. The program is provided an indication of a (global)
time at which all tests are to begin. This global time is converted to a localized start time

using the offset value. The program then polls the high-resolution clock repeatedly until

the start time has arrived. At that point test execution begins. Test results generated by

individual hosts are buffered during test execution, and saved to disk for later analysis.

6.3 Concurrent Host Test Results

We performed a series of tests using one, two, and four hosts concurrently reading from

the same file on the shared file system. The graph in figure 6 shows the performance

curves for the aggregate bandwidth achieved across all hosts for each of these tests.. Each

host combination uses either two or four Fibre Channel ports connected to the disk

subsystem. The results are given for one host using two ports, two hosts using two ports,

two hosts using four ports, and four hosts using four ports. We observe that the

performance curve for the single host case is the highest of the four up to a request size of

1 MB. This is because all the read operations are purely sequential, which makes ideal
use of the caches on the disk drives themselves.

The graph of the two host, two port configuration shows the lowest performance. This is

due the performance degradation caused by random I/O effects. Random I/O request
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patterns reduce performance because of the expense of positioning drive heads; it also
does not allow effective use of the disk caches for reads. The remaining two curves did

better than this case because they had four channels to the disks, and were able to make

use of the additional bandwidth to improve overall performance.

250.00

Aggregate Bandwidth of Multiple Hosts

200.00

0.00

Request Size

Figure 6. Aggregate bandwidth for multiple host tests.

7 Summary

The InTENsity PowerWall is a high resolution display system backed by a very high

performance distributed computing system. The systems and storage area network that
drive the PowerWall are a good test bed for evaluating and understanding the

performance of shared storage technologies. We built a distributed testing framework that

allows concurrent testing by multiple hosts of common hardware to help in evaluating

such technologies. Our initial testing has demonstrated that achieving high performance,

even in single host systems, is not as straightforward as might initially appear.

Furthermore, achieving good, predictable performance in the face of the complexity of a

shared storage environment will surely be a challenge. We believe there is much work to

be done in this area.

8 Future Work

We have only scratched the surface on the topic of performance testing of shared file

systems, and there are many obvious and relevant questions that spring to mind when

considering this work. Generally speaking our future work will involve extending the

testing framework to evaluate a much larger set of file system functionality. We also

intend to continue beyond the limited testing whose results are presented here, and apply
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the testingframeworkto includeother file systemenvironments.We will be evaluating
other network technologies,such as VIA or Myrinet, to assesstheir effectivenessin
improving inter-hostcommunicationsaswell asestablishinga moreaccuratesenseof a
commontimereference.

9 Conclusions

Generation and display of movies on the InTENsity PowerWall at the LCSE are I/O

intensive applications that can take great advantage of the benefits offered by shared

storage systems. They demand data rates from storage that are both maximal and

consistent. The InTENsity system also provides an opportunity for experimentation with

and evaluation of emerging shared storage technologies. We have extended our existing

disk testing software to accommodate testing performance in a distributed environment

attached to common storage. These extensions addressed issues of establishing a common

time base and synchronizing the execution of tests on multiple systems. We found that

this distributed testing framework served our needs well. It opens up a whole new range
of possibility for further study.
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Abstract

With the emergence of Storage Networking, distributed file systems that allow data

sharing through shared disks will become vital. We refer to Cluster File Systems as a

distributed file systems optimized for environments of clustered servers. The

requirements such file systems is that they guarantee file systems consistency while

allowing shared access from multiple nodes in a shared-disk environment. In this paper

we evaluate three approaches for designing a cluster file system - conventional

client/server distributed file systems, symmetric shared file systems and asymmetric

shared file systems. These alternatives are considered by using our prototype cluster file

system, HAMFS (Highly Available Multi-server File System). HAMFS is classified as an

asymmetric shared file system. Its technologies are incorporated into our commercial

cluster file system product named SafeFILE. SafeFILE offers a disk pooling facility that

supports off-the-shelf disks, and balances file load across these disks automatically and

dynamically. From our measurements, we identify the required disk capabilities, such as

multi-node tag queuing. We also identify the advantages of an asymmetric shared file
system over other alternatives.

I Introduction

Historically, large corporations have deployed and distributed UNIX systems in a manner

leading to isolated islands of processing. The management cost of these systems is

exceedingly high because of the resulting overall complexity and a lack of a global

management capability. Consequently, many of these same companies are now re-

centralizing their critical Unix systems to contain management costs. One of the benefits

credited to SANs (Storage Area Networks) is that they facilitate re-centralization of

storage by aggregating it onto a common interconnect. We use the term SAN to describe

a dedicated storage network utilizing a storage protocol such as SCSI over Fibre Channel,

apart from LAN, which allow servers to communicate using a networking protocol such
as TCP/IP. SANs are typically composed of Fibre Channel switches and hubs.

To extract the full potential of a SAN, data sharing, where multiple servers share a

common file system on a directly-connected disk, and disk-pooling, where users can

place data on any disk (disk-pool) without suffering management overhead, is required.

Cluster file systems are the means for achieving these requirements. In this paper we
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describeour experiences from developing HAMFS. HAMFS [1] is a prototype cluster

file system, supporting disk pooling through a shared-disk capability. What was learned
from HAMFS has been incorporated into our commercial file system product called

SafeFILE. The rest of this paper is organized as follows: Section two describes

alternatives to implementing a cluster file system and their characteristics. Section three

presents overall HAMFS architecture. Section four shows measurement results from

evaluating alternatives and necessary hardware capabilities using HAMFS. Section five

describes related works. Finally, section six offers some brief conclusions.

2 Alternatives

As O'Keefe has shown [2], there are three alternatives to achieving data sharing between

nodes in a shared-disk environment, client/server distributed file systems, symmetric

shared file systems, and asymmetric shared file systems (Figure 1). In a conventional

client/server distributed file system, a server node manages disk storage. Other nodes

access data through the dedicated server across a communications network. While

traditional client/server distributed file systems, such as NFS, cannot distribute user data

across multiple nodes, some recent client/server distributed file systems, such as xFS [8],

Zebra [9] and Frangipani [7], use multiple nodes for improved scalability. Alternatively,

a second approach is symmetric shared file systems, such as GFS [3, 4, 20]. GFS allows

every node equal access to all disks directly. The third alternative, asymmetric shared file

systems, supports partial disk sharing. This approach was used in HAMFS. In this

approach, a dedicated node manages disk blocks containing metadata, but all other disk

blocks, containing user data, are accessed directly from all nodes.

I I

Client/server
distributed file system

I I

sy..etr,o
shared file system

I I

L,F,,osy tem,I, "esY temlAsymmetric
shared file system

Figure 1: Alternatives for implementing a cluster file system

2.1 Characteristics of each Distributed File System Architecture

2.1.1 Complexity
The most challenging task for a designer of a cluster file system is maintaining

consistency while guaranteeing good performance in a multi-node environment. Client

caches, heavily used in UNIX file systems for improving performance, pose a major

burden for designers. Although the symmetric shared file system has the simplest

apparent organization, client caches, required for good performance, requires a

complicated distributed lock manager. This leads to a rather complicated file system
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organization. An example of this complexity is the difficulty of implementing a

distributed logging mechanism. Other examples include support for atomic transactions

with deadlock detection and recovery.

For symmetric shared file system organizations there are two approaches to achieving file

system consistency. The first one is a distributed lock manager, as implemented in

VAXcluster [5]. For high performance, VAXcluster offers a sophisticated distributed

lock function. To maintain cache consistency, the VAXcluster's distributed lock manager

uses both lock versioning for passive cache invalidation, and a callback mechanism for

active invalidation. Another approach for serialization, as proposed in GFS, uses special
device locks.

For guaranteeing file system consistency, the GFS J implementation basically uses a read-

modify-write schema and disables the client cache. While this approach is relatively

simple, its performance, particularly for short file access environments, is degraded from
not having a client cache.

In general, symmetric shared file systems require that all client nodes share a common

semantic view of data on disks, including location, record format, and meaning of each

field and update sequence. This creates maintenance complexity and makes data sharing

more difficult for heterogeneous environments. Any operating system vendor wishing to

implement a particular symmetric shared file system must incur this complexity.

Client/server distributed file systems and asymmetric shared file systems avoid much of

this complexity by localizing metadata access to a common node. Asymmetric shared file

systems make use of a well-known fact that user data is rarely accessed by multiple nodes

concurrently from multiple nodes. However, metadata is frequently accessed from

multiple nodes concurrently [6]. Consequently, asymmetric shared file systems utilize a

dedicated node for metadata management. This approach alleviates the disk contention

resulting from concurrent metadata access. Additionally, shared direct access to disks,
containing user data, reduces network overhead associated with conventional

client/server distributed file systems.

2.1.2 Performance

Conventional client/server distributed file systems typically consume considerable

network bandwidth and processor resources for both the client and server. Furthermore,

these file systems cannot derive the maximum performance of the underlying disks. And

because of their client/server organization, these file systems are not easily scaled

through adding additional disks. Balancing performance after adding new servers

typically require a manual file system reconfiguration. Both symmetric and asymmetric

file systems are easier to scale than conventional client/server distributed file systems like

NFS. The reason is because they support common disk pools accessible from multiple
nodes that make adding disks far simpler.

A variation of a client/server distributed file system, Frangipani [7], xFS [8], and Zebra

[9] solve the scaling problem by distributing data across multiple nodes. However, they

still inherit the drawback related to transferring data across a network. While asymmetric

i Although a new GFS implements lock versioning for permitting cached data, it does not solve the
inherent performance problem. [20]
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shared file systems require a means for transmitting control messages across a
communications network, the amount of data transmitted is small compared with

client/server distributed file systems. Comparatively speaking, asymmetric shared file

systems require greater message exchange across a networking than symmetric shared

file systems. This is because of the communication between the metadata manager and

the other nodes. However, by improving protocols within the asymmetric shared file

system, such as a space reserve function, fine grain tokens and token escalation, byte

range logging, and support for a secondary buffer cache, much of the performance

degradation is minimized. Our experience with HAMFS indicates that these

optimizations are possible without significant additional complexity.

2.1.3 Sealability
Both client/server distributed file systems and asymmetric shared file systems have

scalability problems related to localized loading of management function on a dedicated

node. Distributing the management function across multiple nodes eliminates this

drawback. This distribution is akin to the distributed lock manager used in symmetric

shared file systems. For instance, both Frangipani and xFS partition file system space into

separate segments. A separate node manages each space segment.

2.1.4 Reliability
Both client/server distributed file systems and asymmetric shared file system have a

single point of failure because they rely on a single dedicated node. This drawback can be

eliminated for asymmetric shared file systems by using a replication schema. Moreover,

by deploying an improved logging mechanism, as implemented in HAMFS, and

replicating only metadata, asymmetric file systems outperform local file systems. This is

a significant advantage over client/server distributed file systems since they would

otherwise require mirroring all data.

Disk contention and distributed lock management overhead leads to performance

problems for symmetric shared file systems. However, with asymmetric shared file

systems, these issues can be addressed through various compromises. The following
section describes HAMFS' organization and describes some of these compromises.

3 HAMFS file system
HAMFS is classified as an asymmetric shared file system. Describing the detailed

operation of HAMFS is beyond the scope of this paper, however we do briefly review its

high-level organization.

3.1 Configuration
HAMFS divides the contents of the file system into three parts, metadata, user data, and

log data, which are stored on Meta volumes, Data volumes, and log volumes, respectively.

HAMFS software consists of two components, HAMFS client, and the Name Server. To

prevent contention from frequent Meta volume writing, the Name Server, which manages

Meta volumes and log data, runs on a dedicated node in a cluster system. Conversely,

HAMFS client (client) code embedded in the kernel of each node as a Virtual File

System (VFS), resides on every node in a cluster and directly accesses Data volumes.

Data volumes access is managed with the file extent information provided by the Name

Server. This information reflects data location on each Data volumes.
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Figure 2: Configuration of HAMFS file system

The Name Server processes requests from the client as atomic transactions using a log

schema. The interface between the client and the Name Server is a high-level protocol

and is independent of metadata format. This protocol is similar to the NFS protocol. For

improved availability, the user may replicate the Name Server on a secondary node.

When a secondary Name Server is deployed, Meta volumes are replicated on the

secondary Name Server by transmitting the log data. HAMFS file organization permits

users to select the disk organization used for each data type as well as whether metadata
is replication.

3.2 Disk pooling

HAMFS offers the following disk pooling capabilities.

3.2.1 Disk Pool

A disk-pool is defined as a set of data volumes comprising a HAMFS file system.

HAMFS manages each member disk. Data placement across the disk pool is managed

automatically according to a placement policy. Current placement policy equalizes the
amount of free space across volumes.

3.2.2 File RAID

Because HAMFS manages the underlying disk devices, it's possible to allow files to have

different RAID properties in a common name space. File RAID is the function for

permitting this file placement policy. A user can specify RAID type of None (default),

RAID 0 (striping), RAID 1, and RAID 5 through a new CHATTR command. All

directories and files inherit a parent directory's RAID type. With RAID five the client

allocates a parity block for each stripe in a file. Since this works like a RAID type one for

a small files having only one data block, common in UNIX environments, parity
recalculation overhead is greatly reduced.

3.2.3 Dynamic Expansion

An installation may dynamically expand a file system with new disks even though user

applications are running. Because HAMFS automatically balances load across the old and

new disks, file name tree reconstruction is unnecessary. A newly added Data volume

remains offline until all client nodes send ADDVOL requests for the new volume. The

Data volume is then brought online only after the Name Server receives an ADDVOL

requests from every client.
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3.3Tokens
For improvedfile systemperformance,eachclient cachesuserdataand file information
(file data)in their local memory.Theconsistencyof cachedfile datais guaranteedwith
tokensthataremanagedby theNameServer.

Therearefive token types,NAME, TIME, SIZE, ATTR andDATA. NAME andATTR
tokens correspondto directory entry and file attributes (or directories)that are not
representedby othertokens.

Everyfile hasa setof associatedDATA tokens.Thereis a correspondingDATA token
for each file datablock. Owning a DATA token guaranteesaccuracyof file extent
information reflecting the locationof dataon the Data volumes.Using this file extent
information,clients accessDatavolumesdirectly and independently.The NameServer
providesfile extent informationalongwith the token when a client requestsa DATA
token.Whennew data is written, the client must first obtainthe correspondingDATA
write token,which allowsthe client to cachetheuserdatalocally. Afterwards,if another
client wantsto readthis cacheddata,the NameServercallbacksthewrite DATA token
from theclient owning it. On receiptof a callbackrequest,theclient allocatesnew disk
space(file extent) and writes any cacheduserdata.The client honoring the callback
requestalsoupdatesanynewlyallocatedfile extentinformation.
The TIME token allows multiple clients to concurrentlyaccesscommon files while
guaranteeingthe accuracyof file accesstimes. The SIZE token permits independent
programsrunning on differentnodesto both write and readfrom differentpartsof the
samefile.

On a data token request,the Name Serverprovidesall the requirednon-datarelated
tokensplus, if available,all DATA tokensfor the entirefile (TokenEscalation).Through
tokenescalation,mostclientsobtaintheneededtokens,includingfile extentinformation,
at file opentime.

3.4 Space Allocation

When a client must allocate additional disk space, it selects a pre-allocated extent based

on the amount of cached data to be written. In most cases, only one extent with

consecutive disk blocks is allocated at file close time. The Name Server is notified of this

through the CLOSE request. On notification of their usage, pre-allocated (reserved)

extents become file extents when the DATA write token is released or the file is closed.

When the number of pre-allocated extents drops below a threshold, clients replenish their

free pool with a RESERVE request made to the Name Server. On receipt of a RESERVE

request, the Name Server provides free extents on a Data volume with the greatest free

space.

To reduce wasted space related to allocation, every extent, including free extents, is

represented with a B-tree data structure. The Btree structure is stored in the inode for files

consisting of only a few contiguous extents. With this space allocation function,
combined with deferred file writes, reduces message overhead and permits allocating

contiguous disk blocks for files.
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3.5 Transaction processing

For increase performance and availability, the Name Server processes file operations

requested by clients as a single atomic transaction using logging and a two-phase lock
with deadlock detection mechanism.

3.5.1 Logging

These transactions complete quickly because they require writing only a small amount of

data to the log volume. Actual updates to Meta volumes are deferred as long as possible

and are performed completely and asynchronously.

Log data generated by HAMFS is an after image log containing only the modified range

of data instead of the entire contents of the modified blocks. This byte-range log

significantly reduces the amount of log data and improves metadata update performance.

The log data is written on a log volume in a cyclic fashion, synchronously before a

command response is returned to the client. Actual metadata updating of Meta volumes is

deferred as long as possible by using a secondary buffer cache. The secondary buffer
cache caches any modified and committed metadata that has not been written back to a

Meta volume. Dirty metadata, cached in the secondary buffer cache, is asynchronously

written when the amount of available space in the log volume or the number of non-dirty

blocks in the secondary cache reaches a threshold. Furthermore, since the metadata writes

are aggregated, the total I/O load is reduced.

3.5.2 Deadlock detection

With the HAMFS token schema, deadlock avoidance, as used in conventional file

systems, would be difficult to implement. For example, assume the following scenario.

The Name Server processes a file remove request for one client while another client is

writing to the file. To complete the remove request, the Name Server must callback any

DATA write tokens related to the file from other clients. On receipt of this callback

request, the client requests the Name Server to pre-allocate disk space with a RESERVE

request for writing back cached data. After the Name Server replies to the RESERVE

request, the client writes its cached data to the pre-allocated extent returned from the

Name Server. Afterwards, it notifies the Name Server of any allocated extents. In such

circumstances, determining the access order to resources required for preventing

deadlocks, while probably possible, would be difficult.

In HAMFS, we developed a deadlock detection mechanism for easing development and

maintenance. The Name Server uses several threads for processing client requests. When

requests arrive, idle threads process the requests. A two-phase lock technique maintains

consistency among these requests. Deadlocks result when two or more threads obtain

multiple vnode locks, buffer cache locks, or tokens. Deadlocks are detected by

maintaining the following information in a linked list by the Name Server.

• Identifier of the thread owning a resource for vnode or buffer cache lock.

• Resource identifier for threads waiting.

• Vnode address for tokens a thread is waiting on.

When a deadlock situation occurs, the Name Server cancels one of the conflicting

transactions that led to the deadlock and retries it from the beginning. Memory resident

control blocks, such as in-memory inodes, are automatically restored. With HAMFS
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deadlockdetectionandrecovery,theorderfor updatingmetadatacanbe selectedfrom a
performanceviewpoint asopposedto a consistencyand deadlockavoidanceviewpoint.
Therefore, complicated error recovery and deadlock avoidance logic, scattered
throughoutthefile system,is avoided.

3.6 Replication
For fast recovery and improved performance in cluster environments, HAMFS replicates

the Name Server. There can be separate primary and a secondary Name Servers for each

file system. However, HAMFS clients only communicate with the primary Name Server.

The secondary Name Server possesses a replicated copy of the metadata. If the primary

Name Server crashes, the secondary Name Server takes over the primary role using the

replicated metadata. When a secondary Name Server is deployed, instead of writing log

data to a log volume, before signaling an operation complete, the primary Name Server

simply transfers the log to the secondary Name Server. The secondary Name Server

acknowledges its receipt. After receiving the acknowledgment, the primary Name Server

is free to signal a completion to the client. We call this technique Early Commit. Actual

metadata updating on Meta volumes is deferred and done asynchronously using a

secondary buffer cache on both name servers. If a power failure occurs, modified

metadata, in the secondary buffer cache, is written back to the Meta volumes with the aid

of an UPS.

3.7 Crash Recovery

When a client recognizes that the primary Name Server has crashed, it begins

communicating with the secondary Name Server (new primary Name Server). The new

primary Name Server reconstructs tokens and file lock status using information sent by

the clients. Afterwards, the Name Server resumes processing. If the new primary Name

Server detects requests already committed by the old primary Name Server it simply

replies with the saved reply status transmitted by the old primary Name Server.

When the Name Server detects a client crashed, the Name Server releases any tokens and

file locks held by the failed client. After this step, the Name Server releases pre-allocated

extents also owned by the crashed client.

3.8 Status

The current HAMFS prototype is operating in our laboratory with the following

configuration. The Name Server running as a user mode daemon with multiple threads on

Solaris. Clients are running as a VFS file system in the FreeBSD kernel. All functions,

except for file RAID described in this paper, have been implemented.

4 Measurement Results

We evaluated various file system alternatives by measuring performance of an

asymmetric file system (HAMFS) and a distributed file system (NFS). We did not

measure performance of a symmetric shared file system. We can only comment on the

performance of a symmetric file system where it relates to our other measurements.

We used three PCs with 64MB memory for these measurements. For the NFS

measurements, two PCs were running FreeBSD with one operating as a NFS client and

the other as a NFS server, respectively. For the HAMFS measurements the three PCs
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were configuredwith the first PC running FreeBSDand acting in a client role and the
other two PCsoperatingas primary and secondaryName Serversrunning the Solaris
operatingsystem.Consequently,themeasureddatarepresentsHAMFS performancefor a
clusterenvironment.

Thesethree PCswere connectedtogetherwith a 100MbpsEthernet.In every case,a
commondisk was connectedto the first two PCs. This disk containedall HAMFS
volumes,exceptfor replicatedMetavolume.This wasdoneto createa fair comparison
with NFS. The replicatedMeta volume resided in a dedicateddisk on the third PC
runningthe secondaryName Server.This replicationconfiguration is justified because
separatediskshouldbeusedin a replicatedenvironment.

4.1 Distributed file systemvs.Asymmetric shared file system

We measured HAMFS and NFS performance for small and large files. This was done to

compare access performance of a distributed file system to an asymmetric shared file

system. We chose NFS version 3 to represent the distributed file system. For NFS

measurements, two PCs running FreeBSD were used. Since NFS invalidates cached data

on a predetermined time interval, it generates more control traffic over the network than

other distributed file systems. But we believe the measured results apply to other
client/server distributed file systems.
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Figure 3: Large file write performance

Figure 3 shows the performance for large file access environments. In these

measurements, a 100MB file is created and read sequentially from the beginning.

HAMFS shows far greater performance, compared with NFS, because it is accessing data

directly from disk through a high-performance disk path. An interesting point is that NFS

write performance is poor although writing data on server side is done asynchronously
with the NFS v3 commit feature. The reason for this is that the network cannot drive the

disk with enough data necessary to derive its maximum performance, resulting in
additional rotational delay. On the other hand, as the track buffer in the disk unit offsets

the network overhead, NFS reads reflect relatively good performance. As disk transfer
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rates continue to improve, delays due to networks will further impact performance.

However, the client cache provides a speed-matching buffer, which alleviates this

problem, somewhat by aggregating data into larger chunks and writing them as

contiguous blocks on disk. We believe asymmetric shared file systems have an advantage

in this regard over symmetric shared file systems because they can make better use of the

client cache.
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8
"10
9J

E

10000

100o

100
0.5

I I I

1 2 4

I I

Accurnulated distributionof the generated log size
I I I I I I

; _::..___. e, _ =:.c +4..,4.... -range-log

.," Block-log -*--"

!
i
f

t I t _ i i
8 20 40 80 160
log data size (KB)

Figure 5: The amount of log generated

Figure 4 presents the performances for short file access environments. These
measurements were conducted using the lat_fs program in lmbench [10] micro

benchmarks. This micro bechmark program creates 1000 files with various sizes and then

removes them. The vertical line reflects how fast this program runs. As shown in Figure 4,
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HAMFS, with a secondaryName server,outperformedNFS by a factor of five. The
reasonis that metadataupdatingthroughEarly Commit is fasterthandoingactual disk
I/O.
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Figure 5 and 6 shows how size of log affects total performance.

Since HAMFS uses a Btree data structure for representing space information on Meta

volumes, more disk blocks are updated on behalf of a file operation when compared with

UNIX file systems. UNIX uses an array of block address lists and bit maps for

representing available disk blocks. Figure 5 illustrates the distribution of generated log

data size per file operation in this measurement. Without a byte-range log, most log data

writes would be 30K data. Less than 2K bytes of log data is generated with a byte-range

log (that is when the log is produced with byte granularity). This difference is apparent

even in a single name server environment (the second line vs. the last line in Fig. 5) 2. It

has a more drastic effect on the performance in a duplicated name server environment

(the first line vs. the third line in Fig. 5). Additionally, this figure indicates the superiority

of asymmetric shared file systems over traditional client/server distributed file systems

for improving availability through replication. Traditional distributed file systems must

transfer all user data, as well as metadata, making it difficult to reduce data replicated

over the network. Finally, we believe this measurement also reflects the superiority of

asymmetric file systems over symmetric file systems since logging puts additional

implementation burden for symmetric shared file systems.

4.2 Limitations of asymmetric shared file systems

Figure 7 shows aggregate write performance for large files in a shared environment. In

this measurement, two PCs are used as clients with a third PC running as a name server.

2 In actual single node environments this difference may have more impact on performance. Because
HAMFS measurements were conducted in a cluster environment with the Name Server and the client
running on separate nodes, the logging overhead has less effect on total performance.
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Performance measurements are not as good when compared with Figure 3. The last line,

annotated UFS, shows how performance degradation is independent of file system type.

The reason is that the disk devices used for these measurements cannot efficiently

process requests from multiple nodes. To validate our hypothesis, we measured the case

when two processes running on the same client write large, but separate files on separate

UFS file systems (disk partitions). The second line tagged with UFS single shows this

performance impact.
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As the figure 7 shows, disk tag queuing performs well when two processes are running on

the same node and writing concurrently. On the other hand, when two processes on

separate nodes write large files, the loss of tag queuing is evident. Consequently, for
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extracting maximum performancefrom disks in a cluster environment,tag queuing
supportacrossmultiplenodesis a critical feature.

Figure8 showsperformancefor short file operationson a high speedRAID disk array
with 32MBnonvolatilememory.

Comparedwith Figure 6, HAMFS performanceis not as good as indicated in the
previousmeasurements.In previousmeasurements,HAMFS outperformedthe local file
system,however,for this measurement,UFSoutperformedHAMFS.The reasonfor this
is that writes for shortblocks are fasterwith a nonvolatilecachein a RAID array than
havingto transfercontrol dataovernetwork.This resultalsosuggeststhatwriting small
log datato disk (HAMS without EarlyCommit) is fasterthantransferringlog dataacross
a network (first line and the secondline in Figure 8). Consequently,eliminating any
unnecessarycommunicationbetween the nodes and reducing the amount of data
transferredover the networkis essentialto anefficient clusterfile system.An important
messageis that a cluster file systemmust adaptto underlyingdisk topology for best
performance.Thesemeasurementsindicatethatthepreferredmodeof operationis highly
dependentonsystemconfiguration.

5 RelatedWorks
Devarakonda[11] evaluatedalternativesfor implementinga cluster file systems.The
author comparesa symmetric shared file system with a token-basedclient/server
distributed file system.They concludethat their client/serverdistributed file system
(Calypso)providesmuchbetterperformancethan a symmetric shared file system. In our

paper we have shown how an asymmetric shared file system can outperform a distributed

file system organization.

GFS [3,4, 20] is an example of a symmetric shared file system. It proposes a special

hardware feature in the disk providing multiple logical locks. However, an asymmetric

shared file system can accommodate off-the-shelf disk devices. Additionally, we expect

GFS suffers from low performance as a result of heavy disk contention except in

specialized environments such as broadcasting.

NASD [12] and HPSS [13] are similar to asymmetric shared file systems. They isolate

metadata and user data, and permit shared access to user data directly from clients

through a high-speed communications network. However, since they both transfer user

data across a communication network they have performance limits that HAMFS does

not. In addition, they require special hardware features as GFS does; HPSS utilizes a

complicated two-phase commit mechanism suitable only in scientific environments

where large files are dominant. NASD depends on intelligence in the disk devices for
space allocation.

Zebra [9] and xFS [8], are examples of client/server distributed file systems. They scale

performance by distributing data across servers in a RAID schema through a LFS
technique. However, user data is transferred over a communications network and their

RAID schema is fixed. HAMFS supports file RAID for increased performance and

allows the user to specify data striping policy on a file basis. Frangipani [7] also offers a

similar capability by distributing data across servers using a network virtual disk function.

This approach has many of the same drawbacks as xFS.
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HAMFS deploys many of the similar techniques developed for increased performance

and availability used in many of the documented file systems, such as Cedar [14], Echo

[15], XFS [16], Locus [17], HARP[18], and Spritely NFS [19]. Additionally, HAMFS

offers features that others do not, including Token escalation, Space reserve, and

automatic deadlock detection.

7 Conclusions

The asymmetric shared file system organization is a superior approach for implementing

a commercial cluster file system. They outperform client/server distributed file systems

and symmetric shared file systems for many common access environments. Because disk

bandwidth improvements have outpaced network bandwidth improvements, asymmetric

shared file systems' performance is superior to that of distributed file systems.

Additionally, processor overhead associated with distributed file systems is not evenly

distributed across clients, but highly localized to a server. In a large cluster environment,

this limitation quickly becomes a bottleneck. However, to extract the full performance of

an asymmetric shared file system, tag queuing across multiple initiators is required. Also,

having an efficient protocol for reducing communication between clients and Name

Server is important as well. Finally the current HAMFS prototype may have some

scalability limitations because of a single Name Server per file system restriction. We do

not expect this limitation to be a real problem in the short term. If required, we could

remove this restriction using similar techniques as used in the Frangpani distributed file

system.
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Abstract

This paper describes how database systems can use and exploit a cost-effective active storage

hierarchy. By active storage hierarchy we mean a database system that uses all storage media (i.e.

optical, tape, and disk) to store and retrieve data and not just disk. We describe and emphasize the

active part, whereby all storage types are used to store raw data that is converted to strategic business

information. We describe an evolution to the Data Warehouse concept, called Atomic Data Store,

whereby atomic data is stored in the database system. Atomic data is defined as storing all the historic

data values and executing queries against the historic queries. We also describe a Data Warehouse

information collection, flow and central data store Hub-and-Spoke architecture, used to feed data into

Data Marts. We also describe a commercial product; StorHousefRelational Manager (RM). RM is a

commercial relational database system that executes SQL queries directly against data stored on the

storage hierarchy (i.e. tape, optical, disk). We conclude with a brief overview of a real world AT&T

Call Detail Warehouse (CDW) case study.

1.0 Introduction

Commercial Database Management Systems (DBMS) have evolved and been developed to diverse and

ubiquitous range of applications. DBMS have been based on hierarchical, network, relational, object-

oriented and the new emerging object/relational database model. With few exceptions these database

systems and applications primarily use disk media as their storage. Hierarchical Storage Management

(HSM) is used by some of these applications to exploit some of the benefits of cost-effective optical
storage systems.

We propose and analyze that database systems use and exploit a complete active storage hierarchy (i.e.

tape, optical, and disk). The key proposal is that active data be also stored, queried and analyzed on

tape farm libraries and optical jukeboxes. Figure 1 shows the cost, performance, size and reliability

considerations. In this paper, we use the term active storage hierarchy when (say SQL) queries execute
against data stored on diverse media.
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We provide an overview analysis of different commercially available storage systems. We provide an

update to tape and optical technology, performance and systems described and analyzed in [HS 96]

[JM 98]. During VLDB 1998 10-year best paper award [GB 88] talk Jim Gray described emerging disk

technology trends. Key disk technology trends are more storage and CPU-like processing capabilities

[RGF 98]. We claim and discussed at a [VLDB 99] panel why the complete storage hierarchy media is

needed to address certain application needs (i.e. atomic data, objects, etc.)

The current economics of the storage media are that storing data on tape is approximately 7% the cost

of storing the data on disk. The cost for storing data on optical is about 42% of storing the data on disk.

Some interesting byproducts of cost-effective use of active storage hierarchy described in the paper are:

• Atomic Data: where all the historical data can be stored and directly queried. Other users must

make decisions what data to keep "on-line" on disk for querying. We could almost summarize this

paper by the following: "Users should keep all data on-line for querying all the time". Data can be

moved to the most cost-effective storage hierarchy media. Instead, what customers do today is "age

out" data to archive and rarely restore it for querying.

• Atomic Data Store (ADS): a Data Warehouse (DW) concept evolution where historical atomic data

is stored and used for information mining or decision support. Bill Inmon spawned an information

revolution with what is now know as a Data Warehouse [Imn 92]. There are several potential DW

and Data Mart architectures [Gar 98] and philosophies [BZ 98]. One of the DW architectures is an

enterprise-wide DW where detail data is stored and used for strategic reasons [Arm 97]. Implicit in

[Arm 97] value of detail data argument is that data is aged or migrated out of the repository. The

case for ADS DW concept is the same as DW vendors that sell the notion of storing detail data,

except that in ADS the detail data is actually stored and used (i.e. not migrated out of the DW).

• Hub-and-Spoke Architecture (Figure 2): where operational data stores load (all) their atomic data
values into a Data Warehouse with active storage, and then feed Data Marts. This provides a cost-

effective way to manage and load data in Data Marts.
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StorHouse/RM is a commercial relational database system that support SQL-92 queries for data stored

in the storage hierarchy. StorHouse/RM handles the data placement issues described in [CTZ 97]. We

describe and analyze StorHouse/SM (Storage Manager) which is the storage manager used by

StorHouse/RM. This paper concentrates on the relational database uses of storage. Other non-database

centric uses of StorHouse/SM can be found at www.filetek.com. [CB 99] provides an analysis of (a)

storage trends, (b) database trends, (c) commercial products and (d) AT&T's use of active storage
hierarchy for their Call Detail Warehouse application.

This paper is organized as follows: Section 2.0 analyzes StorHouse/Relational Manager (RM), a

database system that supports the diverse storage systems. Section 3.0 describes StorHouse/Storage

Manager (SM) which manages diverse storage devices and storage media. We conclude describing
future work.

2.0 StorHouse/Relational Manager (RM)

There are three major ways database systems use diverse storage hierarchies:

(1) Hierarchical Storage Management (HSM) is used to migrate data to optical storage. An HSM

implementation strategy to place a marker in the database and move the value to optical. The query

engine must understand where and how to access data (on disk or optical).

(2) Data Backup and Archival copies or moves data to tape or optical storage. Data backup is used to

make a complete or partial copy of the database in order to restore databases in case of disasters or

data corruption problems. Data archival writes the data to optical or tape (tape is most likely) and

then removes the data from the database. A customer may decide to keep "N periods" of data and

archive (i.e. migrate) data at the "N+l period". In order to use the archive information, users must

restore the data and then later delete it. This is a cumbersome process that for many practical
reasons is rarely done.

(3) Atomic Data Store, as described earlier, is where all the historical data is stored on some or all of

the storage hierarchy media.

StorHouse/RM

StorHouse/RM is a database system that supports SQL-92 queries against the storage hierarchy. This

database system was designed and optimized to store (atomic) data on diverse media. StorHouse/RM
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(RM for short) works in conjunction with StorHouse/SM (SM for short) to specifically administer the

storage, access, and movement of relational data. SQL access is available from different platforms

through a variety of industry-standard protocols. RM runs on Sun Microsystems Ultra Enterprise

platforms.

Figure 3 shows that RM architecture and components are similar to all major commercial relational

database systems. An RM database consists of the following:

• User table data that you store and access.

• Optional indexes--value, hash, and range--that locate the table data.

• Metadata that describes database components.

Magnetic

StorHouse / Relational Manager

Session Manager
Parser

Resolver

Optimizer
Plan Generator

Dispatcher
Executor

StorHouselStorage Manager

SM

API

Figure 3: Relational Manager Architecture

RM databases (Figure 4) have both a logical and a physical structure. Logically, user tables and

associated indexes reside in user tablespaces, and metadata resides in a system tablespace. Physically,

user tables, indexes, and metadata are stored in SM files. RM user tables consist of one or more table

segments. Each table segment is a separate SM file. Whether a user table is composed of one or

multiple segments depends on the size of the user table and whether you later load more data into the

table.

Extents

Table and index segments are RM files that can reside on any storage device in the RM storage

hierarchy. These files are composed of different (Data, Definition and Map) extents. (1) Data Extent -

holds user data and/or control data. (2) Definition (DF) extent - contains information necessary to

retrieve the data. (3) Map Extent - is the high-level index that RM always reads first when doing index

lookups. You can retain some or all extents in the magnetic disk performance buffer to enhance

performance. For instance, you can hold the value index and hash index DF and Map extents on the

performance buffer longer than the table Data extent to speed access to the data. To add more data into

a table, RM would create a new table segment and corresponding value and hash index segments.

Range indexes do not consist of index segments; they are stored in the Meta Data.
Value and hash indexes also consist of index segments. Each index segment is a separate RM file. For

each value index on a table, there is always one value index segment associated with each table

segment. For each hash index on a table, there is always one hash index segment associated with each

table segment.
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UNIX Database Files

RM database metadata and range indexes reside on and are managed by RM on the UNIX file system.

Each system table, system table index, system table log, system table index log, and range index is a
separate UNIX file.
User Tables

A user table is the basic unit of data storage in a RM database. User tables hold user-accessible data.

Logically, RM user tables are like most RDBMS user tables; they consist of columns and rows of data.

Each row contains data values conforming to the constraints of the columns that make up the row.

StorHouse/RM ]

I
I

I I I

I I
I I I I I I

[ O"rT'_"' i _ [ systemTable1][SystemTableN[

Figure 4: StorHouse/RM Database Layout

Physically, an RM user table is one or more files on the RM storage hierarchy. User tables can reside

on any storage device in the hierarchy. The user tablespace defines the target storage device and the

migration path through the hierarchy. For instance, you can store time critical data on RAID and then

migrate that data to tape or optical as the data ages. The RM software automatically manages storage
and migration based on your user tablespace parameters.

Indexes

Indexes provide efficient access to table data. You can create an index on a column or combination of

columns in a user table. An index based on one column is a simple index. An index based on more than

one column is a compound index. RM supports three index types--value, hash, and range.

Value index

Value indexes work best with queries that return multiple rows based on a range of values. A value

index contains an ascending list of all the values in a column (or group of columns for a compound

value index). For each column value, the index contains an index map to the table row containing that

value. By searching the index rather than the table, then matching column values to row IDs, RM can
more efficiently find requested table rows.
Hash index

Hash indexes work best with queries that return a specific record based on a specific value. A hash

index is a two-part index based on an index map extent and a hit list that uses a proprietary RM
algorithm to effectively locate individual table rows based on individual index values.

Range index

Range indexes are useful for user tables with multiple segments. A range index contains the lowest and

highest column data values for each table segment for a user table. Instead of searching through
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multiple table segments, RM first looks at the range index to find the specific table segment with the

requested data values. Then, RM might use any hash or value indexes to find a specific data value or

range of values in the table segment.

User tablespaces

A user tablespace defines where table segments, hash index segments, and value index segments are

stored on the RM storage hierarchy. It also sets attributes that influence storage management like

backup and migration. When you create a user table, you assign it to a user tablespace. The table's

segments and corresponding index segments then are stored according to the specifications of the user

tablespace.

Allocating Storage

You allocate storage by identifying the volume sets and file sets for all table, hash index, and value

index segments stored in the user tablespace. Whether you use multiple volume sets and file sets in a

user tablespace depends on your data and your access and performance requirements.

Volume

A volume is a unit of media on which data can be recorded and read. RAID, magnetic disk, erasable

and WORM optical disk and DLT cartridges are all examples of RM volumes, or media.

A volume set (VSET) is one or more physical volumes that are treated as a logical unit of storage. You

use volume sets to control the physical grouping of files. A user tablespace identifies the volume sets

that will contain the table, hash index, and value index segments for all tables and indexes in that

tablespace. You can store table segments and associated hash and value index segments on the same

volume set or on different volume sets.

A file set (FSET) is an area of storage within a volume set. Files are stored in file sets. Table segments

and index segments are files. You can store table and associated hash and value index segments in the

same file set or in different file sets.

For example, if you want to minimize volume mounts and don't need to manage the storage of table

data and indexes in different ways, then you could allocate one VSET with one FSET for all

components.

Or if you want to manage the storage of table data and indexes in different ways but remove them from

RM at the same time, you could allocate separate FSETs in one VSET. Or if you want to manage the

storage of table data and indexes in different ways and don't need to remove them from RM at the

same time, you could allocate separate VSETs.

Performance and Backup Copies

A user tablespace contains a Vulnerability Time Factor (VTF) attribute that determines whether and

when you'll create performance copies and/or backup copies of user table and index data. Performance

copies reside on the RM magnetic disk performance buffer. Backup copies reside in primary file sets

on the designated RM media.

A user tablespace contains an Access Time Factor (ATI0 that works with RM migrate function to

keep data that is most likely to be accessed in the RM performance buffer while maintaining a supply

of free space. In a user tablespace, you can assign the same or different ATF values for table, hash

index, and value index segments. This means you can retain index segments on the performance buffer

longer than the data for faster query processing.
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Metadata

Metadata are system components that RM creates and uses to manage a database. These components

include system tables, system table indexes, system table logs, and system table index logs. Metadata is

stored on the RM UNIX file system within a system tablespace.

System Tablespaces

For each database, RM creates a separate database directory on the RM server. This database directory,

also called the system tablespace, is a structure that contains all of the system components for a specific

database. Each system component is a separate UNIX file. All system tables have corresponding table
logs. Some, not all, system tables have indexes.

System Tables

RM automatically creates a set of system tables for each database and stores them in the database's

system tablespace. System tables contain information about a database. RM uses the system tables to

record, verify, and conduct work. For example, RM updates various system tables when you create

database components, and it reads system tables to verify that database components exist and that

accounts are authorized to access them. Each system table is a separate UNIX file. Just like user tables,

authorized users can query system tables by submitting a SELECT statement.

System Table Indexes

RM automatically creates system table indexes for specific system tables when a database is created.

System table indexes are stored as UNIX files in the same directory as the system table files. Their

operation is transparent.

System Table Logs

Each system table has a corresponding system table log that is used to recover changes to system

tables. Before RM updates a system table, it first copies a "before image" of any record being updated

to the system table log and then makes the change in the system table. If the transaction fails or is

rolled back, RM copies the before image back to the system table, removing the change. If the

transaction completes or is committed, RM empties the system table log.

System Table Index Logs

Each system table index has a corresponding log that is used to recover changes to system table

indexes. The operation of the index log is the same as the table log.

3.0 StorHouse/Storage Manager (SM)

StorHouse/SM, FileTek's comprehensive HSM software, controls a hierarchy of storage devices

comprised of cache, redundant array of independent disk (RAID), erasable and write-once-read-many

(WORM) optical disk jukeboxes, and automated tape libraries. StorHouse/SM is also responsible for

critical system management tasks, like data migration, backup, and recovery. StorHouse/SM provides

system-managed storage that optimizes media usage, response time, and storage costs for each

application. StorHouse/SM runs on Sun® Microsystems Ultra Enterprise Servers and comes standard

with all StorHouse systems.

Some of the important functions of this storage management software include:

• Provide common view of all storage including magnetic disk

• Automatically deal with all storage hardware failures to avoid system down-time

• Provide record/RDBMS-page access methods

• Maintain meta data on magnetic disk

• Maintain indexes on magnetic disk or optical

• Order accessing so all accesses for a volume are performed with one volume mount

• Order tape accessing so it is serial
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• Duplex data on separate libraries so there is no single point of failure

• Create copies of data for off-site storage
• Maintain volume directories on volumes for recovery and transport to other systems

• Where data is on both optical and tape use optical for direct and tape for serial accessing

• Cache most active data on magnetic disk

• Migrate data from optical to tape.

Future Work

This paper is based on commercially available products and real customers. Future on-going work

includes federated databases and development of StorHouse/ORM (Object/Relational Manager) to

support (multimedia) SQL-3 types and functions.

Conclusion

In this paper we described the need for active storage hierarchy. We described the tradeoffs, uses and

potential uses that using tape, optical and disk storage can provide. We defined a new Data Warehouse

concept, called Atomic Data Store, whereby applications exploit atomic (historic) data using a central

data store Hub-and-Spoke architecture, used to feed data into Data Marts. We analyzed StorHouse/RM,

which is an SQL RDBMS that stores and retrieves data from the storage hierarchy (using

StorHouse/Storage Manager).
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Abstract

The Archive for the Earth Observing System (EOS) is one of the largest and highest data

rate archives in the world. The EOS Archive is referred to as EOS Core System (ECS)

and is a multi-site distributed data warehouse of Earth-oriented satellite images and

science algorithms/reports. Its data holdings are projected to approach five petabytes by

2002. Each distributed site is referred to as a "Distributed Active Archive Center" or

DAAC. The DAAC sites are being incrementally delivered with final deployment by the

end of 2000. One of the sites, the EROS Data Center (EDC) in South Dakota, is

receiving and archiving Landsat data in addition to the data generated by the instruments

on the Terra satellite launched in December of 1999. Four of the DAACs will begin
receiving Terra data in early 2000 [ 1].

The ECS archive architecture is based on a multi-site, distributed, client-server model. Its

components are interdependent. As in any large and reasonably complex system

robustness and ability of functional components to recover from faults is of great

importance. In particular, ECS places heavy emphasis on data integrity and data capture

robustness. This paper briefly describes the design of the hardware and software to insure

the EOS data is captured and distributed in spite of faults. The description of hardware

failover is confined to the Ingest Component design. The paper is intended as an

introduction to the Poster Presentation material, and other components are discussed in
the Poster Presentation itself.

1 Introduction

The overall fault recovery scheme in the ECS archive is designed to be a combination of

the hardware server failover and software server recovery. The hardware server failover

is operator initiated. It takes place in the event of a catastrophic failure of the hardware

server itself or its associated network interface. Hardware failover to a secondary server

can also be initiated as a planned maintenance or upgrade step. Failover is followed by

the software server recovery for the ECS archive to continue operation. A software server

recovery can also take place when the software fails, independently of any hardware

faults. The hardware and software recovery designs are functionally independendent and

are treated separately in this paper.
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The hardware portion of a fault recovery design differs on a hardware subsystem by

hardware subsystem basis using several different configurations, as appropriate, to meet

the EOS mission objectives. In most cases fault handling requirements range from 2

hours to 24 hours depending on the subsystem. In practice, the down time must be

minimized because of the impact on both the user community and processing of the data.

The goal of the fault tolerant design is to reduce the down time to at most 15 -30 minutes

per incident.

LO Data

Figure 1. Hardware Configuration of the ECS Archive

Functionally, all external user electronic access to the system takes place via the Access

Control Management (ACM) platforms, as illustrated in Figure 1, Hardware

Configuration of the ECS Archive. The ACM is also where the ECS Data Server

Metadata catalogue resides. In the ECS system a metadata catalogue indexes the total

collection and points to files stored in silo-based archives.

The INGEST subsystem is responsible for data capture. Both the ACM and INGEST

subsystems have the most stringent fault recovery requirements of 2 hours and a design

goal of 15 minutes. Ingest hosts are used for Level 0 Instrument Data capture from the

Front-End data capture facilities into the archive. A warm-standby pair configuration is

used for the ACM and Ingest hosts. In this scheme failover to the secondary server is an

operator-initiated event.
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The Archive (DRP) hosts function as file servers connecting the rest of the system to the

Nearline data holdings in the robotic silos. The hardware configuration of this

component and aspects of its performance have been discussed at the March 1998 Sixth

NASA Mass Storage Systems and Technologies Conference [2]. The DRP subsystem

recovery requirement is 3 hours. A cluster "many-to-one" failover configuration is used

for the DRP hosts. Once again, failover to the standby host is initiated manually. Once

initiated, a portion of the process takes place automatically via execution of a series of

scripts. Several steps within the failover procedure are manual, primarily the network

router switchover. The ACM Data Base servers, the Ingest hosts and the DRP hosts

platforms are at this time of Silicon Graphics Incorporated (SGI) Challenge 1 class servers.

SGI Origin class servers will replace these as part of technology evolution during the life
of the archive. The custom software for the Science Data Server in the ACM Hardware

component resides on SUN platforms.

The Distribution component of the archive is responsible for the distribution of hard

media to the users of ECS. The Distribution component has a recovery requirement of 2

hours. A load sharing configuration, allowing graceful throughput degradation in the

event of failure, is designed for the Distribution hosts. The Distribution hosts are SUN
Ultra servers.

More detailed descriptions of the software functions of the above system components can

be found in other papers presented at this conference [1 ], [3].

2. Hardware Server Failover

Ingest is the only component which has been configured for hardware failover and tested

in that configuration. All other components in the design have not been tested for the SGI

Challenge class servers. The Ingest component consists of a pair of SGI Challenge

servers. One of the servers is normally playing a primary role and the second one a

secondary. Figure 1, Ingest Failover Pair, illustrates the hardware configuration.

INGEST
PRIMARY

HOST

Figure 1. Ingest Failover Pair

INGEST
SECONDAR_

HOST

Both hosts are physically connected to the Redundant Array of Independent Disk (RAID)

in a "Dual-Bus/Dual-Initiator Configuration". Only one of the hosts is actively
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addressing the RAID at any one time. For simplifying the operations, the same host is

always considered to be a "normally primary host". That is, in operation, that host is in

the primary configuration at all times and is performing ECS ingest functions, except for

the brief time periods for repair or upgrades. The secondary host may be used at the same

time for other tasks or testing with two significant restrictions: 1) ECS functional

configuration, both custom and Commercial Off The Shelf (COTS) must remain intact

and in sync with the primary host, and 2) dual connected RAID is not available for use by

the secondary host. Any attempt to address (read or write) dual connected RAID from the

secondary machine may result in disk corruption. Switching control of the RAID from

the normally primary to the normally secondary host is done through a failover procedure.

Failback procedure is exercised when the RAID control is switched back from the

normally secondary to the normally primary host. Both failover and failback involve 1)

switching of ownership of RAID, 2) manual switching of all extemal network mounts and

interfaces. Network switchover uses an alias ip mechanism. At the EDC DAAC, the

only DAAC that currently uses HiPPI connection with Ingest, the HiPPI connection is

also switched.

For the implementation of the Ingest Failover scheme, aside from the dual physical

connection of the RAID, a number of specific changes must be made to the host system,

network, and peripheral device configuration. Both the primary and the secondary hosts

have an identical hardware complement, identically prepared RAID configuration, and

their internal disks are loaded identically with the same complement of ECS COTS code.

3. Software Server Fault Recovery

The software for ECS is a C++ implementation using Distributed Computing

Environment (DCE) [4] for process communications. The fault recovery software design

relies on a combination of custom code supported with a relational database for request

persistence and checkpointing, as well as COTS product features to allow network

rebinding. Since all client-server interfaces are implemented using DCE RPC calls, it is

crucial that lengthy processing operations not be repeated needlessly. At the first layer of

software fault recovery, DCE rebinding is incorporated into the client interface classes.

Rebinding permits automated detection and recovery of errors in DCE communications,

including those introduced by network disruption. The second layer of fault recovery

insulates against both client and server process failure ("crashes"). Long-running

requests are checkpointed to the database, with all parameters and temporary data needed

during processing. This checkpointing also provides a built-in queuing mechanism.

In the event of a client crash, the server, depending on the client type, takes one of the two

possible actions. It abandons processing of the client's outstanding requests in favor of

processing of requests from other client processes. Or, alternatively, it continues

processing the client request and waits for the client to resynchronize to complete the
transaction. In the event of a server crash, the client will attempt to rebind until the server

is restarted, or until the client determines that an unacceptable period of time has elapsed.

Resubmitted requests, whether through automatic rebinding or operator resubmission, are

resumed from the last checkpointed state, thus eliminating redundant re-processing.
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Uponrestart,processessenda notification to theserversto which they are clients so that

orphaned resources may be reclaimed.

Additional software fault recovery features provide for multiple server start

"temperatures." Normal "warm start" processing permits resumption of request

processing from the last checkpointed state upon client resubmission. "Cold start" mode

terminates any in-progress requests and resets the persistence table to reflect an empty

request queue. Resubmitted requests appear to the server as new requests. "Cold restart"

mode provides a mechanism for "back-flushing" requests. Requests in progress are set to

a failed state, and resubmission returns failure to the calling client.

4. Conclusion

Design of the failure recovery mechanisms in the ECS archive is an ongoing technical

process as the system evolves following the computing technology trends. As an

example, at the time of this writing, a replacement design for hardware failure recovery is

being considered for implementation with the SGI's current generation Origin servers.
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Abstract

An overview of an existing climate database which allows for storage of terabyte data

volume is presented. Some features like the general architecture and the integration with

an HSM are highlighted in more detail.

1 Introduction

The DKRZ (Deutsches KlimaRechenZentrum) is the central climate computing center

for Germany. Numerical models for the coupled climate system were developed and

integrated on the computer environment at DKRZ. The results are archived and

disseminated for the climate research community in Germany and Europe as well as

world wide. The mass storage archive contains currently 80 TByte (Aug. 99) of climate

model data (90%) and of observational data (10%).

The TByte archive size is correlated with user access problems to climate model data.

Data are basically accessible via a UNIX file system on the file server. No related

catalogue information is available. Data are archived as time series of 4 dimensional data

blocks (model raw data), whereas users access data as time series of 2 dimensional

records (processed data, e.g. 2m temperature). Archived model data sets are stored on

sequential storage devices, requested data are reloaded as complete files into the file

server's disk cache. Then users have to transfer the files to their local client machines by
FTP.

A database system, CERA (Climate and Environmental data Retrieval and Archiving

system), has been developed in order to organize the data archive and to improve the

users access to climate model data. Processed data and raw data are presently stored

together with their description (meta data) in the CERA database [1]. Although not the

entire archive is part of the database system, the currently existing CERA database with a

size of 2 TByte contains more data than magnetic disks are available. Consequently parts

of the database have to be stored on tapes yielding interaction problems between the

database management system and the mass storage system. A hierarchical storage

management including disks and tapes is presently not supported by commercial database

management systems.

2 General architecture

The CERA data system itself is separated into three parts: data model [2], data hierarchy,

and data processing. The CERA data hierarchy reflects three different levels of storage
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andaccessperformance:metadata,processedclimatedataandclimatemodel raw data.

All parts of the data hierarchy are stored stored in tables of the CERA database.

The metadata contain the description of the climate data archive (data catalogue). The

access should be as quick as possible.

The processed climate data contain frequently requested data structures. They are

extracted and processed from the climate model raw data and are stored directly in the

CERA database according to user requirements. The processed climate data can be

accessed as BLOB entries (Binary Large Objects) in database tables. The processed

climate data should be preferably available on hard disks near the database system in

order to realize a performant access. The CERA data hierachy reflects the granularity in

data warehouse architectures [3].

The third level in the data hierarchy contains the climate model raw data. Monthly

accumulated model results are directly written into database tables as BLOBs. The data

access is less performant than for processed climate data, because these data are stored on

magnetic tapes under robot access. Only for a specific user request the raw data will be
transferred from the file server into the database cache.

The basic problem with respect to storage of database files is to establish a flexible
connection between database and mass storage system which allows for data migration

and de-migration in dependence of user requests to the CERA database.

3 Database and Mass Storage Archive

Even the amount of data in the CERA database is too large to store the data exclusively

on magnetic disks. It is only possible to store the actually used data sets on disk, the
others have to be migrated to tapes of the mass storage system (MSS). The climate data

in CERA are stored as BLOB's in database tables. Therefore the database management

system (DBMS) has to interact with the mass storage system and the related archive

system. At the DKRZ ORACLE is used for database management and the mass storage

archive is administered by UniTree. The basic design assumption for DBMS is that all

database files are randomly available on magnetic disks. A direct integration of a

hierarchical storage management (HSM) is not available. The integration has to be

developed individually in dependence of the used DBMS and the used archiving
software.

Within ORACLE data are stored in tables and tables are summarized in tablespaces. The

physical storage level is connected to the tablespaces (TS). When ORACLE is

implemented on a (Unix) file system tablespaces are stored in one or more files, the

database files (DBF). Tablespaces can be in different states; online, offline and read only

are of interest with climate model data archiving [4].

• Online is the normal status. Data within tablespaces of this status are immediately

accessible.
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Temporarilydeactivatedtablespacesareoffiine. DBFsbelongingto suchtablespaces
areoffiine too.Objectsresidingin thesetablespacesarenot accessible.These
tablespaceswill benotopenedat startupof thedatabase.
ReadOnly TSaretablespacesin whichall objectscannotbechangedanymore.The
databasesystemdonotaccessesthesedatabasefiles in write modus.This statusis
especiallyimportantin connectionwith backupandrecovery.Readonly tablespaces
canbeeitheronlineor offiine.

Whendataarecurrentlynot neededit is possibleto migrateDBFs if their affiliated

tablespace is set offiine. If data are requested by an application (e.g. user request) the

DBF's have to be demigrated and the tablespace has to be set online again.

This mechanism has been automated at DKRZ by developing and installing a storage

broker which acts as an interconnect between (database)-applications, the database

system and the mass storage system. The storage broker is divided into interacting

processes with some of them running inside the database, some of them outside using
ORACLE's External Procedure Calls [4]. The main processes are:

• The main-storage broker accepts requests, checks space within database disk cache,
allocates space and sends requests to other brokers.

• The make-space broker clears disk space based on dataset priorities in order to allow
for de-migration.

• The de-migration broker de-migrates database files from mass storage system back to
database disk cache.

The storage broker controls the migration and de-migration according to database
requests and to that disk space which is available to the CERA database. Database

request query optimization is realized in a disk cache area which is controlled by the

broker and which is strictly separated from the archiving system. The migration/de-

migration strategy is highly flexible. Priorities of requests are calculated online based on
dataset, user and system load characteristics as well as on recorded database access

statistics. These statistics may allow also for a pre-caching algorithm. A persistent

interconnection between these processes allows for re-launch of requests even after
database crashes.

Data extraction from and the data delivery into the mass storage system is realized by

standard FTP in order to maintain independence from the archiving system.

4 Conclusions

The separation of the database migration disk cache from the standard HSM disk cache

allows for an implementation of a database driven migration strategy and for

ndependence from the connected HSM system. This two level cache approach is robust
and provide a large degree of independence between RDBMS and HSM.

As the complete system is implemented on a Unix file system and not on raw devices

standard file transfer mechanisms like 'ftp' and 'copy' can be used to connect the two

disk cache areas. Therefore practically all HSM systems can be used.

195



References

[1] M. Lautenschlager and M. Reinke (Ed.), "Climate and Environmental

Database Systems", pp. 197, Kluwer Academic Publishers, Boston 1997

[2] M. Lautenschlager, F. Toussaint, H. Thiemann and M. Reinke, "The

CERA-2 Data Model", pp. 53, Technical Report No. 15, DKRZ, Hamburg 1998

[3] W.H. Inmon, "Building the Data Warehouse, Second Edition", pp. 401, John

Wiley & Sons, Inc. 1996

[4] George Koch and Kevin Loney, "ORACLE8 - The Complete Reference",

Orcale Press, pp. 1300, Osborne McGraw-Hill 1997

196



New Prospects for Electrostatic Data Storage Systems

Alexander N. Korotkov and Konstantin K. Likharev

State University of New York at Stony Brook

Stony Brook, NY 11794-3800

klikharev@notes.cc.sunysb.edu
tel +1-631-632-8159

fax + 1-631-632-8774

1 Introduction

Magnetic data storage is a unique technology which has maintained an impressive bit

density growth during the past few decades. It seems, however, that this growth will

saturate somewhere near 100 Gbits/in 2, due to several fundamental factors - see, e.g.,

Ref. [2]. Recognition of this situation has triggered a wave of research in search of

alternative technologies which would enable the current data storage scaling trend to
continue after the magnetic systems run out of steam.

The natural candidate for an alternative technology is electrostatic data storage, where a

digital bit is retained in the form of a minute (few-electron) charge of a small metallic

grain or a group of grains. However, earlier attempts to implement such storage systems

ran into several problems, including:

• the lack of sensitive and fast solid state electrometers for reading heads, and

• low speed of write/erase process.

During the past decade, the situation with the first problem has been radically improved

due to the invention [3], demonstration [4], and gradual improvement (see, e.g., review

[5]) of single-electron transistors (SET). These devices may serve as very good

electrometers, with experimentally demonstrated charge sensitivity (at low temperatures)

better than 10 .5 e/_/Hz [6]. Recently, the first operational room-temperature SET was

demonstrated [7]. Though the charge sensitivity of room-temperature SETs has not yet

been measured, theory [8] predicts that beyond the l/f noise range it may be of the order

of 10 .7 e/_/Hz. This would be sufficient for readout of a few-electron signal at a very high
(GHz-scale) speed.

