NASA/TM-2000-210076

Test Report for NASA MSFC Support of the Linear Aerospike SR–71 Experiment (LASRE)

S.K. Elam Marshall Space Flight Center, Marshall Space Flight Center, Alabama

The NASA STI Program Office...in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results...even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621–0134
- Telephone the NASA Access Help Desk at (301) 621–0390

ŝ

 Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076–1320 NASA/TM-2000-210076

Test Report for NASA MSFC Support of the Linear Aerospike SR–71 Experiment (LASRE)

S.K. Elam Marshall Space Flight Center, Marshall Space Flight Center, Alabama

National Aeronautics and Space Administration

Marshall Space Flight Center • MSFC, Alabama 35812

February 2000

Available from:

NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076–1320 (301) 621–0390

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 (703) 487–4650

TABLE OF CONTENTS

1.	INTRODUCTION AND OBJECTIVES	1
2.	LASRE ENGINE HARDWARE	2
	2.1 Thruster Assembly	3 5
	2.2 Single Thruster Testing2.3 Nozzle Assembly	6
3.	PROPELLANT/COOLANT SUPPLY SYSTEMS	7
	 3.1 LOX Supply System	9 9 9 10
4.	INSTRUMENTATION	11
5.	OPERATING SEQUENCE	12
6.	TEST SUMMARY	15
	6.1 Ground Configuration Testing6.2 Flight Configuration Testing	15 22
7.	CONCLUSION	28
Al	PPENDIX A—Single Thruster Testing and Failure Investigation	29
	A.1 Single Thruster Testing	29
Al	PPENDIX B—Design Limits of LASRE Engine Components	32
A	PPENDIX C—LASRE System Design Details	33
A	PPENDIX D—Instrumentation List	42
A	PPENDIX E—Operating Sequence	49
A	PPENDIX F—Summary of Steady-State Data	53

TABLE OF CONTENTS (Continued)

APPENDIX GWater System Results	93
G.1 Flow Rate Calculations	93
APPENDIX H—LOX System Results	95
 H.1 LOX Flow Rate Calculations H.2 LOX Side AC_d Calculations 	96 97
APPENDIX I—Fuel System Results	100
 I.1 Fuel Flow Rate Calculations I.2 Fuel Side AC_d Calculations 	101 103
APPENDIX J—Ignition Test Results	106
J.1 TEA-TEB Flow Rate Calculations	107
APPENDIX K—Hot-Fire Test Results	108
K.1 Performance Calculations	114
APPENDIX L—Flight Configuration Test Results	120
BIBLIOGRAPHY	125

=

LIST OF FIGURES

1.	LASRE engine hardware	2
2.	Thruster design: (a) exterior and (b) interior views	4
3.	LASRE injector	5
4.	LASRE pod assembly	7
5.	LASRE supply systems for (a) propellants and (b) coolant	8
6.	Simplified LASRE sequence	12
7.	Ground configuration hot-fire test	19
8.	Thruster performance results in each hot-fire test	20
9.	Ramp temperature responses in each hot-fire test	22
10.	LASRE pod being mounted to SR-71	23
11.	Water exhausted during first flight configuration test	25
12.	Damage to liner after failure	29
13.	Actual coolant distribution through coolant channels	30
14.	TEA-TEB ignition system	33
15.	Detailed schematic of LASRE systems, reference Rev. H of drawing ALS-LASRE-10000	34
16.	LASRE test sequence	50
17.	Steady-state trends in the LOX system data	74
18.	Steady-state trends in the fuel system data	76
19.	Steady-state trends in the water system data	78
20.	Steady-state trends in the thruster data	80

.

LIST OF FIGURES (Continued)

21.	LASRE engine supply systems	83
22.	LASRE engine thrusters and water system	84
23.	Water system performance during GRUN0036	94
24.	LOX system performance during GRUN0036	95
25.	LOX side flow area data	99
26.	Fuel system performance during GRUN0036	100
27.	Fuel side AC _d results	104
28.	Effect of fuel side AC_d changes on P_c 's	105
29.	Thruster chamber pressure during ignition test	106
30.	LOX system performance during GRUN0036	108
31.	Fuel system performance during GRUN0036	109
32.	TEA-TEB system performance during GRUN0036	110
33.	Water system performance during GRUN0036	110
34.	Engine performance during GRUN0036	111
35.	Chamber pressure behavior during hot-fire	112
36.	LASRE engine supply systems GRUN0037	113
37.	LOX and fuel—transient data	120
38.	Water system—transient data	121
39.	Engine—transient data	122

LIST OF TABLES

......

1.	Redlined parameters used for cutoff	13
2.	Redlined values used for water system	16
3.	Hot-fire results versus expected conditions	21
4.	Engine component testing specifications	32
5.	LASRE line list	36
6.	LASRE propulsion system parts list	37
7.	LASRE interface list	41
8.	LASRE program master measurement list	43
9.	Quick-look summary of LASRE system and engine performance	54
10.	Summary of LASRE system performance	59
11.	Summary of LASRE engine performance	64
12.	Additional notes for GRUN0019–GRUN0063 tests	85
13.	Performance results from GRUN0037 and GRUN0036	114
14.	Output from CETPC program	118

LIST OF ACRONYMS

:

BLC	boundary layer coolant
CaCo ₃	calcium carbonate
CFD	computational fluid dynamics
DFRC	Dryden Flight Research Center
ECF	environmental correction factor
F/M	flow meter
F.S.	factor of safety
FRR	flight readiness review
GHe	gaseous helium
GH ₂	gaseous hydrogen
H ₂ O	water
LASRE	Linear Aerospike SR-71 Experiment
LMA	Lockheed Martin Astronautics
LMSW	Lockheed Martin Skunkworks
LOX	liquid oxygen
LN ₂	liquid nitrogen
MEOP	maximum expected operating pressure
MR	mixture ratio
MSFC	Marshall Space Flight Center
NiCrAlY	nickel, chromium, aluminum, yttrium
OFHC	oxygen-free high conductivity
RLV	reusable launch vehicle
SSFL	Santa Susanna Field Laboratory
TEA	triethylaluminum
TEB	triethylboron
ZrO ₂	zirconium oxide

.

NOMENCLATURE

Α	flow area
A _c	chamber area
A_c/A_t	chamber's contraction ratio
A _t	throat area
<i>C</i> *	characteristic velocity
C _d	discharge coefficient
D	diameter
<i>g</i> _c	gravitational constant
h _f	enthalpy of fuel
h _{H2,std}	standard enthalpy of hydrogen
h _{O2}	enthalpy of oxygen
h _o	enthalpy of oxidizer
h _{O2,std}	standard enthalpy of oxygen
<i>m</i>	flow rate
, m _f	fuel flow rate
m _o	oxidizer flow rate
Р	pressure
P _c	chamber pressure
P _{c,ns}	nozzle stagnation pressure
P _t	total pressure
Ż	heating rate
R	resistance
R	universal gas constant
Τ	temperature

NOMENCLATURE (Continued)

Ζ	compressibility function
ΔΡ	pressure change
ΔT	temperature change
γ	specific heat ratio
ρ	density

.

TECHNICAL MEMORANDUM

TEST REPORT FOR NASA MSFC SUPPORT OF THE LINEAR AEROSPIKE SR-71 EXPERIMENT (LASRE)

1. INTRODUCTION AND OBJECTIVES

In support of the Reusable Launch Vehicle (RLV) X–33 program, testing of the Linear Aerospike SR–71 Experiment (LASRE) was conducted at NASA's Dryden Flight Research Center (DFRC) and the Air Force's Phillips Laboratory during March 1996–November 1998. The objective of this program was to operate a linear aerospike engine at various speeds and altitudes to determine how slipstreams affect the performance of the engine.

Slipstream effects could degrade an aerospike engine's performance as air flows over the vehicle's surface and interacts with the exhaust plume. Cold flow wind tunnel testing suggested such effects might reduce engine performance by 6 percent. By mounting and testing the LASRE engine on the back of an SR-71, performance data at various speeds and altitudes could be achieved to help understand the actual magnitude of slipstream effects.

Rocketdyne Division of Boeing North American fabricated the LASRE engine and delivered it to Lockheed Martin Skunkworks (LMSW). LMSW integrated the engine into a structural assembly that was designed and fabricated to fit on the SR-71 aircraft. This structural assembly also housed the propellant feed systems, which were designed and fabricated by Lockheed Martin Astronautics (LMA).

The final test plan concentrated on operating the engine at chamber pressures around 200 psi and mixture ratios of ≈ 6 for 3 sec. In flight, these conditions were planned to be performed at altitudes ranging from 30,000 to 50,000 ft and Mach numbers ranging from 0.9 to 1.5.

DFRC requested that NASA's Marshall Space Flight Center (MSFC) support this program by providing technical expertise in liquid propulsion testing. This report presents details of the technical support that MSFC provided throughout the test program.

2. LASRE ENGINE HARDWARE

The LASRE engine shown in figure 1 created the aerospike configuration with four individual thrusters on each side. Its overall size was ≈ 10 percent of the engine actually being designed for the RLV's X-33 vehicle, which will use two aerospike engines with 10 thrusters per side. Each thruster was supplied with liquid oxygen (LOX) and gaseous hydrogen (GH₂) for propellants and deionized water for coolant. On each side of the engine, the combustion gases exiting the thrusters expanded along the curved, water-cooled ramps of the nozzle assembly. Water-cooled fences created the upper and lower boundaries of the engine's structure. These fences helped protect the uncooled surfaces surrounding the engine assembly by retaining the exhaust gases.

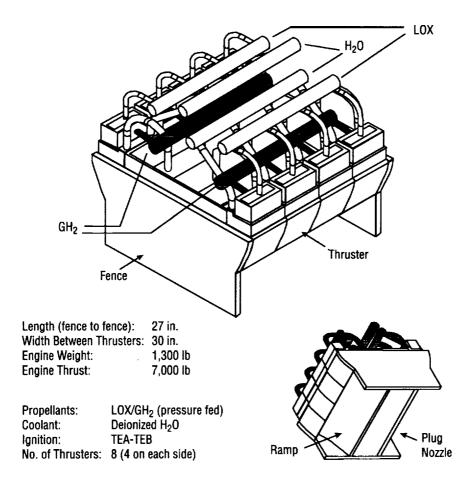


Figure 1. LASRE engine hardware.

2.1 Thruster Assembly

Figures 2 and 3 depict different views of the thruster design. Each thruster assembly included an injector and chamber designed for LOX/GH_2 combustion. LOX was supplied through the back of the injector into the LOX manifold while GH_2 was supplied through the side into the fuel manifold. Each chamber was cooled with deionized water. The hypergolic fluid triethylaluminum (TEA)-triethylboron (TEB) (TEA-TEB) was provided for ignition. It was injected through a port in the side of each chamber for ignition with LOX. An additional port in each chamber's side wall was used to measure the internal chamber pressure, P_c , at the injector end.

Twenty-five circumferential coolant hole passages distributed the water along the chamber wall. As shown in figure 2, the water entered each chamber in the bottom inlet manifold before being distributed to the coolant passages. (The inset in figure 2 illustrates the direction of the water flow in each passage.) The diameter of each coolant hole passage was 3/32 in., while each manifold was 1-in. in diameter. Common manifolding of the passages prevented local, individual coolant temperature and pressure measurements. Inlet and exit lines were brazed to the chamber to supply the water coolant.

Figure 2 also shows the overall dimensions of the thruster assembly. The rectangular cross section of the chamber measured 1.5 in. \times 5 in. at the injector end, narrowing to 0.357 in. \times 5 in. at the throat.

The chamber was fabricated with NARloy-Z (a copper alloy). To provide some additional thermal protection, the hot wall of each chamber was coated with zirconium oxide (ZrO₂) in gradiated layers with NiCrAlY (an alloy of nickel, chromium, aluminum and yttrium). The three-layer coating included equal layers of NiCrAlY along the NARloy-Z surface, followed by 50-percent NiCrAlY/50-percent ZrO₂, and finally ZrO₂, providing a total coating thickness of ≈ 0.009 in. The ZrO₂ provided the thermal barrier, while the undercoatings provided compliant layers with the NARloy-Z surface. All coatings were applied in atmosphere. (Though Rocketdyne's original analysis suggested plenty of cooling margin without a thermal coating, it was applied anyway for additional margin.)

Figure 3 shows a profile of the injector, which was brazed to each chamber to complete the thruster assembly. The faceplate design included 48 coaxial elements. Each element provided LOX through the center post (inner diameter ≈ 0.06 in.) and fuel through the surrounding annulus (fuel gap ≈ 0.014 in.). Boundary layer coolant (BLC) holes surrounded the perimeter of the faceplate to direct fuel film coolant on the chamber hot wall to help reduce local heating rates. Each of the 68 BLC holes measured ≈ 0.030 in. in diameter.

The entire injector assembly was fabricated with stainless steel (CRES 304L) materials, except for the faceplate which was made with oxygen-free high conductivity (OFHC) copper. The fabrication process included several braze operations. Each LOX post was brazed into the injector body and result-ing joints were visually inspected. Separate braze operations were used to attach the injector faceplate and manifold closeout structures. Joints were ultrasonically inspected, followed by proof and leak tests before hardware delivery.

(b) Interior, Cross-Section View

Figure 2. Thruster design: (a) exterior and (b) interior views.

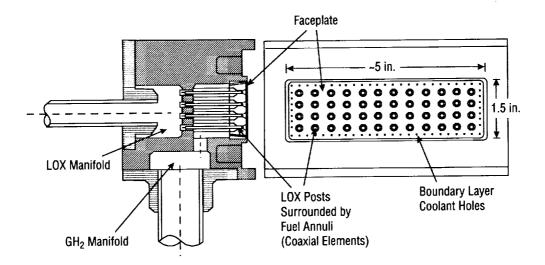


Figure 3. LASRE injector.

2.2 Single Thruster Testing

Rocketdyne fabricated nine thruster assemblies, and eight were used for the LASRE engine. The additional thruster was tested at Rocketdyne's Santa Susanna Field Laboratory (SSFL) to verify the design and recommended operating sequence. Each thruster was designed to operate at chamber pressures ranging from 200–300 psia, as originally required by the LASRE program. Objectives of the single thruster testing included operating the thruster within this range at various mixture ratio levels. In addition, a total accumulated duration of 180 sec was planned to provide exposure for 1.5 times the total duration originally planned for the LASRE engine (120 sec).

Results at SSFL compiled a total of 112 sec on the thruster within the desired operating conditions. Unfortunately, a failure occurred on the hot wall of the chamber liner during the 12th mainstage test, ending the program before the desired total duration was achieved. The failure was primarily caused by impurities in the facility water used to cool the thruster. A similar failure was not expected for the LASRE engine because deionized water would be used to cool the entire assembly.

However, the failure investigation provided an additional, more thorough review of the thruster design. Additional analytical results showed the thermal margin for cooling the chamber was much lower than results implied by the original analyses. Acceptable margin was only available for operating the thruster design at a chamber pressure around 200 psia, unless a higher coolant flow rate could be provided for the LASRE system. Water blowdowns of the LASRE engine eventually showed that additional coolant was not available. So, to be conservative, the test conditions for LASRE were changed to concentrate on testing only at chamber pressures of 200 psia (at least until additional confidence in the hardware could be achieved with successful hot-fire testing in flight).

Appendix A provides further details of this single thruster test program and the failure investigation.

2.3 Nozzle Assembly

The nozzle assembly shown in figure 1 directed the combustion gases exiting the thrusters, allowing them to expand along the curved ramps positioned downstream. This nozzle assembly was also cooled with deionized water. Its inlet manifolds received the coolant exiting the thrusters and directed it to coolant passages within the ramps. Outlet manifolds collected the coolant exiting the ramps and further distributed it to the fences attached to the upper and lower portions of the nozzle assembly. Water from the fences was directed to a single coolant line exiting the engine. The ramps and fences were fabricated from copper with ZrO_2 coatings applied to their surfaces for thermal protection. The engine frame and all plumbing in the assembly were fabricated with stainless steel (CRES 321).

Appendix B provides additional details on the design limitations of the engine hardware.

3. PROPELLANT/COOLANT SUPPLY SYSTEMS

Figure 4 illustrates the complete LASRE flight test hardware assembly, known as the pod. This assembly consisted of several structures identified as the canoe, kayak, reflection plane, and model.

The hydrogen and water systems, along with their associated helium tanks, were housed in the canoe, which was mounted directly to the SR-71 upper fuselage. The canoe also contained the controller used to signal all the systems during operation. The LOX and TEA-TEB systems and their helium tanks were contained within the model. The actual engine assembly was mounted into the aft end of the model, which was connected to a force balance for measuring forces in flight. The contour of the model represented a half-span lifting body shape, similar to the X-33 vehicle design. The kayak positioned above the canoe created the incidence angle of the model, and a flat plate mounted atop the kayak provided a reflection plane downstream of the engine assembly. The contained areas of the pod were purged with nitrogen to help safeguard the enclosures if excessive internal or external leaks resulted.

Figure 5 shows simplified schematics of the propellant and coolant supply systems. Appendix C provides additional information on these systems.

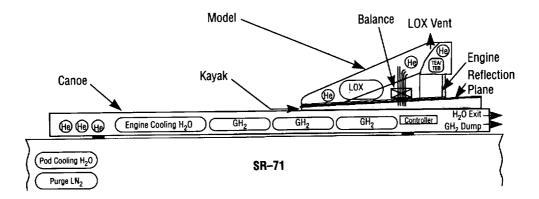


Figure 4. LASRE pod assembly.

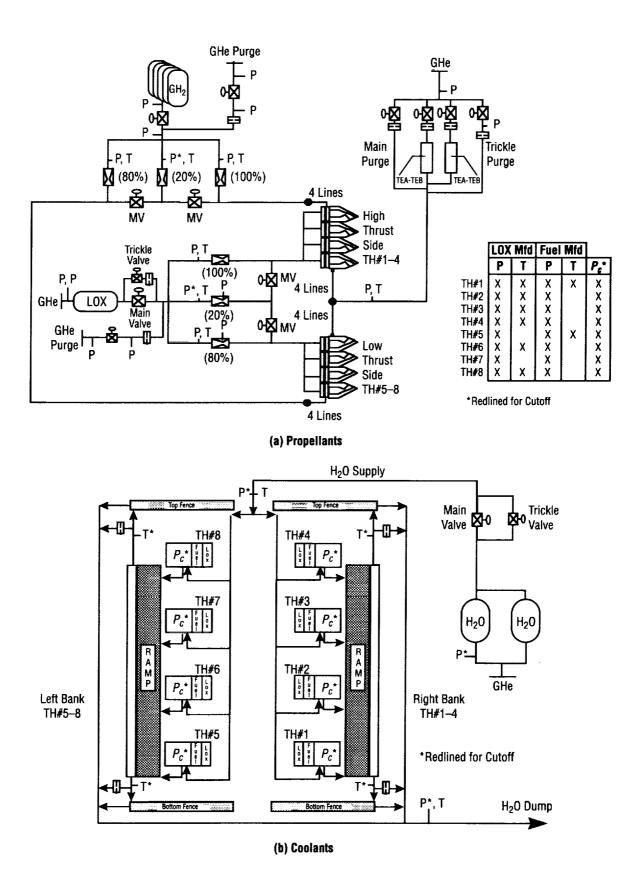


Figure 5. LASRE supply systems for (a) propellants and (b) coolant.

3.1 LOX Supply System

LOX was supplied from a single tank positioned upstream of two supply valves. The trickle valve allowed a small, initial flow rate of LOX to properly chill the lines and hardware at the start of the test. The main valve provided flow during the ignition and mainstage phases. Gaseous helium (GHe) was provided to pressurize the tank and properly purge the LOX system.

Three cavitating venturies were used to control the LOX flow rate to the engine. Their size and position allowed the engine to be throttled, if desired. Original test plans included thrust vectored burns where one side of the engine would be operated at 120 percent of the nominal chamber pressure and the other side would be operated at 80 percent. The venturies were sized to provide 100, 80, and 20 percent of the nominal flow rate.

Two manual valves were positioned downstream of the 20-percent venturi, allowing flow to either bank of thrusters to create the desired throttled flow rate. For all the tests actually performed in this program, the manual valve to thrusters 1-4 was closed and the manual valve to thrusters 5-8 remained open. Thrusters 1-4 received the flow provided by the 100-percent venturi, and thrusters 5-8 received the combined flow provided by the 80- and 20-percent venturies.

3.2 Fuel Supply System

 GH_2 was supplied for fuel from five tanks. A regulating valve was used to control the fuel supply based on the pressure required at the venturi inlets. Three sonic venturies and two manual control valves were arranged similar to the LOX system to provide appropriately throttled flow rates to each side of the engine. GHe provided the necessary system purge.

The manual values downstream of the 20-percent venturi were operated in the same configuration as the LOX system. The manual value to thrusters 1-4 remained closed, while the value to thrusters 5-8 was opened. Therefore, flow from only the 100-percent venturi was directed to thrusters 1-4, and the combined flow from the 20- and 80-percent venturies was directed to thrusters 5-8.

3.3 TEA-TEB Supply System

Two canisters of the hypergol TEA-TEB were available, since original test plans included two burns per test. Each canister was isolated from the GHe pressurant by a control valve. With the control valve opened, the pressure supplied to the respective canister ruptured the internal burst disk, allowing TEA-TEB to flow to each thruster for ignition with LOX. The continuous GHe flow provided a purge of this system after expelling the TEA-TEB. Additional valves allowed this system to be purged even when the canister supply valves remained closed. In addition, a constant trickle purge was kept on the TEA-TEB system at all times to ensure the cleanliness of the lines and prevent the small TEA-TEB ports in each thruster from getting blocked.

3.4 Water Coolant Supply System

Deionized water was supplied from two tanks, pressurized with GHe. A small supply valve initiated water flow to the hardware with a reduced flow rate to prime the system and prevent water hammer effects. The main supply valve provided the full coolant flow rate to the hardware during ignition and mainstage phases of the test. Figure 5(b) shows the coolant was provided to each individual thruster to properly cool the walls of the chamber. The exit flow from each thruster was collected in the inlet manifolds of the nozzle assembly where it was directed to cool each ramp. Flow exiting the ramps was also used to cool the fences surrounding the assembly, and finally all coolant flow was collected and exhausted out a common exit line from the engine.

(In initial ground testing, an orifice and a flow meter were positioned in the exit line (downstream of the exit line pressure transducer) to help characterize the flow rate available for cooling the engine. To provide as much coolant flow as possible, the orifice was eventually removed to limit the resistance in the water system. The flow meter remained for additional tests, but it was eventually removed as well.)

4. INSTRUMENTATION

Pressure transducers and thermocouples were placed throughout the supply systems and engine to provide appropriate data. Figure 5 illustrates the location of specific pressure (P) and temperature (T) measurements. Redlined parameters are highlighted with an "*." Appendix D provides the complete engine and supply systems instrumentation list for this program.

Each thruster included a port for measuring chamber pressure results at the injector end. In addition, pressures were measured in each thruster's LOX and fuel manifolds. Thermocouples could not be supplied for each manifold, but temperatures were measured in as many locations as possible in each bank of thrusters. Thrusters 1–4 were called the "high" thrust side of the engine, since they were capable of providing the highest chamber pressure condition with 120-percent of the propellant flow available. This side of the engine was instrumented with a thermocouple in each LOX manifold and the fuel manifold of thruster No. 1. The "low" thrust side of the engine with thrusters 5–8 included LOX manifold temperature measurements in thrusters Nos. 6 and 8, while a fuel manifold temperature was measured only in thruster No. 5. It was important to include at least one fuel manifold temperature measurement on each side of the engine to help detect any backflow of propellants during engine operation and to help investigate any anomalies.

A pressure and temperature measurement were located upstream of each venturi to provide data for calculating propellant flow rates. In addition, to help verify cavitation in the 20- and 80-percent venturies in the LOX system, throat pressure measurements were available.

5. OPERATING SEQUENCE

While appendix E provides a more detailed sequence, figure 6 provides a simplified sequence to describe the ignition, mainstage, and shutdown operations. Various sequence changes were made during the course of this program, but only the final sequence used for the successful ground hot-fires is provided in this report. A single control panel with limited switches was used to signal the integrated controller and perform each test. After completing the ground configuration tests at Phillips Laboratory, this control panel was installed in the aft cockpit of the aircraft.

The LOX and TEA-TEB systems were initially purged with GHe. The trickle flow of LOX was provided for 8 sec to properly chill the lines and hardware. Results provided a cold system that prevented the main flow of LOX from vaporizing, so good quality LOX was available for ignition and mainstage operation. Just before initiating the main flow of LOX, the trickle flow of water was started to properly prime the system, followed by the main flow of water to properly cool the thrusters before combustion. Soon after the main flow of LOX was provided, the TEA-TEB was supplied to provide ignition in each thruster. During this ignition phase, a purge was provided to the fuel side of each injector. The chamber pressure in each thruster was checked and if each showed at least 15 psig, ignition was confirmed and the fuel flow was initiated.

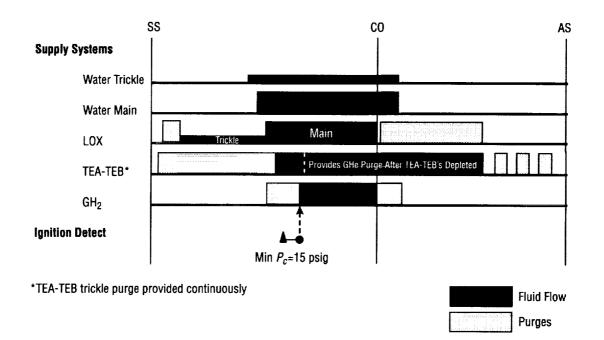


Figure 6. Simplified LASRE sequence.

Fuel was provided for only 3 sec before cutoff occurred. LOX and fuel supply valves were both closed at cutoff, and purges were supplied to each system. The GHe used to pressurize the TEA-TEB canister provided a continuous, proper purge after the hypergol was completely expelled. After cutoff, the water flow continued as the purges pushed residual propellants out the engine. When the LOX and TEA-TEB purges were completed, the TEA-TEB system was provided with three "puff" purges to help clear out any accumulated TEA-TEB residue. (Note: Although it is not shown, a continuous, low-level purge was also provided through the TEA-TEB system to further ensure cleanliness.)

While this sequence was similar to component testing operations at MSFC, there were some slight differences due to the limitations of the LASRE engine system. Specifically, this system was not capable of providing a positive purge on the fuel side of the injector during the ignition phase. However, even though ignition products were allowed to flow into the fuel side of the system, the fuel flow was preceded by GHe flow that appeared to properly clear the fuel manifolds of the ignition products before hydrogen reached this area of the hardware. Therefore, all mainstage combustion appeared to occur only in the combustion chamber, as desired. Fuel manifold pressures and temperatures did not indicate any sustained internal burning in this area of the injectors, so the sequence appeared to be sufficient for the operation of this system. (A higher purge to provide positive pressure on the fuel side was not possible due to the limited amount of GHe available for the LASRE system.) Also, the shutdown sequence did not ensure a fuel-rich shutdown to protect the walls of the chambers from exposure to LOX after a hot-fire. However, Rocketdyne's testing on the single thruster used a LOX-rich shutdown and demonstrated the hardware's integrity to such exposure. Hardware inspections on each chamber did not reveal any hot spots or liner degradation that could be attributed to a LOX-rich environment.

Appropriate redlines were active during this sequence to ensure the test was properly terminated if anomalies occurred. Table 1 further describes the parameters used for redline values in the supply systems and the engine.

Redline Parameter	Reason for Cutoff
Maximum water tank pressure	Prevent overpressurizing the water tanks
Maximum water inlet pressure	Could indicate frozen coolant or engine obstruction; redundant indication of overpressured water tanks
Minimum water inlet pressure	Insufficient coolant flow to the engine
Maximum water exit pressure	Significant change in engine/line resistance
Minimum water exit pressure	Pressure loss in engine due to failure or frozen coolant
Maximum water ramp temperature	Engine overheating
Maximum LOX venturi inlet pressure	Prevent high P _c and/or high engine mixture ratio
Maximum GH ₂ venturi inlet pressure	Prevent high P _c
Minimum GH ₂ venturi inlet pressure	Prevent low P _c and/or high engine mixture ratio
Minimum P _c	Avoid unstable operating region; indicates engine
	failure/loss of pressure in engine; no ignition
Maximum P _c	Prevent overpressurizing/overheating engine

Table 1. Redlined parameters used for cutoff.

The autosafe sequences after shutdown were used to remove residual fluids from the systems after the completed tests. The fuel system was "autosafed" first to remove the fuel while the LOX system was isolated. Water was also expelled prior to the LOX autosafe sequence. Original sequences did not include an autosafe of the water system. However, when the stagnant water in the engine began to freeze when exposed to the cold temperatures of the LOX autosafe procedure, the water autosafe sequence was added to remove this water before expelling LOX. Finally, the LOX autosafe was performed to remove any oxidizer remaining in the system. These sequences were part of the procedures performed before landing the aircraft to minimize the propellants on board.

6. TEST SUMMARY

Ground configuration testing at Phillips Laboratory was performed from March 1996 to April 1997. Tests in this series included GRUN0019–37. Flight configuration testing was performed at DFRC from September 1997 to October 1998. This test series included additional ground tests, GRUN0038–63, as well as flight tests, FLT0047–51.

Trends in the test results were evaluated by reviewing transient and steady-state data of each system. The resulting values and trends were compared between each test to check for appropriate and consistent responses. Transient data represented the actual response of a specific parameter over a period of time. Steady-state data were evaluated at a specific time slice during the test. This time slice was usually taken near the end of the main flow of propellants, after all instrumentation responses had enough time to stabilize. Unless specific operating sequence or hardware changes were made, transient and steady-state results were expected to remain consistent between tests. Inconsistent data were evaluated further to immediately identify possible anomalies in the hardware or operating system. Resulting values were also compared to the redline values to make sure cutoff limits were appropriately set.

Appendix F provides a summary of most of the steady-state data obtained throughout this test program. Some of the transient data can be found in appendices G–L.

6.1 Ground Configuration Testing

To verify the performance and operation of the propellant system and the engine, numerous blowdowns and cold flows were performed at Phillips Laboratory prior to hot-fire testing. This ground testing was performed so the entire LASRE system could be checked out properly before installing it on the SR-71.

Original test plans included two burns per test, so some of these checkout tests included single and double blows to properly evaluate the capabilities of the systems. Eventually, system limitations identified in the cold flows changed the test plans to include only single blows.

After the systems were thoroughly checked with the cold flows, ignition tests were performed, followed by two successful hot-fire tests. Appendix F includes the steady-state data for these ground tests.

6.1.1 Water System Tests

Blowdowns of the water system were performed to identify the flow resistances and determine the maximum flow rate available for cooling the engine hardware. The hardware was originally designed to operate with plenty of thermal margin if at least 40 lb_m /sec were supplied to the engine. However, thermal analyses performed after the single thruster failure at SSFL recommended a higher coolant flow rate be provided to ensure adequate thermal margins when testing at chamber pressures much higher than 200 psia (see app. A). Initial water system blowdowns attempted to attain higher flow rates by operating the water tanks at their maximum allowable pressures. Unfortunately, the flow resistances throughout the coolant system were much higher than predicted. Even an orifice, originally included in the exit line downstream of the engine to regulate the flow rate, was eventually removed to eliminate as much resistance as possible. A flow meter was available in the exit line to measure resulting flow rates without the orifice in place. (This flow meter was eventually removed, and when it was no longer available, coolant flow rates were determined by scaling the pressure drops observed in each test.)

Even when using the maximum water supply pressure, only 40 lb_m /sec was available for cooling the thrusters. Based on these results, the test conditions of 250 and 300 psia included in the original test plans were eliminated, and subsequent blowdowns and cold-flow testing concentrated on preparing for hot-fire conditions at 200 psia.

Final configuration of the water system provided water inlet pressures to the engine around 600 psia. With 40 lb_m/sec provided for the total coolant flow rate, a pressure drop of \approx 400 psi resulted through the engine, creating a water exit pressure of \approx 200 psia. Since the system results were expected to remain constant unless anomalies were experienced, the redlines were set relative to this data. The redlined values set to identify anomalies in the water system and initiate cutoff are provided in table 2.

During the colder months at Phillips Laboratory, ambient temperatures were cool enough to allow freezing in the water system. The freezing was first apparent during the LOX autosafe sequence when stagnant, residual water in the engine froze due to the resulting cold hardware temperatures. The water autosafe sequence was added to remove residual water from the assembly prior to conducting the LOX autosafe. (Since the water was removed with GHe pressurant, the flow meter originally in the exit line was removed so its blades would not be damaged from overspinning when exposed to the high GHe flow that followed the water.)

However, additional freezing continued to be observed at the start of each test. In addition to further changes in the water autosafe sequence, modifications were also made to the start sequence. It appeared that in the original sequence, the LOX trickle flow was enough to freeze residual water (when not successfully removed by the water autosafe sequence) and/or the water trickle flow. So, the sequence was revised to delay the start of the water trickle flow to limit the amount of exposure to the cold system temperatures prior to starting the main water flow before the ignition and mainstage phases. Eventually, the test plans changed to perform only single blows, which helped reduce concerns about freezing residual water between blows.

While appendix F includes steady-state data for the water system, appendix G provides further details and analysis of the water system test results.

	Redline Value (psia)
Maximum water tank pressure	870
Maximum water inlet pressure (to engine)	660
Minimum water inlet pressure (to engine)	500
Maximum water exit pressure	600
Minimum water exit pressure	135

Table 2. Redlined values used for water system.

6.1.2 LOX System Tests

Initially, the LOX system was evaluated with liquid nitrogen (LN_2) . However, some of the engine thermocouple readings were suspicious, making it hard to evaluate the exact quality of LOX that would result in the system based on the temperature results. To properly verify the LOX system performance, remaining LOX blowdowns and cold flows were performed with LOX. (Eventually the thermocouples were calibrated to provide accurate and repeatable temperature measurements.)

Early tests experienced some leaks in the LOX system that were eliminated with minor hardware changes (including replacing the LOX prechill valve). Yet, for the most part, the LOX system provided consistent and appropriate operation for the cold flows conducted prior to the ignition tests. The cold flows showed the venturies cavitated properly and provided the desired flow rates. In addition, good quality LOX was available consistently for each test. (Only one test (GR'32) provided poor quality LOX when a full tank was unavailable. In this test, the GHe pressurant mixed with the residual LOX in the tank to create warm fluid temperatures.)

The final LOX system operation settings included regulating the LOX tank between 365 and 375 psia. This pressure range provided appropriate LOX venturi inlet pressures, \approx 350 psia, for the required LOX flow rate to the engine. To detect anomalous behavior in the LOX system and initiate cutoff during the main flow, a redline value of 430 psia was set for the 20-percent (LOX) venturi inlet pressure. (Prior to main flow, this value was set higher (900 psia) to avoid any pressure spikes due to two-phase flow during initialization. Such spikes had been observed in early tests, particularly when LN₂ was used in the system.)

Appendix H provides additional data and details of the LOX system test results.

6.1.3 Fuel System Tests

All fuel cold flows and blowdowns were performed with GHe to minimize risks to the LASRE system. GHe provided an appropriate medium for these system checkouts, since the data were easily scaled to ensure required conditions would result when GH_2 was used. The fuel supply valve was regulated to provide a specific pressure at the venturi inlets, depending on the required flow rate.

In an early cold flow (GRUN0016), the poppet in the fuel valve actually broke off due to high cycle fatigue. With no containment feature downstream of the valve, the poppet flowed into the engine assembly where it became lodged in the manifolding. (The engine was removed from the model and physically rotated to retrieve the poppet. No internal damage to the engine system was observed.) The valve was redesigned to prevent such a failure from occurring again. Additional tests experienced leaks and irregular behavior from this valve. After the valve design was further reworked, the regulating system worked consistently with GHe to provide the required pressure for subsequent cold flows.

Nominal conditions provided \approx 470 psia at each fuel venturi for the required flow rate. Redlines were used at the 20-percent (fuel) venturi inlet to detect any anomalies for cutoff. The maximum venturi pressure was limited to 700 psia during main flow, with a minimum value limited to 420 psia.

Appendix I provides additional data and details of the fuel system test results.

6.1.4 Ignition Tests

While preceding cold flows ensured the nominal and consistent operation of the water, LOX, and fuel system, four ignition tests were performed to check out the TEA-TEB system and optimize the ignition sequence. LOX was used to provide ignition with the resulting TEA-TEB flow, and GHe was still used in the fuel system. Water was provided in each test to appropriately cool the engine.

The performance of the TEA-TEB system was verified for both single (GR'31 and GR'32) and double burns (GR'33), since two canisters of TEA-TEB were available to operate independently. Both cartridges were successfully used, and the TEA-TEB ports in each thruster remained unclogged after each test. This was important, since small TEA-TEB ports can easily clog if not purged properly. While other component hardware allows easy access to remove such ports and clean them between tests, the contained design of the LASRE engine would not allow such access. Fortunately, the successful purges relieved this concern.

In addition, consistent and immediate ignition was achieved in all eight thrusters during each test. The ignition sequence timing was verified and results allowed the ignition detect value to be set. Each thruster provided a chamber pressure of ≈ 30 psig during ignition, so 15 psig was used for the minimum pressure required to ensure ignition. This pressure was sufficiently above the average chamber pressure (≈ 5 psig) provided prior to ignition, when only LOX and corresponding purges were present.

The resulting TEA-TEB flow from each cartridge provided $\approx 0.04 \text{ lb}_{m}/\text{sec}$ to each thruster for less than 0.5 sec. The test sequence was reviewed to make sure fuel flow was initiated before all TEA-TEB was consumed (otherwise, the ignition source required for mainstage combustion would be eliminated). Although tests were run with both cartridges to verify the design of the system, only one cartridge was really necessary, since changes to the test plans eventually eliminated the required double burns.

Fuel manifold pressures began to increase slightly after the ignition tests were performed. These higher pressures were likely due to TEA-TEB residue in the fuel annuli and/or the BLC holes of the injectors. Such residue was not unexpected or unusual, especially without a positive purge on the fuel side of the injector during the ignition phase. However, even with this residue, analysis showed there was still plenty of fuel side flow area available in each injector. So, the results posed no threat to the hardware condition or the performance of each thruster. The pressures were monitored in subsequent tests to verify that adequate fuel side flow areas always remained available.

Appendix J provides additional data and details of the ignition test results.

6.1.5 Hot-Fire Tests

After all systems were verified to ensure nominal and consistent operation, a hot-fire test was attempted. The initial attempt caused the main fuel valve to fail when exposed to hydrogen for the first time during pretest servicing. The failure resulted when the bellows in the valve cracked due to hydrogen embrittlement. No hot-fire test was attempted, and the valve was removed for servicing. It was rede-signed to use a compatible piston assembly instead of a bellows. After the redesigned valve was installed, two successful hot-fires were performed. Figure 7 shows one of these ground hot-fire tests.

Figure 7. Ground configuration hot-fire test.

The hot-fires provided the first opportunity to verify the performance of the fuel system with hydrogen. Data were successfully scaled based on the GHe performance, so proper pressures and flow rates resulted with GH_2 . In addition, the entire test sequence was finally verified—fuel was properly provided to the engine prior to depleting the ignition source, allowing successful transition to mainstage, and all redline values appeared to be set appropriately.

Both tests were operated at mainstage chamber pressures of ≈ 220 psia in each thruster for 3 sec. Each provided confidence in the consistent operation of the entire system prior to performing hot-fires in flight. Inspections revealed that some thermal coating had spalled off each thruster's liner. However, this was not unexpected since the type of coatings applied have a history of such problems. Yet, no excessive hot spots were observed to indicate overheating, so each thruster remained in good condition after each hot-fire.

The data were used to calculate the performance of each thruster, and results were compared to those achieved for the single thruster at SSFL. The characteristic velocity, C^* , was used for the performance parameter on this component hardware. Its value was determined for the test conditions in each thruster and compared to the theoretical values to provide C^* efficiency results. The thrusters were not designed to provide high performance. So, absolute values were not as important as consistency between each thruster from test to test. (A degradation in performance between hot-fires can often indicate degradations within the hardware.)

Figure 8 compares the results for both hot-fires with those from SSFL. Since the single thruster testing was conducted over a range of conditions, the performance results provided C^* efficiencies from 83 to 95 percent. For each thruster in the LASRE engine, resulting C^* efficiencies ranged from 91 to 98 percent. Actually, when tested at similar conditions ($P_c \approx 200$ psia, mixture ratio ≈ 6), the single thruster produced a C^* efficiency of ≈ 85 percent. Each thruster in the LASRE engine provided higher than expected performance results that remained consistent between hot-fires.

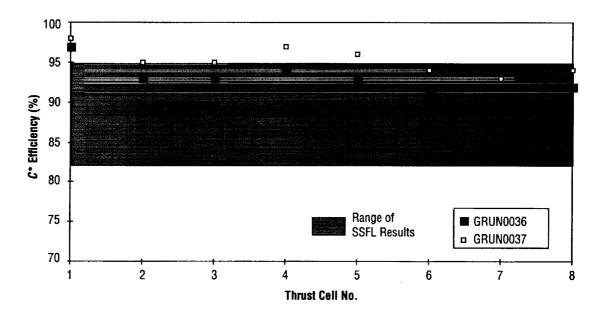


Figure 8. Thruster performance results in each hot-fire test.

Table 3 further compares the resulting hot-fire conditions with expected values. Required flow rates for the LASRE engine were determined by assuming a C^* efficiency of 85 percent, as observed for the single thruster in the SSFL testing. Since the performance of each LASRE engine thruster was actually higher than expected (probably fewer losses compared to the single thruster), the resulting chamber pressures for the two hot-fire tests were slightly higher than expected.

Condition	Average <i>P_c</i> (psia)	Average Mixture Ratio	Average C* Efficiency
Expected	~200	~6.0	~85%**
GRUN0036 results	220	5.6	93%
GRUN0037 results	220	5.6	95%

Table 3. Hot-fire results versus expected conditions.

**Based on SSFL testing at Pc~200 psia

Finally, the thermal performance of the engine was checked. Figure 8 shows the ramp temperatures responded appropriately with the rising chamber pressure, and final values remained well below the redlines set for cutoff. Furthermore, the responses remained consistent between tests, with the temperature rise only slightly higher in the second hot-fire.

Note in figure 9 that chamber pressures continued to rise slightly during mainstage instead of reaching a constant level. This occurred because of the increasing fuel flow rate supplied by the GH_2 system. A constant pressure was not maintained on the fuel tank, so after the main fuel valve opened, the tank pressure decreased as fuel flowed to the engine. As the tank pressure decreased, the temperature of the fuel decreased. Although the venturi inlet pressures were maintained at constant levels by regulating the fuel valve position, the decreasing temperatures increased the density of the fuel. Results created a corresponding increase in the fuel flow rate, which produced the rising chamber pressure levels.

Appendix K provides additional details on the hot-fire data results and supporting analyses.

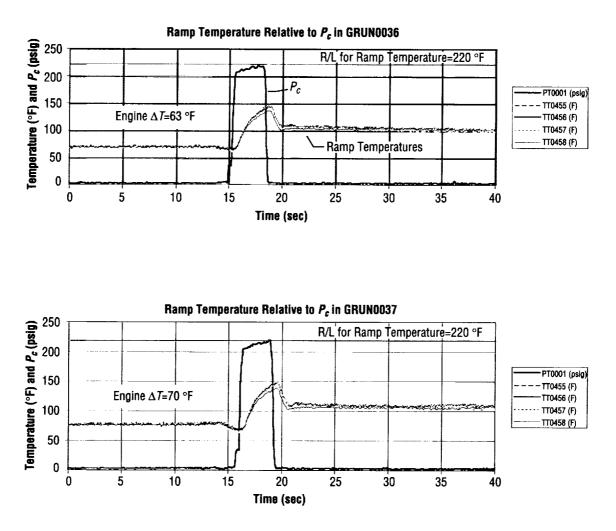


Figure 9. Ramp temperature responses in each hot-fire test.

6.2 Flight Configuration Testing

When ground testing was completed at Phillips Laboratory, the LASRE system was moved to DFRC's facilities to prepare the system for its flight configuration. To prepare the assembly for flight, all panels around the pod were installed to properly seal the assembly. After the assembly was attached to the SR-71, additional cold flows were performed to verify no changes had occurred that affected the performance established for each system. Several cold flows were conducted with the aircraft on the ground before proceeding with additional cold flows in flight. Figure 10 shows the pod being mounted to the aircraft for flight configuration testing.

While appendix F includes the steady-state data, appendix L provides transient data plots that compare flight configuration results with ground configuration tests.

Figure 10. LASRE pod being mounted to SR-71.

6.2.1 Initial Ground Testing

Before tests in flight were attempted, four ground-level cold flows were conducted with the system in flight configuration. These were performed with LN_2 through the LOX system to alleviate concerns of LOX spilling on to the surface of the stationary aircraft. GHe was used in the fuel and TEA-TEB systems.

The LOX system continued to perform nominally with results consistent with those obtained during ground tests at Phillips Laboratory. Similarly, the fuel, TEA-TEB, water, and engine systems all continued to perform consistently when compared with results achieved at Phillips Laboratory.

Some difficulty was experienced with the system used to pressurize the LOX tank, but when properly pressurized, the supply system to the engine provided the pressures and flow rates required for the hot-fire conditions. It was suspected that the pressurizing problems were caused by a valve in the LOX vent line. Isolation tests suggested the valve was inadvertently opening and/or leaking and allowing pressure to escape the LOX system. Consequently, the tank could not achieve constant pressure, as desired. Further investigations attributed the problem to changes made in the pressurization sequence. While the original operating sequence used two valves to pressurize the LOX tank, a modification during flight configuration testing employed only one valve for this operation. The change apparently affected the LOX system dynamics enough to influence the behavior of the LOX vent valve. When the operating sequence was eventually modified to use both pressurizing valves again, the system problems were alleviated.

In addition, in GR'41, the "Emergency Shutoff Switch" was used to verify that implementing this procedure in the event of anomaly would provide a "safe" shutdown of the systems and hardware. An additional inadvertent shutdown would occur if power was lost to the system "controller." A shutdown to demonstrate this event was performed in GR'46, and results verified that the main LOX and fuel valves closed properly and isolated the engine, as designed.

6.2.2 Initial Flight Testing

Initial ground testing of the flight configuration established further confidence in all system operations. Cold flows were then conducted in flight to verify that nominal operation continued when systems were operated at speed and altitude. The resulting cold flow data compared very well with the ground cold flow data, and no major sequence changes for the engine were required.

The first two flight cold flows, FLT'47 and '48, used LN_2 in the LOX system (with GHe in the fuel and TEA-TEB systems). The cold flow in FLT'47 was conducted at 41,000 ft and a Mach number of 1.2; FLT'48 was conducted at 31,000 ft and a Mach number of 0.9. For these flights, all engine and supply systems performed nominally—results were consistent with ground test data. Figure 11 shows the water coolant being exhausted at the end of one of the initial flight tests.

Unfortunately, the LASRE pod structural assembly did not appear leak tight, as desired. A nitrogen purge of the pod was used. This purge was designed to keep air out of the contained assembly and minimize the presence of oxygen in the event of a fuel leak. Yet, the pod filled with air shortly after takeoff according to oxygen sensors positioned in the canoe assembly. Between tests, attempts were made to seal the assembly better. Results in the second test, FLT'48, showed some improvement, but more sealing was required to provide acceptable levels before a hot-fire could be attempted.

Figure 11. Water exhausted during first flight configuration test.

The third flight, FLT'49, was planned to conduct a cold flow along with an ignition test; so, LOX was provided along with a single load of TEA-TEB. GHe was used in the fuel system. The test was attempted at an altitude of 26,000 ft and a Mach number of 0.75. Unfortunately, no ignition was obtained because the TEA-TEB had been loaded in the wrong canister. (After this incident, the second canister was appropriately sealed, so this mistake could not happen again.)

However, the sequence still allowed a successful cold flow to be performed, so results were established using LOX in flight. All engine and system parameters performed nominally with results comparable to the first two flight cold flows.

The level of air leaks in the canoe were significantly reduced in FLT'49, so this structure appeared to be sealed much better. Unfortunately, oxygen sensors in the model indicated LOX leaks at unacceptable levels. Although these sensors were available in the model assembly during the other flights, LN_2 had been used in the system. The leaks were not detected until LOX was provided in this flight.

Except for the excessive leaks reported in the pod during the flight cold flows, the engine and propellant systems were operating nominally and consistently. In fact, the flight readiness review (FRR) was conducted at DFRC on May 7, 1998, to review the LASRE program and request that a hot-fire in flight be considered. However, the presence of the leaks created too much uncertainty, and additional tests were planned to address these leaks before a hot-fire in flight would be attempted.

6.2.3 Additional Tests for Leakage

Unfortunately, the design of the system allowed limited access to the internal structures, making it difficult to perform thorough leak checks. Evaluations of the propellant lines and the engine had to rely on the few sensors available within the pod for relative data and limited visual checks for actually locating possible leak paths.

To further investigate the integrity of the fuel system and check for hydrogen leaks, a ground test (GR'52) was conducted with a mixture of \approx 3-percent GH₂ and 97-percent GHe through the fuel system. Hydrogen detectors were placed in various locations throughout the model to check for the presence of hydrogen when the fuel system was operated. The test was performed without the nitrogen purge, so hydrogen could be detected in an "unpurged" environment. The fuel system appeared leak tight, since no hydrogen was detected throughout the test.

Following FLT'49 when LOX leaks were first detected, a ground test (GR'47) was performed on the LOX system using LN_2 . A visual check revealed a leak in the LOX prechill line. After repairs were made, the subsequent test (GR'48) showed no visible leaks with LN_2 . However, GR'49 revealed a leak in the LOX purge line's check valve. The fittings on this valve were welded to eliminate the leak paths, and the next ground test (GR'50) indicated no visible leaks again.

These ground tests were relying on visual checks of the LOX system using LN_2 . To verify the same results in flight with LOX using the available oxygen sensors, another cold flow was attempted in FLT'50. Once again, the sensors indicated leaks were present somewhere in the LOX system. Yet, the oxygen sensors in flight could not indicate the exact location of the leaks, so further ground tests were performed to locate the leaks with visual checks on the system.

Visual checks were performed in GR'53–56 with LN_2 . Minor leaks were found and fixed in various parts of the system. When leaks could no longer be visually detected, GR'57–59 were performed with LOX in the system so the oxygen sensors could be used. (Although initial concerns prevented previous ground testing with LOX on the stationary aircraft, its surface was covered appropriately so this testing could be performed.) Visual checks could not be performed at the same time because in order to use the oxygen sensors the assembly had to be completely sealed.

Leaks were again detected with the sensors, so further visual checks with LN_2 were performed in GR'60. In this test, all accessible joints and fittings were bagged using clear plastic material. Results indicated some leakage downstream of the main LOX valve. The seal in its fitting was replaced and when GR'61 was performed with LN_2 , no visual leaks were observed. GR'62 attempted to use LOX and handheld oxygen sensors, but these sensors were inoperable, providing no useful leak detection.

Finally, GR'63 used LOX again and relied on the oxygen sensors available in the pod. Results showed leak rates as high as 4.5 percent after the LOX autosafe procedure was performed. To determine the altitude effects on these apparent leakage measurements, another LOX system blowdown in flight was attempted in FLT'51. The tests were performed at an altitude of 31,000 ft and a Mach number of 0.9. Results actually indicated higher leak rates than those observed on the preceding ground test; values reached 9.5 percent after the LOX autosafe procedure.

This final flight test (FLT'51) was conducted on October 29, 1998. At this point it appeared that without a significant cost and schedule impact, the supply systems would never be leak tight to the levels required by the FRR board for safely performing a hot-fire in flight. On November 20, 1998, NASA announced the conclusion of the LASRE program.

7. CONCLUSION

The LASRE program proved to be a very challenging project for NASA, the associated contractors, and the Air Force. Yet, along with numerous cold-flow tests, two successful hot-fire tests were conducted on the LASRE system at Phillips Laboratory. Each of these tests provided data at chamber pressures of \approx 220 psia and mixture ratios close to 6 in the aerospike engine for 3 sec. After ground configuration testing, the system was successfully integrated with the SR-71 aircraft for the flight test program at DFRC.

Although successful hot-fire tests were never conducted in flight, a lot of useful data were obtained for the aerospike engine design. In addition to the ground level hot-fire data, the cold-flow data obtained in flight at various altitudes and speeds may prove useful for further evaluating this engine configuration.

Also, the overall integration of the LASRE system with the SR-71 proved successful. Although leaks in the engine supply systems could not be sufficiently eliminated, the aircraft performed well to achieve specific data in flight. As a result, this program further demonstrated that such aircraft could be successfully used as a valuable tool for evaluating other vehicle and engine concepts in a similar manner.

APPENDIX A—Single Thruster Testing and Failure Investigation

A.1 Single Thruster Testing

Rocketdyne fabricated nine thruster assemblies, including eight for the LASRE engine. The additional thruster was tested at SSFL to verify the design and recommended operating sequence. Objectives included operating the single thruster over the chamber pressure range expected for the LASRE engine (200–300 psia) with various mixture ratio levels (4.5–7). In addition, this thruster was supposed to be tested for 1.5 times the total duration expected on the LASRE engine. Original test plans for the LASRE engine included 40 tests for 3 sec each—for a total duration of 120 sec. The SSFL program planned durations of 3, 12, and 40 sec to accumulate a total of 180 sec on the single thruster.

Twelve mainstage tests were actually conducted in September and October of 1995. Chamber pressures ranged from 188–307 psia with various mixture ratio levels. Each test lasted 3, 12, or 40 sec in duration. A total of 112 sec was accumulated on the single thruster before a failure in the 12th test ended the program.

The failure damaged the liner's upper surface, just downstream of the throat, as shown in figure 12. The surface in the damaged area was roughened and burned for several inches. The liner burned through to the coolant side in one localized area around coolant hole No. 10. (Prior to the failure, the thermal barrier coating had begun to spall off in the chamber. However, this was not unusual or unexpected, since the type of coatings used have a history of spalling in similar test environments.)

Inspections revealed the buildup of calcium carbonate $(CaCO_3)$ deposits in nearly every coolant channel. The heaviest concentration was in the channels around the damaged area. Since deionized water was not available for this program at SSFL, the calcium in the facility water system reacted with the high coolant temperatures during the hot-fires and created the solid scale buildup along the coolant channel surfaces.

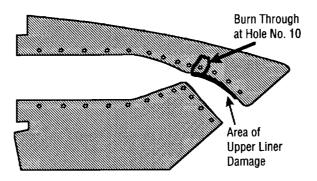


Figure 12. Damage to liner after failure.

The deposits decreased the effectiveness of the cooling water by creating a layer of low conductivity material along the coolant side of the liner. The coolant could not effectively transfer the heat that built up on the liner's hot wall. The resulting temperature rise on the hot wall was eventually high enough to melt the copper surface and burn through. (A similar problem was experienced by MSFC (circa 1987) when scale deposits from facility water eventually caused a calorimeter chamber to burn up. After this incident, MSFC always used deionized water in its test programs. Rocketdyne normally uses deionized water also, but it was not available for this program at SSFL.) A similar failure was not expected for the LASRE engine, since all components were cooled with deionized water.

The failure of the single thruster raised additional concerns and prompted additional analyses of the thruster design. During the failure investigation, detailed reviews of the hardware design, operating levels, and the original analyses were conducted. The original thermal analysis predicted the "hottest" region would be located directly upstream of the throat. However, the location of the failure suggested the "hottest" region was directly downstream of the throat, since the amount of $CaCO_3$ formation was proportional to the water temperature. In addition, the original analysis assumed equal coolant distribution among the 25 coolant holes, with 4 percent of the coolant flow provided to each.

However, Rocketdyne was able to make an aluminum replica of the thruster assembly, and when they performed water flow tests on this replica they found that the coolant distribution varied significantly, as illustrated in figure 13. The coolant holes near the injector end received the largest distribution of coolant, while those near the throat received the least amount of coolant flow. Therefore, the coolant flow was not optimized, since the injector end experienced much lower heating rates compared to the throat area. In other words, the area that needed the most coolant was, in fact, receiving the least amount. So, the original analysis was inaccurate since it assumed at least 4 percent of the coolant flow would be available to cool the throat area, when actually only 2.8–3.2 percent of the flow was provided.

As a result, new CFD and thermal analyses were performed by MSFC and reviewed with Rocketdyne. Results showed the maximum heat flux was higher than originally predicted. When accounting for this higher heat flux and the nonuniform coolant distribution, the maximum wall temperatures were higher than originally predicted. In addition, the new thermal analysis showed the potential for film boiling, which would create a vapor phase of water in the coolant, reducing the effectiveness of the liquid coolant. The presence of film boiling would create even higher wall temperatures.

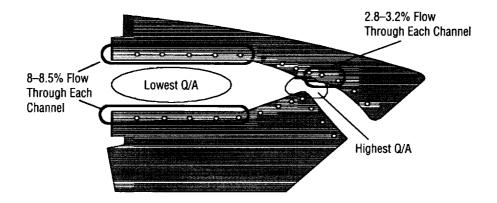


Figure 13. Actual coolant distribution through coolant channels.

When these results were shared with Rocketdyne, additional analyses were performed that concluded no thermal safety margins were available for operating the LASRE engine thrusters at chamber pressures as high as 300 psia. Minimal but acceptable margin was available for operating at chamber pressures of 200 psia. For conservative operation, it was therefore recommended that system changes be attempted to increase the amount of coolant flow available, or limit the LASRE engine testing to chamber pressures of 200 psia.

("Minimal margin" indicated less margin (≈10 percent) than normally provided for flight hardware (60 percent). The LASRE engine was considered "workhorse" hardware with a limited number of short duration tests planned. So, while the minimal margin available was not optimal, it was acceptable for the LASRE test program. In addition, any detrimental effects from "overheating" would be gradual and evident from visual inspections of the hardware, so no catastrophic failure was implied from the reduced margin available during operation.)

The results of the single thruster failure and subsequent analyses did create some changes to the test conditions planned for the LASRE engine. Original hot-fire test conditions included chamber pressures of 200, 250, and 300 psia with vectored burns performed by operating one side of the engine at 200 psia and the other side at 300 psia. With the thermal margin concerns, all testing was limited to a conservative chamber pressure of 200 psia after the water blowdowns of the LASRE system showed that higher coolant flow rates were unavailable. However, the chamber pressure of 200 psia was considered adequate for obtaining data necessary to evaluate the aerospike engine performance. (These plans did not preclude testing at higher chamber pressures or vectored conditions later in the program. If enough confidence in the hardware existed after flight hot-fire test results and hardware inspections, higher chamber pressures and/or a vectored burn would have been considered for the final flight hot-fire test.)

APPENDIX B—Design Limits of LASRE Engine Components

As required, engine components (table 4) were proof tested to $1.5 \times$ maximum expected operating pressure (MEOP). Also, a factor of safety (F.S.) on ultimate >2.25 was required.

All welds were class 1 inspected (x-rayed to verify penetration), ultrasonic inspections of critical braze joints were performed, and all joints proof tested/leak checked.

Component	Max. Op <i>P</i> (psi)	perating 7(°F)	Proof Pressure at 70 °F (psi)	F.S. Operating (Ultimate	
Injector assembly alone GH ₂ LOX	445 502	70 -29 0	668 668	6.0 20.0	2.2 4.8
Combustor assembly alone H ₂ O Thruster assembly hot gas joint	600 300	170 500	987* 525	20.0 4.6	13.0 1.4
System plumbing (not attached to engine) GH ₂ LOX H ₂ O	460 526 600	70 290 170	690 575* 1,038*	6.0 20.0 5.3	2.2 4.8 2.0
Nozzle assembly (w/H ₂ O inlets, mfds, ramps, fences) H ₂ O RD plumbing to engine banks	450	_	-	>4.0	>1.5
(including venturies, valves, tees, etc.) GH ₂ LOX H ₂ O	600 600 600	70 -290 170		>4.0 >4.0 >4.0	>1.5 >1.5 >1.5

Table 4.	Engine	component	testing	specifications.
----------	--------	-----------	---------	-----------------

*Includes environmental correction factor: ECF=(Ftu at T_{proof} /Ftu at T_{oper}) (proof $P = 1.5 \times MEOP \times ECF$)

APPENDIX C—LASRE System Design Details

Details of the LASRE system design are shown in figures 14 and 15 and the line list, system parts list, and interface list are shown in tables 5–7, respectively.

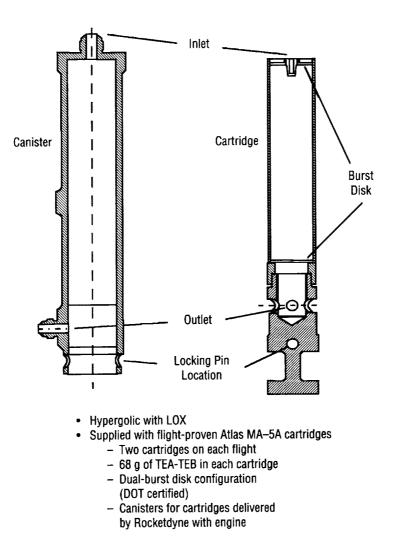


Figure 14. TEA-TEB ignition system.

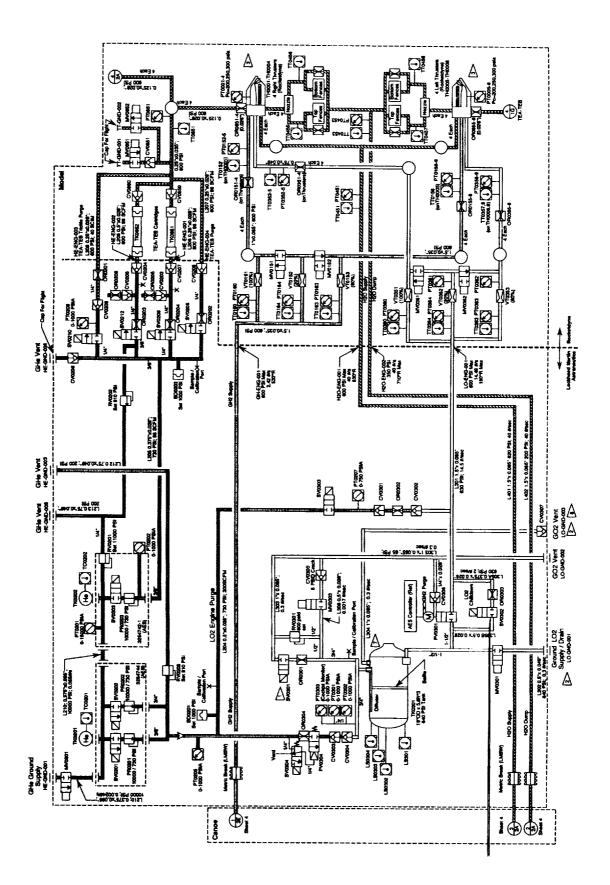


Figure 15. Detailed schematic of LASRE systems, reference Rev. H of drawing ALS-LASRE-10000.

34

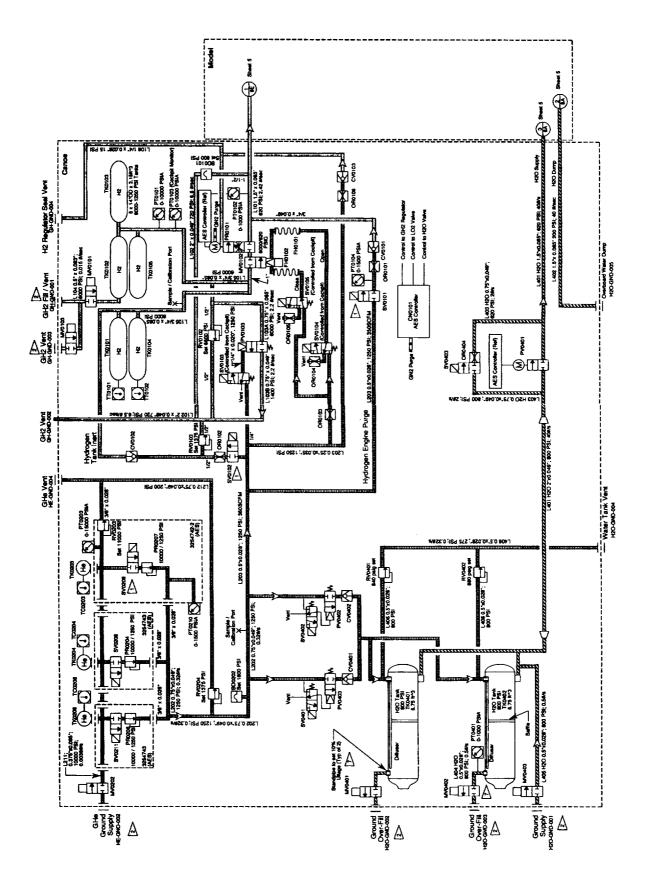


Figure 15. Detailed schematic of LASRE systems, reference Rev. H of drawing ALS-LASRE-10000 (Continued).

LASRE Line List

Ult Tensile Strength (psi) Yield (psi) 75000 30000 105000 75000

321 CRES PER MIL-T-8808 1/8 hard 304 CRES per AMS 5566 (Labelled w/*)

on ultimate 2.5 Factor of Safety

Notes		Upstream of Vent Valve PV0103	Downstream of Vent Valve PV0103																		65 PSI Downstream of Valve	65 PSI Downstream of Valve			65 PSI Downstream of Valve		From tank manifold to shutoff valve						AI S-LASRE-10000 Rev H
Selected Wall (in)	0.065	0.065	0.049	0.083	0.065	0.028	0,049	0.049	0.028	0.028	0.028	0.028	0.028	0.028	0.065	0.065	0.049	0.049	0.065	0.049	0.065	0.065	0.028	0.028	0.028	0.065	0.049	0.065	0.049	0.028	0.028	0.028	
Min Reqd Wall (in)	0.023 0.036	0.054*	0.022	0.075	0.054*	0.000	0.014	0.023	0.016	0.009	0.007	0.005	0.005	0.005	0.045*	0.045*	0.004	0.004	0.023	0.008	0.015	0.015	0.006	0.008	0.008	0.030	0.040	0.008	0.015	0.010	0.010	0.010	
Flowrate (#/s)	2.42 6.50	2.18	2.18	0.015	2.42	1 SCIM	0.26	0.27	350 SCFM	200 SCFM	96 SCFM	96 SCFM	96 SCFM	40 SCIM	0.0024	0.0036	0.41	0.26	14.50	0.30	0:30	0:30	2.00	2.00	0.0017	40.00	40.00	40.00	2.00	0.50	0.50	0.32	
Length (ft)	11.2 6.0	6.0	6.0	4.0	26.1	10.0	4.0	6.0	30.0	30.0	5.0	3.0	3.0	3.0	4.0	4.0	15.0	15.0	8.0	4.0	6.0	6.0	3.0	3.0	5.0	40.0	40.0	40.0	5.0	5.0	5.0	5.0	
on yreig Line Size (in)	1.500 2.000	0.750	0.750	0.500	0.750	0.250	0.750	0.750	0.500	0.500	0.375	0.250	0.250	0.250	0.375	0.375	0.750	0.750	1.500	0.500	1.000	1.000	0.375	0.500	0.500	1.500	2.000	1.500	0.750	0.500	0.500	0.500	
	400-530 530	230	530	530	400-530	530	400-530	400-530	530	530	530	530	530	530	530	530	400-530	400-530	162-190	162-190	162-190	162-190	162-190	162-190	162-190	530	530	710	530	530	530	530	
Pressure (psia)	009	009	1150	6000	6000	15	730	1250	1250	730	730	730	730	730	10000	10000	200	200	009	009	009	80	009	8	600	808	800	200	808	80	800	800	
Fluid	GH2 GH2	GH2	GH2	GH2	GH2	GH2	쁆	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	L02	L02	G02/GHe	G02/GHe	L02	L02	G02/GHe	H20	H2O	H20	H2O H	H2O	H20	GHe/H20	
Line Name	GH2 Supply to Engine GH2 Relief Vatve Vent	GH2 Cockpit Vent	GH2 Cockpit Vent	GH2 Fill/Vent	GH2 Tanks to Regulator	H2 Regulator Seal Vent	He Press of LO2 Tank	He Press of H2O Tank	He Purge of GH2 System	He Purge of LO2 System	TEA-TEB Helium Supply	TEA-TEB Press/Purge	TEA-TEB System Purge	TEA-TEB Trickle Purge	GHe Fill - Model	GHe Fill - Canoe	He Vent - Model Bottom	He Vent - Model Top	LO2 Supply to Engine	LO2 Fill/Drain	LO2 Tank Vent	LO2 Tank Overflow	LO2 Engine Chilldown	LO2 Engine Chilldown	LO2 Tank Regulated Vent	H2O Supply to Engine	H2O Supply to Engine	H20 Return from Engine	Engine Cooldown	H20 Tank Overflow	H20 Fill/Drain	H20 Tank Relief	
Line Number	L101 L102	L103A	L1038	L104	L105	L106	1201	1202	L203	1204	L205	L206	1207	1208	L210	1121	1212	L213	L301	L302	L303	L304	L305A	L305B	L306	L401A	L401B	L402	L403	L404	L405	L406	

5/27/97

Ref Des	Nomenclature	Fluid	Pressure (psia)	Temp (oR)	Line Size (in)	Flow rate (#/s)	Part No.	Supplier	Notes	Line No.
icle Gas	Vehicle Gaseous Hydrogen Subsystem									-
BD0101	GH2 Engine Supply Burst Disk	GH2	800	230	1.5	6.5	Holder, 1-1/2" Type BU; Disk, 1-1/2" Type SCRD-V CRES	Fike	800 PSID Burst. Part has a reverse pressure support feature.	L102
CN0101	Allied Signal Controller	N/A	N/A	N/A	AN	N/A	3254709	Allied		
CV0101	Engine Purge Check Valve	GH2	820	530	0.5	350SCFM	220T-8JJ	Circle Seal		1203
CV0102	GH2 Tank thert Check Valve	GH2	6000	530	0.5	100SCFM	H220T-8JJ	Circle Seal		L203
CV0103	PR0101 Seal Vent Check Valve	Ъ	32	530	0.25	750 SCIM	MS24593-1	Crissair		L203
FH0101	MV0102 Pneumatic Control Flex Hose - Open	뤈	1250	530	0.25	N/A	MIL-H-27267	N/A	0.010" Drill	L203
FH0102	MV0102 Pneumatic Control Flex Hose - Close	He	1250	530	0.25	N/A	MiL-H-27267	N/A	0.010" Drill	L203
MV0101	GH2 Tank Fill Valve	GH2	6000	530	0.5	0.15	81875-8KR	Dragon		L104
MV0102	GH2 Ground Safety Shut-off Valve	GH2	6000	530	-	2.42	MS-VV16T	Hi-Gear	w/ 74A695230-1003 Actuator	L105
MV0103	GH2 Quick Disconnect Vent Valve	GH2	6000	530	0.5	NA	SSNG250-4T	Robbins		L104
OR0101	Hydrogen Purge Orifice	He	1250	530	0.5	350SCFM	AA1634-8K	Allen Aircraft	0.16* Drill	L203
OR0102	GH2 Tank Inert Orifice	He	1250	530	0.5	100SCFM	AA1634-8K	Allen Aircraft	0.085" Drill	L203
OR0103	MV0102 Pneumatic Control Orifice	목	1250	530	0.25	N/A	Conical Seal Orifice	NA	0.010" Drill	L203
OR0104	MV0102 Pneumatic Control Orifice - Open	Å	1250	530	0.25	NA	Conical Seal Orifice	NA	0.010" Drill	L203
OR0105	MV0102 Pneumatic Control Orifice - Close	£	1250	530	0.25	N/A	Conical Seal Orifice	NA	0.010" Drill	L203
OR0106	PR0101 Seal Vent Check Oritice	Ŧ	1250	530	0.25	750 SCIM	VDLM4326730H	Lee Co.		L203
PR0101	GH2 Regulator/Shut-off Valve	GH2	6000	530	1.5	2.42	3269636	Allied		L101
PTDH01	GH2 Tank Pressure Transducer	GH2	6000	530	0.25	N/A	AP122DV-1e-2c-5b-9b	Sensotec	0-10000 PSIA Model TJE/A577-02-01	L104
PT0102	GH2 Engine Supply Pressure Transducer	GH2	620	230	0.25	NA	A-5/8327-12	Allied/ Sensotec	0-1000 PSIA	L101
PT0103	GH2 Tank Pressure Transducer	6H2	0009	530	0.25	NA	AP1220V-1e-2c-5b-9b	Sensotec	Monitored from Cockpit, 0-10000 PSIA, Model TJE/A577-02-01	L104
PT0104	GH2 Engine Purge Pressure Transducer	GHe	1250	530	0.25	N/A	PA324TC-1.5M	Statham	0-1500 PSIA	L203
PV0103	GH2 Tank Vent Valve	GH2	6000	530	0.75	2.18	KP14660	Keane	Cv=2.295, Note 9	L103
RV0102	GH2 Tank Relief Valve	GH2	6000	530	0.5	0.015	5349T-8BB-6600	Circle Seal		L102
RV0103	GH2 Tank Inert Relief Valve	GH2	1250	530	0.5	0.015	51201-81J-900	Circle Seal	Reset as high as possible; Relieves in the event CV0102 leaks	L102
SV0101	Hydrogen Purge Shutoff Valve	¥	1250	530	0.5	350SCFM	KS14709	Keane	A=0.006in^2	L203
SV0102	GH2 Tank Inert Shutoff Valve	Ę	1250	530	0.5	100SCFM	KS14709	Keane	A=0.006in^2	L203
SV0103	PV0103 Control Valve	₽	1250	530	0.25	N/A	KS14655	Keane	Controlled from cockpit	1203
SV0104	MV0102 Control Valve - Open	Ħ	1250	530	0.25	NA	MV74	Marotta	Controlled from cockpit	L203
SV0105	MV0102 Control Valve - Close	£	1250	530	0.25	NA	MV74	Marotta	Controlled from cockpit	L203
TK0101	GH2 Tank	GH2	6000	230	-	0.5	5001536	Structurat Composites	Supplied by DFRC	L105
TK0102	GH2 Tank	GH2	6000	530	-	0.5	5001536	Struc Comp	Supplied by DFRC	L105
TK0103	GH2 Tank	GH2	0009	530	~	0.5	5001536	Struc Comp	Supplied by DFRC	L105
TK0104	GH2 Tank	GH2	0009	530	-	0.5	5001536	Struc Comp	Supplied by DFRC	L105
TK0105	GH2 Tank	GH2	6000	530	-	0.5	5001536	Struc Comp	Supplied by DFRC	L105
170101	GH2 Tank Temperature Transducer	GH2	0009	200-800	0.25	N/A	49-12()-80/+115C	Scientific Inst		NA
T10100	CUD Tank Temperature Transducer	510	0000	000 000			AD 400.001.4450	Coloradian land		M14

Table 6. LASRE propulsion system parts list.

								A NUMBER OF A DESCRIPTION OF A DESCRIPTI		
Ref Des	Nomenclature	Fluid	Pressure (psia)	Temp (oR)	Line Size (in)	Flow rate (#/s)	Part No.	Supplier	Notes	Line No.
icle Heliur	Vehicle Helium Subsystem									
BD0201	GHe Supply Burst Disk - Model LO2	£	730	230	0.5	0.2	Holder, 1/2' Type BU; Disk, 1/2' Scored Disk, CRES	Fike	1000 PSID Burst.	162 1
800202	GHe Supply Burst Disk - Canoe	¥	1250	230	0.5	0.3	Holder, 1/2" Type BU; Disk, 1/2" Scored Disk, CRES	Fike	1600 PSID Burst.	1201
BD0203	GHe Supply Burst Disk - TEA-TEB	9 1	230	230	0.5	0.1	Holder,1/2" Type BU; Disk, 1/2" Scored Disk, CRES	Fike	1000 PSID Burst.	L201
CV0203	T-TEB Cannister #1 Bleed Check Valve	₽₽	730	530	0.25	NA	428-4ZT-24	Republic		L206
CV0204	T-TEB Cannister #2 Bleed Check Valve	£	730	230	0.5	96 SCHM	2201-8.U	Circle Seal		L206
CV0205	T-TEB Cannister #2 Bleed Check Valve	θĤ	730	530	0.25	N A	488-4SST-5	Republic	0.016" Drill	1206
CV0206	T-TEB Trickle Purge Check Valve	£	730	530	0.25	40SCIM	220T-8JJ	Circle Seal		1208
CV0207	T-TEB Cannister #1 Press Check Valve	문	730	530	0.25	96 SCFM	220T-8JJ	Circle Seal		L206
CV0208	T-TEB Purge Check Valve	₽ ₽	730	530	0.25	96 SOFM	220T-8JJ	Circle Seal		L207
CV0209	T-TEB Arming Vent Check Valve	Ŧ	730	530	0.25	N/A	2207-8JJ	Circle Seal		1700 1700
MV0201	Model GHe Tank Fill Valve	- ₽	10000	530	0.375	0.0024	20SC6071	Autoclave		6 7
MV0202	Canoe GHe Tank Fill Valve	Ŧ	10000	530	0.375	0.0026	20SC6071	Autoclave		157
0R0201	T-TEB Trickte Purge Orifice	He	730	530	0.25	40SCIM	VDLA4316135T	Lee Co.		80 71
OR0202	T-TEB Purge Orifice	₽₽	730	530	0.25	96 SCFM	AA1634-4K	Alten Aircraft	0.11* Dra	L207
OR0203	T-TEB Cannister 1 Pressurization Orifice	ŧ	730	530	0.25	96 SCFM	Conical Seal Orifice	NA	0.11" Drill, CRES	L207
0R0204	T-TEB Cannister 2 Pressurization Orifice	₽	730	530	0.25	96 SCFM	AA1634-4K	Alten Aircraft	0.11" Dr#	L207
OR0205	T-TEB Cannister #1 Bleed Orifice	He He	730	530	0.25	NA	Conical Seal Orifice	NA	0.16" Drill, CRES	200 7
0R0206	T-TEB Cannister #2 Bleed Orifice	£	230	530	0.25	NA	Conical Seal Orifice	NA	0.16" Drill, CRES	99 7
PR0201	Helium Tank Pressure Regulator - Model	£	10000	230	0.375	0.09	KCR14627	Keane	Part of Manifold 3254744;A=0.0067in^2	
PR0202	Helium Tank Pressure Regulator - Model	£	10000	23	0.375	0.09	KCR14627	Keane	Part of Manifold 3254744;A=0.0067in^2	201
PR0203	Helium Tank Pressure Regulator - Model	£	10000	530	0.375	0.09	KCR14627	Keane	Part of Manifold 3254742-1;A=0.0067in^2	5
PR0204	Helium Tank Pressure Regulator - Canoe	£	10000	530	0.375	0.09	KCR14521	Keane	Part of Manifold 3254743;A=0.0067in^2	L202
PR0206	Helium Tank Pressure Regulator - Canoe	£	10000	530	0.375	60.0	KCR14521	Keane	Part of Manifold 3254743;A=0.0067in^2	L202
PR0207	Helium Tank Pressure Regulator - Canoe	He	10000	530	0.375	60.0	KCR14521	Keane	Part of Manifold 3254742-2;A=0.0067in^2	L202
PT0201	Helium Tank Pressure Regulator - Model	Ŧ	10000	530	0.25	NA	AP122EJ-1e-2c-5b-9b	Sensotec	0-15000 PSIA, Model TJE/A577-01-01	1210
PT0202	Helium Supply Pressure Transducer - Model	Ч	730	530	0.25	NA	AP122CV-1e-2c-5b-9b	Sensotec	0-1000 PSIA, Model TJE/A578-01-01	5
PT0203	Helium Tank Pressure Transducer - Canoe	Ŧ	10000	530	0.25	AN	AP122EJ-1e-2c-5b-9b	Sensotec	0-15000 PSIA, Model TJE/A577-01-01	121
PT0205	TEA-TEB He Supply Pressure Transducer	He	730	530	0.25	AN	AP122CV-1e-2c-5b-9b	Sensotec	0-1000 PSIA, Model TJE/A578-01-01	1206 L206
PT0207	LO2 Feedline Purge Pressure Transducer	£	730	530	0.25	M	AP122CT-1e-2c-5b-9b	Sensotec	0-750 PSIA, Model TJE/A578-02-01	1204
PT0208	TEA-TEB Trickle Purge Pressure Transducer	£	730	530	0.25	NA	AP122CV-1e-2c-5b-9b	Sensotec	0-1000 PSIA, Model TJE/A578-01-01	1208
PT0210	Helium Supply Pressure Transducer - Canoe	£	1250	230	0.25	NA	PA324TC-1.5M	Statham	0-1500 PSIA	L202
RV0201	Helium Tank Relief Valve - Model	£	10000	230	0.5	0.41	409M4F4Q	Pneu Hydro	Cv=0.09, Part of Manifold 3254742-1	121
RV0202	TEA-TEB He Supply Relief Valve	ደ	200	530	0.5	0.41	51320-3110	Fluid Mech	Cv=1.5 (Fluid Mechanics)	L212
P/0003	Helium Tank Relief Valve - Canne	ž	10000	530	05	041	409M4F40	Pneu Hvdro	Cv=0.09. Part of Manifold 3254742-2	L212

Table 6. LASRE propulsion system parts list (Continued).

s List	
on System Parts	
LASRE Propulsi	

Table 6.	LASRE propulsion system parts list (Continued).	
----------	---	--

Ref Des		F								
	Nomenclature	Fluid	Pressure (psia)	Temp (oR)	Line Size (in)	How rate (#/s)	Part No.	Supplier	Notes	Line No.
icle Heliu	Vehicle Helium Subsystem (cont.)									
RV0204	Helium Supply Relief Valve - Canoe	₽	1250	530	0.5	0.41	51320-3110	Fluid Mech	Cv=1.5 (Fluid Mechanics)	1212
RV0206	Helium Supply Relief Valve - Model	£	730	530	0.5	0.26	51320-3110	Fluid Mech	Cv=1.5 (Fluid Mechanics);Set 810 psi	1212
SV0201	Helium Tank Shutoff Valve - Model	£	10000	530	0.375	0.09	KS14525	Keane	Part of Manifold 3254744;A=0.006in^2	L201
SV0202	Helium Tank Shutoff Valve - Model	£	10000	530	0.375	0.09	KS14525	Keane	Part of Manifold 3254744;A=0.006in^2	1201
SV0203	Helium Tank Shutoff Valve - Model	문	10000	530	0.375	0.09	KS14525	Keane	Part of Manifold 3254742-1;A=0.006in^2	L201
SV0205	T-TEB Purce Shutoff Valve	훈	730	530	0.5	96 SCFM	3254770-1	Allied/Keane	Part of TEA-TEB Press;A=0.006in^2	L207
SVD206	Helium Tank Shutoff Valve - Cance	Ŧ	10000	530	0.375	0.09	KS14667	Keane	Part of Manifold 3254742-2:A=0.006in^2	L202
SV0208	Helling Tank Shirtoff Valve - Canne	- F	10000	230	0.375	0.09	KS14667	Кеале	Part of Manifold 3254743:A=0.006in^2	L202
SVN2NG	T-TFR Tank#1 Pressurization Shutoff Valve	e T	730	230	0.5	96 SCFM	3254770-1	Allied/Keane	Part of TEA-TEB Press:A=0.006in^2	L206
SV0210	T-TFB Trickle Purne Shutoff Valve	Ŧ	730	230	0.5	40SCIM	3254770-1	Allied/Keane	Part of TEA-TEB Press:A=0.006in^2	L208
SVD211	Helium Tank Shirtoff Valve - Canoe	Ŧ	10000	230	0.375	0.09	KS14667	Keane	Part of Manifold 3254743.A=0.006in^2	L202
SV0212	T-TFB Tank#2 Pressurization Shutoff Valve	Ŧ	730	230	0.25	96 SCFM	KS14637-1	Keane	A=0.006in^2	L206
TCODI	Helium Tank Thermocounter - Model	Ŧ	10000	530	N/A	N/A			Type K Thermocouple	N/A
TCODO	Helium Tank Thermocoupie - Model	4		530	N/A	N/A			Tvna K Thermocounte	N/A
		2 4		3					Tune K Thermonomiale	
CUZUS	Hellum Jank Inermocoupie - Canoe	≝ :		2						
TC0204	Heltium Tank Thermocouple - Canoe	£	10001	230	NA	N/A				AN 1
TC0206	Helium Tank Thermocouple - Canoe	Ŧ	10000	230	NA	NA			Type K Thermocouple	N/A
TK0201	Helium Tank - Model	£	10000	230	0.375	60:0	Part of 3269626-1	Allied	dia=15"	NA
TK0202	Helium Tank - Model	₽₽	10000	530	0.375	60.0	Part of 3269626-1	Allied	dia=15	NA
TK0203	Helium Tank - Canoe	He	10000	530	0.375	0.09	Part of 3269626-1	Allied	dia=15*	N/A
TK0204	Helium Tank - Canoe	He	10000	230	0.375	60.0	Part of 3269626-1	Allied	dia=15"	N/A
TK0206	Helium Tank - Canoe	He	10000	530	0.375	0.09	Part of 3269626-1	Allied	dia=15*	N/A
ale Mete	Ashirala Materia Cutasurtean									
VUILUE VALL	TUDO Task Dessentiation Check Value	1	000	530	0.75	76.0	1220T-1211	Cirrle Casl		1 202
	Incol talik Pressurgation Chock Valve	23		200	0.75	0.97	2501-1230 290T-1211	Circle Seal		1 202
	ITCU TERK FIESSUILZENUIL UNEUN VARVE LUDO Teete Oniordiau Martin	2007		3 6	2.20	50	R1875-8KH	Dranon		1 404
			8	200	200	200	81875_8KB	Dracon		1 404
			8					Dragon		
EUPUVM			2		0.0	3.	741274 C 1010	Allan Aimme	0177 D.11	
UHUAUA	Engine cooldown Unnice		000		10.0	7				
PT0401	H20 lank Pressure Iransducer			200	CZ-D	A/N	AP1220V-18-20-30-30	Sensorec	U-IN-IN-RICE MODELIA	1.10
PV0401	H20 Shut-off Vaive	N2H	800	050	<u>0</u>	4	3205038	Allied		
PV0402	Water Tank Pressurization Valve	롼	1250	230	0.75	0.27	KP14665	Keane	Cv=2.295	L202
PV0403	Water Tank Pressurization Valve	£	1250	230	0.75	0.27	KP14665	Keane	Cv=2.295	L202
RV0401	H20 Tank Relief Valve	ቶ	800	530	0.5	0.27	5120T-8TJ-800	Circle Seal		L406
RV0402	H20 Tank Relief Valve	문 	800	530	0.5	0.27	51207-87J-800	Circle Seal		L406
SV0401	PV0403 Control Valve	£	1250	530	0.25	N/A	KS14655	Keane		L202
SV0402	PV0402 Control Valve	완	1250	530	0.25	N/A	KS14655	Keane		L202
SV0403	Engine Cooldown Valve	H20	800	530	0.375	2	15810	Atkomatic		L403
TIKINA	H20 Tank	H20	800	530	15	20	P92196C-2	ARDE	Note 7	L401
TKNAM	HOOT Tank	HOU	ROO	530	5	20	P92196C-2	ARDF	Ninte 7	1 401

					LASRE Pro	LASRE Propulsion System Parts List	m Parts List			76/22/6
Ref Des	Nomenclature	Fluid	Pressure (psia)	Temp (oR)	Line Size (in)	Flow rate (#/s)	Part No.	Supplier	Notes	Line No.
Vehicle Oxy	Vehicle Oxygen Subsystem									
CV0301	1:02 Engine Feed Line Purge Check Valve	GHe/G02	700	162-530	0.5	200SCFM	K220T-8JJ	Circle Seal		L204
CV0302	LO2 Engine Feed Line Purge Check Valve	GHe/G02	200	162-530	0.5	200SCFM	K220T-8UJ	Circle Seal		1204
CV0303	LO2 Tank Pressurization Check Valve	GHe/GO2	002	162-530	0.75	0.26	K220T-12JU	Circle Seal		L201
CV0304	LO2 Tank Pressurization Check Valve	GHe/GO2	200	162-530	0.75	0.26	K220T-12JJ	Circle Seal		1201
CV0305	LO2 Tank Pressure Control Check Valve	GHe/G02	20	162-530	0.5	0.0017	K220T-8.U-5	Circle Seal	5 psid Crack Pressure	L306
CV0306	LO2 Interstitial Seal Vent Check Valve	602	65	530	0.25	NA	220T-4.U	Circle Seal		L303
CV0307	Oxygen Tank Overflow Port Check Valve	Г03	700	160-190	-	0.3	K220T-12JJ	Circle Seal		1304
LS0301	LO2 Level Sensor - Low	۲02 ۲	202	162-530	AN	N A			Type E Thermocouple	NA
LS0302	LO2 Level Sensor - Top	L02	700	162-530	NA	N/A			Type E Thermocouple	NA
LS0303	LO2 Level Sensor - Full	L02	700	162-530	AN	NA			Type E Thermocouple	NA
LS0304	LO2 Level Sensor - Overfull	L02	200	162-530	NA	N/A			Type E Thermocouple	NA
MV0301	LO2 Fil/Drain Valve	L02	200	162-530	0.5	0.3	V-1060-050	CVI		L302
MV0302	LO2 Hight Tank Fill Vent Valve	G02	200	162-530	0.5	0.3	V-1060-050	S		L304
E0E0VM	LO2 Tank Back Pressure Reg Blocking Valve	GHe/G02	202	162-530	0.5	0.0017	V-1060-050	C		L306
OR0301	LO2 Flight Tank Vent Orifice	602	65	162-530	0.375	0.3	AA1634-6K	Allen Aircraft	0.19° Drill	L303
0R0302	LO2 Engine Feed Line Purge Oritice	GHe	202	530	0.5	200SCFM	AA1634-BK	Allen Aircraft	0.2" Dritt	1204
OR0303	LO2 Engine Chilldown Orifice	<u>г</u> о	002	162-530	0.375	2	Conical Seal Orlfice	NA	0.24" Drill	L305
0R0304	LO2 Tank Pressurization Orifice	GHe	002	230	0.75	0.3	AA1634-12K	Allen Aircraft	0.30" Drill	L303
PT0301	LO2 Flight Tank Pressure 1	6 2	0-1000	162-530	0.25	N/A	AP122CV-1e-2c-5d-9b	Sensotec	0-1000 PSIA, Model TJE/A578-01-01	NA
PT0302	LO2 Flight Tank Pressure 2	L02	0-1000	162-530	0.25	NA	AP122CV-1e-2c-5d-9b	Sensotec	0-1000 PSIA, Model TJE/A578-01-01	NA
PT0303	LO2 Flight Tank Pressure Transducer	L02	0-1000	162-530	0.25	N/A	AP122CV-1e-2c-5d-9b	Sensotec	Monitored from Cockpit, 0-1000 PSIA, Model TJE/A578-01-01	NA
PV0301	LO2 Engine Feed Valve	L02	200	162-530	1.5	14.5	3269638	Allied		L301
PV0304	LO2 Tank Pressurization Valve	GHe	200	530	0.75	0.26	KP14665	Keane	Cv=2.295	1201
RV0301	LO2 Flight Tank Relief Valve	GHe/GO2	200	162-530	0.5	0.3	K5120T-8TJ-800	Circle Seal		L303
SV0301	LO2 Flight Tank Vent Valve	602	Set 770	162-530	0.375	0.3	15810	Atkomatic		L303
SV0302	LO2 Engine Chilldown Valve	L02	200	162-530	0.375	2	31800	Atkomatic	Cv=1.1	L305
SV0303	LO2 Engine Feed Line Purge Valve	GHe	200	162-530	0.5	200SCFM	KS14709	Keane	A=0.006in^2	L204
SV0304	PV0304 Control Valve	GHe	700	530	0.25	NA	KS14655	Keane		1201
TK0301	LASRE LO2 Propellant Tank	L02	700	162-530	1.5	14.5	P92196C-1	ARDE	Note 7	L301
									ALS-LASRE-1	ALS-LASRE-10000 Rev H

Table 6. LASRE propulsion system parts list (Continued).