Therefore the write/erase speed seems to have become the key problem for the practical

introduction of electrostatic storage systems. We have carried out a theoretical analysis of

various possible solutions to this problem, and run into what we believe is a very

promising opportunity. Its brief description is the objective of this report.

2. Crested Tunnel Barriers

The most evident candidate for the write/erase process is Fowler-Nordheim tunneling,

similar to that used in floating-gate memories [9]. The tunnel barrier should have

negligible tunneling (corresponding to a charge retention time of a few years) for

relatively low voltage V applied to the barrier by the stored charge. On the other hand, in

the write mode the applied voltage should suppress the barrier to such an extent that

tunneling current recharges the charge storing grains quickly. Simultaneously, this

voltage should be small enough to avoid tunnel barrier degradation.
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Figure 1. Conduction band edge diagrams of (a) - typical uniform barrier; and (b) -

crested layered barrier. Dashed lines show the barrier tilting caused by applied voltage

V. Thick horizontal lines in (b) show (schematically) the position of resonant electron

subbands enabling resonant tunneling

The usual uniform tunnel barriers (Fig. l a), made typically of silicon dioxide, cannot

satisfy these two conditions simultaneously. Thin curves in Fig. 2 show the current

densityj and the grain recharging time scale x(V) - CoV/j(V) as functions of voltage Vfor

two typical values of SiO2 barrier thickness. (The current has been calculated using the

standard quasiclassical approximation, in the assumption of the isotropic and parabolic

dispersion law for electrons both in the source conduction band and under the barrier. Co
is the capacitance per unit area of the tunnel barrier.)
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Figure 2. Tunneling current density j (in A/m 2, dashed lines) and the floating gate

recharging time scale x (in seconds, solid lines) for the barriers shown in Figs. la and lb,

as functions of applied voltage V, calculated using the quasiclassical theory. Thin lines:

uniform barriers with parameters corresponding to n+Si/SiO2/n+Si (U = 3.2 eV, m = 0.3

m0, d = 8 nm and 12 nm). Thick lines: trilayer crested barrier with parameters

corresponding to n+Si/Si3Na/A1N/Si3N4/n+Si (r._.?= 2.0 eV, m TM 0.2 m0, E' = 7.5, d '= 4 nm;
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U = 3.6 eV, m = 0.48 m0, e = 8.5, d-- 5 nm). It is quite possible that crested barriers using

other combinations of materials may have even better performance.

The results show that, for example, a 8-nm-thick barrier may provide a 10-year retention

time (-3×108 s) for voltages below - 3.5 V, but the write time at the largest acceptable

electric field Emax _ 10 MV/cm [10] is above 1 _s. A change in the barrier thickness dto

either side does not help (see, e.g., the results for d = 12 nm in Fig. 2), neither does a

change in the barrier height. This relatively weak dependence of the barrier transparency

on the electric field is due to the fact that the highest part of the barrier, closest to the

electron source, is only weakly affected by the applied voltage: Umax (V) = Umax (0) - see

the dashed line in Fig. l a.

Now consider a "crested" layered barrier (Fig. lb) [11, 12]. Solid curves in Fig. 2 show

that the current through this barrier changes much faster, so that a sufficiently long
retention time at low voltages may be combined with 1-ns-scale write/erase at moderate

electric fields (about 7 MV/cm). The physical reason for this dramatic improvement is

that in the crested barrier the highest part (in the middle) is pulled down by the electric

field very quickly: Umax (V) = Umax (0) - eV/2 - see dashed curves in Fig. lb. As a result,

the barriers may enable 1-ns-scale write/erase in electric fields as low as 7 MV/cm. In

these low fields the barriers should have extremely high endurance, allowing a virtually

unlimited number of write/read cycles.

3. ESTOR

Figure 3 shows the possible electrostatic data storage system (ESTOR) which combines

the unique charge sensitivity of single-electron transistors and speed of recharging
through crested barriers [11, 17]. The system includes a read/write head with an SET

preamplifier loaded on a FET amplifier at a distance of a few microns. The data bits are

stored as few-electron charges (Q/e = n _ 30) trapped in nanoscale conducting grains

deposited on the top of a crested tunnel barrier. Since the charge is relatively large, and is

stored in a few (_ 30) grains, their exact shape and location are not important, so the

storage medium does not require nanofabrication: the grains of random size may be
deposited, e.g., by metal evaporation.

Bit writing is achieved by the application of high voltage Vw in the moment when the

head is passing over the specified location (at writing, VR = 0, so that the SET is

deactivated and works just as a single conductor delivering voltage Vw to the tip). The

voltage suppresses the tunnel barrier, and inserts the charge into the group of grains.

Nondestructive readout is achieved by the SET activation (Vw = 0, VR 4: 0), turning the

device into a sensitive electrometer [19].

Estimates show that with a 15-nm tip-to-substrate distance (typical for the advanced

magnetic storage systems), the ESTOR system is capable of a density above 1 Tbit/in 2,

i.e. at least one order of magnitude higher that the apparent upper density limit for

magnetic systems [ 1]. The use of crested barriers may provide a very broad bandwidth of

write/erase, up to 1 Gigabit per second per channel. The maximum reading speed, limited

by the internal noise of the SET (with a signal-to-noise ratio of, say, 100), is even higher.
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Figure 3. A possible ultradense electrostatic recording system ("ESTOR")

The recent experiments at Lucent Technologies [20] may be considered as the first step

toward the implementation of the ESTOR. In these experiments a SET electrometer

fabricated on a scanning probe was used for the detection of single-electron charges on Si

and GaAs substrates. In these preliminary experiments, there was no FET amplifier close

to the SET output, so that the available measurement bandwidth was very low. However,

recently several groups have demonstrated the possibility of broadband SET/FET

integration (so far, at low temperatures). It seems that the unification of these

achievements with the progress in fabrication of room-temperature SET [7] and the

standard mechanics developed for magnetic hard drives opens a straightforward way

toward the implementation of practical ultradense electrostatic data storage systems.
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1 Introduction

Large multidimensional datasets are found in diverse application areas, such as data ware-

housing [6], satellite data processing, and high-energy physics [9]. According to current

estimates, these datasets are expected to hold terabytes of data. Since these datasets hold

mainly historical and aggregate data, their sizes are increasing. Daily accumulation of raw

data and jobs generating aggregate data from the raw data are responsible for this increase.

Hence, estimates for the dataset sizes run into several petabytes. Though cost per byte as

well as area per byte for secondary storage has been dropping, it is still not cost effective

to store petabyte-sized datasets in the secondary storage [4].

Efficient storage organization for multidimensional data has been investigated exten-

sively [8, 1, 5]. Chen et al [1] discuss organization of multidimensional data on a hier-

archical storage system. The authors prove that the problem of efficient organization of

multidimensional data on a one-dimensional storage system, such as tertiary storage, is

NP-complete when arbitrary range queries are allowed. They present a five step strategy

based on heuristics for the problem. Jagadish et al ([5]) investigated the problem of effi-

cient organization of a data warehouse on secondary storage. The workload consists of a

restricted set of range queries using hierarchies defined on the dimensions. They cast the

problem as finding an optimal path through a lattice. They propose a dynamic programming
based algorithm that determines how various dimensions are laid out.

We are not aware of any work that takes into consideration practical constraints like the

order in which the data already exists or will be generated. Given an order in which data

currently exists (or will be generated), and a limited amount of temporary storage space,

we investigate issues in efficiently organizing multidimensional datasets on tertiary storage.

We cast the problem as permutation of the input data stream using limited storage space.

The rest of this document is organized as follows: The problem is formulated in Section 2.

Section 3 describes our approach. In Section 4, we present performance results. Section 5

presents conclusions.

*Supported by DOE ASCI Alliance program under a contract from Lawrence Livermore National Labs
B347875.
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2 Background

Queries In a multidimensional dataset, each data item occupies a unique position in a

n-dimensional hyperspace. A query selects a subset of the data items by selecting a subset

of the domain in each dimension. A query is an instance of a query type [1]. A query

type is a n-tuple whose values are drawn from {ALL, VALUE, ANY, RANGE} for each

dimension. ALL selects the entire domain of the dimension. VALUE selects exactly one

value from the domain. ANY is similar to VALUE, but choose all domain values with

equal probability. RANGE choose a set of values from the domain of the dimension. We

assume that approximate execution probabilities of query types are known.

Native order and storage order A data source generates data items in a known order

(e.g., in temporal order, when time is one of the dimensions). We call this ordering of the

data items native order. Depending on the expected query types, this native order may not

be the most efficient way to store the dataset. We call the order in which the data items are

stored as the storage order. Data items need to be permuted, to transform the native order

into storage order.

Storage model The storage model consists of secondary storage of size D pages and

tertiary storage of size at least T pages, where T is the size of the dataset and T > D. The

tertiary storage consists of a tape drive controlled by a robotic arm and a set of magnetic

tapes. The data items generated by the data source temporarily reside on the secondary

storage before they are stored on tertiary storage. The secondary storage pages can be

viewed as temporary storage that is used to carry out data permutation.

3 Data clustering algorithm

Given native ordering of data items and the expected query workload, we derive a storage

order that optimizes the I/O time of the workload subject to some constraints and assump-

tions [7]. The input data is read exactly once in the native order. We estimate the available

temporary storage size to be of the order of the size of expected answer sets for queries in

the workload. We use the knowledge about the expected query types and their execution

probabilities to compute the storage order.

Though the storage order defines an ordering on data items, the process used to arrive at

the order need not be a sorting process. Given a set of data items, it is important to identify

the subsets of the data items that are accessed together. This is an important observation,

since the success of transforming the native order into a storage order depends on amount

of space available to carry out the transformation. We show that, given a dataset and a

workload, there exist multiple storage orders that are equally good. For a given native

order and amount of temporary storage space, only some of them are achievable [7]. In

general, data items need to be clustered based on their coordinate values in a subset of

dimensions. The clustering process needs to match coordinate values of the data items

rather than sort the data items based on their coordinate values. This observation forms the

basis of the data clustering process in this paper.
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3.1 Computing affinity between data items

The actual process of matching data items uses a measure of affinity between data items.

Affinity between two data items, I_ and Ij, is the probability that if Ii is accessed by a

query then Ij is also accessed, and vice versa. Two data items that are always accessed

together have an affinity equal to 1. Two data items that are never accessed together have

an affinity equal to 0. We use the following formulae to compute affinity between two data
Qk Dn

items, 11 and 12, is _Q,=Q1 (Pi x l--[Dj=Di A_). Where Qi is the i th query type and Pi is its

execution probability. Dj refers to the j*h dimension. Qi(j) is the selection criteria of Qi in

dimension Dj. If Qi(j) = VALUE then v_ is the value parameter for Qi from the domain

J is the range parameter for Qi from the domain of Dj.of Dj. If Qi(j) = RANGE then r i

Ii(j) and Is(j) are the coordinates of I1 and/2 in Dj. A_ is calculated using the following
table:

Qi(j) = ALL 1

Q_(j) = ANY and I 1(j) = Is(j) 1

J 1Qi(j) = VALUE and I1 (j) = Is(j) = v i

J 1Qi(j) = RANGE and Jll(j) - I2(j)[ <_ ri

otherwise 0

3.2 The heuristic approach to data clustering

[1] proves that a simpler version of the problem, one without temporary space constraint, is

NP-complete. Hence, we use heuristics to design our algorithm and evaluate them exper-

imentally. The generic algorithm inputs some data items in native order in each iteration.

It also produces, in each iteration, some output data items in storage order. This process is

repeated until all data items are output. A heuristic approach needs to answer the following
questions:

° If there are d < D pages free in the temporary storage, how many data items to input
in each iteration?

2. If there are k data items in the temporary storage how many and which data items to

output in each iteration?

Greedy heuristic The greedy heuristic answers these questions as follows: Input as many

data items as possible to fill up the temporary storage during each iteration. Output data

items only if the temporary storage is full. While outputting, it chooses the data item that

has maximum affinity to the last data item that was output. The rationale behind the greedy

heuristic is as follows: It is important to keep the temporary storage filled to capacity, since

that gives a wider choice to the output phase in choosing data items to be output, which

will result in better decisions. Hence, the input phase should read in as many data items

as possible, and output phase should output as few data items as possible. The greedy

heuristic results in a simple and low complexity algorithm.
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Look-back-m heuristic This is a generalizationof the greedy heuristic. The greedy

heuristic looks at only one data item, the one that it just output, to decide which data item

to output next. The look-back-m heuristic remembers the last m data items that were

selected for output. It uses a larger history to improve the quality of the solution. For

each data item in the temporary storage, the algorithm computes its affinity to these rn data

items, called backward affinity. It outputs the data item that has the maximum backward

affinity. Remembering the last m data item has the side effect of reducing the space that

holds incoming data items. If M pages (output bin) are used to hold the previous m data

items, then only D - M pages (input bin) are available to hold the incoming data items.

This reduces the choice available to select the next data item to be output.

Forward tuning During the execution of the Look-back-m heuristic, multiple candidate

data items in the input bin can have same backward affinity. For example, when there are

no data items in the output bin, in the initial phase of the algorithm, all data items in the

input bin have zero backward affinity. The algorithm randomly chooses from candidate

data items. The forward tuning technique uses data items in the input bin to improve the

performance. For each data item in the input bin, it computes its affinity to the remaining

data items in the input bin, called forward affinity. It outputs the data item having maximum

forward affinity.

4 Performance results

We base our experiments on the Sequoia 2000 Storage Benchmark ([10]) for the results

presented in this section. We use the national dataset accumulated over 100 half-months.

This is a four-dimensional dataset. The dimensions are time, band, X, and Y, where X and

Y are the two dimensions from the raster image. We make the following assumptions about

the native order of the dataset: all the raster images are chronologically sorted, since they

were captured in that order. Raster images for a half-month are not sorted in any particular

order. The raster images are created in row-major order (that is Y changes faster than X in

the image). Two query types with distinct access patterns are used. Instances of Query Type
1 th

1 select all images belonging to a band. Each instance accesses g of the dataset. Instances
1 th

of Query Type 2 select all images belonging to a half-month. Each instance accesses

of the dataset. Based on these query types, we experimented with two kinds of workloads.

Workload 1 consists of majority (90%) of type 1 queries. Workload 2 consists of majority

(90%) of type 2 queries.

The results presented here compare the performance of our algorithms (Look-back-m

and Forward Tuning) with three other algorithms. The naive algorithm, which we refer

to as Unoptimized, preserves the native order while storing data. The band-date algorithm

sorts data items on the date dimension, and within the date dimension they are sorted on the

band dimension. The date-band algorithms reverses the inner and outer sort dimensions of

the band-date algorithm. We also present the best case times, calculated by storing data for

each query at the start of the media using as much data replication as necessary. The best

case times represent a lower bound on the workload execution time.

We use a simulator that uses the analytical model of Exabyte EXB-8505XL tape drive
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and EXB-210 tape library describedin [2] and usesthe SORT algorithm ([3]) for I/O

scheduling during query execution. The time taken to execute the workload by an algo-

rithm is plotted as a ratio of the actual execution time divided by best case time. We

evaluate the performance of the algorithms by using temporary storage equal to the size of

the instances of query type 1, query type 2, and the average query size of the workload.

Workload 1 Figure 1(a) shows that the performance of various algorithms is between 4

to 22 percent of best case. The wide range in performance is expected since the workload

is dominated by larger queries that require major changes in the native order in order to be

executed efficiently. The band-date scheme performs badly since it more or less preserves

the native order; in fact its performance is worse than the unoptimized case. The date-

band scheme improves its performance when given more temporary storage space. The

date-band scheme favors query type 1, which dominates this workload. Hence, a closer

transformation to the intended order (from native order) with increased amount of memory

improves the performance. Our algorithms (Look-back-m and Forward Tuning) outperform

other algorithms; moreover, they are within 6 percent of best case if the amount of memory

available is more than average query size. The Forward Tuning algorithm does not provide

any appreciable performance benefits over Look-back-re.

Workload 2 Workload 2 is dominated by query type 2, and the native order is favorable

to it. The date-band scheme is not favorable to the majority of the queries; hence, we see

a reduction in performance as the amount of available memory increases (increasing the

closeness to a perfect date-band order) (figure 1(b)). Other algorithms perform similar to

each other, the range of performance being around 18 percent of best case. The reason is

that these algorithms tend to retain the native order; hence, the increase in the temporary

storage size has no effect on the performance. None of the algorithms get close to best

case because they do not take into account the size of the instance of the query types in the

workload. A more sophisticated algorithm would have realized that 10% of the queries in

the workload access approximately 66% of the total data accessed by all the queries in the

workload and tried to optimize the storage layout for the minority query type (query type

1). Knowledge about the amount of data accessed by an instance of a query type requires

advance information about the domain of each dimension. The algorithms presented in this

paper were designed to work without such knowledge.

5 Conclusions

This paper investigates issues in efficient tertiary storage organization for multidimensional

datasets. We show that the order in which the dataset is generated (or currently stored)

affects the storage layout decisions due to limited amount of temporary storage available

for data reorganization. We further show that efficient storage layout can be designed in

this situation by considering data items that are accessed together rather than sorting the

data items based on their coordinates. The experimental results have shown our techniques,

based on heuristics, to be effective. They also reveal that when taking decisions about data
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layout, one must consider the amount of data accessed by different queries in the workload

besides the query characteristics and their execution frequencies.
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Abstract

Colossal Storage has invented new ways of non - contact reading and writing with non
destructive reading of information to a ferroelectric molecule.

1. Introduction

The Colossal FE Optical Drive density of 40 gigabits/sq.in, up to 500 gigabits/sq.in.[ 1]

A comparison with harddrives of today is around 4 gigabits/sq.in, maxing at -40

gigabits.[5] With optically assisted drives maxing at -45 gigabits/sq.in, and contact

recording AFM, STM, SPM or SFM, i.e. atomic force microscope and their derivatives,

maxing practically out at about ~300 gigabits/sq.in..

2. Mywork

Colossal Storage uses the Einstein/Planck Theory of Energy Quantum Electrons to

control molecular properties by an atoms electron movement/displacement. [6]

The Colossal Storage FeDrive - FeHead Semiconductor Integrated Optical Read /

Write Head will use Ultraviolet/Blue laser diodes with Voltage transducer to write, and

UV/Blue laser diode and Nanooptical transistor or Nanofloating gate Mos Fet to read.

2.1 Ferroelectric Molecular Optical Bits

The peripheral drive uses an ultra-violet or deep blue light source with an applied Electric

field orientation transducer for writing. Reading is done by a second deep blue Or ultra-

violet light source that is reflected off of the ferroelectric perovskovite molecule Surface

to a nanoopto photo diode that is able to detect small changes in the diffraction of the

Ultra-violet or deep blue light from the ferroelectric perovskovite molecule.[4]

Writing is done when the output of the ultra-violet or deep blue light source emits

photons and ferroelectric molecules absorb the photons energy creating electron
movement from the valence orbit to the conduction orbits of the ferroelectric molecule.

When the applied field has a positive voltage potential the electrons move towards the

transducer and vice versa for a negative potential. When the ultra-violet light source and

applied fields are both turned off the ferroelectric molecule stays in the orientated

direction and stores the random electric field positive/negative potential, i.e. a molecular

or atomic switch, which also causes the ferroelectric molecule to physically elongation or

shrink up to 1.5%. The stored electric field difference (voltage) of the ferroelectric

molecule is permanently changed until ultra-violet or deep blue laser light and the applied

field are turned on again to reorientate the direction of the potential difference. The

dipoles electrical polarity of the ferroelectric molecule physically changes the

transmiscivity, diffraction, surface morphology/topography, opacity, and reflection

characteristics of ultra-violet or deep blue light on the ferroelectric molecule.[2] [3]
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Extremely small laser spots of 300 angstroms and less can be written and read using

integrated optical head structure with densities of 40 gigabits sq.in, to 500 gigabits sq.in.

being realized.[8] One method of reading is done with a second much lower Quantum

energy ultra-violet or deep blue light source and a photo transistor or diode are used to
detect differences in the diffracted photons of the ultra-violet or deep blue laser light

being reflected back from the surface of the ferroelectric perovskovite molecule into the

photo diode or transistor. Second method of reading is done by a floating gate mosfet
transistor that is able to detect small changes in electric lines of force of the ferroelectric

molecule. The electrostatic field (electric lines of force) from the ferroelectric molecule is

sensed by the read mosfet transistor. The read voltage output is the recorded data in the

ferroelectric molecule and is equal to the VCC of the floating mosfet transistor plus or

minus the detected electrostatic field strength (electric lines of force) of the ferroelectric

molecule. The read mosfet transistor is a source follower that does not destroy the stored

electric field/voltage potential difference of the ferroelectric molecule. Third method of

reading is done by yet another interesting variable by a second deep blue or ultra-violet

light source which cause electrons of the ferroelectric perovskovite molecule dipoles to

jump from one orbit to another. Niels Bohr Atom Postulates states, light excited electrons

will stay in their higher energy orbits, UV or deep blue light with specific frequency and

quantum energy excite the electrons of ferroelectric molecules into higher valence orbits

and fall back to the normal lower energy orbits when the UV or deep blue light source is

removed.J9] The stored internal dipole position (remnant displacement of central atoms -

remnant polarization) further amplifies any higher orbit electron electrical field potential

either positive or negative depending on the dipole position in the ferroelectric molecule

and the distance from the UV or deep blue integrated read/write head. A mosfet

nanotransistor that is able to detect small changes in the electrical field potential of the

ferroelectric molecule when ultra-violet or deep blue light source is focused on the

ferroelectric perovskovite molecule. Removal of the second UV light source (Quantum

energy is characterized lower - not to induce electron movement into the conduction

band) leaves the ferroelectric molecule in its initial electrical field stored state. The stored

electrical field potential of a ferroelectric molecule can be made to represent at least four

electrostatic field states equal to binary information.[ 10]

2.2 Ferroelectric "Molecular Optical Read / Write Head

_eUR t /_
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3. Related Work

Optical disk drives of today use laser light and a wide array of objective, Polarizing, and

newly invented solid immersion lens (SIL). Laser light and Photon characteristics have

allowed data storage peripherals to store enormous amounts of data. Sometimes the data

written could only be written once, on magno-optical drive that data could be rewritten a

limited amount of times by raising the temperature of the entire track and thereby causing

an erasure of data. The latest means for increasing areal densities is done by a multitude

of lens arrays finally feeding into a solid immersion lens (SIL). A focused infrared spot is

obtained at the base of the SIL head (Terastor(Quantum)(Imation/3M). (Quinta)

(Seagate) (Read-Rite) very small aperture lens (VSAL) method of technology for

ferroelectric photon optical storage uses the BRAGG effect and a contact electrode.

Quinta, Siros Technology, IBM, and Ioptics place single or multiple layers of recording

magnetic media within a fraction of a wavelength distance from the SIL or VSAL head

base, and by using a inductive transducer cause the electrons of the ferromagnetic

material to take on a (clock wise rotation)-north magnetic polarity or (counter clock wise

rotation)-south magnetic polarity. When a infrared photon of the right energy level hits

the ferromagnetic electrons it is reflected, whereby the infrared photon takes on a light

polarization property, which can be measured, the KERR effect. In contrast, the Thomas

Colossal semiconductor integrated optical head is able to produce much smaller spots

than infrared-based storage devices. The ferroelectric molecules not only have small size,

fast switching speeds, but can store voltage much like a variable voltage battery allowing

for bit voltage data compression schemes, increasing densities even further, allowing

further advances into holographic storage research. Ferroelectric molecular write activity

is influenced by the introduction Of ultra-violet or deep blue laser light, Einstein/Planck
Theorem of Energy Quantum. An induced electrical field further alters the ferroelectric

molecular Materials properties such as conductivity and electrical properties. Removal of
the light source and induced electric field leave the ferroelectric molecule in an altered

electrical state potential which is non-volatile. A second much lower Quantum energy

ultra-violet or deep blue light source and a photo transistor or diode are used to detect

differences in the diffracted photons of the ultra-violet or deep blue laser light being

reflected back from the surface of the ferroelectric perovskovite molecule into the photo
diode or transistor.
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4. Future Work

The applications for the Colossal Read/Write head are still evolving and encompass much

more than just data storage and fast random image xerographic replication. Colossal

Storage is also working on holographic concepts for future storage peripheral

products.[7] The Colossal Storage FE Semiconductor Read/Write head for Ferroelectric
Molecular Electrostatic Field Random Reorientation can be used for many more

applications than data storage, examples might be, high speed imaging and offset

printing, lithography, copiers, and printers. Future integrated circuits could be made and
verified that have ferroelectric wiring 1 molecule wide with the ability to polarize the

wire for new switching, molecular optical wire, logic state definitions, and I/O Data
Transfers states. Ferroelectric interconnects can do it cheaper, with less power, and in

much higher densities.

5. Conclusions

The Colossal Storage FE Optical Drive will offer symmetrical infinite double sided disk

or tape non-destructive read and writes for the retention of data storage for ten-years or

more. The Colossal FE Optical Drive density of 40 gigabits/sq.in, up to 500

gigabits/sq.in. The Colossal Ferroelectric Molecular Optical NanoTechnology Drive will

be able to hold more data than any other type of drive and will deliver data much faster.
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Abstract

The use of non-volatile write caches is an effective technique to bridge the performance gap be-

tween I/0 systems and processor speed. Using such caches provides two benefits: some writes will

be avoided because dirty blocks will be overwritten in the cache, and physically contiguous dir_

blocks can be grouped into a single 1/0 operation. We present a new block replacement policy that

efficiently expels only blocks which are not likely to be accessed again and coalesces writes to disk.

In a series of trace-based simulation experiments, we show that a modestly sized cache managed

with our replacement policy can reduce the number of writes to disk by 75 percent and often did

better. We also show that our new poli_, is more effective than block replacement policies that take

advantage of either spatial locality or temporal locali_, but not both.

1 Introduction

As processors and main memory become faster and cheaper, a pressing need arises to im-

prove the write efficiency of disk drives. Today's disk drives are larger, cheaper, and faster

than they were l0 years ago, but their access times have not kept pace. The microproces-

sors of today have a clock rate 50 times faster than their predecessors of 10 years ago. At

the same time, the average seek time of a fast hard disk is at best between one half and one

third of its predecessors from the same period. Some technique must be found to bridge

the performance gap if I/O systems are to keep pace with processor speed.

tSupported in part by the Office of Naval Research under grant N00014-92-J-1807 and by the National
Science Foundation under grant PO- 10152754.
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The effects of this huge write latency can be reduced by delaying writes indefinitely in

non-volatile memory before being sent to disk [5]. The longer that data is held in memory,

the more likely it will be overwritten or deleted, reducing the necessity for a write to disk.

It is also more probable that data in the cache can be grouped together to yield larger, more

efficient writes to disk. Therefore, a non-volatile write cache can substantially decrease the

number of reads and writes actually serviced by the disk. This substantially reduces the

amount of disk latency by eliminating some of the time necessary to reposition the disk

head for each write.

A cache replacement policy is required to manage such a cache. Any cache replacement

policy must control two things, namely which entities to expel from the cache (the so-called

victims) and when to expel them. The latter is very important when the processes accessing

the storage cannot be delayed. In this case, any write occurring when the cache is full will

stall and must wait while victims are being cleaned to the disk. If the selection of these

victims is not performed carefully, blocks recently written into the cache will be flushed to

disk. Once flushed to disk, the cleaned blocks can be reused and overwritten as additional

writes are made. If overwritten, the data from victim blocks will not be present in the cache

even though temporal locality dictates that they are the most likely to be accessed again.

The cost of writing from the cache to disk is an important factor in selecting victims.

Each write operation incurs a penalty due to seek time and rotational delay. Single blocks

in the cache are very expensive to reclaim; each requires a write operation. Groups of

blocks that can be coalesced into larger contiguous segments are prime candidates because

they can be written in a single I/O operation.

We propose a block replacement policy that is segment-based. To simplify the presen-

tation of our policy, we define a segment as a set of contiguous blocks located on the same

track. By using a track-based approach, cost is associated with one seek of the disk head

and one rotation of a disk platter. This has the advantage of making the cost of writing an

individual block inversely proportional to the size of the segment to which it belongs.

Our replacement policy is based on the following three observations:

1. Writes to blocks in the cache exhibit spatial locality: blocks with contiguous disk

addresses tend to be accessed together,

.
Writes to blocks in the cache also exhibit temporal locality: the probability that a

block in the cache will be accessed again is a decreasing function of the time interval

elapsed since it was accessed last, and

, The curve representing the hit ratio of the cache as a function of its size exhibits a

knee: once a given minimum cache size is reached, further increases of its size lead

to much smaller increases in the hit ratio (see Figure 1).

Based on these three reasonable assumptions, we develop a model of cache behavior

that divides segments into hot and cold groups. Using this concept of hot and cold groups,

we present a new cache replacement algorithm. The model and algorithm are described

in §2. We experimentally test the algorithm using a trace-based simulation. Experimental

observations and results are found in §3. Section 4 discusses related work. The final section

summarizes our major results.
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Figure 1- Simulated hit ratios as non-volatile write cache sizes increase for the two disks

used in our experiments.

2 Cache Behavior

Given a cache exhibiting the properties of temporal locality, spatial locality, and a dimin-

ishing benefit to hit ratio described above, consider the rrt segments in S residing at any

given time in a write cache. Assume that they are sorted in LRU order so that segment $1 is

the most recently referenced segment. Let rtt represent the size of segment St expressed in

blocks. If accesses to segments in the cache follow the LRU stack model, each segment has

a probability Pt of being referenced next. This probability will decrease with the rank of

the segment i.e. i < j implies Pt > Pj. Note that Pt represents the probability that keeping
segment Si in the cache will avoid a cache miss at the next disk write.

The contribution of each block in segment St to the expected benefit of keeping segment

Si in the cache is given by the ratio pt/rtt. It makes sense to keep all the segments with

the highest pt/rtt ratios in the cache because this strategy makes the most efficient use of

cache space. Conversely the segment with the minimum pk/rtk ratio should be expelled.

The blocks of that segment have the lowest probability of avoiding a cache miss during the
next write.

Using these probabilities, we partition the segments residing in the cache into two

groups. The first group contains segments recently written into the cache; these are the

most likely to be accessed again in the near future. These hot segments should remain in

the cache. The second group contains the segments not recently accessed and therefore

much less likely to be referenced again. These cold segments are all potential victims for
the replacement policy.

We identify these two groups of segments based on the knee in the curve representing

the hit ratio of the cache as a function of its size. Let sk,_ee be the size in blocks of the

cache at the knee and let Cj be the sum of the sizes of the first j segments in the LRU stack
ordering of all segments in the stack:

Cj : if'- n t.

_=1
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The hot segments are the k most recently referenced segments that could fit in a cache of

size Skaee, that is, all segments St such that i. < k where k is given by:

max{j [ j > ] and C i _< Sk,_ec}.

All cold segments are assumed to be good candidates for replacement. We infer from

the hit ratio curve that the pt/rti ratios for cold segments differ very little from each other.

We would expect to see a greater increase in hit rate where the hit rate is nearly constant

past the knee otherwise. Therefore the most efficient choice is to clean the largest segment

in the cold region. This cleans the most cache blocks for the cost of one disk seek and at

most one rotation of the disk platter.

A replacement policy that never expels segments until the cache is full can often cause

writes to stall for lack of available space in the cache. This can be avoided by setting an

upper threshold on the number of dirty blocks in the cache to force block replacement to

begin. This clean space, say 10 percent of the cache, is able to absorb short-term bursts

of write activity and prevent stalls. Our cache replacement policy then has two thresholds:

one to determine when replacement should begin in order to keep a minimum amount of

clean space, and one to determine when it ends based on the location of the knee.

The algorithm to select the segment to be expelled can thus be summarized as follows:

1. Find Sk,_ee the size of the cache for x-value of the knee of the hit ratio curve.

2. Order all segments in the cache by the last time they were accessed: segment $1 is

the most recently accessed segment.

3. Compute successive Cj = Y_=I rtt for all Cj _< Sk,_ee.

4. Let k = max{j I i > 1 and Cj < Sk.ee}.

5. When 90 percent of the cache is full of dirty pages, expel the segment Sv such that

Sv has max{rti I i, > k} until Sv = Sk.

3 Results

We investigated the effects of new cache replacement policy on the utilization of the disk

with a specific emphasis on the overall activity of the cache and the disk. We measured the

number of times that writes were made to the disk to clean the cache and the size of each

write used to clean the cache. We also recorded the number of cache hits and cache misses

for the non-volatile write cache.

To run our experiments, we implemented our own model of the HP97560 disk drive. We

modeled the components of the I/O subsystem of interest: the disk head, the disk controller,

the data bus, and the read and write caches. We based our models on techniques described

by Ruemmler and Wilkes [7] and an implementation by Kotz, Toh, and Radhakrishnan

[6]. We then used the Snake 5 and Snake 6 file system traces collected by Ruemmler and

Wilkes [8] to drive a detailed simulation of the disk subsystem.

To validate our approach of grouping segments into hot and cold regions, we looked at

the effect of manually varying the size of the hot region of our cache. If this approach is
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correct,thenumberof writestodiskshouldbehighwhenthehotregionis smallbecausethe
largehot segmentsarefrequentlybeingreplaced.As cachesizeincreasesandapproaches
theknee,thenumberof writesto diskshoulddecreaserapidlybecausemorehot segments
fit into thehotregion.Thenumberof writesshouldthendecreasegraduallypastthekneeas
all thehot segmentsarenow in thehot region.Theresults(seeFigure2) showedprecisely
this type of behavior,with decreasesof asmuchas25 percentin the numberof writes
beforethekneeandaslittle as4 percentafterit.
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(a) Snake disk 5 (b) Snake disk 6

Figure 2: The effects of varying the size of the hot region of the cache for three different

cache sizes with snake disks 5 and 6. The dotted line indicates the location of the knee in
the hit ratio curve.

We compared the performance of our replacement policy to those that use temporal

locality or spatial locality but not both. We implemented two other policies for points of

comparison: the least recently used (LRU) replacement policy and the largest segment per

track (LST) replacement policy. The LRU policy uses temporal locality to replace segments

and always purges the most stale data first. The LST policy replaces the most cost effective
segments based on segment size first.

We expected the LRU and LST policies to perform worse than our policy overall. The

LRU policy handles hot segments well, but makes costly small writes to disk. The LST

policy makes efficient writes of large segments, but this is only useful when the segments

are cold. Since our policy attempts to deal with both hot and cold segments, we expect that

it performs comparably (at least) to the best metrics for LRU and LST. A comparison of

the results showed this was true for the number of writes made to disk and the number of

stalled writes (see Table 1). This comparison also showed that our new policy consistently

overwrote data in the cache more often than the LRU or LST policies.

4 Related work

Systems using non-volatile caches have been discussed in several contexts. The Autoraid

system developed by Hewlett-Packard used an NVRAM cache with a RAID disk array to
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Table1: A comparisonof threemetricsfor snakedisks5 and6 for a 128KBcache.

writestodisk
stalledwrites
cacheoverwrites

Snakedisk5
LRU LST New
33538 33895 32758
418 85 97

79678 76061 79980

Snakedisk6
LRU LST New
57059 54057 59592
398 0 0

143191 141814 145871

producea highperformance,highreliability storagedevice[9]. Therehasbeenconsider-
ableinterestin non-volatilecachesfor usein memorybasedfile systems[3] andin mono-
lithic anddistributeddisk file systems[1], [2]. The advantagesof theuseof non-volatile
cacheswith on-linetransactionprocessing(OLTP)systemshasbeeninvestigated[4].

Despitea largeinterestin non-volatilememory,little comparativework hasbeendone
with cachemanagementpoliciesin file systemapplications[2], [8]. Thresholdswerefound
to significantlyimprovetheperformanceof non-volatilecacheswhichonly takeadvantage
of spatiallocality [2]. Workby theauthorswith suchpoliciesshowedthattemporallocality
andlargewritesizecanbothbeusedto stronglyimproveoverallwriteperformance[5].

5 Conclusions

Non-volatile disk caches can reduce disk workload more effectively than conventional

caches because they allow disk writes to be safely delayed. This approach has two ben-

efits. First, some writes will be avoided because the blocks will be overwritten or deleted

while they are still in the cache. Second, the remaining disk writes can be organized more

efficiently by allowing contiguous blocks to be written in a single I/O operation.

We have presented a block replacement policy that organizes efficiently disk writes

while keeping the blocks that are the most likely to be accessed again in the cache. Our

policy partitions the blocks in the cache into two groups: the hot blocks that have been

recently referenced and the remaining blocks that are said to be cold. Hot pages are guar-

anteed to stay in memory. Whenever space must be made in the cache, the policy expels

the cold blocks that belong to the largest set of contiguous segments within a single track

until enough free space has been made.

Experimental results showed that by using our replacement policy with a correctly

tuned, modest sized cache, it is possible to reduce writes to disk by 75 percent on aver-

age and the policy frequently did better. The results showed the new policy to be more

effective than cache replacement policies which exploited either spatial or temporal local-

ity, but not both. In particular, data was overwritten in the cache more often using our

policy than the others, saving writes to disk. The new replacement policy also gave the

relative benefits of such policies without their unattractive features. It often provided the

least number of writes to disk of any of the policies we used for comparison. At the same

time, it often produced no stalled writes when other policies produced hundreds.
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Introduction

Fibre Channel Arbitrated Loop (FC-AL) is a loop architecture. It can support any

combination of hosts and storage devices, up to a maximum of 127 nodes. With 100

Mbytes/sec bandwidth, the loop structure enables rapid exchange of data between the

devices.

A major problem with the existing FC-AL is scalability. Theoretically, a

maximum of 127 devices can be attached to a loop. However, past research has indicated

that the loop can be saturated by as few as 32 devices. This number is expected to

decrease rapidly, as the disks become faster and faster. To overcome this limitation, we

investigated the possibility of extending the existing FC-AL protocol.

Switched FC-AL protocol aims at using a switch to accommodate Arbitrated

Loop devices without requiring a true fabric connection. Ideally, both fabric and loop
devices should be able to share a single switch and enjoy their own 100Mbytes/s

segments on each switch port, and yet be logically grouped together for high-speed

transactions.

We designed and simulated two different approaches to implement the switched

FC-AL protocol. In the first approach, which is a circuit switched approach, the initiator
establishes a connection with the target on the remote loop before initiating the data

transfer. This approach is useful for applications that have hard Quality of Service (QOS)

requirements. In the second approach, which is a packet switched approach, the exchange

of data takes place in hops. The initiator needs to establish a local connection only. Each

of these approaches has it's own pros and cons. The objective of our research is to

investigate the design issues and trade-offs of both these approaches.

Switched FC-AL design:

The two design considerations are the circuit switched approach, in which the

Initiator wins arbitration on it's local loop and establishes a connection with the Target on

the remote loop via the switch. The second approach is based on the packet switched

concept, in which the Initiator wins arbitration on its local loop and transmits data to the
Switch Connected Node (SCN) attached to the switch. The SCN buffers the data and

inturn arbitrates on the remote loop to deliver the data to the Target. A detailed

description of the two approaches are presented below.

Circuit switched approach:

Figure 1 illustrates this approach. The Initiator X, sends out an arbitrate primitive

ARB(X) to gain access to the loop. Upon winning the arbitration, by receiving the

ARB(X) primitive back, it sends out the OPEN(Y) primitive. If the target Y is not on the

local loop, the Switch Connected Node, SCN(L0 intercepts the OPN(Y) primitive and

sends a request to the switch to access the remote loop. If the remote loop is not busy, the

switch sends an acknowledgement back to the SCN(L0 and a connection request is sent

to SCN(Ln) via the switch. If the remote loop is busy, the switch sends a negative

acknowledgement back to the SCN(L0 and a connection tear down request is sent to

Initiator X by SCN(Ln). Else, the SCN(Ln) becomes the initiator of this remote request

on the local loop Ln. It next proceeds to establish a connection with the Target Y. If
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successful, the Target Y responds with R_RDY primitive which gets routed all the way
back to the Initiator X. At this stage the connection is established and all the data transfer

takes place directly between the Initiator and the Target using the usual FC-AL protocol.

Tear down of the connection can be initiated by either the Initiator or the Target by
sending the CLS primitive.

Initiator (X) _ _'_ f _" \\

Loop 1

SWITCH

, /.

Loop n

Figure 1: The simulation model for the circuit Switching based approach.

Packet switched approach :

It follows the store-and-forward technique of data transfer. In this approach, the

Initiator X, sends out the arbitrate primitive ARB(X) to gain access to the local loop. On

winning the arbitration, it send out the OPEN(Y) primitive. If the target Y is not on the

local loop, the Switch Connected Node, SCN(L1) intercepts the OPN (Y) primitive and

sends a request to the Switch to access the remote loop.

Initiator (X)

J

Loop 1

 icN
Loop n

Figure 2: The simulation model of the packet switching based approach

At the same time, it sends a local acknowledgement back to the Initiator in terms of

R_RDY. At this stage, SCN (LI) becomes the local target for the global request in loop

L1 and all the data transfer takes place directly between the Initiator X and the SCN(LI)

using the FC-AL protocol. If the remote loop is not busy, the switch sends an

acknowledgement back to the SCN (L_) and a connection request is sent to SCN(Ln) via

the switch. The SCN (Ln) next proceeds to establish a connection with the Target Y. If

successful, the Target Y responds with R_RDY primitive which gets routed back to SCN
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(Ll). Now datatransfer takesplace directly betweenthe SCN (L1) and TargetY. The
advantageof this approachlies in the fact that both the stagesof datatransfercantake
place asynchronouslythere by providing some means of parallelism. Also, the
acknowledgementsent is segment-by-segment,thereforea negativeacknowledgement
from theswitchdoesnotneedto teardowntheconnection.

Simulation Model
The detailed simulation model is shown in Figure 3. Each loop consists of one

host, one Switch Connected Node (SCN) 1 and a variable number of disks. The number of

disks attached to a loop is one of the parameters of our study. SCN has been given the

highest priority and does not implement the fairness algorithm. All other nodes, including

the host are assigned priority randomly. Table 1 shows the values of the parameters used

for the simulation.

Arbitrated Loop

Switch
Arbitrated Loop

Figure 3. The detailed simulation model used for both the schemes.

Parameters

Propagation

delay
Per node

delay
Bandwidth
Maximum
outstanding
commands

Default Values

3.5ns

6 words time

100 Mbytes/sec

8 times the number of

disks on the loop.

Description
The propagation delay between two nodes

The delay for the interface to forward the frame.

The FC-AL link bandwidth

The maximum number of commands allowed at the initiator.

Used for the stress test.

Table 1: Switched FC-AL simulation model parameters

Simulation Results

We studied the performance of switched FC-AL under two different load

scenarios namely, light load and heavy load. In the first scenario, the system is under

extremely light load. The host generates a request and waits till it gets serviced, before

generating the next request. Thus, the storage subsystem has only one outstanding
command at a time. This allowed us to compare the total latency of both the approaches

as the percentage of global traffic is varied. It also gave us an idea of the latency

I SCN is the interface between the loop and the switch. It's like a normal node with extra buffers.
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overhead involved. We also studied the effect of the number of loops on the total latency
of the system.

In the second scenario (heavy load), we studied the scalability of the existing FC-

AL protocol and compared it with that of switched FC_AL. We heavily loaded the loop
by setting the number of outstanding commands per disk to 8, and increased the number

of disks per loop. The purpose of this test was to discover the number of disks (all the

three types) needed to saturate the loop and to find out how the two approaches of
switched FC_AL perform near saturated conditions.

Performance under Light Load

In the light load scenario, the target disk and loop for any command is chosen

randomly according to a uniformly distributed random number. We use 64KB as the

request size to represent a normal request. We want to see how the loop latency and total

latency change as the percentage of local and global traffic changes and also the effect of

number of loops on the total and loop latency of the storage subsystem.

Percentage Global Traffic Maximum circuit 1 establish time Maximum circuit 2 establish time

0 0.6875 0.697754

10 1.584229 !.805176

20 2.085144 2.28125

30 2.462872 2.783691

40 2.754395 2.988281

50 3.386963 3.453369

Table 5: Maximum circuit establish time for both the phases of circuit switched approach.

Table 5 shows the effect of increasing global traffic on the circuit establish time for

circuit switched approach when the number of disks on each loop is 8 and the request size

is 64KB. Evidently, the circuit establish time 2 increases exponentially with the

percentage of global traffic. To understand this behavior, we counted the number of

attempts needed by an initiator to establish a circuit. Graph 2 shows the observed
behavior.

I Circuit switched approach [ Packet switched approach

%global
traffic

Disk time Loop time Total time

5.686322

# of re

attempts
0

Disk time

4.86336

Loop time Total time # of

attempts
00 4.86336 0.822962 0.822964 5.686324

10 4.969455 0.851242 5.820697 1.964646 4.917598 0.89883 5.816428 i.006711

20 5.078583 0.880659 5.959242 4.49596 5.010529 0.993514 6.004043 1.013423
0.926795

0.985283

1.050099

30 6.018171

6.09796

6.200048

40

10.15657

18.69596

28.51717

5.091376 5.053116

5.067917

5.098782

5.112677

1.123394

!.251087

1.3798475.149949

6.17651

6.319004

6.47862950

1.020134

1.026846

i.033557

s Table 6: Average latencies of both approaches with varying percentage of global traffic.
• 1

latency. The disk access time consists of the command queuing time, disk seek time, disk

rotation latency and the data transfer time. The loop latency consists of the time to win

2

Circuit establish time is defined as the total time an initiator takes to win arbitration, open the target and get the R_RDY back.
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the arbitration and the transmission time of control and data frames. In order to avoid

concurrent data fetch and transfer feature of FC-AL, we restricted our request size to

64KB.
From Table 6, we found that the disk access time dominates the total time for any

percentage of global traffic. This is because the bandwidth of FC-AL loop is 100 MB/s,

and it takes just 0.64 ms to transfer the 64KB data, whereas the average seek time alone

of the disk is 2.475 ms. This clearly indicates the need for dividing a transaction into two

phases. In the first phase, a host can send the request to the disk and then relinquish

control over the loop. In the second phase, the disk, after fetching the data, can transfer

the data back to the host, thereby allowing multiple I/O operations to fully utilize

available bandwidth of FC-AL at the same time.

10 20 30 40 50 60

_ gk_'_C

Graph 1: Comparison of loop latency of both
the approaches.

30

25

"6 10

0

q

---ll--i_Packet s_itetmd |_-_ .

10 20 30 40 50 60
globaltraffic

Graph 2: Comparison of "number of re-
attempts needed" for both the approaches.

We also observe that both disk access time and loop latency increase as the percentage of

global traffic increases. The increase in disk access time is primarily due to the increase

in command queuing time. As the percentage of global traffic increases, the probability

of two requests being generated for a particular disk increases and this contributes to the

increased queuing time.
Graph 1 shows the loop latency of both the approaches. The rapid increase in loop

latency, in the case of circuit switched approach, is due to the exponential rise in number

of attempts needed to establish the circuit. In the packet switched approach, the increase

though exponential, is very small, and is mainly contributed by the additional store and

forwarding time of the frames at the SCN. In the light load scenario, the circuit switched

approach exhibits better total request servicing time than the packet switched approach.

We also investigated the effect of increase in the number of loops on the total

request service time. The percentage of global traffic was set to 40% and request size to
64KB. From table 7, we observe that as the number of loops increases, the number of re-

attempts needed to establish a connection increases more rapidly for the circuit switched

approach than the packet switched approach. So the increase in total latency is more for

the former than in the latter.
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[ [ Circuit switched approach [ Packet switched approach ]

No. of Disk time Loop time Total time
loops

2 5.029166 0.980776 6.019942

4 5.122677 0.985283 6.107959

8 5.12838 1.014671 6.143051

# of

attempts
45

17519

42740

Diskfime Loop time Totaltime

5.00825 1.210549 6.298799

5.067917 1.241087

5.107891 1.272409

# of

attempts
26

6.319005 29

6.372301 49

Table 7: Average latencies of both approaches with number of loops.

Performance under Heavy Load

With the advancement in disk technology, fewer disks are now capable of

saturating an arbitrated loop. To investigate this scenario, we studied the performance of

FC-AL with three different types of disks. At the beginning of the simulation, the

commands were generated one aider the other until the number of outstanding commands
reached a pre-defined upper limit. This value was set to be the number of disk on the

loop, multiplied by 8. We maintained the same number of outstanding commands

throughout the entire simulation. When one command is completed, a new command is

generated right away. We used two uniformly distributed random number sequences,

which are generated with different seeds. They are used to determine the target disk and
loop for any command.

The simulation results of circuit switched and packet switched approaches for

diskl are shown in graph 1 and 2 respectively. The graphs depict three series. The first

one, from the right, shows the number of disks needed to saturate the loop with a given

64KB request size while the next two series show the throughput vs. latency behavior of

the two approaches before saturation. Each of the data points in a graph is labeled with a

number indicating either the number of disks per loop (for first one) or the percentage of

global traffic (for series 2 and 3). The percentage of global traffic is varied from 0 to 50,
in steps of 10.

Circuit Switching based approach(Disk 1)130

• _ i _-- i 0 disk/loop '120 ! Ill 24
• 12 disk/loop - ]

• ,_.110 • 40 i --U---varlablenumerofdisk/loop !

 100*,70 & 30 \

..a80 •2o

70 _ 1o 1o o

40 45 50 55 60 65 70 75 80 85 90 95[
Throughput(MB/sec)

Graph 3: Throughput vs. Latency behavior of the circuit switching based approach.
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From graph 3, we can see that the FC-AL loop starts getting saturated with 16

disks of type 1. The maximum throughput obtained is 90.04 Mbytes/sec. After

saturation, with more disks attached to the loop, longer latency is observed.

We investigated the performances of both the circuit switched and the packet

switched approaches, when the number of disks on the loop is 12 and 10. From graph 3

and 4, we observe that as the percentage of global traffic increases, the throughout

decreases while the latency increases. This is mostly due to the following two factors:

increased arbitration overhead and blocking. Since we need to win arbitration on both the

loops for each global request, the arbitration time is doubled. The second factor

contributing to this delay is the number of blocked requests. In case of circuit switched

approach, a request is blocked if the remote loop is busy servicing another global request

while in case of packet switched approach, a request is blocked for the duration in which

data is transferred between the host and the target SCN. Since the blocking time is much

longer for the circuit switched approach, it incurs steep rise in latency as the percentage

of global request increases. As a result, the packet switched approach shows better

throughput and latency characteristics than circuit switched approach.
We also observe that the latency of the packet switched approach for 10 disk/loop

is 68.52 ms while that of 12 disk/loop is 86.52ms. This big difference is due to the fact

that as the number of disk on a loop increases, not only does the propagation delay and

per node delay increase but so does the number potential initiators on the loop 3. Hence,

the number of L-Ports arbitrating at a time increases forcing the arbitration latency to

increase.

Packet Switching based approach ( Disk 1)

130

120

110 !
100

e-

_, 8o
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60

50

- t '_ 24
_', v_riable rlurrber o f di sit/loop

j:
12 disk/loop

20

550_40 __. 16
30 20.,_ 20 -_.___zu to -

8 30 12
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Average Throughput/Loop (MB/s)
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Graph 4: Throughput vs. Latency behavior of the packet switched approach.

Conclusion and Future Work

In this paper, we presented some initial results of our study on the performance of the

circuit and packet switched approaches to implement switched FC-AL. The light load test

indicated that even with vast improvement in the disk technology, the disk is still a

bottleneck and we need to multiplex several I/O operations to fully utilize the available

3 In our implementation, a disk is an initiator in the second phase of data transfer.
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bandwidth. We also see that with an increase in the percentage of global traffic the

number of attempts needed to establish a circuit increases rapidly. This is the main

limitation of the circuit switched approach. Packet switched approach, on the other hand

needs very few attempts to send the request to the remote loop but it's main overhead is

the store and forwarding time. Also, with an increase in the number of loops connected to

the switch, there is a marginal increase in the overall latency for both the approaches.

The scalability issue of the switched FC-AL protocol was studied using the heavy
load test. It is evident that with faster disk, the number of disks needed to saturate the

loop is very low. Hence, to use large numbers of disks and still have better throughput vs.

latency behavior, the switched topology is a good option. For both the approaches, the

aggregate throughput for as much as 50% of global traffic was quite high but clearly the

packet switched approach outperformed the circuit switched approach under our set of
assumptions.

We next plan to investigate the effect of variable number of hosts per loop on the

performance of both approaches. Other related issues like larger request size, inverse

priority of SCN and higher bandwidth of the loop also need to be studied. Finally, a

comparison of switched FC-AL and FC-AL 3 will be worth doing.

References:

[ 1] ANSI X3.272-199x, "Fibre Channel - Arbitrated Loop (FC-AL), Revision 4.5",

American National Standard Institute, Inc., June 1, 1996.

[2] ANSI X3.272-199x, "Fibre Channel - Arbitrate d Loop (F C-AL-2), Revision 5.1",

American National Standard Institute, Inc., March 26, 1996.

[3] ANSI X3.230-1994, Fibre Channel Physic al and Signaling Interfac e (F C-PH)"

American National Standard Institute, Inc., 1994.

[4] David H.C. Du, Jenwei Hsieh, Taisheng Chang, Yuewei Wang and Sangyup Shim,

Performance Study of Emerging Serial Storage Interfaces: Serial Storage Architecture

(SSA) and Fibre Channel - Arbitrated Loop (F C-AL)", Submitted.

[5] Chris Ruemmler and John Wilkes, "An introduction to disk drive modeling" IEEE
computer, march 1994, pp. 17-28.

[6] Gadzoox Network's white paper on the Denali Fibre Channel Switch.

http://www.gadzoox.com/links/products/switch/denali.html

[7] Vixel's white paper "Arbitrated Loop Attachment for Fibre Channel Switches"

http://www.vixel.com/whitepapers/wpaper2.html, July 1998

233





Evaluating Backup Algorithms *

Zachary Kurmas

College of Computing, Georgia Tech
801 Atlantic Ave. NW

Atlanta, GA 30332-0218

tel 1-404-894-9390

fax 1-404-385-1253

kurmasz @ cc.gatech, edu

Ann L. Chervenak

USC Information Sciences Institute

4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292-6601

tel +1-310-822-1511

fax +1-310-823-6714

annc@isi.edu

Abstract

We present a trace-driven simulator that evaluates the performance of backup al-

gorithms. We use this simulator to compare the performance of the commonly-used

level scheme (our name for the algorithm used by the UNIX dump utility) with that of

a new algorithm called the Z scheme. We show that the Z scheme has better backup

performance than the level scheme and slightly worse restore performance. We also

show that the Z scheme consumes less media for backups than the level scheme.

1 Introduction

Given the unprecedented increases in magnetic disk drive capacities, university, enterprise,

and government data repositories are growing rapidly. Protecting these data repositories

using traditional backup techniques is a growing challenge [3].

In this paper, we evaluate four backup strategies. Our eventual research goal is to

demonstrate the limits of current backup algorithms and propose new algorithms both for

sequential magnetic tape media and for random access alternatives, including write-once

technologies such as CD-ROM and DVD. Initially, we focus on backups to sequential
magnetic tape media.

Every backup algorithm makes a tradeoff between backup performance and the perfor-

mance of restore operations, in which files are retrieved from the backup medium. At one

extreme, an algorithm optimized for fast backup might simply write periodic incremental

backups, or copies of files that have changed since the last backup. Each day, this pure

incremental approach copies to the backup medium only the files that have been modified

that day. The disadvantage of this simple, fast backup scheme is that the performance of

restore operations may suffer. If files in a single directory are modified on different days,

the pure incremental algorithm may disperse those files widely on the sequential backup

media. Later, to restore the entire directory, reading large amounts of sequential media may
be necessary.

*This work was supported in part by NSF CAREER Award CCR-9702609.
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At the other extreme, an algorithm optimized for fast restore would take pains to lay

out data carefully on the backup medium, copying all files in a given directory to the same

backup medium and grouping together directories that are logically connected. An algo-

rithm of this type might even perform daily full backups, in which all files and directories

are written to the backup medium. The goal of these algorithms is to reduce the time re-

quired to restore a given directory or file system by minimizing the quantity of sequential

media that must be accessed during the restore operation. The disadvantage of such algo-

rithms is that the backup phase requires substantially more media and takes much longer,

given the bandwidth limitations to sequential tape media (e.g. the speed at which the tape

drive can write).

Between these two extremes are many other backup algorithms that attempt to strike a

balance between backup performance, restore performance, and media requirements. We

evaluate two of these algorithms here: the traditional backup scheme used by many pro-

grams, including UNIX dump, which we call the level scheme, and a new algorithm we

developed which we call the Z scheme [6, 1].
To evaluate these backup algorithms, we wrote a trace-driven backup simulator. Inputs

to this simulator include traces made by Tim Gibson [4] as well as traces of backup activity

collected in the College of Computing at Georgia Tech. Our simulation results evaluate

the performance of the full backup, pure incremental, level, and Z schemes. As expected,

our results show that the full backup algorithm has poor backup performance but performs

restores efficiently. In contrast, the pure incremental scheme performs well for backups

but poorly for restore operations. The level scheme performs well for all metrics, with

backup performance close to that of the pure incremental scheme and restore performance

close to that of the full backup scheme. The Z scheme performs backup operations better

than the level scheme, and restore operations almost as well as the level scheme. We will

argue that the Z scheme's better backup performance makes up for its slightly worse restore

performance, and, therefore, is a better algorithm.

2 The Backup Simulator and File System Traces

The trace-driven backup simulator is written in C++. Its modular, object-oriented design

simplifies implementing new backup algorithms, accommodating new trace formats, and

gathering different performance metrics.

Input traces for the backup simulator contain periodic records of the state of a file sys-

tem hierarchy -- specifically, daily images of the file system metadata at the time backups

are performed. Using these records or snapshots of the state of the file system, the sim-

ulator traverses the file system hierarchy, examines file metadata, and decides which files

should be backed up according to the specified algorithm. The algorithm uses a tape object

to keep track of the layout of files on the tape. During a restore operation, the simulator

uses Bruce Hillyer's model of a DLT 4000 tape drive to estimate the seek time to access a

particular file [5]. Metrics for evaluating the algorithms include the time to perform backup

and restore operations and the amount of tape media required for backup.

In this paper, we present simulation results that use Gibson's traces as input [4]. Gib-

son's traces include a set of files for each day observed. Each trace file contains the name,
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size, owner, group, inode, access time, modification time, and change time of each file on

the traced file system on a given day.

3 Backup Algorithms

We now describe the backup algorithms that we evaluate in this paper.

Pure Incremental Scheme: Once every day (or, more generally, once every period

or epoch specified by an algorithm), this scheme copies only those files that have

changed since the last incremental backup to the backup medium. We use this scheme

as a basis for evaluating optimal backup times.

Daily Full Backup Scheme: Every day, this scheme copies all files in the file system

to the backup medium. In general, this scheme puts files in the same directory close

together on the backup medium. We use this scheme as a basis for evaluating optimal
restore times.

Level Scheme: The level scheme is our name for the traditional backup algorithm

that alternates between periodic full backups and incremental backups of different

"levels", where a backup at a given level includes all files that have changed since

the last backup at that level.

Z Scheme: The Z scheme is the name we give to our algorithm. It is a simplification

of an algorithm developed at UC Berkeley by Costello, Umans, and Wu [2]. This

scheme performs concurrent backups to several backup streams. The Z scheme uses

a parameter b, called the base. A particular file is written to backup stream i if it was

last modified exactly bi days ago. For example, every day the algorithm writes to

stream 0 those files that were last modified yesterday. If the base b is 2, the algorithm

writes to stream 3 those files last modified exactly 2 3 = 8 days ago.

To restore every file currently in a file system, a backup algorithm must read the most

recent version of every file from tape. In a pure incremental backup scheme, we found that

restoring a file system required reading a large number of tapes. In particular, we found

that for an incremental backup scheme that uses one tape per day, there is a high probability

that each backup tape contains at least one file that was last modified on that date (usually,

there are several files). To restore a file system on day x, the restore operation must load

and read at least one file from approximately x tapes. Since the time to load and seek on

a tape often exceeds the time to read files, this results in poor restore performance for the

pure incremental scheme.