			<u> </u>	Interface List						5/27/97
Interface	Nomenclature	From	Q	Fluid	Pressure (psig)	Temp (oR)	Line Size (in)	Flow rate (#/S)	Prop System Interface	Notes
Vehicle Hydrogen Subsystem) Subsystem									
GH-ENG-001 GH-GND-001	Hydrogen Supply to Engine Hydrogen Fill & Vent	GH2 System Ground	Engine GH2 System	GH2 GH2	600 6000	380-530 530	1.5 0.5	2.42 0.015	Ring Seal Snap-tite SH71-1N6-8F	Ground Side Mating Quick Disconnect -
GH-GND-002 GH-GND-003 GH-GND-004	Hydrogen Vent Hydrogen Uuick Disconnect Vent Hydrogen Regulator Seal Vent	GH2 System GH2 System GH2 System	Ground Ground Ground	GH2 GH2 GH2	720 6000 15	530 530 530	2 0.5 0.25	6.5 N/A 1 SCIM	MS33649-32 Ring Seal Ring Seal	Shap-tite SH7/1-1-LG-af-
Vehicle Oxvoen Subsystem	i i hsvstem									
LO-ENG-001	Liquid Oxygen Supply to Engine	L02 System Ground	Engine	L02	600 50	160-190 160-190	1.5	14.5 0.3	Ring Seal	
LO-GND-002 LO-GND-003	Oxygen Vent Oxygen Vent Oxygen Tank Overflow Port	LO2 System LO2 System	Ground Ground	03 60 100 7	3 2 2	160-190 160-190	3	0.3	MS33649-16 Ring Seal	Exits at top, rear of Model Note 8
Vehicle Helium Suhsvetem	u hevetem									
HE-ENG-001	TEA-TEB Tank#1 Pressurization	GHe System	Engine	GHe	730	530	0.25	96 SCFM	Tubing Flare	
HE-ENG-002	TEA-TEB Tank#2 Pressurization	GHe System	Engine	GHe	730	530	0.25	96 SCFM	Tubing Flare	
HE-ENG-003 HF-FNG-004	TEA-TEB Trickle Purge	GHe System GHe System	Engine	GHe GHe	062	530	0.25	40 SCIM 96 SCFM	Tubing Flare	
HE-GND-001	Helium Fill - Model	Ground	GHe System	GHe	10000	530	0.375	0.0024	Ring Seal	
HE-GND-002	Helium Fill - Canoe	Ground	GHe System	GHe	10000	530	0.375	0.0036	Ring Seal	
HE-GND-003	He Vent - Model Bottom	GHe System	Ground	GHe	200	530	0.75	0.41	No fitting	Exits between Model and Canoe
HE-GND-004	Helium Vent - Canoe	GHe System	Ground	GHe	200	530	0.75	0.41	No fitting	
HE-GND-005 HE-GND-006	He Vent - Model Top TEA-TEB Helium Safing Vent	GHe System Ground	Ground GHe System	GHe GHe	200 730	530 530	0.75 0.375	0.26 N/A	No fitting Ring Seal	Exits at top, rear of Model Cap for Flight
Vehicle Water Subsystem	hsvstem									
H20-ENG-001	Water Supply to Engine	Water System	Engine	H20	009	530	1.5	40	Ring Seal	
H20-GND-001	water Fell	Ground	Water System		00	7 10 Max	0.5	0.5	Ring Seal	
H20-GND-002	Water Tank Over-fill 1	Water System	Ground	H20	N/A	530	0.5	0.5	Ring Seal	
H20-GND-003	Water Tank Over-fill 2	Water System	Ground	H20	N/A 272	230	0.5	0.5	Ring Seal	
H20-GND-005	water lank keller valve vent Water Overboard Dump	Water System	Ground	616 H20	c/2 500	710 max	0.5 1.5	0.32 40	NO TITUING MS33649-24	
Vehicle TEA-TEB Subsystem	Subsystem									
TT-GND-001 TT-GND-002	TEA-TEB Manual Purge TEA-TEB Contingency Vent	Ground TT System	Engine Ground	GN2/TT GHe/TT	730	530 530	0.25 0.25	N/A N/A	Tubing flare Tubing flare	20 psi GN2 purge
									•	ALS-LASRE-1000 Rev H

Table 7. LASRE interface list.

APPENDIX D—Instrumentation List

The LASRE program master measurement list is shown in table 8.

Installed	By:	LMSW	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/A	AVA	NA	N/A	NA	A/A	N/A	NA	N/A	N/A	N/A		itical fety
Instru'n	Respon	LMSW	NSM	LMSW	LMSW	LMSW	LMSW	LMSW	MSWI	MSML	NSWI	NSW	NSW	NSW	LMSW	LMSW	LMSW	LMSW	LMSW	LMSW	NSW	LMSW	LMSW	LMSW	NSM	LMSW	LMSW	LMSW	NSW	LMSW	LMSW	LMSW	LMSW	LMSW .	LMSW	LMSW	LMSW	LMSW	LMSW	LMSW	NSM		 Flight Critical Flight Safety
	Status	Cal 03/08/96	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Cal 03/12/96	Operational	Operational	Operational	Operational	Operational	Operational	Cal 03/08/96	Cal 03/08/96	Cal 04/16/96	Operational	Operational	Operational	Operational	Operational	Operational	Operational	Cal 04/08/96	Cal 04/08/96	Cal 05/24/96	55
Transducer	Type		Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Interger	Interger	Interger	Discrete	Interger	Interger	Interger	Interger	Interger	Interger	Interger	Interger	Interger	
-	Serial #																																Î										
Transducer	Mtg.						-																																				
	Critical																																									_	
Eng.	Units	Volt	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	INCH	PSIA	DEG C	Discrete	Counts	Counts	Counts	Counts	INTEGER	INTEGER	DEG	DEG	Counts	
Range	Max	36	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	Good	Good	Good	YES	YES	0.4	1,000	9	YES	4095	4095	4095	4095			100	8	15	- - -
8	Min	0	N	NO	N0	NO	N	Q	2	9	No	N	N	NO	NO	Q N	No	NO	N	Q	NO	NO	9	NO	Low	Low	Low	Ş	9	0	-	P	2	0	•	•	0			•	0	0	
	1 Dwg #	5405																																									
	Parameter Description	Cockpit Emergency Shutoff Switch	V0203 Open	V0202 Open	V0201 Open	V0102 Open	V0101 Open	Contr. Status, LO2 Clutch Engaged	V0211 Open	V0210 Open	V0209 Open	V0208 Open	V0212 Open	V0206 Open	V0205 Open	V0403 Open	V0402 Open	V0401 Open	V0304 Open	V0303 Open	V0302 Open	AS Stat., GH2 Position Ind. Open	olier Ready	AS Stat., Internal Volt, In Range	AS Stat., GH2 Valve Clutch Current	AS Stat., H20 Valve Clutch Current	AS Stat., LO2 Valve Clutch Current	AS Stat., H20 Position Ind. Open	AS Stat., LO2 Position Ind. Open	Contr. Status, Repeat AS H2 Position	Contr. Status, Repeat AS H2 Pressure	iervoamp Temp.	controller Abort	Contr. Status, OFP Version, Number	Contr. Status, GLS Version, Number	Contr. Status, CIMS Version, Number	Contr. Status, STable Version, Number	Contr. Status, STable Timer (Fine)	Contr. Status, STable Timer (Coarse)	Contr. Status, Repeat AS LO2 Position	Contr. Status, Repeat AS H20 Position	AS Stat., Software Version Number	
	-	Cockpit Emerger	Contr. Status, SV0203 Open	Contr. Status, SV0202 Open	Contr. Status, SV0201 Open	Contr. Status, SV0102 Open	Contr. Status, SV0101 Open	Contr. Status, Lt	Contr Status, SV0211 Open	Contr. Status, SV0210 Open	Contr. Status, SV0209 Open	Contr. Status, SV0208 Open	Contr. Status, SV0212 Open	Contr. Status, SV0206 Open	Contr. Status, SV0205 Open	Contr. Status, SV0403 Open	Contr. Status, SV0402 Open	Contr. Status, SV0401 Open	Contr. Status, SV0304 Open	Contr. Status, SV0303 Open	Contr. Status, SV0302 Open	AS Stat., GH2 P	AS Stat., Controller Ready	AS Stat., Intern.	AS Stat., GH2 V	AS Stat., H20 V	AS Stat., L02 V	AS Stat., H20 F	AS Stat., LO2 P	Contr. Status, R	Contr. Status, R			- 1	- 1								
	ğ	s	F	-	┢─	S	cs	┢─	+				-	S		S	S	<u> </u>	S		S	cs		S	_	CS	CS CS	. CS	÷	S	ន ទ	-		S	ខ	S	S	S	S	ខ	ន	5 CS	
Sys Sch	Ref Des	EMERSS	MX09B06	MX09B07	MX09B08	MX09B10	MX09B11	MX09B12	MX10B06	MX10B07	MX10B08	MX10B09	MX10B10	MX10B11	MX10B12	MX11B07	MX11B08	MX11B09	MX11B10	MX11B11	MX11B12	MX12B05	MX12B06	MX12B07	MX12B08	MX12B09	MX12B10	MX12B11	MX12B12	N/A	PT0102	A/A	MX31B12	N/A	N/A	٨N	N/A	N/A	N/A	N/A	N/A	MX52B05	
CIMS ID /	Meas. #	BP001	60XW	60XW	60XW	60XM	60XW	60XW	MX10	MX10	MX10	MX10	MX10	MX10	MX10	11XM	MX11	MX11	MX11	MX11	MX11	MX12	MX12	MX12	MX12	MX12	MX12	MX12	MX12	MX13	MX14	MX15	MX31	MX33	MX35	MX37	6EXM	MX40	MX41	MX42	MX43	MX52	

NASA/LMSW LASRE Program Master Measurement List Revision P Date 04/03/98

43

Table 8. LASRE program master measurement list.

n Dwg # Min Max Units Critical Mig. Serial # Type en No Yes Discrete mitroger Ca en 012-6 0.25 38 PSIA MC PSI Sontx OI am 5403 0 1,000 PSIA Astro Pess (350W) Ca am 5403 0 1,0	-			11011	Elg.		Iransoucer	ucer	Transducer		Instru'n	Installed
No Yes Discrete Interget (a)31/296 No Yes Discrete Interget (a)31/296 No Yes Discrete Interget (a)31/296 012-6 0.25 38 PSIA MC PSI 012-6 0.25 38 PSIA MC PSI sonix Cleaninal DFRC 012-6 0.25 38 PSIA MC PSI sonix Cleaninal DFRC 012-6 0.25 38 PSIA MC PSI sonix Cleaninal DFRC 012-6 0.25 38 PSIA MC PSI sonix Cleaninal DFRC 012-6 0.25 38 PSIA MC PSI sonix Cleaninal DFRC 012-6 0.25 38 PSIA MC PSI sonix Cleaninal DFRC 012-6 0.26 PSIA Tessi (3000) Cleaninal DFRC <td< th=""><th></th><th>+ 6mg</th><th>Ē</th><th>Max</th><th>Units</th><th>Critical</th><th>Mig.</th><th>Serial #</th><th>Type</th><th>Status</th><th>Respon</th><th>By:</th></td<>		+ 6mg	Ē	Max	Units	Critical	Mig.	Serial #	Type	Status	Respon	By:
No Yes Discrete Titleger (a) 37.296 No Yes Discrete Titleger (a) 37.296 No Yes Discrete Titleger (a) 37.296 012-6 0.25 38 PSIA MC PSI 012-6 0.25 38 PSIA MC PSIA 012-6 0.26 PSIG Taber (PL) 5913000 Cal 0273296 MSW 0203-3 PFersi 35000 Cal 027497 MSW MSW 0203-3 PFersi 35000 Cal 027497 MSW 0203-4 Distrete PFersi 35000 Cal 027497 MSW	AS Stat., Status Reg Dropout Ind.		۶	Yes	Discrete				Interger	Cal 03/12/96		
No Yes Discrete Integer (a) 0, 12,96 (a) 0, 12,9			Ñ	Yes	Discrete				Interger	Cal 03/12/96		
No Yes Discrete Cal 03/12 96 012-6 0.25 38 PSIA MC PSI Sonix Cal 03/12 96 012-6 0.25 38 PSIA MC PSI Sonix Cal 03/03 09 PFIC 012-6 0.25 38 PSIA MC PSI Sonix Cal 03/03 09 PFIC 012-6 0.25 38 PSIA MC PSI Sonix Cal 03/03 09 PFIC 012-6 0.53 PSIG MC PSIG Sonix Cal 03/03 09 PFIC 012-6 0.53 PSIG MC PSIG Statham 20002 Press (350W) Cal 02/2409 LMSW 012-6 0.50 PSIG Taber (JPL) 59153 Press (350W) Cal 02/2409 LMSW 012-6 0.1000 PSIG Taber (JPL) 59153 Press (350W) Cal 02/2409 LMSW 01 000 PSIG Taber (JPL) 59153 Press (350W)	AS Stat., LO2 Valve Command Open		No	Yes	Discrete				Interger	Cal 03/12/96		
012-6 0.25 38 PSIA MC PSI Sontx Cal 66:30193 DFRC 012-6 0.25 38 PSIA MC FSI sontx Cal 66:30193 DFRC 012-6 0.25 38 PSIA MC FSI sontx Cal 66:30193 DFRC 5015-6 0.25 38 PSIA MC FSI sontx Cal 66:30193 DFRC 5015-6 0.5 BSIG MC FSI sontx Cal 66:70196 MSW 5015-7 0 500 PSIG Table<(JPL)	-		٥N	Yes	Discrete				Interger	Cal 03/12/96		
012-6 0.25 38 FSIA MC FSI sonix Cal 66/30/30 DFRC 012-6 0.25 38 FSIA MC FSI sonix Cal 66/30/30 DFRC 012-6 0.25 38 FSIA MC FSI sonix Cal 66/30/30 DFRC 012-6 0.25 38 FSIA MC FSI sonix Cal 66/30/30 DFRC 5403 0 1000 FSIG Taber (JPL) 391354 Press (350/W) Cal 60/37/396 LMSW 5403 0 1000 FSIA Satham 3745 Press (350/W) Cal 0372/896 LMSW 5403 0 1000 FSIA Satham 3745 Press (350/W) Cal 0372/896 LMSW 5403 0 1000 FSIA Satham 3745 Press (350/W) Cal 0372/896 LMSW 5401 0 1000 FSIA Satham 3745 Press (350/W) Cal 0372/896 LMS	Total Air Pressure, Sonix (Coarse)	012-6	0.25	38	PSIA	MC	PSI		sonix	Cal 06/30/93	DFRC	Existing
012-6 0.25 38 FSIA MC FSI sourx Cal 06:30/33 DFRC 012-6 0.23 38 FSIA MC FSI color Source Cal 06:30/33 DFRC 5403-0 0 50 FSIG Taber (PL) 59156 Fress (350M) Cal 05/17/96 LMSW 743-3 0 1,000 FSIG Taber (PL) 591536 Fress (350M) Cal 05/17/96 LMSW 743-3 0 1,000 FSIG Taber (PL) 591536 Fress (350M) Cal 05/2497 LMSW 5403 0 1,000 FSIG Taber (PL) 59153 Fress (350M) Cal 02/2497 LMSW 5403 0 1,000 FSIG Taber (PL) 59153 Fress (350M) Cal 02/2497 LMSW 5401 0 1,000 FSIG Taber (PL) 605208 Fress (350M) Cal 02/2497 LMSW 5401 0 1,000 FSIG Taber (PL) 605208	Total Air Pressure, Sonix (Fine)	012-6	0.25	38	PSIA	MC	PSI		sonix	Operational	DFRC	Existing
012-6 0.25 38 PSIA MC PSI MSIA Operational DFRC 205540 0 40 PSIG Statham 20002 Press (350W) (a) 11/14/97 LMSW 20555 0 50 PSIG Statham 20002 Press (350W) (a) 11/14/97 LMSW 20555 0 50 PSIG Taber (JPL) 551536 Press (350W) (a) 022495 LMSW 5403 0 1000 PSIA Statham 3745 Press (350W) (a) 032396 LMSW 5403 0 1000 PSIA Statham 3751 Press (350W) (a) 032396 LMSW 5403 0 1000 PSIG Taber (JPL) 667569 Press (350W) (a) 032396 LMSW 5401 0 1000 PSIG Taber (JPL) 667569 Press (350W) (a) 032396 LMSW 5401 0 1000 PSIG Taber (JPL) 667569 Press (350W)		012-6	0.25	38	PSIA	MC	PSI		sonix	Cal 06/30/93	DFRC	Existing
5405/40 0 40 PSIG Statham 20002 Press (350W) Cal 617/196 LMSW n 2023 0 50 50 FSIG Press (350W) Cal 637/196 LMSW n 2403 0 1000 PSIG Tabler (JPL) 591336 Press (350W) Cal 637/28/96 LMSW 5403 0 1000 PSIG Statham 37/45 Press (350W) Cal 637/28/96 LMSW 5403 0 1000 PSIA Statham 37/45 Press (350W) Cal 637/28/96 LMSW 5403 0 1000 PSIA Statham 37/45 Press (350W) Cal 637/28/96 LMSW 5401 0 1000 PSIG Tabler (JPL) 662294 Press (350W) Cal 637/28/96 LMSW 5401 0 1000 PSIG Tabler (JPL) 662309 Press (350W) Cal 637/28/96 LMSW 5401 0 1000 PSIG Taber (JPL) 662309		012-6	0.25	38	PSIA	MC	PSI		sonix	Operational	DFRC	Existing
028-5 0 50 PSIG Table (JPL) 591536 Press (350W) Cal 65/17/96 LMSW n 5403 0 1000 PSIG Table (JPL) 591536 Press (350W) Cal 65/17/96 LMSW m 5403 0 1,000 PSIG Table (JPL) 54736 Press (350W) Cal 63/17/96 LMSW atm 5403 0 1,000 PSIA Statham 3754 Press (350W) Cal 63/17/96 LMSW atm 5403 0 1,000 PSIA Statham 3754 Press (350W) Cal 63/27/96 LMSW 5401 0 1,000 PSIG Table (JPL) 602241 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Table (JPL) 602260 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Table (JPL) 602241 Press (350W) Cal 03/28/96 LMSW 5401 0 <t< td=""><td>2</td><td>5405/40</td><td>0</td><td>40</td><td>PSIG 1</td><td></td><td>Statham</td><td>20002</td><td>Press (350W)</td><td>Cal 11/14/97</td><td>TMSW</td><td>LMSW</td></t<>	2	5405/40	0	40	PSIG 1		Statham	20002	Press (350W)	Cal 11/14/97	TMSW	LMSW
0 0 50 PSIG Taber (JPL) 591536 Press (350W) Cal 032495 MSW 7 5403 0 1,000 PSIG Taber (JPL) 591536 Press (350W) Cal 032495 MSW mm 5403 0 1,000 PSIG Taber (JPL) 591536 Press (350W) Cal 0322495 MSW mm 5403 0 1,000 PSIA Statham 3754 Press (350W) Cal 0322896 MSW mm 5403 0 1,000 PSIA Statham 3751 Press (350W) Cal 0322896 MSW 5401 0 5401 0 1,000 PSIG Taber (JPL) 662241 Press (350W) Cal 0322896 MSW 5401 0 1,000 PSIG Taber (JPL) 662241 Press (350W) Cal 0322896 MSW 5401 0 1,000 PSIG Taber (JPL) 662241 Press (350W) Cal 0322896 MSW 5401 <		028-5	0	50	PSIG				Press (350W)	Cal 05/17/96	MSM	LMSW
n 5403 0 1,000 PSIG Taber (JPL) 591536 Press (350W) Cal 032/28/95 LMSW mm 5403 0 1,000 PSIG Statham 3754 Press (350W) Cal 032/28/95 LMSW atm 5403 0 1,000 PSIA Statham 3754 Press (350W) Cal 032/28/95 LMSW atm 5403 0 1,000 PSIA Statham 3754 Press (350W) Cal 032/28/95 LMSW 5401 0 500 PSIG Taber (JPL) 601241 Press (350W) Cal 032/28/95 LMSW 5401 0 1,000 PSIG Taber (JPL) 602241 Press (350W) Cal 032/28/95 LMSW 5401 0 1,000 PSIG Taber (JPL) 602241 Press (350W) Cal 032/28/95 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 032/28/95 LMSW 5401 0		028-5	0	50	PSIG				Press (350W)	Cal 05/17/96	LMSW	LMSW
5403 0 1000 PSIG Taber (AD) 742055 Fress (350W) Cal (32/24/97) LMSW aim 5403 0 1000 PSIA Statham 3754 Fress (350W) Cal (33/28/96 LMSW aim 5403 0 1000 PSIA Statham 3751 Fress (350W) Cal (33/28/96 LMSW 5401 0 1000 PSIG Taber (JPL) 6021592 Fress (350W) Cal (33/28/96 LMSW 5401 0 1000 PSIG Taber (JPL) 6021592 Fress (350W) Cal (33/28/96 LMSW 5401 0 1000 PSIG Taber (JPL) 662508 Press (350W) Cal (33/28/96 LMSW 5401 0 1000 PSIG Taber (JPL) 662508 Press (350W) Cal (33/28/96 LMSW 5401 0 1000 PSIG Taber (JPL) 662509 Press (350W) Cal (33/28/96 LMSW 5401 0 1000 PSIG <td></td> <td>5403</td> <td>0</td> <td>1,000</td> <td>PSIG</td> <td></td> <td>Taber (JPL)</td> <td>591536</td> <td>Press (350W)</td> <td>Cal 03/28/96</td> <td>MSM</td> <td>R/D</td>		5403	0	1,000	PSIG		Taber (JPL)	591536	Press (350W)	Cal 03/28/96	MSM	R/D
5403 0 1,000 PSIA Statharm 3764 Press (350W) Cal 032/8/96 LMSW aim 5403 0 1,000 PSIA Statharm 3754 Press (350W) Cal 032/8/96 LMSW aim 5403 0 1,000 PSIA Statharm 3754 Press (350W) Cal 032/8/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 6615241 Press (350W) Cal 032/8/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 66153 Press (350W) Cal 032/8/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 6622619 Press (350W) Cal 032/8/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 6622619 Press (350W) Cal 032/8/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 6622619 Press (350W) Cal 032/8/96 LMSW 5401 0 1,000 PSIG	E	5403	0	1,000	PSIG		Taber (RD)	742095	Press (350W)	Cal 02/24/97	LMSW	R/D
aim 5403 0 1,000 PSIA Statham 3745 Press (350W) Cal 03/2896 LMSW aim 5403 0 1,000 PSIA Statham 3754 Press (350W) Cal 03/2896 LMSW 5401 0 500 PSIG Taber (JPL) 607241 Press (350W) Cal 03/2896 LMSW 5401 0 1,000 PSIG Taber (JPL) 607201 Press (350W) Cal 03/2896 LMSW 5401 0 1,000 PSIG Taber (JPL) 602201 Press (350W) Cal 03/2896 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03/2896 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03/2896 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03/2896 LMSW 5401 0 1,000 PSIG <		5403	0	1,000	PSIA		Statham	3764	Press (350W)	Cal 03/28/96	LMSW	R/D
atm 5403 0 1,000 PSIA Statharm 3754 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 60291592 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 60291592 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662508 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662508 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG <		5403	0	1,000	PSIA		Statham	3745	Press (350W)	Cal 03/28/96	LMSW	R/D
5403 0 1,000 PSIA Statham 3751 Press (350W) Cal 03728/96 LMSW 5401 0 500 PSIG Taber (JPL) 691592 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 6602241 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL)	ε	5403	0	1,000	PSIA		Statham	3754	Press (350W)	Cal 03/28/96	LMSW	R/D
5401 0 500 PSIG Taber (JPL) 691592 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 602241 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 602241 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 613610 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662501 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3743 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3743 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3743 </td <td>E</td> <td>5403</td> <td>0</td> <td>1,000</td> <td>PSIA</td> <td></td> <td>Statham</td> <td>3751</td> <td>Press (350W)</td> <td>Cal 03/28/96</td> <td>LMSW</td> <td>R/D</td>	E	5403	0	1,000	PSIA		Statham	3751	Press (350W)	Cal 03/28/96	LMSW	R/D
5401 0 1,000 PSIG Taber (JPL) 602241 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662508 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 661561 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662514 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIA Statham 3743 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIA Statham 3744 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIA Statham 3744		5401	0	500	PSIG		Taber (JPL)	691592	Press (350W)	Cal 03/28/96	LMSW	R/D
5401 0 1,000 PSIG Taber (JPL) 662508 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 613661 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 613661 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662601 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662601 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIA Statham 3745 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIA Statham 3744 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIA Statham 3744 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIA Statham 3744		5401	0	1,000	PSIG		Taber (JPL)	602241	Press (350W)	Cal 03/28/96	LMSW .	BVD
5401 0 500 PSIG Taber (JPL) 613661 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 613661 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662501 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662514 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3743 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3744 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3744 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3744		5401	0	1,000	PSIG		Taber (JPL)	662508	Press (350W)	Cal 03/28/96	MSM	R/D
5401 0 1,000 PSIG Taber (JPL) 641663 Press (350W) Cal 04/14/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 641663 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662514 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 665214 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3743 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3743 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3743 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3743		5401	0	500	PSIG		Taber (JPL)	613661	Press (350W)	Cal 03/28/96	MSM	R/D
5401 0 1,000 PSIG Taber (JPL) 664163 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662501 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIA Statham 3743 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIA Statham 3743 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIA Statham 3743 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIA Statham 3745 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIA Statham 3745 Press (350W) Cal 03728/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662511		5401	0	1,000	PSIG		Taber (RD)	820216	Press (350W)	Cal 04/14/96	LMSW	R/D
5401 0 1,000 PSIG Taber (JPL) 662509 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIG Taber (JPL) 662601 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3756 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3756 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3749 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3749 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3749 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3749 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3749 Press		5401	0	1,000	PSIG		Taber (JPL)	641663	Press (350W)	Cal 03/28/96	MSW	R/D
5401 0 1,000 PSIG Taber (JPL) 662601 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3766 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3745 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3745 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3745 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3745 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3744 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3744 Press (350W) Cal 03/28/96 LMSW 5401 0 1,000 PSIA Statham 3744 Press (350W)		5401	0	1,000	PSIG		Taber (JPL)	662509	Press (350W)	Cal 03/28/96	NSW	R/D
0 1,000 PSIA Statham 3756 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3743 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Taber (JPL) 662514 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3746 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3745 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3746 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3744 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/26/96 LMSW 0 1,000 PSIA Statham 3758 <t< td=""><td></td><td>5401</td><td>0</td><td>1,000</td><td>PSIG</td><td></td><td>Taber (JPL)</td><td>662601</td><td>Press (350W)</td><td>Cal 03/28/96</td><td>LMSW</td><td>R/D</td></t<>		5401	0	1,000	PSIG		Taber (JPL)	662601	Press (350W)	Cal 03/28/96	LMSW	R/D
0 1,000 PSIA Statham 3743 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Taber (JPL) 662514 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3746 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3744 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3744 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3744 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3744 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 <t< td=""><td></td><td>5401</td><td>0</td><td>1,000</td><td>PSIA</td><td></td><td>Statham</td><td>3756</td><td>Press (350W)</td><td>Cal 03/28/96</td><td>LMSW</td><td>R/D</td></t<>		5401	0	1,000	PSIA		Statham	3756	Press (350W)	Cal 03/28/96	LMSW	R/D
0 1,000 PSIG Taber (JPL) 66:2514 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3746 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3749 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3749 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3749 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 496643 Press, H/L Cal 03/22/96 LMSW 0 1,000 PSIA Sensotech 496645 Press, H/L Cal 03/22/97 LMSW 0 1,000 PSIA Sensotech 496643		5401	0	1,000	PSIA		Statham	3743	Press (350W)	Cal 03/28/96	LMSW	R/D
0 1,000 PSIA Statham 3746 Press (350W) Cal 09/20/96 LMSW 0 1,000 PSIA Statham 3749 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3749 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3749 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/26/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 496647 Press HL Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 608891 Press, HL Cal 03/22/97 LMSW 0 1,000 PSIA Sensotech 608891 <td< td=""><td></td><td>5401</td><td>0</td><td>1,000</td><td>PSIG</td><td></td><td>Taber (JPL)</td><td>662514</td><td>Press (350W)</td><td>Cal 03/28/96</td><td>LMSW</td><td>R/D</td></td<>		5401	0	1,000	PSIG		Taber (JPL)	662514	Press (350W)	Cal 03/28/96	LMSW	R/D
0 1,000 PSIA Statham 3749 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3749 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3744 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 496648 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 608891 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 608891 Press, H/L Cal 03/22/97 LMSW 0 1,000 PSIA Sensotech 608891	4)	5401	0	1,000	PSIA		Statham	3746	Press (350W)	Cal 09/20/96	MSW	R/D
0 1,000 PSIA Statham 3744 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIG Taber (JPL) 662511 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 496647 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 496647 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 496647 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 496647 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 496025 Press, H/L Cal 03/22/97 LMSW 0 1,000 PSIA Sensotech 616/763<	Press, LOX injector inlet (TH005)	5401	0	1,000	PSIA		Statham	3749	Press (350W)	Cal 03/28/96	LMSW	R/D
0 1,000 PSIG Taber (JPL) 66:2511 Press (350W) Cal 12/12/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/26/96 LMSW 0 1,000 PSIA Statham 3758 Press (350W) Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 496647 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 609647 Press, H/L Cal 03/26/96 LMSW 0 15,000 PSIA Sensotech 6096647 Press, H/L Cal 03/26/96 LMSW 0 15,000 PSIA Sensotech 499025 Press, H/L Cal 07/22/97 LMSW 0 1,000 PSIA Sensotech 616/763 Press, H/L Cal 02/22/97 LMSW 0 15.000 PSIA Sensotech 616/763 Press, H/L Cal 02/22/96 LMSW		5401	•	-000	PSIA		Statham	3744	Press (350W)	Cal 03/28/96	LMSW	R/D
0 1,000 PSIA Statham 3758 Press (350W) Cal 03/28/96 LMSW 0 1,000 PSIA Sensotech 496647 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 496647 Press, H/L Cal 03/26/96 LMSW 0 15,000 PSIA Sensotech 496647 Press, H/L Cal 03/26/96 LMSW 0 15,000 PSIA Sensotech 496025 Press, H/L Cal 07/22/97 LMSW 0 1,000 PSIA Sensotech 616/763 Press, H/L Cal 07/22/97 LMSW 0 10,000 PSIA Sensotech 616/763 Press, H/L Cal 07/22/97 LMSW 0 15.000 PSIA Sensotech 616/763 Press, H/L Cal 07/22/97 LMSW		5401	0	1.000	PSIG		Taber (JPL)	662511	Press (350W)	Cal 12/12/96	LMSW	R/D
0 1,000 PSIA Sensotech 496648 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 496647 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 496647 Press, H/L Cal 03/26/96 LMSW 0 1,000 PSIA Sensotech 499025 Press, H/L Cal 07/22/97 LMSW 0 1,000 PSIA Sensotech 616/63 Press, H/L Cal 07/22/97 LMSW 0 10,000 PSIA Sensotech 616/63 Press, H/L Cal 07/22/97 LMSW 0 15.000 PSIA Sensotech 616/763 Press, H/L Cal 02/20/96 LMSW		5401	0	000	PSIA		Statham	3758	Press (350W)	Cal 03/28/96	TMSW	R/D
0 1,000 PSIA Sensotech 496647 Press, H/L Cal 03/26/96 LMSW 0 15,000 PSIA Sensotech 608891 Press, H/L Cal 07/22/97 LMSW 0 1,000 PSIA Sensotech 499025 Press, H/L Cal 07/22/97 LMSW 0 1,000 PSIA Sensotech 618/763 Press, H/L Cal 07/22/97 LMSW 0 10,000 PSIA Sensotech 618/763 Press, H/L Cal 07/22/97 LMSW 0 15,000 PSIA Sensotech 618/763 Press, H/L Cal 07/22/97 LMSW		5430	0	1,000	PSIA		Sensotech	496648	Press, H/L	Cal 03/26/96	NSM	LMA
0 15.000 PSIA Sensotech 608891 Press, H/L Cal 07/2297 LMSW 0 1,000 PSIA Sensotech 499025 Press, H/L Cal 07/2297 LMSW 0 1,000 PSIA Sensotech 499025 Press, H/L Cal 02/20/96 LMSW 0 10,000 PSIA Sensotech 616/63 Press, H/L Cal 07/22/97 LMSW 0 15,000 PSIA Sensotech 616/763 Press, H/L Cal 02/29/96 LMSW		5430	0	1,000	PSIA		Sensotech	496647	Press, H/L	Cal 03/26/96	NSW	LMA
0 1,000 PSIA Sensotech 499025 Press. H/L Cal 02/20/96 LMSW 0 0 10,000 PSIA Sensotech 616763 Press. H/L Cal 07/22/97 LMSW 0 15,000 PSIA Sensotech 616763 Press. H/L Cal 07/22/97 LMSW		5420	0	15,000	PSIA		Sensotech	608891	Press, H/L	Cal 07/22/97	LMSW	LMA
0 10.000 PSIA Sensotech 616763 Press, H/L Cal 07/22/97 LMSW 0 15.000 PSIA Sensotech 616763 Press, H/L Cal 07/22/97 LMSW		5420	0	1,000	PSIA		Sensotech	499025	Press, H/L	Cal 02/20/96	MSW	LMA
0 [15,000] PSIA Sensotech Press, H/L Cal 02/29/96 LMSW	2	5405/10	0	10,000	PSIA		Sensotech	616763	Press, H/L	Cal 07/22/97	LMSW	LMA
	Ċ.	5405/21	П	15,000	PSIA		Sensotech		Press, H/L	Cal 02/29/96	LMSW	LMA
										ST :	Flight Safet	2
FS = Flight Safety										MC =		tical 2 : ::
8 8										" 		Uesiradie

Table 8. LASRE program master measurement list (Continued).

5405/21
5403
5420
5420
5420
5403/1U
5403
-
5403
╞
ļ

NASA/LMSW LASRE Program Master Measurement List Revision P Date 04/03/98

45

Table 8. LASRE program master measurement list (Continued).

Mease. # Ret Des LOC Parameter Description PP050 N/A M Ramp Wall Static #24 PP051 N/A M Ramp Wall Static #24 PP053 N/A M Ramp Wall Static #24 PP055 N/A M Ramp Wall Static #25 PP055 N/A M Ramp Wall Static #26 PP055 N/A M Ramp Wall Static #29 PP055 N/A M Ramp Wall Static #30 PP056 N/A M Ramp Wall Static #30 PP065 N/A M Ramp Wall Static #31 PP065 N/A M Ramp Wall Static #32 PP065 N/A M Ramp Wall Static #34 PP065 N/A M Ramp Wall Static #40 PP065 N/A M Ramp Wall Static #41 PP065 N/A M Ramp Wall Static #41 PP065 N/A M Ramp Wall Static #41 PP065 N/A M Ramp Wall Static #41	* 65% 0% 0 0 0 0 0 0 0 0 0 0 0 0 0	Min Max -50 50	_							
NVA M NVA M NVA M				Critical	MTg.	Serial #	Type	Status	Respon	By:
NVA M NA <			PSID		PSI		ESP 64HD	Cal 02/25/97	LMSW	
N/A M N/A M N/A N/A			DISd	 	PSI		ESP 64HD	Cal 02/25/97	LMSW	
NVA M NVA M NA N				 	PSI		ESP 64HD	Cal 02/25/97	LMSW	
NVA M NO0001 M P10002					PSI		ESP 64HD	Cal 02/25/97	LMSW	
NVA M NVA M NAA N					PSI		ESP 64HD	Cal 02/25/97	LMSW	
NUA M P100003 M P10003 M P10401 M NUA M					PSI		ESP 64HD	Cal 02/25/97	LMSW	
N/A N/A M N/A M N/A M N/A M N/A M N/A M M M <td< td=""><td></td><td></td><td></td><td></td><td>PSI</td><td></td><td>ESP 64HD</td><td>Cal 02/25/97</td><td>LMSW</td><td></td></td<>					PSI		ESP 64HD	Cal 02/25/97	LMSW	
NA M NA M NA NA M M NA NA M PI0003 M			DISA		PSI		ESP 64HD	Cal 02/25/97	LMSW	
NA NA M NA NA M NA NA M NA M NA NA M M P10003 M M P10451 M M					PSI		ESP 64HD	Cal 02/25/97	LMSW	
NA M P10003 M P10451 M P10451 M					PSI		ESP 64HD	Cal 02/25/97	LMSW	
NA M PI0002 M PI0003 M PI0401 M PI0401 M		-50 50			PSI		ESP 64HD	Cal 02/25/97	NSW	
NA NA NA NA NA M					ISd		ESP 64HD	Cal 02/25/97	LMSW	
NA NA M NA NA M NA NA M NA M NA NA M M P10003 M M P10451 M M					PSI		ESP 64HD	Cal 02/25/97	LMSW	
NA NA M NA NA M NA NA M NA M NA NA M NA NA M M P10001 M M P10002 M M P10003 M M P10401 M M NA M M	_	_			PSI		ESP 64HD	Cal 02/25/97	NSW	
NA M NA NA NA NA NA NA NA NA NA NA NA M P10002 M P10003 M P10004 M P10451 M NA M					PSI		ESP 64HD	Cal 02/25/97	LMSW	
NA M NA NA NA M P10001 M P10005 M P10006 M P10451 M P10451 M	•				ISd		ESP 64HD	Cal 02/25/97	MSM	
NA M NA NA NA M P10001 M P10005 M P10451 M P10451 M	_				PSI		ESP 64HD	Cal 02/25/97	MSM	
NA NA NA NA NA M P10001 M P10002 M P10003 M P10006 M P10451 M P10451 M					PSI		ESP 64HD	Cal 02/25/97	LMSW	
NA N					PSI		ESP 64HD	Cal 02/25/97	LMSW	
NA N					PSI		ESP 64HD	Cal 02/25/97	LMSW	
VIA WA NA M NA M NA M PT0001 M PT0002 M PT0002 M PT0005 M PT0005 M PT0005 M PT0006 M NA MA	•				PSI		ESP 64HD	Cal 02/25/97	LMSW	
NA N					PSI		ESP 64HD	Cal 02/25/97	LMSW	
VIA NIA PT0001 M PT0002 M PT0003 M PT0005 M PT0006 M PT0006 M PT0008 M PT00451 M NIA					PSI		ESP 64HD	Cal 02/25/97	NSW	
P10001 M P10002 M P10003 M P10005 M P10006 M P10006 M P10451 M NA			_		PSI		ESP 64HD	Cal 02/25/97	NSW	
P10002 M P10003 M P10005 M P10005 M P10007 M P10451 M N10401 M					Taber (JPL)	613668	Press (350W)	Cal 03/28/96	TMSW	
P10003 M P10004 M P10005 M P10005 M P10007 M P10008 M P10451 M MA	5401	0 500			Taber (JPL)	631561	Press (350W)	Cal 03/28/96	LMSW	
P10004 M P10005 M P10005 M P10007 M P10451 M P10461 M M	5401	+		_	Taber (JPL)	631563	Press (350W)	Cal 03/28/96	NSW	
P10005 M P10006 M P10007 M P10008 M P10451 M M/A M/A	5401	-			Taber (JPL)	625997	Press (350W)	Cal 03/28/96	LMSW	
P10006 M P10007 M P10008 M P10451 M N/A M/A	5401		_		Taber (JPL)	624871	Press (350W)	Cal 03/28/96	MSM	
P1000/ PT0008 M PT0451 M N/A M/A	5401	-			Taber (JPL)	800531	Press (350W)	Cal 03/28/96	LMSW	
P10008 P10451 M N/A M	5401	\neg	_		Taber (JPL)	800453	Press (350W)	Cal 03/28/96	MSM	
P10451 M PT0401 M N/A M	5401				Taber (JPL)	626001	Press (350W)	Cal 03/28/96	NSW	
P10401 M	5403	_			Statham	3942	Press (350W)	Cal 12/05/96	LMSW	
	5440/69	-			Sensotech	496651	Press, H/L	Cal 04/17/96	LMSW	
			_				ESP 64HD	Cal 02/25/97	LMSW	
N/A W		_					ESP 64HD	Cal 02/25/97	LMSW	
N/A W		-50					ESP 64HD	Cal 02/25/97	LMSW	
N/A M		_	_				ESP 64HD	Cal 02/25/97	MSW	
PP115 N/A M Fence Static #5		-50 50	DISd				ESP 64HD	Cal 02/25/97	LMSW	

Table 8. LASRE program master measurement list (Continued).

NASA/LMSW LASRE Program Master Measurement List Revision P Date 04/03/98

FC = Flight Critical FS = Flight Safety MC = Mission Critical TD = Technically Desirable

46

Nut Nut <th>Mut Inter Lot Terrent Decreption Der I Mit Part Mit Part Mit Part Mit Part Mit Part Mit Part Mit Mit Part Mit Mit Part Mit Part Mit Part Mit Part Mit <thmit< th=""> <thmit< th=""> <thmit< th=""></thmit<></thmit<></thmit<></th> <th>CIMS ID /</th> <th>Sys Sch</th> <th></th> <th></th> <th></th> <th>На</th> <th>Range</th> <th>Eng.</th> <th></th> <th>ILANSONCE</th> <th>lucer</th> <th></th> <th></th> <th>II ALASI</th> <th>Installed</th>	Mut Inter Lot Terrent Decreption Der I Mit Part Mit Part Mit Part Mit Part Mit Part Mit Part Mit Mit Part Mit Mit Part Mit Part Mit Part Mit Part Mit Mit <thmit< th=""> <thmit< th=""> <thmit< th=""></thmit<></thmit<></thmit<>	CIMS ID /	Sys Sch				На	Range	Eng.		ILANSONCE	lucer			II ALASI	Installed
MX M Find construction - 0 9 PSIO PSIO Clusterset	MA M	*	Ref Des	LOC		# Dmg #	Min	Max	Units	Critical	Mfg.	Serial #	Type	Status	Respon	By:
NM M Ferre FSP-Ferre Cold SEP-Ferre Cald/SCS/F UNSW NM M FerreS State /F S 9 PSD S	MA M M M M M M M M M M MA M	PP116	N/A		Fence Static #6		-50	50	PSID				ESP 64HD	Cal 02/25/97	MSM	
NM M Fees State eff S S S S S S S S S S M MS MS<	WM W Ferres FSP FSP <td>PP117</td> <td>N/A</td> <td>I I</td> <td>Fence Static #7</td> <td></td> <td>-50</td> <td>50</td> <td>PSID</td> <td></td> <td></td> <td></td> <td>ESP 64HD</td> <td>Cal 02/25/97</td> <td>LMSW</td> <td></td>	PP117	N/A	I I	Fence Static #7		-50	50	PSID				ESP 64HD	Cal 02/25/97	LMSW	
NM M	NM M Ferest Start eff S	PP118	N/A		Fence Static #8		-50	50	PSID				ESP 64HD	Cal 02/25/97	LMSW	
NM M	NM M	PP119	N/A		Fence Static #9		-50	50	PSID				ESP 64HD	Cal 02/25/97	MSM	
NM M	NM M	PP120	N/A	T	Fence Static #10		-50	50	PSID				ESP 64HD	Cal 02/25/97	LMSW	
NM M	NM M	PP121	N/A	T	Fence Static #11		-50	50	PSID				ESP 64HD	Cal 02/25/97	LMSW	
NA M Feres Saler # 73 Vision E59 Hole Clip 202597 LVBW NA B Feres Saler # 73 Sind Feres Saler # 73 Sind Feres Color E90 PS0 Fere Color E90 PS0 Fere Color E90 PS0 Fere Color E90 PS0 Fere Color FERe	NM M <thm< th=""> M M M</thm<>	2	N/A	T	Fence Static #12		-50	20	PSID				ESP 64HD	Cal 02/25/97	LMSW	
NAX N M Eese field Cold Eese field Cold Eese field Cold Eese field Cold	Nux N Memoralise ESP bit for	3	N/A		Fence Static #13		-50	50	PSID				ESP 64HD	Cal 02/25/97	LMSW	۵ŋ
NX S Total functanearure D0:2 S D0:0 D0:0 <thd0:0< th=""> <thd0:0< th=""></thd0:0<></thd0:0<>	Nu S Total Forty Nucl Nucl< Nucl Nucl Nucl Nucl Nucl Nucl Nucl Nucl Nucl N	PP124	N/A	Ι	Fence Static #14		-50	50	PSID				ESP 64HD	Cal 02/25/97	LMSW	R/D
NM M Finen. Anthemetation 5403 55 123 016. 110	NM M Tite monoment 5-403 65 730 Dick Tite monoment Cite A Cite	TA41001	N/A	T	Total Temperature	012-2	-58	921	DEG F	WC			Hades	Cal 03/23/96	DFRC	Existing
NA M M M M M Cr. And Cr.	NA M M M M M C C M T C A Instant C A Instant C A Instant C A Instant C A C A C A C A C A C C A C A C A C A C A C A C A C A C A C A C A C A C A C A A C A A C A A C A </td <td>5</td> <td>N/A</td> <td>1</td> <td>Temp, Ambient air in Balance</td> <td>5409</td> <td>-65</td> <td>1235</td> <td>DEGF</td> <td>TBD</td> <td></td> <td></td> <td>TC, Cr-AI</td> <td>Cai 04/18/96</td> <td>LMSW</td> <td>LMSW</td>	5	N/A	1	Temp, Ambient air in Balance	5409	-65	1235	DEGF	TBD			TC, Cr-AI	Cai 04/18/96	LMSW	LMSW
T001 5 Tit:: Coloridy Water Out Flow Cardio Sci 17: Seid Cardio Sci 17: Sci 17: Sci 17: Sci 14: Sci 14: Sci 17: Sci 14: Sci 1	T001 S TCC AI CaloSI/196 CaloSI/196 <t< td=""><td>TB074</td><td>N/A</td><td>Г</td><td>Temp. Model Air (Cockpit)</td><td></td><td>32</td><td>250</td><td>DEGF</td><td></td><td></td><td></td><td>TC, Cr-AI</td><td>Installed</td><td></td><td></td></t<>	TB074	N/A	Г	Temp. Model Air (Cockpit)		32	250	DEGF				TC, Cr-AI	Installed		
S Tern. Cooling Water Februr 208-5 1/1 200 DEGF 1 Co-M Cal 50/96 L/MSW M TER Meinlohler Fenn. 5404 338 430 DEGF 1 1 C.CM Cal 120/966 LMSW M RFL: 80%- Venturi Intel Fenn. 5404 338 430 DEGF 1 1 C.CM Cal 120/966 LMSW M RDL: 80%- Venturi Intel Fenn. 5404 338 430 DEGF 1 C.CM Cal 120/966 LMSW M RDL: 80%- Venturi Intel Tenn. 5404 338 430 DEGF 1 C.CM Cal 120/966 LMSW M RDL: 80%- Venturi Intel Tenn. 5404 338 430 DEGF 1 C.CM Cal 120/966 LMSW M RDL Meetor Intel Tenn, THODI) 5404 338 430 DEGF 1 C.CM Cal 120/966 LMSW M LOX Meetor Intel Tenn, THODI) 5404 2430 DEGF C.CM	TC022 S TWC, Colong Water Feture Call of May Call of May Call of May Call of May T10565 M GC, TOW, Waturi Intel Termo 5404 338 430 DEG F M C	TC001	TC001		Temp, Cooling Water Out Flow	028-5	17	280	DEG F				TC, Cr-Al	Cal 05/17/96		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T1051 M TEC Mandio Tenno. 5404 338 430 DEG F I C C-AI G 12 1206-56 LMSW T10763 M GA2, Q05, Venturi Intel Tenno. 5404 338 430 DEG F I C C-AI G 12 1206-56 LMSW T10763 M LOX, Q05, Venturi Intel Tenno. 5404 338 430 DEG F I C C-AI G 12 1206-56 LMSW T10363 M LOX, Q05, Venturi Intel Tenno. 5404 338 430 DEG F I C C-AI G 12 1206-56 LMSW T10353 M LOX Inferon Intel Tenno. 5404 338 430 DEG F I C C-AI G 11 206-56 LMSW T10353 M LOX Inferon Intel Tenno, (1H001) 5404 338 430 DEG F I C C-AI G 12 1206-56 LMSW T10353 M LOX Inferon Intel Tenno, (1H001) 5404 338 430 DEG F C C-AI G 12 1206-56 LMSW T10354	2	TC002	S	Temp, Cooling Water Return	028-5	17	280	DEGF				TC, Cr-AI	Cal 05/17/96		
T10160 M Gu22 Curval	T01060 M Duc. Cr.M Cal 120666 LMSW T01053 M Duc. Row-Venturi Intel Temp. 5404 338 430 DEG F D TC, Cr.Al Cal 1206666 LMSW T01053 M DUC. Row-Venturi Intel Temp. 5404 338 430 DEG F D TC, Cr.Al Cal 1206666 LMSW T10563 M DUC. Row-Venturi Intel Temp. 5404 338 430 DEG F D TC, Cr.Al Cal 1206666 LMSW T10563 M DUC Injector Intel Temp. (THODI) 5404 338 430 DEG F D TC, Cr.Al Cal 120666 LMSW T10554 M DUC Injector Intel Temp. (THODI) 5404 338 430 DEG F D TC, Cr.Al Cal 120669 LMSW T10554 M DUC Injector Intel Temp. (THODI) 5404 338 430 DEG F TC, Cr.Al Cal 120669 LMSW T10555 M DUC Intercor Intel Temp. (THODI) 5404 338 430 <td>5</td> <td>TT0651</td> <td></td> <td>TTEB Manifold Temp</td> <td>5404</td> <td>-338</td> <td>430</td> <td>DEG F</td> <td></td> <td></td> <td></td> <td>TC, Cr-AI</td> <td>Cal 12/09/96</td> <td>LMSW</td> <td>B/D</td>	5	TT0651		TTEB Manifold Temp	5404	-338	430	DEG F				TC, Cr-AI	Cal 12/09/96	LMSW	B/D
T1063 M G-R2 80% venturi inter Temp. 5404 338 430 DEG F Image: Constraint inter Temp. Constrainter Temp. Const	T(10163) M C/C C/AI C/AI <th< td=""><td>2</td><td>TT0160</td><td>Σ</td><td>GH2, 100% Venturi Inlet Temp.</td><td>5404</td><td>-338</td><td>430</td><td>DEG F</td><td></td><td></td><td></td><td>TC, Cr-AI</td><td>Cal 12/06/96</td><td>LMSW</td><td></td></th<>	2	TT0160	Σ	GH2, 100% Venturi Inlet Temp.	5404	-338	430	DEG F				TC, Cr-AI	Cal 12/06/96	LMSW	
TT0560 M (DX, 100%, venturi intel Tenuc. 544 338 430 DEGF C </td <td>TT0861 M LOX. 100%-ventur inter Enp. 5404 338 430 DEG F TO TO</td> <td>5</td> <td>170163</td> <td>×</td> <td>GH2, 80% Venturi Inlet Temp.</td> <td>5404</td> <td>-338</td> <td>430</td> <td>DEG F</td> <td></td> <td></td> <td></td> <td>TC, Cr-AI</td> <td>Cal 12/06/96</td> <td>LMSW</td> <td></td>	TT0861 M LOX. 100%-ventur inter Enp. 5404 338 430 DEG F TO	5	170163	×	GH2, 80% Venturi Inlet Temp.	5404	-338	430	DEG F				TC, Cr-AI	Cal 12/06/96	LMSW	
TT0355 M CX. 80%. Venturi Intel Teng. 5404 338 430 DE6 F Def Def Def Cal Cal <th< td=""><td>TT0563 M LOX 80% venturi lielt feno. 5404 338 430 DE6 F I TC C-A C 1091396 LWSW T10135 M HX Imecor Intel Tenor (TH001) 5404 338 430 DE6 F P P TC C-A C 1091396 LWSW T10352 M LOX imjector Intel Tenor (TH001) 5404 338 430 DE6 F P P C C-A C 3120696 LWSW T10353 M LOX imjector Intel Tenor (TH002) 5404 338 430 DE6 F P P C C-A C 3120696 LWSW T10353 M LOX imjector Intel Tenor (TH002) 5404 338 430 DE6 F P P C C-A C 3120696 LWSW T10354 M LOX imjector Intel Tenor (TH002) 5404 338 430 DE6 F P C C-A C 3120696 LWSW T10354 M LOX imjector Intel Tenor (TH002) 5404 338 430 DE6 F <td< td=""><td>∞</td><td>TT0360</td><td></td><td>LOX, 100% Venturi Inlet Temp.</td><td>5404</td><td>-338</td><td>430</td><td>DEGF</td><td></td><td></td><td></td><td>TC, Cr-AI</td><td>Cal 12/09/96</td><td>LMSW</td><td></td></td<></td></th<>	TT0563 M LOX 80% venturi lielt feno. 5404 338 430 DE6 F I TC C-A C 1091396 LWSW T10135 M HX Imecor Intel Tenor (TH001) 5404 338 430 DE6 F P P TC C-A C 1091396 LWSW T10352 M LOX imjector Intel Tenor (TH001) 5404 338 430 DE6 F P P C C-A C 3120696 LWSW T10353 M LOX imjector Intel Tenor (TH002) 5404 338 430 DE6 F P P C C-A C 3120696 LWSW T10353 M LOX imjector Intel Tenor (TH002) 5404 338 430 DE6 F P P C C-A C 3120696 LWSW T10354 M LOX imjector Intel Tenor (TH002) 5404 338 430 DE6 F P C C-A C 3120696 LWSW T10354 M LOX imjector Intel Tenor (TH002) 5404 338 430 DE6 F <td< td=""><td>∞</td><td>TT0360</td><td></td><td>LOX, 100% Venturi Inlet Temp.</td><td>5404</td><td>-338</td><td>430</td><td>DEGF</td><td></td><td></td><td></td><td>TC, Cr-AI</td><td>Cal 12/09/96</td><td>LMSW</td><td></td></td<>	∞	TT0360		LOX, 100% Venturi Inlet Temp.	5404	-338	430	DEGF				TC, Cr-AI	Cal 12/09/96	LMSW	
TT0122 M GR2 (nector kellet terue, (TH001) 5404 -338 430 DEG F Image: Cr-M Cal 1206-66 LMSW T10152 M GR2 (nector kell terue, (TH001) 5404 -338 430 DEG F Col Cal 1206-66 LMSW T10353 M UX (nector fuel term (TH002) 5404 -338 430 DEG F Col Cal 1206-66 LMSW T10353 M UX (nector fuel term (TH002) 5404 -338 430 DEG F Col Cal 1206-66 LMSW T10353 M UX (nector fuel term (TH002) 5404 -338 430 DEG F Col Cal 1206-66 LMSW T10354 M UX (nector fuel term (TH003) 5404 -338 430 DEG F Col Cal 1206-66 LMSW T10355 M UX (nector fuel term (TH003) 5404 -338 430 DEG F Col Cal 1206-66 LMSW T10355 M UX (nector fuel term (TH003) 5404 -338 <t< td=""><td>TT0152 M GH2 Injector latel Tenny. (TH001) 5404 338 430 DE6 F M TC. Cr-Al Cal 1206-96 LMSW TT0135 M GH2 Injector latel Tenny. (TH001) 5404 338 430 DE6 F M CH2 Gal 1206-96 LMSW TT0353 M GY Injector Intel Tenny. (TH002) 5404 338 430 DE6 F M CH2 Gal 1206-96 LMSW TT0353 M LOX Injector Intel Tenny. (TH002) 5404 338 430 DE6 F M CH CH Cal 1206-96 LMSW TT0353 M LOX Injector Intel Tenny. (TH002) 5404 338 430 DE6 F M CH CH</td><td>_</td><td>TT0363</td><td>Σ</td><td>LOX, 80% Venturi Inlet Temp.</td><td>5404</td><td>-338</td><td>430</td><td>DEG F</td><td></td><td></td><td></td><td>TC, Cr-AI</td><td>Cal 08/13/96</td><td>LMSW</td><td></td></t<>	TT0152 M GH2 Injector latel Tenny. (TH001) 5404 338 430 DE6 F M TC. Cr-Al Cal 1206-96 LMSW TT0135 M GH2 Injector latel Tenny. (TH001) 5404 338 430 DE6 F M CH2 Gal 1206-96 LMSW TT0353 M GY Injector Intel Tenny. (TH002) 5404 338 430 DE6 F M CH2 Gal 1206-96 LMSW TT0353 M LOX Injector Intel Tenny. (TH002) 5404 338 430 DE6 F M CH CH Cal 1206-96 LMSW TT0353 M LOX Injector Intel Tenny. (TH002) 5404 338 430 DE6 F M CH	_	TT0363	Σ	LOX, 80% Venturi Inlet Temp.	5404	-338	430	DEG F				TC, Cr-AI	Cal 08/13/96	LMSW	
TT0156 M Get2 Injector Intel Term, (TH006) 5404 338 430 DE6 F I TC Cr.Al Cal 120696 LMSW TT0325 M UX Injector Intel Term, (TH001) 5404 338 430 DE6 F I I Cr.Al Cal 120696 LMSW TT0355 M UX Injector Intel Term, (TH003) 5404 338 430 DE6 F I I Cr.Al Cal 120696 LMSW TT0355 M UX Injector Intel Term, (TH003) 5404 338 430 DE6 F I I Cr.Al Cal 120696 LMSW TT0355 M UX Injector Intel Term, (TH003) 5404 338 430 DE6 F I Cal 120696 LMSW TT0355 M UX Injector Intel Term, (TH003) 5404 338 430 DE6 F I Cal 120696 LMSW TT0356 M UX Injector Intel Term, (TH003) 5404 338 430 DE6 F I Cal 1206966 LMSW	IT0156 M Gr2 intector intel termo, (14005) 5404 -338 430 DE6 F I TC Ca1 Ca1 <	4	TT0152	[GH2 Injector Inlet Temp. (TH001)	5404	-338	430	DEG F				TC, Cr-Al	Cal 12/06/96	MSM	
TT0325 M LOX injector lite Termo 5404 338 430 DE6 F L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>	TT0332 M LOX Injector Intel Term, (THO01) 54d4 538 430 DE6 F Image: Cr-AI Cal 120696 LMSW TT0335 M DX Injector Intel Term, (THO02) 54d4 538 430 DE6 F DE Cr-AI Cal 120696 LMSW TT0335 M DX Injector Intel Term, (THO02) 54d4 538 430 DE6 F DE DE Cr-AI Cal 120696 LMSW TT0335 M DX Injector Intel Term, (THO03) 54d4 538 430 DE6 F DE DE Cr-AI Cal 120696 LMSW TT0335 M DX Injector Intel Term, (THO03) 54d4 538 430 DE6 F DE6 F DE Cr-AI Cal 120696 LMSW TT0335 M LX Injector Intel Term, (THO03) 54d4 538 430 DE6 F DE6 F DE Cr-AI Cal 1206966 LMSW TT0330 M LX Injector Intel Term, (THO03) 54d4 538 430 DE6 F DE Cr-	8	110156	¥	GH2 Injector Inlet Temp. (TH005)	5404	-338	430	DEG F				TC, Cr-AI	Cal 12/06/96	NSW	
TT0353 M LOX injector intel Femp. (TH002) 5404 338 430 DEG F D TC, Cr-AI Cal 1206696 LMSW TT0355 M UX injector intel Temp. (TH003) 5404 338 430 DEG F D TC, Cr-AI Cal 1206696 LMSW TT0355 M UX injector intel Temp. (TH003) 5404 338 430 DEG F D DEG F D Cr-AI Cal 1206696 LMSW TT0355 M UX injector intel Temp. (TH003) 5404 338 430 DEG F D DEG F D Cr-AI Cal 120696 LMSW TT0355 M UX injector intel Temp. (TH003) 5430 338 390 DEG F D Cr-AI Cal 120696 LMSW LS0304 M UX injector intel Temp. (TH003) 5430 338 390 DEG F D Cr-AI Cal 120696 LMSW LS0304 M UX injector intel Temp. (TH003) 5430 338 390 DEG F Cr	TT0353 M LOX injector intel Temp. (TH002) 5404 338 430 DEGF D TC, Cr-M Cal 1206966 LNSW T10357 M LOX injector intel Temp. (TH003) 5404 338 430 DEGF P P Co.Al Cal 1206966 LNSW T10357 M LOX injector intel Temp. (TH003) 5404 338 430 DEGF P P Co.Al Cal 1206966 LNSW T10357 M LOX injector intel Temp. (TH003) 5404 338 430 DEGF P P Co.Al Cal 1206966 LNSW T10357 M LOX injector intel Temp. (TH003) 5404 338 300 DEGF P P Co.Al Cal 1206966 LNSW LS0302 M LOX injector intel Temp. (TH003) 5404 338 300 DEGF P Co.Al Cal 1206966 LNSW LS0302 M LOX injector intel Temp. (TH003) 5404 338 300 DEGF Co.Al	2	TT0352	¥	LOX Injector Inlet Temp. (TH001)	5404	-338	430	DEG F				TC, Cr-AI	Cal 12/06/96	NSW	
	TT0354 M LOX injector intel Temp (TH003) 5404 338 430 DEG F M C C-AI Cal 1206/96 LMSW TT0355 M LOX injector intel Temp. (TH004) 5404 338 430 DEG F M TC, C-AI Cal 1206/96 LMSW TT0357 M LOX injector intel Temp. (TH004) 5404 338 430 DEG F M D C, C-AI Cal 1206/96 LMSW TT0357 M LOX injector intel Temp. (TH004) 5404 338 300 DEG F M D C, C-AI Cal 1206/96 LMSW L50301 M LOX Livel Sensor - Low 5430 338 300 DEG F M D C, C-AI Cal 1206/96 LMSW L50302 M LOX Livel Sensor - Low 5430 338 300 DEG F M D C, C-AI Cal 1206/96 LMSW L50302 M LOX Level Sensor - Low 5430 338 300 DEG F M D	3	110353	W	LOX injector inlet Temp. (TH002)	5404	-338	430	DEG F				TC, Cr-AI	Cal 12/06/96	NSW	
TI0355 M LOX Injector Intel Termo, (TH004) 5404 -338 430 DEG F Image: Cr-AI Cal 1206-96 LMSW T10355 M LOX Injector Intel Termo, (TH006) 5404 -338 430 DEG F D DEG F Cr-AI Cal 1206-96 LMSW 150301 M LOX Injector Intel Termo, (TH008) 5430 -338 390 DEG F DEG F D TC, Cr-AI Cal 1206-96 LMSW 150301 M LOX Level Sensor - Do 5430 -338 390 DEG F D TC, Cr-AI Cal 1206-96 LMSW 150303 M LOX Level Sensor - Do 5430 -338 390 DEG F D TC, Cr-AI Cal 1206-96 LMSW 150303 M LOX Level Sensor - D 5430 -338 390 DEG F D TC, Cr-AI Cal 04726-96 LMSW 150304 M LOX Level Sensor - D F 5430 -338 390 DEG F FC Cr-AI Cal 04726-96 L	T10355 M LOX Injector intel Termo, (TH004) 5404 -338 430 DE6 F N TC, Cr-M Cal 1206-96 LMSW T10357 M LOX Injector intel Termo, (TH006) 5404 -338 430 DE6 F N Cr-M Cal 1206-96 LMSW T10357 M LOX injector intel Termo, (TH008) 5404 -338 390 DE6 F N TC, Cr-M Cal 1206-96 LMSW L503012 M LOX intertor intel Termo, (TH008) 5430 -338 390 DE6 F N TC, Cr-M Cal 1206-96 LMSW L503012 M LOX intertel Sensor - Top 5430 -338 390 DE6 F N TC, Cr-M Cal 1206-96 LMSW L503013 M LOX intertel Sensor - Top 5430 -338 390 DE6 F N TC, Cr-M Cal 1206-96 LMSW L50303 M LOX interteral H2 TC, Cr-M Cal 4726-96 LMSW TC, Cr-M Cal 4726-96 LMSW TC, Cr-M	4	TT0354	Σ	LOX injector inlet Temp. (TH003)	5404	-338	430	DEG F				TC, Cr-AI	Cal 12/06/96	LMSW	
TT0357 M LOX Injector inlet Termo, CH006) 5404 -338 430 DEG F TC, Cr-Al Cat 1206-96 LMSW TT0359 M LOX tupector inlet Termo, CH008) 5404 -338 430 DEG F TC, Cr-Al Cat 1206-96 LMSW LS0301 M LOX tueel Sensor - Low 5430 -338 390 DEG F TC, Cr-Al Cat 1206-96 LMSW LS0302 M LOX tueel Sensor - Low 5430 -338 390 DEG F TC, Cr-Al Cat 1206-96 LMSW LS0302 M LOX tueel Sensor - D F 5430 -338 390 DEG F TC, Cr-Al Cat 1206-96 LMSW LS0303 M LOX tueel Sensor - D F 5430 -338 390 DEG F TC, Cr-Al Cat 1206-96 LMSW LS0303 M LOX tueel Sensor - D F 5430 -338 390 DEG F FC Cr-Al Cat 1206-96 LMSW TT0010 C T00 LM 338 DEG F<	TT0357 M LOX Injector inlet Termo, CH006) 5404 -338 430 DEG F Low TC, Cr-Al Cal 1206-96 LMSW T10353 M LOX Injector inlet Termo, CH008) 5404 -338 430 DEG F TC Cr-Al Cal 1206-96 LMSW LS0302 M LOX Level Sensor - Low 5330 -338 390 DEG F TC Cr-Al Cal 1206-96 LMSW LS0302 M LOX Level Sensor - Top 5430 -338 390 DEG F TC Cr-Al Cal 1206-96 LMSW LS0303 M LOX Level Sensor - Top 5430 -338 390 DEG F TC Cr-Al Cal 1206-96 LMSW LS0304 M LOX Level Sensor - Top 5430 -338 390 DEG F C Sal 04726-96 LMSW T10164 M GX Level Sensor - To 5430 -338 390 DEG F FC Cr-Al Cal 4276-96 LMSW T101016 C	5	TT0355	ν	LOX Injector Inlet Temp. (TH004)	5404	-338	430	DEG F				TC, Cr-AI	Cal 12/06/96	MSW	
TT0359 M LOX tupector inlet Termp, (TH008) 5404 338 430 DEG F C TC, Cr-AI Ca12/06/96 LMSW L50301 M LOX Level Sensor - Low 5430 333 390 DEG F N TC, Cr-AI Ca104/26/96 LMSW L50301 M LOX Level Sensor - Top 5430 338 390 DEG F N TC, Cr-AI Ca104/26/96 LMSW L50302 M LOX Level Sensor - Top 5430 338 390 DEG F N TC, Cr-AI Ca104/26/96 LMSW L50304 M LOX Level Sensor - Dr 5430 338 390 DEG F N TC, Cr-AI Ca104/26/96 LMSW L10101 C Tem, Internal, GPT 20% Ventuir Intertemp 5404 338 430 DEG F FC Scientrici Inst. C, Cr-AI Ca104/26/96 LMSW N T10102 C Tem, Internal, GPT 20% Ventur Temp 5404 338 430 DEG F FC Scientrici Inst.	TT0359 M OX injector inlet Termp, (TH008) 5404 338 430 DEG F T T C,C-AI Cal 12/06/96 LMSW L50301 M IOX Level Sensor - Low 5430 333 90 DEG F T C,C-AI Cal 04/26/96 LMSW L50301 M LOX Level Sensor - Top 5430 338 390 DEG F T T C,C-AI Cal 04/26/96 LMSW L50303 M LOX Level Sensor - Tol 5430 338 300 DEG F T C C,C-AI Cal 04/26/96 LMSW L50304 M LOX Level Sensor - Tol 5430 338 90 DEG F T C C AI Cal 04/26/96 LMSW L50304 M LOX Level Sensor - Tol 5431 338 DEG F F C C AI	2	TT0357	Σ	LOX Injector Inlet Temp. (TH006)	5404	-338	430	DEG F		-		TC, Cr-AI	Cal 12/06/96	LMSW	
LS0301 M LOX Level Sensor - Low 5430 5330 238 390 DEG F T TC, Cr-AI Cal 04/26/96 LMSW LS0302 M LOX Level Sensor - Top 5430 -338 390 DEG F T TC, Cr-AI Cal 04/26/96 LMSW LS0303 M LOX Level Sensor - Full 5430 -338 390 DEG F T TC, Cr-AI Cal 04/26/96 LMSW LS0303 M LOX Level Sensor - Full 5430 -338 390 DEG F T TC, Cr-AI Cal 04/26/96 LMSW L100304 M LOX Level Sensor - Full 5404 -338 430 DEG F T C, Cr-AI Cal 04/26/96 LMSW T10164 M LOZ LO% Venturi Interfenp. 5404 -338 430 DEG F FC Scientific Inst. C, Cr-AI Cal 04/26/96 LMSW T TC, Cr-AI Cal 04/26/96 LMSW T TC, Cr-AI Cal 04/26/96 LMSW T T TC, Cr-AI	LS0301 M LOX Level Sensor - Low 5430 5330 530 DEG F D TC, Cr-AI Cal 04/26/96 LMSW LS0303 M LOX Level Sensor - Tol 5430 5330 390 DEG F D TC, Cr-AI Cal 04/26/96 LMSW LS0303 M LOX Level Sensor - Tul 5430 333 390 DEG F D TC, Cr-AI Cal 04/26/96 LMSW LS0303 M LOX Level Sensor - Tul 5430 333 390 DEG F D TC, Cr-AI Cal 04/26/96 LMSW L10164 M ERP Sensor - Full 5430 338 300 DEG F D TC, Cr-AI Cal 04/26/96 LMSW T10164 M ERP 2004 543 338 DEG F FC Scientific inst. TC, Cr-AI Cal 04/26/96 LMSW T10101 C Temp. Internal, GH2 Tank #2 542263 112 239 DEG F FC Scientific inst. TC, Cr-AI Cal 04/26/96 LMSW <td>6</td> <td>TT0359</td> <td>M</td> <td>LOX Injector Inlet Temp. (TH008)</td> <td>5404</td> <td>-338</td> <td>430</td> <td>DEG F</td> <td></td> <td></td> <td></td> <td>TC, Cr-AI</td> <td>Cal 12/06/96</td> <td>NSW</td> <td></td>	6	TT0359	M	LOX Injector Inlet Temp. (TH008)	5404	-338	430	DEG F				TC, Cr-AI	Cal 12/06/96	NSW	
LS0302 M LOX Level Sensor · Top 5430 338 390 DEG F T T C.C.14 Cal 04/26/96 LMSW LS0303 M LOX Level Sensor · Full 5430 -338 390 DEG F P TC, C.T.41 Cal 04/26/96 LMSW LS0303 M LOX Level Sensor · Full 5430 -338 390 DEG F P TC, C.T.41 Cal 04/26/96 LMSW T10164 M LOX Level Sensor · 0. F 5430 -338 430 DEG F P TC, C.T.41 Cal 04/26/96 LMSW T10164 M LOX Level Sensor · 0. F 5430 -338 430 DEG F F Scientific inst. Cal 04/26/96 LMSW T10101 C Temp, Internal, GL? Tank #? 542263 -112 239 DEG F FC Scientific inst. Cal 04/26/96 LMSW T10102 C Temp, Internal, GL? Tank #? 542263 -112 239 DEG F FC Scientific inst. Cal 02/08/96	LS0302 M LOX Level Sensor · Top 5430 533 390 DEG F C TC, Cr-AI Cal 0426/96 LMSW LS0303 M LOX Level Sensor · Full 5430 -338 390 DEG F P TC, Cr-AI Cal 0426/96 LMSW LS0303 M LOX Level Sensor · Full 5430 -338 390 DEG F P TC, Cr-AI Cal 0426/96 LMSW LS0304 M LOX Level Sensor · C I 5430 -338 300 DEG F P TC, Cr-AI Cal 0426/96 LMSW T10164 M LOX Level Sensor · C I 5430 -338 430 DEG F FC Scientific Inst. Cal 12/06/96 LMSW T10101 C Temp. Internal, GH2 Tank #1 542263 -112 239 DEG F FC Scientific Inst. TC, Cr-AI Cal 12/06/96 LMSW T10102 C Temp. Internal, GH2 Tank #1 542263 -112 239 DEG F FC Scientific Inst. TC, Cr-AI	2	LS0301	¥	LOX Level Sensor - Low	5430	-338	390	DEG F				TC, Cr-AI	Cal 04/26/96	MSWI	
LS0303 M LOX Level Sensor - Full 5430 -338 390 DEG F C Cr.Al Cal 04/26/96 LMSW L50304 M LOX Level Sensor - 0. F 5430 -338 390 DEG F TO TC, Cr.Al Cal 04/26/96 LMSW L10564 M LOX Level Sensor - 0. F 5430 -338 390 DEG F TC TC, Cr.Al Cal 04/26/96 LMSW T10364 M LO2 20% Venuni Temp 5404 -338 430 DEG F FC Scientific Inst. TC, Cr.Al Cal 12/06/96 LMSW T10364 M LO2 20% Venuni Temp 5404 -338 430 DEG F FC Scientific Inst. TC, Cr.Al Cal 12/06/96 LMSW T10302 C Temp. Internal, GHZ Tank #1 542263 -112 239 DEG F FC Scientific Inst. Temp Probe Cal 03/08/96 LMSW T10302 C Temp. Internal, GHZ Tank #2 5420 -338 430 DEG F FC	Li S0303 M IOX Level Sensor - Fuil 5430 338 390 DEG F T T C.C.AI Cal 04/26/96 LMSW L50304 M LOX Level Sensor - D. F 5430 -338 390 DEG F P TC. Cr.AI Cal 04/26/96 LMSW L50304 M LOX Level Sensor - D. F 5430 -338 390 DEG F P TC. Cr.AI Cal 04/26/96 LMSW T10161 C Temp. Internati. GHZ 20% venturi lient 5404 -338 430 DEG F FC Scientific list. TC. Cr.AI Cal 04/26/96 LMSW T10101 C Temp. Internati. GHZ 1ank #1 54276-3 -112 239 DEG F FC Scientific list. Tu Cr.AI Cal 04/26/96 LMSW T10102 C Temp. Internati. GHZ 1ank #1 54276-3 -112 239 DEG F FC Scientific list. Tu Cr.AI Cal 04/26/96 LMSW T10102 C Temp. Internati. GHZ 1ank #2 54226-3 -112 23	3	LS0302	1 1	LOX Level Sensor - Top	5430	-338	390	DEG F				TC, Cr-AI	Cai 04/26/96	NSW	
LS0304 M LOX Level Sensor - 0. F. 5430 -338 390 DEG F TC. Cr-AI Cal 0476/96 LMSW T10164 M GH2 20% Venturi Intel Temp. 5404 -338 430 DEG F C Cal 12/09/96 LMSW T10364 M LU2 20% Venturi Intel Temp. 5404 -338 430 DEG F FC Scientific inst. Cal 12/09/96 LMSW T10301 C Temp. Internal, GH2 Tank #1 542/63 -112 239 DEG F FC Scientific inst. TG. Cr-AI Cal 12/09/96 LMSW T10102 C Temp. Internal, GH2 Tank #1 542/263 -112 239 DEG F FC Scientific inst. TG. Cr-AI Cal 12/09/96 LMSW T10102 C Temp. Surface. He Tank (LUX & TEB) 542/063 -112 239 DEG F FC Scientific inst. TG. Cr-AI Cal 12/09/96 LMSW T102022 M Temp. Surface. He Tank (LUX & TEB) 542/06 -338 430 DG F FC	LG3004 M LOX Level Sensor - 0. F. 5430 -338 390 DEG F M TC. Cr-AI Cal 0476/96 LMSW T10164 M GH2 20% Venturi Intel Temp. 5404 -338 430 DEG F M TC. Cr-AI Cal 1209/66 LMSW T10364 M L02 20% Venturi Intel Temp. 5404 -338 430 DEG F FC Scientific inst. TC. Cr-AI Cal 1209/66 LMSW T10302 C Temp. Internal, GH2 Tank #1 5422/63 -112 239 DEG F FC Scientific inst. Temp Probe Cal 0306/96 LMSW T10102 C Temp. Junternal, GH2 Tank #1 5422/63 -112 239 DEG F FC Scientific inst. Temp Probe Cal 0306/96 M M T10102 C Temp, Junteral, GH2 Tank #2 5422/63 -112 239 DEG F FC Scientific inst. Temp Probe Cal 0306/96 M M T102024 T Temp, Junteral, H20 System)	4	LS0303		LOX Level Sensor - Full	5430	-338	390	DEG F				TC, Cr-AI	Cal 04/26/96	NSW	
T10164 M GH2 20% Venturi Inter Temp. 5404 -338 430 DEG F C Cr.A.I Cat 12/06/96 LMSW T10364 M L02 20% Venturi Temp. 5404 -338 430 DEG F FC Scientific inst. TC, Cr.A.I Cat 12/06/96 LMSW T10301 C Temp. Internal, GH2 Tank #1 54243 -112 239 DEG F FC Scientific inst. Temp Probe Cat 03/06/96 LMSW T10102 C Temp. Jinternal, GH2 Tank #1 542263 -112 239 DEG F FC Scientific inst. Temp Probe Cat 03/06/96 LMSW T10102 C Temp, Jinternal, GH2 Tank #2 542263 -112 239 DEG F FC Scientific inst. Temp Probe Cat 03/06/96 M	TT0164 M GH2 20% Venturi Inter Temp. 5404 -338 430 DEG F C TC, Cr-Al Cat 12/06/96 LMSW TT0364 M L02 20% Venturi Temp 5404 -338 430 DEG F FC Scientific inst. TC, Cr-Al Cat 12/06/96 LMSW TT0301 C Temp, Internal, GH2 Tank #1 5404 -338 430 DEG F FC Scientific inst. TG, Cr-Al Cat 12/09/96 LMSW TT0302 C Temp, Internal, GH2 Tank #1 5422/63 -112 239 DEG F FC Scientific inst. TG, Cr-Al Cat 12/09/96 LMSW TT0302 M Temp, Surface, He Tank (L0X & TEB) 542/03 -112 239 DEG F FC Scientific inst. TG, Cr-Al Cat 12/09/96 MSW TT0202 M Temp, Surface, He Tank (L0X & TEB) 542/03 -312 239 DEG F FC Scientific inst. TG, Cr-Al Cat 12/09/96 MSW TT0202 M Temp, Nax 230	5	LS0304		LOX Level Sensor - O. F.	5430	-338	390	DEG F				TC, Cr-AI	Cal 04/26/96	LMSW	
TT0364 M L02 20% venturi Temp 5404 -338 430 DEG F FC Circlat Cat 12/09/96 LMSW TT0101 C Temp, Internal, GH2 Tark #1 5422/63 -112 239 DEG F FC Scientific inst. Temp Probe Cat 03/08/96 LMSW TT0102 C Temp, Internal, GH2 Tark #2 542/63 -112 239 DEG F FC Scientific inst. Temp Probe Cat 03/08/96 M M M Z Temp, Surface, He Tark #2 E102/09/96 LMSW M M Z Temp, Surface, He Tark #2 E102/09/96 LMSW M M M Z End Scientific inst. Temp Probe Cat 12/09/96 M M M M Z End Scientific inst. Temp Probe Cat 12/09/96 M M M M Z Scientific inst. Temp Probe Cat 12/09/96 M M M Z Scientific inst. Tem Science + 12/09/96 M M M Z	TT0364 M L02 20% venturi Temp 5404 -338 430 DEG F FC Scientific inst TC. Gr-Al Cat 12/09/96 LMSW TT0101 C Temp. Internal, GH2 Tank #1 5422/63 -112 239 DEG F FC Scientific inst Temp. Probe Cat 12/09/96 LMSW TT0102 C Temp. Internal, GH2 Tank #2 5422/63 -112 239 DEG F FC Scientific inst Temp. Probe Cat 12/09/96 LMSW TT0202 C Temp. Surface, He Tank (LUX & TEB) 54220 -338 430 DEG F FC Scientific inst To. Gr.Al Cat 12/09/96 LMSW TT0204 C Temp. Surface, He Tank (LUX & TEB) 5420 -338 430 DEG F FC Scientific inst To. Gr.Al Cat 12/09/96 To. TT0204 C Temp. Surface, He Tank (HZ System) 5420 -338 430 DEG F FC Scientific inst To. Gr.Al Cat 12/09/96 To. To. Cat 12/09/96 To. <td>9</td> <td>TT0164</td> <td>¥</td> <td>GH2 20% Venturi Inlet Temp.</td> <td>5404</td> <td>-338</td> <td>430</td> <td>DEGF</td> <td></td> <td></td> <td></td> <td>TC, Cr-AI</td> <td>Cal 12/06/96</td> <td>LMSW</td> <td></td>	9	TT0164	¥	GH2 20% Venturi Inlet Temp.	5404	-338	430	DEGF				TC, Cr-AI	Cal 12/06/96	LMSW	
TT0101 C Temp. Internal, GH2 Tank #1 542263 -112 239 DEG F FC Scientific linst. Temp Probe Cal 03/08/96 Cal TT0102 C Temp, Internal, GH2 Tank #2 542263 -112 239 DEG F FC Scientific linst. Temp Probe Cal 03/08/96 Cal TT0202 M Temp, Surface, He Tank #2 542263 -112 239 DEG F FC Scientific linst. TC, Cr-Al Cal 12/09/96 Cal TT0204 C Temp, Surface, He Tank (LOX & TEB) 5420 -338 430 DEG F FC TC, Cr-Al Cal 12/09/96 TC	TT0101 C Temp. Internal, GH2 Tank #1 5422/63 -112 239 DEG F FC Scientific linst. Temp Probe Cal 03/08/96 Cal 12/09/96 TT0102 C Temp, Internal, GH2 Tank #2 5422/63 -112 239 DEG F FC Scientific linst. Temp Probe Cal 03/08/96 Cal 12/09/96 TT0202 M Temp, Surface. He Tank (LOX & TEB) 5422/63 -112 239 DEG F FC Scientific linst. To, Cr. Al Cal 12/09/96 Cal 12/09/96 To TT0204 C Temp, Surface. He Tank (HOX & TEB) 5420 -338 430 DEG F FC To, Cr. Al Cal 12/09/96 To To, Cr. Al Cal 12/09/96 To To To, Cr. Al Cal 12/09/96 To To To, Stratust cas Temp - LM DB - 5 0 1200 DEG F FC To, Cr. Al Cal 12/09/96 DEG F FC Stratust cas Temp - LM DB - 1200 DEG F FC To, Cr. Al Cal 12/09/96 DEG F FC DC Cal 05/10/96	7	110364	W	L02 20% Venturi Temp.	5404	-338	430	DEG F				TC, Cr-AI	Cal 12/09/96	LMSW	
TT0102 C Temp. Internal. GH2 Tank #2 5422/63 -112 239 DEG F FC Scientific inst. Temp. Probe Cal 03/06/96 TT0202 M Temp. Surface. He Tank (LOX & TEB) 5422 -338 430 DEG F FC TC. AI Cal 12/09/96 TC TC AI 2012/05/96 TC TC AI 2012/05/96 TC TC AI Cal 12/09/96 TC TC Cal 12/09/96 TC TC Cal 12/09/96 TC TC AI AI AI AI AI Cal 12/09/96 TC TC Cal 12/09/96 TC TC Cal 12/09/96 TC TC AI AI AI AI AI AI AI Cal 12/09/96 TC TC Cal 12/09/96 TC TC Cal 12/09/96 TC TC AI Cal 05/10/96 TC AI	TT0102 C Temp. Internal. Git2 Tank #2 5422/63 -112 239 DEG F FC Scientific inst. Temp. Probe Cal 03/06/66 TT0202 M Temp. Surface. He Tank (LOX & TEB) 5422/63 -112 239 DEG F FC Scientific inst. TG, Cr-Ai Cal 12/09/96 TC TT0204 C Temp. Surface. He Tank (H2O System) 5420 -338 430 DEG F FC TC TG, Cr-Ai Cal 12/09/96 TC MA S Exhaust Gas Temp - L/H 028-5 0 12060 DEG C FC TC, Cr-Ai Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - L/H 028-5 0 1200 DEG C FC TC, Cr-Ai Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - R/H 028-5 0 1200 DEG C FC TC Cal 05/10/96 DFRC TC Cal 05/10/96 DFRC TC Cal 05/10/96 DFRC TC Cal 05/10/96 DFRC TC	8	TT0101	J	Temp. Internal, GH2 Tank #1	5422/63	-112	239	DEGF	ម	Scientific Inst.		Temp Probe	Cal 03/08/96		
TT0202 M Temp. Surface, He Tank (LOX & TTEB) 5420 -338 430 DEG F FC TC. Cr. Al Cal 12/09/96 TT0204 C Temp. Surface, He Tank (H2D System) 5420 -338 430 DEG F FC TC. Cr. Al Cal 12/09/96 TC NA S Exhaust Gas Temp - L/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - L/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - L/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC	TT0202 M Temp. Surface, He Tank (LOX & TTEB) 5420 -338 430 DEG F FC TC. Cr. Al Cal 12/09/96 TT0204 C Temp. Surface, He Tank (H2O System) 5420 -338 430 DEG F FC TC. Cr. Al Cal 12/09/96 P NA S Exhaust Gas Temp - L/H 028-5 0 1200 DEG F FC TC. Cr. Al Cal 12/09/96 DFRC N/A S Exhaust Gas Temp - L/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - R/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC	6	TT0102	പ		5422/63	-112	239	DEG F	FC	Scientific Inst.		Temp Probe	Cal 03/08/96		
TT0204 C Temp. Surface. He Tank (H20 System) 5420 -338 430 DEG F FC TC. (7.4) Cal 12/09/96 DERC M X S Exhaust Gas Temp - L/H 228-5 0 1200 DEG C FC TC. (7.4) Cal 12/09/96 DERC DERC M X S Exhaust Gas Temp - L/H 228-5 0 1200 DEG C FC Cal 05/10/96 DFRC DERC DE DE Cal 05/10/96 DFRC DE DE <td>TT0204 C Temp. Surface. He Tank (H20 System) 5420 -338 430 DEG F FC TC. Cr-AI Cal 12/09/96 DERC N/A S Exhaust Gas Temp - L/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - L/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - R/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - R/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - R/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A Cal 05/10/96<td>0</td><td>TT0202</td><td>¥</td><td>Temp, Surface, He Tank (LOX & TTEB)</td><td>5420</td><td>-338</td><td>430</td><td>DEG F</td><td>9</td><td></td><td></td><td>TC. Cr-AI</td><td>Cal 12/09/96</td><td></td><td></td></td>	TT0204 C Temp. Surface. He Tank (H20 System) 5420 -338 430 DEG F FC TC. Cr-AI Cal 12/09/96 DERC N/A S Exhaust Gas Temp - L/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - L/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - R/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - R/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - R/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A Cal 05/10/96 <td>0</td> <td>TT0202</td> <td>¥</td> <td>Temp, Surface, He Tank (LOX & TTEB)</td> <td>5420</td> <td>-338</td> <td>430</td> <td>DEG F</td> <td>9</td> <td></td> <td></td> <td>TC. Cr-AI</td> <td>Cal 12/09/96</td> <td></td> <td></td>	0	TT0202	¥	Temp, Surface, He Tank (LOX & TTEB)	5420	-338	430	DEG F	9			TC. Cr-AI	Cal 12/09/96		
N/A S Exhaust Gas Temp - L/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - R/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC Cal 05/10/96	N/A S Exhaust Gas Temp - L/H 028-5 0 1200 DEG C FC Cal 05/10/96 DFRC N/A S Exhaust Gas Temp - R/H 028-5 0 12000 DEG C FC Cal 05/10/96 DFRC	-	TT0204	S	H20 Sy	5420	-338	430	DEG F	FC			TC, Cr-AI	Cal 12/09/96		
N/A S Exhaust Gas Temp - R/H 028-5 0 1200 DEG C FC C 20 05/10/96 DFRC	N/A S Exhaust Gas Temp - R/H 028-5 0 1200 DEG C FC C C C C C C C C C C C C C C C C C	ΤĽ	N/A	s	Exhaust Gas Temp - L/H	028-5	0	1200	DEG C	អ				Cal 05/10/96	DFRC	DFRC
		TR	N/A	s	Exhaust Gas Temp - R/H	028-5	0	1200	DEG C	FC				Cal 05/10/96	DFRC	DFRC