The level scheme trades backup performance for improved restore performance by re-

dundantly backing up files in such a way that the number of tapes that must be read to

restore a file system is bounded by a constant (provided that the size of the file system is
also bounded).

As we will see, the level scheme has very good performance; however, its performance

is hindered by two inefficiencies, both of which are addressed by the Z scheme: First,

the daily bandwidth needed by the level scheme varies greatly. The amount of bandwidth
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needed for a level 0 (or full) backup is about 25 times the amount needed by a daily level

9 (or incremental backup). Therefore, a user of the level scheme must maintain enough

backup equipment to handle a level 0 backup, even though that equipment will remain idle

for most of the year. Second, the lower level backups (e.g. levels 0, 5, and 7), back up all

files modified since the last backup of a lower level regardless of whether those files are

likely to be modified in the near future. For example, consider a file F that is modified

every day, and, therefore, sent to tape by a level 7 backup every Sunday. Because file will

be modified again Monday, any restore will have to pass over file F's spot on the tape used

for the level 7 backup. This takes time that could be saved if the file was simply not backed

up by level 7. The Z scheme addresses this problem by not writing files to higher level

streams until they have not been modified for several days. l

4 Evaluation of Algorithms

In this section, we present comparisons of backup algorithm performance for the three met-

tics of interest: the amount of sequential access tape media required to perform backups

and the time required to perform backup and restore operations. We evaluate the perfor-

mance of four algorithms: the pure incremental, full backup, level, and Z schemes. For this

paper, the Z scheme was run with a base of 8.

The results below reflect backup and restore performance for a single file system used

by graduate students at the University of Maryland at Baltimore County [4]. This file

system contains about 1.5 gigabytes at the beginning of the trace and approximately 4

gigabytes at the end of the trace.

The restore results use Hillyer's model [5] to determine seek time. The current simu-

lation results assume a tape drive read rate of 1.5MB/s and a load time of 30 seconds per

tape.

4.1 Media Requirements for Backup

First, we compare the cumulative total of bytes written to the backup media for each algo-

rithm. This metric is used for comparison purposes. In practice, some algorithms might

discard or re-use tapes that are no longer needed for restore. For example, both the level

and the full backup schemes could discard older tapes, assuming they retain at least one

subsequent full backup of the file system. However, the pure incremental scheme must

retain all tapes that contain active files.

Figure 1 shows the number of bytes written by the four backup algorithms. As expected,

the full backup scheme uses, by far, the most media while the pure incremental scheme uses

the least. The media requirements of the level scheme are quite low, because it performs

frequent incremental backups and only occasional full backups. By the end of the 8-month

period in the graph, the level scheme uses approximately twice as much media as does

the pure incremental scheme -- about 38GB compared to about 18GB The Z scheme's

performance is even closer to the pure incremental scheme, using only 25GB

IThe intuition into why this is effective comes from Gibson, who showed that files modified today will,

with high probability, either be modified within a few days, or never modified again. Similarly, files that have

not been modified in several days, with high probability, not be modified again [4].
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4.2 Backup Performance

Figure 4.2 shows how much media each algorithm uses daily. This statistic is directly pro-

portional to the time required to perform daily backups, and hence, to backup performance.

The figure shows that the pure incremental scheme, which is optimized for fast backup,

minimizes the number of bytes that need to be transferred on a given day. By contrast,

the full backup scheme, which is optimized for fast restore performance, requires much

more time to perform daily backups. On most days, the performance of the level scheme is

similar to that of the pure incremental scheme. However, one day each week, the scheme

performs a weekly "level 7" backup that requires about five times as much media as the

pure incremental scheme. On one day each year, the level scheme performs a full backup

that requires 25 times as much media as the pure incremental scheme does on that day.

Figure 4.2 also demonstrates the bandwidth consistency of the Z scheme (relative to

the level scheme). Although on most days the Z scheme uses more media than the level

scheme, it does not have the weekly and monthly peaks that the level scheme has. There-

fore, as we saw in figure 1, the amount of hardware/bandwidth needed by the Z scheme is
less than that of the level scheme.

One rough method of quantifying this difference in consistency is to compute the stan-

dard deviation of the amount of backup media used daily. A backup algorithm that writes

the same amount of data to tape every day would have a standard deviation of zero. The

level scheme has a standard deviation of 75,243, while the Z scheme has a standard devia-

tion of about 12,284. The pure incremental scheme as a standard deviation of 11,226.
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4.3 Restore Performance

Finally, figure 3 shows how long a restore of the entire file system on day x will take.

As expected, the full backup scheme, which was optimized for fast restores, has the best

restore performance. The pure incremental scheme has the worst performance, because a

large number of tape media must be accessed to restore all files in the file system. The level

scheme performs very well on restores, within a factor of two of the full backup scheme.

The restore performance of the Z scheme is almost as good as that of the level scheme.

In fact, the graph of Z scheme restore time seems to connect the peaks in the graph of the

level scheme restore times. This makes sense because the level scheme will have the best

restore performance after a backup of low level; 2 however, because the Z scheme backs up

a consistent amount of data every day, its restore times are more consistent.

Because restores occur rarely, we believe that a daily savings in backup time and media

will compensate for a possible, but unlikely, doubling of restore time. Thus, we argue that

the Z scheme's improvement in backup performance (especially the reduction of the peaks

in bandwidth requirements) outweighs the decrease in restore performance.

5 Future Work

Our current project is to develop a distributed version of the simulator. Currently, each

simulation can only simulate one file system. Although we can run several simulations in

2Notice that in figure 3, the restore performance dips to that of the Daily level 0 on day 135, when a level

0 backup is performed.
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parallel, simply summing the output of each simulation does not reasonably approximate

the restore performance of a large file system (especially on a serpentine tape, such as

DLT). Our distributed simulator will allow a Tape Drive object running in one process to

accept read and write requests from File System objects running in several other processes.

By carefully coordinating the writes to the Tape Drive object, we can make several File

System objects behave as if they were subdirectories in a single, large, file system.

After we finish the distributed version of the simulator, we plan to implement several

more backup algorithms. Given our results of running the Z scheme with different values

for the base (not presented here due to space constraints), and Gibson's findings on file

modification patterns [4], we believe that basing the actions of each stream on a power

of some base is too restrictive. Therefore, we will implement the Generalized Z scheme,

in which, given an array of integers A, stream i backs up those files that have not been

modified in exactly A_ days. We expect that we can choose the values of A carefully so as
to improve both backup and restore performance.

We plan eventually to generate results that use the larger backup traces we collected

at Georgia Tech's College of Computing; however, because the Georgia Tech traces are

generated by a backup algorithm, we are still working on a method to remove the influence

of the backup algorithm on the traces.

Finally, our long-term goal is to progress to studying random-access media, such as

CD-ROM and DVD. The cost of writers for these media is decreasing to the point where it

may soon be more cost-efficient for small companies to use these media instead of magnetic
tape.
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6 Conclusions

Efficient backup algorithms must strike a balance between backup and restore performance.

We have used a trace-driven backup simulator to evaluate four backup algorithms using

traces collected by Tim Gibson. At one extreme, we showed that a pure incremental scheme

performed backup operations efficiently, but performed restores inefficiently. At the other

extreme, an algorithm that performed full backups every day provided efficient restores

operations but slow backups.
We showed that a traditional level backup scheme that alternates frequent incremental

backups at various "levels" with occasional full backups performs well for both backup

and restore operations. For one file system trace, we showed that the total number of bytes

stored by the level scheme was within a factor of two of the number of bytes stored by the

pure incremental scheme. In addition, except for monthly "level 5" and annual "level 0"

full backups, the daily backup performance of the level scheme was within a factor of five

of the pure incremental performance. Finally, the level scheme performs restore operations

efficiently, within a factor of two of the performance of the full backup scheme.
We also showed that our new Z scheme performs better than the level scheme for backup

operations, but slightly worse for restore operations. However, because backups must take

place daily, while restores take place rarely, we believe that the Z scheme's improvements

in backup performance, both by using less backup media, and by having a more consistent

daily bandwidth requirement, more than make up for its slight decrease in restore perfor-

mance.
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Abstract

Symmetric shared disks file systems are functional, versatile, and just plain cool. For these file sys-

tems to work, they require a global lock space, acessable to all clients. This paper describes a proposal

for the implementation of the SCSI device lock command which provides a global lock space on stor-

age devices. This paper details how Dlocks behave. This paper is a condensed overview of the 0.9.5

version of the proposed SCSI device locks specification. The full paper includes a thorough description

of Dlock implementation, optional features of Dlocks, and a discussion of how Dlocks are used by the

Global File System. For a postscript version of the full 0.9.5 Dlock specification, please visit our web

site http://www.globalfilesystem.org. This paper is an evolution of the 0.9.4 Specification of SCSI Device
Locks, which can also be found at the GFS web site.

1 Dlock Concepts

1.1 Expiration

In a shared disk environment, a failed client may not be allowed to indefinitely hold whatever locks it held

when it failed. Therefore, each holder must continually update a timer on the disc. If this timer expires, other

lock holders may begin error recovery functions to eventually free the lock. Expiration is alternately refered

to as 'timing-out', and the act of updating the timer is often refered to as 'heartbeating'.

1.2 Client IDs

The Client ID is a unique identifier for each client. The client id is completely opaque to the Dlock device. In

GFS the client ID is used both as an identifier and to store the IP address of the client, allowing inter-machine

communication. The Client ID can be any arbitrary 32-bit number that uniquely identifies a machine.

1.3 Version Numbers

Associated with every lock is a version number. Whenever the data associated with a lock is changed, the

version number is incremented. Clients may use cached data instead of re-reading from the disk as long as

the version number on the dlock is unchanged since the data was read. This is reported by the lock device, so
that the clients know not to use cached data.

1.4 Conversion Locks

The conversion lock is a simple- single stage queue used to prevent writer starvation. There is an awkward

case where one client is trying to acquire an exclusive lock and can't because other clients are constantly

acquiring and dropping the lock shared. If there is never a gap where no client is holding the lock shared, the
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writer starves. To correct this, when a client unsuccessfully tries to acquire a lock, and no other client holds

that lock's conversion, the conversion is granted to the unsuccessful client. Once the conversion is acquired,

no other clients can acquire the lock. All the current holders eventually unlock, and the conversion holder

can get the lock. All of a client's conversions are lost if the client expires.

1.5 Enable

In the event that a lock device is turned off, and comes back on, all the locks on the device could be lost.

Though it would be nice if the locks were stored in some form of persistent storage, it is unreasonable to

require it. Therefore, lock devices should not accept dlock commands when they are first powered up. The
devices should return failure results, with the enabled bit of the dlock rdf cleared, to all dlock actions except

refresh_timer, until the dlock action enable is issued to the drive. In this way, clients of the lock device are

made aware that the locks on the lock device have been cleared, and can take action to deal with the situation.

2 The SCSI Dlock Command

The SCSI dlock command is a method of data synchronization. The Diock interface is defined by three main

parts: the CDB, the return data format, and the mode page.

2.1 The Dlock CDB

The Dlock command has a 16 byte Command Descriptor Block (CDB). It is shown in Table 1. Its fields are:

Operation Code The SCSI Operation code for Dlock is 83h.

Action This describes the action being requested. The possible values of this field are shown in Table 2.

Lock Number This is the number of the lock on which to operate.

Client ID An application-defined 32-bit number that identifies the client issuing the Dlock command.

Allocation Length The number of bytes that the initiator has allocated for data returned from the command.
Note that the Allocation length field can be used to control how much of the Reply Data is returned

to the initiator. If the Allocation Length is too small for the amount of Reply Data that needs to be

returned, only Allocation Length bytes of the Reply Data are returned. The Dlock command completes

just as it would have if there was more space allocated. This is not an error.

2.2 Dlock Actions

The possible actions that each Dlock command performs are listed in Table 2.

Nop Return Holders Do not change the lock specified in the CDB, but report its state. The Client ID List

in the reply data contains the Client IDs of the current non-expired holders of the specified Dlock.

Nop Return Expired Do not change the lock specified in the CDB, but report its state. The Client ID List
in the reply data contains the IDs of the clients which expired while holding the specified Dlock.

Nop Return Conversion Do not change the lock specified in the CDB, but report its state. The Client ID

List in the reply data contains the ID of the current holder of the Conversion lock for the specified

Dlock.

Lock Shared Acquire the specified Dlock in the Shared state. If the the Client ID specified in the CDB does
not hold the conversion for the lock, and there is a conversion holder, the action fails. If the lock is

already held exclussively by another client, the action fails. If the action is unsuccessful in acquiring

the Dlock, the conversion for the Dlock is acquired if available.
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Byte,Bit 7 6 5 14 3 2 ! 0
0 OperationCode(83h)

9
10
11
12
13
14
15

Reserved Action
(MSB)

Lock Number

(MSB)

Client ID

(MSB)

Allocation Length

Reserved

Control

(LSB)

(LSB)

(LSB)

Table 1: Dlock CDB

Code

00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

Action

Nop Return Holders

Nop Return Expired

Nop Return Conversion

Lock Shared

Lock Exclusive

Promote

Unlock

Unlock Increment

Demote

Demote Increment

Description

No change, return list of live holders

No change, return list of expired holders

No change, return Client ID of
conversion holder

Acquire shared lock

Acquire exclusive lock

Promote a shared lock to exclusive
Release lock

Release lock and

increment version number

Demote an exclusive lock to shared

Demote an exclusive lock to shared
and increment version number

Acts On

Lock Number

Lock Number

Lock Number

Lock Number

Lock Number

Lock Number

Lock Number

Lock Number

Lock Number

Lock Number

Client ID List

Holders

Expired
Conversion

Holders

Holders

Holders

Holders

Holders

Holders

Holders

0Ah Refresh Timer Refresh timer for Client Client ID None

0Bh Reset Expired Reset Expiration flags for a given Client Client ID None

0Ch Report Expired Report which Clients have expired Whole Device Expired
0Dh Enable Enable Dlock operation Whole Device None

0Eh Drop Conversion Removes the conversion on a lock Lock Number Holders
0Fh-lFh Reserved Unused

Table 2: Dlock Actions
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LockExclusive Acquire the specified Dlock in the Exclusive state. If the lock is in the unlocked state and
the Client ID in the CDB is the holder of the conversion (if any), the lock is acquired in the exclusive

state. If other clients hold the lock, the action is unsuccessful. If the action is unsuccessful in acquiring

the Dlockand the conversion for the Dlock is available, the conversion for the Dlock is acquired.

Promote Promote the specified Dlock from the shared state to the Exclusive state. If 1) the Dlock is in the

shared state, 2) the Dlock is held by only the Client ID specified in the CDB, and 3) Client ID specified
in the CDB is holder of the converion lock for this Dlock (if it is held at all), then the lock is promoted

to the exclusive state. If the action is unsuccessful in acquiring the Dlock, the conversion lock for the

Dlock is acquired if it is available.

Unlock Unlock the Dlock specified in the CDB. If the lock is held in a shared state and there are other

holders, the state remains Lock Shared (but the holder count and Client ID list is changed).

Unlock Increment Behaves like the Unlock action, but also increments the Version Number for the specified

Dlock.

Demote If 1) the specified Dlock is in the Lock Exclusive state and 2) the Dlock is held by the Client ID

specified in the CDB, then lock is demoted to the Lock Shared state.

Demote Increment If 1) the specified Dlock is in the Lock Exclusive state and 2) the Dlock is held by the

Client ID specified in the CDB, then lock is demoted to the Lock Shared state and the Version Number

is incremented.

Refresh Timer This action heartbeats the device and prevents the specified Client ID (and all the locks it

holds) from expiring.

Reset Expired Take the specified Client ID out of the Expired Lists of all Dlocks. The Client ID shouldn't

show up in the results of any Nop (Expired) or Report Expired actions, unless the client expires again.

Report Expired Return a list of the IDs of all the clients which have expired while holding Dlocks on this
device.

Enable This action allows the lock device to accept dlock commands. Until this command is issued to the

drive, all commands fail. Enable is summarized more explicitly in the Dlock Concepts section.

Drop Conversion Remove any conversion on the Dlock specified in the CDB. This simplifies error recovery.

2.3 The Dlock Reply Data Format

The Reply Data Format for the Dlock command is shown it Table 3. Its parts are:

Version Number This is the version number of the lock.

Result This bit is one if the action succeeded and zero if the action failed.

Enabled This bit is zero when the lock device is powered on. It remains zero until the enable action is issued

to the lock device.

List Type This field describes the type of clients returned in the Client ID list. The possible values of the
field are None, Holders, Expired, and Conversion. The numerical representations of these values can
be found in Table 5. The value returned in this field is dictated by the Action set in the Dlock CDB.

Table 2 indicates which Actions result in which list types.

Have Conversion This bit is a one if the Client ID issuing the Dlock command possesses the conversion

lock for this Dlock. It's zero otherwise.

Conversion This bit is a one if any client possesses the conversion lock for this Dlock.

State The values of the state of the lock are shown in Table 4.
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Byte,Bit 7 16 15 14 13 12 i1 10
0

9

10

(MSB)

Version Number

Result

(MSB)

I Enabled I List Type I HvConv I Conv
(LSB)

[ State
Reserved

(MSB)

Number of Live Holders
(LSB)

(MSB)

Number of Expired Holders
(LSB)

11 Client ID List Length (n - 11)
(LSB)

List of Client IDs

12 (MSB)
13

14

15

• " (MSB)
• . .

• ..

n - 3 (MSB)
n-2

n-1

n

Client ID (first)

Client ID (last)

(LSB)

(LSB)

(LSB)

Table 3: Dlock Reply Data Format

I C°de ] Descripti°n I

I h Locked Shared

2h Locked Exclusive
3h Reserved

Table 4: Values of the State field

I Code ] Name I Description 1
Oh

lh

2h

3h

None

Holders List of clients holding the lock is returned

Expired List of expired clients is returned

Conversion The ID of the client holding the conversion lock is returned

No list is returned

Table 5: Values of the List Type field
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Byte,Bit 7 6 5 4 3 2 1 0
0 PS Resvd PageCode(29h)
1 PageLength(0Ah)
2 (MSB)

9
10
11

(MSB)

(MSB)

Maximumclientsperlock

Numberoflocks

ClientTimeoutInterval
(ms)

(LSB)

(LSB)

(LSB)

Table6:ModePageData

NumberofLiveHolders This is the number of un-expired clients currently holding this lock.

Number of Expired Holders This is the number of clients that expired when holding this lock.

Client ID List Length The length in bytes of the returned Client ID List.

Client ID List This is a list of Client IDs. The meaning of the list is specified by the List Type field (and
the Dlock Action issued). If the value of the List Type field is None, this list is empty. If List Type is

Holders, the list is made up of the current (un-expired) holders of the lock. If the List Type is Expired,

the list is made up of the IDs of the clients which expired while holding this lock. (In the case of the

"Report Expired" action, the list is made up of the IDs of all the clients which expired while holding

any lock on this device.) If the List Type is Conversion, the list contains the ID of the client (if there is

one) who holds the Conversion lock for this Dlock.

The number of IDs in the list is zero (for List Type None), "Number of Live Holders" (for List Type

Holders), "Number of Expired Holders" (for List Type Expired), or zero or one depending on whether
or not there is a holder of the conversion lock (for List Type Conversion). If the Allocation Length

specified in the CDB is too small to hold the whole Client ID list, as much as possible is returned (with

the "Client ID List Length" set to the appropriate value). This is not an error.

2.4 Mode Page

The Mode Page returns configuration information about several lock parameters. The page is shown in Table

6.

Maximum number of clients able to share a lock This is a 16-bit field, storing how many clients can si-

multaneously hold a lock in the lock shared state.

Number of locks on the device Returns the number of Dlocks on the device. If this value is hexidecimal

0xffffffff, the device supports a sparse lock space.

Client Timeout Interval The number of milliseconds after which a client ID will timeout. If the value is

zero, client IDs never time out.

All dlock implementations must support changeable Client Timeout Intervals as part of the Mode Select
Command. Implementers may optionally implement changeable Max Clients Per Lock and Number of Locks
fields. Dlock devices can also support optional sparse lock spaces. Any Mode Select Command which sets

one or more of the parameters in this mode page must also clear all locks on the device, and reset the enable

bit.
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2.5 State Transition Diagrams

The state transition diagrams are shown in Figure 1 and Figure 2.

Figure 1 This figure details the possible state changes possible due to normal lock operations. The conver-

sion states are entered when a lock shared operation fails because the lock is held exclusively by another
client, or when a lock exclusive operation fails because the lock is held by another client. If a conver-

sion lock is held (i.e., the lock is in one of the conversion states), most actions fail that would normally
succeed, except when issued by the conversion holder. The exceptions are unlock and demote.

Figure 2 This figure demonstrates the state transitions that occur when a client expires. These are not op-
erations issued by a client, but are the actions performed by the lock device when a client ID fails to

refresh it's timer within the timeout interval. Each arrow in this diagram represents a client timing out

and therefore being removed from the holder list of the lock, and being placed in the expired holder list
for the lock. Expired clients also lose any lock conversions.
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Abstract

This paper describes a design that addresses limitations inherent in the initial

implementation of the Archive for the Earth Observing Systems (EOS). The design

consists of two elements: a Request Manager client interface and a Thread Manager

design pattern. In combination, these design elements provide dramatic improvements in

reliability and scalability. Moving to a transaction processing-based design also provides

substantial gains for operability.

1 Introduction

The EOS Archive is a multi-site distributed data warehouse of Earth-oriented satellite

images and science algorithms/reports. Data holdings in the archive are expected to

exceed two petabytes by 2002 [1]. Within the EOS Core System (ECS), the Storage

Management (STMGT) Configuration Item has the sole responsibility for moving data

into and out of the archive, and for both the physical and electronic distribution of media.

The projected load on the system consists of over 76,000 granules per day - more than

two terabytes - inbound to the archive, and over 30,000 granules per day of retrieved

data. Each granule consists of one or more image files plus a metadata file. In aggregate,

more than 400,000 requests will be serviced daily by STMGT servers. These requests are

prioritized, and must be serviced in priority order, particularly as system resources
become increasingly scarce.

The ECS software uses Distributed Computing Environment (DCE) Remote Procedure

Calls (RPCs) as the mechanism for inter-process communications, with software

processes deployed on both Sun and SGI platforms. Server processes are multi-threaded

(using DCE threads), and accept requests from client processes via synchronous RPCs

(see Fig. 1). Since most STMGT operations are I/O-intensive, these tend to be long-

Client

DCE

Figure 1: Current Design

Server
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running RPCs. Deployment of ECS has revealed significant scalability issues with the

current STMGT implementation arising out of the use of synchronous DCE connections.

DCE sizes the inbound request queue based on the number of listen threads available.

Servers must either be configured with a large number of listen threads - consuming

proportionately increasing system resources - or the number of concurrent requests must

be limited, risking queue overflow and jeopardizing the system's ability to service the

targeted request volume levels [2]. In some cases, the optimal number of listen threads is

proportionate to the available resources. For example, a server that generates media for

physical distribution of acquired data ideally has the number of listen threads equal to the

number of devices available for generating media. However, due to the queue depth

restrictions imposed by DCE, the number of listen threads must be configured to reflect

the request queue depth, which may be considerably greater than the available resources.

2 Solution Elements

Our challenge was to redesign STMGT to improve scalability without disrupting client

interfaces. At the same time, we sought to improve reliability and operability. This

effort led to two major design elements: Request Manager, a means of preserving the

existing client interfaces; and Thread Manager, a design pattern with highly desirable

properties.

2.1 Request Manager

Request Manager provides the only DCE-based interface into STMGT. Existing STMGT

client libraries were re-implemented to format requests as database transactions and

submit them to the Request Manager via a single RPC. Request Manager executes each

transaction, which checkpoints the request to a relational database and returns the server

chosen to service the request. A single, centralized database is used for all STMGT

requests, though multiple Request Manager processes may be used for request

checkpointing and routing.
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Figure 2: Request Manager Design

By using the database as the request queue, the Request Manager permits virtually

unlimited requests to be queued. Moreover, priority-based dequeueing can be enforced

DCE

Client.., l

1

Database

Figure 3: Request Manager Design

via the SQL stored procedures that are used to select the next available request for

servicing. Stored procedures are also used to implement the routing logic, permitting
adjustments to routing to be made strictly through database patches.
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Once the server or servers have been identified for request processing, the Request

Manager notifies each asynchronously using standard TCP/IP socket connections. No

data is actually passed across the socket connection; the socket connection is merely used

as an asynchronous event to notify the remote server that work is ready for processing.

Figure 2 illustrates the interfaces within the new design.

2.2 The Thread Manager Design Pattern

The Thread Manager design pattern is comprised of four elements: a receptionist, a

manager thread, and a pool of service threads. Upon creation, the receptionist allocates a

port for listening and registers the server in the database as available for work. When the

Request Manager or other STMGT servers assign work to the server, they notify the

server by establishing a socket connection on the port on which the receptionist is

listening. The receptionist then wakes the manager thread via a process-shared condition

variable.

Figure 4: Thread Manager Design Pattern

The manager thread controls the assignment of requests from the queue to the pool of
service threads. It waits on a condition variable until such time as it is notified by the

receptionist that new work has arrived in the queue, or by a service thread that the service

thread has completed its work and is ready for a new assignment. Restrictions are placed

neither on the number of requests in the queue, nor on the number of service threads

available for assignment.

Requests are assigned to service threads, which identify the type of work specified by the

request and do the necessary processing to service the request. Service threads

checkpoint as they perform request processing. If a request reaches a state whereby

further processing must wait for another task to complete, the service thread will

checkpoint the request in its current state and move on to another request. Once the

related task has completed, the original request is released and re-assigned by the

manager thread to a service thread.

In the Thread Manager design pattern, the pool of service threads is allocated at startup,

and each service thread remains alive, even if it is idle. This eliminates the overhead of

creating and destroying threads each time a request arrives. The number of service

threads allocated to the pool need not be related to the expected volume of requests. For
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example, in media distribution servers, the number of service threads typically equals the

number of devices available for writing. Each service thread may also be assigned a

minimum priority for servicing, thus ensuring that a glut of lower priority requests does
not starve higher priority requests.

3 Benefits

Software failover for STMGT is now supported through simple database mechanisms.

When a server is brought down, a monitoring process automatically identifies the server

as unavailable. When the alternate server instance is brought up, its receptionist registers

it as available for work. Since the Request Manager relies on stored procedures to

perform request routing, subsequent requests are automatically routed to the alternate

server instance. On server termination, the manager thread can also be implemented to

un-assign any requests associated with that server, thus enabling the dynamic
reassignment of in-progress requests to alternate server instances.

The Request Manager design redefined request submission in terms of a checkpoint to

the database, and the Thread Manager design pattern enforces checkpointing at each

request state. This ensures maximal recoverability in the event of failure, while
minimizing reprocessing.

In the prior implementation, clients notified each server when they were restarted after

termination, in order to reclaim any persistent resources that may have been leaked. This

caused particular problems for clients which retrieve data from the distributed archive,

since such processes talk to a variety of server instances, and often had no record of

which server instances they were in communication with at the time of termination [3].

With the Request Manager/Thread Manager approach, the client notifies the Request

Manager, which then notifies all affected servers based on any requests that are still in the
database for that client.

The Thread Manager design pattern provides a request dependency table. This permits

requests to be related, so that processing of one request is suspended until one or more

other requests have completed processing. When a request becomes dependent on

another request, the service thread can abandon processing of the dependent request and

work off other requests. This dependency tracking also eliminates redundant I/O, such as

when multiple requests arrive concurrently to copy or FTP the same file.

The Thread Manager approach uses no polling, reducing the CPU load. It also relies on

asynchronous communications between STMGT servers, eliminating the blocking and
associated resource usage associated with long-running RPCs. Service threads are never

left blocked, occupying memory resources or swap space and preventing other requests

from executing while the blocked thread is effectively idle. In essence, the design is such

that requests seek the I/O bottlenecks. Processing rates are anticipated to approximate the

maximum hardware throughput supported by the physical configuration.

The centralized request tracking provides unprecedented operability gains. The STMGT

GUI can now observe the processing progress of every request in every server. Future
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enhancements can utilize expected processing times to rapidly and automatically detect

requests which are "frozen."

4 Future Work

The Request Manager was introduced as a process solely in order to preserve the

existing, synchronous, DCE-based client interfaces to STMGT servers. However, the

logic to checkpoint requests to the database and notify appropriate servers is encapsulated

in base classes which are integrated into the Thread Manager design. All STMGT

servers now use asynchronous client interfaces to communicate within STMGT,

bypassing the Request Manager process entirely. As external clients to STMGT servers

are able to adapt to an asynchronous request processing model, the Request Manager may

eventually be removed altogether, supplanted by the set of asynchronous client interfaces

which checkpoint requests directly to the database.

5 Conclusions

By using a transaction processing model within STMGT, we have dramatically increased

both the operator's and our ability to monitor system activity. We expect to leverage

these operational benefits by capturing check-pointed event sequences for regression

testing and debugging. This ability to reproduce site-specific error conditions is expected

to enable us to provide unprecedented turnaround time to correct complex errors that

manifest at the deployed sites.

By replacing the DCE-based architecture with the Thread Manager design pattern, we

were able to dramatically improve the scalability and reliability of ECS with regard to its

storage management capabilities. As ECS continues to deploy satellites which feed the

EOS Archive, the stability and reliability of STMGT will become increasingly crucial;

we believe this new design will ensure the continued success of the ECS system.
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Abstract

Fall COMDEX was the center of numerous showings of new tape technologies offering

significant increases in tape capacity and performance. Of interest to users of midrange

tape technology was the showing of Linear Tape Open (LTO) tape drives. Just as the

upstart Linux operating system is nurturing a small but growing base of users, LTO-

compliant products promise to secure a significant portion of the backup marketplace.

The strength of LTO is in its organization and its technology. This paper will highlight
these strengths and compare them to other tape products.

Introduction

In 1997, LTO technology was developed jointly by HP, IBM and Seagate to promote a

tape technology that is accessible to any drive or media manufacturer through a license

arrangement.l This is in contrast to the typical policy of tape manufacturers to keep their

technology proprietary. Users will benefit from the cooperative and competitive

environment created by an initiative organized to promote LTO. The technology used on

LTO products is the result of the collective drive development expertise of the three

founding companies. The roadmap of the technology is carefully plotted against future

technologies to enable customers to replace their tape products for significantly higher
capacities and performance without forgoing compatibility to earlier LTO written media.
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Track-following Technology Enables Significant Capacity Increases

Track density, bit density, and media surface area are factors that determine the capacity

that tape can support. Until recently, track density has been constrained on linear tape

drives to around 400 tracks per inch due to the risk of overwriting neighboring tracks.

Even with noteworthy engineering efforts to ensure accurate guidance of the tape moving

across the recording head, overwriting and data recovery problems can be caused by

small lateral tape movements which occur due to mechanical tolerances, environmental

factors, and general wear of the media and of the drive mechanism. Increasing track

densities only exasperates the problem.

In track-following technology, the head moves to compensate for any lateral tape

movement so that higher track densities can be achieved. Current drives using track-

following are IBM's Magstar TM 3590 and Storagetek's 9840 drive which support 256 and

288 tracks respectively. Quantum's DLT8000 TM does not use track-following and

achieves its high capacity through a high bit density along the track. Only 208 tracks are

used on the DLT8000.

LTO has defined two tape technologies: Accelis and Ultrium. The Accelis format uses

dual reels in its cartridge for fast time to data. The Ultrium implementation is similar to

Magstar and DLT where a single reel holds a long length of ½" wide media. In addition

to the three founding manufacturers, Fujitsu has indicated that they will manufacture

Ultrium drives. Seven media manufacturers including Emtec, Fuji, Imation, Maxell,

Sony, TDK, Verbatim, have indicated that they will produce Ultrium media. First

generation Ultrium drives will be capable of storing 100GBs on a tape.

Quantum, the market share leader in tape drive shipments, has also indicated that their

next generation Super DLTtape product will support at least a 100GB capacity. While

both Ultrium and Super DLT technologies will use track-following techniques, their

implementations are radically different. Table 1 shows the differences in their

technologies.
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First generationLTO (LinearTapeOpen)tapedriveswill achievetrack densitiesof 768
tracksper inch. 2 Special elements on the drive's head monitor the servo tracks on the tape

and detect whether the tape is moving laterally. The servo will automatically move the

head to compensate for the tape movement. Additional elements on the head, used for

reading and writing data, are located at precise locations relative to the reference tracks.

Within four data bands, 96 tracks are written in twelve end-to-end passes over the media.
Altogether across the four bands, 384 tracks are written. The heads are manufactured

using photolithography, used commonly in fabricating integrated circuits, to provide the

accuracy required enabling LTO's aggressive roadmap of increased capacity.
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A dependable servomechanism is necessary when using track-following. The recording

and reading of data depends on accurately positioning the head. Diagonal stripes are

preformated by the media manufacture on the tape and are used by the servo to determine

the head's position relative to the tape. By measuring the pulse width between the rising

and falling stripes, the head's position is determined.

Reliability Inside

The recording head has two separate servo elements that can be used to determine the

head position. Each data band also has a servo track above and below it. This redundancy
allows the drive to recover from both head and media problems. Powerful error

correction codes can restore user data even if one of the eight data elements on the head

completely fails. In the event that 1" of tape is unreadable, user data can still be

recovered.
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Super DLTtape will reportedly use a revolutionary laser guided servo system. 3 Optical

tracks are embedded on the back of the tape and a laser is used to detect lateral tape

movement. Since the optical pickup and recording head are on opposite sides of the tape,

maintaining mechanical tolerances without the accuracy provided by photolithography

will be challenge. 4 Robustness will be an issue without multiple lasers to provide
redundancy.

Source: Quantum

Conclusion

Track-following techniques will enable significant increases in tape capacity to be

possible. By offsetting the position of data tracks from magnetic reference tracks, higher
track density will be obtainable and the Ultrium format will be able to offer four

generations of capacity increases. The level of redundancy that been designed into the

Ultrium format will rival the robustness of mainframe tape products.

Trademarks:

Brand names are trademarks of their respective owners.

I For more information, see http://www.lto-technology.com.
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Abstract

A multi-channel Optical Head has been developed to be incorporated with an Optical

Tape Drive that enables greater than 1TB capacity and greater than 25 MB/s data transfer

rate on a 0.5 mil thick, 0.5 inch wide optical tape that fits in a 3480 style cartridge. The

optical design has been optimized to perform at 532 nm with maximum through put in

the write path. With use of a 0.6 NA objective lens, sub-micron size marks can be

written on a WORM type phase change medium. A single laser, a hologram, and a multi-

channel modulator increase reliability and manufacturability of this design.

Introduction

The need for a high capacity and a fast data transfer rate tertiary storage device is

continually increasing. With the abundance of inexpensive high capacity magnetic disk
drives, the explosive growth of information content on the Internet, and the need to save

and keep data electronically for a long period of time, an increasing demand is

continuously generated for high capacity tertiary data storage devices. We are

developing a high performance Optical Tape Drive at LOTS Technology as a solution to

this huge data storage problem. This Optical Tape Drive provides a nominal 25 MB/s

data transfer rate and a nominal 1TB capacity in a 3480 style cartridge form factor.

Some of the advantages of optical tape drive are as follows. Optical tape provides much

higher capacity per removable media unit than any storage device in the market. Very

high data transfer rate is readily available for a given tape speed with increasing number

of laser beams acting as parallel channels. Media is archival with greater than 30 years

life span. The optical tape drive offers non-contact recording and read-back which result

in zero head and tape wear. The tape transport mechanics have minimal physical contact

with the tape further enhancing tape operational lifetime by reducing tape wear. Last but

not the least, the high tape capacity results into fewer media mounts; thus causing less
wear in robotics and cartridge.

The Optical Tape Drive consists of an optical head, a tape transport, and electronics. A

multi-channel Optical Head has been developed to be incorporated with the Optical Tape
Drive that supports the underlying required system specifications. I will discuss the

intricate system design tradeoffs as they relate to the Optical Head design.
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Design approach
In optical data storage, minimum mark spacing is one of the factors that determine the

smallest signal amplitude available to the read channel. In a conventional peak detection

method, the convolution of the read beam with written marks determines the data signal

amplitude. Once minimum mark spacing and track spacing are established, the capacity

is determined less the overhead. Obviously encoding efficiency is also a contributor to

the bit density calculation.

To set a data transfer rate, two degrees of freedom are available. Once is the tape speed

and the other is number of channels. At high tape speeds, the tape control becomes

difficult and optical tracking servo bandwidth may become unreasonable. For a large
number of channels, a flat field objective lens becomes necessary to focus the beam array

to the flat tape surface. However, to achieve a high capacity, it is desirable to use a high

numerical aperture (NA) objective lens to allow recording of sub-micron size marks.

Unfortunately, increasing the numerical aperture of the objective lens and increasing the

field flatness go against each other. In other words, the design task becomes extremely

difficult to fulfill both criteria of high NA and field flatness. Therefore, the final design

becomes a compromise among the tape behavior, optical tracking bandwidth, and the

objective lens design.

Table 1 shows some options in changing the minimum mark spacing and track spacing to

achieve the required capacity. For a 1 TB (Terra Byte) user capacity and 35% overhead,

the raw capacity must be 1.35 TB. This is equivalent of 10.8 Tbits. For 450 m of tape,

the areal density becomes 1.44 Gbits/in 2. Keeping this number constant, one can

calculate various mark spacing and track spacing that result in 1 TB user capacity. Figure

1 shows various combinations of number of channels and tape speed for a given

minimum mark spacing to achieve desired user data transfer rates. PPM (2,7) channel

and 35% overhead were assumed for this calculation.

minimum

mark spacing

(urn)
0.6

T_

3O236

0.85 32126 0.79

0.9 34016 0.75

0.95 35906 0.71

1 37795 0.67

track spcing

(urn)
0.84

Table 1 -Mark spacing & track spacing

that result in 1 TB capacity
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Determining factors on choice of minimum mark spacing and track spacing are data
optical resolution and track to track data crosstalk.

Drive structure

Drive layout is
shown in

Figure 2. It

consists of an

optical head, a

tape transport,

and supporting
electronics

Transport

Mechanism

Opti,:al Tape Periscope

Electronics & Power Supplies ]

Figure 2 - Optical Tape Drive Layout

Focus of this article is to discuss some intricate design approaches for the optical head.

Optical Head Structure

The optical head is the instrument that writes and reads information onto and from the

tape. Its design must

support the system

level specifications:

capacity and data
transfer rate. It must

also be able to handle

tape motion in terms

of maintaining tight
focus and track servos

during record and

read back. A simple

optics layout is shown

in Figure 3.

Tape Media

Focus & Track

Actuator Quarter Wave Plates

Beamforming S

Hologram

Beamsplitlers

Data

Detector

Optical Elements

Reflective Spatial
Light Modulator

Focus & Track

Detector

m Writing Beam

Focus & Track

and Data Beams

Figure 3 - A simple optics
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A single laser is used as the beam source. It is a diode pumped doubled YAG laser

generating a beam with a wavelength of 532 nm. The choice of doubled YAG laser, as

an added benefit, removes the necessity of a wavelength migration path from a red laser

diode to a green or blue laser diode. However, more important than the elimination of the
need for a new optical

design (due to removal of

the wavelength migration

path) is avoidance of all

the reliability issues and

the beam profile

variations of a high

power laser diode. Figure
4 shows a 200 mW

doubled YAG laser used

in this design.

Figure 4 - Doubled Nd:YAG Laser

A 2-dimenational hologram multiplies the single laser beam into an array of collimated

beams each of which is capable of read/write operation. Combination of the single laser

with a hologram to generate multiple beams increases reliability of the system in contrast

to using a 2-dimensional laser diode array. Furthermore, collimation optics design

becomes simpler in the former case than the latter case.

The laser beam array after the hologram is imaged onto an electro-optic modulator array,

each of which upon activation rotates polarization of the incident laser beam by 90

degrees. Data from the host computer is encoded and fed to the modulator driver. Each

laser beam is pulsed according to the streams of ones and zeros that it receives from the

electronic write channel. The polarization modulated laser beam array will become

intensity modulated after passing through some polarization optics as the beam array

reaches the tape plane. The laser beams that are "on" will write mark on the tape, and the

beams that are "off" will not.

Figure 5 shows electrical and optical pulses as input and output from a single modulator.

The optical pulse rise time shown in the laboratory is about 7 ns, which was limited by

the electrical response of the system. Figure 6 shows optical response of four modulators

running simultaneously at 12 MHz. The pulses are square shaped and well defined.
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Figure 5 - Voltage Input & Optical

Output

Figure 6 - Optical Pulses at 12 MHz

To decrease access time in traversing width of the tape, the optical head design is split in
two parts: fixed optics, and moving optics.

hologram, various passive optics, and

detectors. The moving optics is a

periscope in effect, which includes a

tracking actuator, a focus actuator,

and a high NA objective lens. A

stepper motor driven carriage that has

attached to it the focus and the track

actuators traverses width of the tape

for various read/write operations.

Figure 7 shows the concept of the

periscope design.

The fixed optics consists of the laser,

Periscope

Figure 7 - Periscope Layout

A high bandwidth galvanometer has been designed as the track actuator. As the beam

array reflects from the mirror that is attached to the galvanometer, and as the

galvanometer rotates about a symmetry axis, the beam array pointing changes; thus,

causing a beam displacement at the tape plane. The purpose of the track actuator is to

make sure that center of the read beams is always at the center of written tracks.

The focus actuator has a high numerical aperture (NA) objective lens attached. The

purpose of the focus actuator is to maintain a minimum spot size at the recording layer of

the tape at all times by moving the objective lens along the optic axis relative to the tape
plane.
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A high NA objective lens has been designed to accommodate a large field. All the beams

within the array must be at best focus at the tape plane. In general, a spherical lens forms

an image of an extended object on a spherical image plane. Furthermore, as the

numerical aperture of the lens increases, the filed flatness of the image plane reduces.

However, in our case, the spot array forms a rectangle of dimensions of 6 x 50 _tm 2 on

the tape surface. The tape thickness is 12.7 l.tm. Therefore, the aspect ratio of thickness

to area necessitates a fiat region where the spot array is incident. This issue required us

to design a 0.6 NA objective lens that has a fiat field up to 1 degrees. Figure 8 shows

wavefront error (WFE) data of a fabricated 0.6 NA lens using an off the shelf

interferometer.

RMS WFE of 0.6 NA objective lenses

E
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@
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O
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>
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Figure 8 - WFE of the 0.6 NA Objective lens as a function of field angle

Media Structure _

The active material is a Kodak proprietary vacuum deposited amorphous thin film of

SbSnln (Antimony, Tin, Indium) alloy.

Recording of data is accomplished by heating
with a focused laser beam to form sub-micron

size crystalline marks. This is possible because

the crystallization rate of amorphous SbSnln

alloy thin film depends strongly on temperature.

Heating the material to about 250 °C using a
focused laser beam causes an instantaneous

/Overcoat

Recording
,dl----"_layer

'_"-,_Base Mylar
Backcoat

Figure 9 - media structure

crystallization while an undisturbed amorphous film stays amorphous almost indefinitely.

Figure 9 shows the media structure.
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The media is very simple in structure. It consists of a Mylar based web sputter coated
with the alloy thin film (the recording layer), and then coated with an overcoat for

protection of the recording layer. There is a backcoat applied to the other side of the base

to avoid electrostatic charge accumulation. Base reflectance of the optical tape is a

function of the overcoat thickness. Figure 10 shows the optical tape reflectance as a

function of the overcoat thickness for both amorphous and crystalline states.
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Figure 10 - Tape Reflectance versus Overcoat Thickness at 532 nm

Experimental data

An optically generated error signal
controls the distance between the

objective lens and the tape plane by

moving the focus actuator. Using a
modified Wax-Wane method in

which the servo beam is offset

relative to a bicell, Figure 11, a

focus error signal is generated.

Size of the servo beam spot at the

detector changes as the distance

between the tape and the objective

lens varies from nominal. It is this

size change that is detected, and is

converted to an S-curve for focus

error detection.

FES > 0 FES = 0 FES < 0

FES = (A + D) - (B + C)*G

Where G is an electrical gain factor

Figure 11 - Modified Wax-Wane schematic
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Figure 12a shows the focus S-curve, which has a capture range of 3 l.tm. Figure 12b

shows the residual focus signal while the servo loop is closed with the optical tape

running at 10 m/s. As can be calculated, the residual focus error signal is 0.1 gm peak to

peak, which is well within depth of focus of the objective lens.

2 200_u 250k_/5 ,,'--0.005 2.00_/ §2j________
Y

i " i i ! i
: i !

! : _ : i i !

Figure 12a - Focus S-curve Figure 12b - Residual Focus Signal at 10 m/s

Tracking error signal is generated by using diffraction and interference of coherent light

from a grating; otherwise, known as the push/pull method. Since the crystalline structure

of the phase change material on the tape has a different complex index of refraction than

the amorphous structure, a series of written lines act as a weak phase grating. The tape

overcoat can be optimized for maximum push/pull track error signal for a given

Intensity Distribution a! Aperture Intensity Distribution at Aperture

0 10 20 30 41] 50 0 20 ,ell 60 80

1 sum
I sum

Thicker region of overcoat passed Thinner region of overcoat before

quarter-wave point quarter-wave point

100

Figure 13 - simulation result for push/pull TES versus overcoat
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wavelength.

a written tape at the plane of the objective lens aperture. The

interference between diffracted orders, 0 th and + 1St, generates

bright or dark intensity profiles that when detected properly

results in the push-pull tracking error signal. The Figure on
the left-hand side shows a weaker contrast than the one on the

right hand side indicating a weaker push-pull TES. Table 2

lists the tracking error signal amplitude normalized to the

servo sum signal for various tape overcoat thicknesses as

measured in the laboratory. The trend found in the
simulation is validated by the experimental results.

Figure 13 shows simulation of intensity distribution of reflected beam from

Figure 14a shows the tracking error signal S-curve derived

overcoat

Thickness NTES

(nm) (V)
33 4.1

50 4.2

78 0.6

89 0.7

Table 2 - Experimental

result for push/pull TES

versus overcoat

from four parallel data lines written. The pattern is pseudo random with a maximum

frequency of 10 MHz. Figure 14b shows the residual track error signal with both the

focus and track loops closed and tape traveling at 10 m/s. The top trace is the residual

tracking error signal, and the bottom trace is a data line. In this example, the track

spacing is 0.8 urn. Therefore, one can calculate the residual error signal to be 0.07 um
peak using a sine wave approximation.
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Figure 14a - Track Error Signal from
4 Data Lines

Figure 14c is a magnified version of Figure
14b where individual data marks are shown.

As was mentioned before, the writing process

takes place by modulating the laser beam array
through an electro-optic modulator. Each

beam is modulated independent of rest of the

array members. To insure proper spacing of
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the written marks on the tape, the beam array must be skewed relative to the tape

direction of motion. For example, if there are m columns and n rows in a beam array,

then the array must be tilted by tan-l(l/m) to insure even spacing among the written

tracks. Figure 15 illustrates this point.

Figure 15 - Beam Array Skew

Although there are many ways

paper, the optical head was

tilted by 7.125 degrees.

of skewing_the beam arra_elative to the ta_n this

In one example, 8 solid lines

with 0.8 l.tm spacing were

written simultaneously on the

tape at 10 m/s, which is shown

in Figure 16.

Figure 17a shows many track

groups of 4 data lines written

on the tape at 10 m/s. The

minimum mark spacing is 1 _tm and
Figure 16 - picture of 8 solid lines written on tape
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track spacing is 0.8 um in this experiment. Figure 17b is an enlarged photo of a four line

simultaneous recording. In this picture the minimum mark spacing is 0.85 p.m.

Figure 17a - multiple 4 data lines

line at 10 MHz, 10 m/s
Figure 17b - Magnified version of Figure 16a

Optical resolution simulation is validated by the experimental data as is shown in Figures
18a, b respectively.
Optical resolution is

defined as the ratio of

the amplitudes of the

highest spatial

frequency signal to the

maximum signal

amplitude. An optical
resolution of 50% was

simulated for a perfect

system. However,

given that the real

world is not as perfect

and optical aberrations

do exist, which

degrade the read/write

focused spot quality, a

measured optical
resolution of 40%

would be reasonable.

results show an optical

greater than 40%.
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Experimental Figure !8a-optical resolution simulation

resolution of

The upper trace in Figure 18b is the residual track error signal.

275



I:11 _50.0'_/ RZ _,500'_/ ¢-1.519 1.00'_/ sn91 Ad',,$TI_

1

• i-, ..... i.,., ........ ,.,., .,.,.,.,.j.,.,.,.,-4-,.,.,.,.i.,-,.,-,.I ..... ,.,.I.,-,.,.,.J.,.,,,
, • ÷ , . . ,

All T-

A1 Coupl in9 BW Lim Inuert Vernier Probe
o.Pf I [] Ac _ of-_ mm _ on _ on

Figure 18b - optical resolution measurement 10 MHz, 10 m/s

Signal to noise ratio (SNR) of the data is

shown in Figure 19. A single frequency

data pattern at 10 MHz was written on the

tape at 10 m/s. Subsequently that data was

read back and fed to a signal analyzer. The

10 MHz data peak stands 40 dBs above its

base line.

Figure 19 - SNR Measurement of 10 MHz Data

Data track-to-track crosstalk was also both simulated and measured. Simulation result

showed that under the worst case situation, the T/T crosstalk is better than 40 dBs down.

Preliminary experimental data based on 0.8 um track spacing show similar results.

Figure 20 shows two adjacent data channels one of which is reading data and the other

one is on blank tape region. No measurable crosstalk amplitude is noticed. To show that

these two channels are indeed adjacent, a region of the tape with a common surface

defect with a similar amplitude effect on both channels was chosen. In this way, the

defect appears in both adjacent channels and is almost equal in amplitude. However, the
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data marks do not show up in the adjacent channel indicating lack any noticeable track to
track crosstalk.
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Figure 20 - Track-to-Track Data Crosstalk

Related Work

Other attempts have been made in using a laser diode array to generate the multiple

beams to read and write. However, issues of thermal crosstalk, wavelength variation, and

beam parameters differences among the individual diodes within the array make the

design extremely expensive to manufacture especially when a large number of channels
is required for a fast data transfer rate.

Future Work

As media with improved surface quality becomes available, more experiments will be

done to gain a better understanding about effects of tape shuttling on data SNR and BER.

Furthermore, the capability to record and read back with an increased number of beams
will be tested.

Conclusions

In conclusion, we have shown an optical tape drive design capable of storing a nominal 1

TB of user capacity in a 3480-style cartridge with a user data transfer rate of 25 MB/s.

We further showed the novel idea of using a single beam and a hologram combination to

generate a multiplicity of recording channels. This approach significantly enhances

reliability of the tape drive in contrast to using laser diode arrays. This design is

extensible to higher data transfer rates with a minimum hardware modification by

increasing number of channels. The optical tape drive design approach is very realistic

and viable since not only is there no mechanical contact of the tape with either the

transport or the optical head, but also the optical tape itself has a lifetime of longer than

30 years. The recorded information will not be damaged by environmental temperature
changes or by a strong magnetic field.
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Abstract

This paper describes a new architecture for device drivers for tape drives attached to

UNIX-like systems. The design goals are presented, some current architectures are

measured against the requirements, and a new architecture is described along with its

advantages and disadvantages. This architecture was developed, and this paper was

written, while the author was at Silicon Graphics. The work continues at SGI for IRIX,

SGI's variant of UNIX, and for Linux. The resulting Linux software will be licensed as

Open Source

1 Introduction

In order to evaluate the architecture presented later, and the design decisions that went

into it, the environment and assumptions that existed during the design must be presented
as well.

1.1 What Do Tape Drivers Do?

The fundamental purpose of a tape driver is fairly simple; it provides access to the tape

drive hardware for use by application programs. Beyond that basic purpose, however,

there are secondary characteristics that are controlled by the environment that the driver

is running in and by application program expectations.

For example, tape drivers for a UNIX-like environment will attempt to both insulate the

application from some of the device specific details of controlling the drive hardware and

to homogenize the operational interfaces for different types of drives. One example of

the latter is the need to have all drive types end up on the same side of a file mark when

reading through a tape, in spite of what the drive's firmware does naturally. A critical

result of this is the application having the ability to predict where the tape is going to

physically end up after each operation, i.e.: before the tape mark or after it.

Other secondary characteristics include the failure modes of the driver and the failure

domain. The failure modes describe how the driver can fail; e.g.: hang, crash, returns an

error, silent failure, etc. The failure domain describes how much impact the failure

modes have; e.g.: does the current operation fail, the application hang, or the system

crash on each type of failure. Some combinations are clearly more desirable than others.

1.2 Traditional Tape Driver Architectures

The normal architecture for a tape driver in a UNIX-like system is an event driven state

machine built into the operating system kernel. For most UNIX-like systems building it
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into the kernel is requiredin orderfor the driver to haveaccessto the hardwarecontrol
registersfor the connectionto thedrive. That connectionwill usuallybea SCSIbusbut
FibreChannelattachedtapedrivesarenow startingto appearon themarket.

The driver mustbe ableto supportmultiple devicessimultaneously.As a result of the
interrupt-drivennature of modem I/O busses,it must also be able to coordinatean
asynchronousthread of execution with a synchronousone for all such devices
simultaneously.In a multiprocessorsystemit must evenbeableto protect itself against
raceconditionsbetweenthe processors,in both normal codeand interrupt level code.
The interruptlevelcodecanhaveimpactson therestof thekemel'sability to respondto
real-timeevents,andthekemel'sschedulercanhavean impacton the driver'sability to
keepthedrive streaming.

The kernel of a UNIX-like systemis usually a fairly hostile place to program. The
interfacesto supportingcodein the restof thekernelarecomplexandthedependencies
aredelicate,and thoseinterfacesand dependenciescanchangeat every releaseof the
kernel. In addition,thedebuggingtoolsareusuallyveryprimitive.

The driver may alsoattemptto supportin a singlemonolithic driver sourcefile many,if
not all, of the devicesthe systemvendorwantsto be ableto control. This may leadto
either table-drivencodeor inscrutablycomplexrun-time checkingof thedrive type. In
either casethere is the risk that any changeto the coderequirescareful attentionand
regressiontestingto ensurenobreakagein supportfor anyof thesupporteddevices.

The oppositestructure,a separatedriver sourcefile for eachtapedrive make/modelto be
supported,is usedby somesystemvendors.Thisoptionavoidssomeof thepitfalls of the
monolithic driver, but it leadsto arisk of different semanticsfrom onetapemake/model
to thenext, andstill hasarequirementto modify andretestall thesupporteddriversif the
interfaceto a kernelsupportroutinechanges.

Thesumof all these forces acting on the design of tape drivers has brought us to a point

where a tape driver is a complex and delicate piece of code where any bug includes the

risk of impacting the entire computer system.

2 Architectural Requirements

In order to decide what, if anything, is wrong with a traditionally structured tape driver,

we need a list of those characteristics that we believe are important to the architecture of

a tape driver. Debating which characteristics belong in this list, which do not, and their

order of importance is in itself an interesting topic. Here is the list of requirements used

for this work, shown in their order of importance:

2.1 Failures Must Be Contained

Failures in a tape driver must be isolated to that one drive, i.e.: it cannot be allowed to

crash the system. Limited forms of service interruption are acceptable; for example a bug

might affect the use of one device.
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2.2 All Drivers Must Provide The Same Operational Semantics

Any tape driver must provide application programs with the same operational semantics

as all other drivers. For example, they must all end up on the same side of the file mark

when reading a tape.

An application should be able to reliably predict the behavior of the tape drive no matter

who wrote the driver for it. An application should also be able to reliably predict the

behavior of the tape drive, with some caveats, no matter which drive type it is. The

former ensures that all DLT7000's operate the same, while the latter ensures that (to the

extent that it is physically possible) a simplistic application doesn't need to know if it
running against an AIT-2 or a DLT7000.

2.3 Drivers Must Be Portable To Multiple Operating System Platforms

Portability of an application that uses tapes to a new operating system can be greatly

hindered by a difference in tape access semantics. The best way to avoid such

differences is to use the same driver on all of them. Any new driver for a given

make/model of tape drive must be source code portable to multiple kernels.

2.4 Distributed Development Of Drivers

The model used in the PC marketplace of bundling the driver software with the drive

hardware is a good one. The people who make the drive are the ones in the best position

to be able to make that drive perform correctly and reliably. This implies that it must be

possible for the drive vendor to be able to build a driver for an operating system without

reference to proprietary information from the platform vendor. It must be possible for

multiple organizations to develop drivers for different devices in parallel.

2.5 High Performance

Any new tape driver architecture cannot sacrifice the performance of the drive or impose
a significantly higher CPU load than a traditional architecture.

2.6 Isolating Support Of A Device From Other Devices

A monolithic tape driver implementing all supported tape drives will become unwieldy as

the number of tape drive make/models being supported grows. Regression testing each

driver change against all supported devices quickly becomes the dominating factor in the

cost of adding support for a new drive. Using separate driver source files for each

supported make/model of tape drive avoids this pitfall.

2.7 Differing Levels Of Investment For Each Drive Type

It must be possible in a tape driver architecture for one driver implementer to provide the

basic set of operations and error recovery mechanisms while another provides that plus

additional error recovery and/or additional device dependent operations. Any new

architecture cannot raise the minimum requirements for implementing a tape driver too

high, nor can it disallow extensions to take advantage of drive-specific features. Note that

a driver providing additional operations risks requirement 2.2 unless it is a pure superset.
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3 Evaluating The Traditional Architectures Against The Goals

Before going to the trouble of designing a new tape driver architecture, we need to decide

if the above mentioned "traditional" approaches to driver structure are lacking

significantly enough to warrant the effort.

The two approaches we've been discussing are both fully inside the kemel so they both

will impact the entire computing system if they encounter a severe bug. There is no
inherent difference between these two models in terms of their portability across

operating systems (they are not) or in terms of their performance.

To successfully create a high performance, highly reliable driver in the hostile

environment of an operating system kernel, the implementer must have a great deal of

detailed knowledge about the particular kernel they are targeting and be able to use some

fairly primitive debugging tools. Both of those requirements imply that writing a driver

requires a talented operating systems engineer. It is desirable to eliminate those

requirements in favor of allowing an engineer with less specialized experience perform

the task.

3.1 Monolithic Drivers

A monolithic driver implementing all supported tape drives easily provides common

operational semantics across all drive make/models. It will become unwieldy as the

number of tape drive make/models being supported grows, however. Regression testing

each driver change against all supported devices quickly becomes the dominating factor

in the cost of adding support for a new drive. Changes to the kernel support interfaces

that the driver uses also necessitate a full regression test against all supported devices.

A monolithic driver has great difficulty isolating one drive type from another, and is in

practice only modifiable by one person at a time, in a serial fashion of implementation

then testing. It is also difficult to provide extended error recovery for one drive type

while isolating that recovery code from the other drive types.

The monolithic model has significant problems meeting the requirements set out above.

3.2 Separate Driver Source Files

Using separate driver source files for each make/model of drive has a significant risk of

allowing variances in the semantics provided by one drive versus another. There is no

structural help in the architecture or development model to ensure this, it is just a matter

of all the programmers knowing that they have to do the same thing.

Using separate source files for each make/model of drive is quite good at isolating one

drive type from another and it lends itself quite well to being worked on by more than

one person at a time. Adding extended error recovery code to the driver for one

particular type of drive is straightforward and has no impact on the other drive types.

It has the disadvantage of locking the system vendor into providing a static set of support

interfaces in their kernel for the tape drivers to use. Those interfaces can become
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inefficient and/or difficult to implementas the systemvendor makeschangesin the
structureof theoperatingsystemkernel.

Overall,theseparatedriver sourcefiles model is betterthanthemonolithic driver model,
but it still has the critical problemof failure containmentas well as somesignificant
applicationportabilityrisks.

4 New Architecture
The architecturebeing proposedis composedof a document,
components,anda well-definedinterfacebetweenthosecomponents:

two main software

Tape Access Semantics Document: specifies the behavior that an application can

expect from the tape driver, e.g. which side of the file mark the tape ends up on after

a read operation.

Tape Support Driver (TSD): a piece of code that lives inside the operating system

kernel and is uniquely optimized for that kernel but is common to all tape drives

supported by that operating system.

Personality Daemon: a piece of user level code that is uniquely optimized for a given

make/model of tape drive but is common to all operating systems that support that
drive.