NASA/LMSW LASRE Program Master Measurement List Revision P Date 04/03/98

FC = Flight Critical FS = Flight Safety MC = Mission Critical TD = Technically Desirable

 Table 8. LASRE program master measurement list (Continued).

Table 8. LASRE program master measurement list (Continued).

NASA/LMSW LASRE Program Master Measurement List Revision P Date 04/03/98

APPENDIX E—Operating Sequence

Note: States in the test sequence were defined as follows:

Normal operation:

Initialization	in 1
Master standby	ms
Prestart	ps1
Start	ss1
Cutoff	co1
Autosafe arm	as1
Autosafe GH ₂	as2
Autosafe LO_2	as3
Autosafe H_2O	as4
Mission complete standby	mcs

(Although numbered in series, the autosafe procedures could be performed in any sequence. Generally, as2 (GH_2) and as4 (H_2O) were performed before as3 (LO_2).)

Abort procedures:

Master abort sequence	mas
Master abort hold	mah

The LASRE test sequence is shown in figure 16.

PS1:1	1:1 end D. B.	E SS1:1	C01:1 t=0	AS1:1 t=0	AS2:1 1=0
He TTEB S/O valve SV0203 He tank S/O valves SV0201,2 (model) He tank S/O valves SV0206,8,11 (canoe)	(opened at in 1:4) (only SV0201 opened)	(standby wait for start)	(SV0202 open in 1:8, closed in 1:14) (1:16) (1:16) (1:16) (1:16) (1:16) (1:16)		(hold for A/S select)
H ₂ O tank press'ng valve SV0401 H ₂ O tank press'ng valve SV0402 H ₂ O S/O valve PV0401 H ₂ O engine line trickle valve SV0403			$\begin{array}{c ccccc} 6.25 & & & & & & & & & & & & & & & & & & &$		
TTEB #1/#2 press'ing valve SV0304 TTEB trickle pruge valve SV0210 TTEB line purge valve SV0205	(opened at in 1:3)		(1:2) 11 (1:16) (1:16) (1:16) (1:17)	(1:37)	
LOX tank press'ng valve SV0304 0.25- LOX engine line trickle valve SV0302 LOX engine supply valve PV0301 LOX engine line purge valve SV0303	(Bau) (E:1)	0.25	$\begin{array}{c cccc} & & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$		
GH ₂ Reg—S/O valve PR101 GH ₂ engine line purge valve SV0101			9.0 (1:35) 1.35 (1:35) 1.3 (1:15) 0.005		
lgnition detect #1-#8 (PT0001- 8) Max. H ₂ O inlet <i>P</i> (PT0451) Min. H ₂ O inlet <i>P</i> (PT0451) Max. H ₂ O outlet <i>P</i> (PT0453) Min. H ₂ O outlet <i>P</i> (PT0453) Max. H ₂ O tank <i>P</i> (PT0401)	(660 psi) (600 psi) (870 psi)		(inim gised 31) $\overset{(U,U)}{=}$ (15 psig min) $t=11.4$ (1:29) $\overset{(130)}{=}$ (1:29) $\overset{(135)}{=}$ (1:29) $\overset{(135)}{=}$ (1:29) $\overset{(135)}{=}$ (1:20) (2000 200)		
Max. Lox 20% vent. inlet <i>P</i> (PT0364) Max. GH ₂ 20% vent. inlet <i>P</i> (PT0164) Min. GH ₂ 20% vent. inlet <i>P</i> (PT0164) Min. <i>P</i> ₆ (PT0001–8) Max. <i>P</i> ₆ (PT0001–8) Max. TTEB purge <i>P</i> (PT0203) Min. canoe He tank <i>P</i> (PT0203)	(320 psi) (320 psi) (1.200 psi)		$(1:37) \Delta (420 \text{ psi})$ $(1:37) \Delta (420 \text{ psi}) \Delta (-50 \text{ psi} \text{ tor cold flows; 150 psi tor hot-fires})$		(30 psi)
Max. H ₂ O ramp 7 (TT0455–58)	_	_	(1:37) <u>へ (*** *)</u> 人	_	

5-33865.fig16a

Figure 16. LASRE test sequence.

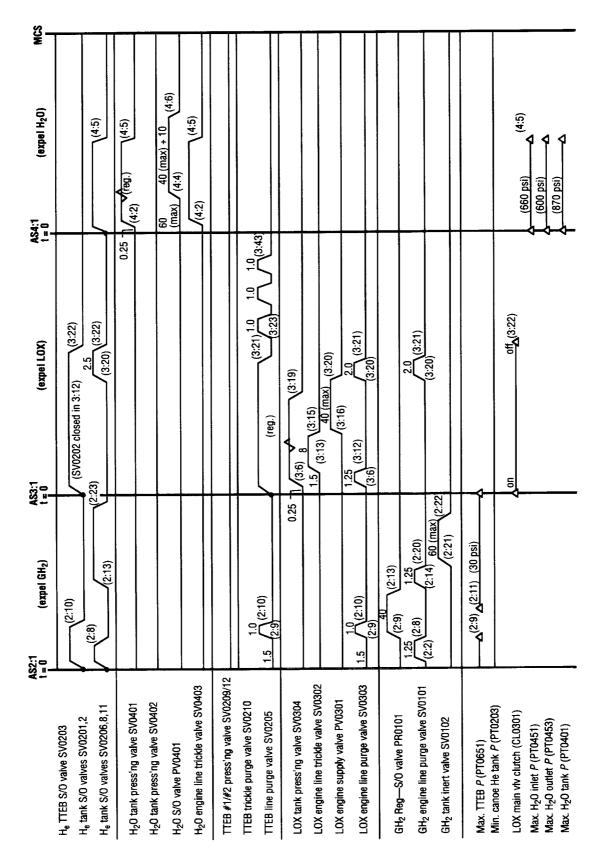


Figure 16. LASRE test sequence (Continued).

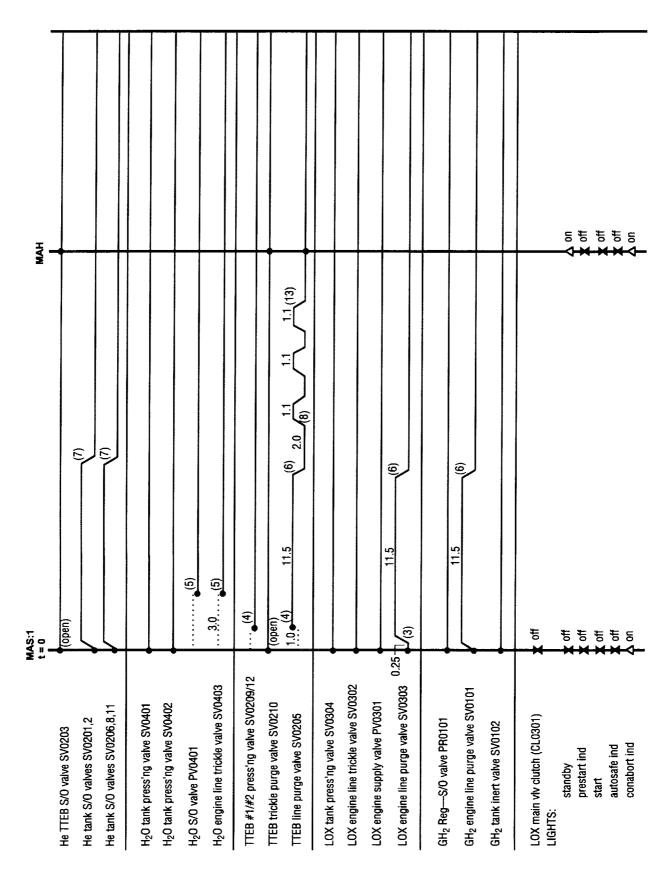


Figure 16. LASRE test sequence (Continued).

APPENDIX F—Summary of Steady-State Data

Note: Data from initial tests performed early in the program (GR'2–18) were not included in this summary. Also, the final flight configuration tests (GR'58–63 and FLT'51) were performed primarily to evaluate leaks in the LOX system; so, data from these tests were not included in the data summary sheets. Instead, their LOX system results were only included in the steady-state data plots (pp. 69–70, 75) to compare the LOX results with other tests.

A quick-look summary of LASRE system and engine and performance during main flow is shown in table 9, the system performance summary in table 10, and the engine performance summary in table 11.

Steady-state trends are shown for the LOX system data (fig. 17), fuel system data (fig. 18), water system data (fig. 19), and the thruster data (fig. 20). The LASRE engine supply systems are shown in figure 21, and figure 22 shows the thrusters and water system.

Additional test notes are shown in table 12.

Test #	GRUI	V0057*	GRUN0056^	GRUI	N0055^	GRU	N0054^	GRUN0052^	FLT0050*	FLT0049**
Test date	9/1	8/98	9/11/98	8/1	9/98	8/	4/98	7/30/98	7/23/98	4/15/98
Test location	D	FRC	DFRC	D	FRC	D D	FRC	DFRC	DFRC	DFRC
Test Objective		old flow	Fit. cold flow		old flow		old flow	Fit. cold flow	Fit. cold flow	Fit. cold flow
Blow #	1	2	2	1	2	1	2	1	1	1
Systems		<u> </u>			_					
LOX System										
Fluid	LOX	LOX	LN2	LN2	LN2	LN2	LN2	LN2	LOX	LOX
ave tank P (psia)	368	366	369	366	374	365	361	358	360	360
ave. venturi inlet P (psia)	353	347	350	341	348	343	338	336	350	343
ave, venturi inlet T (F)	-278	-278	-300	-299	-300	-295	-296	-298	• 2 77	-278
total LOX flow rate (lb _m /s)	11.8	11.6	11.4	11.2	11.4	11.0	11.0	11.1	11.7	11.7
Fuel System										
Fluid	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe
	589	585	589	585	589	589	589	586	589	589
supply P - d/s of valve (psia) ave. venturi inlet P (psig)	483	478		479	478	482	478	475	480	482
ave. venturi inlet F (psig)	69	470	66	479 67	478	75	51	53	64	52
total fuel flow rate (lb _m /s)	3.3	3.3	3.2	3.2	3.3	3.2	3.3	3.2	3.2	3.2
		0.0		0.2	0.0	0.2	0.0		0.1	0.2
Water System	740				760	774	767	779	775	770
Tank P (psia)	749	711	689 534	778	769	774 599	767 597	778 608	775 603	772 603
Engine Inlet P (psia)	578	551 358	346	600 397	594 392	389	387	399	399	404
Engine ΔP (psi)	383	73	69	74	74	77	76	84	85	62
Engine initial T (F) Engine ΔT (F)	72 n/a	n/a	09 n/a	n/a	n/a	n/a	70 n/a	n/a	n/a	n/a
est. flow rate (lb _m /s)	39.3	38.0	37.4	40.0	39.7	39.6	39.5	40.1	40.1	40.4
Engine										
	•				-	ł				
HIGH Thrust Side (TH1-4) LOX flow rate, total (Ib _m /s)			5.0	5.0	E 0	5.7	5.6	5.7	5.9	6.0
Fuel flow rate, total (lb_/s)	6.0	5.9	5.9 1.62	<u>5.8</u> 1.62	5.8 1.64	1.62	1.64	1.62	<u> </u>	1.61
ave. Pc (psig) [injector end]	1.62	1.63 31	31	29	29	31	29	30	32	30
	30 n/a		n/a	29 	29 n/a	n/a	29 n/a	n/a	- <u>52</u> п/а	n/a
ave. MR ave. C*, efficiency	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	11/a	11/1			11/0	1// 1// 1//	10.0	11/4	11/0	19.04
LOW Thrust Side (TH5-8)									<u> </u>	
LOX flow rate, total (lb _m /s) Fuel flow rate, total (lb _m /s)	5.8	5.7	5.5	5.4	5.6	5.3	5.4	5.4 1.62	5.8	5.7 1.61
ave. Pc (psig) [injector end]	1.63	1.64	1.63 29	1.61 28	<u>1.64</u> 29	1.62 30	1.64 28	29	1.59 31	31
	31	30	29 n/a	20 n/a	29 n/a	 	 n/a	29 n/a	n/a	
ave. MR ave. C*, efficiency	n/a	n/a	n/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a
	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	31,000	26,000
Altitude (ft) Mach No.	n/a		n/a	n/a	n/a	n/a	n/a	n/a	0.9	0.75
Est. P _{am} (psi)	n/a 14.7	n/a 14.7	1/a 14.7	14.7	11/a	14.7	14.7	14.7	4.0	4.0
	-					1				-
reference t(0) [PDT]	9:02:55	9:13:10	9:09:45	7:50:20	7:58:15	8:28:20	8:36:25	7:13:50	8:34:55	10:10:32
data taken at ∆t (sec)	19.6	19.2	18.6	19.5	17.6	16.2	20.4	17.1	16.6	19.3
Mainstage duration (sec)	3	3	3	3	3	3	3	3	3	3
	full	full	full	full	full	full	full	full	full	full
reason for cutoff?	duration	duration	duration	duration	duration	duration	duration	duration	duration	duration

Test #	FLT0048^	FLT0047^	GRUN	0046^	GRUN0041^	GRUN0038^	GRUN0037	GRUN0036	GRUN0035*
Test date	3/19/98	3/4/98		2/98	12/9/97	9/24/97	4/30/97	4/23/97	4/16/97
Test location	DFRC	DFRC		RC	DFRC	DFRC	Phillips Lab	Phillips Lab	Phillips Lab
Test Objective	Fit. cold flow	Fit. cold flow		Id flow	Fit. cold flow	Fit. cold flow	Gd. hot fire 1	Gd. hot fire	Gd. cold flow
Blow #	1	1	1	2	2	1		· · · · ·	
Systems									
LOX System									
Fluid	LN2	LN2	LN2	LN2	LN2	LN2	LOX	LOX	LOX
ave tank P (psia)	366	364	369	367	367	360	373	370	375
ave. venturi inlet P (psia)	342	347	345	352	348	340	346	349	353
ave. venturi inlet T (F)	-299	-299	-297	-297	-293	-302	-276	-279	-272
total LOX flow rate (lb _m /s)	11.3	11.3	11.1	11.3	10.9	11.3	11.5	11.7	11.5
Fuel System									
Fluid	GHe	GHe	GHe	GHe	GHe	GHe	GH2	GH2	GHe
supply P - d/s of valve (psia)	589	589	593	587	589	585	585	585	589
ave. venturi inlet P (psig)	484	481	484	479	475	479	466	468	459
ave. venturi inlet T (F)	65	57	62	64	75	52	40	31	69
total fuel flow rate (lb,/s)	3.2	3.2	3.3	3.3	3.2	3.3	2.1	2.1	3.1
Water System									
Tank P (psia)	760	775	774	747	774	774	781	778	772
Engine Inlet P (psia)	596	599	606	584	603	613	601	601	597
Engine ΔP (psi)	400	400	400	388	390	359	398	402	402
Engine initial T (F)	67	68	56	57	55	77	63	60	68
Engine ΔT (F)	n/a	n/a	n/a	n/a	n/a	n/a	70	63	n/a
est. flow rate (lb _m /s)	40.2	40.2	40.2	39.6	39.7	38.0	40.1	40.2	40.3
Engine									
HIGH Thrust Side (TH1-4)									
LOX flow rate, total (lb,,/s)	5.8	5.8	5.7	5.8	5.6	5.8	5.9	6.0	5.9
Fuel flow rate, total (lb,/s)	1.58	1.58	1.65	1.62	1.59	1.62	1.03	1.06	1.54
ave. Pc (psig) [injector end]	30	28	29	31	29	28	212	213	31
ave. MR	n/a	n/a	n/a	n/a	n/a	n/a	5.7	5.7	n/a
ave. C*, efficiency	n/a	n/a	n/a	n/a	n/a	n/a	96	94	n/a
LOW Thrust Side (TH5-8)									
LOX flow rate, total (lb _m /s)	5.5	5.5	5.4	5.5	5.3	5.5	5.6	5.7	5.6
Fuel flow rate, total (lb _w /s)	1.60	1.60	1.64	1.63	1.60	1.64	1.04	1.06	1.55
ave. Pc (psig) [injector end]	29	30	29	29	28	29	201	201	32
ave. MR	n/a	n/a	n/a	n/a	n/a	n/a	5.4	5.4	n/a
ave. C*, efficiency	n/a	n/a	n/a	n/a	n/a	n/a	94	92	n/a
Altitude (ft)	31,000	41,000	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Mach No.	0.9	1.2	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Est. P _{am} (psi)	4.0	3.0	14.7	14.7	14.7	14.7	14.7	14.7	14.7
reference t(0) [PDT]	10:35:14	10:54:15	9 :12:55	9:20:55	9:54:05	8:15:50	12:50:45	13:18:47	14:49:20
data taken at ∆t (sec)	19.3	19.2	16.6	17.6	15.0	18.0	18.7	6.1	23.8
Mainstage duration (sec)	3	3	3	1	1	3	3	3	3
reason for cutoff?	full duration	full duration	full duration	Abort with CNTR PWR OFF as planned	Abort with EMERSS as planned	full duration	full duration	full duration	full duration

,

Test #	GRU	N0057*	GRUN0056^	GRU	N0055^	GRU	N0054^	GRUN0052^	FLT0050*	FLT0049**
Test date	9/	18/98	9/11/98	8/	19/98	8/	14/98	7/30/98	7/23/98	4/15/98
Test location	C	OFRC	DFRC	C	OFRC	0	OFRC	DFRC	DFRC	DFRC
Test Objective		old flow	Fit. cold flow	Fit. c	old flow	1	old flow	Fit. cold flow	Fit. cold flow	Fit. cold flow
Blow #	1	2	2	1	2	1	2	1	1	1
Systems		l			+	_				
LOX System		.								
Fluid	LOX	LOX	LN2	LN2	LN2	LN2	LN2	LN2	LOX	LOX
ave tank P (psia)	368	366	369	366	374	365	361	358	360	360
ave. venturi inlet P (psia)	353	347	350	341	348	343	338	336	350	343
ave. venturi inlet T (F)	-278	-278	-300	-299	-300	-295	-296	-298	-277	-278
total LOX flow rate (lb _m /s)	11.8	11.6	11.4	11.2	11.4	11.0	11.0	11.1	11.7	11.7
Fuel System		L								
Fluid	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe
supply P - d/s of valve (psia)	589	585	589	585	589	589	589	586	589	589
ave. venturi inlet P (psig)	483	478	482	479	478	482	478	475	480	482
ave. venturi inlet T (F)	69	47	66	67	46	75	51	53	64	52
total fuel flow rate (lb _m /s)	3.3	3.3	3.2	3.2	3.3	3.2	3.3	3.2	3.2	3.2
Water System										
Tank P (psia)	749	711	689	778	769	774	767	778	775	772
Engine Inlet P (psia)	578	551	534	600	594	599	597	608	603	603
Engine ΔP (psi)	383	358	346	397	392	389	387	399	399	404
Engine initial T (F)	72	73	69	74	74	77	76	84	85	62
Engine ΔT (F)	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a
est. flow rate (lb _m /s)	39.3	38.0	37.4	40.0	39.7	39.6	39.5	40.1	40.1	40.4
Engine										
HIGH Thrust Side (TH1-4)										
LOX flow rate, total (lb _m /s)	6.0	5.9	5.9	5.8	5.8	5.7	5.6	5.7	5.9	6.0
Fuel flow rate, total (Ib _m /s)	1.62	1.63	1.62	1.62	1.64	1.62	1.64	1.62	1.57	1.61
ave. Pc (psig) [injector end]	30	31	31	29	29	31	29	30	32	30
ave. MR	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a
ave. C*, efficiency	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
LOW Thrust Side (TH5-8)										
LOX flow rate, total (lb _m /s)	5.8	5.7	5.5	5.4	5.6	5.3	5.4	5.4	5.8	5.7
Fuel flow rate, total (lb _m /s)	1.63	1.64	1.63	1.61	1.64	1.62	1.64	1.62	1.59	1.61
ave. Pc (psig) [injector end]	31	30	29	28	29	30	28	29	31	31
ave. MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
ave. C*, efficiency	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Altitude (ft)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	31,000	26,000
Mach No.	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	0.9	0.75
Est. P _{atm} (psi)	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	4.0	4.0
reference t(0) [PDT]	9:02:55	9:13:10	9:09:45	7:50:20	7:58:15	8:28:20	8:36:25	7:13:50	8:34:55	10:10:32
data taken at ∆t (sec)	19.6	19.2	18.6	19.5	17.6	16.2	20.4	17.1	16.6	19.3
Mainstage duration (sec)	3	3	3	3	3	3	3	3	3	3
									T	
reason for cutoff?	full duration	full duration	full duration	full duration	full duration	full . duration	full duration	full duration	full duration	full duration
				~~						

Test #	GRUN0027* 12/3/96 Phillips Lab Gd. cold flow		GRUN0026*			GRUN0025*		GRUN0024*		GRUN0023*		GRUN0022*	
Test date			11/22/96 Phillips Lab Gd. cold flow		11/15/96 Phillips Lab Gd. cold flow		11/1	/96	10/25/96		10/12/96		
Test location							Phillips Lab Gd. cold flow		Phillips Lab Gd. cold flow		Phillips Lab Gd. cold flow 1 2		
Test Objective													
Blow #	1	2	1	2	1	2	1	"Z"	1	2		2	
Systems													
LOX System													
Fluid	LOX	LOX	LOX	LOX	LOX	LOX	LOX	LOX	LOX	LOX	LOX	LOX	
ave tank P (psia)	367	366	375	369	369	376	371	372	373	373	369	368	
ave. venturi inlet P (psia)	348	341	352	355	353	355	349	351	349	349	341	352	
ave. venturi inlet T (F)	-269	-266	-270	-268	-269	-271	-266	-254	-269	-270	-263	-261	
total LOX flow rate (lb _m /s)	11.1	10.7	11.3	11.2	11.2	11.4	10.8	10.1	11.2	11.2	10.7	10.6	
Fuel System													
Fluid	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	GHe	
supply P - d/s of valve (psia)	593	16	593	591	592	58 9	593	589	566	578	593	589	
ave. venturi inlet P (psig)	451	-3	453	451	457	456	458	455	437	453	468	466	
ave. venturi inlet T (F)	74	58	82	49	73	67	88	78	68	52	91	78	
total fuel flow rate (lb _m /s)	3.0	n/a	3.0	3.1	3.1	3.1	3.0	3.0	2.9	3.1	3.1	3.1	
Water System													
Tank P (psia)	781	781	777	771	779	777	769	777	780	777	773	772	
Engine Inlet P (psia)	624	677	619	626	617	643	605	610	607	602	ô06	602	
Engine ∆P (psi)	446	581	439	459	435	486	407	422	412	411	411	406	
Engine initial T (F)	45	44	56	54	54	52	61	63	59	57	78	77	
Engine ΔT (F)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a 40.8	n/a 40.7	n/a 40.7	n/a 40.5	
est. flow rate (lb _m /s)	36.1	26.5	35.2	33.7	35.6	32.4	40.5	36.2	40.8	40.7	40.7	40.5	
Engine													
HIGH Thrust Side (TH1-4)													
LOX flow rate, total (lb,,/s)	5.5	5.4	5.7	5.7	5.6	5.7	5.4	5.0	5.6	5.6	5.4	5.2	
Fuel flow rate, total (Ib,,/s)	1.53	n/a	1.52	1.57	1.54	1.54	1.52	1.51	1.48	1.54	1.51	1.51	
ave. Pc (psig) [injector end]	30	2	31	31	31	30	31	30	29	31	31	31	
ave. MR	n/a	n/a	n/a	n/a	n/a	n/a	<u>n/a</u>	n/a	n/a	n/a	n/a	n/a	
ave. C*, efficiency	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
LOW Thrust Side (TH5-8)												F 4	
LOX flow rate, total (lb _m /s)	5.6	5.3	5.6	5.5	5.6	5.7	5.4	5.1	5.6	5.6	5.3	5.4	
Fuel flow rate, total (lb _m /s)	1.50	п/а	1.48	1.53	1.51	1.52	1.50	1.51	1.46	1.55	1.58	1.59 31	
ave. Pc (psig) [injector end]	31	1	31	30	29	29	32	32	30	31	31	n/a	
ave. MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	п/а л/а	
ave. C*, efficiency	n/a	n/a	n/a	n/a	n/a	n/a		n/a	n/a	n/a	n/a	n/a	
Altitude (ft)	n/a	n/a	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	
Mach No. Est. P _{am} (psi)	n/a 14.7	n/a 14.7	n/a 14.7	14.7	14.7	14.7	11/a 14.7	14.7	14.7	14.7	14.7	14.7	
											14:32:00	14:38:20	
reference t(0) [PDT]	13:15:44	13:23:00	13:51:25	14:00:04 41.0	13:39:55 40.0	13:46:05 39.3	12:38:50 40.0	14:01:40 40.0	13:54:50 43.0	14:01:30 41.0	45.5	47.0	
data taken at ∆t (sec)	36.0	41.8	41.0 3	<u>41.0</u> 3	40.0 3	~0.8	40.0 3	<u>40.0</u> 3	3	3	3	3	
Mainstage duration (sec)	3	0	J		- J	-0.0				·		· · · ·	
	full	PT0401 R/L (frozen	full	full	full	PT0164 R/L (when burst disc failed)	full	full	full	full	full duration	full duration	
reason for cutoff?	duration	water)	duration	duration	duration	disc failed)	duration	duration	duration	duration	VUIADUD		

Test #		10020*	GRUN0019*		
Test date		1/96	· · · · · · · · · · · · · · · · · · ·	6/96	
Test location		ps Lab	Phillips Lab		
Test Objective		pld flow	1 Gd. co	id flow	
Blow #	1	2	1	2	
Systems					
LOX System					
Fluid	LOX	LOX	LOX	LOX	
ave tank P (psia)	363		363	370	
ave. venturi inlet P (psia)	345		347	336	
ave. venturi inlet T (F)	-267		-276	-273	
total LOX flow rate (lb,,/s)	11.1		11.5	11.3	
Fuel System					
Fluid	GHe	GHe	GHe	GHe	
supply P - d/s of valve (psia)	320		581	577	
ave. venturi inlet P (psig)	250		456	458	
ave. venturi inlet T (F)	110	L	98	82	
total fuel flow rate (lb,/s)	1.7		3.0	3.1	
Water System					
Tank P (psia)	781		774	766	
Engine Inlet P (psia)	579		574	556	
Engine ΔP (psi)	389		377	377	
Engine initial T (F)	87		91	92	
Engine ∆T (F)	n/a		n/a	n/a	
est. flow rate (lb _m /s)	39.6		39.6	39.6	
Engine					
HIGH Thrust Side (TH1-4)					
LOX flow rate, total (lb _m /s)	5.6		5.8	5.6	
Fuel flow rate, total (lb _a /s)	0.82		1.49	1.52	
ave. Pc (psig) [injector end]	18		32	31	
ave. MR	n/a		n/a	n/a	
ave. C*, efficiency	n/a		n/a	n/a	
LOW Thrust Side (TH5-8)					
LOX flow rate, total (lb,,/s)	5.5		5.7	5.7	
Fuel flow rate, total (lb _m /s)	0.86		1.52	1.53	
ave. Pc (psig) [injector end]	14		32	30	
ave. MR	n/a		n/a	п/а	
ave. C*, efficiency	n/a		n/a	n/a	
Altitude (ft)	п/а	n/a	n/a	n/a	
Mach No.	n/a	n/a	n/a	n/a	
Est. P _{aim} (psi)	14.7	14.7	14.7	14.7	
reference t(0) [PDT]	13:55:15	14:05:00	14:22:45	14:26:5	
data taken at ∆t (sec)	38.0		45.0	38.0	
Mainstage duration (sec)	3	0	3	3	
	fuli		full	full	
reason for cutoff?	duration	PS1:17 limit on LOX ΔT	duration	duration	

.

Test #	GRUN0057* 9/18/98 Fit. cold flow		GRUN0056^ 9/11/98	GRUN0055^		GRUN0054^		GRUN0052^	FLT0050*	FLT0049**
Test date				8/19	9/98	8/14/98		7/30/98	7/23/98	4/15/98
Test Objective			Fit. cold flow	Fit. co	id flow	Fit. co	ld flow	Fit. cold flow	Fit. cold flow	Fit. cold flow
Blow #	1	2	2	1	2	1	2	1	1	1
LOX System							<u>.</u>			
ave. tank P (psia) [PT0302 & PT0301]	368	366	369	366	374	365	361	358	360	360
100% venturi inlet P (psia) [PT0360]	354	347	351	342	343	341	341	335	341	347
100% venturi inlet T ₂ (F) [TT0360]	-281	-280	-305	-302	-304	-299	-297	-300	-280	-282
100% venturi ACd (in)	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609
100% venturi flow rate (lb _m /s)	6.0	5.9	5.9	5.8	5.8	5.7	5.6	5.7	5.9	6.0
80% venturi inlet P (psia) [PT0363]	351	346	349	342	349	346	336	334	364	341
80% venturi inlet T (F) [TT0363]	-279	-278	-298	-300	-299	-295	-299	-301	-278	-278
80%venturi throat P (psia) [PT0362]	37	32	35	33	27	45	39	34	36	40
80% venturi ACd (in ²)	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473
80% venturi flow rate (lbm/s)	4.7	4.6	4.4	4.4	4.5	4.3	4.4	4.4	4.7	4.6
20% venturi inlet P (psia) [PT0364]	353	349	350	339	354	341	337	340	345	340
20% venturi inlet T (F) [TT0364]	-276	-276	-297	-295	-298	-290	-293	-293	-274	-274
20% venturi throat P ₂ (psia) [PT0361]	48	48	49	51	54	59	58	52	54	50
20% venturi ACd (in)	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154
20% venturi flow rate (lb _m /s)	1.1	1.1	1.1	1.0	1.1	1.0	1.0	1.0	1.1	1.1
LOX flow rate (lbm/s), high thrust side	6.0	5.9	5.9	5.8	5.8	5.7	5.6	5.7	5.9	6.0
LOX flow rate (lbm/s), low thrust side	5.8	5.7	5.5	5.4	5.6	5.3	5.4	5.4	5.8	5.7
Fuel System	1									
Tanks (psia) [PT0101]	4209	3043	4283	4203	3044	4107	2884	2687	2840	3671
Supply d/s of valve (psia) [PT0102]	589	585	589	585	589	589	589	586	589	589
100% venturi inlet P (psig) [PT0160]	481	474	480	480	477	483	477	474	475	479
100% venturi inlet T (F) [TT0160]	65	45	64	64	43	73	49	52	62	50
100% venturi ACd (in ²)	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575
100% venturi flow rate (lbm/s)	1.62	1.63	1.62	1.62	1.64	1.62	1.64	1.62	1.57	1.61
80% venturi inlet P (psig) [PT0163]	487	479	484	482	480	486	481	477	478	479
80% venturi inlet T (F) [TT0163]	71	49	68	69	49	75	54	54	64	52
80% venturi ACd (in ²)	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816
80% venturi flow rate (lbm/s)	1.29	1.29	1.28	1.28	1.30	1.28	1.29	1.28	1.25	1.26
20% venturi inlet P (psig) [PT0164]	481	481	482	473	476	477	475	474	486	489
20% venturi inlet T (F) [TT0164]	70	46	65	67	46	77	50	54	65	55
20% venturi ACd (in ²)	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559
20% venturi flow rate (lbm/s)	0.34	0.35	0.34	0.34	0.35	0.34	0.34	0.34	0.34	0.34
Fuel flow rate (lbm/s), high thrust side	1.62	1.63	1.62	1.62	1.64	1.62	1.64	1.62	1.57	1.61
Fuel flow rate (lbm/s), low thrust side	1.63	1.64	1.62	1.62	1.65	1.62	1.63	1.62	1.59	1.61
TTEB System	1									
Supply P to engine (psia) [PT0651]	599	611	615	603	610	606	612	608	595	581
TTEB density (lb _m /ft ³)	GHe ourge	GHe ouroe	GHe purge	GHe ourge	GHe ource	GHe ourge	GHe nurae	· · · · · · · · · · · · · · · · · · ·	GHe purge	GHe purge
Orifice to each thruster (in)	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026
flow rate to each thruster (lb _m /s)	n/a	n/a	n/a	n/a	п/а	n/a	n∕a	n/a	п/а	n/a
Water System										
Tank P (psia) [PT0401]	749	711	689	778	769	774	767	778	775	772
Engine inlet P (psia) [PT0451]	578	551	534	600	594	599	597	608	603	603
Engine exit P (psia) [PT0453]	195	193	187	203	202	210	210	210	204	199
Engine ∆P (psi)	383	358	346	397	392	389	387	399	399	404
Engine inlet T (F) [TT0451]	72	73	69	74	74	77	76	84	85	62
Engine exit T (F) [TT0453]	66	64	62	67	66	71	70	76	76	49
min. initial engine exit T (F) [TT0453]	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Engine ΔT (F) relative to TT0453	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
High Thrust Side Ramp				ļ						ļ
Upper T (F) [TT0455]	70	70	68	72	72	76	74	83	83	48
Lower T (F) [TT0456]	70	70	68	72	71	75	75	82	81	54
Low Thrust Side Ramp			1			I	L		l	l
Upper T (F) [TT0457]	72	72	68	72	71	77	76	83	84	55
Lower T (F) [TT0458]	71	70	68	72	72	76	75	83	82	55
Total water flow rate (lbm/s)***	39.3	38.0	37.4	40.0	39.7	39.6	39.5	40.1	40.1	40.4

Table 10. Summary of LASRE system performance.

* GHe used in fuel/TTEB systems ** Ignition test- GHe used in fuel system *** est. w/engine ΔP when F/M inop \wedge LN2/GHe used for LOX/GH2

Table 10. Summary of LASRE system performance (Continued).

Test # Test date	FLT0048^ 3/19/98	FLT0047^ 3/4/98	2/1	10046^ 2/98	GRUN0041^ 12/9/97	GRUN0038^ 9/24/97	GRUN0037 4/30/97	GRUN0036 4/23/97	GRUND035* 4/16/97
Test Objective	Fit. cold flow	Fit. cold flow	Fit, cold flow		Fit. cold flow	Fit. cold flow	Gd. hot fire	Gd. hot fire	Gd. cold flow
Blow #	1 1	1	1	2	2	1	1	1	1
LOX System	-				-				ĺ
ave. tank P (psia) [PT0302 & PT0301]	366	364	369	367	367	360	373	370	375
100% venturi inlet P (psia) [PT0360]	344	349	346	352	349	338	351	352	361
	-301	-304	-300	-300	-296	-304	-276	-281	-273
100% venturi inlet T (F) [TT0360]	0.0609	0.0609	0.0609	0.0609	0.0609	a	0.0609	0.0609	0.0609
100% venturi ACd (in ²)	1	1				0.0609			
100% venturi flow rate (lb _m /s)	5.8	5.8	5.7	5.8	5.6	5.8	5.9	6.0	5.9
80% venturi inlet P (psia) [PT0363]	341	348	342	348	345	337	341	347	350
80% venturi inlet T (F) [TT0363]	-300	-298	-298	-299	-294	-302	-277	-280	-273
80% venturi throat P (psia) [PT0362]	39	39	34	39	44	n/a	28	31	38
80% venturi ACd (in ²)	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473
80% venturi flow rate (lbm/s)	4.4	4.4	4.4	4.5	4.3	4,4	4.5	4.60	4.5
20% venturi inlet P (psia) [PT0364]	342	344	346	356	350	344	346	350	349
20% venturi inlet T (F) [TT0364]	-295	-296	-295	-293	-290	-299	-274	-277	-269
20% venturi throat P (psia) [PT0361]	51	50	49	54	57	51	74	84	51
20% venturi ACd (in ²)	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154
	1.1	1.1	1.0	1.0	1.0		1.1	1.1	1.1
20% venturi flow rate (lbm/s)		5.8	5.7			1.1	5.9		5.9
LOX flow rate (lbm/s), high thrust side	5.8			5.8	5.6	5.8		6.0	
LOX flow rate (lbm/s), low thrust side	5.5	5.5	5.4	5.5	5.3	5.5	5.6	5.7	5.6
Fuel System									
Tanks (psia) [PT0101]	4205	3947	4326	4058	5123	2539	2325	2308	2712
Supply d/s of valve (psia) [PT0102]	589	589	593	587	589	585	585	585	589
100% venturi inlet P (psig) [PT0160]	479	475	487	478	475	474	466	469	457
100% venturi inlet T (F) [TT0160]	64	55	60	62	73	51	39	29	67
100% venturi ACd (in ²)	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575
100% venturi flow rate (lbm/s)	1.58	1.58	1.65	1.62	1.59	1.62	1.03	1.06	1.54
80% venturi inlet P (psig) [PT0163]	486	479	487	484	480	480	467	470	461
80% venturi inlet T (F) [TT0163]	65	57	61	64	76	53	41	32	69
80% venturi ACd (in ²)	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816
	1.26	1.25	1.30		1.26		0.82	0.2010	1.22
80% venturi flow rate (lb _m /s)		489		1.29		1.29		1	458
20% venturi inlet P (psig) [PT0164]	487		477	476	471	483	466	465	
20% venturi inlet T (F) [TT0164]	67	59	63	65	77	53	42	32	70
20% venturi ACd (in ²)	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559
20% venturi flow rate (lbm/s)	0.34	0.34	0.34	0.34	0.33	0.35	0.22	0.22	0.33
Fuel flow rate (lb _m /s), high thrust side	1.58	1.58	1.65	1.62	1.59	1.62	1.03	1.06	1.54
Fuel flow rate (lbm/s), low thrust side	1.60	1.60	1.64	1.63	1.60	1.64	1.04	1.06	1.55
TTEB System			1						
Supply P to engine (psia) [PT0651]	588	586	591	621	616	609	604	610	588
TTEB density (lb _m /ft3)	GHe purge	GHe purge	GHe purge	GHe purge	GHe purge	GHe purge	GHe purge	GHe purge	GHe purge
Orifice to each thruster (in)	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026
flow rate to each thruster (III)	n/a	n/a	n/a	n/a	n/a		n/a	n/a	n/a
	iva	174	100	1Va	IVa	n/a	100	184	18.0
Water System	760	775	774	747	774	7774	701	770	770
Tank P (psia) [PT0401]	760		774	747	774	774	781	778	772
Engine inlet P (psia) [PT0451]	596	599	606	584	603	613	601	601	597
Engine exit P (psia) [PT0453]	196	199	206	196	212	254	203	199	195
Engine ∆P (psi)	400	400	400	388	390	359	398	402	402
Engine inlet T (F) [TT0451]	67	68	56	57	55	77	64	65	68
Engine exit T (F) [TT0453]	59	59	51	49	48	69	133	123	64
min. Initial engine exit T (F) [TT0453]	n/a	n/a	n/a	n/a	n/a	n/a	63	60	n/a
Engine △T (F) relative to TT0453	n/a	n/a	n/a	n/a	n/a	n/a	70	63	n/a
High Thrust Side Ramp			1						1
	57	58	47	47	45	66	147	144	69
Upper T (F) [TT0455]		65	54			66 70			70
Lower T (F) [TT0456]	64	UD	U4	53	51	73	147	145	/ U
Low Thrust Side Ramp									L
Upper T (F) [TT0457]	69	68	60	59	54	75	148	144	71
Lower T (F) [TT0458]	65	64	55	55	54	74	140	136	70
		40.2		39.6	39.7			40.2	40.3

* GHe used in fuel/TTEB systems ** Ignition test - GHe used in fuel system *** est. w/engine ΔP when F/M inop ^ LN2/GHe used for LOX/GH2

Table 10. Summary of LASRE system performance (Continued).