• Personality Interface: the interface between Tape Support Drivers and Personality

Daemons. This is the piece that allows portability.

User Mode

Kernel Mode

Tape Support Driver

s/w H/W

SCSI or
Fibre

Figure 1. Structure of the new tape driver architecture.

This new architecture will be implemented on IRIX, SGI's variant of UNIX, and on

Linux. The source code for the Linux port will be distributed under Open Source

licensing terms. It is one of the key characteristics of this architecture that a site be able
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to modify or fix an existing PersonalityDaemon to meet their needswithout the
involvementof theoperatingsystemsvendor.

4.1 Tape Access Semantics Document

One of a tape driver's most important characteristics is the application's ability to predict

what the tape drive is physically going to do for each operation the application asks the

driver to perform. For example, which side of a tape mark will the drive end up on after

a read command runs into a tape mark.

Given the requirement for independently written Personality Daemons, there must be a

document that accurately and completely describes the semantics that can be relied upon

by application developers and that therefore must be provided by Personality Daemon

developers.

In practice, a conformance test suite must also be written. It will need to exercise all of

the operations defined in the semantics document in order to verify that a given

Personality Daemon correctly implements those operations. The test must check the

handling of tape marks, end-of-data, end-of-tape, beginning-of-tape, file-space-forward,

short reads, long reads, etc.

The semantics that the document describes, and that the Personality Daemons implement,

is not part of this paper. This new architecture is independent of the particulars of the

tape access semantics being implemented. In fact, in the Future Work section of this

document we talk about the possibility of there being different documents describing

different sets of semantics, each matching a de facto industry norm. Examples include

Solaris, IRIX, AIX, and HP/UX. A site could have several Personality Daemons

available for each drive, one for each common set of tape access semantics. The use and

management of multiple Personality Daemons per drive is, again, not part of this paper.

4.2 Tape Support Driver

In order to gain access to the SCSI or FibreChannel controller, and as a practical

requirement of getting high performance, we have defined a component inside the kernel.

We call that piece the Tape Support Driver (TSD). It is unique to each operating system

kernel but is common to all drives supported by that kernel.

The TSD is basically just a data pump. It is highly optimized kernel code that has all the

usual dependencies, interrupt level code, multiprocessor locking, etc., and is probably

written by a senior operating systems engineer. The implementation will be unique to

each operating system and will take advantage of all the optimizations that are available

in that environment. The TSD supports the read() and write() system calls from the

application as well as the newly defined Personality Interface. The TSD does not do

anything other than read/write and the Personality Interface, it depends on a Personality

Daemon for support of all other operations and for error handling.

There is an exception to the policy that the TSD does no handling of errors. A read()

operation where the data transferred is less than the data in the tape block will result in an
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Illegal LengthIndicatorerrorbeing reportedby the drive. This would appearto be an
error to the TSD and would normally be bouncedup to the PersonalityDaemonfor
processing. This is not consideredan error undersomecircumstances,and we cannot
afford to involve the PersonalityDaemonon every read() operation if we want to
maintainstreaming,sothe architectureallows theTSD to havesomeparametersandfor
the PersonalityDaemonto control them. The numberof parametersmust be kept to a
minimumin orderto keeptheTSD simple,but theywill undoubtedlyhaveto exist.

4.2.1 External Interfaces To The Tape Support Driver

The TSD must support two external interfaces. The first interface is the POSIX

compliant tape-access interface that an application uses to control the tape; e.g.:

/dev/rmt/tps0d4nrv. The second is the Personality Interface to a Personality Daemon.

Some operating systems layer disk and tape drivers on top of drivers for the specific Host

Bus Adapter (HBA) cards, and some provide more formal interfaces to kernel support

routines that a driver can make use of. Both of those are examples of interfaces that are

not visible in this architecture, they are implementation dependent.

The Personality Interface for a drive is only available to a Personality Daemon, and only

one Personality Daemon can be associated with a given physical drive at a time.

4.2.2 Error Injection In The Tape Support Driver

Murphy assures us that the error recovery code in a Personality Daemon will not work

correctly unless it has been tested. Making a real drive fail in exactly the required way at

the required time in order to test that code is difficult at best. Therefore, it is desirable to

be able to inject errors into the operation stream from software. Software based error

injection may not be quite the same as if a physical drive were actually failing, but the

increased flexibility of testing and code coverage would more than make up for the
difference in the nuances.

The error injection is probably best done by a thin layer below the TSD itself. It could

watch the sequence of operations as the TSD and Personality Daemon interact with the

drive. When the desired position, time sequence, or pattern was found, the layer would

return an error rather than the real answer. The patterns, sequences, and resulting error

codes should be programmable by a user-level utility program; the level of

programmability of the layer would undoubtedly be increased over time.

This layer will be needed in the long run, but is not required for initial support of the new
tape driver architecture.

4.3 Personality Daemons

The second major component of the new architecture is called a Personality Daemon.

is unique to a given make/model of tape drive but is common to all operating systems.

It

The Personality Daemon is a piece of user level code that makes use of the Personality

Interface to talk to the Tape Support Driver in the kernel. It provides operational control
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andsemanticsfor that tape drive. We take it as a base assumption that performance of

the drive is less important when recovering from an error or processing a special request

from the application (for example, writing a file mark), than when it is doing reads or

writes.

There will be a unique implementation of a Personality Daemon for each make and

model of tape drive. Making a change to one Personality Daemon, or writing a new one,

cannot introduce bugs into another Personality or change its semantics. This allows

multiple people or organizations to develop Personality Daemons simultaneously. It also

eliminates the need to regression test a Personality until it actually changes.

Having separate Personality Daemons for each drive type means that writing a

Personality Daemon for a drive that is fairly self-sufficient is easier that writing one for a

drive that requires more hand-holding. The flip side of that coin is also true, that it is

possible to invest in a Personality Daemon for one drive more than for another, gaining

better error logging or recovery or other operational advantages beyond simply pushing

data to and from the drive.

The biggest drawback to having separate Personality Daemons is that it is more difficult

to ensure that they are all supporting the same semantics (e.g.: does the tape end up

before or after the file mark) for the application program. A conformance test suite will

be required in order to test Personality Daemons. Fortunately, the set of operations and

their expected outcomes has already been clearly defined by the Tape Access Semantics

Document and as part of the definition of the Personality Interface.

4.3.1 Personality Daemon Failure Containment

A single Personality Daemon is the unit of failure in this architecture. Since only the

most primitive of device support is inside the operating system kernel, and the

complexity and potential for bugs comes mostly from error processing and recovery

code, most failures should be contained to a single user-level process. That process can

be restarted if it fails or hangs, thereby regaining correct operational control of the drive

without impacting the system as a whole. Only the application that was accessing the

drive would be impacted.

4.3.2 Personality Daemon Responsibilities

A Personality Daemon is responsible for processing both control commands from the

application and for handling errors generated by the drive.

When an application issues any control operation on the drive like a rewind or a seek-to-

end-of-data, any operation other than a read or a write in fact, the TSD will simply

forward that request to the Personality Daemon. The daemon is then responsible for

building the correct SCSI command block(s) for the particular drive it is controlling and

using the Personality Interface to send those commands to the drive. In this way it

interacts with the drive to accomplish the operation that the application wanted. This

sounds very indirect, but this mechanism allows for Personality Daemons to work around

variations in the native behavior of one drive type versus another in order to accomplish
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thegoal. In short,this is how we canhomogenizethe nativebehaviorof drives into the
standardsemanticmodel that applicationswant to dependon. When the daemonhas
finishedits processingof the controloperation,it tells theTSD to resumetheapplication
with a successfulreturncode.

TheTapeSupportDriver will alsopassvirtually anyerrorconditionreportedbythedrive
up to the PersonalityDaemonfor processing. This allows the daemonto do device-
dependenterrordiagnosisandrecoveryoperations.Thedaemonwill againusethe SCSI
pass-throughcapability of the PersonalityInterfaceto interactwith the drive before
returningcontrolto theapplication.

4.3.3 Personality Daemon Programming Model

There will be one running instance of a Personality Daemon for each physical drive

attached to a system. This allows the programming model inside a Personality Daemon

to be single-threaded and fully synchronous. The Personality Daemon will wait on

interactions with the Tape Support Driver through the only interface it has to support, the

Personality Interface, which is a straightforward event-response style interface. The

Personality Daemon does not need to worry about coordinating interrupt level code with

non-interrupt level code, multiprocessor locking issues, or asynchronous operations. The

reduction in code complexity is one of the significant advantages of the new architecture.

The fact that there is one Personality Daemon per physical drive also implies that the

failure scenarios only involve one drive at a time and do not impact the rest of the system.

Barring a bug in the Tape Support Driver or a case where the TSD does not adequately

protect itself from bad input from the Personality Daemon, the rest of the system will not

be impacted if a Personality Daemon crashes or hangs. In fact, the Personality Daemon

can simply be killed and restarted to recover from a hang.

The single-threaded, synchronous, user level process programming model allows the use

of powerful debuggers and a much more elaborate testing environment. Adding this to

the reduced complexity of the code should result in a much higher level of reliability for
the driver overall.

4.4 Personality Interface

The Personality Interface is common to all Tape Support Drivers and Personality

Daemons and defines the relationship between them.

The Personality Interface is used by the Tape Support Driver to tell the Personality

Daemon about actions requested by the application, for example: rewind, file-space-

forward, and write-a-file-mark. It is also used by the TSD to tell the Personality Daemon

about exceptions generated by the tape drive, for example: file mark found, early warning

for end-of-tape, read failure, etc. The TSD expects the Personality Daemon to handle
those conditions as it sees fit.

The Personality Interface is used by the Personality Daemon to receive notification from

the TSD of either application-requested actions or tape drive generated errors. It is also
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usedto directly interactwith the tapedrive via a mechanismto send/receivearbitrary
SCSI commands,commonly called a pass-throughdriver, and to control the error
indicationsgoingbackto theapplication.

The PersonalityInterface is synchronousin both directions. When the application
requestsa rewind, for example,the TSD will storethe detailsof who is doingwhatand
will use the PersonalityInterfaceto wake up the PersonalityDaemon.Note that the
applicationwill be blockedin the TSD at this point. The PersonalityDaemonwill use
the PersonalityInterfaceto querythe TSD for status. It will then generatethe SCSI
"rewind media"commandandwill call thePersonalityInterfacein orderto sendit down
to the TSD for execution. When that has finished and returnedto the Personality
Daemon,it will call back into the TSD with a commandtelling the TSD to resumethe
applicationwith aspecificreturncode.

As of the writing of this paperin Decemberof 1999,SGI is now in theimplementation
phaseof the project. The particularsof the PersonalityInterfacewill not be finalized
until a few PersonalityDaemonshave been written and the PersonalityInterface's
generalityhas beenverified, but listed below is the structureof the interfaceas it is
currentlydefined.

4.4.1 Interface Initialization

When a Personality Daemon first starts up it needs to set basic parameters for use by the

TSD. It must also ensure that the TSD and itself are both using the same version of the

Personality Interface and that the drive to be controlled is of the correct type for the

Personality Daemon. The TSD_INIT ioctl0 is used to initialize the interface.

Some of the parameters that are configured when the interface is initialized include: basic

device timeouts, whether the drive supports reads followed by writes without an

intervening tape positioning command (or writes followed by reads), whether some

device-reported error conditions can be ignored by the TSD (e.g.: short length reads), and

the list of ioctl0 operations that the Personality Daemon supports.

4.4.2 Sleeping And The Use Of Signals

The Personality Daemon will sleep during the time that it is not actively servicing the

TSD, waiting for a signal to arrive. The TSD will send the Personality Daemon a

SIGUSR1 signal when it needs help with something.

Once the Personality Daemon has been broken out of its sleep, it will use the

TSD_QUERY ioctl0 to determine the basic situation and will then use the ioctl0

operations defined in the following sections to interact with the drive and the TSD.

4.4.3 Type Of Service Required

The TSD_QUERY ioctl0 returns the reason for the latest signal from the TSD and the

details behind that signal. The possible reasons include an application doing an open(),

close(), or ioctl0 system call, an error reported by the drive, and a read or write operation

on the drive. The structure returned by the TSD_QUERY ioctl0 includes all of the fields
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requiredto give thedetailsappropriateto all of the reasons for the Personality Daemon
being involved. Combining the various fields into one structure was seen as better than

defining a set of query operations, one for each type of service that the TSD requires of
the Personality Daemon.

For all operations, the structure includes the process ID of the application. For open()'s,

the structure also shows the flags associated with the open() call (rewind-on-close,

density, compression, etc). For close0's, no additional fields are required. For ioctl()'s,

the structure contains the ioctl0 command code and the ioctl0 argument if it is not a

pointer to a data structure (see the TSD_COPYIN request). For errors reported by the

drive, the structure contains the SCSI sense code information, the requested I/0 size, and

the residual un-transferred byte count. For I/O operations, the structure includes the type
of operation and the transfer counts. The structure also contains some statistical counts

such as total bytes read/written, total read/write operations performed, current block

number on tape, etc.

4.4.4 Application Request Processing

The application will be suspended and the Personality Daemon woken up on all open(),

close(), and ioctl0 operations and on some read() or write() operations.

The Personality Daemon needs to be involved every time an application opens a tape

drive so that it can ensure the drive is ready for the application, validate access modes,

etc. The Personality Daemon needs to be involved on every close operation as well so

that it can clear and/or set status flags appropriately and to issue the rewind operation for

the rewind-on-close semantics that some applications depend on. All control operations

that the application performs (e.g.: rewind, write file-mark, etc) will come into the kernel
via the ioctl0 system call.

When an application issues an ioctl0 operation on a tape, it provides the operating system

kernel with an operation code and a pointer to a memory buffer. The size and contents of

that memory buffer are operation dependent. We do not want to provide direct access

from the Personality Daemon into the application's address space, so the contents of the

memory buffer must be copied into a buffer inside the TSD. The TSD can then make the

contents of that kernel buffer available to the Personality Daemon. The Personality

Daemon needs to tell the TSD at initialization time which operation codes it supports, the

associated amount of data to be copied in to or out of the kernel for that operation, and

whether super-user privileges are requires to perform that operation..

The Personality Daemon will make use of two ioctl0 operations when processing ioctl()

requests from the application: TSD_COPYIN and TSD_COPYOUT. TSD_COPYIN

returns from the TSD the ioctl0 operation code and associated data that the application

passed to the TSD. TSD_COPYOUT sends to the TSD the bytes to be copied out to the

application as the results of the application's ioctl0 operation.
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The retum code for the ioctl0 call the applicationmadecomesvia a separateioctl()
operation,TSD_RESUME, that the Personality Daemon uses. It implies that the TSD

should unblock the application and allow it to continue processing.

4.4.5 Support For Device-Dependent loctl0 Operations
We do not want to artificially limit the ioctl0 operations that a Personality Daemon can

support. There are many drives that provide unique features that an application might

want to use if it was willing to include drive-type-dependent code. The additional

operation codes will simply be listed as part of the table of supported ioctl0 codes and

buffer sizes that is passed into the TSD by the TSD_INIT ioctl0.

4.4.6 Drive Error Processing

The TSD_QUERY ioctl0 returns to the Personality Daemon essentially all of the

information that is needed to start processing the error from the drive. The Personality

Daemon will do an initial diagnosis of the problem based on the SCSI sense code

information that came back from the last TSD interaction with the drive. It may use the

SCSI pass-through support described below to interact with the drive, doing additional

error analysis and/or error recovery operations.

When the Personality Daemon has finished all of the processing that it wants to do for the

reported error, in addition to its ability to return an error to the application, an option to

the TSD_RESUME ioctl0 allows the Personality Daemon to ask the TSD to retry the

original operation.

4.4.7 I/O Notification Processing

The Personality Daemon needs the ability to tell the TSD to involve it just prior to, or just

after, the next read or write SCSI command is issued to the drive.

For example, if the application has opened the drive in fixed-block mode and not set the

block size to be used, the tape driver should use the block size that the tape was written

with for all subsequent read operations. In order to determine what block size to use, the

Personality Daemon will need to get involved just prior to sending the first SCSI read

command to the drive.

Some tape drives will not report that the cartridge has physically been marked read-only

until some time after the first write operation when the data in the on-drive buffer is

actually flushed to the tape. The Personality Daemon for such a drive will arrange to get
involved after the first write to a cartridge completes. It can issue a command to force the

on-drive buffer to tape, thereby checking the read-only status of the cartridge at a point

where the Personality Daemon can still return an error code for application's first write

operation indicating that the cartridge is in fact read-only.

This capability can also be used by the Personality Daemon to govern all access to the

tape by the application if necessary. After some types of serious I/O errors, further reads
or writes to the drive must be disallowed. The Personality Daemon can intercept all I/O

operations before they happen and return an error to the application.
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TheTSD_RESUMEioctl() will includeflagsthat tell theTSD to involve the Personality
Daemonjust prior to, or just after,thenextreador write SCSIcommand.

4.4.8 SCSI Passthrough Support

When the Personality Daemon wants to send a SCSI command to the drive, it needs to

provide to the TSD the following:

• The bytes comprising SCSI command to be sent.

• A pointer to a data buffer used for output to the drive or for input from the drive.

• Flags, including whether the drive will expect to transfer data to or from the host.

• The maximum number of seconds to wait for the command to complete.

• A pointer to a buffer for the SCSI sense code information if the command fails.

If the command was successful, the Personality Daemon can expect that the TSD has

filled the data buffer with the results from the drive and has returned the number of valid

bytes in that buffer. If the command was not successful, the Personality Daemon can

expect that the TSD has filled in the status reported by the HBA, the status reported by

the drive (if any), and the SCSI sense code information (if any). The HBA status will

include errors such as "parity error on the bus" which will render the other status
information invalid.

The TSD_SEND ioctl0 is the operation used by the Personality Daemon to send SCSI

commands to the drive. With one exception, that ioctl0 will not return to the Personality

Daemon until the SCSI command has either successfully completed, the command has
failed and error status has been obtained, or the command has timed out.

In order to support operations such as the ability of an application to continue processing

while a tape rewind is in progress, the flags field of the TSD_SEND ioctl0 will tell the

TSD whether to wait for the SCSI command to finish or to return to the Personality

Daemon immediately. The Personality Daemon can then use the TSD_RESUME ioctl0
to allow the application to continue processing.

If an application is resumed while a long-running operation is in progress, the Personality

Daemon is responsible for managing the application's access to the drive. For example,

it can use the flags on the TSD_RESUME ioctl0 to intercept all I/O operations from the

application before they are sent to the drive, then use the TSD_SEND ioctl0 to verify that

the drive has finished the long-running operation before retrying the application's I/O

operation. An alternative approach relies upon the fact that while the drive is busy

rewinding, it will report a "busy" status. All I/O operations that the application issues

will generate an "error" that will then involve the Personality Daemon. In either case of

the Personality Daemon gaining control, it should probably just sleep for a while and then
retry the operation.
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4.4.9 Block Size Control

The Personality Daemon needs to be able to control the size of the read and write

operations that the TSD is passing from the application to the drive. The

TSD_BLOCKSIZE ioctl0 tells the TSD the minimum and maximum block sizes that the

drive can accept, and if the drive is operating in fixed-block mode, the current block size

to use. This information may change during an application's use of a drive as a result of

the application asking to change the block size being used for fixed-block mode access.

4.4.10 Stopping In-Progress Operations

The Personality Daemon needs the ability to abort a long-running operation that might be

in progress on the drive. The TSD_ABORT ioctl0 asks the TSD to do just that. Under

certain circumstances, the Personality Daemon needs to be able to get control of the drive

again after issuing long-running operations such as a rewind.

4.4.11 Personality Interface Summary

SIGUSR1 - Signal when the TSD needs help from the Personality Daemon

TSD_INIT - Initialize the Personality Interface

TSD_QUERY - Show the reason the Personality Daemon needs to get involved

TSD_COPYIN - Copy the application's ioctl0 info into the Personality Daemon

TSD_COPYOUT - Copy the Personality Daemon's response to the application's ioctl0

TSD_SEND - Pass a SCSI command through the TSD to the drive

TSD_RESUME - Resume the application or retry the operation that failed

TSD_BLOCKSIZE - Set the allowable block sizes for read() and write() calls

TSD_ABORT - Ask the TSD to abort any in-progress operations with the drive

4.5 Example: Processing A Drive Exception
A critical design issue in the new architecture is how to handle errors reported by the

drive. The tools that the Personality Daemon has available to it to handle drive errors

have already been described, but walking through the sequence of events in a

representative example would be illustrative.

Assume that the application is reading data from the drive and the drive runs into a media

defect that has obliterated some of the data.

. For initial state we assume that the Personality Daemon is sleeping waiting for a

Personality Interface signal that the Tape Support Daemon (TSD) needs help. We

also assume that the application has issued a read() system call and is blocked waiting

for the results.

. The TSD gets the read request from the application and issues a "read" SCSI
command to the drive. The drive encounters a problem and responds to the host with

a "check condition" (a SCSI message indicating a problem with the command).

. The TSD then uses a "request sense" SCSI command to get more information from

the drive on what type of error happened and uses the Personality Interface to signal

the Personality Daemon that something needs attention.
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. The Personality Daemon uses the Personality Interface to get the sense code

information that the drive returned as well as the current status of the application and

any other context information it needs such as block counts, operation counts, etc.

. Based on the sense code information, the Personality Daemon decides to run some
diagnostics on the drive. It builds a SCSI command block for the command it wants

to send to the drive and calls into the TSD. The Personality Daemon is then blocked
waiting for the call to return from the TSD.

. The TSD sends the SCSI command block to the drive and either collects any resulting

output or uses a "request sense" command to collect any error (sense) codes. It
allows the call from the Personality Daemon to return with whatever it has collected.

. The Personality Daemon analyses the results from the TSD and decides that it should

log the error, fail the operation, and return an error to the application. The error is

logged via the normal SYSLOG facility from the Personality Daemon.

8. The Personality Daemon calls into the TSD asking for the application to be resumed

with an "EIO" error code being the return value from the read() system call.

9. The call returns from the TSD into the Personality Daemon and it goes back to sleep

waiting for the next signal from the TSD that something needs to be done.

Common variations on the above sequence would include the Personality Daemon

issuing more diagnostic and/or error recovery SCSI commands to the drive, doing more

detailed error logging or using different modes of notification (e.g. pager or email),

interacting with any system management framework that might be desirable, and possibly
retrying the operation that failed.

5 Future Work

It is possible to write a range of Personality Daemons for a given operating system

providing different legacy-based semantics for the same drive. Since a Personality

Daemon can be stopped and another one started for a given drive, it is possible for a

Media Management System such as IEEE 1244 to offer different sets of semantics to an

application and let the application choose at run-time which it wants to use.

6 Conclusions

Under this new architecture, the operating system vendor's job is to write a Tape Support

Driver that can control their HBA, interact gracefully with the rest of their kernel, and

implement the Personality Interface. Having done so, then they benefit from the

available Personality Daemons. The drive vendor's job (or whoever provides a

Personality Daemon) is to accurately control the drive and to conform to the Personality

Interface. Having done so, then their drive will be supported on a wide range of
operating systems.
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Optical Recording

The expression optical recording is often used loosely by both engineers and marketing
executives. Nearly all recording systems, where a focused laser beam is used in either

writing or reading, are normally referred to as optical recording.

There are four basic types of optical recording, shown in Fig 1. All four are currently in

use and although they are all applicable to both disc and tape, only disc products are
available at the moment.

1. Change of physical dimension: Data recording changes the dimension, generally

the thickness, of the media. The l's are thicker than the O's, or vice versa.

Removing the material, or replicating a master recording by injection molding,

which produces a medium with thickness variations representing the recorded
data, can make the recording. CD-Audio, CD-ROM, DVD-Video and DVD-

ROM media are volume produced through the injection molding process. The

material removal recording, used since at least the beginning of recorded history,

may become fashionable again in the future, using nanoscale technology.

. Magnetic Recording: By raising the temperature of the medium to close to its

Curie point, a weak magnetic field can be used to reverse the existing polarity of

the bit cell on a track. The recorded pit size and shape are defined by the diameter
and the on-time duration of the laser beam used as the heat source. This is the

basic form of Magneto-Optical (MO) recording.

. State Transition: Certain alloys of elements from the group VI of the periodic

table can be caused to transition between amorphous and crystalline states by
controlled heating and cooling. These alloys are stable in both states at room

temperature. This technique is often referred to as Phase Change (PC) recording.

On the medium, which is in the polycrystalline state, recording is accomplished

by rapidly heating the material with a laser and letting it cool quickly to the

amorphous state. As with MO recording, the PC process is completely reversible.

PC recording is the basis for DVD-RAM, and the proposed newer format, "DVD-
Video Recording".

. Polymer Dye Burn-In: In this irreversible process, data is burned onto the

medium whose surface contains a polymer dye. CD-R, and DVD-R belong to this
recording category.
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Op¢lcal Recording CharacC.erl_C, iae

• ReoBrding Type: _ Height
C_=n_(_t or tana)

• Recording Method: Injection mowing

• Reading Plethod: O1_1 Path
interference

•Producc¢ CD, DVD, CD4_OH

Figure I a. Optical Recording Characteristics: Land and Pit recording
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Optical Recording Characteristics 2

O

_t

• Recording Type: Magnetization
Reversal

• Recording Method: Spot

temperature elevation near

Curie point

• Reading Method: Kerr Angle
differentiation

• Products: MO (Magneto-optical)

Figure lb. Optical Recording Characteristics: Magneto-optical recording

Optical Recording Characteristics 3 & 4

Recording Type

3. State

Change

4. Polymer

Dye
characteris

tic change

Recording Method

3. Pit

temperature
elevation

4. Pit

temperature
elevation

Reading Method

3. ReflecrJviry

differentiation

4. Reflectivlty

differentiation

Products

3. PC (phase

change)

DVD-RAM

4. CD-R

DVD-R

3 4

Figure lc. Optical Recording Characteristics: Polymer Dye and Phase Change
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Data Recovery

In technologies 1, 3 and 4, the reflectivity difference between recorded and unrecorded

areas is detected and used to generate an electronic signal.

In CD-Audio, CD-ROM, DVD-video and DVD-ROM, which are replicated by injection

molding, the effective elevation difference between recorded (pit) and unrecorded (land)

areas is 2/4, leading to near cancellation of light reflected from the recording area; here

2 is the laser wavelength.

In PC media, the polycrystalline state has a higher reflectivity than the amorphous state.

On polymer dye media, the burned-in spots have lower reflectivity than the unrecorded

areas.

When reflected off a magnetized surface, the plane of polarization of a polarized beam is

rotated with respect to the incoming beam, a phenomenon known as the Kerr effect,

discovered in 1877 by John Kerr. In MO recording, this small rotation is used to generate

the read signal.

Factors determining Optical Recording Density

The diameter of the focused laser beam is the determinant of areal density except in the

case of injection-molded media. The diffraction-limited spot diameter is given by the

expression
d -- C2/NA

Where NA is the numerical aperture of the lens and the proportionality constant depends

on the factors illustrated in Fig 2.
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F

fnumber = F/D

Numerical aperture, NA = sin 8

D/2
NA=

(F 2 + D 2 / 4) t_2

Spot size = d

d = tr2/NA

Where 2 = wavelength of laser

tr = factor determined by beam

energy distribution

Figure 2. Factors determining spot diameter and their relationship

The numerical aperture is the sine of the solid angle as viewed from the focal point of the

lens to the lens's maximum radius. The larger the NA, the faster the lens, as opposed to

the commonly used lens speed expression ofj:number. A smaller f-number indicates a

faster lens. Theoretically NA cannot exceed unity, and the f-number cannot be smaller
than 0.5.

For an optical recording drive to be practical -- physically small, reasonably priced, and

requiring no external support equipment -- the laser must be a semiconductor type.

Since the early 1980's, diode lasers operating in the near infrared wavelength, 900 to 800

/an -- have been available.

A single group lens with NA of 0.4 to 0.5 (corresponding to f-numbers of 1.2 to 0.9) can

be manufactured inexpensively.

Based on these numbers, i.e., the wavelength of 800 ~ 900/an and NA of 0.4 to 0.5, the

spot size comes out to be 1 to 0.8/.trn.

The track pitch in optical recording is twice the spot diameter, and this almost completely

eliminates inter-track interference. Further, by choosing the spot diameter as the

minimum mark length, a density of 1.5 to 2/trn 2 can be achieved. This was believed to

be achievable in the early 80's during the period leading up to the development of what

came to be known as Compact Disc Technology.

299



Comparison with Magnetic Recording

If one studies the evolution of hard disk drives in the 70's and 80's, an interesting fact

emerges. Fig. 3 shows the areal density of representative hard disc drives during this

period. In the early 1980's, when optical recording was just moving from an engineering

concept to the state of marketable product development, the HDD was operating at a

density of 10 to 20 Mb/in 2, or 30 to 60/.tmZ/bit. At that time, these figures were a factor

of 20 to 30 smaller than what could be realized optically with available components.

Figure 3. Growth of Magnetic Recording Areal Density

This explains why optical recording was, and still is, considered synonymous with high-

density recording.

Tape recording was not much better than the disc recording. The first generation digital

video recording format, D-l, entering the marketplace in 1981, had a 20/an2/bit. For

purposes of comparison, the Fig 3 also shows the recording density of IBM-3480, the

first cartridge tape data recording system, 362/.trn2/bit.

Details of the CD-Audio disc, as it finally entered volume production in early 1980's, are

shown in Fig.4 CD-ROM has essentially the same characteristics, and it is produced by

the same process, viz., injection molding. All CD derivatives operate at the same

recording density.

300



120 hum

_1_uc_ur6of_mpacl_ I_ioc

oo:,.-
t.'.'I'O Pit _ize 0.J_63¢o Z).O_I _.rn

Figure 4. Structure of Compact Disc

The Road to DVD

The CD and its derivative products were the first volume-produced digital recording

systems with an inexpensive storage medium. Its data holding capacity of 680 MB was a

remarkable achievement when compared to the then standard data storage medium of

IBM-3480 cartridge, with a capacity of 200 MB. The volume of the 3480 cartridge, 300
cm 3, is more than twice that of a CD in its protective plastic case.

New applications for both non-recordable mass replicated formats as well as recordable

formats based on the CD technology emerged in 1980's and early 1990's.

The most notable one was the Video CD, which stores MPEG-1 compressed video of
one-hour duration.

Unlike magnetic recording, where incremental performance improvements are practical

and thus being introduced by manufacturers on frequent intervals, the CD has maintained

its fundamental physical and optical characteristics intact for a considerable period of
time.

During the intervening years, however, components, technology, and signal processing

techniques, all directly applicable to optical recording, have made significant progress.
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For the nextgenerationOpticalDisc Recordingformat,two technicalconsortiaproposed
remarkablysimilar systems.Thetwo systems,however,containedminor, yet completely
incompatible,technicaldetails.

After fierce competitionand muchargument,the two groups agreed to join forces and

develop a unified, single technical approach for the highly versatile, video, audio, and

data compatible optical disc format of very high data holding capacity.

DVD, the digital versatile disc product line was born in December 1995.

DVD is a family of products, and specifications for new product configurations are

constantly being developed and also being updated.

The first volume-produced product, the "DVD-Video", has approximately seven times

the data capacity of the CD, or 4.7 GB per surface.

This capacity, 4.7 GB, has since become the yardstick against which the capability of all

subsequent DVD products are measured. Recordable DVD formats, DVD-R, DVR-RW,
and DVD-RAM, which did not meet this target initially, are now working toward the 4.7

GB per surface capacity objective.

DVD-Video incorporated following technical innovations to achieve the seven-fold

capacity increase possible. Details of DVD-Video disc is shown in Fig. 5.

_,rucr.ur= of D_D

i pi¢ j 0.51_m

TN_I¢ Id_Gh 0.74 p_

Figure 5. DVD-Video Disc

1. Laser wavelength shortened from 780 nm to 650/635 nm

2. Objective lens numerical aperture widened from 0.45 to 0.60
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The effectsof thesetwo improvementswere the reduction of track pitch from 1.6 to 0.74

/zrn, and shortening of the minimum mark length from 0.833 to 0.40/an, or an areal
density increase of 4.5.

3. The channel code was changed from 8 - 14 modulation (EFM) to 8 - 16 modulation,

making a modest but important gain in the linear track density of 7%. (Even though the

CD modulation code is EFM, three merge bits were used with each channel symbol,
effectively making it an 8-17 code)

4. The Error Correction Code was improved. While it had become more powerful in
correcting longer burst errors, its overhead was reduced from 30% to 15%.

In addition, DVD has incorporated a double layer data storage technology. Both

recorded layers face the front side of the disc, making it possible to read the data from the

same side, without flipping the disc. Since the signal from the bottom layer must be read

through the front layer, the front recording reflective layer is semi-transparent.

Because of these added limitations imposed on the data-holding layers, the two-layer,

front-readable DVD-Video has a combined capacity of 8.5 GB.

Phase Change Recording

Like the CD family of products, DVD also has a number of recordable formats. The first

recordable DVD, DVD-R, is a higher density version of CD-R, whose basic
characteristics have been discussed earlier.

Perhaps the most important DVD product for the data storage application is the DVD-

RAM, which operates like a magnetic tape recorder, with some additional desirable
features.

DVD-RAM is based on the Phase Change (PC) recording principle.

Alloys composed of such metals as Tellurium, Selenium, Antimony, Tin, Germanium

and Silver have characteristics of transitioning between amorphous and polycrystalline
states when subjected to temperature cycles.

Some alloys are more stable than others in each state. Rapidly heating the alloy to its

melting point, and quickly cooling it can change it from the polycrystalline state to the
amorphous state.

To revert to the polycrystalline state, the amorphous state alloy is heated to a temperature

just above its crystallization point, then allowed to cool naturally to crystallize itself. The

phase change processes are shown in Fig.6. The alloy has a higher level of light

reflectivity when it is in crystalline state than when it is in amorphous state. This is the

basic operation of phase change recording. The change in the light reflectivity is detected
as the recorded data output.
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Figure 6. Recording Process in Phase Change (PC) Media

An alloy of Te and Sb is preferred both for its environmental stability and large

reflectivity change between states (typically <5% reflectivity in the amorphous state, and

>20% in the crystalline state). Some other materials, such as Germanium, Indium, and

Silver are often added to the basic alloy to improve its optical characteristics.

The structure of a typical phase change recording disc is shown in Fig.7. Thickness of the

recording layer is ~20 nanometer, and its thickness significantly influences its lateral heat

conductivity, which, in turn, controls the achievable data recording rate.
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UVhardenedplastic layer

Auto track finding system

Trackwobbledfrom track center linewith
period equalto 1/232of sector length

Figure 7. Structure of single-layer Phase Change recordable DVD

The recording layer is sandwiched in between dielectric layers for protection. The

protection layer material, such as Zinc Sulfide-Silicon Dioxide, ZnS-SiO2, has a

significantly higher melting temperature, and it stays in amorphous state during the entire

recording process. The dielectric layers not only protect the recording layer during

heating cycles to maintain its thickness constant, but they also improve the reflectivity

change between states. This function is sometimes referred to as optical tuning.

Optimization of the disc construction, including the alloy composition and thickness of
each layer, is an art of compromise.

For rapid heating during the initial record cycle, the record layer should hold all the heat

within, but on the transition to amorphous state, the actual recording, quick heat

dissipation is required. Slower rate of cooling could form crystals within the amorphous
region, which is highly undesirable.

The process of returning to crystalline phase of non-recorded state is even more complex

because the crystallization process for the material requires a defined rate of cooling,
expressed as 10X degrees per second.

Lateral flow of the molten record layer material degrades the integrity of recorded

information. Excessive pressure from the protection layers could cause this undesirable
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effect. Small amount of high melting temperature material in the record layer, which acts

as an agent for lateral flow prevention, is a technique used by some of the media

producers.

The structure shown in Fig.7 also illustrates the concept of land-groove recording,

which offers two-for-one track pitch reduction. The land-groove recording does not have

the inter track guard band for reduction/elimination of the data cross talks between tracks.

By making the elevation difference between the land and the groove to be exactly ¼

wavelength of the read laser wavelength, however, the signals from adjacent tracks

picked up by the skirt energy of the read beam cancel by themselves. This technique is

just as effective as the guard-band-less, azimuth recording used in high density magnetic

tape recording.

DVD RAM

The DVD-RAM is a recording format intended for all data storage applications, including

imagery, video, and numerical data. The first product, with 2.6 GB per surface capacity,
was introduced in 1998. The 2.6 GB disc surface, as shown in Fig.8, is divided into two

areas. In the central, non-recordable area, format and product information is stored. The

outer area, where data is to be written, operates as a phase-change recording disc. The

recordable area is divided into 24 concentric zones, zone-0 through zone 23. Each zone

consists of 944 land tracks and 944 groove tracks.

DVD-RAMDisc (Version1.0)2.6 GBuserdata persurface

I Defect managementarea

////_/ User Zone 23 (40 sectors)

//// // I_-User ZoneO 07sectors)

/[// // _/_,f Defect management area

I [I [I II/_'_ LN°rl-rec°rdable area c°ntaining disc andf°rmat

//// \L--,k\\\ _ information Reservedarea for defect

_k_X,__ _User data area

"_"-_ _Data sector

Figure 8. DVD-RAM version 1.0

306



To maintainnearconstantdatarecordingdensitythroughoutthedisc surface,moredata
is recordedin outer zonesthan in the inner zones. This is accomplishedby recording
varyingnumberof datasectors- - eachsectorhas2 KB userdata - - in eachzone. The
innermostzoneholds 17sectors. Onesectoris addedto eachzoneasthe zonemoves
outward,andtheoutermostzoneholds40 sectors.This techniqueis referredto asZCLV,
Zone ConstantLinear Velocity recording. The head-to-mediumvelocity is essentially
constantat 6.0meters/sec.

Eachzonecontainsareasnormallyusedfor datastorageandreservedareasto beusedas
replacementfor defectiveuserblocks. Defectareareplacementis doneona sectorbasis,
andit is automaticallyaccomplishedbytheDefectSectorManagement,DSM, operation.

Theoperationalinstructions,anddatarelatedto defectareareplacement,arestoredin the
inner-andouter-mostportionof thedisc,asshownin Fig. 8.

In addition to the land-and-grooverecording,DVD-RAM employsa techniquewhich
significantly improvesthe in-track density - mark edgerecording. In conventional
optical recording,asshownin Fig. 9 A, 1 is recordedasa mark,or pit, on themedium.

Mark and Mark Edge Recording

"z l-Lfl_ FLFLFL
U

NRzj

NRZI

O0

I

(

I I

r-LJ
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Figure 9. Mark edge recording

In a consecutive run of l's, the successive recording of pits tends to raise the local

medium temperature higher, and unless carefully controlled, the pits recorded get

successively larger. This phenomenon, coupled with the fact that pits are closely placed

to begin with, makes the minimum bit spacing longer than what is dictated by the actual
bit size itself.
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Mark edge recording offers an attractive solution for this problem. In mark edge
recording,the consecutive1's arerecordedasanelongatedpit, eachedgecorresponding
to thestartandendof theconsecutive1's. This techniquemakesit unnecessaryto record
a shortpit, enablingthe systemto recorda significantlyhigheramountof datawithin the
givenphysicalmedialength.

The 2.6 GB DVD-RAM media is availablein SingleSideversionaswell as in Double
Sidedversion. Unlike the DVD-Video Dual layer disc,Double sidedDVD-RAM must
be turnedover to write andreadbothsidesby a writer/readerdrive. Both layerswithin a
DVD-Video dual layer disc are readableby a standardDVD player without reinserting
thedisc.

Specificationsfor the higher capacityversionDVD-RAM, with per surfacecapacityof

4.7 GB, have been finalized.

Version 2.0 of the specifications for the 4.7 GB disc, state the following characteristics:

Track Pitch = 0.615/.tm, Minimum mark Length = 0.28 flrn

No. of Zones = 35

Number of Sectors in innermost zone = 25

Number of Sectors in outermost zone = 59

The 4.7 GB capacity disc is expected to be available in both single sided (4.7 GB) and

double sided (9.4 GB) versions.

The data transfer rate for the high capacity version is twice that of the 2.6 GB version, at

2.76 MB/sec. This is the sustainable record rate of the system. As in the case for CD-

ROM, a DVD-RAM disc can be read at a much faster rate than its record rate.

Specifications for the recordable DVD's are shown in Fig. 10.
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Year of introduction

Capacity per surface,
GB

Double sided media

Laser Inm

Objective lens NA

Track pitch/Jm

Minimum mark length

pm

Max Transfer rate,
MB/s

Version 1.0 Version 2.0 Future

1998 1999 2002

2.6 4.7 12-18

Yes Yes Likely

650

0.6

0.74

0.409

1.38

650

0.6

0.615

450

0.8-0.85

0.3

0.28 0.2

2.76 6-9

Figure 10. DVD-RAM specifications

DVD Capability Expansion Possibilities

DVD proponents faced the age-old dilemma of designers: when to stop enegineering

development and finalize the specifications. The technology was on a steep ascending
curve then, and the disc data holding capacity was growing daily

Areal Density Improvement

Today, they were facing exactly the same problem. The blue/Violet light diode laser in

400 nanometer wavelength region is no longer a laboratory curiosity. While the price is
quite steep, a manufacturer is delivering a 405 nanometer laser based on Gallium Nitride

Crystal with 10 mw CW capability, and guaranteeing 10,000 hours operation under room

temperature. A score of other semiconductor manufacturers are all developing a laser of

similar performance and capability. The major supplier of current CD and DVD laser

established a two year project to complete the development of their short wavelength
laser.

Another component requiring up-grades to increase the areal density is the objective lens.

In this area also, experimental lenses approaching the theoretical limit of unity, in the
region of 0.8 to 0.9, have been produced.
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Combining a blue/violet laser and a super fast objective lens, an areal density increase of

3 to 5 is practical, making the per surface data capacity to be 15 to 25 GB. A number of

15 to 25 GB experimental disc systems have been demonstrated within the last two years.

Multiple layer Recording

While it is practical to read a dual-layered, embossed pattem DVD-Video disc from its

front side, writing to and reading data from a multi layered disc from its front side creates

an entirely new set of problems.

Taking a double layer disc as an example, the first and the closest to the front surface

record layer must be transparent enough so that the record and play back beams for the

second layer can penetrate it without undue attenuation. In case of the playback beam for

the second layer, it must pass through the first layer twice.

Also, if the reflective layer for the first recording layer is retained, it must be at least

semi-transparent.

Therefore, the multi-layer recording disc must have an entirely different layering

structure. A possible structure of dual layer, phase change recording disc is shown in Fig.

12.

Possible Dual Layer DVD-RAM Disc Configuration

Polycarbonate substrate I

ZnS-SiO 2

Te.Sb.Ge Recording

ZnS-SiO 2 Protection

ZnS-SiO 2
Te.Sb.Ge Recording

ZnS-SiO 2

Bonding

Polycarbonate substrate

mer recording layer

crystallization accel

AI Alloy semitransparent

reflective layer

41--Thinner recording layer

Ge-N crystallization accel

AI Alloy full reflectivity
layer

polymer

Matsushita

Figure 12. Possible Dual Layer DVD-RAM
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FasterRecordingRate
Oneof the weakness of the phase change recording is its relatively slow recording rate.
In version 2.0 of DVD-RAM, it has just reached about 3 MB/sec.

An anticipated application of DVD-RAM is the broadcast video recording camera, the

professional camcorder equipment. While 3 MB/sec may be just sufficient for the

standard definition television recording, it is entirely inadequate for HDTV applications,
where 6 to 12 MB/sec recording rate is required.

As mentioned earlier, the recording rate is essentially governed by the crystallization rate

of the recording layer material. In addition to thickness variation and optimization of

composition, studies are being conducted to accelerate crystallization by placing an

augmentation layer next to the recording layer. On the reading side, all DVD discs are

already readable at 10 MB/sec, and within three years, technologies will be available to
read the disc at rates as fast as 40 MB/sec.

Summary

The entire DVD infrastructure is being driven by the large commercial business.

Continuing technology advances are assured because of the rapidly growing markets

demanding higher performance and feature-packed products.

DVD-RAM is an attractive data storage technology, offering a high data capacity per unit

volume, with expected storage life of 60 years or longer. It could potentially displace
magnetic tape in certain applications.

Magneto-Optical recording, while making steady progress in data storage density, is used

in the data storage area only, lacking the support enjoyed by DVD from the consumer

industry. It can record faster than DVD, and is certain to maintain its place in the overall
data storage infrastructure.

Write-once technology, represented by CD-R and DVD-R, is developing a unique

position in both private life and business environs. It is a replacement for paper-based

notebooks, log books, ledgers, and a convenient and low cost storage for music and
pictures.
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Abstract

Earth Science Enterprise (ESE) is a long-term NASA research mission to study the

processes leading to global climate change. The Earth Observing System (EOS) is a

NASA campaign of satellite observatories that are a major component of ESE. The EOS

Data and Information System (EOSDIS) is another component of ESE that will provide
the Earth science community with easy, affordable, and reliable access to Earth science

data. EOSDIS is a distributed system, with major facilities at seven Distributed Active

Archive Centers (DAACs) located throughout the United States. The EOSDIS software

architecture is being designed to receive, process, and archive several terabytes of science

data on a daily basis. Thousands of science users and perhaps several hundred thousands

of non-science users are expected to access the system. The first major set of data to be

archived in the EOSDIS is from Landsat-7. Another EOS satellite, Terra, was launched

on December 18, 1999. With the Terra launch, the EOSDIS will be required to support

approximately one terabyte of data into and out of the archives per day. Since EOS is a

multi-mission program, including the launch of more satellites and many other missions,

the role of the archive systems becomes larger and more critical. In 1995, at the fourth

convening of NASA Mass Storage Systems and Technologies Conference, the

development plans for the EOSDIS information system and archive were described [1].

Five years later, many changes have occurred in the effort to field an operational system.

It is interesting to reflect on some of the changes driving the archive technology and

system development for EOSDIS. This paper principally describes the Data Server

subsystem including how the other subsystems access the archive, the nature of the data

repository, and the mass-storage I/O management. The paper reviews the system

architecture (both hardware and software) of the basic components of the archive. It

discusses the operations concept, code development, and testing phase of the system.

Finally, it describes the future plans for the archive.
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Introduction

Earth Science Enterprise (ESE) is a long-term NASA research mission to study the

processes leading to global climate change. The Earth Observing System (EOS) is a

NASA campaign of satellite observatories that are a major component of ESE. The EOS

Data and Information System (EOSDIS) is another component of ESE that will provide

the Earth science community with easy, affordable, and reliable access to Earth science

data. EOSDIS is a distributed system, with major facilities at data centers located

throughout the United States.

Figure 1. Locations of EOSDIS Distributed Active Archive Centers

In this paper, we describe the archive and distribution operations at four Distributed
Active Archive Centers (DAACs). These DAACs are located at Goddard Space Flight

Center (Greenbelt, MD), Langley Research Center (Hampton, VA), EROS Data Center

(Sioux Falls, SD), and the National Snow and Ice Data Center (Boulder, CO). The
EOSDIS software architecture is being designed to receive, process, and archive several

terabytes of science data on a daily basis. Thousands of science users and perhaps
several hundred thousands of non-science users are expected to access the system.

The first major set of data to be archived in the EOSDIS is from Landsat-7. Landsat-7,

an Earth imaging satellite launched on April 15, 1999, provides repetitive, synoptic

coverage of continental surfaces; spectral bands in the visible, near-infrared, short-wave,

and thermal infrared regions of the electromagnetic spectrum; average spatial resolution

of 30 meters (98-feet); and absolute radiometric calibration (http://landsat.gsfc.nasa.gov).
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Following Landsat-7,the Terrasatellite(formerly known as EOSAM-l) was launched
on December 18, 1999. Terra is uniquely designedfor "comprehensive"Earth
observationsandscientificanalysis,coveringsciencepriorities aslandcoverchangeand
global productivity, seasonal-to-interannualclimate predictions,natural hazards,long-
term climate variability, and atmosphericozone(http://terra.nasa.gov).With the Terra

launch, the EOSDIS will be required to support approximately one terabyte of data into

and out of the archives per day. The next big mission is the Aqua satellite to be launched

in December 2000 (http://aqua.gsfc.nasa.gov). Moreover, EOS is a multi-mission

program that includes several more Earth study campaigns and satellites through the year

2011. Given this extended time frame, the role of the archive systems becomes larger and

more critical. In 1995, at the fourth convening of NASA Mass Storage Systems and

Technologies Conference, the development plans for the EOSDIS information system

and archive were described [1]. Five years later, many changes have occurred in the

effort to field an operational system. It is interesting to reflect on some of the changes

driving the archive technology and system development for EOSDIS.

The focus of this paper is the description of the Science Data Processing System (SDPS)

segment of EOSDIS, with particular attention to the ingest, archive and distribution

processes and components. The SDPS system will be required to manage, store, retrieve,

and process more than a terabyte of data per day at its data centers. As Table 1

illustrates, the projected capacity required by the project during 2000 is quite formidable.

Across the data centers, the expectation is to archive on the order of 1.5 TB per day and

16,500 granules. A granule is the smallest package of data made available by EOSDIS.

A granule can contain 1 or many files. Another important distinction is made between a

full dataset and a "browse" dataset. Browse datasets can be thought of as small examples

of the full resolution data. They are used by scientists to quickly determine whether a

particular dataset is useful without having to look at its entire contents.

Data

Center

EDC

Archive

Volumes

GB/1)ay

522

#

granules

per day

6886

# of Granules
cumulative

per year

of Archive
Volumes
In TB

per _,ear
190

251

114

8

563

Distribution
via

Network

GB/day
194

Distribution

via tape
GB/day

2,513,390 159

GSFC 688 5545 2,023,925 226 226

LaRC 312 2945 1,074,925 102 102

NSIDC 22 1083 395,295 6 6

Total 1544 16459 6,007,535 528 493

Table 1. Projected capacity through the end of 2000

In addition to designing and providing a comprehensive data retrieval and processing

system, the SDPS is tasked to be a flexible, scaleable and reliable system. The

architecture should be capable of supporting:

315



• new data types with minimal software modifications

• new data centers that will not require new code and software agreements

• standard interfaces (HDF-EOS) enabling coordinated data analysis

• data access from a wide variety of users (e.g., kindergarten teachers, as

well as college professors)

• technological advances and the infusion of new COTS products and

techniques (e.g., new file storage management systems)

• inevitable change and new additions

To meet the challenge of the SDPS, the EOSDIS Core System (ECS) was designed under

contract to NASA by the Raytheon Systems Company/Landover MD. Lockheed Martin

Corporation designed the archival component of the system encompassing Ingest,

Storage Management, and Distribution, under a subcontract to the Raytheon Systems. It

is an enormous development effort for the entire ECS comprises 75 COTS packages,

about 1 million lines of code and the efforts of approximately 220 developers. In this

paper, we describe how the archive and distribution systems work for the ECS.

The ECS system is designed at a central development location and then distributed and
installed at the various DAAC sites. Each of the DAACs has a different area of science

emphasis and the system to be deployed is adapted to that need. For example, not all

DAACs will have the same archive size requirements. However, the software system

works the same way at all DAAC sites. The science datasets supported by this SDPS

also vary in size and type. The SDPS is composed of six major subsystems shown in

Figure 2, ECS Context Diagram.

1. INGEST subsystem - receives data from extemal and internal sources and

submits them for storage into the archive

2. DATASERVER subsystem - archives and distributes data

3. PLANNING subsystem - develops plans for producing data products

(level 0 to level 1)

4. DATA PROCESSING subsystem manages, queues and executes

processes for the generation of data products

5. INTEROPERABILITY subsystem - provides the software infrastructure

for the communications between clients and servers in the system

6. DATA MANAGEMENT subsystem - supports the location, search, and

access of data and services.

This paper will principally describe the Data Server subsystem including the description

of how the other subsystems access the archive, the design of the data repository, the

mass-storage I/O management, and archive operations. The paper will review the system

architecture (both hardware and software) of the basic components of the archive
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It will discuss the operations concept, code development, and testing phase of the system.

Finally, it will describe the future plans for the archive.

Data Server Subsystem

The Data Server Subsystem (DSS) provides the data storage and management functions

including archiving EOS data, managing and searching the archive, and resource staging.

It stores, searches, retrieves and distributes EOS data. The DSS interfaces with virtually

all ECS subsystems and components. It is composed of several internal subsystems and

constitutes the largest software and hardware segment of the entire ECS. The subsystems

internal to DSS include the Storage Management Configuration Item (CI), Data

Distribution CI, and the Science Data Server CI.

As with all major systems in ECS, the DSS was written in C++ using an object-oriented

software methodology. The DSS uses the Distributed Computing Environment (DCE)

for its infrastructure and ClearCase to manage the software configuration. Many other

commercial packages are used to develop, build and operate the system. The DSS

contains 252,000 lines of custom code. Ingest, which is a separate subsystem designed to

load the archive and enter the metadata into the inventory tables, is composed of 83,000

lines of code. The system is extensively tested prior to being fielded. The ECS was

originally developed on small workstations that didn't adequately emulate the hardware

being fielded at the DAACS. During the course of the five years, it became clear that the

development team would require a complete archive system that duplicates the

configuration of the archive systems at the larger DAACs in order to develop and test the

software systems effectively. This archive system, called the Performance Verification

Center, was created to not only field new versions of the software but also to provide the

ability to troubleshoot and tune the system to maximize performance.

The Science Data Server CI subsystem in the DSS provides the entire ECS system with a

catalog of data holdings organized by Earth Science Data Types (ESDT). The ESDT

includes not only the data type definitions but also service functions that can be

performed on that specific data. The Science Data Server manages and provides user

access to data collections through its catalog of metadata, principally using the Sybase

database management system. When another subsystem (for example, the Data

Processing Subsystem) requests data from the archive, the request is sent to the Science

Data Server subsystem. Science Data Server then initiates a request to the Storage

Management subsystem, to allocate magnetic disk space for staging of that data and a

request to the Data Distribution subsystem to stage and distribute the data appropriately

to the requestor. The Data Distribution subsystem requests the data from the Storage

Management subsystem. The Storage Management subsystem initiates the acquisition of

the data from the physical storage in a robotic silo and stages the data in the appropriate

disk space that it manages.

318



The StorageManagementCI stores,manages,and retrievesdata files on behalf of the

other subsystems. It also manages all the magnetic disk space within the DSS. An

archive software server is used to manage requests from the other subsystems to store or

retrieve the archive data. A staging disk server is used to manage the files in the

magnetic disk storage area and a pull monitor server is used to manage the files that are

in the 'user pull' area. The magnetic disk is also used as a Storage Management disk

cache, which is managed by a staging monitor server. The 'user pull' disk space is disk

space allocated for users to FTP their requested data from the EOSDIS. A resource

manager server has also been developed to manage the peripheral devices available at

each data center. These include 8mm tape drives in stackers, D3 tape drives at EDC, and,

in the near future, CD-ROM drives and DLT tape drives in stackers.

The Data Distribution CI formats and distributes data to users, either electronically or on

physical media (e.g. 8mm tapes). It directs the Storage Management subsystem to place

data in the desired location. The request could be to place the data on magnetic disk for

another subsystem to retrieve it, to copy the data to tape, or to push the data via FTP to
the user's workstation. This CI sends distribution notifications as the action is

completed. The data distribution server provides control and coordination for data

distribution through request processing. More on the request processing design can be

found in the poster paper by J. Crawford presented at the Eighth NASA Mass Storage

Systems and Technologies Conference. [3]

Data Repository

The Data Repository component includes the nearline storage system, cache magnetic

disks, and servers required for storing and retrieving the EOS data, see Figure 3,

Hardware Architecture Diagram. The architecture is specialized to insure high

availability [4], high-speed access to the data in the nearline system. Because the amount

of data to be stored in the EOS system is so large, the system had to be designed to use

high storage density at low cost and, therefore, is a tape-based archive. In 1995, ECS was

planning to purchase AML multi-media robotics from the EMASS corporation. As the

requirements for the project evolved, the decision was made in 1996 to have a multi-

vendor solution, with the EMASS Corporation supplying the AML multi-media robotics

for the small file size Browse collection and Storage Tek Powderhorn silos for the large

data archive. AML robotics are attractive, based on their support for drives and media

from different vendors. After several months of evaluation, it was decided that it would

be a cost benefit to trade the four AMLs for Storage Tek Powderhorns, which is our

current configuration.

Today, the nearline storage system used by EOS is based on StorageTek Powderhorn

silos as the hardware base and the AMASS (Archival Management And Storage System),

a product of ADIC. StorageTek silos have been installed at the data centers: three silos at

EROS Data Center (EDC), two at Langley Research Center (LaRC), one at NSIDC and

four at Goddard Space Flight Center (GSFC). Each silo holds up to 6000 cartridge tapes,
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in our case 50GB D3 tapes, for an aggregate of approximately 300 TB in a silo. The

actual number of media in a silo is derated by the number of attached tape drive

enclosures and by a Plexiglas observation window, if used. On average, each EOSDIS

silo filled exclusively with D3 media stores 270 TB of data without compression. Some
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data, however, is compressible at the drive. The Landsat collection is one example where

realized data compression approximates 2:1. A silo containing Landsat data at the EDC

will, when filled to capacity, store between 500 and 600 TB.

The number of tape drives attached to each of the silos varies depending on the data

throughput requirements of an archival site. The silos at the larger sites, such as EDC

and GSFC, run with eight D3 drives in each of the archive silos. A smaller site, such as

NSIDC, has 3 D3 drives in its data silo. The drives are rated at a maximum sustained

throughput of 11 MB/sec, but the observed effective rate with compression is near 16

MB/sec. The number of storage silos at a data center is also determined by the data

center size, i.e. the cumulative size of the data holdings in storage. The physical storage

of data is managed by the AMASS file storage management system.

Both the hardware and software system design supports the growth of ECS. NASA has

planned to grow the system to support the archiving of future missions with additional

hardware over the ECS program lifetime. For example, NASA purchased an additional

silo for each of the larger data centers last summer. The silo was easily incorporated into

the architecture. Another ECS design modification was to place the Browse Data

Collection on STK 9840 tapes and house these tapes in the STK Powderhorn silos. That

design was driven by both a very large accumulation (up to 30 TB at GSFC) of Browse

data and the relatively small file size of each Browse file - in the 1 MB range. Since even

at the larger sites the Browse collection will fill only part of the silo, the Browse silos

may be used in a multi-media mode, outfitted with both 9840 and higher tape capacity

drives and media. Just like D3, 9840 is a fast streaming drive, rated at 12 MB/sec

maximum sustained throughput rate and capable of effective data rate of 17 MB/sec with

compression. Unlike the Helical Scan D3, 9840 is a linear tape drive - more suitable for

a start and stop operation mode associated with smaller data files.

Silicon Graphics (SGI) workstations were chosen as the platforms for managing the data

repository. The current configuration assigns a single SGI Challenge host per STK silo

in order to sustain the required data rates to and from the tape drives through the attached

buffer RAID. Significant effort was expended in tuning the SCS| attached RAID to

produce the desired effective data rates of 120 MB/sec per RAID subsystem [2]. Over the

summer, ECS will migratethe existing archive servers to SGI Origin platforms. Although

the combination of Origin servers and fibre attached RAID afford much faster data rates,

the same 1 server per 1 silo ratio will be preserved initially to allow for redundancy.

Mass-Storage I/0 Management

The greatest challenge for the DSS is the management of the massive I/O (multiple

terabytes per day) between the archive and the ECS components requesting data actions.
It must handle continuous requests from

1. The Data Processing subsystem for files needed for processing Terra or

Landsat data and for storing products once they are created;
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2. TheIngestsubsystemto storedatafrom dataprovidersexternalto ECS;
3. Theclient subsystemsfor dataorderedbyusersfrom theGUI front-end;
4. The ECSsubscriptionserviceto senddatato userswhenit getsstoredin

thedatabase.

The physicalstorageof ECSdatais managedvia a "commercialoff the shelf" (COTS)
AMASS files storagemanagementsystemby ADIC. The AMASS systemrunson the
SGIhostsandoperatesthe STKhardwaresilos.Thecontrol of theroboticmechanismof
the silo (loadingandunloadingof thetapes)is via the STKAutomatedCartridgeSystem
Library Software(ACSLS)runningon a SPARC5SUNworkstation. AMASS addresses
the ACSLSthroughanetworkconnection.TheACSLScontrolstherobotdirectlyvia an
RS232line.