Test #		GRUNO			GRUNO	· · · ·	GRUNO		GRUN0030*	GRUN0029*	GRUN0028*
Test date		2/6/	7		1/31	/97	1/23		1/18/97	12/17/96	12/11/96
Test Objective		Ignition	test		Ignitio	n test	Ignitio	n test	Gd. cold flow	Gd. cold flow	Gd. cold flow
Blow #	1-ign	1-main	2-ign	2-main	1-ign	1-main	1-ign	1-main	1	2	1
LOX System											
ave. tank P (psia) [PT0302 & PT0301]	377	369	369	369	370	362	365	372	369	372	360
100% venturi inlet P (psia) [PT0360]	354	351	352	354	368	361	354	355	349	348	350
100% venturi inlet T (F) [TT0360]	-273	-279	-270	-274	-246	-252	-274	-281	-278	-279	-282
100% venturi ACd (in ²)	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609
100% venturi flow rate (lb _m /s)	5.8	5.9	5.7	5.8	3.0	4.0	5.8	5.9	5.9	5.9	6.0
80% venturi inlet P (psia) [PT0363]	357	352	343	343	355	347	345	351	344	340	344
80% venturi inlet T (F) [TT0363]	-273	-276	-270	-273	-248	-253	-272	-279	-276	-277	-280
80% venturi throat P (psia) [PT0362]	41	36	45	34	262	216	49	35	25	27	36
80% venturi ACd (in ²)	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473
	4.6	4.6	4.4	4.5	2.4	2.9	4.5	4.6	4.6	4.5	4.6
80% venturi flow rate (lb _m /s)	355	355	344	347	359	354	346	349	352	346	348
20% venturi inlet P (psia) [PT0364]	-266	-279	-262	-272	-239	-239	-266	-279	-277	-276	-278
20% venturi inlet T (F) [TT0364]	76	50	66	51	238	195	67	48	47	44	51
20% venturi throat P (psia) [PT0361]		0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154
20% venturi ACd (in ²)	0.01154	1,1	1.0	1.1	0.01104	0.8	1.0	1.1	1.1	1.1	1.1
20% venturi flow rate (lb _m /s)	1.1	5.9	5.7	5.8	3.0	4.0	5.8	5.9	5.9	5.9	6.0
LOX flow rate (lbm/s), high thrust side	5.8	5.9 5.7	5.4		3.1	3.65	5.5	5. 3 5.7	5.7	5.6	5.7
LOX flow rate (Ib _m /s), low thrust side	5.7	3.7	J.4	5.6	3.1	3.00	5.5	5.1	J.1	0.0	0.1
Fuel System	A 17	5048	5305	4000	6099	4788	6050	4465	3669	4595	4739
Tanks (psia) [PT0101]	6147			4329	1	•	4	589	589	593	593
Supply d/s of valve (psia) [PT0102]	GHe purge	593	GHe purge	593	GHe purge	589	GHe purge			458	467
100% venturi inlet P (psig) [PT0160]	30	462	37	460	13	459	34	460	463	458 54	68
100% venturi inlet T (F) [TT0160]	65	66	55	56	70	75	58	58	47		1 · · ·
100% venturi ACd (in ²)	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575
100% venturi flow rate (lb _m /s)	n/a	1.56	n/a	1.57	n/a	1.54	n/a	1.57	1.59	1.57	1.57
80% venturi inlet P (psig) [PT0163]	34	471	32	469	13	468	34	464	470	467	464
80% venturi inlet T (F) [TT0163]	57	68	55	58	72	77	58	60	49	56	69
80% venturi ACd (in ²)	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816
80% venturi flow rate (lbm/s)	n/a	1.25	n/a	1.26	n/a	1.23	n/a	1.24	1.27	1.25	1.23
20% venturi inlet P (psig) [PT0164]	34	466	42	462	17	464	34	465	456	459	452
20% venturi inlet T (F) [TT0164]	57	68	56	61	73	79	59	61	50	59	70
20% venturi ACd (in ²)	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559
20% venturi flow rate (lbm/s)	n/a	0.33	п/а	0.33	n/a	0.33	n/a	0.33	0.33	0.33	0.32
Fuel flow rate (lbm/s), high thrust side	n/a	1.56	n/a	1.57	n/a	1.54	n/a	1.57	1.59	1.57	1.57
Fuel flow rate (Ibm/s), low thrust side	n/a	1.58	n/a	1.59	n/a	1.56	n/a	1.58	1.60	1.58	1.55
TTEB System											
Supply P to engine (psia) [PT0651]	693	606	704	595	709	624	690	597	599	599	590
TTEB density (Ibm/ft ³)	44.5	GHe purge	44.5	GHe purge	44.5	GHe purge	44.5	GHe purge	n/a	n/a	n/a
Orifice to each thruster (in)	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026
flow rate to each thruster (Ib _m /s)	0.036	n/a	0.036	n/a	0.037	n/a	0.036	n/a	n/a	n/a	n/a
Water System			1	1	1						
Tank P (psia) [PT0401]	772	780	742	779	775	779	777	775	780	778	780
Engine inlet P (psia) [PT0451]	585	588	570	598	593	598	598	589	593	600	606
Engine exit P (psia) [PT0453]	193	200	178	188	199	198	198	190	203	202	197
Engine ΔP (psi)	392	388	392	410	394	400	400	399	390	398	409
Engine inlet T (F) [TT0451]	45	46	48	47	56	57	52	51	47	48	53
Engine exit T (F) [TT0453]	44	41	43	42	56	55	48	47	43	41	46
min. initial engine exit T (F) [TT0453]	п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Engine ΔT (F) relative to TT0453	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	1//0				1		†	1	1		1
High Thrust Side Ramp	48	48	48	48	61	61	52	52	48	49	52
Upper T (F) [TT0455]	40	46	46	46	59	60	51	51	47	47	51
Lower T (F) [TT0456]	40							t .			1
Low Thrust Side Ramp		48	48	40	62	61	52	52	49	49	53
Upper T (F) [TT0457]	48			46	60	61	53	53	49	47	54
Lower T (F) [TT0458]	48	47	47	46		60	53	L.		47	40.6
Total water flow rate (lb _m /s)***	39.8	39.5	39.8	40.7	39.9	40,2	40.2	40.1	39.7	-0.1	-0.0

* GHe used in fuel/TTEB systems ** Ignition test - GHe used in fuel system *** est. w/engine ΔP when F/M inop $^{NU2}/_{GHe}$ used for LOX/GH2

Table 10. Summary of LASRE system performance (Continued).

Test # Test date	1	10027* 3/96		10026* 22/96	1	10025* 15/96		N0024* /9/96	+	N0023* 25/96		10022* 12/96
Test Objective	1	d flow		old flow	+	d flow		old flow	1	old flow	1	ld flow
Blow #	1	2	1	2	1	2	1	2'	1	2	1	2
LOX System	1	1							1		1	
ave. tank P (psia) [PT0302 & PT0301]	367	366	375	369	369	376	371	372	373	373	369	368
100% venturi inlet P (psia) [PT0360]	345	341	360	362	356	357	349	353	352	351	assur	ne 350
100% venturi inlet T (F) [TT0360]	-267	-264	-267	-266	-267	-268	-262	-251	-266	-267	-261	-257
100% venturi ACd (in ²)	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609	0.0609
100% venturi flow rate (lb _m /s)	5.5	5.4	5.7	5.7	5.6	5.7	5.4	5.0	5.6	5.6	5.4	5.2
80% venturi inlet P (psia) [PT0363]	349	337	347	348	352	354	351	348	345	346	347	352
80% venturi inlet T (F) [TT0363]	-271	-268	-273	-270	-270	-274	-268	-257	-273	-273	-266	-266
80% venturi throat P (psia) [PT0362]	26	31	33	29	29	34	27	52	33	29	48	46
80% venturi ACd (in ²)	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473	0.0473
80% venturi flow rate (lb _m /s)	4.5	4.3	4.5	4.4	4.5	4.6	4.4	4.1	4.5	4.5	4.3	4.4
20% venturi inlet P (psia) [PT0364]	351	346	350	356	351	354	347	351	349	349	335	352
20% venturi inlet T (F) [TT0364]	-269	-267	-270	-269	-270	-272	-268	-253	-269	-269	-262	-261
20% venturi throat P (psia) [PT0361]	41	48	44	43	42	41	47	70	49	44	67	62
20% venturi ACd (in ²)	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154	0.01154
20% venturi flow rate (lbm/s)	1.1	1.0	1.1	1.1	1.1	1.1	1.0	1.0	1.1	1.1	1.0	1.0
LOX flow rate (lb _m /s), high thrust side	5.5	5.4	5.7	5.7	5.6	5.7	5.4	5.0	5.6	5.6	5.4	5.2
LOX flow rate (lb _m /s), low thrust side	5.6	5.3	5.6	5.5	5.6	5.7	5.4	5.1	5.6	5.6	5.3	5.4
Fuel System												
Tanks (psia) [PT0101]	5115	4890	5268	3362	4831	4326	4902	3786	4410	3399	4529	3639
Supply d/s of valve (psia) [PT0102]	593	16	593	591	592	589	593	589	566	578	593	589
100% venturi inlet P (psig) [PT0160]	457	5	458	457	459	458	459	452	437	452	457	454
100% venturi inlet T (F) [TT0160]	75	60	83	51	75	69	90	79	69	55	94	81
100% venturi ACd (in ²)	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575	0.3575
100% venturi flow rate (lb _m /s)	1.53	n/a	1.52	1.57	1.54	1.54	1.52	1.51	1.48	1.54	1.51	1.51
80% venturi inlet P (psig) [PT0163]	444	-10	439	439	446	447	451	447	430	449	485	481
80% venturi inlet T (F) [TT0163]	72	55	80	46	71	65	86	75	67	50	89	76
80% venturi ACd (in ²)	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816	0.2816
80% venturi flow rate (lbm/s)	1.18	n/a	1.16	1.19	1.18	1.19	1.18	1.18	1.15	1.21	1.26	1.27
20% venturi inlet P (psig) [PT0164]	452	-3	461	458	465	462	465 89	465 79	444 68	458 52	462 90	462 77
20% venturi inlet T (F) [TT0164]	75	58	84 0.07559	49 0.07559	0.07559	67 0.07559	0.07559	0.07559	0.07559	52 0.07559	0.07559	0.07559
20% venturi ACd (in ²)	0.07559	0.07559 n/a	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559	0.07559
20% venturi flow rate (lbm/s)	1.53	n/a	1.52	1.57	1.54	1.54	1.52	1.51	1.48	1.54	1.51	1.51
Fuel flow rate (lb _m /s), high thrust side	1.50	n/a	1.48	1.57	1.54	1.52	1.52	1.51	1.46	1.55	1.58	1.59
Fuel flow rate (lb _m /s), low thrust side TTEB System	1.00	11/4	1.40	1.00	1.31	1.52	1.50	1.01	1.40	1.00	1.00	1.55
Supply P to engine (psia) [PT0651]	596	594	596	599	594	610	588	599	593	601	588	620
TTEB density (lb _m /ft3)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Orifice to each thruster (in)	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026
flow rate to each thruster (lb _m /s)	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Water System		1										
Tank P (psia) [PT0401]	781	781	777	771	779	777	769	777	780	777	773	772
Engine inlet P (psia) [PT0451]	624	677	619	626	617	643	605	610	607	602	606	602
Engine exit P (psia) [PT0453]	178	96	180	167	182	157	198	188	195	191	195	196
Engine ∆P (psi)	446	581	439	459	435	486	407	422	412	411	411	406
Engine inlet T (F) [TT0451]	45	44	56	54	54	52	61	63	59	57	78	77
Engine exit T (F) [TT0453]	38	35	47	48	47	44	54	56	51	51	70	70
min. initial engine exit T (F) [TT0453]	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Engine ΔT (F) relative to TT0453	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	п/а
High Thrust Side Ramp			I		[[· · · ·				
Upper T (F) [TT0455]	51	50	58	59	59	58	65	69	63	63	75	71
Lower T (F) [TT0456]	50	50	59	58	59	57	66	68	63	63	75	75
Low Thrust Side Ramp			I			[]						
Upper T (F) [TT0457]	43	44	51	53	51	50	60	60	56	56	83	82
Lower T (F) [TT0458]	43	41	51	51	53	51	59	59	57	57	83	81
Total water flow rate (lb _m /s)***	36.1	26.5	35.2	33.7	35.6	32.4	40.5	36.2	40.8	40.7	40.7	40.5

* GHe used in fuel/TTEB systems ** Ignition test - GHe used in fuel system *** est. w/engine ΔP when F/M inop ^ LN2/GHe used for LOX/GH2

Task	GRUN	10020*	GRUN	0019*
Test #		/96		5/96
Test date	-	old flow	Gd. co	
Test Objective	1	2	1	2
Blow #				
LOX System ave. tank P (psia) [PT0302 & PT0301]	363		363	370
	353		351	336
100% venturi inlet P (psia) [PT0360] 100% venturi inlet T (F) [TT0360]	-265			ne -275
	0.0609	0.0609	0.0609	0.0609
100% venturi ACd (in ²)	5.6	0.0009	5.8	5.6
100% venturi flow rate (lb _m /s) 80% venturi inlet P (psia) [PT0363]	340		343	334
80% venturi inlet T (F) [TT0363]	-270		-273	-276
80% venturi throat P (psia) [PT0362]	25		38	22
	0.0473	0.0473	0.0473	0.0473
80% venturi ACd (in ²)	4.4		4.6	4.6
80% venturi flow rate (lbm/s)	343		347	337
20% venturi inlet P (psia) [PT0364]	-267		-279	-270
20% venturi inlet T (F) [TT0364] 20% venturi throat P (psia) [PT0361]	41		55	31
	0.01154	0.01154	0.01154	0.01154
20% venturi ACd (in ²)	1.1	0.01154	1,1	1.1
20% venturi flow rate (lb_m /s)	5.6		5.8	5.6
LOX flow rate (lb _m /s), high thrust side	5.5		5.8	5.7
LOX flow rate (lbm/s), low thrust side	0.0		5.7	5.7
Fuel System	5312		4713	3698
Tanks (psia) [PT0101]	320		581	577
Supply d/s of valve (psia) [PT0102]	247		452	457
100% venturi inlet P (psig) [PT0160]	113		452 97	80
100% venturi inlet T (F) [TT0160]	0.3575	0.3575	0.3575	0.3575
100% venturi ACd (in ²)	0.3375	0.3375	1.49	1.52
100% venturi flow rate (lb _m /s)	261	• ·	469	463
80% venturi inlet P (psig) [PT0163] 80% venturi inlet T (F) [TT0163]	107		100	83
80% venturi ACd (in ²)	0.2816	0.2816	0.2816	0.2816
80% venturi flow rate (lb _m /s)	0.69	0.2010	1.21	1.21
20% venturi inlet P (psig) [PT0164]	242		447	455
20% venturi inlet T (F) [TT0164]	111		97	83
20% venturi ACd (in ²)	0.07559	0.07559	0.07559	0.07559
20% venturi flow rate (lbm/s)	0.17		0.31	0.32
Fuel flow rate (lb _m /s), high thrust side	0.82		1.49	1.52
Fuel flow rate (lb _m /s), low thrust side	0.86		1.52	1.53
TTEB System	0.00	<u>+</u>	1.02	1.00
Supply P to engine (psia) [PT0651]	592		568	25
TTEB density (Ib _m /ft ³)	n/a		n/a	n/a
Orifice to each thruster (in)	0.026	0.026	0.026	0.026
flow rate to each thruster (lbm/s)	n/a		n/a	n/a
Water System				
Tank P (psia) [PT0401]	781		774	766
Engine inlet P (psia) [PT0451]	579		574	556
Engine exit P (psia) [PT0453]	190		197	179
Engine ΔP (psi)	389		377	377
Engine inlet T (F) [TT0451]	87		91	92
Engine exit T (F) [TT0453]	78		83	84
min. initial engine exit T (F) [TT0453]	n/a		n/a	n/a
Engine ΔT (F) relative to TT0453	n/a		n/a	n/a
High Thrust Side Ramp			1	
Upper T (F) [TT0455]	89		90	89
Lower T (F) [TT0456]	89		100	99
Low Thrust Side Ramp		1	1	
Upper T (F) [TT0457]	82		88	88
Lower T (F) [TT0458]	83		90	88
Total water flow rate (lbm/s)***	39.6		39.6	39.6
	L.,	<u> </u>	<u> </u>	E E Mino

Table 10. Summary of LASRE system performance (Continued).

* GHe used in fuel/TTEB systems ** Ignition test - GHe used in fuel system *** est. w/engine ΔP when F/M inop \wedge LN2/GHe used for LOX/GH2

	Test # Test date		0057* 8/98	GRUN0056^ 9/11/98	8/1	10055^ 9/98	8/1	10054^ 4/98	GRUN0052^ 7/30/98	FLT0050* 7/23/98	FLT0049** 4/15/98
	Test Objective		ld flow	Fit. cold flow		Id flow		old flow	Fit. cold flow	Fit. cold flow	Fit. cold flow
_	Blow #	1	_2	2	1	2	1	2	1	1	1
	HIGH Thrust Side								400	000	192
TH#1	LOX mfd P (psia) [PT0352]	195	191	-273	216	216	208 inop	203	198 inop	200 inop	inop
	LOX mfd T (F) [TT0352]	-248 247	-249 247	248	inop 248	inop 249	247	inop 249	248	252	237
	Fuel mfd P (psig) [PT0152] Fuel mfd T (F) [TT0152]	55	247	55	55	30	63	32	37	48	42
	Pc (psig) [PT0001]	34	35	34	31	31	35	34	32	36	31
		-				···		43	43	63	63
	LOX side density (Ib _m /ft ³) LOX side flow rate (Ib _m /s)	62	<u>63</u> 1.48	43	<u>43</u> 1.45	43	43 1.43	1.40	1.43	1.47	1.50
	LOX side ACd (in ²)	0.024	0.023	0.027	0.025	0.025	0.026	0.026	0.026	0.022	0.023
						<u> </u>					
	Fuel side flow rate (lb _m /s)	0.41	0.41	0.41	0.41	0.41	0.40	0.41	0.41	0.39	0.40
	Fuel side ACd (in²)	0.168	0.164	0.167	0.167	0.164	0.168	0.164	0.164	0.165	0.178
	MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	п/а	n/a
TH#2	LOX mfd P (psia) [PT0353]	196	192	196	219	216	207	203	195	201	191
	LOX mfd T (F) [TT0353]	-259	-259	-280	-277	-282	-278	-279	-280	-257 243	-255 239
	Fuel mfd P (psig) [PT0153]	243	242	244	241	242 29	241	244 29	245 29	31	31
	Pc (psig) [PT0002]	29	31	30	28	1 ·	1	1	t		
_	LOX side density (lb _m /ft ³)	64	63	43	43	43	43	43	43	63	63
	LOX side flow rate (lb,/s)	1.50	1.48	1.46	1.45	1.45	1.43	1.40	1.43	1.47	1.50 0.023
_	LOX side ACd (in ²)	0.023	0.023	0.027	0.025	0.025	0.026	0.025	0.026	0.021	
	Fuel side flow rate (lb _m /s)	0.41	0.41	0.41	0.41	0.41	0.40	0.41	0.41	0.39	0.40
	Fuel side ACd (in ²)	0.171	0.168	0.170	0.171	0.169	0.172	0.167	0.166	0.171	0.176
	MB	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	п/а	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
TH#3	LOX mfd P (psia) [PT0354]	194	193	198	219	213	206	204	197	200	194
	LOX mfd T (F) [TT0354]	-263	-265	-287	-287	-287	-281	-285	-286	-261	-261
	Fuel mfd P (psig) [PT0154]	246	244	248	243	246	246	243	246	248	243
	Pc (psig) [PT0003]	28	29	31	27	28	29	27	27	29	29
	LOX side density (lb _m /ft ³)	65	63	43	45	45	45	45	45	63	63
	LOX side flow rate (lb _m /s)	1.50	1.48	1.46	1.45	1.45	1.43	1.40	1.43	1.47	1.50
	LOX side ACd (in ²)	0.023	0.023	0.027	0.024	0.025	0.025	0.025	0.026	0.021	0.022
	Fuel side flow rate (lb,,/s)	0.41	0.41	0.41	0.41	0.41	0.40	0.41	0.41	0.39	0.40
	Fuel side ACd (in ²)	0.168	0.166	0.167	0.170	0.166	0.169	0.168	0.165	0.168	0.174
	MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
TH#4	LOX mfd P (psia) [PT0355]	196	193	205	221	213	208	208	201	196	200
	LOX mfd T (F) [TT0355]	-263	-265	-288	-285	-286	-281	-282	-283	-262	-262
	Fuel mfd P (psig) [PT0155]	250	247	251	249	250	250	247	250	255	242
	Pc (psig) [PT0004]	31	30	32	28	29	31	27	30	31	29
	LOX side density (Ib,/ft3)	65	63	44	44	44	44	44	44	63	63
	LOX side flow rate (lb,/s)	1.50	1.48	1.46	1.45	1.45	1.43	1.40	1.43	1.47	1.50
	LOX side ACd (in ²)	0.023	0.023	0.026	0.024	0.025	0.025	0.024	0.026	0.022	0.022
	Fuel side flow rate (lb _m /s)	0.41	0.41	0.41	0.41	0.41	0.40	0.41	0.41	0.39	0.40
	Fuel side ACd (in ²)	0.166	0.164	0.165	0.166	0.164	0.166	0.165	0.163	0.163	0.174
				1			· · · · · · · · · · · · · · · · · · ·	n/a	n/a	n/a	n/a
	MR actual C* (ft/c)	n/а п/а	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s) C*, efficiency (%)	n/a	n/a n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a
							h	t			
	hrust side ave. Pc (psig)	30	31	31	29	29	31	29	30	32	30
	hrust side ave. MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a
HIGH (hrust side ave. C*, eff. (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	11/d

Table 11. Summary of LASRE engine performance.

* GHe used on fuel side ** Ignition test

	Test #	GRUN 9/18		GRUN0056^ 9/11/98		0055^ 9/98		0054^ 4/98	GRUN0052^ 7/30/98	FLT0050* 7/23/98	FLT0049** 4/15/98
		Fit. co		Fit. cold flow		id flow		Id flow	Fit. cold flow	Fit. cold flow	
	Test Objective Blow #	1	2	2	1	2	1	2	1	1	1
	LOW Thrust Side								1		
		203	196	204	235	226	218	217	203	201	204
TH#5	LOX mfd P (psia) [PT0356] Fuel mfd P (psig) [PT0156]	203	246	204	235	253	251	246	244	252	245
	Fuel mfd T (F) [TT0156]	inop	inop	inop	inop	inop	72	inop	46	56	50
	Pc (psig) [PT0005]	36	34	34	31	31	34	31	33	35	32
				1 1			43	43	43	63	63
	LOX side density (lb _m /ft ³) LOX side flow rate (lb _m /s)	64	63 1.43	43	43 1.35	43	1.33	1.35	1.35	1.46	1.43
	LOX side flow rate (10,,/s)	0.022	0.022	0.025	0.022	0.024	0.023	0.023	0.025	0.022	0.021
						1					
	Fuel side flow rate (lb,/s)	0.41	0.41	0.41	0.40	0.41	0.40	0.41	0.41	0.40	0.40
	Fuel side ACd (in ²)	0.170	0.168	0.169	0.168	0.163	0.167	0.167	0.168	0.167	
	MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	п/а	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
TH#6	LOX mfd P (psia) [PT0357]	205	194	201	232	229	217	211	203	200	196
	LOX mfd T (F) [TT0357]	-258	-257	-279	-278	-281	-273	-278	-278	-256	-253
	Fuel mfd P (psig) [PT0157]	244	242	243	241	246	245	244	239	247	241 30
	Pc (psig) [PT0006]	29	29	28	28	27	29	26	27	30	
	LOX side density (lb _m /ft ³)	64	63	43	43	43	43	43	43	63	63
	LOX side flow rate (lb,/s)	1.45	1.43	1.38	1.35	1.40	1.33	1.35	1.35	1.46	1.43
	LOX side ACd (in ²)	0.021	0.022	0.025	0.022	0.023	0.023	0.024	0.024	0.021	0.021
	Fuel side flow rate (lb,/s)	0.41	0.41	0.41	0.40	0.41	0.40	0.41	0.41	0.40	0.40
	Fuel side ACd (in ²)	0.172	0.170	0.172	0.172	0.168	0.171	0.168	0.172	0.171	0.176
				5/0	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	MR	n/a n/a	n/a n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s) C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
TH#7	LOX mfd P (psia) [PT0358]	204	194	201	229	225	212	214	203	194	191
111#7	Fuel mfd P (psig) [PT0158]	240	235	236	234	238	242	240	236	242	237
	Pc (psig) [PT0007]	28	26	26	27	29	27	27	27	28	29
	LOX side density (lb,/ft ^a)		63	44	44	44	44	44	44	63	63
	LOX side flow rate (lb _m /s)	64.5 1.45	1.43	1.38	1.35	1.40	1.33	1.35	1.35	1.46	1.43
	LOX side ACd (in ²)	0.021	0.022	0.025	0.022	0.023	0.023	0.023	0.024	0.022	0.021
				1		1	1		1	0.40	0.40
	Fuel side flow rate (lb _m /s)	0.41	0.41	0.41	0.40	0.41	0.40	0.41	0.41	0.40	0.180
	Fuel side ACd (in ²)	0.174	0.175	0.177	0.177		1	1			
	MR	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	п/а		198
TH#8	LOX mfd P (psia) [PT0359]	209	201	211	233	230	215	213	210 -278	204	-258
	LOX mfd T (F) [TT0359]	-260	-263	-283	-280 241	-285 243	-278 250	248	243	246	247
	Fuel mfd P (psig) [PT0159]	247	246 30	30	241	30	230	30	29	30	32
	Pc (psig) [PT0008]					+					
	LOX side density (Ib _m /ft ³)	64.5	63	44	44	44	44	44	44	63	<u>63</u> 1.43
	LOX side flow rate (lb _m /s)	1.45	1.43	1.38	1.35	1.40	1.33	1.35	1.35 0.024	1.46	0.021
	LOX side ACd (in ²)	0.021	0.021	0.024	0.022	0.023	0.023	0.023		1	
	Fuel side flow rate (lb,/s)	0.41	0.41	0.41	0.40	0.41	0.40	0.41	0.41	0.40	0.40
	Fuel side ACd (in ²)	0.170	0.168	0.171	0.172	0.170	0.168	0.166	0.169	0.171	0.172
	MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	31	31	31	31	31	31	31	31	31	31
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
1011	hrust side ave. Pc (psig)	31	30	29	28	29	30	28	29	31	31
	hrust side ave. MR		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	hrust side ave. C*, eff. (%)	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a

	Test # Test date	FLT0048^ 3/19/98	FLT0047^ 3/4/98		10046^ 2/98	GRUN0041^ 12/9/97	GRUN0038^ 9/24/97	GRUN0037 4/30/97	GRUN0036 4/23/97	GRUN0035* 4/16/97
	Test Objective	Fit. cold flow	J/7/30		id flow	Fit. cold flow	Fit. cold flow	Gd. hot fire	Gd. hot fire	Gd. cold flow
	Blow #	1	1	1	2	2	1	1	1	1
-	HIGH Thrust Side				1	1				
rH#1	LOX mfd P (psia) [PT0352]	193	198	201	210	225	202	309	306	204
	LOX mfd T (F) [TT0352]	inop	inop	inop	inop	-262	-271	-248	-246	-241
	Fuel mfd P (psig) [PT0152]	243	244	245	238	239	241	307	305	220
	Fuel mfd T (F) [TT0152]	53	43	49	54	73	35	18	10	50
	Pc (psig) [PT0001]	32	29	29	32	27	28	217	218	34
	LOX side density (Ib,,/ft3)	43	43	43	43	39	41	62	62	60
	LOX side flow rate (lb _m /s)	1.45	1.45	1.43	1.45	1.40	1.45	1.48	1.50	1.48
	LOX side ACd (in ²)	0.026	0.026	0.026	0.026	0.025	0.027	0.032	0.033	0.023
	Fuel side flow rate (lb _m /s)	0.40	0.39	0.41	0.40	0.40	0.41	0.26	0.26	0.39
	Fuel side ACd (in ²)	0.40	0.39	0.171	0.40	0.40	0.41	0.20	0.20	0.39
					1					
	MR	n/a	n/a	n/a	n/a	n/a	n/a	5.7	5.7	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	7509	7408	n/a
	C*, efficiency (%)		n/a	n/a	n/a	n/a	n/a	98	97	n/a
H#2	LOX mfd P (psia) [PT0353]	199	199	200	212	227	200	<u>307</u> -253	307	201
	LOX mfd T (F) [TT0353]	-280 238	-282 237	-277 242	-275 233	-270 230	-282 235	-253 304	-256 304	-249 215
	Fuel mfd P (psig) [PT0153] Pc (psig) [PT0002]	238	237	242	233	230	235	210	210	215
				<u> </u>						
	LOX side density (lb,/ft ³)	43	43	43	42	41	44	63	64	62
	LOX side flow rate (lb _m /s) LOX side ACd (in ²)	1.45	1.45	1.43	1.45 0.026	1.40 0.024	1.45 0.026	1.48 0.031	1.50 0.031	1.48
		0.026	0.025	0.026		0.024				
	Fuel side flow rate (lb _m /s)	0.40	0.39	0.41	0.40	0.40	0.41	0.26	0.26	0.39
	Fuel side ACd (in ²)	0.176	0.176	0.173	0.176	0.179	0.172	0.135	0.137	0.180
	MR	n/a	n/a	n/a	n/a	n/a	n/a	5.7	5.7	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	7277	7148	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	95	93	n/a
H#3	LOX mfd P (psia) [PT0354]	199	196	200	212	231	199	311	312	205
	LOX mfd T (F) [TT0354]	-287	-289	-287	-285	-274	-289	-262	-264	-261
	Fuel mfd P (psig) [PT0154]	240	236	239	232	231	238	305	303	216
	Pc (psig) [PT0003]		29	29	31	28	28	209	210	30
	LOX side density (lb,,/ft3)	45	45	45	44	42	45	65.1	65.5	65
<u> </u>	LOX side flow rate (lb,/s)	1.45	1.45	1.43	1.45	1.40	1.45	1.48	1.50	1.48
	LOX side ACd (in ²)	0.025	0.025	0.025	0.025	0.024	0.026	0.029	0.030	0.022
	Fuel side flow rate (lb,/s)	0.40	0.39	0.41	0.40	0.40	0.41	0.26	0.26	0.39
	Fuel side ACd (in ²)	0.175	0.176	0.175	0.177	0.178	0.170	0.135	0.139	0.180
							1	5.7	5.7	
	MR	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a		7148	n/a n/a
	actual C* (ft/s) C*, efficiency (%)	n/a n/a	n/a	n/a	n/a	n/a	n/a	95	93	n/a
H#4	LOX mfd P (psia) [PT0355]	201	203	201	214	238	201	321	319	211
174	LOX mfd T (F) [TT0355]	-285	-285	-285	-281	-275	-287	-262	-263	-256
	Fuel mfd P (psig) [PT0155]	243	243	242	238	238	240	308	308	221
	Pc (psig) [PT0004]	30	29	29	31	31	30	214	212	30
	LOX side density (lb,,/ft3)	44	44	44	44	42	45	65.1	65.3	64
	LOX side flow rate (lb _m /s)	1.45	1.45	1.43	1.45	1.40	1.45	1.48	1.50	1.48
	LOX side ACd (in ²)	0.025	0.025	0.026	0.025	0.023	0.026	0.029	0.029	0.021
	Fuel side flow rate (Ib _m /s)	0.40	0.39	0.41	0.40	0.40	0.41	0.26	0.26	0.39
	Fuel side ACd (in ²)	0.173	0.172	0.173	0.173	0.173	0.169	0.134	0.135	
	MR	п/а	n/a	n/a	n/a	n/a	n/a	5.7	5.7	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	7410	7213	<u>n/a</u>
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	п/а	97	94	n/a
IGH t	hrust side ave. Pc (psig)	30	28	29	31	29	28	212	213	31
IGH t	hrust side ave. MR	n/a	n/a	n/a	n/a	n/a	n/a	5.7	5.7	n/a
IIGH I	hrust side ave. C*, eff. (%)	n/a	n/a	n/a	n/a	n/a	n/a	96	94	n/a

	Test #	FLT0048^ 3/19/98	FLT0047^ 3/4/98	GRUN 2/12		GRUN0041^ 12/9/97	GRUN0038^ 9/24/97	GRUN0037 4/30/97	GRUN0036 4/23/97	GRUN0035* 4/16/97
	Test date		5/4/96 Fit. cold flow	Fit. co			Fit. cold flow	Gd. hot fire	Gd. hot fire	Gd. cold flow
	Test Objective Blow #	Fit. cold flow	1	1	2	2	1	1	1	1
	LOW Thrust Side		·	· · · · ·		<u> </u>				
	and the second	910	206	206	212	225	204	303	297	209
H#5	LOX mfd P (psia) [PT0356]	210 254	206	200	249	244	252	n/a	n/a	n/a
	Fuel mfd P (psig) [PT0156]	60	53	<u>- 230</u> 59	63	79	45	31	23	59
	Fuel mfd T (F) [TT0156] Pc (psig) [PT0005]	33	33	32	32	31	31	205	205	33
								63	63	62
	LOX side density (Ib,/ft3)	43	43	43	42	40	43	1.40	1.43	1.40
	LOX side flow rate (lb,/s)	1.38	1.38	1.35	1.38	1.33	1.38 0.025	0.029	0.031	0.021
	LOX side ACd (in ²)	0.024	0.024	0.024	0.025	0.023			1	
	Fuel side flow rate (lb,/s)	0.40	0.40	0.41	0.41	0.40	0.41	0.26	0.27	0.39
	Fuel side ACd (in ²)	0.169	0.173	0.168	0.168	0.171	0.164	n/a	n/a	n/a
	MR	n/a	n/a	n/a	n/a	n/a	n/a	5.4	5.4	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	7420	7288	n/a
	C [*] , efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	96	94	n/a
rH#6	LOX mfd P (psia) [PT0357]	200	208	209	216	220	204	302	299	204
	LOX mfd T (F) [TT0357]	-280	-281	-277	-274	-267	-278	-250	-253	-248
	Fuel mfd P (psig) [PT0157]	247	244	244	243	237	245	298	296	227
	Pc (psig) [PT0006]	28	28	26	27	27	27	200	199	29
	LOX side density (Ib,,/ft3)	43	43	43	42	40	43	63	63	62
	LOX side flow rate (lb _m /s)	1.38	1.38	1.35	1.38	1.33	1.38	1.40	1.43	1.40
	LOX side ACd (in ²)	0.024	0.024	0.024	0.024	0.023	0.025	0.028	0.029	0.021
	A					· · · · · · · · · · · · · · · · · · ·	0.41	0.26	0.27	0.39
	Fuel side flow rate (lb,/s)	0.40	0.40	0.41	0.41	0.40	0.41	0.20	0.142	0.35
	Fuel side ACd (in ²)	0.174	0.175	0.172	0.172	0.175	0.109			1
	MR	n/a	n/a	n/a	n/a	n/a	n/a	5.4	5.4	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	7247	7085	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	94	91	n/a
rH#7	LOX mfd P (psia) [PT0358]	199	203	206	213	228	203	300	297	206
	Fuel mfd P (psig) [PT0158]	240	237	236	235	233	241	296	294 197	223
	Pc (psig) [PT0007]	27	27	27	26	26	26	198		
	LOX side density (lb,/ft3)	44	44	44	43	42	43	64	64	63
	LOX side flow rate (lb,,/s)	1.38	1.38	1.35	1.38	1.33	1.38	1.40	1.43	1.40
	LOX side ACd (in ²)	0.024	0.024	0.024	0.024	0.022	0.025	0.028	0.029	0.021
	Fuel side flow rate (lb,,/s)	0.40	0.40	0.41	0.41	0.40	0.41	0.26	0.27	0.39
	Fuel side ACd (in ²)	0.178	0.179	0.177	0.178	0.178	0.172	0.140	0.143	0.177
	· · · · · · · · · · · · · · · · · · ·				1		- 10		5.4	n/a
	MR	n/a	n/a	n/a	п/а	n/a	n/a n/a	<u>5.4</u> 7178	7017	n/a
	actual C* (ft/s)	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a	93	91	n/a
	C*, efficiency (%)	n/a			221	235	212	305	298	205
TH#8	LOX mfd P (psia) [PT0359]	-283	209 -279	210 -281	-277	-273	-283	-256	-258	-253
· ·	LOX mfd T (F) [TT0359]	244	245	247	244	241	248	301	300	229
	Fuel mfd P (psig) [PT0159] Pc (psig) [PT0008]	244	31	31	31	29	30	202	201	33
				t	1	1		1		62
	LOX side density (Ib, /ft ³)	44	44	44	43	42	44	64	<u>64</u> 1.43	63
	LOX side flow rate (lb _m /s)	1.38	1.38	1.35	1.38	1.33 0.022	1.38	1.40 0.028	0.029	0.021
	LOX side ACd (in ²)	0.023	0.023	0.024	0.024		0.024			
	Fuel side flow rate (lb _m /s)	0.40	0.40	0.41	0.41	0.40	0.41	0.26	0.27	0.39
	Fuel side ACd (in ²)	0.175	0.173	0.170	0.172	0.173	0.167	0.139	0.140	0.172
	MR	n/a	n/a	n/a	n/a	n/a	n/a	5.4	5.4	n/a
	actual C* (ft/s)	31	31	n/a	п/а	n/a	n/a	7316	7153	n/a
	C*, efficiency (%)		n/a	n/a	n/a	n/a	n/a	94	92	n/a
					20	20	29	201	201	32
	hrust side ave. Pc (psig)	29	30	29	29 n/a	<u>28</u> n/a	n/a	5.4	5.4	n/a
i nw t	hrust side ave. MR	n/a	n/a	n/a	11/4	1 100	1//4	94	92	п/а

-	Test # Test date			0033** 6/97			0032**		0031**	GRUN0030* 1/18/97	GRUN0029* 12/17/96	GRUN0028* 12/11/96
-	Test Objective	· +		on test		4 in	on test	the second secon	on test	Gd. cold flow	Gd. cold flow	Gd. cold flow
	Blow #	1-ign	1 1-main	j 2-ign	2-main	1-ign	1-main	1-ign	1-main	1	1	1
-	HIGH Thrust Side		f	1	1		1		1			
TH#1	LOX mfd P (psia) [PT0352]	261	201	241	193	249	235	261	193	196	201	195
	LOX mfd T (F) [TT0352]	-230	-246	-224	-243	-229	-219	-232	-248	-248	-249	-250
-	Fuel mfd P (psig) [PT0152]	31	230	31	237	7	210	28	212	197	195	198
	Fuel mfd T (F) [TT0152]	133	58	334	49	63	64	177	47	40	51	65
	Pc (psig) [PT0001]	34	36	37	32	13	21	32	35	31	32	33
	LOX side density (lb _m /ft ³)	58	62	57	61	п/а	n/a	58	62	62	62	62
	LOX side flow rate (lb _m /s)	1.45	1.48	1.43	1.45	0.75	1.00	1.45	1.48	1.48	1.48	1.50
	LOX side ACd (in ²)	n/a	0.023	n/a	0.023	n/a	n/a	n/a	0.023	0.023	0.023	0.023
. .	+ · · · · · ·	1	t	†		f			-			
	Fuel side flow rate (lb _m /s)	n/a	0.39	n/a	0.39	n/a	0.38	n/a	0.39	0.40	0.39	0.39
	Fuel side ACd (in ²)	n/a	0.173	n/a	0.167	n/a	0.186	n/a	0.185	0.200	0.201	0.202
	MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
• · · · · · · · ·	actual C* (ft/s)	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	п/а	n/a	п/а	n/a	n/a	n/a	n/a
TH#2	LOX mfd P (psia) [PT0353]	260	194	243	194	249	231	257	195	189	198	194
	LOX mfd T (F) [TT0353]	-233	-255	-233	-253	-229	-214	-232	-255	-253	-256	-256
	Fuel mfd P (psig) [PT0153]	20	229	26	230	1	202	26	206	188	192	194
	Pc (psig) [PT0002]	35	33	36	30	11	16	30	30	29	30	30
	LOX side density (lb _m /ft ³)			50	62	<i></i>	1	50	63	63	63	64
	LOX side flow rate (Ib _m /s)	58	63 1.48	58	63 1.45	n/a 0.75	п/а 1.00	58 1.45	1.48	1,48	1.48	1.50
	LOX side ACd (in ²)	1.45	0.023	n/a	0.022	0.75 n/a	n/a	n/a	0.023	0.023	0.022	0.023
•				11/d	1	iva		1				
	Fuel side flow rate (lb _m /s)	n/a	0.39	n/a	0.39	n/a	0.38	n/a	0.39	0.40	0.39	0.39
	Fuel side ACd (in ²)	n/a	0.173	п/а	0.172	n/a	0.193	n/a	0.190	0.209	0.204	0.206
	MR	n/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a
-	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
TH#3	LOX mfd P (psia) [PT0354]	264	196	245	195	241	220	252	199	199	206	201
	LOX mfd T (F) [TT0354]	-239	-262	-244	-259	-239	-240	-238	-263	-262	-263	-262
•	Fuel mfd P (psig) [PT0154]	30	225	30	231	8	207	27	209	192	190	190
	Pc (psig) [PT0003]	33	31	36	33	10	14	32	29	31	29	31
-	LOX side density (lb,,/ft3)	60	65	61	64	n/a	n/a	60	65	65	65	65
-	LOX side flow rate (lb _m /s)	1.45	1.48	1.43	1.45	0.75	1.00	1.45	1.48	1.48	1.48	1.50
	LOX side ACd (in ²)	n/a	0.022	0.020	0.022	n/a	п/а	n/a	0.022	0.022	0.021	0.022
	Fuel side flow rate (lb,/s)	n/a	0.39	n/a	0.39	n/a	0.38	n/a	0.39	0.40	0.39	0.39
	Fuel side ACd (in ²)	n/a	0.176	n/a	0.171	n/a	0.189	n/a	0.187	0.205	0.206	0.210
	MR	n/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
TH#4	LOX mfd P (psia) [PT0355]	271	203	248	203	265	243	268	209	205	205	198
	LOX mfd T (F) [TT0355]	-242	-261	-248	-263	-242	-240	-241	-265	-260	-264	-264
	Fuel mfd P (psig) [PT0155]	31	235	31	238	11	213	31	212	194	195	194
	Pc (psig) [PT0004]	34	31	36	29	7	13	33	30	30	28	31
	LOX side density (Ib,/ft3)	61	65	62	65	n/a	n/a	60	65	64.5	65	65
	LOX side flow rate (lb _m /s)	1.45	1.48	1.43	1.45	0.75	1.00	1.45	1.48	1.48	1.48	1.50
	LOX side ACd (in ²)	0.019	0.022	0.019	0.021	n/a	n/a	0.019	0.021	0.022	0.021	0.023
	Fuel side flow rate (lb _m /s)	n/a	0.39	n/a	0.39	n/a	0.38	n/a	0.39	0.40	0.39	0.39
	Fuel side ACd (in ²)	n/a	0.169	n/a	0.167	n/a	0.184	n/a	0.185	0.203	0.201	0.206
	MR	п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
нан и	hrust side ave. Pc (psig)	34	33	36	31	10	16	32	31	30	30	31
	hrust side ave. MR	n/a	- 33 n/a	n/a	n/a	n/a	n/a	л/а	n/a	n/a	n/a	n/a
nun t	11 UOL 3100 GTO. WIT	11/a	1#a	1 H G	L. 17a	11/1	n/a	19/01	170	11/0	n/a	n/a