AMASS is a directaccessfile system as opposed to a Hierarchical Storage Management

(HSM) product. Its cache area serves as a write-through buffer. The size of AMASS

cache is set independently at each data center and each particular server. It is determined

on the basis of the expected storage and retrieval profile associated with the data types

handled by the server. Predominant file size, many small files or many large files for

example, plays a role in choosing the exact configuration. Although AMASS supports
both FTP and NFS access to the archived data, NFS is used solely by the ECS system.

Unfortunately, AMASS uses an internal database that is singlethreaded in the

implemented version. The performance constraints that it places on the overall system

are mitigated by using custom-code manipulation of AMASS and the hardware. AMASS

uses an internal database for tracking file allocations to tape. This internal database is

joumaled. The location of tapes in the silo slots is tracked by an Oracle database in the

ACSLS. To enhance performance, AMASS allows creation of specialized volume

groups of tapes in the silos. In our case, these are created for particular EOSDIS data

types.

Archive Operations

With the launch of Terra, archive operations for EOSDIS are now fully established at all

the data centers. Many of the data centers are operational on a 24 x 7 basis, however, the

ECS system has been designed with a 'lights out' approach. To be able to maintain the

required ingest and distribution rates, the software is designed to be highly autonomous.

The only area of operations requiring direct human involvement is hard media

distribution, where the distribution media must be loaded and unloaded and packaged for

shipment to the user.

A Systems Monitoring Center has been built at GSFC to monitor each of the data centers

as well as to provide some special, centralized functions. Locally at each data center, all

areas of operation are closely monitored, especially process and log monitoring. The

operations system administrators and system engineers are automatically paged if specific

events or error conditions are encountered. For example, a severe error in the archive

systems will trigger an event 'page call' to the engineers. This enables staffing to be
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minimal evenat the largestdatacentersduringoff-hours. Routinefull systembackupof
the softwareis performedusing DLT tape. The AMASS database(ORACLE) in the
archivesis backedup at somedatacentersas frequentlyaseveryhour. Backupof the
actualdatais determinedat eachdatacenterandis dependenton thedatatype. It canbe
doneas simply as settingasidean additional volume group in a secondarysilo for a
backup copy. One of the most importantconcernsin operatingof the massstorage
systemfor ECSwasthe ability to recoverfrom tapeerrors. A recoveryprocedurethat is
combinationof automatedscripts,customcode,operatoractionsandvendoractionshas
beendesignedandtested.

Eachdatacentersupportsthreemodesin its currentsystemenvironment.Therearetwo
testmodesandoneoperationalmode. Theroutinework of the datacenteris performed
in theoperationalmode. Thetwo testmodesareusedfor testingandinstalling software
patches/releasesand COTSpatches/releases.For the ECS system,it was important to
fully test the archivesystemsas muchaspossibleprior to becomingoperational. We
testedboth the hardwareand softwarefor functionality aswell as performance.Many
problemsandfeaturesof thesystemswerediscoveredduring thetestphase.Thearchive
vendor was notified and fixes were supplied. In somecases,ECScompensatedwith
customcode. Testingthe archivesrequiredalmosttwo full-time engineersin advanceof
beingoperationalandwill continueto requiretestengineersduring the operationalEOS
lifetime. Eachdatacenteralsorequiressupportfrom veryexperiencedarchiveengineers.

Conclusions

The focus of this paper is the Data Server subsystem, the archive component of the

EOSDIS Core System (ECS). It comprises the data repository, the mass storage I/O

management and the software configuration items needed to manage, store, retrieve, and

process massive amounts of EOSDIS data on a daily basis. The Data Server Subsystem

design is constrained in many areas by the schedule pressures, cost considerations,

realities of implementing large and very complex system, and sheer technical limitations

existing at the time of initial design. Even so, the initial performance results are

satisfactory to meeting the data flow and operating requirements. In order to continue to

meet the requirements of the future missions and the anticipated growth in user demands,

the system must continue to evolve. The ECS design allows for such evolution in areas

of both the custom implementation and replacement of outdated COTS technologies by

their successors. Several evolutionary steps, such as robotic technology replacement and

migration to the new SGI server model, have already been undertaken or are in the

process of being undertaken. In the foreseeable future, the hardware architecture is

limited to tape archives, although a plan for regular migration to alternative tape media is

being considered. Some changes may be anticipated by evolving storage area networks,

file storage management software and disk technology. The very design alterations that

took place during the course of the project represent the systems capacity to evolve. We

have described the archive and distribution systems for the EOSDIS Core System (ECS)

for 2000 in this paper, however there are many other components to the system. Please
feel free to contact the authors for further information.

323



References

[1] Caulk, P.M., "The Design of a Petabyte Archive and Distribution System for the

NASA ECS Project", Fourth NASA Goddard Conference on Mass Storage Systems and

Technologies, College Park, Maryland, March 1995.

[2] Lake, A., "Performance Tuning of a High Capacity/High Performance Archive for the

Earth Observing Systems Project", Sixth Goddard Conference on mass Storage Systems

and Technologies, College Park, Maryland, March 1998.

[3] Crawford, J.M., "A Scalable Architecture for Maximizing Concurrency", Eighth

NASA Goddard Space Flight Center Conference on Mass Storage Systems and

Technologies, College Park, Maryland, March 2000.

[4]Lake, A., Crawford, J., Simanowith R., Koenig, B., "Fault Tolerant Design in the

Earth Orbiting Systems Archive", Eighth NASA Goddard Space Flight Center

Conference on Mass Storage Systems and Technologies, College Park, Maryland, March

2000.

324



Mass Storage System Upgrades at the NASA Center for Computational

Sciences

Adina Tarshish

NASA Center for Computational Sciences, Code 931

NASA/Goddard Space Flight Center

Greenbelt, MD 20771

Adina.Tarshish@gsfc.nasa.gov
Tel +1-301-286-6592

Fax +1-301-286-1634

Ellen Salmon

NASA Center for Computational Sciences, Code 931

NASA/Goddard Space Flight Center

Greenbelt, MD 20771

Ellen.Salmon@gsfc.nasa.gov
Tel +1-301-286-7705

Fax +1-301-286-1634

Medora Macie

NASA Center for Computational Sciences, Code 931

NASA/Goddard Space Flight Center

Greenbelt, MD 20771

Medora.Macie@gsfc.nasa.gov
Tel +1-301-286-3812

Fax +1-301-286-1634

Marty Saletta

NASA Center for Computational Sciences, Code 931 (Raytheon)

NASA/Goddard Space Flight Center

Greenbelt, MD 20771

Marty.Saletta_gsfc.nasa.gov
Tel +1-301-286-9810

Fax +1-301-286-1634

Abstract

The NASA Center for Computational Sciences (NCCS) provides supercomputing and

mass storage services to over 1200 Earth and space scientists. During the past two years,

the mass storage system at the NCCS went through a great deal of changes both major

and minor. Tape drives, silo control software, and the mass storage software itself were

upgraded, and the mass storage platform was upgraded twice. Some of these upgrades

were aimed at achieving year-2000 compliance, while others were simply upgrades to

newer and better technologies. In this paper we will describe these upgrades.
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1 Introduction

UniTree first arrived at the NCCS in July of 1992, when it was installed on a Convex

C3240. At the time it was attached to 8 3480 tape drives in 2 StorageTek silos, 110 GB

of disk, and its main client was a Cray Y-MP. Our UniTree system now runs on a Sun

E 10000 and is connected to 56 tape drives in 7 silos and an IBM 3494 robotic library, as

well as 4 freestanding Timberline drives. It has a disk cache of 1.5 TB, and its main

clients are SGI/Cray J932se machines. Figure 1 below shows our current configuration.

1_60 _EI disk (fom_ o'1
(7'20 _ IorDkF)

40 MB_s_ x 2

100 MB4_c x 10

100MB_ec x20

40 MB_e¢ x 1559 GiBdisk

Figure 1. NCCS supercomputing/mass storage configuration

As of November 1, 1999 there were nearly 69 TB of unique data under UniTree's

control, plus 35.6 TB of duplicated data stored in a remote facility. Figure 2 shows the

breakdown of data by category as of that date.
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Figure 2. breakdown of data under NCCS UniTree control as of 11 / 1/99

NCCS users have done as much as 300 GB of network traffic in a single peak day.

Figure 3 shows the weekly network traffic to and from UniTree for the past two years.
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Figure 3. Weekly NCCS UniTree network traffic

The retrieval pattern of the NCCS user community is shown in figure 4 below.

328



Age of UniTree Files Retrieved 8/30/99 -
11/9/99

25 500

450

20 400

350

15 3oo

i llth°usandsi 250 [---e,--gigab_es

10 -- 200

150

5 100

5O

0 .0

<1 month 1-2 2-3 3-4 4-5 5-6 6-9 9-12 >12

months months months months months months months months

of files I

Figure 4. Age of UniTree files retrieved over a 2-month period

The early history of the NCCS UniTree+ mass storage system can be found in the

proceedings of the third, fourth, and fifth Goddard conferences on mass storage [1,2,3].

2 Platform/software upgrade

Since September of 1993, the NCCS had run HP's UniTree+ mass storage software on an

HP/Convex C3830 machine. By the end of 1997, however, we had decided to survey the

market, seeking a newer system that might be less expensive to maintain. In the early

spring of 1998 HP informed us that the C3830 was not year-2000 compliant and would

not be supported past 9/30/99. Support for UniTree+ was being dropped as well, and

they recommended that we convert to UniTree Software, Inc.'s (UTSI) UniTree and run it

on a V-class HP machine. With the short amount of lead time we were given to find

something compliant, we decided to look for an interim year-2000 solution that would be

able to read our UniTree+-written tapes outright, without requiring UniTree+ to remain

running as a "middleman". At the time we found only two possible software candidates:

LSC's SAM-FS, and UTSI UniTree.

SAM-FS ran only on a Sun platform. UTSI UniTree was supported on HP, Sun, DEC,

and SGI machines. Using provisions of NASA's SEWP contract, the four hardware

vendors provided us loaner machines with which to "test drive" UTSI UniTree and (for

Sun) SAM-FS. By July of 1998 we had four test platforms installed: a Sun Ultra E6000
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with A3000 and A5000 RAID disk arrays, an SGI Origin2000 with a Clariion RAID fibre

disk array, an HP V2250 with an EMC fibre disk array, and a DEC Alpha 4000 with a

StorageWorks RAID Ultra SCSI disk array. Our intention was to test SAM-FS on the

Sun E6000 and to test UTSI UniTree on all four. However, the deadline for making the

final decision was mid-August. The massive effort of learning and testing two new mass

storage systems and four separate flavors of Unix while simultaneously supporting the

production UniTree+ mass storage system ultimately proved overwhelming for the

limited staff we had. Something needed to be taken out of the equation. We therefore

decided that the interim solution would be UTSI UniTree for common-sense reasons: it

involved the shortest learning curve, was available on several platforms, and was

successfully running at DKRZ, a site which regularly experienced more than three times

our network traffic load.

With hardware platform and disk array decisions still to be made, we threw ourselves into

configuring the machines and disk for optimum I/O performance. Generally, the disk

vendors recommended creating a small number of large disk stripes while UniTree

support recommended splitting disk arrays into as many small luns, as possible. In our

I/O tests several of the disk arrays had problems handling simultaneous reads and writes

to the same lun; writes would wait for the reads to finish before getting started. We

concluded that this must be a configuration issue within the machine or the RAID array

itself and did not allow it to affect our decision. We ultimately decided to purchase EMC

disk and StorageTek Clariion disk because they were reasonably priced and able to

connect to various platform types, preventing us from being locked into a particular

vendor.

An important component of our testing was network-related. Our largest UniTree clients

have always been the Cray systems, to which the UniTree platform has long been

connected via a HiPPI switch. The switch being used in production was a Netstar with

only copper interfaces, while the test machines required fiber interfaces. We had a new

Gigalabs HiPPI switch waiting in the wings to be tested, so a fiber "blade" was ordered

for that switch as well as a HiPPI modem for the Netstar switch. Complications arose

when certain ftp retrieves over HiPPI hung; this was eventually traced to the HiPPI

modem. Transfers over HiPPI that did not hang were nevertheless much slower than

expected. ODS, the manufacturer of the faulty modem, decided to give us a loaner HiPPI

switch, confident that we would see much greater HiPPI performance than we had in the

past.

Meanwhile, our deadline for making our decision arrived, and we were forced to use the

data we had at that point. Network performance was obviously inconclusive. However,

Sun was the most cost-effective solution, and we were comforted by the fact that it was

UTSI's primary UniTree port and that DKRZ was running UniTree on a Sun with far

heavier loads than we expected at the time. We decided to purchase a Sun Ultra E6500

as our interim year-2000-compliant mass storage platform. At the same time we

purchased 1.3 TB of EMC disk, 900 GB of StorageTek Clariion disk, 22 StorageTek

9840 tape drives, and 4 freestanding Timberline tape drives. Since the 9840 tapes drives
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werenot yet available,wewereto receiveTimberlinesto usetemporarilyin their place.
Theupgradeto 9840tapedriveswill bediscussedin thenextsection.

Thenew SunE6500arrived,andwepromptlyrolled upoursleevesandgot to work. For
our24 IBM Magstartapedrives,we obtainedboth the SunMagstardriver aswell asthe
IBM Magstardriver. Testingquickly showedthat with the SunMagstardriver we were
unableto appendto previously-writtentapes,makingour decisionto go with the IBM
driver a simpleone. UTSI,meanwhile,wasbusilydevelopingan interfacefor UniTreeto
communicatewith the IBM 3494roboticlibrary. Whenthis wascompleted,andwe had
tinkered with a test systemlong enoughto feel reasonablycomfortablewith how it
worked,we convertedtheexistingUniTree+3.0 test systemwe hadworkedwith on the
HP/ConvexC3830. This wasanexcellentexerciseandbroughtto light manyissueswe
would have to deal with when conversionof the production UniTree+ systemwould
occur. Amongthe mostimportantwas thediscoverythattapeformat "A" written under
versionsof UniTree+prior to 3.0wasactuallydifferentthanthesameformat "A" written
underUniTree+3.0. This discoverysurprisedusgreatly. In thecourseof ourattemptto
upgradeto UniTree+3.0 monthsbefore,we had convertedto andrevertedfrom version
3.0 severaltimes,until themajor problemswere fixed, andwe hadneverseen2.0 show
anydifficulty reading3.0-formattedtapes,nordid wesee3.0showanydifficulty reading
2.0-formattedtapes. UTSI UniTree,however,neededseparatetapetypesdefinedfor the
separatetape formats. Mark Saakeof UTSI, who had madethis startling discovery,
proceededto analyzeall of ourproductiontapes.He then listedfor usthosethat hadbeen
written since the upgradeto version 3.0 as well as those that were being written at
conversionandreversiontimes,invariablywritten partly in one format andpartly in the
other. He advisedus to repackthosemixed-formattapesbefore conversionto UTSI
UniTree,advicewecarefullyfollowed.

On WednesdayJanuary27, 1999, we halted user activity on the UniTree+ system
runningon the C3830and allowedmigration to complete. We copiedthe databasesto
theSunE6500,andMark begantheconversionprocess.The Sunassumedthe IPaddress
of the C3830. Tapedriveswereuncabledfrom theC3830andconnectedto the Sun. By
about 10PM that evening,userswerepermittedaccess.Mark remainedloggedinto our
new systemthroughthe entirenight, andvirtually noproblemswereseen. TheUniTree
we beganrunningthat eveningwasversion1.9.1into which wasbackportedseveral2.x
featuressuchasY2K support,supportfor up to 64 tapedrives,andsupportfor raw disk
cachedevicesgreaterthan2 GB. Additionally, it had 3494robotic support,which had
notbeenpreviouslyavailablewith UTSI UniTree.

3 TapeDrive Upgrades
9840swere a technologywe had beenawaiting a long time. Nearly half our UniTree
files were under 1 MB in size, effectively ruling out helical drives for anythingbut
duplicatecopies. However,wewerevery interestedin denserlineartechnologies.Back
whenStorageTek'sdensestlineartechnologywas3490Etape,storing somethingover 1
GB a cartridge,we hadmadethe decisionto purchasean IBM 3494tape library with 8
Magstardrives. At 10 GB per cartridgeuncompressedand 9 MB/s transferrate, this
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technologyservedusvery well. Whenit wasavailable,wepurchasedadditionalMagstar
tape drives in C12 cabinetsand installedthem in two of our StorageTeksilos, which
increasedour silo datacapacitytenfold. By thetimeStorageTek9840sbecameavailable,
wehad 16IBM Magstardrivesin thesilosandanother8 Magstardrivesin theIBM 3494
robotic library, and we had been using Magstarsto store all new datacoming into
UniTreefor nearlytwo yearswith greatsuccess.

9840s had a capacity of 20 GB uncompressed, and were therefore very desirable.

However, their arrival would mean the silo Magstars would have to go. The Library

Management Unit microcode level that was required for the 9840s disallowed Magstar

cartridges with "J" letters on them. Without "J"s on cleaning cartridges, we could not

have automatic cleaning enabled in the silos, because our silos were mixed-media - they

had Timberlines as well as Magstars. Disabling automatic cleaning was not an option in

silos mounting hundreds of tapes a day. Since 9840s and Magstars could therefore not

coexist in the same Automated Cartridge System, we had 2 choices: either to move the

Magstars out of the silos entirely, or to create a separate ACS with back-level LMU

microcode for the Magstar drives and install the 9840s in the other ACS. The first choice

was a much better one, especially since we had a 3494 robotic library that was already

home to 8 Magstar drives. Our next step was to purchase additional drive cabinets for the

3494, with the intention of moving the 16 silo Magstars into them. Sometime after this

3494 upgrade took place, however, IBM informed us that in a SCSI-connected robotic

library we could only fit 16 Magstar drives total. They offered to take back the extra 8

silo Magstars, as well as the 4 silo cabinets in which they had been housed. In return,

they would provide certain items that were of interest to us.

In preparation for the move of 8 silo Magstars into the 3494 robotic library, the silo

Magstar tapes had been gradually transferred to the 3494. A few weeks after the UniTree

conversion, the Magstar tape drives were moved out of the silos. This paved the way for

the upgrades required for STK 9840 support. First the Library Management Unit

microcode was upgraded, then the hands of the robots themselves, then the Automated

Cartridge System Library Software that manages tape access. Finally, the 9840s

themselves were installed and tested. By the end of March all new data being stored into

UniTree was being written to 9840 tapes.

The following month, IBM announced their E1A product, a 256-track Magstar drive that

could write double the original density to the same Magstar media. At the time of this

writing, 7 out of our 16 Magstar tape drives have been upgraded from 128-track to 256-

track, and data on older 3490-type media is being rewritten onto Magstars with these new

drives.

4 Further upgrades

The Sun E6500 we had purchased was fully adequate for supporting our current load.

However, we were told that some of our users expected their storage needs to increase

considerably. To support this increase, UniTree would require more disk; however, the

E6500 had almost no room for additional peripherals. Ultimately, we replaced the E6500
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with an El0000 as the UniTree server. With nearly 5 times the I/O bandwidth, 4
additionalCPUs, 11 additional SCSI adaptorslots, and room for 4 additional system
boards,the El0000 gave us the ability to scaleup to whateverthe near term might
require. We aresuccessfullyrunningUniTreeon the SunE10000today.

At thetime of the original upgrade to UTSI UniTree, 2.0 had just been released, but we

were advised to upgrade to the relatively stable 1.9.1 instead, with support for y2k, 64

tape drives, and raw disk partitions greater than 2 GB backported into our version.

UniTree 2.1, however, offered considerable performance increases as well as the ability

to use up to 256 disk cache partitions, where 1.9.1 allowed for only 110. Our first

attempt at upgrading to 2.1 uncovered some bugs which were quickly fixed. Our second

attempt shortly thereafter uncovered a Solaris bug which UTSI was eventually able to

work around. On Monday August 30 we successfully upgraded to 2.1 and never looked
back.

In the past year, some of our users have informed us that their data requirements are

expected to increase drastically over the next several years. To accommodate this

anticipated increase we decided to purchase more disk for UniTree. After testing several

brands and reviewing offers from several vendors, we purchased an additional 4 TB of

10,000 RPM disk from EMC. Adding this new disk to UniTree's cache will require the

repartitioning of the EMC disk we are currently using, since UniTree at present can use

only 256 disk cache partitions.

5 Future Work

Within the next several months (as of this writing) 4.5 TB of High Performance

Computing data, currently stored under DMF on a Cray T3E, are expected to be moved

into UniTree using a DMF FTP Media Specific Process (MSP). This will allow current

T3E DMF users to continue retrieving their files transparently from DMF during and

after the move. The MSP defaults to one flat UniTree directory per DMF user, which is

causing us some concern. There will be some very large UniTree directories created in

this fashion, one of which is expected to contain over 200,000 files. Testing of this

situation and how it might affect UniTree performance for other users is ongoing, and

namesrvr tuning advice is being solicited from UniTree support. The silo on which these

DMF files have been stored, along with its 4 Redwood drives, will be attached to the

existing remote silo to add to UniTree's duplicate-copy capacity.

Also ongoing is the effort to duplicate existing UniTree data in our remote silo.

Duplication of new data coming into UniTree has been automatic since November 1997.

As of this writing 33.2 TB of older UniTree data remains to be duplicated. A UniTree

2.1 facility allows an existing file to be marked "dirty" so that it is rewritten to tape and a

second copy generated at the same time. This will have the added benefit of rewriting

data on older 3490-type media to new 20 GB media.

In the long term, we plan to do a more thorough survey of the HSM market, the survey

we would have done had Y2K not become a pressing deadline. Many new HSM
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productshavecometo marketwithin thepastfew years,andweareinterestedin keeping
abreastof thesenewdevelopments.
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ABSTRACT

Data Volume Proliferation in the 21 st Century

The Challenges Faced by the NOAA National Data Centers (NNDC)

This paper describes the challenges facing the three NOAA National Data Centers

(NNDC), as well as the Information Technology Storage Area Network Systems (SANS)
and Telecommunications industries in successfully meeting one component of the NOAA

mission, Long Term Stewardship (Archiving and Access) of environmental data in the

21 st Century.

The collective holdings of digital data for the three data centers are approaching

800TeraBytes (TB), and steadily growing by several hundred terabytes of new data each

year. By the year 2001, it is anticipated that the NNDC will be ingesting and processing

over two hundred TeraBytes (TB) of new data each year, while managing and providing

access to over one PetaByte (PB) of data and information. There is an immediate need to

explore what Information Technologies (IT) and Data Handling Techniques will be

available to successfully meet the challenges regarding ingest, processing, convenient

access, and efficient mass storage of very large volumes of environmental data.

Early in the last decade of the Century/Millennium, it was clear that developments in

Information Technologies (IT) would place powerful tools in the hands of most everyone,

which could process and display large volumes of data at a relatively small cost. By

1995, NOAA developed a strategic vision and embarked on a program to build a dynamic

and responsive IT architecture that would provide worldwide electronic access to the

enormous volumes of climatic, geophysical, and oceanographic data under the long term

stewardship of the three NOAA National Data Centers (NNDC).

Electronic access and mass storage issues required examination from a total enterprise

systems perspective taking into account connectivity between the data collection

platforms, the processing and storage facilities, and users anywhere in the world. In

1996, the three centers, under the leadership of the National Environmental Satellite and

Information Services (NESDIS) office, embarked on an initial five-year plan to address

these issues and meet the challenges of the 21 st Century. This plan is referred to as the

NOAA Virtual Data System (NVDS) Initiative. At that time, the cumulative digital

holdings were about 300TB, and it was projected that by 2000 the total volume of new

data would increase to over one hundred terabytes per year. By 1998, the annual volume

of new data exceeded the projected Year 2000 figure. The volume of new data per year

for 2001 is currently projected to be over two hundred terabytes per year. If history is

any indicator, this projection is conservative.

How will NOAA successfully achieve a solution for the end-to-end stewardship of the

proliferation of data volume and variety that will be a reality in the very near future?
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Data Volume Proliferation in the 21 st Century

The Challenges Faced by the NOAA National Data Centers (NNDC)

Introduction

Climatic, Geophysical, and Oceanographic observations, data, and information are

growing at a rate exceeding any projections five years ago. Today, the NOAA National

Data Centers (NNDC) provide stewardship (storage and access) to a data volume that

increases each year by more than the equivalent all the data managed by the centers over

the past 100 years? At the same time, the phenomenal successes of the World Wide Web

and Internet have resulted in the worldwide diversification and expansion of the user

community by over two orders of magnitude in just the past five years. The data volume

curve turns sharply upward in the first decade of the 21 _t Century. These growth

projections are probably conservative. The central issue for the NOAA, in particular the

three data centers, is how to respond to the challenges presented by the unprecedented

proliferation of environmental observations and data. This paper will describe the

NOAA National Data Centers mission, current capabilities, and vision for data

management and access. It seeks to educate decision-makers and the Information

Technology (IT) industry about the critical and urgent requirement for solutions.

Description of NOAA National Data Centers (NNDC)

The three geographically dispersed NOAA National Data Centers (Figure 1) are

designated as official sites for the long-term stewardship of climatic, geophysical, and

oceanographic data. The mission of these data centers is to preserve and provide access

to these data. The data centers have existed in one form and place or another for many

decades. Data are collected by a variety of observing systems and types of instruments,

both in-situ earth-based and remote satellite-based. Satellite data represents the

overwhelming majority of digital data. These observing systems are operated by

different line offices within the National Oceanic and Atmospheric Administration

(NOAA), as well as many other agencies, such as the U.S. Geological Survey (USGS),

U.S. Department of Agriculture (USDA), Federal Aviation Administration (FAA), the

Department of Defense (DoD), and others. Data is also obtained from observing systems

operated in foreign countries through bilateral and multi-lateral agreements and other

arrangements negotiated through the auspices of United Nations sponsored agencies,

such as the World Meteorological Organization (WMO) and the International Council of

Scientific Unions (ICSU). Each of the data centers is also a designated World Data

Center (WDC) for their respective data types. This further enhances the exchange and
availability of worldwide data.

The National Climatic Data Center (NCDC), Asheville, NC, is responsible for the

Nation's climate data. Currently, the NCDC manages and provides access to about 220

million paper records (equating to about 38,878 miles - five times around the world),

125,130 rolls of 35 mm and 16mm film (equal to the distance between Washington DC

and Los Angles, 2,340 miles), 1.2 million pages of microfilm (equal to the distance

between Washington DC and Philadelphia, 114 miles), and about 800 TeraBytes (TB) of

digitally stored data on about 600,000 3480, 3590, and 8mm Exabyte magnetic tape
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cartridges(would fill a million CD ROMs which stackedvertically would be theheight
of five Empire StateBuildings). The 3480and8mmtapesarelocatedin Asheville,NC
andat theUniversityof Wisconsin(GOESsatellitedataonly). TheNCDChasa robotic
storagesystem. In most cases,the observingnetworksare reasonablywell definedand
managed,and data collection, formats, and reporting are coordinated. Figure 2
summarizesdigital datagrowthfor theperiod 1989-1999.

The NationalGeophysicalDataCenter(NGDC), Boulder,CO, is responsiblefor a wide
variety of specific data categories,such as Solar, Tectonic/Earthquake,Volcanic,
Magnetic,Gravitational,and othergeophysicalspecificareasof study. The distinctive
division of datainto different classesof physicalsciencesmakestheNGDC moreunique.
NGDC data are storedon paper, microfilm, and digitally on magnetictapes. Data
collection and reportingcomesfrom a muchsmaller (spatialandtemporal)network of
datauniqueobservingsystemsoperatedby a varietyof agencies,bothU.S.and foreign.
Currently, NGDC manages400 different datasetsand about 15TB of digital dataon
3480and 8mmExabytetapes. Satellitedatafrom the DefenseMeteorologicalSatellite
Program(DMSP)makeup themajorityof thedigital dataholdings. Figure3 summarizes
digital datagrowthfor theperiod1988to 1999.

TheNational OceanographicDataCenter(NODC), Silver Spring,MD, is responsiblefor
oceanographicdata. NODC facesthe mostdifficult challengerelativeto the acquisition
of oceanographicdataandperhapsalsothelargestvariationin how thedatais collected
and recorded. There are few coordinatedand well-defined oceanographicobserving
networks. In general,oceanographicdata are collectedby many different individual
organizations,suchasuniversities,federalagencies{DoD, NOAA, Minesand Minerals
Services(MMS), EnvironmentalProtectionAgency(EPA), U.S. CoastGuard (USGS),
U.S.Corpsof Engineers(COE),etc.}, coastalstateagencies,andcommercialcompanies,
in particularoil andgas. Thesedataareoftennot reportedfor monthsor yearslaterdue
to thedesireto keepthe datasecureuntil researchpapersandother reportsarereadyfor
publication. In other cases the information may be classified and never shared,
particularly from oil andgascompanies.The dataformatandmethodsof recordingand
reporting the datavaries greatly from paper to unique digital recorders. There is a
tremendousvolumeof datathat hasbeencollectedbut gatheringthedataandformatting
it for placementinto a digital databaseare significant issuesfor NODC operations.
Nearly75% of thecurrenttotal volumeof digital data,1.5TB, managedby theNODC is
satellitedata. Figure4 summarizesdigital datagrowthfor theperiod1990to 1999.

Current Capabilities

Early in this decade, it was clear that developments in Information Technologies (IT)

would place powerful tools in the hands of most everyone, which could process and

display large volumes of data at a relatively small cost. By 1995, NOAA embarked on a

program to develop a dynamic and responsive IT architecture that would permit
worldwide electronic access to the enormous volumes of climatic, geophysical, and

oceanographic data.
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It wasobviousthatelectronicaccessandmassstorageissuesneededto beaddressedfrom
anenterpriselevelperspectivefor dataIngest,Storage,andAccess,to includeacomplete
review of connectivitybetweenthe datacollectionand recordingsites,the datacenters,
andthe useranywherein the world. In 1996,thethreeCenters,underthe leadershipof
theNationalEnvironmentalSatelliteandInformationServices(NESDIS),embarkedona
five-year plan referred to as the NOAA Virtual Data System (NVDS) Initiative.
Significant capital investmenthas beenmade to the three centers' IT infrastructure.
Much moreneedsto bedoneto sustainthe progressmadein the first four yearsof the
initiative, if the NOAA is to successfullymeet thechallengesin the first decadeof this
new millennium. The NNDC goal is to provideeasy,convenient,andtimely accessto
largevolumesof theNation'senvironmentaldataandinformation.

The first two areasaddressedwerethe storageand accesscomponentsof the enterprise
system. A commonIT architectureand"look" to thecustomerareessentialelementsof
the design. Flexibility within the strategicIT architectureplan is paramountin orderto
capitalizeon new IT developments.Acquiring a hierarchicalmassstoragesystemthat
provideddirectelectronicaccessto datawasa priority. Currently,only the NCDC hasa
massstorageroboticssystem,IBM 3494,with HPSSsoftwareresidenton oneof theIBM
ScalablePowerParallel(SP2) Systemnodes. The conceptof an On-Line Data Store
consistingof a web farm with largestoragedisk deviceshasbeenimplemented. The
OracleRDBMS was selectedto supportthe On-Line Store. All threedatacentersare
linked to eachother. A single easy to use access and comprehensive ordering system

permits browsing, viewing, ordering, and transfer of data while on-line. Populating the

On-Line Store System with on-line digital data will continue indefinitely. The ultimate

goal is many tens of terabytes placed in an on-line status and the balance of holdings near

on-line. Multiple paths to access and browse the on-line data have been integrated into

the design to service the sophisticated and the uninitiated users. The NNDC Climate

Data On-Line (NNDC CDO) System is now operational and can be accessed by going to:
www.nndc.noaa.gov.

Currently, there are several dozens of data sets, products, and other information, about

120 GigaBytes (GB), available through the NNDC CDO System. Direct electronic

access to on-line and near on-line data (robotic system) and timely transfer of large
volumes of data are now at the fingertips of a worldwide clientele. The net result for the

customers will be exceptional service, while the data centers will be able to respond to
increasing volumes of new data and greater customer demands in a cost effective manner.

The Data Explosion Challenge

Table 1 and the accompanying graph, Figure 5, provide an overview of the projected

volumes of data that are expected to be delivered to the data centers during the first

decade of the 21 st Century. It is quite apparent that the satellite data will be the largest

contributor to unprecedented data growth. The NEXt generation RADar (NEXRAD)

network is now in place and this volume should remain relatively constant. However,

NEXRAD data does constitute a fair level of total digital volume. The vast majority of
the new data volume will be directed to the National Climatic Data Center. All new data

must be delivered digitally and immediately placed into the current mass storage system.
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In order to efficiently manage and access these large volumes, the centers must be able to

create the requisite inventories, place the data immediately into a robotic style mass

storage system, and retrieve the data in a relatively straightforward and timely manner.

Another significant challenge is the migration the digital data currently on the 600,000+

off-line 3480 and 8mm tapes into a robotic mass storage system. A multi-year data

modernization effort is addressing some of the non-digital data (paper, microfilm, and

microfiche). Some of the paper and microfilm records are being optically scanned and

the images placed on CD ROM. Eventually these files will need to be place into a

robotic system or some other system that permits direct and convenient electronic access
and transfer. Some of the data on these records are being manually keyed into digital

data bases. In addition to these activities, significant portions of the current and future

digital data are periodically "reprocessed" when new mathematical algorithms are

developed which can improve the utility and value of earlier data. Therefore, as the

volume of data grows, the level of reprocessing efforts will grow in kind.

The centers typically adhere to National Archives and Records Administration (NARA)

policies and guidelines. Long term stewardship and access to these data and information

must be guaranteed for future generations of customers. If long term stewardship in

perpetuity is required, then all these accumulated data and information will have to be

migrated to new systems, perhaps as often as every five years, due to rapid changes in the

information technology environment.

Meeting the Challenge

Four key areas that must be addressed by the NOAA and the commercial IT marketplace
in order to meet the demands of the 21 s, Century: 1) Network Centric Planning, 2) Highly

Automated Mass Storage, 3) Large Volume Storage Media and Data Compression

(particularly for satellite data), and 4) Rapid and Convenient Data Access.

Network Centric Planning will contribute to one of the goals of modernization, the digital

delivery of data and information from the observing systems to the centers and ultimately
to the customers. There have been a number of successes resulting from the practical

application of concepts associated with the Network Centric Operations and utilizing

available communications and in-place IT systems and capabilities. Over the past few

years, the data centers in cooperation with other offices within NESDIS, the National

Weather Service (NWS), and the Department of Defense have transitioned from paper

forms, diskettes, and magnetic tapes to staging data on a daily basis and using ftp transfer

procedures. Examples include digital transfer of DMSP data to NGDC, as well as data
transfers from NWS activities to NCDC to include Marine, Surface Hourly (ASOS,

AWOS), and global CLIMAT observations. In some cases, these data are posted daily to

the web pages for access by a worldwide clientele. The results have been more data

received and processed, improved up front quality control, and data available earlier to

customers, i.e. hours and days as compared to days, weeks, and months.

There are several areas, which require a focused effort to complete the transition for other

established observation networks. These include the 8,000 paper forms and 2,400
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punchedpaper tapesfrom the COOPerativeObservationNetwork, the 3590 magnetic
tapesusedto deliverGOESandPOESsatellitedata,andthe8mmandopticaldisksused
to deliver the NEXRAD data. Interactive Voice Recognition (IVR) and Natural
Language(NL) can, for a small initial investment,replacethe8,000COOPpaperforms
while substantiallyreducingannualoperatingcosts. Datawouldbeavailablevia theweb
onadaily basisratherthanthecurrentschedule,45-60daysaftertheendof adatamonth.
Similarly, adigital recordercanreplacethepunchedpapertapes. Beginningin early CY
2000, all the POESsatellite data will be digitally transferredon a daily basis from
Suitland, MD directly into the robotic systemat Asheville, NC. Daily digital data
transferof GOESsatellitedatabetweenthe Universityof WisconsinandtheNCDC will
beginwhenthe cost-benefitratio betweentelecommunicationsand 3590tapesbecomes
moreattractive. NESDISandNWS arecurrentlyexamininga NetworkCentricapproach
to transmittingradarlevel II datavia telecommunicationsfrom eachradarsite to a central
datacollectionfacility. This facility will assemblepacketsof radardataandinformation,
which will then be digitally transmittedto the NCDC on a daily basis. Radar level III
data will be transmitted nationwide via the NWS AWIPS/NOAAPort satellite
communicationssystem. In the caseof the GOESand NEXRAD, the life cyclecostof
handlingtapeswarrantsreplacingtapeswith nearreal time digital datatransfersassoon
aspractical.

Table 1revealsthat ingest,inventory,storage,andaccesstasksfor the emergingsatellite
systems(METOP, NPP/NPOES,EOS,and growth in DMSP and GOES)presenta far
different challenge. Based on past performance, it is reasonable to expect
telecommunicationsbandwidthandassociatedcostswill permit directdatatransferto the
robotic massstoragesystems. However, the ability to inventory,transfer,and access
these data using highly automated mass storage devices and techniques require
considerableplanningandIT advances.The NCDC procuredthe IBM 3494 systemin
1994-95and upgradedfrom UNITREE to HPSSin 1998-99.The NCDC alsoinstalled
the first nodesof the SP2systemin 1998and currentlyuse two nodesto managefile
transferactivities into and out of the IBM 3494. Many of the performance,staging,
inventory, and retrieval issues discussedduring the March 1999 Mass Storage
Conferencein SanDiegoremainseriousconcernsfor thedatacenters.

A Highly Automated Mass StorageSystemprovides a solution to another goal of
modernization,efficient long-term stewardshipof enormous volumes of data and
information. Thesenew systemsmustreducethe cost per Terabyteof storage,provide
reasonablewrite/read throughput,and large data storagewith a small physical "foot
print." This presentsa biggerchallengethantelecommunicationscapabilitiesandcosts.
In the short andnearterm,next 1-3years,the NCDC will install additionalSP2nodes
and upgradingthe current 100Mbpsto a higherperformancelocal areanetwork (LAN)
will be requiredby FY 2001. New massstoragesystemsmust provideLargeVolume
StorageMedia and Data Compressionfeatures. In FY 00, the NCDC must begin the
upgradeto 3590Edrives and utilize the new 3590Extended(40GB) tapes. However,
eventhoughtheIBM 3494is scalableandwill haveimprovedcapacity3590Edrivesand
tapes,the IBM 3494 is not envisionedasthe systemto managethehigh volumesatellite
data. Therefore,a highercapacity,higher throughputperformancemassstoragesystem
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must be identified and procured about the year 2003-2004. It is envisioned that the

existing IBM 3494 and the new higher capacity (less cost per TB and smaller footprint)

system will be utilized concurrently to perhaps the year 2010. Use of straightforward

data compression techniques must be a consideration in the design of any future mass

storage system (magnetic or optical tapes, disk, other). Hardware data compression is
now in use on a number of the different types of data, but not satellite data. This will

help in the short term to control the growth of the current IBM mass storage system. "No

Loss" data compression techniques for satellite data need to be available very soon.

Neither of the other two data centers have a robotic mass storage system to support their

current or future needs. The NGDC has the most immediate requirement for a modest

automated mass storage system to manage (new and migrate existing) the DMSP and

other digital data currently stored off-line on 8mm Exabyte (about 6,800) and 3480

(about 5,200) tapes, respectively. Similarly, the NODC will need a modest mass storage

system.

Another goal of modernization to be achieved by 2010 is to have all digital data resident

on automated mass storage systems. Only then can these systems and associated

software be utilized to migrate in a highly automated fashion the data to the next

generation mass storage system beyond 2010. If this goal is not achieved, it may be

impossible from a cost and perhaps hardware availability point of view to "rescue" the

data (mostly satellite and NEXRAD) stored on off-line tapes from the last half of the 20 th

Century. Perhaps magnetic tapes will no longer be the preferred, cost effective, media

for storage and access in the second decade.

Rapid and Convenient Access to data and information by a worldwide clientele is

required if NOAA and the data centers are to succeed in their information services

mission. Progress in this area may prove to be the greatest challenge. Electronic

commerce developments in the marketplace are providing many of the solutions to

customer servicing. The operational implementation of the NNDC Climate Data On-Line

(NNDC CDO) System is the first step toward providing rapid and direct access to data

and information. The NNDC Home Page and the NOAA Server Home Page provide

access, browse, and data transfer capabilities to data under the stewardship of the NOAA.

These are interconnected and can pass a customer along to one of the three data centers or

other locations based on the type of data being requested. However, placing data into

web based systems with real on-line disk access and near on-line mass storage systems

only minimally satisfies user requirements. Many of the NOAA clients will require
electronic services that allow users to discover, subset, retrieve, overlay, visualize, and

analyze data from different data bases and formats. This presents a challenge for the

data centers and the NOAA because historically data has been managed primarily on the

basis of the characteristics of the observing system. Future success will require the

creation and adoption of industry standards and conventions to allow heterogeneous

systems and data bases to communicate with one another. Secondly, it will require

automated staging of communications and computational resources to execute required

applications on the data. Data discovery and retrieval using an information system
environment must to be done without the user having to understand the particulars of
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eachindividual system. Transactionprocessingmust be implementedthat enablesan
essentially"hands-off" operationrequiring little or no humanhandling or transportof
dataandwhereappropriatethe systemwill allow usersto pay for dataor servicesthrough
creditanddebitcardsor automatedbilling.

GoodNews
There is an understandingwithin the NOAA and other agenciesthat cooperationand
collaborationarecritical to meetingmissiongoalsandobjectives.Thereareconsiderable
discussionsandinterestregardingthe conceptof Network CentricPlanning. More than
any time in thepast,line offices within the NOAA, particularlythe NWS andNESDIS,
are meetingto discussthe requirementsfor data transmissionover the AWIPS and
NOAAPort system,aswell asthe futuredirectionsfor NEXRAD datatransmissionand
storageand modernizingthe CooperativeObservingNetwork. Thesediscussionsmust
alsotakeinto accountcommunicationneedsto activitiesanddatabaseswidely dispersed
at manyotherof the NOAA sitesoperatedby the Fisheries,OceanServices,andOffice
of AtmosphericResearchline offices, both on land and at sea. The NOAA High
PerformanceComputingand Communications(HPCC) ProgramOffice is leadingthe
way in bringingthesedifferentofficestogetheranddefining aNetwork Centricapproach
to dataaccessanddelivery.

Most recently,NOAA and NASA representativeshavebeenmeetingto designa Long
Term Archiving and ServicingPlan for the Earth ObservingSystem(EOS) to include
joint archiving and servicingactivities. Similar planning is underwayfor the METOP
andNPP/NPOESprograms.Theintent is to build on theexperiencesandlessonslearned
from thecurrentdigital POEStransferprojectandapplytheseto theGOES,METOP,and
thenNPOESwhich aresimilar in nature,just a largerdaily volume.

The National EnvironmentalData Archive and Access System(NEDAAS) is being
promotedasthe successorto theNVDS Initiative. NEDAAS will build on the progress
made under NVDS and other information systemsmodernizationefforts within the
NOAA, aswell asotheragencies.NEDAAS is thenextstepin providingtheNOAA the
meansand capabilitiesto meet the data managementtasks in the first decadeof this
millennium. A key componentwill be the ability to access,merge,andvisually display
multidimensionaldataand information. The vision is a suiteof information services
linking observingsystemsandcustomersto manylocations,suchasthe NOAA National
Data Centers,Stateand RegionalClimate Centers,NOAA Laboratories(i.e. National
HurricaneCenter,SevereStormsLaboratory,Pacific MarineEnvironmentalLaboratory,
CoastalScienceCenter,etc.),andotheruniversityandresearchfacilities. The goal is to
provide rapidaccessto new andhistoricaldataandinformationeitheron-line or nearon-
line throughthe useof the Next Generationtelecommunicationsand other information
technologies.NOAA will bea partnerin definingandcapitalizingon new technologies
andcapabilities.
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Conclusions

The NOAA is at a critical juncture with respect to its information services mission.

Preserving the Nation's environmental records now means managing a data volume that

increases in one year by the equivalent all the data NOAA has managed over the past 100

years! At the same time, the World Wide Web and the Internet have fuelled the

explosion of users by over two orders of magnitude in just the past five years. Today's

worldwide clientele demand rapid and convenient access to data and information. The

confluence of information management technologies with observation technologies must

provide the capabilities to respond effectively to the massive array of new data and

satisfy a far larger, more demanding, more sophisticated, and more diverse user

community. The NOAA faces a unique and multi-facet task. First, it must be able to

process and store very large volumes of new data. It must provide customers rapid access

to data and information, which means getting data from observing networks in near real

time, rapid processing, and placing large volumes of data on-line. The enormous volume

of digital data stored off-line must be migrated to a near on-line mass storage system.

Computational systems capable of rapidly reprocessing large data arrays must be

available if there is to be any value to aging data and information. Finally, data and

information recorded on non-digital media (paper and film) require migration to a digital

format, if only optical images for preservation and digital access. Incremental investment

in technology designed to integrate new technology advances with the existing IT

infrastructure requires strategic planning and an associated supporting budget process.

It is essential that the NOAA clearly articulate to industry and government leaders the

magnitude of the challenge. The capacity and complexity of a future integrated mass

storage, data processing and reprocessing, and data access system seem overwhelming.

However, 30 years ago these same issues appeared to be considerable when the first

satellites were being launched.

The question then: How to manage tens or several hundreds of MegaBytes?

The question today and tomorrow: How to manage PetaBytes and then YottaBytes?
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Abstract

In computer systems today, speed and responsiveness is often determined by net-

work and storage subsystem performance. Faster, more scalable networking interfaces

like Fibre Channel and Gigabit Ethemet provide the scaffolding from which higher

performance computer systems implementations may be constructed, but new think-

ing is required about how machines interact with network-enabled storage devices.

In this paper we describe how we implemented journaling in the Global File Sys-

tem (GFS), a shared-disk, cluster file system for Linux. Our previous three papers on

GFS at the Mass Storage Symposium discussed our first three GFS implementations,

their performance, and the lessons learned. Our fourth paper describes, appropriately

enough, the evolution of GFS version 3 to version 4, which supports journaling and
recovery from client failures.

In addition, GFS scalability tests extending to 8 machines accessing 8 4-disk enclo-

sures were conducted: these tests showed good scaling. We describe the GFS cluster

infrastructure, which is necessary for proper recovery from machine and disk failures

in a collection of machines sharing disks using GFS. Finally, we discuss the suitability

of Linux for handling the big data requirements of supercomputing centers I

1 Introduction

Traditional local file systems support a persistent name space by creating a mapping be-

tween blocks found on disk drives and a set of files, file names, and directories. These file

1The work by Grant Erickson and Manish Agarwal on GFS was performed while they were at the Uni-
versity of Minnesota.
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Figure 1: A Storage Area Network

systems view devices as local: devices are not shared so there is no need in the file system

to enforce device sharing semantics. Instead, the focus is on aggressively caching and ag-

gregating file system operations to improve performance by reducing the number of actual

disk accesses required for each file system operation [1 ], [2].

New networking technologies allow multiple machines to share the same storage de-

vices. File systems that allow these machines to simultaneously mount and access files on

these shared devices are called sharedfile systems [3], [4], [5], [6], [7]. Shared file systems

provide a server-less alternative to traditional distributed file systems where the server is

the focus of all data sharing. As shown in Figure 1, machines attach directly to devices

across a storage area network [8], [9], [10].

A shared file system approach based upon a shared network between storage devices

and machines offers several advantages:

. Availability is increased because if a single client fails, another client may continue

to process its workload because it can access the failed client's files on the shared

disk.

2. Load balancing a mixed workload among multiple clients sharing disks is simplified

by the client's ability to quickly access any portion of the dataset on any of the disks.

3. Pooling storage devices into a unified disk volume equally accessible to all machines

in the system is possible, which simplifies storage management.

4. Scalability in capacity, connectivity, and bandwidth can be achieved without the lim-

itations inherent in network file systems like NFS designed with a centralized server.

We began development of our own shared file system, known as GFS-1 (the Global File

System, version 1), in the summer of 1995. At that time, we were primarily interested in
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exploiting Fibre Channel technology to post-process large scientific datasets [ 11 ] on Silicon

Graphics (SGI) hardware. Allowing machines to share devices over a fast Fibre Channel

network required that we write our own shared file system for IRIX (SGI's System V UNIX

variant), and our initial efforts yielded a prototype described in [12]. This implementation

used parallel SCSI disks and SCSI reserve and release commands for synchronization.

Reserve and release locked the whole device, making it impossible to support simultaneous

file metadata accesses to a disk. Clearly, this was unacceptable.

This bottleneck was removed in our second prototype, known as GFS-2, by developing

a fine-grain lock command for SCSI. This prototype was described in our 1998 paper [6]

and the associated thesis [ 13]; we also described our performance results across four clients

using a Fibre Channel switch and RAID-3 disk arrays. Performance did not scale past three

clients due to lock contention and the lack of client caching. In addition, very large files

were required for good performance and scalability because neither metadata (or locks) nor
file data were cached on the clients.

By the spring of 1998, we began porting our code to the open source Linux operating

system. We did this for several reasons, but the primary one was that IRIX is closed source,

making it very difficult to cleanly integrate GFS into the kernel. Also, Linux had recently

acquired 64-bit, SMP, and floating-point support on Digital Equipment Corporation (DEC)

Alpha platforms that were adequate for our computing needs.

In addition, we shed our narrow focus on large data applications and broadened our

efforts to design a general-purpose file system that scaled from a single desktop machine to

large clusters of machines enabled for device sharing. Because kernel source was available,

we could finally support metadata and file data caching, but this required changes to the

lock specification, detailed in the 0.9.4 device lock specification [14], [15].

The GFS port to Linux involved a complete re-write of GFS-2, resulting in a new ver-

sion we call GFS-3 [7]. In addition to support for caching, GFS-3 supported leases on locks

which time out if a GFS machine fails to heartbeat the lock. Client IDs are returned with

the lock so that callbacks can be made to request that clients release metadata. GFS-3 used

extendible hashing for the directory data structure to allow large numbers of files in a single

directory. GFS-3's scalability has been measured up to 8 machines and 8 disk units with

no measurable interference between machines making independent file accesses and disk

requests across the storage network. At this point, we believe that there are no significant

limits to GFS scalability.

However, though GFS-3 fixed most of the performance and scalability issues that had

arisen for the previous versions of GFS, it did not address a critical requirement for shared

disk cluster file systems: fault-tolerance. A production-quality shared file system must be

able to withstand machine, network, or shared disk failures without disrupting continued

cluster processing [3]. To this end, we have now implemented file system journaling in

the latest version of GFS, known as GFS-4. When a GFS machine fails and the failure

is detected, the remaining clients in the cluster may recover for the failed machine by

replaying its journal. With the addition ofjournaling, GFS is now ready for consideration

for deployment in production environments, after a reasonable beta test phase. We discuss

the use of Linux and GFS in processing large datasets later in this paper.

In the following sections we describe GFS-4 (which we will refer to simply as GFS
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in the remainder of this paper), the current implementation including the details of our

journaling code, new scalability results, changes to the lock specification, and our plans for

GFS-5, including file system resizing.

2 GFS Background

For a complete description of GFS-3 see [7], for GFS-2 see [6], and for GFS-1 see [12]. In

this section we provide a summary of the key features of the Global File System.

2.1 Dlocks

Device Locks are mechanisms used by GFS to synchronize client access to shared metadata.

They help maintain metadata coherence when metadata is cached by several clients. The

locks are implemented on the storage devices (disks) and accessed with the SCSI device

lock command we call Dlock [16], [17], [15]. The Dlock command is independent of all

other SCSI commands, so devices supporting the locks have no awareness of the nature of

the resource that is locked. The file system provides a mapping between files and Dlocks.

GFS-3 used Dlock version 0.9.4 [15], which included timeouts on a per lock basis,

multiple reader/single writer semantics, and inclusion of lock-holding client ID information

in the SCSI reply data. The latest, journaled version of GFS (version 4) uses Dlock version

0.9.5 [17], which includes some new features we describe in the following sections. Both

the 0.9.4 and 0.9.5 Dlock specifications have been implemented as daemon processes that

can executed on any machine on the network. A machine that runs a Dlock daemon process

is called a Dlock server. A Dlock server can provide provide Dlock functionality in systems

constructed with storage devices that do not have SCSI Dlock support [18].

2.1.1 Expiration

In a shared disk environment, a failed client cannot be allowed to indefinitely hold whatever

locks it held when it failed. Therefore, each holder must continually update a timer on the

disk. If this timer ever expires, other lock holders may begin error recovery functions to

eventually free the lock. Expiration is alternately referred to as timing-out, and the act of

updating the timer is often referred to as heartbeating the timer or the timer-device. In

version 0.9.4, time-outs were per lock; in 0.9.5, they are per-client.

2.1.2 Client IDs

The Client ID is a unique identifier for each client. The client id is completely opaque to the

Dlock device. In GFS the client ID is used both as an identifier and to store the IP address

of the client, allowing inter-machine communication. The Client ID can be any arbitrary

32-bit number that uniquely identifies a machine.
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2.1.3 Version Numbers

Associated with every lock is a version number. Whenever the data associated with a lock

is changed, the version number is incremented. Clients may use cached data instead of

re-reading from the disk as long as the version number on the dlock is unchanged since the

data was last read. The drawback with version numbers is that a client must still read the

version number (which is located on the dlock storage device or dlock server); this is often

a high-latency operation (even simple SCSI commands that do not touch the disk often

require at least 1 millisecond).

Version numbers are an optional dlock feature, and are are unused in GFS-4, which

relies instead on callbacks to keep cached metadata consistent. Version numbers may be

removed in a future version of the device lock specification.

2.1.4 Conversion Locks

The conversion lock is a simple one stage queue used to prevent writer starvation. In

Dlock version 0.9.4, one client may try to acquire an exclusive lock but fail because other

clients are constantly acquiring and dropping the shared lock. If there is never a gap where

no client is holding the shared lock, the writer requesting exclusive access never gets the

lock. To correct this, when a client unsuccessfully tries to acquire a lock, and no other

client already possesses that lock's conversion, the conversion is granted to the unsuccessful

client. Once the conversion is acquired, no other clients can acquire the lock. All the

current holders eventually unlock, and the conversion holder acquires the lock. All of a

client's conversions are lost if the client expires.

2.1.5 Enable

In the event that a lock device is turned off and comes back on, all the locks on the device

could be lost. Though it would be helpful if the locks were stored in some form of persistent

storage, it is unreasonable to require it. Therefore, lock devices should not accept dlock

commands when they are first powered up. The devices should return failure results, with

the enabled bit of the dlock reply data format cleared, to all dlock actions except refresh
timer until a dlock enable is issued to the drive.

In this way, clients of the lock device are made aware that the locks on the lock device

have been cleared, and can take action to deal with the situation. This is extremely impor-

tant, because if machines assume they still hold locks on failed devices or on dlock servers

that have failed, then two machines may assume they both have exclusive access to a given

lock. This inevitably leads to file system corruption.

2.2 Pool - A Linux Volume Driver

The Pool logical volume driver coalesces a heterogeneous collection of shared storage into

a single logical volume. It was developed with GFS to provide simple logical device capa-

bilities and to deliver Dlock commands to specific devices at the SCSI driver layer [19]. If

GFS is used as a local file system where no locking is needed, then Pool is not required.
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Poolalsogroupsconstituentdevicesinto sub-pools.Sub-poolsareaninternalconstruc-
tion whichdoesnot affect thehigh levelview of a pool2asa singlestoragedevice. This
allowsintelligentplacementof databy thefile systemaccordingto sub-poolcharacteris-
tics. If onesub-poolcontainsvery low latencydevices,thefile systemcouldpotentially
placecommonlyreferencedmetadatatherefor betteroverallperformance.Thereis notyet
a GFSinterfacedesignedto allow this. Sub-poolsarecurrentlyusedin a GFSfile sys-
tembalancer[20]. Thebalancermovesfilesamongsub-poolsto spreaddatamoreevenly.
Sub-poolsnow haveanadditional"type" designationto supportGFSjournaling. Thefile
systemrequiresthatsomesub-poolsbereservedfor journal space.Ordinarysub-poolswill
bespecifiedasdataspace.

Thereare two othervolumemanagersavailablein Linux. Linux LVM (logical vol-
umemanager)wasdevelopedby HeinzMauelshagen[21] andprovidestraditionalvolume
managerfunctionalityincludingvolumeresizing,on-lineadditionanddeletionof volumes
(bothphysicalandlogical levels),andon-line reallocationof physicaldisk space.Work
is in progressto developa volumesnapshottingcapabilityin Linux LVM. Thereis alsoa
softwareRAID drivercalledMD developedby IngoMulnar thatsupportsRAID levels0,
1,4, and5 [22]. Pooldoesnot supportsoftwareRAID or volumeresizingandvirtualiza-
tion,whileneitherLinux LVM norMD supportmultipleclientsaccessingthesamevolume.
Findingwaystointegratethefunctionalityfoundin thesedifferentvolumemanagerswould
beveryuseful.

2.2.1 Modular Block Drivers

Device drivers are the collection of low-level functions in the OS used to access hardware

devices. Drivers can provide various levels of functionality. They range from directly

manipulating hardware registers to providing a more abstract view of devices, making them

easier to program [2]. The "I/O subsystem" refers to the mid-level drivers and OS routines

which come between hardware-specific drivers and upper level system calls.

Low-level, device-specific driver functions include:

• Device initialization and control

• Interrupt handling

• Transferring bytes of data into and out of buffers

Mid- and upper-level driver functions include:

• Device naming

• Buffering and caching

• Providing a consistent, programmable interface

In Linux, file systems and drivers may be written as kernel modules. This allows them

to be dynamically installed and removed from the kernel. Although not required, this makes

development much easier because the entire kernel need not be recompiled and restarted to

make a change in a module [23].

2The logical devices presented to the system by the Pool volume driver are affectionately called "pools".
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Pool is a mid-level block driver built atop the SCSI and FC drivers. This means it

conforms to the standard block driver interfaces, but remains at a higher level of abstraction.

The following list describes the basic functionality provided by Pool:

init_module, cleanup_module are the functions required by Linux to be a kernel mod-

ule. They basically call poolJnit when the driver is added and free memory when it
is removed.

pool_init is the function called when the Pool module is installed in the kernel. It

registers Pool in the global table of block drivers. It also initializes data structures

maintained by Pool describing currently managed pools. Registering a block driver

in the kernel includes specifying a major device number, a name (pool), and a set of

functions used to access devices of this type.

pool_open, pool_release are called for a specific pool after the open and close system

calls on the pool's device node. Usage counts are incremented or decremented. These

would be called due to a mount or I/O on the device node.

pool_read, pool_write are called after a read or write system call on the pool's device

node. They pass requests to the Linux routines bl ock__vead ( ) and bl ock_wri te ( ).

These are not regularly used since the file system calls lower level routines directly.

• pool_ioctl is used to request Dlocks, get listings of currently configured pools, add

new pools, remove pools, get basic size information or control debugging.

The following functions are internal pool routines called due to pool ioctl requests:

add_pool is called during passemble to configure a new pool. Information describing

the new pool is provided by passemble and used to allocate new structures in the Pool

driver. The parameters describe the pool, sub-pools, underlying physical devices,

Dlocks, and striping. Most of the code is OS-independent and is handled in gen_pool.

All lower-level devices are opened at this stage to verify they can be used. The minor

number selected for the new pool is returned to user space.

• remove_pool removes a specific pool by closing underlying devices and freeing data

structures. Pools are removed when the -r(emove) option is specified in passemble.

list_pool, list_pool return descriptions of currently managed pools. This information

is needed by the tools passemble and pinfo. This is also how mkfs_gfs (make a gfs

file system command) gets sub pool and Dlock information when creating a new file
system.

The last function, pool_map, is the most interesting and central to Pool's purpose. It
is used to map requests from a logical pool device and block number to a real device and

block number. The map functions for Pool and other volume managers are called in an

unusual way in Linux. This is the topic of the next section.
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if (MAJOR(bh->b_rdev) == POOL_MAJOR)

pool map(&bh->b_rdev, &bh->b rsector);

else if (MAJOR(bh->b_rdev) == MD_MAJOR)

md_map(&bh->b_rdev, &bh->b_rsector);

else if (MAJOR(bh->b_rdev) == LVM MAJOR)

ivm_map(&bh->b_rdev, &bh->b_rsector);

Figure 2: Pseudocode of mapping functions called directly.

2.2.2 Block Mapping

All reads and writes to block devices occur in chunks defined by the file system block

size (usually 4 or 8 KB). Each of these block I/O requests is defined by a buf fer_head

structure (bh). All the bh's are managed by the I/O subsystem and a bh for a specific

request is passed through OS layers from the file system 3 down to the low level disk driver.

Two bh fields are especially important in specifying the block:

• rdev: the device for this request (major, minor numbers)

• rsector: the block number on the device rdev

When using a volume driver, a bh comes from the file system with rdev equal to the

logical device and rsector equal to the logical block. When the bh reaches the specific

disk driver, rdev and rsector must specify a real device and block number. The I/O

subsystem routine which processes the bh below the file system is 11 _rw_block ( ). Here

is where the specific volume manager mapping function is called to change rdev and

rsector.

To call the correct volume manager mapping function (pool-map, md_map, or ivm_map),

the original major number of rdev is checked because each volume manager has a unique

major number. When the specific volume manager is identified, its map function can be

called directly. Pseudocode illustrating this is in Fig. 2.

The method of calling specific map functions can be improved by making the code

more general. Every block driver has an identification structure in the global block driver

table blk_dev [ ] indexed by major number. The function pointer map_fn is added to

blk_dev_struct as seen in Fig. 3. The function pointers are initially set to NULL for

every driver. If a block driver has a map function, like pool_map, it will set map_fn to

that function in the driver init routine.

The pseudocode segment in Fig. 2 can then be simplified as seen in Fig. 4. The map_fn

field is compared to NULL. If the pointer is set, the driver for this block device has defined

a map function which is then called through the function pointer. The map function itself

3The Linux kernel is moving away from using the buffer cache at these levels as the page cache will be

used for most I/O. The buffer cache will be used at lower levels only.
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typedef

typede f

typedef

typedef

struct

};

void (request_fn_proc) (void);

int (makerq_fn_proc) (struct buffer_head *, int rw);

int (map_fn_proc) (kdev_t, kdev_t *, unsigned long *,

unsigned long);

struct request ** (queue__proc) (kdev_t dev);

blk_dev_struct {

request fn proc *request_fn;

makerq_fn_/oroc *makerq_fn;

map_fn_proc *map_fn;

queue_proc *queue;

void *data;

struct request *current_request;

struct request plug;

struct tq_struct plug_tq;

Figure 3: Entries in block device switch table.

dev = blk_dev + major;

if (dev->map fn && dev->map_fn (bh[i]->b_rdev,

&bh[i]->b rdev,

&bh[i]->b_rsector,

bh[i]->b_size >> 9))

printk (KERN_ERR ''Bad map in ii rw block'');

goto sorry;

Figure 4: Generic mapping in llxw_block0

determines the new rdev and rsector by using the number and size of each subpool
and sub-device. The two fields in the bh are then rewritten.

The same method used for the map function is also used for the make_reques t func-

tion which is less common and used by volume drivers when doing mirroring. The map fn

and make_request functions will probably be combined in the future. Using function

pointers for map and request routines was originally designed by Chris Sabol in the GFS

group who also worked on the initial Pool port and Pool under IRIX.

The Linux framework for block drivers described above is different from the standard

approach in other OS's. In the more common method, each block driver defines a strategy

function as the single I/O entry point in the block device switch table. The file system and

any volume drivers always call the strategy function of a buffer's device. Within a volume

driver's strategy routine, mapping is done before calling the next driver's strategy routine.
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Normal

Requests

User S_ac_e Program ....

_File.system .............. -
LVM: Pool _,,

SD: upper level SCSl driver .... i
/

SCSI mid-layer driver

Devig_e_ecific driver

_ Hardware: HBA, disks

Figure 5: File System and driver layers

Dlock

Requests

The Linux I/O subsystem was designed assuming no volume driver layer which is why

mapping routines are called aside from the normal I/O path.

2.2.3 Dlock Support

A unique feature of the Pool driver required by the GFS locking layer is Dlock support.

When a pool is configured, particular sub-devices are specified as supporting Dlocks. The

Pool driver merges all the available Dlocks into a uniform Dlock space accessible by the

GFS locking layer through poolioctl. When a Dlock is requested, Pool maps the logical

Dlock number to an actual Dlock on a specific device. Because the highest level SCSI

driver is not aware of the DLOCK command, Pool needs to construct the appropriate SCSI

command descriptor block (CDB) and insert it into the SCSI mid-layer driver.

Pool's handling of Dlock commands is illustrated in Figure 5. There are three layers

between the file system and the lowest level hardware driver. First is the volume manager

which translates buffer addresses into real devices and block offsets. Not shown in the

diagram is other I/O subsystem code which merges and queues buffer requests. Second

is the upper level SCSI driver, SD, which breaks buffer requests into actual READ and

WRITE SCSI commands. Next is the mid level driver which manages all SCSI devices and

sends CDB's to the correct host bus adapters. Because SD deals only with transferring data

with READ and WRITE it must be bypassed for other SCSI commands. Below this, the

mid level driver sends many other CDB's and does not care about the specific command.

This is naturally the level where DLOCK commands can be queued.

Interfacing Pool's Dlock code with the mid-layer SCSI driver 4 required a patch to the

upper SD driver. SD maintains the array: Scsi_Disk *rscsi_disks. The array is

indexed by minor numbers so the detailed structure of a SCSI device is easily accessible

given the device number. Part of the S c s 2_D± s k structure is a required parameter to the
scs±_allocate_device ( ) routine. This allocate routine returns a Scsi_Cmd pointer

which is passed into scsf__do_cmd(). The "do command" function sends the Dlock

CDB. So a kernel patch (distributed with GFS and Pool) exporting the rscsi_df_sks

4The mid-layer SCSI driver code can be found in/usr/src/linux/drivers/scsi/scsi.c and the upper-level
SCSI driver is/usr/src/linux/drivers/scsi/sd.c
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symbol from the SD driver is required to access the appropriate Scsi_Disk given the
minor number of the Dlock device.

Originally, the Pool driver handled all Dlock retries, timeouts, activity monitoring and

resets. All the code implementing this was rewritten when moving to Linux, making it

simpler and eliminating some incorrect behavior. Eventually as the Dlock specification

became more complex, all these functions were moved into a separate locking module. In

the current implementation, Pool only maps Dlock requests and sends them to devices.

2.3 File System Metadata

GFS distributes its metadata throughout the network storage pool rather than concentrating

it all into a single superblock. Multiple resource groups are used to partition metadata,

including data, dinode bitmaps and data blocks, into separate groups to increase client

parallelism and file system scalability, avoid bottlenecks, and reduce the average size of

typical metadata search operations. One or more resource groups may exist on a single

device or a single resource group may include multiple devices.

Resource groups are similar to the Block Groups found in Linux's Ext2 file system.

Like resource groups, block groups exploit parallelism and scalability by allowing multiple

threads of a single computer to allocate and free data blocks; GFS resource groups allow
multiple clients to do the same.

GFS also has a single block, the superblock, which contains summary metadata not

distributed across resource groups, including miscellaneous accounting information such

as the block size, the journal segment size, the number of journals and resource groups,

the dinode numbers of the three hidden dinodes and the root dinode, some lock protocol

information, and versioning information.

Formerly, the superblock contained the number of clients mounted on the file system,

bitmaps to calculate the unique identifiers for each client, the device on which the file

system is mounted, and the file system block size. The superblock also once contained a

static index of the resource groups which describes the location of each resource group and

other configuration information. All this information has been moved to hidden dinodes

(files).

There are three hidden dinodes:

1) The resource index - The list of locations, sizes, and glocks associated with each

resource group

2) The journal index - The locations, sizes and glocks of the journals

3) The configuration space dinode - This holds configuration information that is used

by the locking modules and transparent to GFS. The Dlock/Dlip modules use it to store

namespace information about the cluster. (This is necessary for our "Dlock" cluster infras-

tructure.)

There are four identifiers that each member of the cluster needs to know about all the

other members: Hostname, IP address, Journal ID Number, and Client ID number. The

quartets for each host in the cluster are stored in the config space dinode and passed to the

lock module as it is initialized. What format the data is in is up to the lock module. The

data will be written to the config file using a GFS ioctl call or standard write calls.
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This data is stored in files because it needs to be able to grow as the filesystem grows.

In previous versions of GFS, we just allocated a static amount of space at the beginning

of the filesystem for the Resource Index metadata, but this will cause problems when we

expand the filesystem later. If this information is placed in a file, it is much easier to grow

the file system at a later time, as the hidden metadata file can grow as well.

The Global File System uses Extendible Hashing [24], [7], [25] for its directory struc-

ture. Extendible Hashing (ExHash) provides a way of storing a directory's data so that any

particular entry can be found very quickly. Large directories do not result in slow lookup

performance.

2.4 Stuffed Dinodes

A GFS dinode takes up an entire file system block because sharing a single block to hold

metadata used by multiple clients causes significant contention. To counter the resulting

internal fragmentation we have implemented dinode stuffing which allows both file system

information and real data to be included in the dinode file system block. If the file size is

larger than this data section the dinode stores an array of pointers to data blocks or indirect

data blocks. Otherwise the portion of a file system block remaining after dinode file system

information is stored is used to hold file system data. Clients access stuffed files with only

one block request, a feature particularly useful for directory lookups since each directory

in the pathname requires one directory file read.

GFS assigns dinode numbers based on the disk address of each dinode. Directories

contain file names and accompanying inode numbers. Once the GFS lookup operation

matches a file name, GFS locates the dinode using the associated inode number. By assign-

ing disk addresses to inode numbers GFS dynamically allocates dinodes from the pool of

free blocks.

2.5 Flat File Structure

GFS uses a flat pointer tree structure as shown in Figure 6. Each pointer in the dinode

points to the same height of metadata tree. (All the pointers are direct pointers, or they are

all indirect, or they are all double indirect, and so on.) The height of the tree grows as large

as necessary to hold the file.

The more conventional UFS file system's dinode has a fixed number of direct pointers,

one indirect pointer, one double indirect pointer, and one triple indirect pointer. This means

that there is a limit on how big a UFS file can grow. However, the UFS dinode pointer

tree requires fewer indirections for small files. Other alternatives include extent-based

allocation such as SGI's EFS file system or the B-tree approach of SGI's XFS file system

[26]. The current structure of the GFS metadata is an implementation choice and these

alternatives are worth exploration in future versions of GFS.
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• Resource Group
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• Bookkeeping Info

Figure 6: A GFS dinode. All pointers in the dinode have the same height in the metadata
tree.

3 Improvements in GFS Version 4

Since our presentation at the IEEE/NASA Mass Storage Symposium last year, there have

been many improvements to GFS. We describe some of these improvements in the follow-

ing sections.

3.1 Abstract Kernel Interfaces

We have abstracted the kernel interfaces above GFS, to the file-system-independent layer,

and below GFS, to the block device drivers, to enhance GFS's portability.

3.2 Fibre Channel in Linux

Until the summer of 1999, Fibre Channel support in Linux was limited to a single ma-

chine connected to a few drives on a loop. However, significant progress has been made

in the quality of Fibre Channel fabric drivers and chipsets available on Linux. In partic-

ular, QLogic's QLA2100 and QLA2200 chips are well-supported in Linux, with multiple

GPL'ed drivers written by QLogic and independent open source software developers. Dur-

ing testing in our laboratory with large Fabrics (32 ports) and large numbers of drives and

GFS clients, the Fibre Channel hardware and software has performed well. Recent reduc-

tions in adapter card and switch costs have made it possible to cost-effectively build large,

Fibre-Channel-based storage networks in Linux.
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Figure 7: Callbacks on glocks in GFS

1

However, it is possible to use GFS to share network disks exported through standard,

IP-based network interfaces like Ethernet using Linux's Network Block Device software.

In addition, new, fast, low-latency interfaces like Myrinet combined with protocol layers

like VIA hold the promise of high performance, media-independent storage networks.

3.3 Booting Linux from GFS and Context-Sensitive Symbolic Links

It is possible to boot Linux from a GFS file system. In addition, GFS supports context-

sensitive symbolic links, so that Linux machines sharing a cluster disk can see the same file

system image for most directories, but where convenient (such as/etc/???) can symboli-

cally link to a machine-specific configuration file.

These two features provide building blocks for implementing a single system image by

providing for a shared disk from which the machines in a cluster can boot up Linux, yet

through context-sensitive symbolic links each machine can still maintain locally-defined

configuration files. This simplifies system administration, especially in large clusters,

where maintaining a consistent kernel image across hundreds of machines is a difficult

task.

3.4 Global Synchronization in GFS

The lock semantics used in previous versions of GFS were tied directly to the SCSI Dlock

command. This tight coupling was unnecessary, as the lock usage in GFS could be ab-

stracted so that GFS machines could exploit any global lock space available to all machines.

GFS-4 supports an abstract lock module that can exploit almost any globally accessible lock

space, not just Dlocks. This is important because it allows GFS cluster architects to buy

any disks they like, not just disks that contain Dlock firmware.
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The GFS lock abstraction allows GFS clients to implement callbacks, as shown in Fig-

ure 7. When client 2 needs a dlock exclusively that is already held by client 1, client 2 first

sends it's normal dlock SCSI request to the disk drive (step 1 in the figure). This request

fails and returns the list of holder ClientlDs, which happens to be client 1 (step 2). Client

2 sends a callback to client 1, asking B to give up the lock (step 3). Client 1 syncs all

dirty (modified) data and metadata buffers associated with that dlock to disk (step 4), and

releases the dlock, incrementing the version number if any data has been written. Client A

may then acquire the dlock (step 5).

Because clients can communicate with each other, they may hold dlocks indefinitely

if no other clients choose to read from inodes associated with dlocks that are held. As

long as a client holds a dlock, it may cache any writes associated with the dlock. Caching

allows GFS to approach the performance of a local disk file system; our goal is to keep

GFS within 10-15% of the performance of the best local Linux file system systems across
all workloads, including small file workloads.

In GFS-4, write caching is write-back, not write-through. GFS uses Global Locks

(glocks), which may or may not be dlocks. GFS uses interchangeable locking modules,

some of which map glocks to Dlocks. Other locking methods, such as a distributed lock

manager [9] or a centralized lock server, can also be used. Our group has developed a

centralized lock server known as the GLM (Global Locking Module) [18]. GFS sees the

Glocks as being in one of three states:

1. Not Held - This machine doesn't hold the Glock. It may or may not be held by
another machine.

2. Held - this machine holds the Glock, but there is no current process using the lock.

Data in the machine's buffers can be newer than the data on disk. If another machine asks

for the lock, the current holder will sync all the dirty buffers to disk and release the lock.

3. Held + Locked - the machine holds the Glock and there is a process currently using

the lock. There can be newer data in the buffers than on disk. If another machine asks for

the lock, the request is ignored temporarily, and is acted upon later. The lock is not released

until the process drops the Glock down to the Held state.

When a GFS file system writes data, the file system moves the Glock into the Held+Locked

state, acquiring the Dlock exclusively, if it was not already held. If another process is writ-

ing to that lock, and the Glock is already Held+Locked, the second process must wait until

the Glock is dropped back down to Held.

The Write is then done asynchronously. The I/O isn't necessarily written to disk, but

the cache buffer is marked dirty. The Glock is moved back to the Held state. This is the

end of the write sequence.

The Buffers remain dirty until either bdflush or a sync causes the buffers to be synced

to disk, or until another machine asks for the lock, at which point the data is synced to disk

and the Glock is dropped to Not Held and the Dlock is released. This is important because

it allows a GFS client to hold a Glock until another machine asks for it, and service multiple

requests for the same Glock without making a separate dlock request for each process.
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3.5 GFS and Fibre Channel Documentation in Linux

We have developed documentation for GFS over the last year. Linux HOWTOs on GFS

and Fibre Channel can be found at the GFS web page: http://www.globalfilesystem.org.

In addition, there are conventional man pages for all the GFS and Pool Volume Manager

utility routines, including mkfs, ptool, passemble, and pinfo[18].

4 File System Journaling and Recovery in GFS

To improve performance, most local file systems cache file system data and metadata so that

it is unnecessary to constantly touch the disk as file system operations are performed. This

optimization is critical to achieving good performance as the latency of disk accesses is 5

to 6 orders of magnitude greater than memory latencies. However, by not synchronously

updating the metadata each time a file system operation modifies that metadata, there is a

risk that the file system may be inconsistent if the machine crashes.

For example, when removing a file from a directory, the file name is first removed from

the directory, then the file dinode and related indirect and data blocks are removed. If the

machine crashes just after the file name is removed from the directory, then the file dinode

and other file system blocks associated with that file can no longer be used by other files.

These disk blocks are now erroneously now marked as in use. This is what is meant by an

inconsistency in the file system.

When a single machine crashes, a traditional means of recovery has been to run a file

system check routine (fsck) that checks for and repairs these kinds of inconsistencies. The

problem with file system check routines is that (a) they are slow because they take time

proportional to the size of the file system, (b) the file system must be off-line while the fsck

is being performed and, therefore, this technique is unacceptable for shared file systems.

Instead, GFS uses a technique known as file system journaling to avoid fsck's altogether

and reduce recovery time and increase availability.

4.1 The Transaction Manager

Journaling uses transactions for operations that change the file system state. These oper-

ations must be atomic, so that the file system moves from one consistent on-disk state to

another consistent on-disk state. These transactions generally correspond to VFS opera-

tions such as create, mkdir, write, unlink, etc. With transactions, the file system metadata

can always be quickly returned to a consistent state.

A GFS journaling transaction is composed of the metadata blocks changed during an

atomic operation. Each journal entry has one or more locks associated with it, correspond-

ing to the metadata protected by the particular lock. For example, a creat0 transaction

would contain locks for the directory, the new dinode, and the allocation bitmaps. Some

parts of a transaction may not directly correspond to on-disk metadata.

Two types of metadata buffers are involved in transactions: primary and secondary.

Primary metadata includes dinodes and resource group headers. They contain a generation

number that is incremented each time they are changed, and that is used in recovery. There
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mustalwaysbeonepieceof primary metadatafor eachlock in thetransaction.Secondary
metadataincludesindirectblocks,directorydata,anddirectoryleaf blocks; theseblocks
donothaveagenerationnumber.

A transactionis createdin thefollowing sequenceof steps:
(1) starttransaction
(2)acquirethenecessaryGlocks
(3)checkconditionsrequiredfor thetransaction
(4) pin the in-coremetadatabuffersassociatedwith thetransaction(i.e., don't allow

themto bewritten to disk)
(5)modify themetadata
(6)passtheGlocksto thetransaction
(7) committhetransactionby passingit to theLog Manager
To representthe transactionto becommittedto the log, the Log Manageris passeda

structurewhich containsa list of metadatabuffers. Eachbuffer knowsits Glock number,
andits type(Dinode,RGHeader,or SecondaryMetadata).Passingthisstructurerepresents
acommit to the in-corelog.

4.2 The Log Manager

The Log Manager is separate from the transaction module. It takes metadata to be written

from the transaction module and writes it to disk. The Transaction Manager pins, while the

Log Manager unpins. The Log Manager also manages the Active Items List, and detects

and deals with Log wrap-around.

For a shared file system, having multiple clients share a single journal would be too

complex and inefficient. Instead, as in Frangipani [4], each GFS client gets its own journal

space, that is protected by one lock that is acquired at mount time and released at unmount

(or crash) time. Each journal can be on its own disk for greater parallelism. Each journal

must be visible to all clients for recovery.

In-core log entries are committed asynchronously to the on-disk log. The Log Manager

follows these steps:

(1) get the transaction from the Transaction Manager

(2) wait and collect more transactions (asynchronous logging)

(3) perform the on-disk commit

(4) put all metadata in the Active Items List

(5) unpin the secondary metadata

(6) later, when the secondary metadata is on disk, remove it from the Active Items List

(7) unpin the primary metadata

(8) later, when the primary metadata is on disk, remove it from the Active Items List

Recall that all journal entries are linked to one or more Glocks, and that Glocks may be

requested by other machines during a callback operation. Hence, callbacks may result in

particular journal entries being pushed out of the in-core log and written to the on-disk log.

Before a Glock is released to another machine, the following steps must be taken:

(1) journal entries dependent on that Glock must be flushed to the log

(2) the in-place metadata buffers must be synced
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Glock #
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1 X X

Journal 2 X X X

Entry 3 X X

4 X X
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metadata buffers which will

be written to the journal

Figure 8: Journal Write Ordering Imposed by Lock Dependencies During GFS Lock Call-

backs

(3) the in-place data buffers must be synced

Only journal entries directly or indirectly dependent on the the requested Glock need

to be flushed. A journal entry is dependent on a Glock if either (a) it references that Glock

directly, or (b) it has Glocks in common with earlier journal entries which reference that

Glock directly.

For example, in Figure 8, four journal entries in sequential order (starting with 1) are

shown, along with the Glocks upon which each transaction is dependent. If Glock 6 is

requested by another machine, journal entries 1, 2, and 4 must be flushed to the on-disk

log in order. Then the in-place metadata and data buffers must be synced for Glock 6, and

finally Glock 6 is released.

4.3 Recovery

Journal recovery is initiated by clients in several cases:

(a) a mount time check shows that any of the clients were shutdown uncleanly or oth-

erwise failed

(b) a locking module reports an expired client when it polls for expired machines

(c) a client tries to acquire a Glock and the locking module reports that the last client to

hold that Glock has expired

In each case, a recovery kernel thread is called with the expired client's ID. The machine

then attempts to begin recovery by acquiring the journal lock of a failed client. A very

dangerous special case can result when a client (known as a zombie) fails to heartbeat

its locks, so the other machines think it is dead, but it is still alive; this could happen,

for example, if for some reason the "failed" client temporarily was disconnected from the

network. This is dangerous because the supposedly failed client's journal will be recovered

by another client, which has a different view of the file system state. This "split-brain"

problem will result in file system corruption. For this reason, the first step in recovery after

acquiring the journal lock of a failed client is to either (1) forcibly disable the failed client

or, (2) fence out all IO from the client using the zoning feature of a Fibre Channel switch.

Once a client obtains the journal lock for a failed client, journal recovery proceeds as

follows: the tail (start) and head (end) entries of the journal are found. Partially-committed

entries are ignored. For each journal entry, the recovery client tries to acquire all locks

associated with that entry, and then determines whether to replay it, and does so if needed.
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All expired locks are marked as not expired for the failed client. At this point, the journal
is marked as recovered.

The decision to replay an entry is based on the generation number in the primary meta-

data found in the entry. When these pieces of metadata are written to the log, their genera-

tion number is incremented. The journal entry is replayed if the generation numbers in the

journal entry are larger than the in-place metadata.

Note that machines in the GFS cluster can continue to work during recovery unless they

need a lock held by a failed client.

4.4 Comparison to Alternative Journaling Implementations

The main difference between journaling a local file system and GFS is that GFS must be

able to flush out transactions in an order other than that in which they were created. A

GFS client must be able to respond to callbacks on locks from other clients in the cluster.

The client should then flush only the transactions that are dependent on that lock. This

means that GFS can't combine transactions into compound transactions until just before
the transaction is committed to the disk.

When a GFS client unlinks a file from the directory structure, the file isn't actually

deallocated until all clients have stopped using it. In order to determine which clients

are using a given dinode, GFS must maintain an "nopen" count in each dinode. This is

a counter of the clients that are using a dinode. When a client crashes, it leaves nopen

references on all the dinodes that it was using. As part of recovery, the machine doing the

recovery must determine which dinodes the failed client was using and decrement nopen
count on those dinodes.

Hence, each GFS client maintains a list of all the dinodes it has nopen references on.

Every time an inode is opened or closed, a marker is put in the journal describing the

operation. Since the log can wrap many times during the time that a dinode is held by the

client, this list is periodically re-logged in its journal.

GFS also has to label some metadata blocks with generation numbers that are incre-

mented when transactions are committed. These generation numbers and the current state

of the global locks are used to decide whether or not a given journal entry should be re-

played during recovery.

As mentioned previously with respect to generation numbers, GFS has two types of

metadata: Primary and Secondary. Primary metadata has version numbers and must be

persistent on the disk - once the block is allocated as primary metadata, it can never be

reused for real data or secondary metadata. Secondary metadata isn't subject to either of
these two restraints.

One difference between Frangipani [4] and GFS is that Frangipani doesn't make a dis-

tinction between primary and secondary metadata. All Frangipani metadata is primary

metadata. This is a good choice for Frangipani because of the unique nature of the Petal

[27] block device underneath it. GFS is greatly simplified, however, by not having to main-

tain lists of unused indirect blocks, directory blocks, and other secondary metadata. The

trade-off is that GFS has the extra constraint that secondary metadata must be flushed to

the disk before any primary metadata for each compound transaction.
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5 Performance Results

Figures 9 and 11 represent the current single client I/O bandwidth of Linux GFS (GFS-3

release Antimatter-Anteater was used for the tests. This release does not include journal-

ing.) The tests were performed on a 533 MHz Alpha with 512 MB of RAM running Linux

2.2.13. The machine was connected to eight Seagate ST19171FC Fibre Channel drives on

a loop with a Qlogic host adapter card. A 4,096-byte block size was used for these tests. (A

block size of 8,192 bytes yields numbers that about 10 percent better, but this larger block

size isn't available on all Linux architectures.) The Transfer Size axis represents the size

of the file being transferred, whereas the Request Size represents the actual size of each

file transfer request. So, for example, a 4096 MB file transferred using 4 requests yields a

request size of 1024 MB and a transfer size of 4096 MB.

The bandwidth of first time creates, shown in Figure 9, peaks at around 55 MB/s. The

read bandwidth shown in Figure 11 peaks at about 45 MB/s.

The GFS-3 single client performance can be compared to our previous GFS-2 single

client performance numbers reported in [7] and shown in Figures 10 and 12. The machine

configurations for these tests were essentially the same, although we used Linux kernel

2.2.0-pre7 for the GFS-2 tests. GFS-2 read bandwidth peaked out at 42 MB/s while GFS-3

reads peaked out at 48 MB/s. (notice the scale differences in the figures between GFS-2

and GFS-3 results).

Though the peak bandwidths are relatively close, notice how GFS-3 read performance

is much better for smaller request sizes. For GFS-3 creates, the maximum performance

is 50 MB/s versus 18 MB/s for GFS-2. As in the read case, GFS-3 create performance is

much higher at smaller request sizes than GFS-2 create performance.

The significant GFS-3 performance advantage comes from the fact that GFS-2 had only

read buffer caching, whereas GFS-3 has both read buffer and lock caching. GFS-2 would

need to check the lock (a separate SCSI request) each time a buffer was read or written,

whereas GFS-3 uses callbacks to enable lock caching. As long as no other client needs the

lock, no lock request is made to disk during buffer accesses. The performance improvement

is even more pronounced for writes, since writes can nearly always be cached. The actual

write to disk only occurs later during a periodic sync operation, or when the buffer cache

is pressured by the kernel to release buffer space to applications.

Figure 13 is a comparison of the extendible hashing directory structure in GFS-3 to

the linear directory structure of Ext2. The test involved creating a million entry directory.

Creates per second were measured at regular intervals as the directory was filled. The
GFS curve levels off because of un-cached hash tables. Even for large directory sizes (10s

of thousands directory entries), GFS can create 100s of files per second. Fast directory

operations for directories with thousands of files are necessary to support applications with

millions of small files.

Figure 14 shows one to four GFS-3 hosts being added to a constant size file system and

each performing a workload of a million random operations. These four machines were

connected across a Brocade Fabric switch to 4 4-disk enclosures, each configured as a sin-

gle 4-disk loop. The workload consisted of 50 percent reads, 25 percent appends/creates

and 25 percent unlinks. Each machine was working in in its own directory and the direc-
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tories were optimally placed across the file system. Notice that the scalability curve shows

nearly perfect speedup. Similar results were achieved for an 8-way cluster. These new

results compare favorably with the dismal scaling results obtained for the early versions of

GFS [6], which didn't cache locks, file data, or file system metadata.

6 Prospects for Linux in Big Data Environments

The ability of Linux to handle supercomputing workloads is improving rapidly. In the past

year, Linux has gained 2 journaled file systems (ext3fs and Reiserfs) with two more on

the horizon (XFS and GFS). SGI is porting its XFS file system to Linux. SGI has also

open-sourced its OpenVault media management technology. Improvements in NFS client

performance, virtual memory, SMP support, asynchronous and direct IO, and other areas

will allow Linux to compete and surpass other UNIX implementations.

The open source nature of Linux provides better peer review on both architecture and

code. Linux is free, and appears to be well on its way towards becoming the standard server

operating system of the future. This means that most server applications will be ported to

it in time, and that competition for Linux support and specialized services will develop.

373



4 , i i i i

line 1

==

03

I i l II l

1 1.5 2 2.5 3 3.5
Machines

Figure 14: Four machine speedup for independent operations

7 Conclusions and Future Work

In this paper, we described the GFS journaling and recovery implementation and other

improvements in GFS version 4 (GFS-4). These include a lock abstraction and network

block driver layer, which allow GFS to work with almost any global lock space or storage

networking media. The new lock specification (0.9.5) provides for better fairness and other

improvements to support journaling and recovery. In addition, a variety of other changes

to the file system metadata and pool volume manager have increased both performance and

flexibility. Taken together, these changes mean that GFS can now enter a beta test phase

as a prelude to production use. Early adopters who are interested in clustered file systems

for Linux are encouraged to install and test GFS to help us validate its performance and

robustness.

Once the work on journaling and recovery is complete, we intend to consider several

new features for GFS. These may include file system versioning for on-line snapshots of file

system state using copy-on-write semantics. File system snapshots allow an older version

of the file system to be backed up on-line while the cluster continues to operate. This is

important in high-availability systems. Heinz Mauelshagen is implementing snapshotting

in the Linux LVM volume manager [21], and so it may not be necessary to support this

feature in GFS if we can use LVM to create GFS pools.

The ability to re-size the file system on-line is also very important, especially in storage

area networks, where it will be quite common for new disks to be continually added to the

SAN.

Finally, Larry McVoy, Peter Braam, and Stephen Tweedie are developing a scalable

cluster infrastructure for Linux. This will include a Distributed Lock Manager (DLM)
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and mechanismsto detectandrecoverfrom client failuresandclusterpartitioning. This
infrastructurecouldbeveryhelpful in implementingrecoveryin GFS.
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ABSTRACT

This paper describes an architecture for a secure file system based on network-
attached storage that guarantees end-to-end encryption for all user data. We
describe the design of this system, focusing on the features that allow it to ensure
that data is written and read only by authorized users, even in the face of attacks
such as network snooping and physically capturing the storage media.

Our work shows that such a system is feasible given the speeds of today's micro-
processors, and we discuss benchmark results using several popular encryption
and authentication algorithms that could be used on storage devices in such a sys-
tem. Based on these calculations, we present the overall performance of the sys-
tem, showing that it is nearly as fast as the non-encrypted file systems in wide use
today.

1. Introduction

While computers have provided a great service in the office automation arena, they have

led to billions of dollars in lost revenue due to attacks by both hackers and insiders. Most

offices and universities rely heavily on their distributed computer environment, which for

the purposes of this study, consists of workstations and a shared file system. This file sys-

tem is typically stored on a centralized file server that is managed by a system administra-

tor with super-user privileges. The need to back up the file system requires that the super-

user has the ability to read the entire file system. When the end users want to read a file,

the file is sent across the network without any protection against rogue users simply read-

ing the data as it travels. A more sophisticated hacker could also modify or prevent the
modification of data.

In our first paper published on this topic [5], the technical feasibility of placing crypto-

graphic controls in a performance-critical system was established. This paper addresses

the security and performance concerns of today's distributed file systems. The perfor-

mance problems are caused by having few (possibly one) network connections, and shared

hardware resources (namely the backplane) in the file server. Each disk drive in a file

server can be coupled with a low-cost board computer to make an intelligent disk. These

disks can be distributed across the network which in today's switched LANs, has far

greater network bandwidth than a single server. The physical separation of the drives also

increases reliability, since one drive having a catastrophic failure such as catching on fire

will not damage the other drives.
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The securityof today'sdistributedfile systemssuchasNFS andAFS merelyprovidea
weakschemefor accesscontrol,butneglectdataintegrityandconfidentiality.This is espe-
cially truewhenconsideringthat the systemadministratorwith super-userprivilegescan
readandwrite anyuserdatain thesystem.Our proposedsystemrequiresthatall userdata
beencryptedandsignedat theuser'sworkstation.This mechanismensuresthat any files
on the file serverareprotectedfrom readingor from undetectedmodificationby anyone,
even someonewith unrestrictedphysical accessto the drives.The drives and the tape
backupsof thedriveswill thuscontainnosensitivedatain non-encryptedform.

2. Motivation

Many systems have been designed to try to solve the performance problems or security

problems of modern distributed file systems. A few have even attempted to solve both

problems. These systems are discussed below with respect to their shortcomings.

2.1 Security Issues

The primary security capability of current distributed file systems is access control. This is

comprised of preventing unauthorized release of information, unauthorized modification

of information, or unauthorized denial of resource usage. This is usually provided by

something as simple as a user ID passed in the clear or a security token, which often can

be thwarted using elementary attacks. Many system designers choose to ignore the fact

that MAC addresses (unique per-interface identifiers), IP addresses, TCP sequence num-

bers, user names, user passwords, and host names are sent in the clear across unsecure net-

works. NFS, for example, uses file handles to identify files that are being accessed, with

two parts being public and one being secret. It is well-known that the "secret" number can

often be easily guessed or calculated. Amazingly, the main security function in NFS was

not designed for security use, but for preventing two clients from simultaneously access-

ing different versions of the file [9].

To further complicate the security problem, the standard protocols for Internet communi-
cations are the Transmission Control Protocol (TCP) and the User Datagram Protocol

(UDP) over the Internet protocol (IP). Many systems rely on the "security" provided by

this protocol. An example of this is authenticating the beginning of a session and then just

trusting that further communications on that TCP session are legitimate. This is a poor

method to provide security because there are many well known attacks that can "steal" an

open connection such as IP address spoofing [8].

There are many methods being developed for protecting traffic while traversing a network.

For example, IPsec can encrypt the entire datagram in transit between two firewalls, as

well as encrypt only the data field for host-to-host communications. Hosts can also set up

a Secure Sockets Layer (SSL) which is a transport layer encryption scheme.

There are also many methods in use and in development to provide strong authentication

of the user for access control. Instead of merely sending the user's password in the clear,

one-time-use data could be sent. For example, S/Key uses the one-way property of certain

hashing algorithms to prevent a password replay attack [7]. Kerberos can be implemented

in a fairly secure manner but does not scale well with large systems and does not provide
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for protection of data in transit. Kerberos is a critical component for many systems

recently developed, including work securing network attached disks [3].

Although many of these schemes are great ideas and will protect the data as it traverses the

network, most do nothing to protect the data as it sits on the disk or backup tapes. The

super-user can still read any user's data, and the disks and backup tapes still contain sensi-

tive data, thus requiring physical security. Work has been done to provide a secure local

file system, and perhaps even secure a particular user's NFS files, but the idea of providing

a secure network attached storage system with decentralized security has not been investi-
gated.

Frangipani, developed at DEC, was one attempt to make a secure distributed file system. It

was built over the Petal distributed virtual disk system. Frangipani used a client/server

configuration, but unlike other distributed file systems, any Frangipani machine can read

or write any block of the Petal virtual disk. This imposed the requirement that any Frangi-

pani computer runs a trusted operating system [11 ].

Some system designers have tried to fix the single point of failure problem with a central-

ized security scheme by having some small number of computers at the heart of the secu-

rity mechanism. While this makes the system more reliable, there is still a privileged user

that can compromise the entire system. Decentralized security means that there is no cen-

tral computer(s) responsible for providing data security services such as access control.

There are different degrees of decentralization of information security, determined by how

much of the security services are performed at a common, central computer.

There are significant benefits from a decentralized security scheme. From a security stand-

point, there is no longer the concept of a "super-user" that has the capability to read and

write any of the system's data files. Only each end-user has the capability to decrypt files

they have access to, and only the end-user can sign data blocks for writing. The creator /

modifier of stored data creates the encrypted keys for users to access the data, because this

function can not be performed by anyone who does not have access to the data.

2.2 Performance Problems with Existing and Previously Proposed Systems

The standard office automation system in use today is comprised of many computers

located on various users' desks, attached to file server(s) through a high-speed local area

network. 10 Megabits per second was the standard local area network speed until recently,

when 100 Megabit Ethernet hit the mainstream marketplace. A second major change in

local area networking is the use of switching hubs. These allow multiple pairs of users to

communicate at full bandwidth, which was not possible with the shared-medium of previ-
ous LANs.

Computer hard drives have been increasing in speed each and every year, and more

advanced techniques are being developed to maximize the performance of existing and

new hard drives. A commodity SCSI disk can sustain transfer rates of about 200 Megabits

per second. Traditional file servers held several SCSI disks striped in a RAID configura-

tion to increase speed and reliability, but the backplane connecting the SCSI controllers is

now a bottleneck. If we have eight SCSI drives communicating at 200 Megabits per sec-

ond, the total transfer rate is 1600 Megabits per second. The standard PCI bus in Intel
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basedcomputerscanonly support1056Megabitspersecond(33MHz * 32bit,), sothe
drivesarelimited by thebus.Thisproblemisexacerbatedbecausethebufferson thedrives
can transferdataat over3 timesfasterthantheir mediatransferrate.To compensatefor
thisdeficiency,mostfile servermanufacturershaveresortedto expensiveproprietaryhigh-
speedbackplanes.Eventhis specializedhardwarewill not be ableto keepup with more
than8 harddrivesin thenearfuture.Thereis alsoa problemwith memorybandwidthin
theserverwhich is abottleneckin somefastersystems.

Therehavebeenattemptsto alleviatethebottleneckat thefile serverby partitioningthe
directory tree acrossmultiple file servers,but this doesnot work aswell as one might
expect.Sincethe numberof file serversis still small,hot spotswill still causethroughput
problemsat particularfile serversat variousmomentsin time.With adistributednetwork
file system,the aggregatesystembandwidthincreasesalmostlinearly with respectto the
numberof networkdevicescomprisingthefile system[1]. By stripingthedataalongwith
parity, the datacanstill be accessedin spiteof a singledrive failure. Sinceeachdrive in
the proposedsystemis on a separatecomputer,the probabilityof a seconddrive failing
beforethefirst failure canbe replacedis verysmall.A drivefailure in a modernfile server
cancausea seconddrive to fail. For example,onedrive couldcatchfire anddamagethe
otherdrives.The physicalseparationof thedrivesin a networkattachedfile systemleads
to a very reliablesystem.TheTickerTAIPparallelRAID schemedevelopedat Hewlett-
Packardlaboratorieshasmanyof the benefitsof a networkattachedstoragesystem,but
lacksthereliability of aphysicallydistributedsystem[4].

Theincreasingspeedof harddisksandnetworksalongwith bandwidthintensiveapplica-
tionsnecessitatehighbandwidthnetworkfile systems.If thestorageis distributedacross
multiple network segments,the file systemcould provide aggregatetransferrateswell
overtherateof a singlenetworkconnection(1 Gigabit/secondsoon.) For example,if ten
usersrequestdatauniformly stripedacrosstendrives,theaggregatetransferrateof thefile
systemcould theoreticallyhit 2 Gigabitsper second(10 * 200 Megabitsper secondfor
eachdrive.)Many networkfile systemhaveusedaggressivefile cachingto improveper-
formance,but with high-speednetworkstorage,cachingfilesona localdiskmaybecome
athingof thepast.Cachingin localRAM will, of course,still befasterthanretrievingdata
off the network.Network attacheddisks shouldprovideexcellentperformanceduring
timesof burst traffic becausethe datawill be stripedacrossa largenumberof disks.By
choosingthehashingalgorithmcorrectlyto evenlyspreadout the loads,slow downsdue
to bursthot-spotscanbeavoided.

3. Data Structures

The system we propose is called Network Attached Storage with Decentralized Security

NAS/DS, building on the Network Attached Secure Disk work performed at CMU [6].

There are four basic new data structures that are used with this system. Secure data objects

contain a block of encrypted user data, along with sufficient information to validate the

sender of the data, and the data integrity. File objects consist of the file ID, associated key

file ID, and one or more secure data objects. Key objects are associated with a file or group

of files and contain sufficient information (less the user's private key) to decrypt the file
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blocks.Finally,certificateobjectsarestoredoneachnetworkdrive andareusedto deter-
mineif aparticularuseris permittedto write or deletedatafrom afile object.

3.1 Secure Data Objects

The secure data object shown in Figure 1 is the basic unit of data that is written to and read

from the network drives. Each object contains sufficient information to verify the crypto-

graphic controls on the data. The HMAC (Hash-based Message Authentication Code)

proves the integrity of the data and the sender of the data [2]. The timestamp prevents a

replay attack - sending an old block instead of a new one. The IV (Initialization Vector) is

needed to decrypt the block assuming a CBC (cipher-block chaining) mode encryption is

used. This is further described in Section 4. The client computer is responsible for making

sure that any secure data object created has a timestamp (counter) that is greater than the

block it is replacing, as the drive will not write the data otherwise. This prevents a hacker

from writing an old stored block over a new one. Each file, if sufficiently large, is divided

into a sequence of secure data objects. The size of the secure data object in this study is

64000 bytes. The larger the secure data object, the less overhead that is associated (per

byte) for encrypting and for placing a header on the data. The problem with large secure

data objects is that the entire object must be re-written even if a single byte is modified,

unless a code-book encryption is used (and this is not recommended).

HMACIv [ Block id I UID Datal Timestamp

Figure 1. Secure Data Object

3.2 File Objects

A file object contains some meta data for maintaining the file. It consists of the file identi-

fier (rid), key file identifier (key_rid), and a list of block numbers that form the file. When

a user wants to read an entire file or a portion of a file, she first reads the file object. This

tells what file the encrypted cryptographic keys are stored in, as well as the list of blocks

that make up the file. The file object is stored on one network disk, however, the secure

data blocks identified by the block_id may be stored across multiple disks. It is the job of a

higher level file system built on NAS/DS to manage this hierarchy. Upon reading the file

object and key file object, the user can read and write an arbitrary number of secure data

objects (assuming permission was granted.)

3.3 Key Objects

Each key object shown in Figure 3 contains two types of information. At the beginning of

the key object are the file identification field (rid) and the user identification field (uid.)

These are used to determine if a request to modify the actual key object will be allowed.

The other information contained in the key object are sets of three-tuples containing a uid,

key', and permission bits. The key' is the symmetric key used to encrypt the file --

encrypted with the user's public key. The permission bits are similar to the Unix file sys-

383



rid [ key_rid
Block_id 1

Block_id2

Block_idN

Figure2. File Object

tem'spermissionbits. Unix hasseparatepermissionfieldsfor thefiles owner, group, and

others; there would be three entries in the key object for similar granularity.

rid uid

uid key' permission bits

uid key' permission bits

gid key' permission bits

Figure 3. Key Object

3.4 Certificate Objects

Each network drive contains a certificate object, shown in Figure 4, that the drive will use

to decide whether or not to grant a write operation. Information for each individual user

(UID) and group (GID) is kept as a row in this file. The KeyMAC is the shared-secret used

for the HMAC generation and verification between each user and the drive. The timestamp

field is updated each time a file block is written and is used by the drive to prevent a reply

attack. The optional quota field is used by the drive to prevent a particular user from writ-

ing more than their allowed amount of data to the drive.

UID

UID

UID

GID

rid uid

KeypuB KeyMAC Timestamp Quota

Keyev_ KeyMAC Timestamp Quota

KeypuB KeyMAc Timestamp Quota

KeypuB KeyMAC Timestamp Quota

Figure 4. Certificate Object

There is the obvious problem of who gets to write the certificate object. One possibility is

that with physical access to the drive, a public key that will be used to validate write

requests to the certificate object can be loaded manually. Another possibility is that a priv-
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ilegedusercould log into thedrivevia thenetworkusingsomesecureprotocolto write the
file. Even if this file is written by a hacker,theconfidentialityof thedata is still main-
tained,buta denialof servicewill likely occur.Thisassumesthattheusersdonotrely on
thecertificatesstoredon the networkdrivesto get public keyswhenencryptingthesym-
metric keys, sincethere is no reasonto do this. An error suchas using this certificate
object for encryptingkeys is exactlywhy the securityof this systemmust becarefully
thoughtout.Subtleerrorsareusuallythekeyto defeatingasecuritysystemsuchasthis.

1 System Design and Operation

In this section, the general design of the network attached storage with decentralized secu-

rity will be discussed. The operation of the system will be described, including such oper-
ations as data reads and writes.

4.1 Data Security

The basis of data security in this system lies in the secure data objects. Provided that the

user obtains the symmetric encryption key (RC5 key) from the key object, the secure data

object contains sufficient information to protect the confidentiality and integrity of the data

it contains. This simply means that even if an adversary is able to obtain all of the data that

is stored on the network disks, and snoop all of the data that traverses the network, data

confidentiality and integrity are still maintained.

This system uses a keyed-hash approach to authenticate the writer of a data block. In par-

ticular, the MD4 hash algorithm is used in a manner similar to MD5-HMAC [2]. Note that

although MD4 has known weaknesses, it still provides weak-collision protection which is

sufficient for this application. Using HMAC for writer authentication has the disadvantage

that the network disk contains sufficient information to forge a data block. Keyed-hash

functions have the property that the verifier of the keyed-hash can also create the keyed-

hash since it is symmetric - same operation for generating and verifying. If a network disk

is compromised with this scheme, it is possible that the adversary could write information

to the drive. If the system is built properly, this would require that they were able to obtain

the writer-authentication keys from the drive or gained physical access to the hardware.

These keys could be stored encrypted for greater security. The compromised system still

prevents an adversary from accessing any encrypted data stored on the drive or any data in

transit. The alternative to HMAC for user authentication is using a digital-signature, but

this is too processor intensive for current computers. Perhaps in four to five years proces-

sors will be fast enough for this approach, and end-to-end authentication will be feasible.

This scheme works by including an HMAC as part of each secure data object. The drive is

able to determine that the writer corresponding with the provided uid or gid that created

the block has write access to the drive by using the writer-authentication key stored in the

certificate object. Only someone with access to this key would be able to create HMAC on
the block.

Performing an HMAC is substantially faster than a signature generation. The main weak-

ness is the loss of end-to-end integrity assurances. There is no guarantee that the drive did

not corrupt the data, since the ability to verify a keyed-hash implies the ability to generate
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a newone.The corrupteddatacouldalmostcertainlybedetectedsinceit is encrypted.A
hashof the plaintextcould be appendedto eachblock beforeit is encryptedto further
ensuredataintegrity.

This systemprovidesthefollowing cryptographicservicesonsecuredataobjects:

• Confidentiality - Eachfile iswritten in 64000byteblocks;the lastblock maybe
smaller.Eachof theseblocksis encryptedwith afastencryptionalgorithm.Thisanal-
ysisusedtheRC5encryptionalgorithmin CBCmodewith a 128-bitkey [10].This
ensuresthedatacannotbe readwithout theaccompanyingRC5key.Thiskey is used
to encrypteachblock in a file or groupof files.Thekeyis generatedby theuserupon
thecreationof a file or file group.Thiskeymustbeprovidedto theotherusersthat
needaccessto this file (if any);this is donebyencryptingthisRC5keywith thepublic
keyof eachuser(UID) or groupof users(GID.) Theseencryptedkeysarestoredin a
keyfile associatedwith thedatafile. Boththedataandkeyfilesarestoredon thenet-
workdisks.

• Data Integrity - Providedby theHMAC of thedata.Thekeyusedfor HMAC canbe
sentto thedrivesusingRSAwheneachnewuserisaddedto thesystem.

• Authentication - Just as in the other schemes, no user authentication is necessary for

the read operation on this system since all of the data is encrypted. Authentication for

the write operation is provided by the HMAC. The number of cryptographic functions

performed by the host computer and disk computer is shown in Figure 5. The network

disks only need to perform one HMAC (Hash) function over the block for each read or

write operation, where the host computer needs to perform a hash and encryption.

Since the encryption takes longer than the hash (see Table 1), the network disk has less

than 1/2 the work to perform as the host computer. This will help the network disks

scale to multiple hosts. The bottleneck at the network disk is the network interface as

the HMAC function takes substantially less time than the time to send the packet over

the 100 Mbps link.

Operation Host NAS

En/Decrypt: 1 0

Hash: 1 1

Signature: 0 0

Verification: 0 0

Operation Host NAS

En/Decrypt: 1 0

Hash: 1 1

Signature: 0 0

Verification: 0 0

Block Write Block Read

*note: A key-exchange operation is needed upon file creation for each user that needs access.

Since this is only done once for each file (or group of files) regardless of the number of blocks,
it is omitted.

Figure 5. Number of Cryptographic Operations

4.2 Basic Operation

The network file system will support the basic distributed file system calls. Both user data

files as well as directory information are stored as data objects on the network drives.

Higher level operations are accomplished via the simpler operations. For example, revok-
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ing permission for a particular uid on a file is accomplished by rewriting the key object for

the file. This will prevent the user from writing any new data written to the file. If it is nec-

essary to prevent a user from reading data from files that they were previously able to read,

the data must be re-encrypted. Of course, this accomplishes little since the user could have

simply cached the file on their local system. The data objects on the network disks are sub-

ject to reads, writes, and deletes as described below.

4.2.1 Block Write

The write operation starts with encrypting a block of data. This provides data confidential-
ity as the data traverses the network as well as while it is stored on the disks. The block is

then given a timestamp and an HMAC is appended. This forms the secure data object, and

it is sent to the network disk as shown in Figure 6. If a block is simply modified, the file

i̧ I
...........J

User (UID)

1. Generate RC5 key.
2. Encrypt this key.
3. Send to drive.
4. Break file into 64 KB

blocks (B0-BN.)

5. Encrypt each block a to
obtain Ba'.

6. Append timestamp.
7. Append keyed-hash.
8. Send blocks to disk.

9. Modify key object if
needed

HMAC

Block ID

UID

Timestamp

IV

Data

Network Disk

I. Verify keyed-hash.
2. Verify timestamp.
3. Store new timestamp.
4. Verify write permissions.
5. Write block.

Figure 6. Writing a File

object does not need to be changed. However, if a block is added or deleted, the block

identifier needs to be added or deleted from the file object. Note that writes to the file

object are protected by an HMAC just as writes of any other objects on the network drives.

The actual HMAC on the secure data object does not necessarily need to be written to the

disks. The old HMAC is not sent when a block is read since only the original writer of the
block and the network disk could use it.

4.2.2 Block Read

For the read operation the disk needs to append a keyed-hash for the user requesting the

block as well as a timestamp newer than the one last received from that user. For group

access, the keyed-hash calculated by the writer could be used. For individual access, the

new keyed-hash must be calculated because the reader does not have access to the writer's

writer-authentication key. This exchange is shown in Figure 7.
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Network Disk

1. Receive request for a particular
block.

2. Calculate HMAC based on the user

authentication key (KeyMAc).

3. Update timestamp in certificate

object.

4. Send secure data object.

HMAC

Block ID

UID

Timestamp

IV

Data

User (UID)

1.Verify timestamp.

2. Verify HMAC.

3. Decrypt to obtain Ba.

Figure 7. Reading a File

4.2.3 Block Delete

A delete request is handled basically the same way as a write. The drive verifies that the

uid in the delete request is the owner of the file, that the signature on the request is valid,

and the timestamp is in order. If these conditions are true, the data object is deleted. It is

the responsibility of the file system software on The Final System.

5. System Performance

A test system was built to verify the feasibility of this system. This section describes the

exact hardware and software of the prototype system, along with performance measure-

ments. The cryptographic component performance, network performance, as well as the

system performance is presented.

5.1 System Description

The system used for this study is comprised of 2 Motorola VME boards connected to a

100 Mbps hub as shown in Figure 8. The hub in use does not provide switching capabili-

ties, so the aggregate performance is limited to 100 Mbps. An attempt to use a Cisco Cata-

lyst 2900 switch was thwarted by unsolved device driver issues. Both of the computers in

this test setup run the VxWorks real-time operating system. This operating system was

chosen to limit the variables introduced with a large multi-user OS such as Unix or Win-

dows.

5.2 Cryptographic Component Performance

The performance of various cryptographic algorithms on a variety of platforms has been

tested to verify the feasibility of the proposed file system [5]. For this study, the perfor-

mance of the hash algorithms to be used in an HMAC (MD4 or MD5) and the encryption

algorithm RC5 is shown in Table 1.
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Motorola

MVME-2700

MPC-750 (G3)

360 Mhz

VxWorks

SMC

EZ- Stacker

10/100 Hub

g

Motorola

MVME-2604

PPC-604

333 Mhz

VxWorks

Figure 8. Hardware Configuration

Operation MVME-2604 MVME-2700
(64000 Bytes) PPC604/333 MPC750/360

MD4 1.39 ms 1.31 ms

MD5 3.20 ms 2.30 ms

RC5 Encrypt 4.27 ms 3.20 ms

RC5 Decrypt 5.33 ms 4.60 ms

RSA-512 Sign 25 ms 21.2 ms

RSA-512 Verify 2.3 ms 2.0 ms

Table 1. Cryptographic Operation Time - 64000 Byte Block

5.3 Network Performance

The performance of the networking stack implemented in VxWorks for these Motorola

boards needed to be investigated to ensure the network was not responsible for a bottle-

neck. The network buffers and timings were tuned to obtain the results shown in Table 2 it

is clear that using UDP, the network performance is not a limiting factor. The difference

MVME-2604 MVME-2700Protocol
PPC604/333 MPC750/360

TCP 77 Mbps 80 Mbps

UDP 96 Mbps 96 Mbps

Table 2. Network Protocol Performance

between the UDP performance and the optimal 100 Mbps is simply the overhead of lower
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level protocols.TheVxWorks basedcomputersarecapableof generatingtheUDP data-
gramssignificantlyfaster,thenetworkis thebottleneck.

5.4 System Performance

The combined system performance for the block read and block write operation was tested

for this scheme. The block write followed the protocol shown in Figure 6, thus involved

the MPC750 performing a 64000 byte RC5-CBC encryption followed by an MD4 HMAC

operation. Upon receipt of the block, the PPC604 acting as the network disk was required

to verify the MD4-HMAC, and write the block into memory. The writing of the block to a

actual disk was not tested at this point. However, the performance of the Seagate Cheetah

drives is much greater than the 100 Mbps network, and should pose no bottleneck.

The read operation tested was similar to the protocol shown in Figure 7, and involved the

PPC604 at the network disk performing an MD4 HMAC operation, and the MPC750 at

the workstation performing the slower RC5-CBC decrypt operation followed by an MD4

HMAC operation. The difference was the client performing the read operation for these

measurements send the datagram over the network instead of receiving it because the code

to read from the network at the client was not yet finished. The performance of this read

and write operation is shown in Table 3.

Operation Overall
(64000 Bytes) Performance

Block Write 66.4 Mbps

Block Read 56.5 Mbps

Table 3. System Performance

6. Conclusion

This paper presented the details of the Network Attached Storage with Decentralized

Security system along with performance measurements. It is clear that this type of system

is feasible with today's computing power, and will become even more attractive as proces-

sors become faster. The write operation was able to run at over 2/3 of the optimal perfor-

mance, while the read was limited to 59% of optimal performance. This distributed file

system solves many of the performance and security problems in existing systems today.

This system protects user data confidentiality and integrity from the moment it leaves the

client computer. The distributed disks should perform substantially better than centralized

file servers, and provide better reliability. Having the security functionality decentralized

will improve performance and scalability. It also removes the single point of failure that

plagues many proposed centralized security schemes to date.

REFERENCES

[1] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson,

Drew S. Roselli, and Randolph Y. Wang. Serverless Network File Systems, ACM

Transactions on Computer Systems, Feb. 1996, pp 41 - 79.

390



[21

[3]

[41

[51

[6]

[71

[8]

[9]

[10]

[11]

M. Bellare, R. Canetti and H.krawczyk. Keying Hash Functions for Message

Authentication, Proc. Advances in Cryptology, pp 1-15, CRYPTO, 1996.

Steven M. Bellovin and Michael Merritt. Limitations of the Kerberos Authentica-

tion System. Computer Communications Review, 1991, pp 1 - 15.

Pei Cao, Swee Boon Lira, Shavakumar Venkataraman and John Wilkes. The Tick-

erTAIP Parallel RAID Architecture. ACM Transactions on Computer Systems,
August 1994, pp 236 - 269.

William E. Freeman, Ethan L. Miller. An Experimental Analysis of Cryptographic

Overhead in Performance-Critical Systems. IEEE Mascots '99, pp 348-357.

Garth A. Gibson, David E Nagle, Khalil Amiri, Fay W. Chang, Howard Gobioff,

Erik Reidel, David Rochberg and Jim Zelenka. Filesystems for Network-Attached

Secure Disks. www.pdl.cs.cmu.edu/PDL-FTP/NASD/CMU-CS-97-118.pdf.

N. Haller. The S/KEY One-Time Password System. IETF RFC-1760.

Nelson E. Hastings. TCP/IP Spoofing Fundamentals. Proceedings of IEEE Fif-

teenth Annual International Phoenix Conference on Computer and Communica-
tions, 1996, pp 218 - 224.

Jim Reid. Plugging the Holes on Host-based Authentication. Computers and Secu-
rity, 1996, pp 661 - 671.

R. Rivest. The RC5 Encryption Algorithm, RSA Labs' CryptoBytes, Vol. 1 No. 1,

Spring 1995. http://www.rsa.com/rsalabs/pubs/cryptobytes.html.

Chandramohan A. Thekkath, Timothy Mann and Edward K. Lee. Frangipani: A

Scalable Distributed File System. ACM Operating System Principles, 1997, pp 224
- 237.

391





Jiro TM Storage Management

Bruce K. Haddon, Ph.D.

The Java Centers, Sun Microsystems, Inc.

500 Eldorado Boulevard, UBRM01

Broomfield, CO 80021-3400, U.S.A.

Bruce.Haddon@sun.com
tel +1-303-272-8418

fax +1-303-272-5011

William H. Connor, Ph.D.

Network Storage, Sun Microsystems, Inc.

2990 Center Green Court South, UBOL03

Boulder, CO 80803-2216, U.S.A.

William.Connor@sun.com
tel +1-303-272-8414

fax +1-303-272-8427

Abstract

The Jiro TM technology provides an environment intended for the implementation of

storage management solutions. A product based on Jiro technology is an implementation

based on the Federated Management Architecture (FMA) Specification, which describes

extensions to the Java TM language environment. The FMA initiative addresses system

management, particularly storage management. In addition to the platform, the FMA

Specification defines a component model, i.e., the FederatedBeans rMmodel, and a set of

services. The Jiro technology is effectively the application of this model to the design and
implementation of storage management solutions.

The FMA assumes a three-tier architecture for the design of storage management

applications: the first or top tier is the client/presentation layer, or interaction layer with

user's or systems acting as a client of the storage management application; the third or

lowest tier represents the storage and related resources being managed; and the second or

middle tier is that containing the logic (the programs) that define and effect the

management actions required by the user upon the storage resources. It is the middle tier

in which the FederatedBeans components are deployed.

FederatedBeans components are each implementations of the concept of a Jini rg service.

Each FederatedBeans component is an embodiment of some function that provides a
service to other entities in the second and first tier. The success of the initiative

surrounding the Jiro technology will be availability of a wide variety of FederatedBeans

components from different suppliers, each providing significant functionality for the

construction of storage management applications. The FMA platform supports automated

communication between networked Java Virtual Machines, thus promoting applications
that are federations of the constituent components.

Within FMA, the resources being managed are expected to conform to the Common

Information Model (CIM), although provision is made for the management of resources

by other means. The CIM provides modeling for all common storage system elements.

1 Introduction

Today's sciences and businesses depend on information---a vast mountain of information.

As the demand for storage to hold all of this continues to grow at phenomenal rates, the

management challenges are growing too [1]. In fact, the diversity of installed storage
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systemsandthewide distributionof thosesystemsareon thevergeof creating a crisis in

management, sometimes described as a "nightmare."