1a	ble 11. Summary of LASKE	engine perior	mance (Cont	mueu).	
Test #	GRUN0033**	GRUN0032**	GRUN0031**	GRUN0030*	GRUN002
Test date	2/6/97	1/31/97	1/23/97	1/18/97	12/17/9
Test Objective	Ignition test	Ignition test	Ignition test	Gd. cold flow	Gd. cold f
Riow #	1-inn 1 1-main 2-inn 2-main	1-ion 1-main	1-ign 1-main	1	1

of LASPE angine performance (Continued) Table 11 Cu

	Test #	1	GRUN	0033**		GRUN	032**	GRUN	0031**	GRUN0030*	GRUN0029*	GRUN0028*
	Test date			/97		1/31	/97	1/2	3/97	1/18/97	12/17/96	12/11/96
	Test Objective	1	Ignitic	on test		Ignitio	n test	Ignitic	on test	Gd. cold flow	Gd. cold flow	Gd. cold flow
	Blow #	1-ign	1-main	2-ign	2-main	1-ign	1-main	1-ign	1-main	1	1	1
	HIGH Thrust Side											
TH#5	LOX mfd P (psia) [PT0356]	228	203	229	200	286	244	228	198	203	201	197
	Fuel mfd P (psig) [PT0156]	29	235	33	239	7	230	29	213	206	207	207
	Fuel mfd T (F) [TT0156]	63	68	56	58	203	75	59	55	50	53 29	67 31
	Pc (psig) [PT0005]	13	33	29	33	9	17	29	31	31		
	LOX side density (lb _m /ft ³)	59	63	60	62	n/a	n/a	60	64	63	63	63
	LOX side flow rate (lb _m /s)	1.43	1.43	1.35	1.40	0.78	0.91	1.38	1.43	1.43	1.40	1.43
	LOX side ACd (in ²)	n/a	0.022	0.019	0.022	n/a	n/a	n/a	0.022	0.021	0.021	0.022
	Fuel side flow rate (lb,,/s)	n/a	0.40	rı∕a	0.40	n/a	0.39	n/a	0.39	0.40	0.40	0.39
	Fuel side ACd (in ²)	n/a	0.173	n/a	0.170	п/а	0.175	n/a	0.187	0.195	0.193	0.191
	MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a
TH#6	LOX mfd P (psia) [PT0357]	228	202	225	200	274	244	223	204	203	203	195
	LOX mfd T (F) [TT0357]	-237	-252	-240	-250	-233	-239	-238	-256	-252	-253	-255
	Fuel mfd P (psig) [PT0157]	25	226	30	234	10	215	28	205	199 27	199 26	199 29
	Pc (psig) [PT0006]	30	29	28	27	9	13	30	28	1		
	LOX side density (Ib _m /ft ³)	59	63	60	62	n/a	n/a	60	64	63	63	63
	LOX side flow rate (Ib _m /s)	1.43	1.43	1.35	1.40	0.78	0.91	1.38	1.43	1.43	1.40	1.43
	LOX side ACd (in ²)	n/a	0.021	0.019	0.021	n/a	n/a	п/а	0.021	0.021	0.021	0.022
	Fuel side flow rate (lb _m /s)	n/a	0.40	n/a	0.40	n/a	0.39	n/a	0.39	0.40	0.40	0.39
	Fuel side ACd (in ²)	n/a	0.180	n/a	0.173	n/a	0.187	п/а	0.194	0.201	0.200	0.198
	MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
TH#7	LOX mfd P (psia) [PT0358]	229	201	230	196	267	228	216	203	199	202	194
	Fuel mfd P (psig) [PT0158]	21	225	20	225	3	208	25	199	195	197	192
	Pc (psig) [PT0007]	31	31	32	32	11	14	30	29	30	29	33
	LOX side density (Ib,,/ft3)	61	64.5	61	63	n/a	n/a	62	64.5	64	64.5	64.5
	LOX side flow rate (lb,,/s)	1.43	1.43	1.35	1.40	0.78	0.91	1.38	1.43	1.43	1.40	1.43
	LOX side ACd (in ²)	n/a	0.021	0.019	0.022	n/a	n/a	n/a	0.021	0.021	0.021	0.022
	Fuel side flow rate (lb,/s)	n/a	0.40	n/a	0.40	n/a	0.39	n/a	0.39	0.40	0.40	0.39
	Fuel side ACd (in ²)	n/a	0.180	n/a	0.179	n/a	0.193	n/a	0.199	0.205	0.202	0.205
	MR	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a
TH#8	LOX mfd P (psia) [PT0359]	234	203	235	197	274	241	229	208	204	205	200
	LOX mfd T (F) [TT0359]	-245	-260	-244	-255	-237	-238	-247	-260	-258	-260	-260
	Fuel mfd P (psig) [PT0159]	28	229	35	238	8	218	31	207	198 32	199 29	195 32
	Pc (psig) [PT0008]	31	31	33	31	9	16	31	29	32	29	
	LOX side density (lb _m /ft ³)	61	64.5	61	63	n/a	n/a	62	64.5	64	64.5	64.5
	LOX side flow rate (lb _m /s)	1.43	1.43	1.35	1.40	0.78	0.91	1.38	1.43	1.43	1.40	1.43
	LOX side ACd (in ²)	0.020	0.021	0.019	0.021	n/a	n/a	0.019	0.021	0.021	0.021	0.021
	Fuel side flow rate (lb _m /s)	n/a	0.40	n/a	0.40	n/a	0.39	n/a	0.39	0.40	0.40	0.39
	Fuel side ACd (in²)	n/a	0.177	n/a	0.170	n/a	0.184	n/à	0.192	0.202	0.200	0.202
	MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	r/a	n/a
	actual C* (ft/s)	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a	п/а
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
LOW	hrust side ave. Pc(psig)	26	31	31	31	10	15	30	29	30	28	31
	hrust side ave. MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	hrust side ave. C*, eff. (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	l n/a

	Test # Test date		10027* 3/96	1	10026*		10025* 5/96		10024* 9/96		10023* 15/96		0022* 2/96
<u> </u>	Test Objective		old flow		id flow		id flow		id flow		Id flow		Z/90 Id flow
	Blow #	1	2	1	2	1	2	1	*2*	1	2	1	2
	HIGH Thrust Side		 										
TH#1	LOX mfd P (psia) [PT0352]	189	200	186	178	186	181	185	203	197	197	219	216
	LOX mfd T (F) [TT0352]	-256	-240	-254	-260	-253	-258	-254	-242	-249	-251	-243	-242
	Fuel mfd P (psig) [PT0152]	196	3	193	197	198	194	198	195	189	194	197	196
	Fuel mfd T (F) [TT0152]	72	40	75	38	68	62	85	71	61	60	83	65
	Pc (psig) [PT0001]	32	4	33	33	32	33	32	30	31	32	33	33
	LOX side density (lb,/ft")	64	60	63	64.5	63	64	63	60	62	63	60	60
	LOX side flow rate (Ib _m /s)	1.38	1.35	1.43	1.43	1.40	1.43	1.35	1.25	1.40	1.40	1.35	1.30
	LOX side ACd (in ²)	0.022	0.019	0.023	0.023	0.022	0.023	0.022	0.019	0.022	0.022	0.020	0.019
-	· · · · · · · · · · · · · · · · ·						1	-					
	Fuel side flow rate (lb _m /s)	0.38		0.38	0.39	0.38	0.39	0.38	0.38	0.37	0.39	0.38	0.38
	Fuel side ACd (in ²)	0.199		0.202	0.196	0.198	0.201	0.198	0.197	0.197	0.201	0.197	0.196
	MR	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	п/а	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a
TH#2	LOX mfd P (psia) [PT0353]	192	201	186	182	183	178	189	206	198	190	216	212
	LOX mfd T (F) [TT0353]	-250	-239	-250	-256	-250	-254	-248	-238	-245	-245	-235	-237
_	Fuel mfd P (psig) [PT0153]	192	2	184	193	194	190	191	192	184	191	194	193
_	Pc (psig) [PT0002]	29	4	30	30	30	30	30	29	28	32	30	30
	LOX side density (lb,,/ft3)	62	60	62	64	62	63	62	60	61	61	59	59
	LOX side flow rate (lb _m /s)	1.38	1.35	1.43	1.43	1.40	1.43	1.35	1.25	1.40	1.40	1.35	1.30
	LOX side ACd (in ²)	0.021	0.019	0.023	0.023	0.023	0.023	0.021	0.019	0.022	0.022	n/a	n/a
		-					0.39	0.38	0.38	0.37	0.39	0.38	0.38
	Fuel side flow rate (lb _m /s)	0.38		0.38	0.39	0.38	0.39	0.36	0.38	0.37	0.39	0.38	0.38
-	Fuel side ACd (in ²)	0.203		0.211	0.200	0.201	0.205	0.205	0.200				
	MR	n/a	n/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
TH#3	LOX mfd P (psia) [PT0354]	189	205	189	185	196	185	195	212	200	201	220	219
	LOX mfd T (F) [TT0354]	-251	-242	-251	-256	-252	-249	-250	-241	-248	-250	-241	-242
	Fuel mfd P (psig) [PT0154]	185	3	184	184	190	188	191	186	180	186	191	190
	Pc (psig) [PT0003]	29	1	30	30	31	29	31	32	28	28	31	31
	LOX side density (lb _m /ft ³)	63	60	63	64	63	62	62	60	62	62	60	61
	LOX side flow rate (lb _m /s)	1.38	1.35	1.43	1.43	1.40	1.43	1.35	1.25	1.40	1.40	1.35	1.30
	LOX side ACd (in ²)	0.022	0.019	0.022	0.023	0.022	0.023	0.021	0.019	0.021	0.021	0.020	0.019
	Fuel side flow rate (lb./s)	0.38		0.38	0.39	0.38	0.39	0.38	0.38	0.37	0.39	0.38	0.38
-	Fuel side ACd (in ²)	0.210		0.211	0.209	0.205	0.207	0.205	0.206	0.206	0.209	0.203	0.201
				п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	MR	n/a n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s) C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
71144			207	192	182	195	187	192	212	203	204	223	221
TH#4	LOX mfd P (psia) [PT0355] LOX mfd T (F) [TT0355]	198 -246	-240	-249	-250	-247	-251	-246	-234	-245	-247	-233	-235
	Fuel mfd P (psig) [PT0155]	196	-240	195	198	197	195	194	195	187	194	195	196
	Pc (psig) [PT0004]	30	0	30	31	29	29	30	29	30	30	31	31
	LOX side density (lb _m /ft ³) LOX side flow rate (lb _m /s)	61	60	62	62	62	63 1.43	61 1.35	59 1.25	61 1.40	62 1.40	58 1.35	<u>59</u> 1.30
	LOX side now rate (ID _m /s)	1.38	1.35 0.019	1.43	1.43	1.40 0.022	0.022	0.021	1.25 n/a	0.021	0.021	n/a	n/a
		0.021		0.022									
	Fuel side flow rate (Ib _m /s)	0.38		0.38	0.39	0.38	0.39	0.38	0.38	0.37	0.39	0.38	0.38
	Fuel side ACd (in ²)	0.199		0.200	0.196	0.199	0.200	0.202	0.197	0.198	0.201	0.198	0.196
	MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
-	actual C* (ft/s)	n/a	r/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a
-	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		30	2	31	31	31	30	31	30	29	31	31	31
	hrust side ave. Pc (psig) hrust side ave. MR	30 	2 n/a		<u>- 31</u> n/a	n/a	л/а	n/a		29 n/a	n/a	n/a	n/a
	hrust side ave. C*, eff. (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
mun li	11031 3100 AVC. U , CH. (70)	1 +1/a	iva	11/0	1/a	174	L 1/4	17/4		1./4			<u> </u>

	Test #	GRUN		GRUN 11/2		GRUN 11/1		<u>GRUN</u> 11/5		GRUN 10/2	0023* 5/96	GRUN 10/1	
	Test date Test Objective	12/3 Gd. co		Gd, co		Gd. co			id flow		Id flow	Gd. co	
	Blow #	1	2	1	2	1	2	1	"2"	1	2	1	2
	LOW Thrust Side	1											
TH#5	LOX mfd P (psia) [PT0356]	193	192	196	190	195	192	190	209	209	207	220	222
111#0	Fuel mfd P (psig) [PT0156]	204	6	201	207	200	202	207	210	196	200	208	203
	Fuel mfd T (F) [TT0156]	90	56	95	51	82	79	98	85	75	75	100	80
	Pc (psig) [PT0005]	32	1	32	30	30	29	32	34	31	32	32	32
	LOX side density (Ib _m /ft ³)	62	61	62	63	62	63	61	59	61	61	59	59
	LOX side flow rate (lb _m /s)	1.40	1.33	1.40	1.38	1.40	1.43	1.35	1.28	1.40	1.40	1.33	1.35
	LOX side ACd (in ²)	0.022	0.019	0.022	0.022	0.022	0.022	0.022	n/a	0.021	0.021	n/a	n/a
	Fuel side flow rate (lb _m /s)	0.37		0.37	0.38	0.38	0.38	0.38	0.38	0.37	0.39	0.40	0.40
	Fuel side ACd (in ²)	0.191		0.192	0.185	0.195	0.194	0.191	0.186	0.191	0.198	0.200	0.202
	MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	C [*] , efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
TH#6	LOX mfd P (psia) [PT0357]	190	194	192	190	185	186	193	205	205	203	217	218
	LOX mfd T (F) [TT0357]	-247	-243	-247	-252	-249	-251	-246	-236	-244	-246	-237	-237
	Fuel mfd P (psig) [PT0157]	190	5	194	197	201	193	196	197	189	<u>193</u> 27	197 29	197 29
	Pc (psig) [PT0006]	28	0	29	31	27	28	31	30	27			
	LOX side density (lb _m /ft ³)	62	61	62	63	62	63	61	59	61	61	59	59
	LOX side flow rate (lb _m /s)	1.40	1.33	1.40	1.38	1.40	1.43	1.35	1.28	1.40	1.40	1.33	1.35 n/a
	LOX side ACd (in ²)	0.022	0.019	0.022	0.022	0.022	0.022	0.021	n/a	0.021	0.021	n/a	
	Fuel side flow rate (lb _m /s)	0.37		0.37	0.38	0.38	0.38	0.38	0.38	0.37	0.39	0.40	0.40
	Fuel side ACd (in ²)	0.204		0.199	0.194	0.194	0.202	0.201	0.198	0.198	0.205	0.211	0.208
	MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a
TH#7	LOX mfd P (psia) [PT0358]	187	188	181	179	182	179	189	205	199	198	215	213 194
	Fuel mfd P (psig) [PT0158]	190	1	194	191	192	194 28	195 31	<u>191</u> 29	184 31	191 31	<u>192</u> 30	30
	Pc (psig) [PT0007]	31	2	31	28	29	-						
	LOX side density (Ib _m /ft ³)	61	61	61	63	62	63	61	59	61	61	59	59
	LOX side flow rate (lb _m /s)	1.40	1.33	1.40	1.38	1.40	1.43	1.35 0.022	1.28 n/a	1.40 0.022	1.40	1.33 n/a	1.35 n/a
	LOX side ACd (in ²)	0.023	0.019	0.023	0.022	0.023	0.023						
	Fuel side flow rate (lb _m /s)	0.37		0.37	0.38	0.38	0.38	0.38	0.38	0.37	0.39	0.40 0.216	0.40
	Fuel side ACd (in ²)	0.204		0.199	0.199	0.203	0.201	0.201	0.204	0.202	0.207	· - · ·· ·	
	MR	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a 209	п/а 206	223	221
TH#8	LOX mfd P (psia) [PT0359]	190	196 -244	193 -246	193 -252	185 -247	187 -251	193 -243	210 -234	-242	-245	-234	-237
	LOX mfd T (F) [TT0359] Fuel mfd P (psig) [PT0159]	-245 197	-244	-246	202	202	199	198	197	188	202	198	199
	Pc (psig) [PT0008]	31	2	31	32	30	30	33	34	31	33	34	33
				61	63	62	63	61	59	61	61	59	59
	LOX side density (lb _m /ft ³) LOX side flow rate (lb _m /s)	61	61 1.33	1.40	1.38	1.40	1.43	1.35	1.28	1.40	1.40	1.33	1.35
	LOX side ACd (in ²)	0.022	0.019	0.022	0.021	0.022	0.023	0.021	n/a	0.021	0.021	n/a	n/a
	Fuel side flow rate (lb _m /s)	0.37		0.37	0.38	0.38	0.38	0.38	0.38	0.37	0.39	0.40	0.40
	Fuel side ACd (in ²)	0.197		0.199	0.189	0.193	0.197	0.199	0.198	0.199	0.196	0.210	0.206
									n/a	n/a	n/a	n/a	n/a
	MR	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	п/а п/а	n/a	n/a	n/a	n/a	n/a
	actual C* (ft/s) C*, efficiency (%)	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
				h					32	30	31	31	31
	hrust side ave. Pc (psig)	31	1	31 n/a	30 n/a	29 n/a	29 n/a	32 n/a	<u>32</u> n/a	30 n/a	n/a	n/a	n/a
	hrust side ave. MR hrust side ave. C*, eff. (%)	n/a n/a	n/a n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	mual side ave. 6 , 611. (76)	1	1¥a	1 184	1	L	1			L	1	·	·

	Test #	GRUN0020*		GRUN0019*	
	Test date	9/1	/96	7/2	6/96
	Test Objective	Gd. co	old flow	Gd. co	old flow
	Blow #	1	2	1	2
	HIGH Thrust Side		Ι.		
TH#1	LOX mfd P (psia) [PT0352]	185		206	178
	LOX mfd T (F) [TT0352]	-254		-250	-259
	Fuel mfd P (psig) [PT0152]	101		194	192
	Fuel mfd T (F) [TT0152]	n/a		102	83
	Pc (psig) [PT0001]	21		35	36
	LOX side density (Ib _m /ft ³)	63	·	62	64
	LOX side flow rate (lb _m /s)	1.40		1.45	1.40
	LOX side ACd (in ²)	0.022		0.022	0.023
	· · · · · · · · · · · · · · · · · · ·			1	1
	Fuel side flow rate (lb _m /s)	0.21		0.37	0.38
	Fuel side ACd (in ²)	n/a		0.201	0.204
	MR	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a
TH#2	LOX mfd P (psia) [PT0353]	188		200	181
	LOX mfd T (F) [TT0353]	-250		-282***	-284**
	Fuel mfd P (psig) [PT0153]	97		183	182
	Pc (psig) [PT0002]	15		28	29
	LOX side density (lb _m /ft ³)	62		69	69
	LOX side flow rate (lb _m /s)	1.40		1.45	1.40
	LOX side ACd (in ²)	0.021		n/a	n/a
	- · · · · · · · · · · · · · · · · · · ·			<u> </u>	
	Fuel side flow rate (lb,/s)	0.21		0.37	0.38
	Fuel side ACd (in ²)	п/а		0.212	0.215
	MR	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a
TH#3	LOX mfd P (psia) [PT0354]	190		205	185
	LOX mfd T (F) [TT0354]	-255		-282	-289***
	Fuel mfd P (psig) [PT0154]	87		190	193
	Pc (psig) [PT0003]	17		31	31
	LOX side density (Ib,/ft3)	63		69	70
	LOX side flow rate (lb _m /s)	1.40		1.45	1.40
	LOX side ACd (in ²)	0.021		0.021	n/a
	Fuel side flow rate (lb. (c)	0.01		0.07	
	Fuel side flow rate (lb _m /s) Fuel side ACd (in ²)	0.21		0.37	0.38
		n/a		0.205	0.203
	MR	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a
TH#4	LOX mfd P (psia) [PT0355]	163***		173***	154***
	LOX mfd T (F) [TT0355]	-247		-266	-273
	Fuel mfd P (psig) [PT0155]	98		194	194
	Pc (psig) [PT0004]	18		33	28
	LOX side density (Ib,,/ft3)	62		66	67
	LOX side flow rate (lb,/s)	1.40		1.45	1.40
	LOX side ACd (in ²)	п/а		n/a	n/a
	Fuel side flow rate (lb _m /s)	0.21		0.37	0.20
	Fuel side ACd (in ²)	0.21			0.38
		n/a		0.201	0.202
	MR	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a
IIGH II	hrust side ave. Pc (psig)	18		32	31
	hrust side ave. MR	n/a	n/a	n/a	n/a
	hrust side ave. C*, eff. (%)	n/a	n/a	n/a	n/a

Test # Test date		GRUN0020* GRUN0 9/1/96 7/26/ Gd. cold flow Gd. cold		GRUN0019*	
	Test Objective Blow #		2 10 10 10 10 10 10 10 10 10 10 10 10 10	60. CO	10 110W
	LOW Thrust Side			· · · · · · · · · · · · · · · · · · ·	
		102		202	191
rH#5	LOX mfd P (psia) [PT0356] Fuel mfd P (psig) [PT0156]	<u>193</u> 115		249***	251***
	Fuel mfd T (F) [TT0156]	n/a		110	86
	Pc (psig) [PT0005]	14		31	27
				1	
	LOX side density (lb _m /ft ³)	61		66	68
	LOX side flow rate (lb _m /s) LOX side ACd (in ²)	1.38		1.43 0.021	1.43 0.021
		0.021		0.021	
	Fuel side flow rate (lb _m /s)	0.21		0.38	0.38
	Fuel side ACd (in ²)	n/a		n/a	n/a
	MR	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a
TH#6	LOX mfd P (psia) [PT0357]	194		204	182
	LOX mfd T (F) [TT0357]	-245		-269	-276
	Fuel mfd P (psig) [PT0157]	96		191	193
	Pc (psig) [PT0006]	10		30	30
	LOX side density (lb,/ft3)	61		66	68
	LOX side flow rate (lb,/s)	1.38		1.43	1.43
	LOX side ACd (in ²)	0.020		0.021	0.022
	Fuel side flow rate (lb _m /s)	0.21		0.38	0.38
	Fuel side ACd (in ²)	n/a		0.210	0.205
	MR	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	C*, efficiency (%)				179
TH#7	LOX mfd P (psia) [PT0358]	188		196	179
	Fuel mfd P (psig) [PT0158] Pc (psig) [PT0007]	16		31	30
				1	
	LOX side density (lb _m /ft ³)	61		64	68
	LOX side flow rate (lb _m /s)	1.38		1.43	1.43
	LOX side ACd (in ²)	0.021		0.022	0.022
	Fuel side flow rate (lb _m /s)	0.21		0.38	0.38
	Fuel side ACd (in ²)	n/a		0.211	0.208
	MR	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a	n/a	n/a	n/a
	C*, efficiency (%)	n/a	n/a	n/a	n/a
TH#8	LOX mfd P (psia) [PT0359]	191		204	188
	LOX mfd T (F) [TT0359]	-245		-259	-276
	Fuel mfd P (psig) [PT0159]	99		192	195
	Pc (psig) [PT0008]	17		34	33
	LOX side density (Ib,,/ft3)	61		64	68
	LOX side flow rate (lb _m /s)	1.38		1.43	1.43
	LOX side ACd (in ²)	0.021		0.021	0.022
	Fuel side flow rate (lb _m /s)	0.21		0.38	0.38
	Fuel side ACd (in ²)	n/a		0.209	0.203
					1
	MR	n/a	n/a	n/a	n/a
	actual C* (ft/s)	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	C*, efficiency (%)	11/d	11/0		
	hrust side ave. Pc (psig)	14		32	30
	hrust side ave. MR	n/a	n/a	n/a	n/a
LOWÏ	hrust side ave. C*, eff. (%)	n/a	n/a	n/a	<u>n/a</u>

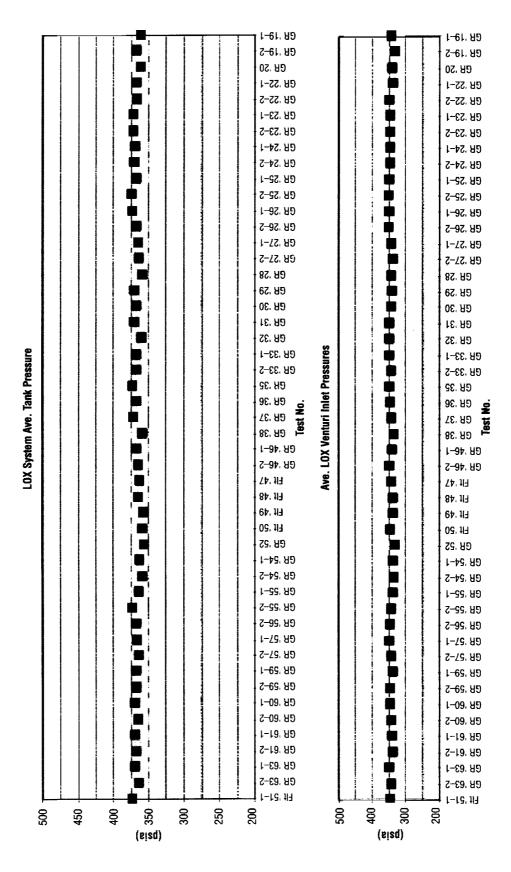


Figure 17. Steady-state trends in the LOX system data.

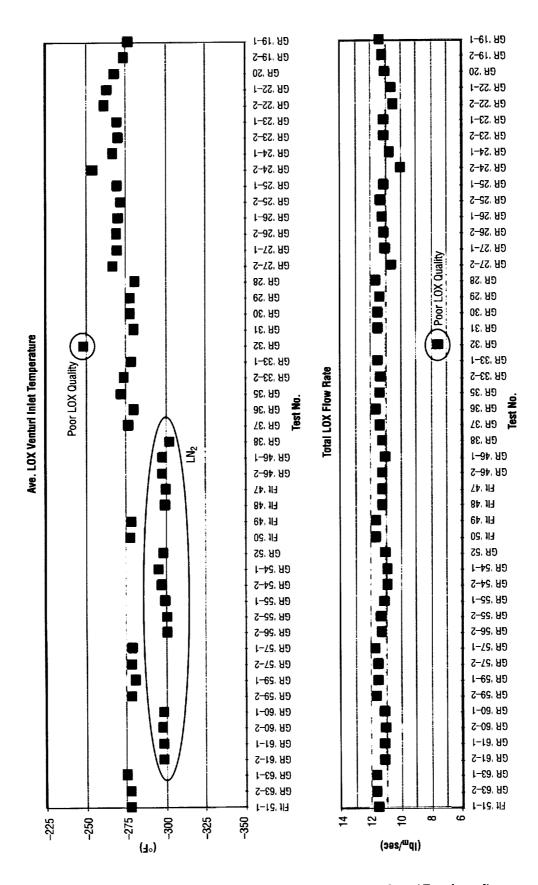


Figure 17. Steady-state trends in the LOX system data (Continued).

Figure 18. Steady-state trends in the fuel system data.

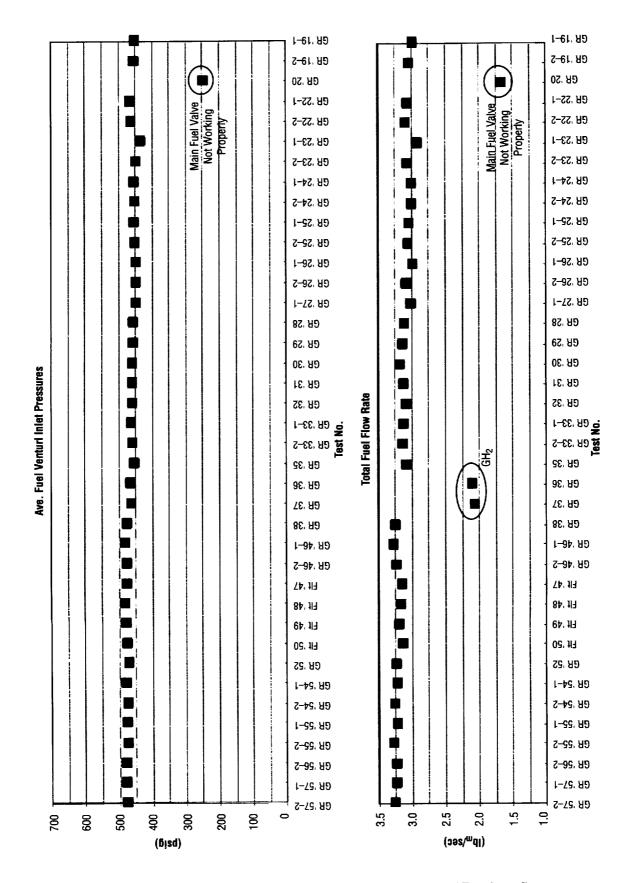


Figure 18. Steady-state trends in the fuel system data (Continued).

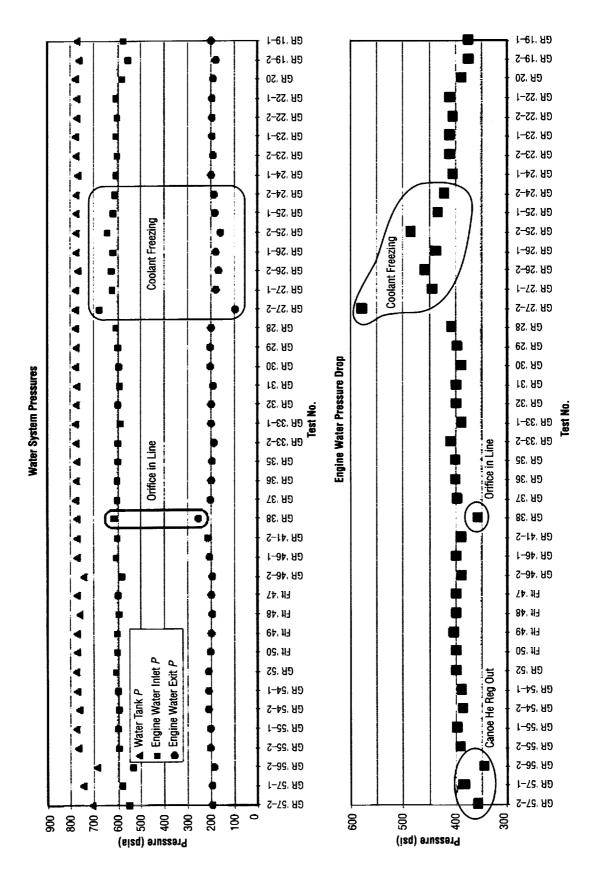


Figure 19. Steady-state trends in the water system data.

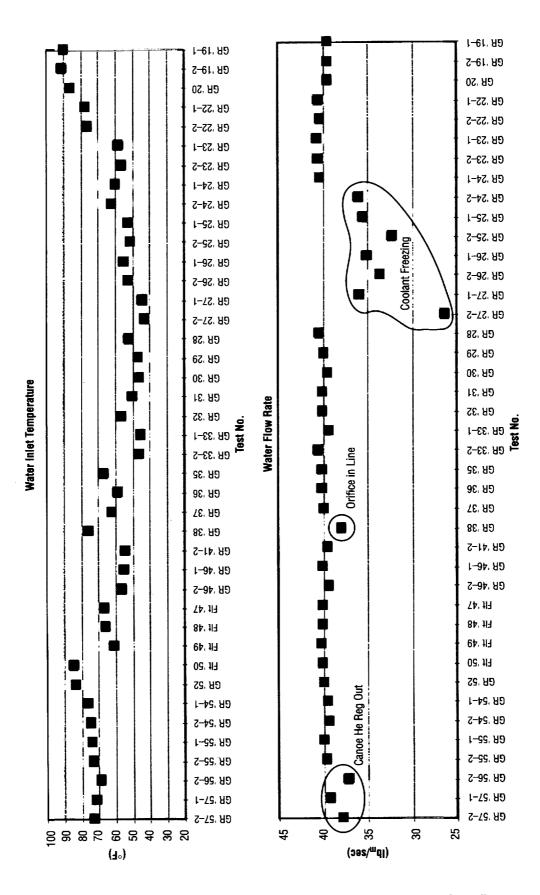


Figure 19. Steady-state trends in the water system data (Continued).

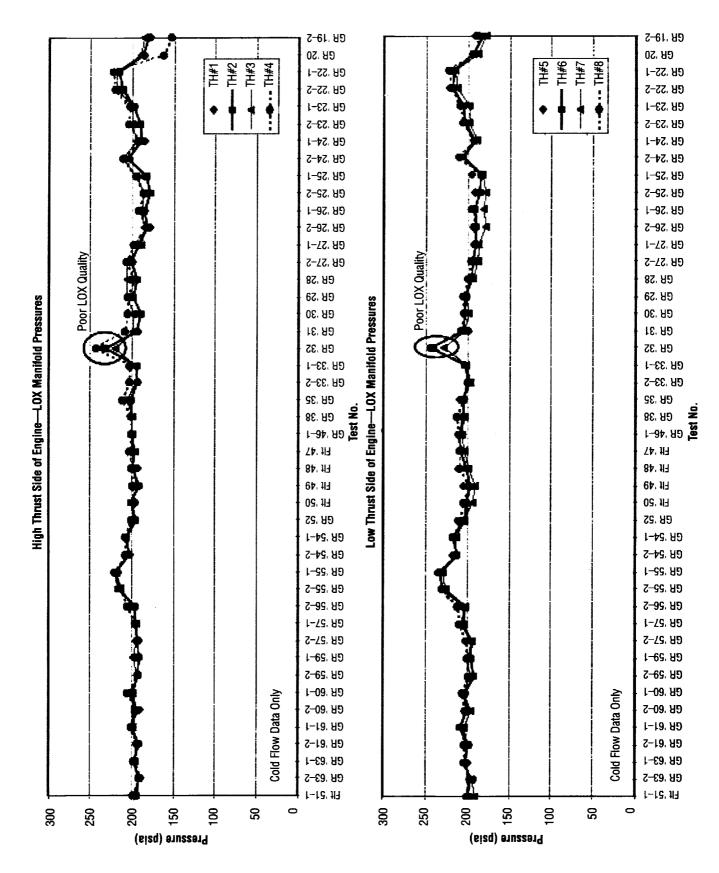


Figure 20. Steady-state trends in the thruster data.

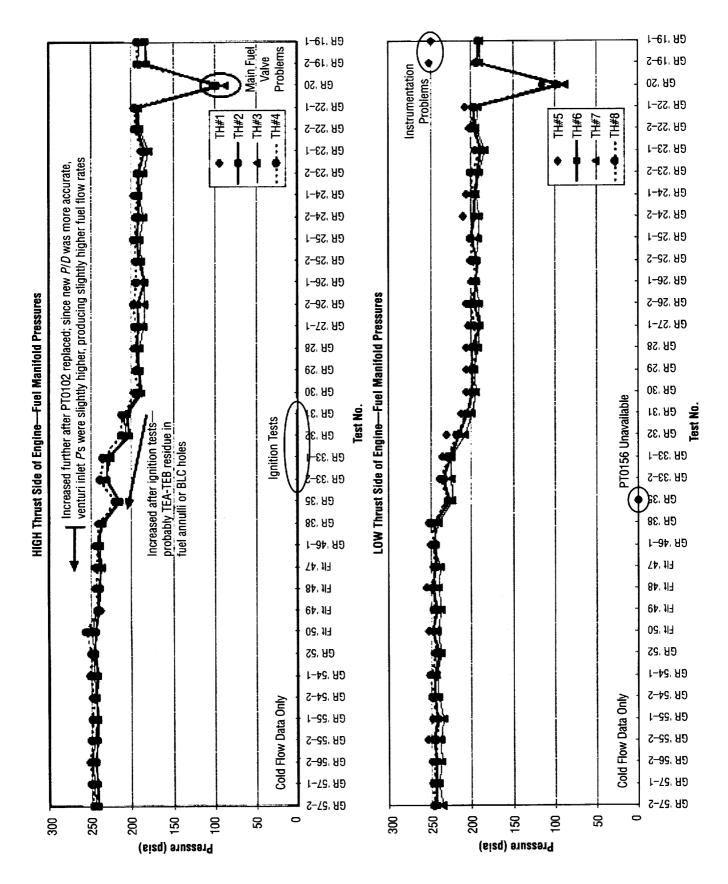


Figure 20. Steady-state trends in the thruster data (Continued).

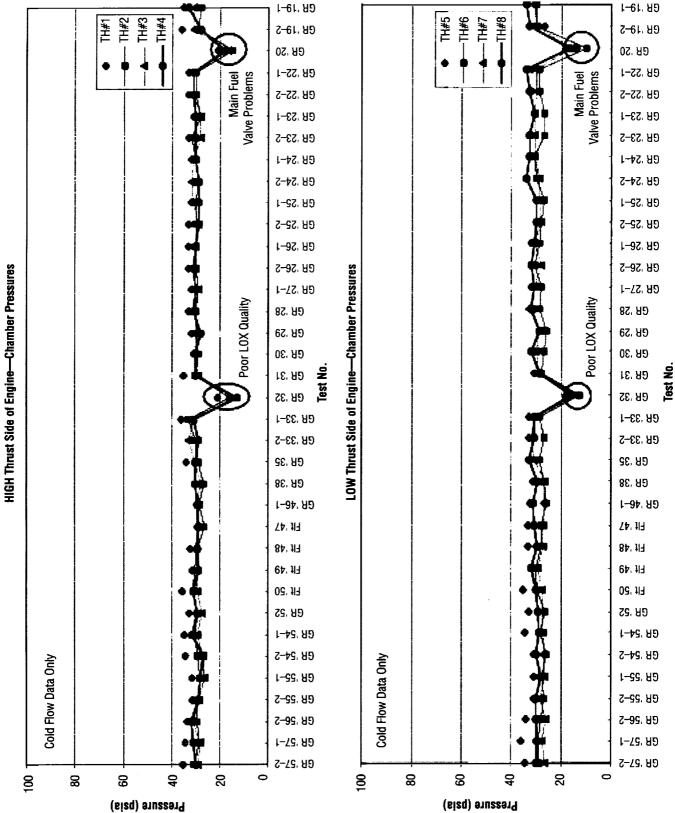


Figure 20. Steady-state trends in the thruster data (Continued).

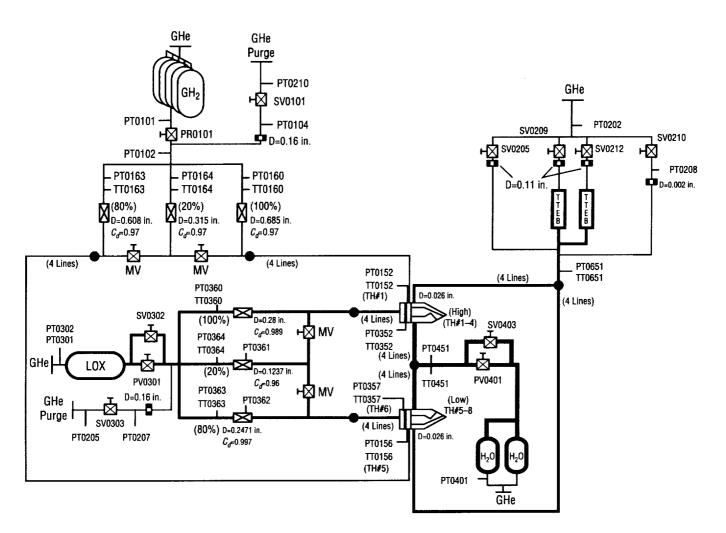


Figure 21. LASRE engine supply systems.

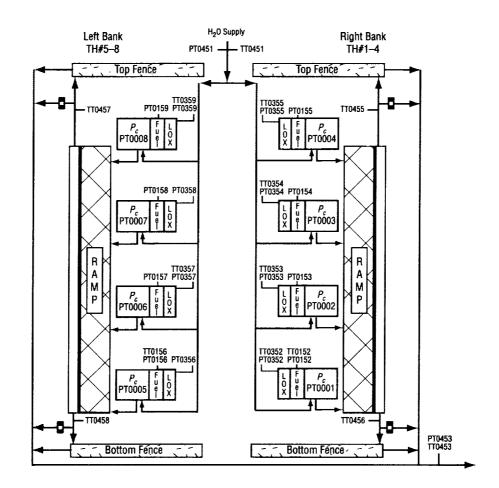


Figure 22. LASRE engine thrusters and water system.

Table 12. Additional notes for GRUN0019-GRUN0063 tests.