The amount of management that needs to be done is also increasing [2]. The cost of

management is one of the significant areas of rising cost in using computer systems.

Since management is a continuing cost, it has a large influence on the assessment of

"return on investment" (ROI). All aspects of a system need management: software, proc-

essors, boards, options, network connections, storage devices and networks, modems,

printers, and all the other pieces that are put together to make a "system." Management,

in this context, includes installation, configuration, asset deployment and inventory,

performance monitoring, error and failure detection, upgrade and replacement; as well as

more difficult things like capacity planning, service level contracts, load balancing, all of

which may be controlled by policy decisions made by the owning organization.

Because storage and storage subsystems are amongst the most complex parts of the

management problem, as the storage systems often including processors, switches, and

storage area networks, effective solutions to storage management problems are urgently

required. Thus, the initiative surrounding the Jiro technology focuses its attention on

storage management.

Developers lack standard middleware infrastructures for efficiently building capable

solutions for heterogeneous management tools, applications, and services. Further

complicating this situation, to provide storage solutions, developers must port their

products to multiple proprietary platforms, a costly, time consuming process. The answer

is based on building with software components designed for a platform specific to the

purpose, being an open management platform based on Java [3] and Jini [4] technologies.

1.1 The Jiro Technology Solution

The need for the Jiro technology is acute due to a storage landscape dominated by point

products that do not interoperate, creating large islands of information that are difficult to

integrate, complex to manage, or that actually prohibit cross-platform information

management. The intent of the Jiro technology is to bring the benefits of community

source processes to the development of storage management solutions. This platform,

together with basic services and a component model, brings an order to the creation of the

software that can automate or add intelligence to all management functions. The elements

and their relationship are defined in the Federated Management Architecture (FMA) [5].

The history of the Jiro technology activities starts with a proposal made to develop a Java

language extension designed to make it easier for the developer to create new storage

management applications, enable faster design cycles, lower development costs, and offer

a wider market potential. It is further intended to alleviate the need to conform to multiple

API's and interface specifications. Following the requirements of the Java Community

Process sM (JCP) [6], a call for experts (CAFE) was issued, followed by the formation of

the Expert Group, a work group made up of representatives from a number of interested

industry leaders. The Group was convened under the terms of the Process, and the FMA

Specification is the result of the work of that Group.
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1.2 The High Level Architecture

Three areas of specialization can be seen in the management problem:

• the representation of the resources to be managed, including the management data

they contain, any behavior they exhibit, and a means of understanding their topology
and other interrelationships;

• the interaction with the wishes of the user or users of these resources, including all

means of invoking and scheduling management activities; and,

• the computational logic that is needed in order to translate the wishes of the users into

the desired actions on, or using, the resources, or, as importantly, the translation of

events taking place within the collection of resources into the presentation of useful
analyses to a representative of the users.

In the diagram below (Figure 1), the third tier in reality comprises software objects, some

representing the actual hardware and software being managed (solid rectangles), and

some representing the relationships between them (striped rectangles). Every entity in the

domain being managed, whether hardware (e.g., a disk), or software (e.g., a database

manager), is modeled by a representative object. This view of management sited beside

the elements of the data stack has been proposed earlier [7].

Client/ Logic Resource/

Presentation Information

Figure 1

These are the requirements that, in other enterprise, business, and Internet applications,

have led to the adoption of what are now known as "three tier" architectures. A pictorial

depiction of the three-tier architecture as it applies to management is shown above.

1.3 The resource/information tier

In storage management, the resource/information tier contains both the physical hardware

used to create the storage resources: the disks, tapes, disk subsystems, automated

libraryies, channel interconnects, storage area networks, and so on, as well as the logical

elements: the storage extents upon the media, logical disks, volumes and virtual volumes,

file systems, databases, and so on. The management information contained in this tier

includes the attributes of each of the pieces of storage, such as its size, capacity (which

may be larger or smaller than size, depending upon reserved areas of the media, and

compression, etc.), speed, access time, geometry, and a large number of other attributes.
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Not so obviously, the management information also includes the relationships between

the resources. These relationships include, for example, how the resources are connected

to each other or the host, to hubs and switches involved in creating network segments,

and which media are involved in the realization of a file system. The relationships are not

only important to the management software for monitoring the behavior of those

resources, but often are the elements most directly being managed. For example, if a

particular interface card fails, it is be desirable that the monitoring management software
be able to reroute traffic via another interface, should there be another interface available.

This third tier must be considered "active." Therefore, the representation of the resources

must be able to define behaviors of the resources in a variety of ways. An example is the

formatting of a disk--a common behavior, but perhaps implemented differently on
different manufacturer's disks. The definition of these behaviors, taken together with the

attributes of the resources and the information implied by the relationships between them,

is the management interface of the resources, and hence of the resource/information tier.

In the three-tier model, the third tier represents the "state" of the system, in this case, the

resources of the management system. In the case of storage resources, the state is the sum

of the management data and relationship information.

There is a very critical relationship between the resources being managed and the

application software. Undoubtedly, the whole object of storage management is to enable

and optimize the delivery of data to those applications. Application data usually go

through a number of paths and transformations in moving from "raw" bits on the storage

media, to the form in which they are presented to the application and even further

transformations in order to present information to users. Therefore, "behind" the resource

representations as seen by the management logic, there are layers of hardware and soft-

ware responsible for these data deliveries and transformations. Figure 1 also shows this.

1.4 The client/console

In the first diagram, the client/console tier has been represented by a system administrator

or installation manger sitting, literally, at a console. This depiction is only meant to be

representative. Certainly one of the objectives of enterprise-class management systems is

to bring relevant monitoring information to some central place, where the "big picture"

may be evaluated effectively and efficiently.

For an automated management system, it is not sufficient that operations be initiated from

a console. It is necessary to be able to initiate actions from CLI's, scripts, periodic

schedulers, and components of the management system itself. This latter facility is

required so that when decisions are programmed into the management system, those

decisions may be used to initiate appropriate actions, without the real-time intervention of

an administrator (which is the definition of "automated management").

1.5 The management logic tier
This tier is intended to contain the actual programs that are the applications implementing

the logic needed to perform management decisions and management functions.
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Such applications typically contain a number of modules, architectural "sub-
applications,"that deal with various aspectsof the overall tasksto be performed,by
doingan individual task,or computinga specificresult,andso on. Componentmodels,
basedon object-orientedmethodologies,andusuallybasedon specificobjectimplemen-
tations,are a way of describingthesemodules.The FMA specifically definessucha
componentmodel,i.e., FederatedBeans.

All component models, in essence, define a "platform" and a set of "services" in addition

to the component model itself. A number of other things also normally surround the

successful use of the component model for real implementations, which includes some or

all of an interface specification language, an intercommunication protocol, a deployment

methodology, and various tools to support the creation and use of the component model,
which together constitute a software development kit.

However, more than each of those, a successful component model is one that leads and

encourages implementations of actual, real, useful components, that is, a library of

components, which implementers may use without further development.

The largest development leverage lies in being able to obtain significant components out

of which an application may be built for appropriate amounts of money, while capping

the time and effort required to learn how to use and to support them (when deployed).

The other effect is that the components may be common to more than one application.

Thus a component has only to be deployed once, the footprint costs are paid once, and

many applications can share the use of the component. Such components take on the

nature of additional services, but without requiring a new definition of the core.

So, by analogy, once a platform based on Jiro technology is available, then the objective

of on-going activities is building useful applications using components, and, as experi-
ence is gained, determining which of those components are candidates for libraries of re-

usable components. Such candidates will be evaluated, and perhaps re-engineered, for

standardization, interchangeability, substitutability, etc. Attention and growth in this area

will eventually lead to a classification of components, and a catalog from which deve-

lopers will be easily able to choose the components most suited to their current needs.

1.6 Generation of management applications

The usefulness of the three-tier architecture is related to the decoupling that occurs

between the tiers. For the three-tier approach to be valid, the degree of decoupling

between the tiers should, in general, be greater than the decoupling introduced by the
problem or task decomposition used within the tiers.

The most usual method to present one tier to another is through API's, and most

particularly API's that are wrappers for protocols. From the point of view of a lower tier

presenting itself to an upper tier in the form of a particular API, the requirements of that

API define a framework. That is, it requires that certain conventions be observed so that

functions may be called, results passed back, call-backs created if needed, and so on.
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Providedthat these API's or protocols exist, the intemal structure of each tier may be

driven by the needs and requirements of that tier. Consequently, the overall philosophy of

the Jiro technology has been to use the "best of breed" examples for each tier. The FMA

proposes the technology for the second tier, and encourages support of the DMTF CIM
for the third tier. Work is continuing on defining interfaces to the first tier.

1.7 Requirements of the Third Tier
There are many requirements, in detail, for this tier. The following may be considered

just the major requirements:

• a software-accessible representation of the each of the actual physical resources that

are part of a computing system, including all the usual asset information (e.g.,

manufacturer, type, size, etc.);

• a software-accessible representation of the system resources made available by the

existence of these physical resources (e.g., the storage extent actually made available

by the installation of a particular storage device);

• a representation of the relationships between resources of both types (e.g., this disk is

part of this RAID subsystem, this file system is implemented on this stripe of these

disks), and the ability to update these as the system evolves, or fails;

• an ability to recognize that various resources are implementations of the same class of

resource, as well as being able to identify and take advantage of specific differences

(e.g., a laser printer is a (generic) printer, but is capable of duplex operation);

• a reasonable ability to find out what resources are available (e.g., this particular host

has a tape drive, whereas some other does not); and,

• agreement on the names and meaning of various critical attributes and behaviors, with

support for being able to find the resources represented by means of queries based on

those attributes.

1.8 The CIM Specification

The Common Information Model (CIM) Specification [8] is a description of an object

model, and of a language in which to describe the classes and the instances of objects of

that model. This particular object model has, as do many other object models, rules of

inheritance and the overriding of methods and properties. In particular, the inheritance is

single inheritance, and overriding is explicit.

Nominally, there is only one kind of object in the CIM, but it is more instructive to think

in terms of two principal kinds of object. There are those objects that represent the actual

entities being managed, which are those needed to satisfy the requirements above; and,

those objects that represent the relationships between those entities (providing a way to

satisfy other requirements, above). These objects are called associations. For example, a
network hub and a cable of the network are each entities. The cable will have a

relationship to the hub, which can be described as "connects to." The "connects to" object
contains a reference to the cable as being the source ("antecedent") of the relationship,

containing also a reference to the hub as being the target (the "dependent") of the

relationship. Of course, associations may be one-to-one, one-to-many, many-to-one, or

many-to-many.
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The diagram above (Figure 2) shows a typical model of a hard disk drive, in its own

packaging. It shows the both physical and logical elements, and the relationships between

them, these being the associations illustrated as labeled lines. It should be understood that

each of the associations in this diagram is itself a CIM object, and thus may be queried

and interrogated in the same manner as the objects representing the system elements.

1.9 The common XML protocol (WBEM)

While there is considerable value to the concept of implementation independence when

defining a common information model, a plethora of implementations is not something

with which developers of management implementations wish to cope. There is, however,

a middle ground permitting Object Manager (OM) implementers freedom, but also

allowing use by applications without having to re-implement their code for interacting

with the OM. This middle ground is based on having a common protocol to be used to

communicate between the application and the Object Managers.

The DMTF has standardized a protocol for this purpose. The content of the protocol is

based on XML [9], and the use of HTTP as a transport mechanism is also defined [10].

While it is possible to use the XML "documents" directly to invoke actions upon the OM,

the use of the HTTP binding allows the XML payloads to be transmitted across the

Internet, and, where permitted, through firewalls. The XML format provides also for

conveying results of method invocations on the Object Manager back to the OM client.

The combination of a CIM Object Manager implementation with the HTTP-transported

XML protocol packet for OM operations, is "Web-Based Enterprise Management"

(WBEM) [11], which is the platform- and language-independent technology for using

CIM and CIM Object Managers. The diagram below (Figure 3) shows the WBEM model

for the use of a CIM OM, where the communication between a client and the OM is by

means of the defined XML-based protocol, and the CIM OM obtains information about

the managed objects by means of privately defined code elements called "providers."
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The existence of a CIM Object Manager implemented using the Java language is an

important development. It means there can be a CIM OM available everywhere that the

Jiro technology is available, with no further investment in the development of the OM.

This is undoubtedly a significant advantage when developing management applications.

1.10 The requirements for the Client/Console Tier

As mentioned above, this tier is not specifically a target of the current Jiro technology

activities. However, for some completeness, the requirements of this tier are outlined

here, with some description of the considerations. The requirements include at least:

• the ability to interact with users, either in terms of graphical user interfaces, CLI's,

and perhaps more than one means of scripting the interaction;

• support for remote communications when the user must be able to access the

management system from other than a fixed location. Most newer management

systems contemplate the use of the Internet as a means of access (see next item);

• provision for gathering information to enable authentication of the user, in order to be

able to use the security features provided by the second and third tier;

• the possibility of supporting interfaces to existing management solutions, since there

is already a great investment in these. The first tier could provide a good proportion

of the bridging between such legacies and newer Jiro technology-based solutions;

• effective means of navigation for each of the user interfaces supported. Most

computing systems, particularly those supporting storage area networks (SAN's) and

similar large and complex subsystems, require means of showing them that can be

mapped to and from the model representations that make sense to the user;

• presentation technologies, either screen or print based, to show the navigation and

other views, upon demand; and,

• the capability of launching management applications into the appropriate environ-

ments, with, preferably, the ability to monitor the status of those applications.
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Thereexist many "console" and client-sidesolutions,offeredas completeproductsby
manycompanies.In additionto the actualfirst tier functionality, thesesamecompanies
often offer modules that provide secondand third level functionality. Theseproduct
offerings aresometimesembeddedin otherservices,includingmonitoring,notification
andresponsemanagement,andsometimeseven"first response"field engineering.

All of the above servicesremain relevant in a Jiro technology-basedsystem.These
systemsoffer the promiseof even more capableapplications,and henceeven more
desirablevalue-addedservices.

2 The Management Logic Tier

This is the tier specifically addressed by the FMA Specification. The Specification

defines a component model for the development of management applications (programs

that implement storage management). Because the Specification contains all the needed

detail about this tier, only a brief overview is offered here.

2.1 Requirements for this tier

The question is often asked, given that the third tier contains so much capability, why is

there a need for the second or "logic" tier. The requirements for the second tier include at

least the following, each going beyond what is (conveniently) possible in the third tier:

• a component model (more detail below), in order to be able to create a library of

solutions to be used as construction elements for new management applications;

• support for distributed applications, in order to support scalability (e.g., use of more

than one processor), efficiency (placing logic near to its source of information), enter-

prise capability (separation of management environments along organizational lines),

and redundancy (to support applications utilizing high availability capabilities);

• deployment of components in standard ways, so that packaging is done once, the

deployment problem needs not be re-solved for each release of each application and

for each implementation of the second tier;

• basic services, that are needed by all applications, inclusive of component location

and loading, logging, scheduling, etc.;

• control arbitration, whereby a component can claim sole access to a second or third

tier resource, and then act as a "gatekeeper" for allowing appropriate access (e.g., a

classic multiple reader, single writer regime);

• an ability to ensure consistency across resources, even when those resources are in

different environments (i.e., namespaces), such as a remote disk mirror;

• the ability to compute logic across resources, in a similar way, such as switching
between remote disk mirrors;

• a facility to share logic implementations between clients, by allowing multiple clients

to re-use (or multi-thread, if appropriate) the same logic components;

• the ability to compute logic across time, by accumulating historical information about

present and past states of the resource/information tier, and performing appropriate

(e.g., statistical) analyses; and,

• the definition of higher level of management abstractions, with appropriate interfaces

(e.g., a charge-by-usage service of a virtual disk system across the Internet).
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2.2 Jiro Technology as the second tier

The Federated Management Architecture has been specifically proposed as a means of

structuring the second tier. It addresses specifically the following characteristics:

• the ability to dynamically and easily introduce new behavior while the system is in

operation;

• the necessary locking to support control arbitration (as described above);

• support for wide-spread consistency across management applications;

• transactions across arbitrary parts of the management state;

• the possibility of a single packaging, that support "talks to" relationships between

components written by different authors, and a universal "runs on" relationship to the

Jiro technology (thus fostering neutrality with respect to physical platforms);

• fine-grained security, in that the security context is carried and made available to all

components in the distributed system;

• source available under community agreements;

• provision for the support for higher availability solutions; together with,

• support for adequate scalability of management solutions; and,

• versioning, to provide a methodology for not having to update an entire universe of
solutions at one instant.

The resource/information layer (3rd tier) models that which is being managed (systems,

storage, networks, etc.). The model includes all the manageable attributes and behavior of
the resource. These attributes and behaviors of the model are "static" in the sense that

they are in one-to-one correspondence with the attributes and behaviors of the real-world

resource being managed. These attributes and behaviors of the model should not be

changed (even if the underlying implementation technology would permit it) to represent

anything other than the attributes and behaviors of the real-world resource. It is not

expected that the "external logic" of a managed resource should change in any significant

way during its lifetime. The resource/information layer is not static in the sense of being

unchanging----resources are expected to come and go, being replaced, upgraded, and

extended, in the normal course of the system lifecycle.

The logic layer (2nd tier) reflects the pattern or structure of the decisions that need to be

made in order to manage the resources. These decisions will be made based on

information that is corralled and collated from the data present in the information model.

Since management is undertaken in order to meet (organizational) goals, the nature of the

decisions, and the behavior based on those decisions, needs to change as the goals change

or evolve. Thus, the objects (or components) of the logic layer need to be replaceable

with new versions, which, behind the same API, implement new behaviors. The logic

layer also needs to be "dynamic" in that an object or component may be introduced into

an execution environment where none has existed before, thus defining new behavior.

2.3 The FMA Specification

The fundamental notion supported by the FMA is that of components, where it is

intended that these be the unit of assembly and installation of management logic. The

component model consists of a set of naming and construction rules; with these

components being termed "FederatedBeans." FederatedBeans components are based on
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the Javaobjectmodel,andconform to the set/getconventionsof JavaBeans TM [12]. To

support assembly, it must be possible to discover ways in which management

Figure 4

components can be connected to one another in both anticipated and unanticipated ways.

The components have to find the appropriate interface offered by other components in

order to create a coherent application. As illustrated in the diagram above (Figure 4), the

connections between the FederatedBeans components may be an arbitrary topology (not

necessarily hierarchical), and a given service might be used both directly and indirectly.

In many programming environments, the choice of interface is made at program writing
time. An effective component model will allow these to be found at installation and/or

execution time. A component may present different interfaces for different purposes, or

even just to provide the same functionality in more convenient forms.

Because the FMA platform supports a distributed programming environment, most fre-

quently it is not the actual interface that is the point of connection between components.

The point of connection is a proxy [ 13] for that interface. The proxy is always local to the

using component (i.e., present in the same Java Virtual Machine (JVM TM) [14]), and the

component (or object) for which the proxy is acting may be in the same virtual machine,

or other virtual machine accessible within the domain of the application.

Deployment: It must be possible to deploy, or install, components in a standard manner

on a running system. Deployment includes installing class files, resources, components,
and objects.

Controllers: An important objective of the Jiro technology is providing the infrastructure

to support control arbitration. Controllers attempt to control resources through

components. Resources, therefore, may be subject Jiro technology providing the access

mechanism to support control arbitration. The primitive required for arbitration is called

the controller aspect of the management services model, and this in turn must support
durable (long term) exclusive locking of resources.
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Transactions: Most distributed component models provide some form of transaction

support to aid in protecting the integrity of the resource/information layer [15]. The

transactions provided by the Jiro technology are focused on supporting large numbers of

heterogeneous resources, rather than a single large resource (e.g., a database), and not

necessarily large numbers of clients. A FederatedBeans component needs a transaction

aspect to participate in a transaction.

Security: A management environment must support validating clients for actions that

they attempt to take, since such actions may have far-reaching results. The basic model is

that of the Java model [16], but with provision made for ensuring that necessary security

information is transmitted between Java machines as needed. Access to this information

requires a security aspect.

Logical Threads: As the FMA is intended to support active, autonomous, management

applications, components must be able to support concurrent and re-entrant conditions

with respect to threads. Management applications are made of distributed components, so

the FMA introduces the concept of a logical thread that spans processes, and in particular,

is capable of spanning execution threads in different virtual machines [17]. Thus,

component behavior with respect to threads may be specified with respect to logical

threads instead of just the provided Java language threads.

2.4 The Use of Jini Technology

Jini technology is used within the Jiro technology for a number of purposes. It is used to

discover federated Java virtual machines (termed stations), which are the active

component of the Jiro technology, and supports addressing domains within a federation

of stations, as the transaction manager (including leases), and for a variety of lookup

operations, including discovery of CIM Object Managers, and various other components,

interfaces, and services running on those platforms.

2.5 Other Basic Services

The basic services of the FMA include those provided by the Jini environment, plus

logging, scheduling [18], and so on. Services are regarded as "basic" within the Jiro

technology if they are assumed present on every platform. The criterion for regarding a

particular service as being basic is usually the need for it to be pervasively used

throughout management applications.

"Services" that are not pervasive may be supplied by components, and may be discovered

(see "discovery", as discussed under "The Use of Jini Technology" above) when needed.

2.6 The use of components for filling out services and functionality

As hinted at in the previous paragraph, a significant use of FederatedBeans components is

providing additional functionality and services on a Jiro technology platform, without

need to define an extension to that platform. As the use of this platform matures, it is ex-

pected there will be a large number of service components supplied by interested parties.
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Shouldthe useof anyof thoseservicesbecomeso frequentasto fulfill the "pervasive"
criterion, considerationcould be given at that time to re-awakeningthe community
process,to modify theFMA Specification,definingan extension to the architecture.

2.7 Five stakeholders in the value proposition

Five broad classes of "stakeholder" in the Jiro technology may be identified. A

"stakeholder" is a person or user that has something to gain, or lose, by use of the

technology. In the following sections, each of these stakeholders is identified, and their
"stake" described.

Stakeholder--the Resource Vendor

The resource vendor is the manufacturer of such things as disks, tape drives, storage

subsystems, software products, and so on.

Hardware and software vendors offering products in the range of a few tens of dollars to

thousands of dollars (US) face strong competitive pressures with thin profit margins.

Vendors in this space typically produce 105 to 10 7 devices per year at very low cost and

profit margin. Example of device retail costs (at this time) include:

Device Market Price

CD-ROM (40x)

8 GB Tape Drive
10 GB Disk Drive

Celeron Computer

$29

$59

$121

Free or $399

Products in this price range are extremely price sensitive as consumers often care little

about brand name or quality and will often purchase the lowest price product. Any

additional cost to support manageability is unacceptable. Vendors in this arena can reduce

distribution costs by providing any software (on floppies or CD's) already bundled in the

box, their support software with management application vendors software, or by Web

download only. Vendors can participate in the management arena by simply developing a

CIM provider for their device, a once-only development cost.

Vendors producing products on the low-end of cost and profit will benefit from Jiro

technology in several ways:

* the vendor can play in the CIM/WBEM world at a very low initial cost and also be

managed in the Jiro technology-based world as well. In Microsoft Windows, the OS

where most commodity hardware is installed, the vendor develops a CIM provider. It

is then supported in the Microsoft Management Console (MMC). This first step

allows the device to be managed by exposing all the device's "knobs." This allows

the device to be managed at a higher level by intelligent FederatedBeans components
in concert with other devices and services;

• a large demographic of the customer population needs manageable devices and will

be swayed in their purchasing decision by the device's integration with the FMA. The

cost of developing the support can be amortized over a large number of devices and

the cost of manufacturing the software for inclusion with each device is low;

• in a two-step development lifecycle, the vendor can "get into the game" with the low

entry cost of developing the CIM provider, perhaps giving away the management
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software, and later developing the intelligent FederatedBeanscomponentsthat
managethedevicein themostefficientandeffectivemannerpossible;and,
for very little investment,the vendor can provide the kind of functionality and
manageabilitythatwaspreviouslyavailablein devicescosting10×- 100xasmuchby
leveragingtheJiro technologyinfrastructure.

The benefitsfor the high-endvendorarevery similar, but with the addedbenefit of the
vendorprobablywanting to, and beingable,to providea FederatedBeanssolution.This
mayprovidespecialcontrolor understandingof the largersubsystem(including,perhaps,
a "contactthe supportcenter"functionthat implementsa 24x 7 maintenancepolicy that
requiresno interventionby thecustomer).Theadvantagesare:
• the CIM technique allows the description of sub-systems of arbitrary complexity;

• the FederatedBeans components approach allows a vendor to supply system-specific

components that may be also utilized in other management products; the manufac-

turer does not have to develop a "complete" management system in order to enable

the one or two essential features needed for the added value of their product; and,

• The FederatedBeans approach can ensure that the sub-system appears on management

consoles in a way that the manufacturer wishes (together with that manufacturer's

own appearance and message).

Stakeholder---the Component Vendor
Much of the success of Jiro technology will be in the existence of an active market in Jiro

components, i.e., software components that can be used as building blocks in the creation

of storage management applications. The leverage of this approach is that developers of

management applications can recast their work in terms of integration of components,

rather than the design, development and testing of every component needed to make a

complete application.

In many other parts of the software industry, software components have become a very

successful, and necessary, part. Software components can take the form of source and

binary libraries, dynamically loadable libraries, shared objects, DCOM [19] components,

foundation component sets, as ActiveX components and Java packages and applets.

There are two approaches to the use of components: by those wishing to provide

specialized components, such as those described above, where specific and dedicated

functionality is provided as a component behind standard interfaces, and by those

providing general functionality in components with interfaces that extend the range and

capability of the entire system.

Examples of this latter type of component could include:

• a health monitor, that collects the values on certain attributes, and delivers warnings

when any of these values move outside predetermined limits;

• directory and lookup services, powered by various difference sources of information,

e.g., DNS, or by different access standards, e.g., LDAP;

• an asset manager, that integrates what is installed (visible to the component) with an

enterprise inventory system;
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• event handlers, that do correlation, in order to deduce the root cause of an event

storm, e.g., failure events from many routers about not being able to reach certain

hosts may all be due to a power failure on just one segment of a network;

• time series analysis, given various observations of some measure at known time

intervals, so that future values may be predicted;

• virtual volume tuner, that uses performance statistics from the virtual volumes to

adjust the behavior of real disks and their interconnections to improve the
performance of the virtual volumes;

• a database configurator, that given a set of parameters about the intended use of a

database, can configure virtual volumes, table layouts, and other controls, in order to

either enable the intended database use, or to optimize behavior;

• a capacity planner, which not only can assess what is installed, but may also be able

to reach product information on manufacturer's web sites, so that an upgrade plan can
be derived by playing "what if';

• a storage area network tool, that analyzes a topography of a traffic pattern, and

advises on the addition or movement of existing network access points in order to
balance use of the network segments; and so on.

The "value" of components may be in their intrinsic value, and thus be traded and sold

"off the shelf', like many other applications, or in the value that they enable in other

equipment (so-called "drag"), where the software is essentially given away, in order to
improve sales of the equipment.

Stakeholder---the Management Application Vendor

For those developing management application, the advantages are:

• that FMA enables developers to build applications with advanced, automated

functions that realize the goal of managing storage or storage networks, where many

of those automated functions may be obtained "off the shelf';

• that FMA provides the FederatedBeans model that enables interoperability among
diverse applications, services, and devices, and is also an aid in the architecture and

design phases of the application;

• relieving the application developer of the necessity to design and implement the

means of accessing the management information of devices, and for these to be easily
added, removed, or provisioned for service; and,

• reducing downtime by enabling automatic updates to applications or services.

If a new application or device is Jiro technology-enabled and a management component

vendor has a FederatedBeans product implemented, the new application or device will be

immediately capable of being incorporated into the management environment. For most

devices, being WBEM-enabled will be sufficient for Jiro enablement. From the

customer's point of view, the new equipment will be capable of being managed (at a

higher rather than lower level) and reported a standard manner. A Jiro-enabled disk array,

for example, would be able to report capacity, which could then be used by applications

such as capacity planners. The fact that the disk array is there and has been recognized

means that volume managers can take advantage of it automatically---rather than having
to be told its whereabouts.
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Stakeholder--the Information / Data Application Vendor

Information and data application vendors can improve the performance of their

applications by being able to interact directly with the management components of the

data storage system. For example, if a the data application is a backup suite, the

implementation of that suite could:

• use the management system to discover which files need backing up, without having

to directly use the file system interfaces; this reduces porting costs in development;

• use a propriety interface to set up the backup application (it would be possible to

develop a CIM interface, but an intermediate solution would be to use existing CLI's

via a specially developed facade);

• similarly, proprietary interfaces might be used to collect information, say from a log

file, which could be used as key for the generation of events that a FederatedBeans

component could use to report upon the status of the backup; and,

• since the CIM model includes objects for the management of tape libraries, the

management of the tape pools could be integrated with the backup application to

ensure correct rotation of tapes, and the observation of the correct policy rules for the

keeping of tapes in the rotation.

Stakeholder---4he Customer

The CIO: the Jiro technology, the FederatedBeans components, and the basic services

define a baseline against which management and data applications can be measured. The

CIO is assured that an Jiro-enabled product meets basic requirements for interoperability

with other applications. Further certainty may be obtained by insisting on management

applications that have been Jiro certified, and by ensuring that the producer has

participated in interoperability tests with other products.

Over a period, by invoking careful acquisition policies, a CIO and the IT Department

may build a more fully integrated set of management capabilities by looking for Jiro-

compliant applications.

The System Administrator: From the point of view of the system administrator, the

acquisition of Jiro-based applications, and value-based FederatedBeans components:

• minimizes barriers for providing management of many hardware/OS platforms;

eliminates or minimizes platform porting, enables solution developers to support

platforms that may have a lower priority in the company's target market;

• provides broad device support: any device with a WBEM provider or supporting

SNMP can be managed through a FederatedBeans component; and the support of

private interfaces allows management of non-WBEM and non-SNMP devices;

• enables a finer application granularity: components allow users to pick and choose

Jiro-enabled applications and 3rd party FederatedBeans solutions rather than others;

• brings management capability from a storage-specific console or an enterprise

management console: The Jiro 3-tier architecture separates management logic from
user interface and avoids mandating particular user interface solutions.

• developing through component design and assembly allow the user to take more

ownership of policy and automation.
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3 RelatedWork
The following are possible choices,among others, to implementa secondtier in a
managementsystem:
• Enterprise JavaBeans TM (EJB TM) [20] component architecture is designed to be the

most capable technology for second tier "business logic," providing single threads of

logic execution that normally originate in the client tier, and transactions that are

usually with respect to a single third tier database. The FederatedBeans model is

suited to the creation of management solutions as it more naturally supports thread

concurrency, makes specific provision for the support of a CIM-based third tier; and

has the ability to support arbitrary transactions with respect to that third tier;

• WBEM, which is the preferred choice for the third tier, could also to provide an

object model and schema for the second tier. Further work would be required, as the

CIM Schema would have to be endowed with the appropriate new objects or

extensions. Even then, it would remain a "double technology" for implementation,

i.e., one technology for the definition of the objects, and another (platform dependent)

for the definition of methods. To be completely capable for utilization in the second

tier, WBEM would also need to be given a component model that addresses the same

issues as listed for the FederatedBeans model;

• CORBA [21] appears to be an appropriate choice, but has had limited use in the

implementation of management applications. Its success in business logic does not

argue for success in the management arena. CORBA objects are still platform-

specific, thus creating a "porting" problem, even though there are no impediments to
inter-platform communication.

It must be feasible to choose the first and second tiers independently. In order for there be

a choice, the second and third tier technologies must decoupled by an appropriate choice

of interfaces between the tiers. Jiro technology appears to be the appropriate choice.

4 Future Work

By the time this paper is published, a reference implementation of the Jiro technology,

implementing the FMA, should be publicly available. It is also intended that by that time

a number of the original Expert Group participants will have also applied the

FederatedBeans concept to the production of a useful number of components, that the

interoperability of these components will have been demonstrated, and their usefulness in

creating management solutions be in the course of evaluation.

As further FederatedBeans components are developed, some will be found pervasive

enough to be "basic" in the sense of the FMA Specification. At that time, the Expert

Group could reconvene to integrate candidates into revisions of the FMA Specification.

5 Conclusions

The development of an accepted and useful architecture for the building of management

applications marks an important turning point in the arena of storage management. The

FMA, and Jiro technology represent both merging and emerging developments making

further advance possible. The realization of this architecture in real products is the next
major objective.

409



Thanks

The authors wish to thank, particularly, the members of the FMA Expert Group for the

efforts that went into creating, editing, and revising the FMA Specification. It is from this

foundation that the Jiro technology has developed into a viable storage management
solution. The authors also want to thank the session chair for the efforts he has marshaled,

including the anonymous reviewers, to correct and revise this paper. As always, any final

errors and omissions are the responsibility of the authors.

References

[1] Shiers, Jamie: "Massive-Scale Data Management using Standards-Based

Solutions," Proc. 16th IEEE Syrup. Mass Storage, San Diego, CA, IEEE Computer

Society Press (March, 1999).

[2] Coyne, R.A.; and Hulen, H.: "An Introduction to the Mass Storage System

Reference Model, Version 5," Proc. 12th IEEE Syrup. Mass Storage, Monterey, CA,

IEEE Computer Society Press (April, 1993).

[3] Gosling, James; Joy, Bill; and Steele, Guy: The Java TM Language Specification.

Addison-Wesley, Reading, Massachusetts. ISBN 0-201-63451-1 (1996)

[4] Edwards, W. Keith: Core Jini TM. Prentice Hall PTR, Upper Saddle River, New

Jersey. ISBN 0-13-0114469-X (1999).

[5] FMA Expert Group: Federated Management Architecture Specification, Draft

Version 1.0. Sun Microsystems, Inc., http://www.jiro.org/specs.html. (January, 2000).

[6] Sun Microsystems, Inc: The Java rUCommunity Process. Sun Microsystems,

Inc., http://java.sun.com/aboutJava/communityprocess/. (May, 1999).

[7] IEEE Storage Systems Standards Working Group: Mass Storage System

Reference Model, Version 5. http://ssswg.org/public_documents/MSSRM/V5toc.html

(September, 1995).

[8] Technical Development Committee: The CIM Specification, Version 2.2.

http://www.dmtf.org/spec/cims.html, Distributed Management Task Force, (June, 1999).

[9] DMTF XML Working Group: CIM XML Mapping, Version 2.0.

http://www.dmtf.org/XML/CIM_XML_Mapping20.htm, Distributed Management Task

Force, (June, 1999).

[10] DMTF XML Working Group: The CIM HTTP Mapping, Version 1.0.

http://www.dmtf.org/XML/CIM_HTTP_Mapping 10.htm, Distributed Management Task

Force, (June, 1999).

[ 11] Technical Development Committee: The WBEM Initiative.

http://www.dmtf.org/wbem/, Distributed Management Task Force, (1999).

[12] Englander, Robert: Developing Java Beans. O'Reilly and Associates, California.

ISBN 1-56592-289-1 (1997).

[ 13] Gamma, Erich; Helm, Richard; Johnson, Ralph; and Vlissides, John: Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,

Reading, Massachusetts. ISBN 0-201-63361-2 (1994).

[ 14] Lindholm, Tim; and Yellin, Frank: The Java TM Virtual Machine Specification.

Addison-Wesley, Reading, Massachusetts. ISBN 0-201-63452-X (1996).

[ 15] Bernstein, Philip A.; and Newcomer, Eric: Transaction Processing. Morgan

Kauffman Publisher, Inc, San Francisco, California. ISBN 1-55860-415-4 (1997).

410



[16] Oaks,Scott:Java TM Security. O'Reilly and Associates, Sebastopol, California.
ISBN 1-56592-403-7 (1998).

[17] Haddon, Bruce K. and Connor, William H.: "Software for Distributed Monitor

Concurrency Control," Patent Pending, U.S. Patent and Trademark Office (November,
1998)

[18] Haddon, Bruce K.: Machine-lndependent Real-time Operating System

Interfaces. Ph.D. Thesis, Department of Computer and Electrical Engineering,
University of Colorado, Boulder (1979).

[ 19] Eddon, Guy; and Eddon, Henry: Inside Distributed COM. Microsoft Press,

Washington. ISBN 1-57321-849-X (1998).

[20] Valesky, Thomas B.: Enterprise JavaBeans TM. Addison Wesley Longman, Inc.,

Massachusetts. ISBN 0-201-60446-9 (1999).

[21] Joint Revised Submission: CORBA Components. Object Management Group,
Inc. (1999)

Copyright © 2000 Sun Microsystems, Inc. All rights reserved. No part of this work covered by copyright may be

reproduced in any form or by any means without prior written permission of Sun Microsystems, Inc., except that

NASA is permitted to make a reasonable number of copies, may reprint, or publish this work on paper, CD-ROM, or

on the web, only in its entirety and only for non-commercial purposes. In addition, any person or entity who obtains a

copy through NASA may make one copy of the work for personal or non-commercial use at no charge, provided that
each copy, reprint or publication of the article on paper, CD-ROM or on the Web, or in any other form or means, must

duplicate the work in its entirety, and must include this notice, the Restricted Rights Legend, and the disclaimer and
notice below.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the U.S. government is subject to restrictions as

set forth in subparagraph (c)(I)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-

703 (October 1988) and FAR 52.227-19 (June 1987).

THIS PAPER AND ITS CONTENTS ARE PROVIDED WITHOUT ANY WARRANTIES, INCLUDING ANY

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-

INFRINGEMENT. IN NO EVENT WILL SUN BE LIABLE FOR ANY CLAIMS FOR DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO THE
USE OF THIS PAPER OR ITS CONTENTS.

Sun, Sun Microsystems, the Sun logo, Java, Jini, Jiro, JVM, JavaBeans, FederatedBeans, Enterprise JavaBeans, and

EJB, are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

The technology and products described in this paper may be protected by one or more U.S. patents, foreign patents,
and/or pending applications.

411





A blueprint for Representation Information in the OAIS model

David Holdsworth, Derek M. Sergeant

The Cedars Project (ISS department)

The University of Leeds

LS2 9JT, UK

D.Holdsworth@leeds.ac.uk, D.M.Sergeant@leeds.ac.uk

tel +44-113-233-5402, +44-113-233-5698

fax +44-113-233-5411

Abstract

The CEDARS* project within UK academia seeks to develop a demonstrator system to

recommend techniques for long-term storage of digital data primarily within the research

library context. The intention is that this demonstrator will conform to (the spirit of) the

OAIS (Open Archival Information System) model [1], and put some flesh on the model's

generic bones. This paper describes our current scheme for representation information.

1 Overview

We are firmly of the opinion that data outlives the medium upon which it is recorded.

Technology obsolescence is a bigger threat to data retention than is media drop-out. For

example, failure to read a reel of 7-track magnetic tape is more likely to be due to non-

availability of the tape drive than drop-out on the medium.

However, a bit-stream can be preserved indefinitely [2,3].

Our blueprint provides for transforming of a digital object into a bit-stream preserved

indefinitely, and for subsequent access to the intellectual content of the original digital

object. We believe that the approach is valid for plain ASCII (American Standard Code

for Information Interchange) text files, or for emulation of preserved computer systems,
and for a whole host of situations in between.

2 Ingest

We propose a 2-stage process of ingest which has the steps:

• First step is separation of the data from the medium

• Second step is to map to a bit-stream (i.e. make the data-object part of the AIP).

• Followed by preservation of the bit-stream (i.e. keep the AIP in an archival store).

The form of the data between steps 1 and 2 is the underlying abstract form (UAF - see

below). These two steps are the parts of ingest process that involve the data itself. We

find that the UAF concept enables us to structure the representation information, and to

build representation nets which facilitate evolution with emerging technology.

This paper does not address the other meta-data aspects that must also comprise part of
the ingest process.

* CURL (Consortium of University Research Libraries) exemplars in digital archives
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We are concerned here with generating the representation information for inclusion

within the content information component of an archive information package (AIP) (see

fig 1 and fig 2 taken from the OAIS model). Each component of the AIP is packaged in a

formalism appropriate to the data being stored, using an ASN.1 (Abstract Syntax

Notation) wrapper to package the components together as an AIP:

Wrapper [ Packaging Representation

/ Information|_ Information |
PrimaryObjectDigital

Content Information

Figure 3. The package structure of an AIP
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The packaging information is a CRID (Cedars Reference ID) (discussed later in this

paper) which provides a version number for the internal structure of the AlP and

references a specialised AlP whose purpose is to document the data format description

(DFD) of each component. For example this latter AlP would provide an XML DTD for

the PDI (Preservation Description Information) component, and a specification of the

Java Properties used in the RI component.

The purpose of the representation information (RI) is to enable access to the preserved

digital object in a meaningful way. Java property files are a simple formalism to store the

information needed to do this. Their use integrates well with our demonstrator software

written in Java, and yet the format is simple enough to admit of a brief description. As the

Cedars' demonstrator evolves the RI will be migrated into an XML formalism which

provides hierarchical structuring and also integrates well with our Java implementation.

Enabling meaningful access to the preserved object includes such processes as recreating

the experience of viewing (or even interacting with) the original, or analysing it for a

concordance. For particularly complex objects, emulation is likely to be involved.

At its most basic, the RI enables a reversal of the ingest process to deliver a copy of the

original. This observation provides a useful minimum criterion for testing the

acceptability of any scheme for RI and also for the RI of any particular information

object. If this test is performed alongside the ingest process then a critical comparison of

the copy produced by ingest reversal and the original can be made. This suggests that the

standards for ingest should require that:

The representation information must allow the recreation of the significant properties

of the original digital object, if one assumes that appropriate hardware technology is
available.

4 Significant Properties

Whoever takes the decision that a particular digital object should be preserved will have

to decide what properties are to be regarded as significant. The submission agreement

could usefully specify a list of significant properties. In a library context, the decision to

preserve is taken by the collection management activity [4,5,6].

5 Underlying Abstract Form

We use the term underlying abstract form (UAF) to encapsulate the recognition that the

data has an existence and a content separate from the medium upon which it is written.

This underlying abstract form contains all the significant properties of the data, and is

independent of the medium upon which the data is written. Any given digital object is

likely to have a number of possible UAFs. Choice of the UAF for preservation is part of

the ingest process (either in the Receive Submission box or the Quality Assurance box in

fig 4 taken from the OAIS model). (There may be some difficulties here for the case of

multimedia data objects, but we put them aside for the moment, so as better to develop
the concept.)

415



l

n

i [Updated] SIt

$

t ir

a Receipt

!! _?confirmation

on [ Producer

Audit report

Format & doc. stds.

I Report
request

i °ataIDescriptive Management

lnfo. Response Descriptive info._ IRequest

AIP, I Storage Archival
confirmation Storage

Figure 4. OAIS fig4-2: Functions of Ingest

Some examples:

• Many CD's actually contain a file system, and successful operation only relies on

that file system. Copying such a file system onto a partition on a hard disk

delivers an equivalent working representation. File placement is unimportant.

Thus the file system is a viable underlying abstract form.

• In some cases it is only important to have a file tree, and the CD contents can be

copied into a directory within an existing file system.

• Data held in a relational data-base can equally well reside in a variety of data-base

engines, and still deliver its original content. The comma-separated files holding

the content can be used as a system-independent representation of that content.

• A plain text document consisting of lines of characters drawn from the ASCII

character set is meaningful in a variety of environments. Internet RFC's (Request

For Comments) are typical of such documents.

Access involves realising the UAF on the technology appropriate to the time of access in

such a way that the desired form of access (which may not necessarily be viewing) can be

achieved. If we take the simple example of the Internet RFC, the same UAF is stored

slightly differently on a UNIX system from a PC file system, because of the different
conventions for line termination. However, the UAF of lines of text is the same in each

case, and the UNIX cat: command clearly displays the same information as the PC's

NOTEPAD. The same lines of text represented in an EBCDIC (Extended Binary Coded

Decimal Interchange Code) system would be represented very differently in terms of

binary digits. The same data would be displayed in the same form. The underlying
abstraction of lines of text is the same, but the different platforms represent the

information differently internally.

Fig 5 illustrates the way in which we perceive data being preserved and accessed. The

original object is identified as having a particular underlying abstract form, and this is

used in the creation of a bit-stream for indefinite preservation. Software access to the
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information will be via some API (Application Programming Interface), which may go

through several layers of abstraction before mapping onto the original data via its

underlying abstract form. Two such layers of intermediate abstraction are illustrated by
the empty ovals in fig 5.

-A

C

E

S

Figure 5. An Access path to the Preserved Data Object

6 Role of Representation Information

Clearly, the primary (sole?) purpose of RI is to enable access, i.e. to provide the "road

map" for selection of a route such as depicted in fig 5. With this model of access via the
UAF, the RI has two distinct roles.

1. enable generation of the UAF from the dissemination information package (DIP)

(roughly equivalent to the AIP for those not familiar with the OAIS model), and

2. enable exploitation of the UAF on an available (and suitable) platform.

By platform we mean some computational facility which is capable of storing a

representation of the UAF, and offers capabilities for running necessary software for

accessing the intellectual content of the data in the desired manner.

A digital object may be configured for a variety of platforms (e.g. Many CD's will work

with both MAC and PC), and the chosen UAF may well encapsulate this. It is up to

collection managers to decide whether it is a significant property of the original digital

object. The technology should give them that option.

7 Specifics concerning RI and UAFs

Fig 6 (taken from the OAIS model) splits the RI into 2 components corresponding with

the division given above:

• Structure Information (StI) provides the information necessary for generating

the UAF from the bit-stream that is the preserved data object.

Semantic Information (SeI) which is usage information from the original

release, modified to remove media dependency. There may be multiple entries in

this, corresponding to multiple platforms.
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The UAF providesthe formalism with which the horizontal line in fig 6 adds

meaning.
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Figure 6. OAIS fig4-10: Representation Information Object

We gave examples of possible UAFs above. For many digital objects there is a set of

possible abstract forms, and the choice of one that might be said to be underlying is not

always trivial.

We propose a policy of choosing the highest level abstraction that discards no significant

information. In a library context, the issue of what constitutes significant information is a

collection management issue. The following examples illustrate the issue:

• A single PDF file held on a diskette can be considered as a file system, a file tree,

a byte-stream, or a PDF file. It is our contention that the PDF file is the most

useful UAF, as there is real prospect of finding several platforms that can make

sense of it for decades to come.

• A set of PDF files might be treated as a set of objects, each of which has the

above UAF, or we can decide that a set of PDF files is a valid UAF.

• A set of PDF files with a plain text READ.ME file, and perhaps a copy of the

Acrobat reader on a CD raises more questions. The UAF is a file tree, but it is

useful to include in the RI the information that a set of PDF files is incorporated

within that file tree.

In introducing the notion of a valid UAF we imply that the management of the archive

keeps track of all UAFs -- see below on Grdel Ends.

8 Platforms

A platform is thought of as a computational facility, though in extreme cases, it may be a

human being reading plain text.

Dissemination involves delivering the UAF (or possibly something derived from it) in a

form suitable for storage on the chosen platform. Better still, is the ability not only to

store the UAF, but actually to render it (audio-)visually or to analyse it. The

representation information in the dissemination package (RI in the DIP) provides access

software, or information on which access software to use. Our proposals for management

of Grdel ends (see below) address the issues of hardware and soft-ware obsolescence

(referred to in OAIS section 4.2.1.3.2).
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A platform might be:

• Browser

• SQL database

• PC file system

• application software (e.g. WordView)
• Khoros

• HDF software

• a very simple text viewer such as NOTEPAD

• or one of an ever growing number of options.

The archive information package (AIP) must hold in its RI all the information necessary
to produce platform specific RI for inclusion in DIPs.

9 Names for Archived Objects

For the purposes of the CEDARS demonstrator we are allocating each object a Cedars

Reference ID (or CRID). The CRIDs are used to form the links in the representation nets.

We expect that a CRID will eventually be a URN (Unique Resource Name) [7,8], but at

the present we have a simple name resolving technology using a simple server bound

onto the socket port "crid:6386". The machine name "crid" can be translated locally by

the hosts file, or by the local DNS (Domain Name Server), so that the locations of objects

need not be fixed, and local copies can be accessed preferentially.

The OAIS AIP-id is probably the tail end of our expected URN. Our CRID has a

component indicating the participating member of the archive federation, followed by an
identifier allocated by the archive that creates the AIP.

More detail of the architecture for the CEDARS archive is given elsewhere [9].

In summary, the architecture has a number of archive stores, each of which is fronted by

a gateway with a Web interface. The gateway organises access to meta-data, and

organises delivery of preserved objects, subject to the satisfaction of access rights. All

reference to a preserved object goes via a CRID name-server which then redirects the

request to the appropriate gateway. This structure allows the evolution over time, as

preserved objects may well be transfered to new systems, getting a new URL while
retaining their original CRID.

In Fig 7 the numbered lines show the stages involved in the retrieval of an object, from
resource discovery to delivery. The first stage shows the Web interaction between the

search engine and the end-user's Web browser. Then an HTTP call is sent to the name-

server (stage 2) where the object's CRID is translated into the URL for the gateway of the

desired object (this redirection occurs very quickly). The end-user then interacts with the

gateway using their Web browser (stage 3). Once the manifestation and platform for

delivery are selected the gateway responds to the end-user (stage 4), these could be

instruction to use FTP, or await a package delivered by ordinary mail, it could also be a

continued Web interaction with the browser providing the object-specific access facility.
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The final stage is the delivery of the digital object (stage 5 shows the process by which

the object, in the form of a DIP, is delivered and interpreted by the end-user). The

remaining (un-numbered) lines show management data paths, especially with regard to

meta-data.

Management
Functions

Archive

Store

Gateway

Nameserver

Member Site A

Stage _/

, J

"Stage 2

Archive HStore

/_ Gateway

/_ Nameserver

Search [ ] Web ""

Engine [ Stage l _ Web [ _ LotsUsersof

 rowserI

Site B

k \ Stage 5

Stage 4\\ _

I Object specific
Access facility

I e.g. FTP

Figure 7. The Cedars Archive Architecture

Archive

Store

Gateway

Nameserver

Site C

Each member of the archive federation is seen as running a name-server, gateway and

archive store, each with its management functions and databases (only shown for Site A

for brevity). In fig 7 a three member federation is shown. Search engines may be

independent or linked with the archive management.

10 Representation Nets
We are building a system of representation nets, and have implemented a tool that can be

used for browsing such a net. In this section we use our own acronyms so that anyone

who wishes to challenge our assertions of OAIS compliance has a language in which to

do so.

Our representation nets involve 3 main types of node:

• Data Format Definitions DFD which define a data format, which is sometimes

actual bytes and sometimes a more abstract entity such as an API. There is also a

DFD for describing a real magnetic tape, or a human being interacting with a

desktop WIMP interface.

• Render/Analyse Engines RAE take in data in one format, and deliver it in

another. Deliver is interpreted very loosely, in that the output may take any of the

forms described in a DFD.
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Platforms are typically computer systems, usually with storage, and are necessary

for the execution of RAEs. They must contain or have access to storage suitable
for storing the data that they are processing.

A Data Format Definition includes 2 lists of Render�Analyse Engines. One list

enumerates those RAEs capable of accepting the defined format as input, and of

delivering another format as output. The other list enumerates those RAEs capable of

delivering the defined format as output.

An Underlying Abstract Form is a specialisation of DFD that includes RAEs that can

accept the raw byte-stream of the primary data object as input and deliver the defined

format as output.

Example:

If a filesystem has been preserved as a tar file, it could be described as having a

UAF of a filetree. Its UAF object could include a link to an RAE describing

UNIX tar for generation of the UAF on a UNIX filesystem, and also an RAE

describing WinZIP for generation of the UAF on a PC filesystem.

For any AIP the RI has two components at the top level, StI and SeI.

StI, the structure information, is concerned with describing (and especially regenerating)
the UAF and consists of:

• CRID of the UAF object (i.e. a DFD including RAEs for building the UAF from

the preserved data object).

• any parameters needed by the UAF object

SeI, the semantic information, is concerned with interpreting the UAF, and consists of a

list of CRIDs of render�analyse engines (RAEs). With each CRID is held the parameter

values needed by the particular RAE. Each RAE contains information (often in the form

of software) for some particular processing of this AIP. In particular, the RAE includes a

reference to the platform upon which it is to operate.

In some (many?) cases Se! may be null, and rely entirely on rendering facilities accessed

via the UAF description. This depends on the extent to which the UAF is defined as a

high level abstraction.

If we have a multimedia object, such as postulated in fig 8 taken from section 4.2.1.3.2

the OAIS model, we see the multimedia mapping rules as combination of the unpacking

of the file-tree, and the association of file extensions with different data formats, which

are themselves the references to representation information. The multimedia operations

and relationships describe how to combine the different elements of the multimedia

object to produce the intended rendition. A more formal example is given in the

appendix.
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We see a value in attaching rendering capability at the data format level, because new

facilities can be recorded at the data format level, and immediately become relevant to

many preserved objects. This is particularly important in regard to following

technological evolution. Our approach, means that the references to representation

information of figure 9 (duplicated from the OAIS model), may be achieved via an

indirection through an RAE with the capability to process the particular format.
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Figure 9. OAIS fig4-11: Representation Network Object Model

11 True MultiMedia Objects
A CD with video and audio tracks, using the specific properties of a CD drive poses

significant problems. The UAF would appear to be the actual spiral stream of bits on the

CD, and the long term prospects for rendition seem to involve driver software that
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emulatesthis streamof bits on someothermedium.It maybe technicallylaborious,but
the issuedoesnot invalidateourapproach.

12 G6del Ends

As G6del's theorem tells us, any logical system has to be incomplete. There must be
truths which the system cannot itself deduce.

The representation nets must have ends corresponding to formats that are understood

without recourse to information in the archive, e.g. plain text using the ASCII character

set, the Posix API. All references to such a format must be via the same CRID, and the

management of the archive must have an inventory of such objects. As a format becomes

obsolete, the object referenced by the CRID can then be updated to permit understanding
of the obsolete format in terms of current practice.

In our scheme, the platforms upon which the render�analyse engines (RAEs) run are the

things that become obsolete as a result of the march of technology. A data format
becomes less and less accessible as the platforms of the relevant RAEs become obsolete.

As a long stop there is the documentation of the format, which we might consider as a

special RAE whose platform is human (e.g. a programmer). In the case of proprietary
formats we may not have this information.

Thus the platforms (e.g. Win32) are the things that are outside the archive, and as such

are the true G6del ends of the system. As Jeff Rothenberg [10] has pointed out, emulation

of the original computational environment, gives the very best hope for recreation of the

experience of a preserved digital object. This can be a laborious process (see Emulation

below), and technology shifts may render a true recreation impossible. It is quite possible

that the technology of the time actually limited the access to the intellectual content, and

a far better access to archived material can be achieved by implementing viewers that
operate on the obsolete format directly.

We therefore conclude that the archive administration keeps an inventory of the platforms

which occur in the archive's representation nets, and that the G6del end platforms each
contain the IDs of the data formats that rely on that platform. The administration needs to

keep this inventory under review, and to be open to the possibility of adding extra RAEs

to data format objects in order to maintain accessibility.

Some platforms may not be true ends, as they may have been realised by emulations. An

emulation is a type of RAE, and as such depends on a platform. This gives us a facility
for representing a chain of emulations on the Rothenberg model.

13 Proprietary Formats

Any archive has an understandable reticence about keeping data which is held in

undocumented formats. However, reticence must not be seen as a synonym for rejection.

A current proprietary format may not have any publicly available documentation, but

may have readily available render facilities (e.g. WordView)on current platforms. As
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obsolescencethreatens,thecommercialvalueof the documentation is minimal, and there

is real prospect of adding it in later.

For instance, anti-virus companies have already reverse engineered the specifications of

Microsoft formats.

14 Emulation v Format Conversion

We are led to the view that emulation does not always give the most useful rendering of

preserved information.

We have looked in particular at two early systems:

• GEORGE3, a mainframe system common in the UK in the 1970s, running on ICL

1900 series machines, and

• The BBC-Micro computer, produced by Acorn and prevalent in UK schools and

colleges in the 1980s

Several emulators for the BBC-micro are available over the Web, and provide a good

platform for running much of the educational software that exploited the machine's
facilities. The machine also had an early word processor (called VIEW) in which some

quite large documents were produced (included the system's manual). Although one can
run VIEW in emulation, a better access to the information would be achieved if it were to

be converted to a more modern word-processor format.

Emulation of the GEORGE3 system is of a different character. The 1900 machine was

character oriented with a 24-bit word. The system had a hierarchical filestore with

integral management of a tape library. Our emulation of the system creates quite a lot of

the feel of operating the real machine (although the modern PC screen fails to generate

the ambience of the teletype operator's console, or the buzz of the 2000 cards-per-minute

reader). Our CEDARS preservation of this system is a composite object, and holds its

tape library. It can also function as a platform for other tapes from that system.

The source text of GEORGE3 was held on 2 magnetic tapes. In the real system this was a

cumbersome object, and searching it was rarely a quick process. However, the tape

format is not very complex, and a program to render these tapes as an ASCII file was

easily written, and forms a much more convenient RAE for these tapes than does the

GEORGE3 emulation platform.

On the other hand, the ICL 1900 was the platform for the world's first Algol68 compiler,

and access to the intellectual content of this is at its best on the emulated 1900 platform.

We therefore argue that access to the intellectual content should take place at an

appropriately chosen level of abstraction. Where emulation is appropriate, it is a powerful

technique, with great potential for historical reconstruction and nostalgia. Elvis Presley

on CD sounds better than on a 1956 78rpm wind-up gramophone.
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We are trying to gaugethe effectivenessof our preservationtechniques,by pretending
that they wereavailable15yearsago,and thenusingthemon the materialof that time.
Providing accessto the intellectual content of this material on today's hardwareis
enablingusto assessthemeritsof differentemulationapproaches.

15 Emulation Practicalities

The GEORGE3 operating system functions at different levels.

• The underlying hardware, where different members of the range have different
interfaces to peripherals

• upon which is run the EXECUTIVE program, which implements

• the GEORGE3 executive interface with a uniform set of system calls for driving
peripheral devices, upon which is run

• GEORGE3 itself which controls all the resources and provides various facilities

for end users and operators, and implements

• the applications program interface (API), in which there are file access facilities

and other features used by

• applications programs -- the ultimate raison d'dtre of the computer system.

Our emulation has taken place at the interface between GEORGE3 and EXECUTIVE,

although some limited emulation has also taken place at the API level.

In terms of today's PC material, it may well be that the best future access to intellectual

content is achieved by emulation at the BIOS level, whereas the Windows API may be a
better level of emulation in other cases. We doubt that emulation of the raw hardware

under the BIOS will ever be valuable, beyond study of the BIOSes themselves.

16 Preservation Format

The above discussion of emulation as opposed to format conversion raises the question of

what format to use for long-term preservation. Our approach is to preserve something

close to the original digital object (which we have called the underlying abstract form),

and to have representation information that gives access to the ability to convert

yesterday's obsolete format into whatever form is appropriate for the required form of
access.

We attempt not to pre-judge the nature of future accesses, and believe that retention of

original data maximises the options open to future researchers. We believe that our

benchmark of recreation in principle of the significant properties of the original
addresses this need (see section 3 above).

We readily accept that this criterion is not the same as recreation of the original, but only

its significant properties. The discipline of deciding at ingest time what these properties

are provides a focus for selecting the preservation format, and aids in the generation of
really meaningful representation information.
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This accordswell with ourdecisionin 1991thatin preservingthedatafrom VM/CMS on
ourAmdahl systemwe shouldretainthe datain EBCDICandprovidea converterutility,
ratherthanconvertto ASCII aswe movedontoUNIX andNetWareplatforms.We can
now renderthe full EBCDIC characterset usingUNICODE,an optionthat would have
beenlostby anyconversionto ASCII.

17 Conclusion
We believe that we arewell on the way to a functioning demonstrator,adheringto the
overall architectureof the OAIS model, and with useful examplematerial showing
possibledirectionsfor RepresentationInformationwithin suchanarchive.

Key to our approachis the identification of the significantpropertiesand the correct
underlying abstractform. We contendthat representationinformation should contain
referenceto appropriaterenderingsoRware.On the other hand we suspectthat data
whose format is only describedtextually may well be ignored by future generations
becauseof the labourinvolvedin achievingmeaningfulaccessto its intellectualcontent.
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Appendix

Here is an example of one of our AIPs [13], with the data object holding a PDF book and
a colour GIF image of the original front cover. This AlP exists in our archive store and

also has an access page on the gateway. The PDI component of the AlP (see fig 3 in the

main text) is only a title and the object's CRID, which is the minimum necessary for our

exploration of representation nets. The CRIDs are the arcs of the representation net.

The contents of Packaging Information are not shown.

CRID=01 trav StI='l'31 fset PDO

Title=Tigers SeI={ $51pdfr(tiger.pdf),'l'52gifr(cover.gif),_53webb } BitFile001=tiger.zip

The structure information (StI) in the RI is referenced indirectly (i.e. via a CRID for) and

is an AIP which describes the data format (in this case a set of files) and facilities for

interpreting it. The semantic information (SeI) in the RI is a list of CRIDs for RAEs that

can give access to the intellectual content.

The StI has the following specialised fields in its data object: UAF, a description of the

underlying abstract form; TOI, a transformer object instance (a special RAE which can

generate the UAF from the preserved byte-stream); RAE, a list of render analyse engines

that can generate other representations (or provide APIs).

PDI CRID=31 fset ] Rl Sti=$32uaf pTitle=FileSetUAF SeI={ "]'50gate,$54asciir }

PDO UAF='I'71fset RAE='l'80flist

TOI= {1"8!pczip,l"82maczip,l"83unixzip }

The representation net node ( l"31fset ) conveying information on how to deal with the

UAF of the "Tigers" AlP also carries RI to interpret its own digital object component.

The object referenced by "l'32uafp conveys this information, and only deals with the UAF

specialisation of a DFD (see section 10). Although two choices are provided to render our

fileset AlP in the SeI, while the Cedars gateway ( "l'50gate ) can trace through the internal

indirections of the representation net and present an overall decision framework, the

ASCII renderer ( 1"54asciir ) can only display the Java property file in the PDO verbatim.
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PDl CRID=71 fset Rl StI=']'33asti

Title=filesetDesc SeI={ "l'54asciir }

PDtCRID=81 pczip

Title=PCunzip

I PDO
Fileset_description.txt

RI Sti=,],34raep ] PDOplatform=']'91 pc engine=winzip.exe

Sel={ 1"50gate,l"54asciir } I Params=extract OutF°rm=$72ftree

Examining the contents of the fileset AIP ( 1"3 If set ) the UAF field references an AIP

containing an ASCII description of a fileset ( 1"7 l fset ), whose RI shows how to render

the ASCII file. The RAE field provides access to a tool ( "l'80flist ) that displays the

structure of the UAF, in this case by listing the filenames (tiger.pdf and cover.gif) which

make up the set. The TOI list field provides methods for transforming the content file of

the "Tigers" AlP into these two files on different computational platforms. Only the RAE

for the PC platform has been shown (the others are similar). This RAE ( _81pczip ) has a

dedicated StI (similar to "l'32uafp). "l'91pc references an AlP containing an ASCII

description of the PC platform, and "['72flree is the DFD for a filetree.

I PDI CitP_ID=u3a2f_aAfI_F

PDI

R! Sti=1,32uafp I PDO UAF='l'73uafpf RAE='l'80flist ISel={ t50gate,'l'54asciir } TOI = {'l'84asciicp }

PDI CRID=5 lpdfr RI Sti=,],35rael ]

Title=PDFreader Sel ={ 1"50gate,1"54asciir } I
PDO

RI

CRiD=87pcpdfV StI='l'34raep

Title=pcPDFviewer SeI={ "l'50gate,'l'54asciir }

InForm='['74pdf

RAE={ "['87pcpdfV,'l'88macpdfV }

P%latform='l'91 pc engine=acroread.exe

Params=none OutForm=l"75gui

These last three nodes illustrate some important features of our representation net.

"['32uafp is a G6del end for UAF nodes, 1"87pcpdfV is a G6del end for the rendering

platform. We show PDF as a platform ( "]'51pdfr ), which is one of a number of choices

offered in section 8. As the G6del end platforms become obsolete this formalism offers

the choice of adding PDF rendering capability on new platforms or emulation of the

obsolete platform upon which the existing rendering software will run. The parameter,

shown in brackets in "l'01trav, is passed through to the software engine of "l'87pcpdfV via

the l"51pdfr. If desired, (tiger.pdf) could be rendered via "l'88macpdfV instead. All new

rendering software for pdf is added to the list of RAEs in 1"51 pdfr.
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Abstract

Approaching its tenth anniversary, the IEEE Storage System Standards effort is in the

process of balloting Media Management System (MMS) standards. These represent the

first standards for the IEEE Storage System Standards Working Group (SSSWG), and the

first storage system standards for the world. In the early years, SSSWG produced the

Mass Storage System Reference Model (MSSRM), directly influencing the design of
many successful commercial products and the MMS standards themselves.

The IEEE Storage System Standards Committee (SSSC), sponsor of SSSWG, will work

in the coming year to complete work on the suite of MMS standards, and begin work on

new projects. New projects for SSSC in 2000 include tape standards, tape recommended

practice, and a project to develop a Guide for Storage System Design. Existing and new

collaborations with other groups developing storage-related standards will be fostered in
2000.

The SSSC is driven by the urgent need for interoperable storage system software, and

storage systems that are highly scalable and functional in distributed, heterogeneous
environments.

1 Background

1.1 In the Beginning

The IEEE Storage System Standards effort began unofficially with individual discussions

in the 1980s to standardize and guide development of hierarchical storage management

systems. In the summer of 1990, the IEEE approved the SSSWG charter and the first

(and for a long time the only) project that resulted in the un-balloted MSSRM.

Development of the MSSRM progressed through several versions until the last revision,

version 5, was approved by an internal SSSWG vote in September 1994.

1.2 SSSWG Charter

The IEEE Storage System Standards Committee is chartered to model generic mass

storage systems, and based on such modeling, to develop widely accepted, readily
implemented standards with minimal licensing requirements.

In addition to working on standards, the SSSWG may develop recommended practices

and guides. The SSSWG is primarily concerned with Distributed Storage System Design,
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andtheSSSWG,without favor, includesStorageSystemsof everyscalein its studies.An
object-orientedapproachis desiredin all SSSWGefforts, and net-attachedstorageis
intrinsic to its model.

SSSWGmust also considerpromising emergingtechnologiesin its modeling, even
thoughstandardsfor partsof themodelmaynot be immediatelypracticalasaresult.The
modelmayremainpartlyanabstractionexpressingdesirablefeatures,andthe associated
standardsexpressingpracticalrequirementsrelatingto currenttechnologies.

The purposeof thesestandardsis to promote use of best technologiesresulting in
interoperable,fully-scalablesystemspermittingreadyaccessof information throughout
distributed, secure, heterogeneous net-attached storage systems.

1.3 MSSRM

Figure 1. Components of the MSSRM

The IEEE Mass Storage System Reference Model (MSSRM), although not balloted as a

standard, has been highly successful in service as a guide for development of many well-

known storage systems and components of systems, commercially and otherwise, in use

today.
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Along the way, theMSSRMhasbeenreviseda numberof times, and renamed the IEEE

Reference Model for Open Storage Systems Interconnection (OSSI). Version 5 of the

OSSI Reference Model was approved for public release in September 1994.

There were seven IEEE-approved Project Authorization Requests (PARs) relating to the
MSSRM -- one PAR for the model itself and six for modules of the MSSRM

representing sets of services identified by the SSSWG as those essential to the

composition of viable storage systems. The PAR for the MSSRM has been revised and

renewed as a different project, and these six PARs, which represent the modules into

which the MSSRM was partitioned, are withdrawn:

SOID (1244.1) Storage Object Identifier

PVL (1244.2) Physical Volume Library

PVR (1244.3) Physical Volume Repository

MVR (1244.4) Data Mover

MGT (1244.5) Storage System Management

VSS (1244.6) Virtual Storage Service

In addition, other associated documents were created, such as the "Virtual Storage
Architecture Guide"[ 1].

The Reference Model was intended to provide a framework for the coordination of

standards development for storage systems interconnection and a common perspective for

existing standards. Through development of this structured framework, the Model would

expose areas where standards were necessary or in need of improvement.

The technology and application independence of the Model would accommodate

descriptions of advanced technologies and expansion in user demands. This flexibility

would also support the phased transition from existing implementations to storage system
standards.

It was not the intent of the Model to serve as an implementation specification, to be the

basis for appraising the conformance of actual implementations, or to define precisely the

standards for services and protocols of the interconnection architecture. Rather, the

Model was intended to provide a conceptual and functional framework allowing teams of

experts to work productively and independently on the development of standards for

storage systems. These remain, roughly, the intentions of the IEEE Model.

All who participated in drafting the MSSRM must be proud that this model was one of

the earliest efforts to presage present concepts of storage objects and of net-attached

storage.

1.4 Change of Direction

The present direction of the SSSWG is quite different.
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Although work continuedafter 1994to develop the PVR and PVL modules, it became

apparent to the SSSWG that the approach taken to encompass all aspects of storage

systems made it impossible to compose practical standards. To that end, the SSSWG

began a device-driver level standard called "The Media Changer Service Standard", or

"MCS".

Work on MMS began shortly after SSSWG came to the realization that writing standards

for PVL and PVR was an intractable problem. These and other components of the

MSSRM were and are very robust, very all encompassing, and very difficult to reduce to

standards. In order to make progress and actually publish standards in the lifetimes of the

SSSWG members, a different direction was needed.

As the SSSWG met with individuals interested in MCS, it became aware of an effort by

some of the MCS participants to develop a minimalist media management system known

as "OpenVault" (www.openvault.or¢).

After hearing presentations on the OpenVault effort, it seemed to the members of

SSSWG that OpenVault embraced the same one, true reality of storage system needs

which SSSWG saw, and that standards based on a more minimalist approach would be

possible in a reasonable time. OpenVault was still developing; some of the people

developing OpenVault were early members of SSSWG; OpenVault capitalized on ideas

from the MSSRM; and OpenVault, it appeared, could co-evolve with an IEEE set of

standards. Today, the IEEE MMS and OpenVault are close, although not equivalent, as a

seesaw development of the two has progressed over more than two years.

1.5 MMS Architecture [reference 21
This describes the motivations for an overall architecture of the IEEE Media

Management System. Although the architecture may suggest a particular design or

implementation, it is not the IEEE's intent to favor a specific implementation of the

MMS. Indeed, it should be possible to implement the MMS in a number of ways, ranging

from a "lightweight" implementation in a scripting language such as perl, or a full

implementation written in a traditional programming language such as C, C++, or Java.

The MMS is a software system for managing physical media. The system has the

following properties:

• It is media-neutral, allowing the management of computer tapes, disk media, disks,

optical disks, CD-ROMs, as well as non-computer media such as videotapes or reels
of film.

• It is scalable, being comfortable in environments as small as a single individual's

office or home and as large as a multinational corporation, educational or scientific

institution, or government archive.

• It is platform neutral and operating system independent, working with existing

computer systems from multiple vendors with varying degrees of media-handling

sophistication.
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• It is distributed, allowing access to media and the devices that store and perform data

transfer operations on the media by more than one system. A single MMS may

manage devices that are connected to many host computer systems, including devices

that are physically connected to multiple hosts. Connectivity between elements of the

MMS requires the availability of standard TCP/IP.

• It provides a reasonable degree of security and protection for access to the media by

ensuring that specific media may be mounted only by those applications which have

authority to access that media. All parties are authenticated, and network

communication is digitally signed so that it is extremely difficult to forge.

• It is content-neutral, and does not have any inherent understanding of the content of

the media; indeed, with some media, such as videotape or film, the MMS many not
even have access to the content of the media.

• It is application independent, providing appropriate media management functions for

diverse applications ranging from backup and hierarchical storage management, to

broadcast television automation. Media belonging to multiple applications may be

managed by a single MMS; these applications may be multiple instances of the same

program, or of different applications.

• It is designed to be modular to allow independent groups to work on components of

the MMS independently; the modularity is provided by strong, flexible interfaces that
can evolve over time.

• It is language-neutral, permitting programmers to write applications that interact

with the MMS in almost any programming language, and, indeed, to allow the MMS

itself to be written in almost any programming language.

• It allows multiple implementations to interoperate seamlessly.

The key to the architecture of MMS is to clearly define the basic functionality that the

MMS must provide, and to declare specific points in the functionality to provide defined

interfaces that allow independent components to interoperate.

1.6 MMS Described

The IEEE Media Management System (MMS) suite of ten standards arguably could have

been a single standard, although the first five total 304 pages in aggregate. The intent is

that these five standards will evolve separately. Also, that builders of storage systems or

components could comply with each standard individually.

A tutorial of MMS was given in March 1999, but to review the components briefly to see
what has been balloted and what remains, some brief information about MMS is offered.

The following drawing depicts potential system boundaries (thick lines) between the core

(or cores) of a media management system (or systems) and the protocols used to

communicate among the components. And it suggests the distributability of a MMS. In

this drawing "DM" is the drive manager; "drop" is the drive management protocol; "LM"

is the library manager; "lmp" is the library management protocol; and "mmp" is the

media management protocol.
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Figure 2. MMS Distribution of Components Across Machine Boundaries

There is a suite of ten MMS projects and a one project to develop an IEEE Data Mover

under the 1244 series. The first five of the MMS projects are draft standards in balloting

now. Work will proceed on the other five and MOVER, which is not part of the MMS,

this year.

1244.1 - Media Management System (MMS)Architecture.

Specifies the architecture of a distributed, platform-independent, system to manage

removable media, including both disk and tape, using robotic and manual methods. The

general schema for managing media, the expected components of the software system,

and the data model to be supported by the software system for managing this media are

described by this standard. Details of components of the Media Management System are

specified by companion standards.

1244.2 - Session Security, Authentication, Initialization Protocol (SSAIP)

is the initial "handshake" protocol used by components of the MMS to establish identity,

authority, and initial communication.

1244.3 - Media Management Protocol (MMP)

used by client and administrative applications to allocate, deallocate, mount, and

dismount volumes, and to administer the system. The MMP includes levels of privilege
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sothat, for example,a client applicationcannotperformadministrativefunctions,or an
operatorconsoleprogramcannotperformhigher-levelmanagementfunctions.

1244.4 - Drive Management Protocol (DMP)

is used between two software components of the MMS: the central management core and

a program that manages a drive which is used to access removable media.

1244.5 - Library_ Management Protocol (LMP)

is used between two software components of the MMS: the central management core and

a program that manages an automated library or a vault. The minimum functionality

required to implement an MMS is the SSAIP and MMP. Most practical implementations

will include the DMP and LMP. Additional protocols are defined to extend the MMS to

interoperate with other MMSes and with other media management systems:

1244.6 - The Media Manager Interchange Protocol (MMIP)

defines a protocol to allow interchange of information between autonomous Media

Managers.

1244.7 - The Media Manager Control Interface Protocol (MMCIP)

defines a protocol which permits interfacing the data management component of the

MMS with existing library management systems.

1244.8 - The C Language Procedural Interface

defines a set of standard programming interfaces which facilitate construction of

components of the MMS, particularly client, administrative, and operational applications,

library managers, and drive managers. The initial definition will be for the C

programming language. The interface will be designed so that implementation in

languages such as C++ or Java could be easily accomplished.

1244.9 - MMS User Mount Commands

defines a set of standard commands to allow a user to mount, unmount, acquire, and

release media. These commands are specified as a part of a command line interface for

systems that offer such interfaces, such as the UNIX shell or NT command line interface.

Commands may be embedded in scripts to produce more complex or custom functions, or

to allow an application program that is not written for MMS to be adapted for use with
MMS.

1244.10 - MMS Standard Administrative and Operational Commands

defines a set of standard administration and operation commands of an MMS. The

standard defines a command- line, minimally interactive interface for basic interaction

with the MMS; these commands could be used to construct interactive interfaces using

scripting-based systems such as web CGI scripting or tcl/tk.
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1.7 MOVER

Very little thought or work has gone into developing a data mover standard since
MSSRM version 5. If there are volunteers to develop this standard, and it is not

overcome by trends in net-attached storage, the SSSC will ballot a draft standard before

2002. The present PAR for a data mover standard is:

1244.11 - MOVER

provides a standard storage system data mover architecture and interfaces for use by the

IEEE Media Management System and other storage system software. MOVER transfers

data between two endpoints in a distributed storage system." This deceptively simple

statement belies the difficulty in describing MOVER as a standard.

The MSSRM concept of MOVER is synopsized in the Mover Architecture drawing and

description that follows:

Communications

Service

'..... I i II °ev'°e

Mover | Mover j

..... control .....

Figure 3. MSSRM Concept of Mover Architecture, "PV" is "Physical Volume"

"The Mover performs operations on media access points and affects data transfer. Media

access points are the means of accessing physical volumes and sections of memory

accessible to Mover clients."

"A Mover performs two distinct functions: 1) it changes or monitors the read/write state

of a device (e.g., positioning within the physical volume, reporting status and errors, and

loading and unloading physical volumes as necessary). 2) it transfers data and

source/sink information (to effect the transfer of data) between devices, devices and

memory, or from memory to memory."

2 Present and Future

2.1 Balloting Status, Note About Standards
The draft standards in ballot now are:

1244.1 - Media Management System (MMS) Architecture

1244.2 - Session Security, Authentication, Initialization Protocol (SSAIP)

1244.3 - Media Management Protocol (MMP)

1244.4 - Drive Management Protocol (DMP)

1244.5 - Library Management Protocol (LMP)

The SSSC could have held a ballot without involving the IEEE Standards Department

Balloting Service, but chose to use that service. At this time balloting is carried out
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partlyonline andpartlyby old-fashionedmethods.Registrationof interestedpartiesand
balloting itself arecarriedout online,but the invitationsaresentthroughtheU.S. Postal
system.Certaintime periodsareallowedfor sendingmessagesandreceivingresponses,
so that balloting consumesmonthsof time. In the caseof the first five MMS draft
standards,balloting is beingaccomplishedonline,andbeganDecember15, 1999. This
was an unfortunatetiming with preparationsfor the holidays and concernsover Y2K
effects. Roughly fifty individuals registered interest in balloting the MMS draft
standards,and31 respondedto the official ballot invitations from IEEE.The first ballot

of these standards ends on January 14, 2000. Depending on the response, revisions and

re-balloting (re-circulation it is called) may be required. The intent is to complete all of

the process in time for submission to the March 2000 IEEE meeting in which approval is

sought. If this succeeds, these standards will be published by summer of 2000.

A note about the nature of standards: they are not fixed in stone. Standards are living

documents, receiving modifications during their lives, being re-validated periodically,

occasionally being withdrawn, and being re-balloted when the aggregate of modifications

becomes too great. The work of groups like SSSWG to develop draft standards and

initial balloting are just the beginning of the journey for standards. The anxiety by some

that standards somehow bestow a lock-in on anything is founded on a misunderstanding
of standards.

2.2 Remaining MMS and MOVER Standards

The remaining MMS standards to be developed are:

1244.6 - The Media Manager Interchange Protocol (MMIP)

1244.7 - The Media Manager Control Interface Protocol (MMCIP)

1244.8 - The C Language Procedural Interface
1244.9 - MMS User Mount Commands

1244.10 - MMS Standard Administrative and Operational Commands

The group believes that 1244.6 can be completed in 2-3 weeks, 30 pages of writing, and
an additional 20 pages of XML DTD. One SSSWG member volunteered to serve as

editor of 1244.8 starting with commercial work of another member in this area. The

projects 1244.7 and 1244.11 were deemed too complex to grapple immediately. Project

1244.9 (user mount commands) will be accomplished for UNIX only, and will permit

scripting. Project 1244.10 will be presented as a trial use standard only. In fact,

discussion entertained the idea that all three of the Programming and Command Line

Interfaces should be trial use standards (1244.8-1244.10).

Work will proceed on development of a 1244.11 MOVER draft standard subject to the

normal limitations of interest, volunteerism, and time.

2.3 SSSC

Over the last several years the SSSC focus has been only on SSSWG and MMS

standards. The new sponsor chairs for storage system standards will work to broaden the

focus of SSSC to include other projects, working groups, study groups, and
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collaborations. The SSSCitself will becomean actual committeeof several people

instead of just the sponsor chair.

2.4 Collaborations

During 1999, the chair and other members of SSSWG exchanged mail, held

teleconferences and meetings with members of the Distributed Management Task Force

(DMTF, www.dmtf.org) and members of the Storage Networking Industry Association

(SNIA, www.snia.org) to provide the IEEE definitions of storage objects to the Common

Information Model (CIM) being developed by DMTF. Major industrial entities are

basing their Web-based Enterprise Management (WBEM, pronounced "web-um")

products on CIM, and so this collaboration is very important. The SSSC will continue to

pursue collaborations such as this in 2000 and beyond.

2.5 Tape Standards

Three tape standards were suggested by a member of SSSWG, and project authorizations

requested. Approval for these projects is assumed, and SSSC intends to purse these in
2000:

Portable Tape Driver Architecture (1563.1, Recommended Practice) provides a

reference model for tape driver architectures that is portable across multipleoperating

system environments, fully featured, and high performance.

A fully realized architecture that industry can base their implementations on that will

reduce the effort required to support a new tape device on a given platform and thereby

increase the available choice of drives on any given platform. This will benefit the

application vendor and the end customer.

Common Tape Driver Semantics (1563.2) defines a common set of operations and

semantics for access to tape drives across multiple operating systems platforms.

Eases the task of porting and supporting applications that use tape storage across multiple

operating system environments. This will enable application vendors to port to more

platforms and thereby increase the end customer's available choices.

Common Format For Data On Tape (1563.3) defines a self-identifying format and

record structure for the storage of data and meta-data on tapes, a structure that contains

the key to understanding the format of the data stream as well the data itself. An

analogue from the networking world would be the Document Type Definition (DTD)
structure used to describe documents in XML (eXtended Markup Language).

Enables data written by one application to be accessible by other applications without

those applications having to know how each other encodes data written to tape.
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2.6 Guide for Storage System Design (P1600)

This project, a revision of the original P1244), will produce a clear, abstract, model

exposing the design features required for storage systems to provide transparent, secure

information access in highly distributed, heterogeneous computing environments.

The model produced will describe design alternatives and rationales applicable within the
spectrum of valid storage system architectures.

Emphasis in the model will be placed on net-attached storage, object-oriented design,

open source software, minimal licensing alternatives, and maximum scalability.

The work under this project will serve to revise the popular IEEE Mass Storage System

Reference Model version 5 of 1994, and use it as a basis for related IEEE Recommended
Practices and Standards.

Purpose. This Model will guide implementers toward interoperability in meeting such

demands by suggesting best use of current and emerging technologies.

This Model will inspire commercial designs of storage systems and system components

from a broad spectrum of implementers, resulting in a high level of interoperability
throughout the world.

3 Observations, Motivations, Problems

The entire area dubbed "storage" suffers from a set of common problems.

First, the focus on storage is grossly misleading. Storing things, including data, can be

very simple. It is the act of accessing data that makes it information. So the thrust of all

efforts in "mass storage" is only for the sake of"information access". And, as a practical
aspect, this is what is observed.

Second, storage system technology urgently needs to advance much more rapidly than it

is advancing now to meet the challenge of information access. Perhaps the test of when

storage system technology sufficiently advances is that "Any sufficiently advanced

technology is indistinguishable from magic"[3]. That is, when information appears
magically on request, success will have been achieved.

There are many symptoms and documented aspects of this urgent need, more than this

paper can accommodate and stay on topic. As example, one aspect cited by Jim Gray is

that storage capacities are increasing at the rate of 100x/decade while storage throughput
is improving at only 10x/decade [4].

Third, raw storage capacity is seldom sized properly with computing capabilities, even

though there are direct relationships between processing power, memory, and storage.

The Dept. of Energy's Accelerated Strategic Computing Initiative suggests that you need

300 bytes of archival data for each sustained megaFLOPS. This points to one of the
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major factors in growth of storage (information access)demands: the growth in
processingpower. Processingtoday goes on with processorsof 70 to 100 million
transistors,andyet singleprocessorsof more thana billion transistorsis forecastedfor
thenextdecade[5]. And "QuBit" processorsarecontemplatedwith speeds"millions" of
timesgreater[6].

And while information is being generatedat rates in stepwith the rapidly improving
technologiesof processors,and storagemediaand hardwareare improving rapidly as
well, storagesystemsoftwareand architecturelag dangerouslybehind. This is in part
dueto theoverallcrisis in software[7,8]

At the sametime the specializeddemandsfor secureaccessto information in highly
distributedandheterogeneousenvironmentsaregrowing.

Traditionalapproachesarenot sufficient to meet theseneeds,andrevolutionaryor rapid
evolutionarychangesareneededin storagesystemdesignandsoftware.Theinformation
which will needto bestoredandaccessedin thenext yearor two will equaltwiceall the
dataeverstoredbeforenow.

Farfrom leadingthetarget,in this casethe"disasterrecovery"with which we shouldbe
concernedis the loss,perhapspermanent,to accessof informationpurchasedwith the
expenseof computingand humanresources. To quoteJohn Carlin, the U.S. National
Archivist, will thecountryloseits memory[9]?

4 Promising Trends

The IEEE is re-inventing itself in several respects, including embracing techniques that

speed up every step of the standards process. In addition, the IEEE Industry Standards

and Technology Organization (ISTO), affiliated with the IEEE and the IEEE Standards

Association (IEEE-SA) and just formed in 1999, is moving away from the sales of

standards reprints to the intelligent position of just making them publicly reviewable.

The ISTO embraces corporate entities as participants, and attempts to act much like

consortia in industry.

The cooperation among groups developing "standards" in storage is very promising.

This is truly an area in which we must all hang together or... The greatest competitor for

products and solutions against storage efforts is not within the arena of storage at all. It is

the preponderance of interest in faster processors, wider and faster networks.

The trend away from "SAD" storage (server-attached disks [10]) toward Storage Area

Networks (SANs) and onward to Net Attached Storage (NAS) carries great hope with it.

Using idle embedded cycles on computationally rich storage devices for the remote
execution of some applications serves to reduce the motion of data and fits better in

highly distributed environments.
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Theextendedabstractionof thepresentstorageobjectcalled"file" to evenmoreabstract
storageobjectswill both servethe user'sneedfor magicaltransparencyand the global
needfor distributedcomputing[11,12].

Finally, the movementtoward opensourceand away from restrictive licensing will
greatlyaid theneedfor interoperability,andfosteran economicbonanzafor the storage
industry.

5 Summary

The SSSC is balloting the first storage system standards in the world, and these are the

first five of ten Media Management System (MMS) standards. These standards and the

future work of the IEEE will help bring a consistent approach to building interoperable

storage systems, and to address the emergency need for improvements in the systems we
all use to access information.
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Abstract-- We examine the primary challenges for building a practical and competitive

holographic random access memory (HRAM) system, specifically size, speed, and cost.

We show that a fast HRAM system can be implemented with a compact architecture by

incorporating conjugate readout, a smart-pixel array, and a linear array of laser diodes. It

provides faster random access time than hard disk (100 microseconds or less) and similar

bandwidth as silicon storage with lower cost. Preliminary experimental results support the
feasibility of this architecture. Our analysis shows that in order for the HRAM to become

competitive, the principal tasks will be to reduce spatial light modulator (SLM) and

detector pixel sizes to 1 [tm, increase the output power of compact visible-wavelength

lasers to several hundred milliwatts, and develop ways to raise the sensitivity of
holographic media to the order of 1 cm/J.

1. Introduction

Holography memory is a potential technology that can provide very large storage density

and high speed. The theoretical storage capacity of this technology is on the order of V/3. 3

[1 ] (where V is the volume of the holographic medium and _. is the wavelength of light),

or equivalently, a storage density limit of about one bit per cubic wavelength.

Furthermore, holography has the inherent advantage of massive parallelism. Unlike

conventional storage media such as magnetic hard disks and CD-ROMs, which access

only one bit at a time, each access of a holographic memory yields an entire data page --
potentially megabits at a time.

Figure 1 shows a typical angle-multiplexed holographic memory in the 900 geometry.

Information is recorded in the holographic medium through the interference of two

coherent beams of light. The information-carrying signal beam and the interfering

reference beam cause an index grating (the hologram) to be written in the material

through the electro-optic effect. If the hologram is subsequently illuminated with one of

the original writing beams, light is diffracted from the grating in such a way that the
second beam is reproduced.

Due to Bragg effects, many holograms can be multiplexed within the same volume of

material by slightly changing the angle of the reference beam with each new data page.

Thousands of holograms can be multiplexed this way in a small volume of crystal,

offering the potential of very high storage densities.
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Figure 1. Typical angle-multiplexed holographic memory.

Silicon (lxl cm 2) $125

LiNbO3 (l×lxl cm 3) $10

Liquid Crystal $ 5

Beamsplitters and lens $ 6

LD array (500) $ 25 - 100

Total $171 - 246

Table 1. Estimated cost of components in the holographic memory

module, assuming production in large quantities

In the figure shown, the signal path consists of a spatial light modulator (SLM) and

detector array with a 4-F imaging system between them, and the reference path uses

another 4-F lens system in combination with a rotating mirror to provide the angular tilt

to the reference beam. Recent work has shown the ability to store and retrieve many

thousands of holograms [2,3]. Much of the progress that has been made can be attributed

to advancements in our understanding of ways to take advantage of the Bragg selectivity

of 3-D recording to multiplex holograms, as well as continued research in holographic

material properties and dynamics.

In this paper, we describe a holographic random access memory (HRAM) with phase

conjugate reconstruction and present experimental results from this architecture. It has the

potential of faster random access time than hard disk (100 microseconds or less) and

similar bandwidth as silicon storage with lower cost. The phase conjugation leads to high-
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resolution signal image recovery with a compact and inexpensive optical system. And we

believe that HRAM can be a competitive memory technology if optoelectronics

technology can achieve the following three milestones in the next few years:

1). small SLM and detector pixel sizes on the order of 1 lam;

2). high recording sensitivity of the holographic material with no more than 1 J/cm 2 to

reach saturation;

3). inexpensive high spatial density laser diodes with at least 500 mW of output power in
the near-infrared or visible wavelength.

2. Conjugate Readout Method

Despite the high theoretical limit on the storage density of volume holographic storage

(one bit per cubic wavelength of material), the practical implementation of holographic

systems is often bulky due to the large space occupied by the various components that are

necessary to provide the recording and readout mechanisms for the crystal. The system of

Figure 1 is fairly simple with a relatively small number of components, however the

spacing requirements of the imaging lenses imposes constraints on how closely these

components can be placed. For example, assuming SLM and detector array dimensions of

l cm and high quality lenses with F/#= 1, the focal distance between the arrays, lenses, and

crystal must also be at least 1cm. The system of Figure 1 would then occupy a volume of

approximately 6cmx5cmxlcm, which is 30 times larger than the volume of the recording
material.

The reason we normally need to place lenses within the signal path is to undo the effects

of diffraction. When we record a hologram of the signal beam diverging from the input

SLM and reconstruct it with the original reference beam, we produce a virtual image of

the input data page and thus require a lens to refocus it onto the detector array. We can

eliminate the lens system between the SLM and detector array if we reconstruct a real

image instead of a virtual one. One way to do this is to use phase conjugate readout [4-6]

as illustrated in Figure 2. Using this method, a hologram is recorded in the usual manner

between the signal and reference beams, but the hologram is read out with the phase

conjugate of the reference beam, propagating in the opposite direction as the one used for

recording. This causes the signal reconstruction from the hologram to propagate back

along the direction from which it originally came, reversing the original signal diffraction,

and refocusing exactly at the plane of the SLM array. To generate the conjugate reference

we may use a phase-conjugate mirror [5], or in the case of a planar reference beam, we

may simply use a counter-propagating plane wave at the each angle.
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Figure 2. Comparison of phase conjugate readout method with

conventional readout using imaging lenses.

Experimentally, we compared the reconstructed image fidelity that can be obtained with

conventional reconstruction using high-quality, custom-designed lenses to the image

fidelity we get with the conjugate readout method of planar reference beams. An SLM

and detector array each with pixel spacing of 241am were used for these tests, allowing

one-to-one matching of the SLM and detector pixels. Both methods yielded SNR (signal-

to-noise ratio) values ranging from about 3.8 to 4.5, verifying that the conjugate readout

method produces results that can only be achieved with quality lenses, while using a

much more compact and inexpensive optical system.

Phase conjugation read-out not only eliminates the lenses and associated path lengths that

are normally required in the signal path, it also provides a possibility to record and

reconstruction signal beams with high spatial frequencies. The holographic recording and

reconstruction possesses a basic spatial frequency bandwidth for the holograms, which
limits the smallest feature size to be record and reconstructed. The theoretical calculation

and experimental measurements indicates a width bandwidth for holographic recording

and reconstruction in the photorefractive LiNbO3. This makes it possible to record and

reconstruction holograms with very small pixel sizes, which has important effects on the

system storage density and cost efficiency as discussed in section 3. Figure 3 shows the

theoretical simulation of the holographic recording and reconstruction bandwidth inside a

LiNbO3 with 900 geometry, with the consideration of the interface losses. The hologram

strength is a function of the spatial frequency, or the incident angle of the signal beams

due to the different grating period, orientation and interference modulation depth [7,8].

The experimental measurement of the bandwidth confirms the theoretical prediction as

shown in figure 3. Holograms with sub-micron pixels were recorded and conjugate
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Figure 3. (a) The experimental data (diamond) and the theoretical

calculation of holographic efficiency in the signal reference plane; (b) the

experimental data (circle) and the theoretical calculation of the

holographic efficiency out of signal reference plane.

reconstructed, which further demonstrated the resolving power of the phase conjugate

reconstruction. Figure 4 shows the mask image and the phase conjugation. There are no

image degradation detected for the hologram reconstruction from the direct image of the
mask.

(a) (b)

Figure 4. (a) The direct image of a resolution photo mask with pixels from

2x2 ILtm2 down to 0.2x0.2 pm 2. (b) The holographic phase conjugate

reconstruction of the photo mask. Both images were magnified by a Nikon
objective lens with NA=0.65.
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3. Compact Fast Access Architecture

While conjugate readout eliminates the lenses in the signal path of the memory system,

we still require a compact design to rapidly deflect the reference beam for multiplexing

purposes. The 4-F system shown in Figure l, while reliable, is bulky and slow due to the

limited mechanical speed of the rotating mirror.

With the recent development of compact laser emitters, such as laser diodes and Vertical-

Cavity Surface-Emitting Laser (VCSEL) devices [9,10], it has become feasible to

consider the possibility of incorporating arrays of hundreds of microscopic laser sources

in a holographic memory. We can then design a system in which each angle multiplexed

hologram is addressed by a dedicated laser source. This architecture is shown in Figure 5.

A Fourier transforming lens is used to convert the spatial shifts between the laser

elements into angularly offset plane waves incident on the crystal. In this implementation,

the time it takes to produce the proper read-out reference beam is determined by the

switching time of the laser sources, which is in the nanosecond regime. Using a l cm-

thick crystal and a wavelength of 630nm, the first null of the angular selectivity function

occurs at an angular spacing of 0.0036 °. Using a lens with a focal length of 2cm would

require the laser elements to be placed only 1.3 _tm apart to produce this angular

separation. In practice, we would separate them by 10 _m or more in order to reduce

interpage crosstalk while also making the array easier to fabricate.

lL'eftDr_llC_ dffrliy--_ toni numm

F

Figure 5. Use of a laser array in the reference arm of an angle multiplexed

memory for fast page access.

This approach is also compatible with the conjugate readout method as shown in Figure

6. With a properly aligned laser array and a mirror placed on the opposite face of the

crystal such that it lies at the focus of the Fourier transforming lens, the proper conjugate

beam can be generated with the symmetrically opposite laser source. A beamsplitter must
also be introduced to accommodate both the SLM and detector devices. The combination

of conjugate read-out in the signal beam path and laser diode arrays in the reference beam
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path resultsin a very compactholographicmemorymodulewith fast access.It is not
completelylensless,sinceonelensstill remainsin the system,but sucha lenswould be
requiredto collimatethe lasersourcein anyopticalsystemthatusesplanewaves.

F

crystal

-" mirror

detector

Figure 6. Compact memory module with phase conjugation incorporating
separate SLM and detector devices.

1. Cost

The cost is perhaps the most important metric for accessing the commercialization

prospects of HRAM. We will compare the costs of HRAM and DRAM with reference to

Figure 7. We can think of HRAM as a holographic module that sits on top of a page of

DRAM. The ability of the HRAM to multiplex holograms essentially allows us to store

M DRAM data page, hence saving us the cost of fabricating M-l additional DRAM pages
in silicon. However, it is not quite that simple. First, the silicon device in the HRAM is

not really a DRAM page, but rather the DHR chip described earlier or and SLM/detector

pair. Because of the necessity of fabricating SLM and detector pixels (either in the same

optoelectronic device or in two separate devices), the page density of the DHR will be

less than that of a true DRAM. We call this ration of the page densities R>I. Moreover,

the cost of the holographic module also includes the optical elements Copt, and laser

diode array CLD, in addition to the cost of the silicon Csi. The projected costs of the

optical elements (assuming production in large quantities) are summarized in Table 1. We

assume the silicon cost to be purely based on area, and therefore will be identical to that

for an equal-sized DRAM. The cost of the laser array is not well known at this time,

since large arrays have not yet been produced for visible wavelengths; however, we

estimate the cost to be in the range of $25-$100 per array.

The cost ratio per megabyte CR of holographic memory to the silicon storage will be:

CR- Csj +Cop' +CvcsEL R
(1)

Csi M

where the R is the pixel area ratio of the SLM and detector to the silicon area of each bit

on DRAM, M is the number of holograms multiplexed in the crystal on top of the silicon.

With the fixed cost of silicon area Csi, optical elements Copt, and LD array CLD, the key to

have a small cost ratio CR is to have small R and large M, which means a high storage

density in holographic memory comparing with the DRAM.
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Figure 7. Model for cost comparison between HRAM and DRAM.

The number of holograms to be recorded and readout with reasonable bit error rate, is

limited by the dynamic range and sensitivity, or the M/# of the material. Recording and

reading 10,000 holograms at one location of a LiNbO3 crystal was demonstrated with a

similar system. However limited by the material M/# [11], the LD array number and

power, and reasonable recording/readout rates, it is practical to keep M below 1000.

For current commercial SLM and detector array, the pixel area is typically 4x41xm 2. And

the current commercial DRAM is 1 _tmZ/bit, which leads R=16. With typical M=1000, we

have R/M=1.6%, which leads to a small and promising CR. However if the DRAM keeps

the history trend as the NTRS97 [12] projected, the DRAM cell will be 0.04pm2/bit in

2006. To keep the R around 25, the pixel size of the holographic data pages has to be

lxlktm a or even smaller, which is previous proved achievable for the holographic

memory system.

Figure 8 shows the experimental demonstration of conjugate hologram reconstruction of a

lxl l.tm 2 random pixel mask as SLM, which gives Bit Error Rate (BER) at 7x10 5. This

finite BER indicates the requirement for error correction coding for the holographic

memory.

Comparing the cost per megabyte for the DRAM projection of 42 cents/Mbyte in 2006,

we have the cost estimation for the holographic module in table 1, where we assume the

same cost per area for silicon usage. With the R=25 for lxlktm 2 pixel size and M=500,

the cost for holographic memory is around 4 cents/Mbyte, one order of magnitude lower

than the DRAM in 2006.
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Figure 8. The phase conjugate reconstruction of l xl !am 2 random data
mask holograms.

2. System volume density

An analysis of the system storage density of the holographic memory module (including
the recording medium and all the optical components) in Figure 6 shows that the module

storage density peaks at about 40Mb/cm 3 for an optimum pixel size of 5!am. There is an

optimum pixel size because as the pixel size decreases the light in the signal path spreads

more due to diffraction, causing us to use larger apertures for the crystal and
beamsplitters.

A more aggressive concept for minimizing the volume is shown in Figure 9. This design
relies on total internal reflection to contain the beam diffraction within the boundaries of

the module, so that the optical elements can be made the same size as the SLM array.

Preliminary experiments indicate that accurate recordings are obtained using the
internally reflected light. In this case, the system density can be raised to the order of

2Gb/cm 3, if SLM pixel sizes fall to l_m. At this density, a gigabyte of data could be

stored in a single module with a volume of lx2x2 cm 3. The challenges in achieving such

high densities are several: Development of SLM and detectors with 1 micron pixels,

designing the optical system so that we have uniform illumination throughout, and further

characterization of the performance of the module when the light is allowed to undergo
total internal reflection.
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Figure 9. Variation of compact memory module for minimum volume.

3. Readout and recording rate

Since the laser diode array discussed in the previous section allows us to switch between

multiplexed data pages with negligible delay (on the order of nanoseconds), the random

access time and the readout rate become limited by the required integration time of the

detector. We can write the integration time as

NehvN2 (2)

Detect°r integrati°n time - (M_#)2 pi

where Ne is the number of electrons per pixel that we need to integrate for the given

detector sensitivity and level of background noise, h is Planck's constant (6.63x10 34 Jos),

v is the light frequency, N 2 is the total number of pixels in the detector array, M/# is the

system metric [11] of the holographic medium, M is the number of multiplexed

holograms, and Pi is the incident readout power. For example, if we use a crystal of
M/#=10 to record 500 holograms of a 1000xl000 pixel array, and we read out with

100mW of laser power, requiring 300 electrons per pixel, the integration time, and hence

the random access time, would be 2.4 Its. This corresponds to a sustained readout transfer

rate, from the hologram to the silicon detectors, of 53GB/s.

We can write the recording rate of the memory module as

Recording rate = NZlSLp (3)
(m /#)/ m

where N 2 is the total number of pixels per data page, I is the incident recording intensity,

S is the sensitivity per unit length of the recording medium, L is the crystal thickness, and

p is the light efficiency of the SLM. Again assuming a crystal of M/#=10 to record 500

holograms of a 1000x 1000 pixel array, with I=100mW/cm 2, S=0. lcm/J, L=lcm, and

p=50%, we obtain a recording rate of 3 lkB/s. This is typical for experiments currently

performed. Increasing the recording rate to make it comparable to the read-out rate is
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highly desirable for a practical system. We will discuss possible methods for achieving
this goal later on.

4. Roadmap for A Competitive HRAM Technology

From the preceding discussion, we can summarize that it would be commercially

competitive for a holographic memory system with parameters: M/#=I 0, S= 1 crn/J, laser

diode array with output 500 mW/cm 2 for each element and 1000 holograms storage of

10,000xl0,000 pixels each page. This module expect to deliver a recording rate >100

Mbyte/sec, access time <100 _tsec, and cost <$0.04/Mbyte. For comparison, the DRAM

is projected to be $0.40/MB in 2006112].

Presently, the greatest challenge for the HRAM is to raise its recording rate by several

orders of magnitude. To achieve this, we must rely in part on improvements in SLM

technology to bring the pixel sizes down to 1 _tm. This will allow us to increase the size

of each data page to 10,000x 10,000 pixels while still holding the array size to about 1cm 2.

By increasing the page size in this way, we immediately gain two orders of magnitude in

the sustained recording rate due to the increased parallelism. Experimentally, we have

used a mask fabricated with e-beam, lithography to record and reconstruct data pages

with I _m pixels holographically with good image fidelity. Figure 10 shows an

experimental measurement of the SNR for various pixel size holograms. The
reconstruction for 1 lam pixels gives SNR =4.
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Figure 10. The SNR for the direct images and the holographic phase

conjugate reconstruction of random binary data of pixel size from 8x8
down to 1x 1 _tm 2.
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Reducing the pixel sizes to 1 _tm is not only necessary for raising the recording rate, but

also for maintaining the cost advantage of HRAM over DRAM. By 2006, the DRAM cell

pitch is expected to fall to 0.2 I.tm [12]. By bringing the SLM pixel pitch down to 1 _tm,
we can hold the factor R in Equation (1) at 25, and beat the cost of DRAM by an order of

magnitude.

Because the HRAM readout rate is limited by the electronic transfer rate out of the

detector chip, we can afford to give up some readout speed in favor of increasing the

recording speed. We do this by intentionally reducing the strength of the holograms so
that we can record with shorter exposures, at the cost of increasing the detector

integration time. In Equations (2) and (3), this is equivalent to recording in a medium

with lower M/#, but without sacrificing sensitivity. Unfortunately, as we increase the

required integration time we increase at the same time the random access time of the

memory. In order to maintain an advantage of at least an order of magnitude over

magnetic disks in random access time, we can only afford to increase the integration time

to several hundreds of microseconds.

Other opportunities for increasing the recording rate can arise from improvements in laser

output powers or from improving the sensitivity of the recording materials. Compact laser

arrays with outputs of 500mW per emitter may be possible by 2006, or if not, we may

consider sharing a larger, more powerful tunable laser among multiple HRAM modules.

Increasing material sensitivity presents more of a challenge. The sensitivity of

LiNbO3:Fe, by far the most commonly used recording material today, Is typically around

0.02cm/J in the 90-degree geometry. In order to get recording rates on the order of 100

MB/s, we must find ways to boost the material sensitivity to about 1cm/J by improving

lithium niobate's properties. For instance, switching to transmission geometry and

increasing the doping level result in large increases in M/# which can be traded for better

sensitivity as we discussed previously. Alternatively, we can switch to alternative

materials such as doubly doped LiNbO3, in which sensitivity S > 1 cm/J was measured in

the transmission geometry. However, this is a relatively new material and much more

expensive at present.

5. Conclusion

In order to develop a competing HRAM technology, three main challenges must be met:

reducing pixel size to 1 _tm, producing arrays of high-power laser diodes, and increasing

the sensitivity of holographic recording media. Each of these tasks is difficult, but if they

can be achieved by 2006, then the projected HRAM performance levels shown in

previous section become feasible. Attaining these goals will position the HRAM as a

viable alternative memory technology to magnetic storage, offering performance that is at

least one order of magnitude better in terms of random access and transfer rate than

magnetic hard disks, and at least one tenth the cost compared to fabricating an equivalent

memory in DRAM.
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Abstract

The demand for increases in the capacity and speed of data storage tests the limits of

conventional technologies and drives the search for new approaches. Optical holography

has long held the promise of storage densities and data transfer rates far greater than

those of traditional magnetic and optical systems. In the past, its realization has been

frustrated by the lack of availability of suitable system components, the complexity of

holographic multiplexing strategies, and perhaps most importantly, the absence of

recording materials that satisfied the stringent requirements of holographic data storage.

Here we report on the design and development of a high-performance photopolymer

recording medium and on advances in the design of a holographic storage system that
have enabled demonstrations of storage densities as high as 31.5 channel Gbits/in 2. We

believe these results will provide the foundation for a practically realizable, high capacity

storage system with fast transfer rates and low-cost, removable recording media.

1. Introduction: How Holographic Data Storage Works

The compelling features of volume holography, rapid transfer rates and ultrahigh storage

densities, arise from two basic properties: (i) the writing and reading of bits of data occur

in a parallel, page-wise fashion, unlike the serial read-write processes of most storage

technologies; (ii) the three-dimensional nature of holography enables the storage of many

of these pages of data within the same volume of a recording medium, thereby enabling

densities far beyond the diffraction limit of conventional optical technologies.

In holographic storage, light from a coherent laser source is split into two beams, signal

(data-carrying) and reference beams. These two beams are spatially overlapped through

the volume of a photosensitive storage medium producing an optical interference pattern
that is imaged within the medium. This process records information contained in the

phase and amplitude of the two beams. The optical interference pattern typically induces

modulations in the refractive index of the recording material yielding diffractive volume

gratings. A schematic of a typical holographic storage system is shown in Figure 1.

The reference beam is used during readout to diffract off of the recorded grating and
reconstruct the information that was contained in the signal beam. The readout of data

depends sensitively upon the characteristics of the reference beam. By varying the

reference beam, for example by changing its angle of incidence or wavelength, different

holograms can be recorded in the same volume of material and read out by applying a
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referencebeamidenticalto that usedduringwriting. Thenumberof hologramsthat can
be overlappedor multiplexedwithin a volumetypically dependson the thicknessof the
material- thethicker thematerial,thehighertheselectivityof thematerialandtherefore
thegreaterthenumberof hologramsthatcanbemultiplexed.

Information to be stored is digitized with appropriateerror correction and channel
modulation. Thedigital dataarearrangedintopagesor largearraysof bits. TheO'sand
l's of the datapagesare translatedinto pixels of a spatial light modulatorthat either
block or transmitlight. The light of the signalbeamtraversingthroughthe modulatoris
thereforeencodedwith the"checkerboard"patternof thedatapage. Eachof thepagesof
data is recordedasthe signaland referencebeamsinterferethroughthe volume of the
storagematerial. When the appropriatereferencebeamdiffracts off of storedvolume
gratings within the material, it recreatesthe arrayof bits which is projectedonto a
pixelated detectorthat readsthe data in parallel. The recovereddatapagesare then
processedusing the channel and error correction codes to reconstructthe original
information.

Figure 1. Schematicof aholographicstoragesystem.Light from thesourcelaseris split
betweenthereferenceandsignalarm. Thesignalarmis encodedwith thedatato be
stored.Thesignalandreferencearmsoverlapin therecordingmediumto produce
diffractivegratingsthatarereadoutbythereferencearm. Thereadoutdatais imaged
ontoapixelateddetector.
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2. Holographic Recording Media - Photopolymer Materials

One of the major challenges in the area of holographic data storage has been the

development of suitable storage materials. Holographic media must satisfy stringent

criteria, including high dynamic range, high photosensitivity, dimensional stability,

optical clarity and flatness, nondestructive readout, millimeter thickness, and
environmental and thermal stability.

While many materials have been considered as media for holographic storage, most

suffer from disadvantages that preclude their use in practical systems. Lithium niobate,

the traditional choice for holography, exhibits the dimensional stability required for

digital data storage, yet suffers from low dynamic range and poor photosensitivity and

typically exhibits volatile readout. More recently, photorefractive polymers have shown

promise as holographic media, but require the application of electric fields which become

prohibitively large for thick media. Photochromic materials can be used for rewritable

applications but are characterized by low photosensitivity and limited dynamic range.

Photopolymer materials are attractive candidates for write-once-read-many (WORM)

times data storage applications because they can be designed to have large modulations in

their refractive index and high photosensitivity, record permanent holograms, and be

easily processed. Most of the currently available holographic photopolymers, however,

have been optimized for display applications. Typically, these materials can be used only

as thin (<100-200 _m) layers and often exhibit significant dimensional and bulk

refractive index changes due to the polymerization of the photosensitive species that
occurs during recording.

To better meet the needs of holographic data storage, we designed a new type of polymer

system that is composed of two independently polymerizable and compatible chemical

systems: low refractive index matrix precursors and high refractive index

photopolymerizable monomers [1]. The matrix of our media is formed by an in-situ

polymerization to yield a cross-linked network in the presence of the photopolymerizable

monomers, which remain dissolved and unreacted. Recording of holograms occurs

through a spatial pattern of polymerization of the photosensitive species that mimics the

optical interference pattern generated during writing - polymerization is induced in the

light intensity maxima of the interference pattern while no polymerization occurs in the

nulls. The concentration gradient that results from this patterned polymerization leads to

diffusion of the unpolymerized species which creates a refractive index modulation that is

determined by the difference between the refractive indices of the photosensitive

component and the matrix. The most important aspects of this strategy which yield high
performance holographic storage media are (i) preforming the matrix in-situ which

allows media to be shaped into the required thick and flat formats, (ii) the creation of a

cross-linked matrix as a support structure for stable holographic gratings, (iii) the choice

of compatible matrix and monomer systems to yield media with good optical clarity and
low levels of light scattering, and (iv) the design of independent matrix and monomer

systems so as to avoid cross reactions that dilute the refractive index contrast. The fourth

point ensures that the low refractive index of the "background" matrix is not
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detrimentally raised by the premature polymerization of the high refractive index
monomer. Media with high refractive index contrast can be fabricated using small

amounts of the high index monomer thereby minimizing the photopolymerization-

induced dimensional and bulk refractive index changes that occur during recording.

To prepare samples for holographic recording, resins, consisting of the matrix precursors,

photopolymerizable monomers, and a visible light sensitive photoinitiator, were

dispensed between two optically flat glass slides. The in-situ room temperature formation
of the matrix allowed routine fabrication of high optical quality media with polymer

thicknesses between 200 _tm to 1.5 mm. A transmission interferogram of a typical 1 mm

thick (polymer thickness) is shown in Fig. 2(a) with a surface plot of the variation in the

optical flatness shown in Fig. 2(b); the data show flatness within 500 A (_/10) over the

three inch diameter sample.

Figure 2(a) Transmission interferogram of a typical 1 mm thick photopolymer medium.

(b) Surface plot of the variation in the optical thickness of the inner 4 cm of the sample.

The optical flatness of the sample varies less than _,/10/cm (~500 A) over the entire area

of the medium.

In order to enable simultaneously high densities and rapid recovery rates, a material must

have the dynamic range to support large numbers of holograms with sufficiently high

diffraction efficiencies. The dynamic range of a medium, which depends both on the

magnitude of the modulation in its refractive index and its thickness, is typically
N

characterized by a parameter, M/# [2]. The M/# is defined to be the number of .=_'4V_-_,

where N is the maximum number of holograms that can be stored in a volume of the

material and q is the diffraction efficiency of each hologram. The M/# of iron-doped

lithium niobate is typically 1-1.5 for 1 cm thick crystals. It is commonly believed that

M/#'s at least an order of magnitude higher will be required to achieve compelling

storage densities and transfer rates. Polymer systems developed at Bell Laboratories

have yielded M/#'s as high as 42 in ~1 mm thick formats. The high dynamic range of

our polymer media is achieved while controlling the dimensional and bulk refractive

index changes that accompany the recording-induced polymerization of the

photosensitive species. Recording media must undergo only limited changes in their
dimensions and bulk refractive index as these changes can degrade the fidelity of data

recovery and ultimately limit the storage density of a material. Our design strategy
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enables us to optimize the response by minimizing the concentration of the reactive

material and simply tuning the refractive index difference between it and the matrix.

This approach allows us flexibility in tailoring the media to the particular needs of high
density holographic data storage.

In Figure 3(a), we show the M/#'s of a series of 200 Mm thick media that were fabricated

using the same matrix but writing monomers of varying refractive index and varying size

where the concentrations of the monomers were adjusted to yield equivalent levels of

recording-induced changes in dimension and bulk refractive index. (Each of the samples

underwent changes equivalent to ~0.35% in thickness and -2. l xl0 -3 in the bulk refractive

index for the complete reaction of the photoactive monomers.) Increases in M/# from 2

to 11 were realized while maintaining the same level of effective dimensional stability of
the media.

Media with high M/# were obtained by fabricating thick samples of our photopolymer
materials. In Figure 3(b), we show how the M/# scales with thickness in media

fabricated with a typical writing monomer. Data from three sets of samples are shown,
with each set formulated with a different concentration of the monomer and therefore

exhibiting different levels of effective dimensional stability. The gains in M/# with

increasing thickness are possible because of the low levels of light absorption and light

scatter and the high level of effective dimensional stability of the media.
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Figure 3(a) M/# versus the product of the difference between refractive indices of the

photosensitive monomer and the matrix and the volume fraction of the monomer for five

different resins. The molar number of reactive groups of the photoactive monomer in

each of the media is adjusted to yield equivalent amounts of recording-induced rotations

in the Bragg angle upon recovery. The media are all 200 lam thick. (b) M/# versus

thickness for photopolymer media fabricated with a typical writing monomer: closed

squares (triangles, circles), media exhibit -0. I% (0.35%, 0.5%) change in thickness upon
recording.

The optical quality of the photopolymer media is demonstrated by the "straight-through"

image shown in Figure 4. Here, an 800x600 pixel chrome on glass amplitude mask is

imaged through the media onto a charge-coupled device detector as shown in Figure 4(a).

The transmitted image and image statistics are shown in Figure 4(b).
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Figure 4(a) Optical system used for digital holographic data storage. A spatial light

modulator (the data page), encoded with an array transmitting and opaque pixels, is

illuminated with a plane wave. The data page is imaged through lenses 1 and 2 onto a

random binary phase mask which serves to randomize the information of the data page at

the recording plane. The data page is then Fourier transformed through the storage

medium at the recording plane by lens 3 and imaged through lens 4 onto a charge-

coupled device detector. For high fidelity data recovery, each pixel of the data page must

be precisely mapped through the optical train of the signal arm onto a corresponding

pixel of the detector array requiring the storage medium to be of high optical quality.

The reference arm is spatially overlapped with the signal arm at the storage medium

during the recording process and is used alone to reconstruct the data page during the
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recovery process. (b) Straight-through image of a 480 kbit data page. The intensities

were digitized using a Princeton Instruments ST 138 CCD camera with 16 bit resolution.
The calculated raw bit error rate calculated from a histogram of the pixel intensities is 2.6

x 10 -6. (Before calculating the histogram, the intensities of the pixels were normalized so

that the local averages of the on and off bits equaled the global averages.) The inset

shows the data plotted on a logarithmic scale.

The materials described here represent substantial advances in the development of

recording media for holographic data storage. Ongoing work is focused on the

temperature sensitivity of the polymer media and the long-term archival life of stored

data are also under investigation.

3. New Multiplexing Methods

The methods used to overlap or multiplex holograms determine the complexity and

architecture of the recording system. Two recently developed multiplexing methods have

led to system designs in which accessing different holograms requires only motion of the

media.

Both approaches used a fixed set of optics to create the reference beam. In shift

multiplexing, the reference beam consists of a collection of plane waves or a spherical

wave [3]. Holograms are multiplexed through spatial translations on the order of microns

of the media relative to the reference beam. Large numbers of holograms can therefore

be overlapped in essentially the same volume of the media. In correlation multiplexing, a

complex reference beam encodes the position of the hologram in the recording medium

and again micron-scale translations allow many holograms to be multiplexed [4]. These

"fixed optics" methods enable a holographic storage system based on a spinning disk

architecture used throughout much of the storage industry. A schematic of a holographic

drive based on these fixed optics methods is shown in Figure 5.
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Holographic Drive

Figure 5. Schematic of a rotating holographic drive based on multiplexing methods that

use fixed optics.
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4. Demonstrations of High Storage Densities

In early experiments [5], we demonstrated the feasibility of digital storage in thick

photopolymer systems by recording and recovering with low bit error rates multiple high

capacity (480kbit) digital data pages in media up to 500 lam thick. The results

established that (i) polymer media could be fabricated with the high optical quality and

low level of light scatter required for high density data storage applications, and (ii)

optical components and the media could be integrated to yield a high performance
storage system.

More recently, storage densities as high as 31.5 channel Gbits/in z have been attained by

recording and retrieving >3000 data pages (each of capacity 480 kbit) using shit_

multiplexing in a 750 _tm thick photopolymer medium [6]. Each of the 3000 data pages

were fully recovered with signal-to-noise levels above that required for error-free

readout. These experiments provide further evidence of the storage capabilities of the

photopolymer media. In addition, the data indicate that even greater storage densities are
possible with in-house, higher response versions of the materials used here.

5. Prototype Holographic Recording System

The development of practical components for holographic systems has been

accomplished largely in fields outside the storage industry. For example, the frequency-

doubled, diode-pumped Nd:YAG laser, used in medical, cable TV, and printing

industries, is an attractive recording source due to its small size, ruggedness, and low

cost. Digital micro-mirror devices appearing in display applications are ideal spatial light

modulators with their large numbers ofpixels (~ 1 million), fast frame rates (2000 Hz),

and high optical contrast. The CMOS active pixel detector arrays emerging in digital

photography exhibit the rapid access and data transfer properties required for holography.

The volume of these non-storage markets is expected to lead to low-cost, reliable

components.

A prototype digital storage system assembled from the components described above and

readily available optics is shown in the accompanying photograph in Figure 6. The

system occupies an approximately 1x2 foot area and can be considerably reduced in size

with the use of custom-designed optics.
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Figure 6. Prototype holographic storage system.

6. Outlook for Holographic Data Storage

The recent commercial availability of optical components such as spatial light

modulators, CMOS detectors, and compact visible wavelength lasers has removed many

of the obstacles that previously prevented the practical consideration of holographic data

storage. We believe the advances in media, recording methods, and the demonstrated
densities of >30 channel Gbits/in 2 described here further enhance the prospects for

holography to become a realizable, next-generation storage technology.
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