Test #	Notes
GRUN0019	TTEB #2 did not provide flow in 2nd blow
7/26/96	LOX T/C's were checked & corrections had to be applied to all T/C data
Gd. cold flow	PT0355 reading low (TH#4), PT0156 reading high (TH#5)
	LOX leaked between blows
GRUN0020	Main fuel valve did not work properly in 1st blow - provided low pressure to venturies
9/1/96	LOX leaked between blows
Gd. cold flow	2nd blow aborted in PS, since inadequate ∆T was measured for LOX system (LOX system remained cold due to leak)
	Main fuel valve did not work property in autosafe (a/s) either & produced high enough pressure to rupture burst disc
GRUN0022	Aborted in PS 3 times-exceeded water tank R/L (proceeded after raising R/L value)
10/12/96	PT0360 inop
Gd. cold flow	LOX prechill line disconnected from engine - flow dumped overboard & showed that valve closed slowly
	Engine water froze during LOX a/s
	Leaks found in engine water fittings
GRUN0023	Main fuel valve started closing early near end of each blow & fuel a/s aborted as valve closed early
10/25/96	Water a/s (added to sequence prior to LOX a/s) attempted - performed twice to remove all water
Gd. cold flow	LOX a/s aborted - low He pressure (PT0651)
	LOX prechill line still disconnected from engine
	Water system F/M removed (to prevent overspinning in water a/s)
GRUN0024	1st blow successful, 2nd blow aborted due to high controller temp.
11/9/96	Later attempted another test, providing 3rd blow successfully (data shown for "2" on summary sheets)
Gd. cold flow	Aborted in a/s (high controller temp. again)
du. colu now	New LOX prechill valve closed properly - no apparent leaks
GRUN0025	Aborted in 2nd blow when fuel system burst disc ruptured (providing low fuel system pressure). No high pressure
11/15/96	observed, but burst disc ruptured anyway
Gd. cold flow	Water frozen at start of 2nd blow (higher ΔP due to higher line R) & possibly during 1st blow
	Fuel mfd. temps still reading "off"
	Revised water a/s still didn't remove all water
GRUN0026	No aborts
11/22/96	Water frozen at start of 2nd blow & possibly during 1st blow
Gd. cold flow	Fuel mfd. temps still reading "off"
Gu. Cola 1104	Possible small water & LOX leaks observed
GRUN0027	1st blow showed indications of water freezing similar to GRUN0025 & 26 (higher engine inlet P, lower engine outlet P)
12/3/96	All water had been confirmed drained from engine prior to test, unlike -25 & -26 when there may have been residual H20
Gd. cold flow	2nd blow had enough frozen water to increase water tank pressure above R/L, which aborted 2nd blow before fuel flow
	Fuel a/s performed, but no water or LOX a/s attempted
	LOX leak observed from area around LOX prechill valve
	Water B/D (rchk0009) performed on 11/27/96 confirmed line R's and water flow rate with F/M in place - compared well
	to original water B/D's
	F/M kept in place for this test to provide flow data relative to frozen flow
	Fuel mfd temps. still reading "off"
GRUN0028	Only single blow performed (as planned)
	Sequence changes implemented to reduce water trickle flow during LOX prechill & to move 2nd "start" press after
12/11/96 Gd. cold flow	LOX tank is pressurized. (Everything that was performed in PS now occurs in SS, except for pring LOX tank)
	Also, TC's added to each thruster (outer surfaces - near mold lines) - data recorded by PL
	Higher water flow rate observed with same engine pressure drop as observed in water b/d
	LOX leak at tank fitting observed
	Trapped pressure in main fuel purge line (PT0104) when fuel purge valve (SV0101) cycled to relieve He mfd
	pressure (SV0101 set to open when PT0210 > 1325 psi)
CDUNIOOO	Only single blow required
GRUN0029	Only single blow required
GRUN0029 12/17/96 Gd. cold flow	Only single blow required Aborted in 1st attempt when water tank HIGH R/L was reached due to spike in water system after valve was opened. After powering controller off/on, 2nd attempt provided full duration (data shown)

Table 12. Additional notes for GRUN0019–GRUN0063 tests (Continued).	Table 12.	Additional notes for	r GRUN0019-	-GRUN0063 tests ((Continued).
---	-----------	----------------------	-------------	-------------------	--------------

Test #	Notes
GRUN0030	Only single blow planned - performed with no aborts
1/18/97	Fuel mfd temps. reading 'off' again & TT0156 responds to LOX flow with a drop in temp (like in GRUN0027 & others)
Gd. cold flow	Water F/M inop - no plans to replace (flow rate est. from engine ΔP)
	Water valve leaked after blow
GRUN0031	1st ignition test attempt - performed with no aborts (TTEB #1 cartridge used)
1/23/97	All 8 thrusters lit to approx. same Pc (~30-35 psig) at the same time
Ignition test	Backflow of LOX/TTEB ignition observed in each fuel mfd relative to fuel mfd pressures, also fuel mfd temp.
	TT0152 reached ~360 F due to ignition backflow
	Offset between TT0152 and TT0156 still present, but TT0156 did not respond to LOX flow with a drop in temp.
	like in GRUN0030
	Proposed sequence change will check Pc's for ignition detect earlier, so fuel can come on earlier (before all
	TTEB is expended)
	Water valve still leaking
	Post-test inspections showed minimal amount of coating spalled off several of the thrusters (mostly d/s of throat)
GRUN0032	2nd ignition test attempt with following sequence changes implemented prior to test:
1/31/97	0.2 sec delay between signalling fuel valve open and signalling fuel purge valve closed (to aid in removing LOX/TTEB
Ignition test	from fuel mfds. before hydrogen reaches injectors)
	Ignition detect timer started earlier (to allow fuel flow to start & reach injectors before all TTEB is expended)
	TTEB #2 cartridge used
	Full tank of LOX not available, so LOX quality was poor throughout test. Warmer LOX temps. created lower flow rates
	and lower ignition pressures (~10 psig) with TTEB. (With the venturies uncavitated, 80% & 20% flow rates were
	estimated from the venturi ΔP 's, and flow thru the 100% venturi was assumed to be equal to their total.)
	Fuel mfds. showed evidence of LOX/TTEB backflow - TT0156 reached ~210 F, while TT0152 remained around ambient.
	Water valve still leaking
	Possible leaks in fuel purge line suspected - trapped pressure at PT0104 decreases during main fuel flow instead of
	remaining steady.
GRUN0033	2 ignition tests performed using both TTEB circuits
2/6/97	Sequence changes implemented prior to test:
Ignition test	Delayed opening of fuel valve to allow LOX/TTEB to burn completely - to determine the exact amount of TTEB
	available. (Created 2 sec of main flow instead of 3 sec for each blow.)
	Ignition in 1st blow (cartridge #2):
	All Pc's rose to same level (30-40 psig) except TH#5, which was much lower (10-15 psig)- indicating blocked port
	Evidence of LOX/TTEB backflow into fuel mfds. based on fuel mfd P's and TT0152 reached 193 F during ignition
	Also, fuel side 100% venturi inlet T (TT0160) rose to 94 F at the same time TT0152 rose, suggesting back flow
	all the way up thru this venturi
	Approx. 0.5 - 0.6 sec of TTEB flow available based on Pc's
	Main flow in 1st and 2nd blow:
	All fuel mfd. P's are reading higher compared to cold flows prior to ignition tests (prior to GRUN0031)
	Ignition in 2nd blow (cartridge #1):
	TH#5 Pc more consistent with others (blockage came loose?)
	TT0152 rose even higher during ignition (360 F)
	Approx. 0.5 sec of TTEB flow available based on Pc's
	Water pressure low (possible freezing at start of 2nd blow)
	Water valve still leaking
	Fuel side resistances have been increasing (higher fuel mfd. pressures) for each thruster since first ignition test.
	Current resistances Indicate 13-17% decrease in fuel side flow areas. Could be LOX/TTEB residue on
	fuel side from low fuel side purge - blocking fuel holes &/or fuel film cooling holes.
	Possible leaks in fuel purge line suspected - same behavior as GR'32 during main fuel flow.
	1st planned hot-fire: main H2 valve failed after pre-test servicing of hydrogen (bellows experienced H2
2/12/97	embrittlement crack). No test attempted.
	Valve redesigned to use a piston instead of bellows.

Table 12. Additional notes for GRUN0019-GR	RUN0063 tests (Continued).
--	----------------------------

Test #	Notes
GRUN0035	Cold flow with redesigned H2 valve installed (piston type). GHe used for TTEB and H2 systems.
4/16/97	PT0156 temporarily removed from TH#5 fuel mfd. (electronics being used for GH2 tank pressure until
Gd. cold flow	H2 compatible diaphragm for tank's Sensotech 'ducer is replaced).
	Only one blow attempted and performed with no aborts
	Behavior of PT0104 suggests fuel purge line check valve (CV0101) or main fuel purge valve (SV0101) is leaking.
	During main fuel flow when SV0101 is closed and trapped purge flow should be checked, PT0104 steadily
	rises instead of remaining steady or decreasing due to leaks (like in GR'32,33). [Similar behavior in fuel a/s].
	Confirmed SV0101 was leaking - changed out prior to GR'36.
GRUN0036	1st hot-fire test; Single burn attempted & performed with no aborts.
4/23/97	Objective: Pc ~ 200 psia & MR ~ 6.0 for 3 sec
Gd. hot fire	Results:
	Mainstage duration - 3 sec
	HIGH thrust side - ave. Pc = 228 psia, MR = 5.7
	LOW thrust side - ave. Pc = 216 psia, MR = 5.4
	Engine coolant $\Delta P = 402$ psi, $\Delta T = 63$ F
	Fuel side ACd for each thruster decreased further (approx. 30% total reduction).
	Some coating spalled from thrusters.
	For ignition, all thruster showed Pc's of 27-36 psig, except TH#5 showed Pc as low as 21 psig;
	Ignition detect was set at 15 psig.
	Note: PT0156 P/D used for fuel tank pressure (instead of PT0101). No data available for TH#5 fuel mfd. pressure.
	Still evidence of leaks in fuel purge line - PT0104 decreases during main fuel flow (same as GR'32 & 33)
GRUN0037	2nd hot-fire test; Single burn attempted & performed with no aborts.
4/30/97	Objective: Pc ~ 200 psia & MR ~ 6.0 for 3 sec
Gd. hot fire	Results:
	Mainstage duration - 3 sec
	HIGH thrust side - ave. Pc = 227 psia, MR = 5.7
	LOW thrust side - ave. Pc = 216 psia, MR = 5.4
	Engine coolant ΔP = 398 psi, ΔT = 70 F
	More coating spalled from thrusters.
	For ignition, all thrusters showed Pc's of 30-36 psig. Ignition detect remained set at 15 psig.
	Still evidence of leaks in fuel purge line - PT0104 decreases during main fuel flow (same as GR'32,33,36)
	Note: PT0156 P/D still used for fuel tank pressure, so no data available for TH#5 fuel mfd. pressure.
GRUN0038	1st Flight configuration ground cold flow - LN2/GHe used for LOX/GH2 with pod mounted on stationary A/C.
9/24/97	One blow planned and performed with no aborts.
Fit. cold flow	1° orifice mistakenly placed in water exit line - created higher water inlet & exit pressures. (Orifice has been
(grounded)	removed from configuration since water blowdown results showed it was limiting coolant flow rate.)
	Orifice will be removed again before next test.
	PT0362 inop - flat throughout test.
	PT0156 available again, since PT0101 was replaced.
	Fuel venturi inlet pressures and fuel manifold pressures 10-20 psi higher than previous tests with GHe because
	of new P/D in system for PT0102. The value required for PT0102 is set to provide the desired fuel venturi inlet
	pressures that provide the correct fuel flow rate. The new P/D for PT0102 probably has a more reliable
	calibration record than the previous P/D. So, the previous test data for PT0102 is probably less accurate.
	The higher pressures now resulting at the fuel venturies will produce slightly higher fuel flow rates, which
	will produce lower MR's in subsequent hot fire tests. The value for PT0102 will not be reset, since effects of
	higher fuel flow rates will be minimal - should only reduce ave. thruster MR from 5.6 to ~ 5.3. (PT0102 was
	replaced because old P/D turned out to be H2 incompatible.)
	Still evidence of leaks in fuel purge line - PT0104 decreases during main fuel flow (same as GR'32,33,36,37)

.

Test #	Notes
GRUN0039	2nd Flight configuration ground cold flow - LN2/GHe used for LOX/GH2 with pod mounted on stationary A/C.
10/3/97	Planned to demo EMERSS and CNTR PWR OFF shutdowns. (State table changed to make shutdown sequence due
Fit. cold flow	to EMERSS abort the same as normal shutdown - 1.25/1.5 sec delay on LOX/fuel engine purges removed.)
(grounded)	Aborted in prestart when LOX tank failed to pressurize property (only reached ~200 psi instead of 365 psi nominal).
	Data and post-test checks on LOX system suggest the LOX vent valve was leaking, so the LOX tank could not
	pressurize during prestart. LOX vent valve will be replaced before next cold flow.
	Leak also suspected in hydrogen vent line based on behavior of oxygen sensors during manual safing of fuel system.
	Manual safing performed successfully on fuel and LOX systems - but back pressured hydrogen system burst disk,
	so it needs to be replaced before next cold flow attempt.
CST0004	Combined systems test and first taxi test with pod mounted on A/C.
10/10/97	Pressurized tanks (He, H2, and LOX) showed no leaks.
CST/taxi	Significant leaks into pod relative to 02 sensors during taxi. N2 purge proved inadequate for keeping air out of pod.
FLT0045	1st aero flight with pod mounted on A/C. No cold flow performed on engine.
10/31/97	Ambient hardware temps. ~ 60-80°F throughout flight.
	Altitude reached ~ 33,000 ft. Max. Mach no. ~ 1.2
GRUN0041	2nd Flight configuration ground cold flow - LN2/GHe used for LOX/GH2 with pod mounted on stationary A/C.
12/9/97	Retry of GR'39 - with new LOX vent valve. Planned to demo EMERSS and CNTR PWR OFF shutdowns.
Fit. cold flow	Also prior to test - changed out H2 system burst disc, performed O2 sensor checks & calibrations, tried to seal
(grounded)	air leaks into pod, leak checked H2 vent system.
	results: LOX vent valve still did not appear to work property.
	1st attempt - aborted in prestart when LOX tank failed to pressurize, like in GR'39
	Prior to 2nd attempt - warmed up engine thinking that LOX vent valve has a thermal problem with cold temps.
	This blow was successful getting to mainstage, and successfully aborted with EMERSS press.
	3rd attempt - aborted in prestart when LOX tank failed to pressurize, like in 1st attempt
	Fuel purge line leak appeared to be fixed.
FLT0046	2nd aero flight. Due to problems pressurizing LOX tank, no cold flow performed. GN2 purge of pod could not be
12/19/97	checked either due to failure of SR-71 LN2 dewar heater prior to take off.
	Altitude reached ~ 50,000 ft. Мах. Масh по. ~ 1.6
GRUN0046	3rd flight configuration ground cold flow - LN2/GHe used for LOX/GH2 with pod mounted on stationary A/C.
2/12/98	Retry of GR'41 after working on LOX vent valve (moved valve orifice downstream from original upstream location to
Fit. cold flow	see if that helps solve the LOX vent valve problem).
(grounded)	2 blows planned - planned to demo CNTR PWR OFF shutdown in second blow
	results:
	1st blow - nom. performance; TT0352 inop (also, TT0363 - 20% venturi - staying colder at c/o than other venturies)
	2nd blow - water system pressures slower coming up; CNTR PWR OFF initiated 1 sec into main flow
	LOX & fuel engine supply valves close appropriately to isolate engine; LOX trickle valve slow closing -
	LOX venturi & mfd pressures drop to same level as trickle flow for ~ 1.5 sec after cntr pwr off;
	water supply valve remained in active open position, so all water was drained out prior to water a/s;
	fuel a/s nominal; 2 LOX a/s had to be performed - when controller was powered back on (to perform a/s),
	LOX tank had to be repressurized - took longer than normal because of larger ullage in LOX tank -
	1st a/s timed out before a/s could be completed, so 2nd performed to remove remaining LOX.
	end of test showed high spike in engine's water inlet pressure (water exit pressure unaffected) - possible due to
	local droplets on pressure transducer freezing after 2 LOX a/s procedures. All water confirmed drained
	after test (inspections noted all hdw extremely cold after 2 LOX autosafes.) Water system leak checked to
	insure integrity.

Test #	Notes
FLT0047	1st in-flight cold flow. LN2/GHe used for LOX/GH2. Cold flow performed at 41,000 ft and M=1.2
3/4/98	Unable to pressurize LOX tank in 1st prestart - same LOX vent valve problem suspected. 2nd prestart LOX tank
Fit. cold flow	pressurized to nominal value.
	Aborted in fuel autosafe - TTEB max pressure redline reached. 2nd fuel autosafe performed for full duration.
	In previous cold flows - PT0651 also close to hitting R/L of 30 psi. Tripped R/L in this test when
	PT0651 read ~ 31 psi for 2 consecutive time slices. Increasing R/L to 35 psi to avoid cutoffs in further tests.
	TT0352 still inop
	GN2 purge of pod proved inadequate for keeping air out. Pod filled with air shortly after takeoff. Will make further
	attempts at sealing pod and try another cold flow flight.
	All other engine & supply system parameters appeared to perform nominally compared to prior cold flows.
	To adjust gage pressures to absolute pressures, P _{aim} ~ 3 psi at 41,000 ft. (from altitude refs.)
	(all psia 'ducers read 0-5 psia with no flow, so an average Pam of ~ 3 psia seemed reasonable & was used to convert the psig data)
	(PT0354, TH#3 LOX mfd P, reads psig. It's initial reading was ~ -11 psig, so it was showing an offset. This pressure was adjusted
	by adding 11 psig to its steady state measurements and then increased by 3 more psi to convert to psia. PT0358, TH#7 LOX mfd P -
	which also reads psig, was initially reading3 psig, so its offset was not as great. It was among the same range as the other LOX mfd P's
	after adjusting to psia by adding 3 psi.)
FLT0048	2nd in-flight cold flow. LN2/GHe used for LOX/GH2. Cold flow performed at 31,000 ft and M=0.9
3/19/98	Similar to FLT'47 - required 2 prestarts to properly pressurize LOX tank to nominal level.
Fit. cold flow	GN2 purge of pod saw some improvement (7-10% O2 levels vs 15% in FLT'47).
	Will continue attempts to seal the pod even better.
	All engine & supply system parameters appeared to perform nominally.
	TT0352 still inop
	P _{am} ~ 4 psi at 31-33,000 ft.
	(PT0354 adjusted with +10 psi again, like in FLT0047)
	All/most psig 'ducers reading lower with no flow (~-10 psig) compared to ground tests (~0 psig). Possible suction
	at the back of the engine during flights is creating lower reading on gage pressures when no flow is present.(?)
FLT0049	Flight cold flow w/ignition test planned. LOX/TTEB loaded, GHe used for GH2. Performed at 26,000 ft and M=0.75
4/15/98	No ignition because TTEB was mistakenly loaded into wrong canister. Cold flow state table used, so main cold
Fit. cold flow	flow was still performed successfully with LOX and GHe.
	2 prestarts req'd again to pressurize LOX tank.
	GN2 purge of pod improved significantly (3-3.5% O2 levels; 4% is R/L level)
	LOX leak observed after cold flow completed - O2 sensors > 20% in model after main flow.
	LOX a/s not performed - manual safe of both LOX and fuel systems performed (fuel manual safe had been planned)
	Water frozen during water a/s - no pressure reading from PT0453 (engine exit pressure) to indicate flow,
	and PT0451 (inlet) registered high reading even during water trickle flow, preceding main water flow.
	Water exit temp (TT0453) and ramp temp TT0455 registered close to freezing temp. of water. All temps cooler
	to start with compared to other flight tests.
	No water freezing problems during a/s in FLT'48 & '47, maybe occurred in this test because of LOX leak
	or because the successful GN2 purge of pod is creating cooler environment around engine. (?)
	P _{ate} ~ 4 psi assumed at 26,000 ft. (PT0354 adjusted again with + 10 psi, like in FLT'48,'47)
	All engine & supply system parameters appeared to perform nominally.
	LOX venturi & mfd pressures ~ 20 psi lower during LOX trickle flow compared to FLT'48 & '47. During main flow
	pressures are at levels similar to FLT'48 & '47. Could imply that LOX leak is in LOX trickle flow line.
	Post-test: actual LOX leak discovered at check valve (CV0302) in LOX purge line.
	Seal replaced to fix leak (will also visually verify leak tight w/high pressure LN2 blowdown)
GRUN0047	Ground test to check for LOX system leaks using LN2 during LOX autosafe.
4/29/98	3 LOX autosafe performed.
leak check	The LOX vent valve was set to the open position using the cockpit switch for the 1st attempt, and the tank
	still pressurized. The vent valve was closed for subsequent 2 autosafes.
	Leak was discovered in the LOX pre-chill line where it connects to the main flow line.

Test #	Notes
GRUN0048	Ground test to check for LOX system leaks using LN2 during LOX autosafe.
5/5/98	2 LOX autosafes performed.
leak check	Both LOX tank pressurizations were successful on the first attempt.
ICAN ONCON	No leaks observed in LOX system.
GRUN0049	Ground test to check for LOX system leaks using LN2 during LOX autosafe.
6/12/98	All fitting torques were checked prior to test.
leak check	2 LOX autosafes performed.
ICAN CITCCA	Leak observed in LOX purge line at check valve CV0302's fitting.
GRUN0050	Ground test to check for LOX system leaks using LN2 during LOX autosafe.
6/24/98	Fittings at CV0302 were welded to eliminate leak paths prior to test.
leak check	Four autosafe blow downs were performed with LN2 and no visual leaks were observed.
loak chicok	No main flow attempted - only "LOX" autosafes.
	The system was allowed to warm up to 0 deg F between blows to obtain 4 cryogenic cycles on the system.
FLT0050	Flight cold flow with LOX/GHe to verify LOX system remains leak free in flight with O2 sensors available.
7/23/98	Performed at 31,000 ft and $M = 0.9$
Fit. cold flow	P _{am} ~ 4 psl (PT0354 adjusted again with +10 psi)
FR. GOID HOW	Pod sealed even better than last flight - all sensors > 3%
	Unfortunately, another LOX leak detected after main flow began - 2 sensors shot up 5 sec after blow (sensors 11
	& 12 are near top of model). Did not conduct autosafe because of LOX leak.
	PT0363 read ~ 20 psi higher than PT0360 & PT0364 (venturi inlet pressures) during main flow and ~ 10 psi
	higher during trickle flow.
	Fuel mfd pressures on the HIGH thrust side (PT0152-5) read ~ 10 psi higher than FLT'49.
	Water did not appear frozen during water a/s like it did in FLT'49. Water a/s appeared normal.
	PT0001 reading slightly higher than PT0002-4, which is not consistent with FLT'49; PT0005 reads slightly higher
	than PT0006-8 but behavior is consistent with FLT'49.
GRUN0052	Ground cold flow with 3% GH2/97% GHe mixture for fuel system leak check.
7/30/98	Hydrogen detectors showed no indication of hydrogen leak throughout system during main flow or fuel autosafe.
Fit. cold flow	No internal pod GN2 purges were running during the test, so hydrogen could be detected in "unpurged" environment.
(grounded)	LOX tank not holding pressure during main flow. SV0304 is supposed to keep PT0301 between 365 & 375 psi, but
	tank pressures start to drop below 365 psi midway thru the main flow. LOX venturi pressures drop correspondingly.
	PT0205 (u/s of tank) should regulate with LOX tank pressure, but remains low during main flow also.
	Plots of SV0304 signal shows SV0403 remained open to try to regulate pressure.
	Maybe LN2 was leaking or maybe LOX vent valve inadvertently opened to release LN2.
	Same behavior for PT0301 and PT0205 during LOX a/s.
	Three "prestarts" were reg'd to pressurize LOX tank initially. Same LOX vent valve problem suspected.
	All LOX venturi inlet pressures matched in this test, unlike FLT'50 when PT0363 was reading higher.
	TT0156 (TH#5 fuel mfd temp.) worked fine during ss and fuel a/s, but registered 400 F during water a/s and LOX a/s.
	Near end of LOX a/s, TT0156 drops to same level as TT0152 briefly and then spikes again and levels out at zero.
	Next scheduled test on 8/6 will investigate LOX leak further by visually checking system with LN2 during blowdown.
GRUN0053	Ground test to locate LOX leaks detected in FLT'50. LN2 used in LOX system - visually checked for leaks during
8/6/98	2 LOX autosafes. In 1st a/s, no leaks observed, but 2nd a/s showed some discoloration exiting B-nut on engine
leak check	attachment. Came from a RD fitting that was safety wired - leakage was thru B-nut. RD recommended re-torquing
	to see if fitting moved. When torque was checked on 8/7/98, movement was observed, so fitting was re-torqued
	and safety wire was reinstalled.
	Also, suspect LOX vent valve opened sometime during flow, since tape covering had come off. Plan to get valve
	refurb'ed, reworked, replaced?
	Data for LOX tank (PT0301) and PT0205 (u/s of tank) resembled data for GR'52 suggesting leak or vent valve problem.
	TT0156 (TH#5 fuel mfd temp.) appeared to work initially, but appears to fail during first a/s when it read 400 F again -
	continues to read this high for remainder of test.
	Also, after test was finished, controller aborted due to servo amp over temp. Checking on this further to see if
	incident was 'real' or not.

Test #	Notes
GRUN0054	Ground test with LN2 to visually check for LOX system leaks after re-torquing leaky fitting from GR'53.
8/14/98	Three cold flows + LOX a/s + water a/s performed. 1st cold flow aborted.
Fit. cold flow	1st cold flow aborted in SS when TT0364 failed to show appropriate drop in LOX temp. Turned out to be a software
(grounded)	problem that read all temps incorrectly. After resetting - 2 subsequent cold flows successfully performed.
	After 2nd cold flow, audibly heard leak that was found at inlet side of main LOX valve (PV0301).
	Will replace o-ring (k-seal) but inspections did not indicate o-ring was bad.
	TT0156 still not working properly throughout test.
GRUN0055	Ground test with LN2 to visually check for LOX system leaks after working on LOX valve seal.
8/19/98	Two cold flows + two LOX a/s + water a/s performed.
Fit. cold flow	LOX valve (PV0301) still leaked.
(grounded)	TT0156 appears to be inop completely now. Checkouts show its likely the 'ducer itself - can't be fixed without
(grounded)	breaking into engine. Will leave inop. To estimate LOW side fuel manifold temps, add 9 degrees to TT0152.
	LOX manifold pressures appear to be increasing - they are slightly higher in all thrusters for this test compared to
	other tests. Is this a result of fixing LOX leak discovered at engine's B-nut connection?
	Engine LOX leak that was fixed after GR'53 was actually only on the HIGH thrust side of the engine - downstream
	of the 100% venturi, upstream of thrusters 1-4. So, fixing this leak might explain the higher manifold
	pressures for TH#1-4, but not TH#5-8, which actually showed even higher pressure trends than TH#1-4.
	Check data from next test to see if all pressures continue to increase, stay the same, or go back to previous levels.
	Water a/s showed manifold pressure was high enough for controller to relieve pressure 15 times. Discovered a
	bad pressure regulator in cance GHe system. While servicing regulator valves, discovered o-rings were missing -
	searching water system for them (boroscoping water tanks to see if they can find them.)
GRUN0056	Ground test with LN2 to visually check for LOX system leaks after installing teflon coated SS K-seal in fitting u/s
9/11/98	of LOX valve (PV0301) to try to fix recurring leak.
	One of the canoe He regulators was out, so water pressure is reduced throughout test.
Fit. cold flow	Low cance helium pressure caused abort in 3rd main flow (3ss).
(grounded)	During 1st main flow (1ss) leak observed in LOX prechill line. Aborted to retorque fitting.
	No leakage observed in subsequent main flows and autosafe.
	NU IEdrage Ubsei veu in subsequent main nows and autosaie.
GRUN0057	Ground test with LOX to visually check for LOX system leaks.
9/18/98	One of the canoe He regulators still out, so water pressure was low again.
Fit.cold flow	2 main flows and 1 a/s performed
(grounded)	Shortly after 1st main flow, model 02 levels rose to about 1.5%, followed by rise in canoe 02 level.
	After 2nd main flow, model O2 level rose to below 1%, with little response from canoe O2 level.
	After LOX system a/s, model O2 level rose to about 3.3%.
GRUN0058	Ground test with LOX to check for LOX system leaks with O2 sensors (pod sealed)
9/30/98	Main flow aborted early with low water pressure (one of the canoe He regulators still out, limiting water pressure)
Fit.cold flow	LOX leaks detected with sensors during LOX autosafe - model O2 levels rose to about 4.5%, followed by
(grounded)	rise in canoe 02 level.
GRUN0059	Ground test with LOX to check for the LOX system leaks with O2 sensors.
10/2/98	2 main flows + 1 a/s performed.
Fit.cold flow	Model O2 levels rose to about 6-7% after 1st main flow (suspect unsecured LO2 manual vent valve panel allowed
(grounded)	purge flow to escape)
	02 levels in 2nd main flow and autosafe were similar to levels measured in GR'57 & '58
GRUN0060	Ground test with LN2 to visually check for LOX system leaks. All accessible LOX system joints & fittings were
10/7/98	bagged using clear plastic material.
Fit.cold flow	2 LOX system cold flows + autosafe performed
(grounded)	During autosafe, some indication of a leak downstream of main LOX valve.
	LOX tank was reserviced to fill with LN2 and 3rd cold flow and 2nd a/s performed.
	(2 hour hold used to allow LOX system to warm up)
	3rd a/s attempted, but no LN2 available

Test #	Notes
GRUN0061	Ground test with LN2 to visually check for LOX system leaks.
10/9/98	No leaks observed in 2 main flows and a/s.
Fit.cold flow	
(grounded)	
GRUN0062	Ground test with LOX to check for leaks using O2 sensors.
10/16/98	3 handheld O2 sensors set up to detect leaks around engine interface and sewer pipe. Pod N2 purge used a 3X orifice.
Fit.cold flow	2 cold flows + 1 a/s planned.
(grounded)	Handheid detectors inop.
	Systems display that supplies abort info was inop due to OFP change
	Controller aborted both cold flow attempts - suspected problems with newly installed canoe He regulator.
	Attempted water a/s failed due to incorrect button presses (H2 a/s was selected rather than H2O). Caused aborted
	H2 a/s since blocking valve was closed.
GRUN0063	Ground test with LOX to check for leaks using O2 sensors.
10/21/98	Pod N2 purge used a 3X orifice size.
Fit.cold flow	2 LOX blows, 2 water a/s, & 1 LOX a/s completed.
(grounded)	Max. 02 levels detected were ~ 2% after 1st blow, 1% after 2nd, & 4.5% after LOX a/s.
	1st water a/s - flowed very little water, with a/s completing early due to low water tank pressure.
	2nd water a/s - expelled water until controller aborted due to water inlet pressure max. R/L of 660 psi [PT0451
	had a 300 psi offset at ambient conditions due to damage from previous ground test
	Data shows 80% LOX venturi inlet pressure reading ~ 20 psi higher during main flow (~ 10 psi higher during
	prechill). Similar behavior to FLT'50. All other LOX system data remained consistent with previous tests.
FLT0051	Flight test with LOX to check for leaks using O2 sensors.
10/29/98	1 LOX blow and 1 LOX a/s performed at 31,000 ft and Mach # = 0.9
Fit. leak chck	80% LOX venturi inlet pressure returned to nominal level.
	All other LOX system and engine data looked nominal and consistent.
	Max. O2 levels detected were ~ 6.2% after main blow, & ~ 9.5% after LOX a/s.

APPENDIX G—Water System Results

Appendix F summarizes the steady-state data for the water system in each test.

G.1 Flow Rate Calculations

Initially in the LASRE program, a turbine flowmeter was located in the coolant's exit line to measure the water's flow rate. This flowmeter was eventually removed when the water autosafe procedure was added to alleviate concerns about overspinning its turbine blades (when all the water was expelled, high-speed GHe would be flowing across the flowmeter). After the flowmeter was removed, the coolant's flow rate was estimated by scaling the resulting pressure drops between subsequent tests.

Example:

GRUN0020-with F/M data:

 \dot{m} =39.61b_m / sec; engine ΔP = 389 psi

GRUN0022—F/M removed:

engine $\Delta P = 411$ psi.

Since resistance, R, through the engine should be the same,

$$R = \frac{\Delta P \cdot \rho}{\dot{m}^2} \quad . \tag{1}$$

Since *P*=constant

$$\frac{\dot{m}^2)'}{\dot{m}^2} = \frac{\Delta P'}{\Delta P} \quad . \tag{2}$$

Estimated for GRUN0022 by solving equation (2):

$$\dot{m}' = \sqrt{\left(\frac{411}{389}\right)(39.6 \text{ lb}_{\text{m}} / \text{sec})^2} = 40.7 \text{ lb}_{\text{m}} / \text{sec}$$

In the tests where freezing the coolant in the engine was a problem, the flow rate was estimated by scaling relative to the ΔP from the water tank to the engine's inlet, since the resistance within the engine would be changing due to the freezing coolant.

Water system performance during GRUN0036 is shown in figure 23 (pressures responded as expected).

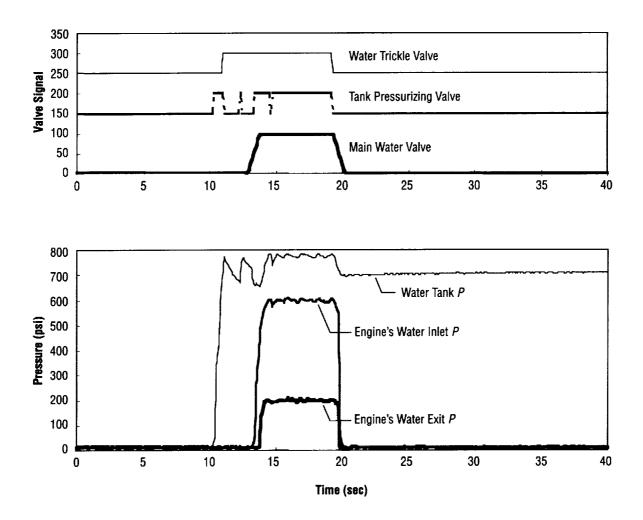


Figure 23. Water system performance during GRUN0036.

The LOX system performance during GRUN0036 is shown in figure 24. LOX system pressure and temperatures responded as expected.

Appendix F provides the steady-state data and calculation results for each test.

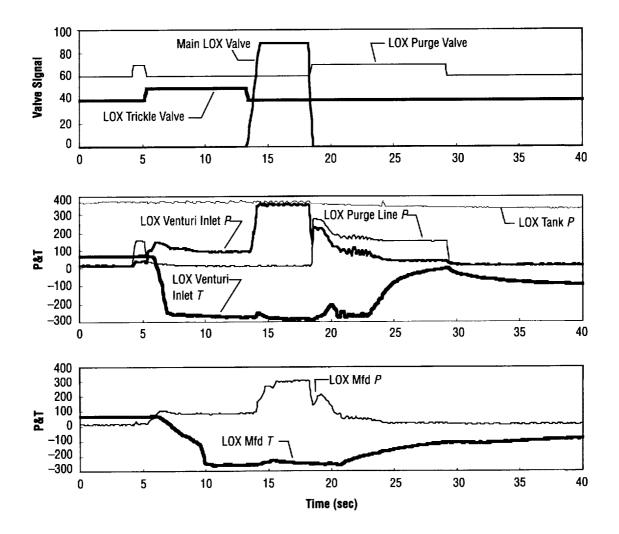


Figure 24. LOX system performance during GRUN0036.

H.1 LOX Flow Rate Calculations

LOX flow rates were calculated based on the venturi inlet pressures and temperatures. These inlet conditions, along with the venturi sizes, were used to determine the corresponding flow rates for cavitating flow.

While the 20- and 80-percent venturies included throat pressure measurement to check for cavitation, the overall pressure ratio across each venturi could also be used. Cavitation was ensured if $P_{out}/P_{in} = 0.85$ or less (although cavitation can occur even when the pressure ratio is higher). Using the LOX manifold pressure as P_{out} (assuming negligible pressure loss between the venturi exit and the inlet of the thrusters), the resulting pressure loss in each venturi was checked.

Example (GRUN0023):

100-percent LOX venturi: $P_{in} = 352$ psia

Thruster No. 1 LOX manifold: $P_{out} = 197$ psia.

Resulting pressure ratio = 197/352 = 0.56, so cavitation was ensured on the HIGH thrust side of the engine.

80-percent LOX venturi: $P_{in} = 345$ psia

Thruster No. 5 LOX manifold: $P_{out} = 209$ psia.

Resulting pressure ratio = 209/345 = 0.61, so cavitation was insured on the LOW thrust side of the engine. Cavitation was also confirmed in the 80-percent venturi when the resulting throat pressure measured 33 psia. With vapor conditions obviously resulting in the throat based on this pressure, cavitation was definitely occurring.

To further calculate the actual flow rates, the incompressible flow equation was used:

$$\dot{m} = AC_d \sqrt{2g_c \rho \Delta P} \quad , \tag{3}$$

where

A = flow area in venturi throat, in.²

 C_d = venturi discharge coefficient

 g_c = gravitational constant = 32.2 lb_m ft/lb_f s²

 $\rho =$ liquid density of LOX, lb_m/ft³

 ΔP = pressure loss from venturi inlet to venturi throat, psi.

Example (GRUN0023):

For 100-percent venturi:

 $D_t = 0.28$ in. and $C_d = 0.989$; $\therefore AC_d = (\pi/4)(0.28)^2(0.989) = 0.0609$ in.² $P_{in} = 352$ psia and $T_{in} = -266$ °F.

For a cavitating venturi, the resulting throat pressure equals the vapor pressure of LOX. So, using MIPROPS (a computer code for thermodynamic properties of several fluids), the vapor pressure of LOX at -266 °F was found:

$$P_{\text{vapor}} = 66.5 \text{ psia}$$

:. $\Delta P = 352.0 - 66.5 = 285.5 \text{ psia}$

The density of the LOX was found using MIPROPS and the inlet conditions of the venturi:

$$\rho = 66.925 \text{ lb}_{\text{m}}/\text{ft}^3 \text{ (at 352 psia and -266 °F)}$$

Finally solving equation (3),

$$\dot{m} = 0.0609 \text{ in.}^2 \sqrt{\frac{2(32.2 \text{ lb}_{\text{m}} \cdot \text{ft} / \text{ lb}_{\text{f}} \cdot \text{s}^2)(65.925 \text{ lb}_{\text{m}} / \text{ft}^3)(285.5 \text{ lb}_{\text{f}} / \text{in.}^2)}{144 \text{ in.}^2 / \text{ft}^2}} = 5.6 \text{ lb}_{\text{m}} / \text{sec}$$

H.2 LOX Side AC_d Calculations

For each thruster in the engine, the adjusted flow area, AC_d , of the LOX side of the injector was calculated for each test. These values were used as a reference for the hardware. Significant changes to the flow areas of the injectors could be indications of hardware anomalies.

These flow areas were also calculated using the incompressible flow equation, along with the conditions measured in each thruster:

$$AC_d = \frac{\dot{m}}{\sqrt{2g_c p \Delta P}} \quad , \tag{4}$$

where, in this case,

$$\Delta P = P_{\rm LOX mfd} - P_c$$

Example (GRUN0037):

Thruster No. 1: LOX mfd P = 309 psia:

LOX mfd
$$T = -248 \text{ °F}$$

 $P_c = 217 \text{ psig} = 232 \text{ psia.}$

Using the density of LOX at the average pressure in the thrusters:

Ave
$$P = (309 + 232)/2 = 270.5$$
 psia
 $\rho = 62 \text{ lb}_{\text{m}}/\text{ft}^3$ (at 270.5 psia and -248 °F).

LOX flow rate to thruster No.1:

$$\dot{m} = \frac{\dot{m} \text{ from 100\% venturi}}{4} = \frac{5.9}{4} = 1.48 \text{ lb}_{\text{m}} / \text{sec}$$
.

So solving equation (4),

$$AC_{d} = \frac{1.48 \text{ lb}_{\text{m}} / \text{sec}}{\sqrt{\frac{2(32.2 \text{ lb}_{\text{m}} \cdot \text{ft} / \text{lb}_{\text{f}} \cdot \text{s}^{2})(309 - 232)\text{lb}_{\text{f}} / \text{in.}^{2}(62 \text{ lb}_{\text{m}} \text{ft}^{3})}{144 \text{ in}^{2} / \text{ft}^{2}}} = 0.032 \text{ in.}^{2}$$

Results for the LOX side flow areas in all cold flows were plotted in figure 25.

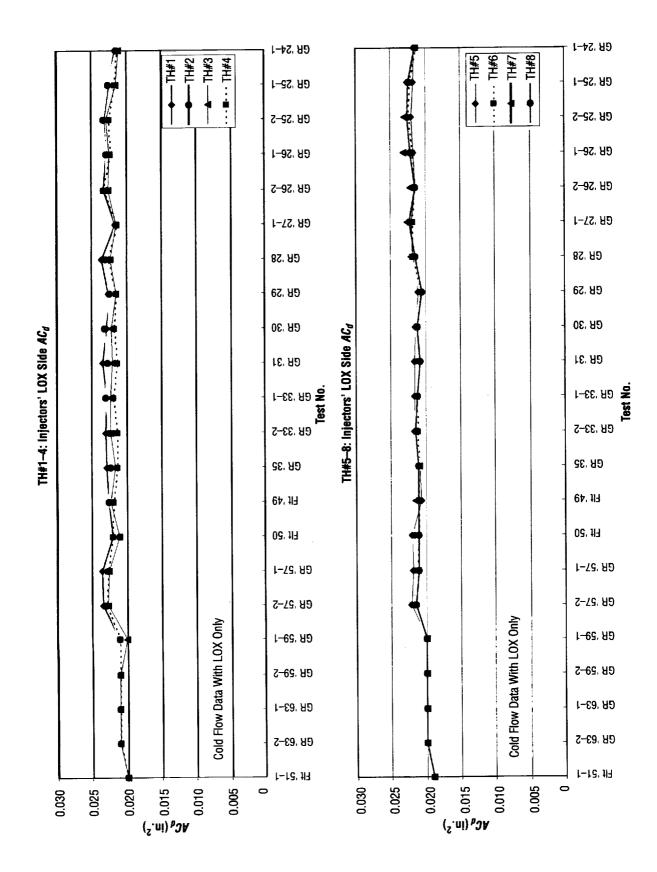


Figure 25. LOX side flow area data.

Figure 26 shows the fuel system performance during GRUN0036. Appendix F provides the steady-state data and calculation results for each test.

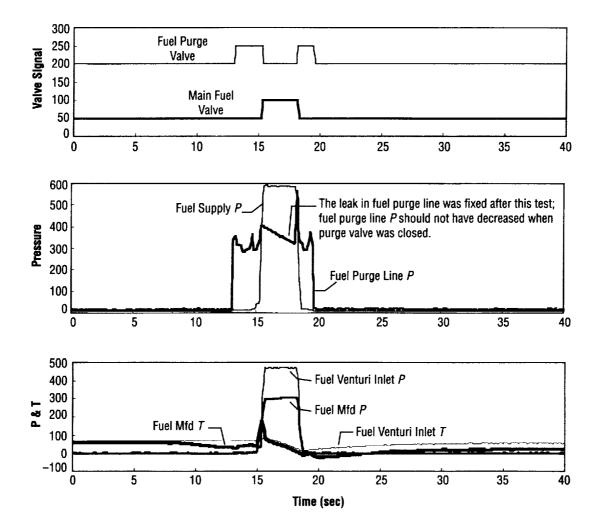


Figure 26. Fuel system performance during GRUN0036.

I.1 Fuel Flow Rate Calculations

Fuel flow rates were calculated with the compressible flow equation:

$$\dot{m} = (AC_d) PD \sqrt{\frac{\gamma g_c}{Z\mathbf{R}T}} , \qquad (5)$$

where

A = flow area in venturi throat, in.²

 C_d = venturi discharge coefficient

P = inlet pressure to the venturi, psia

T = inlet temperature to the venturi, °R

 \mathbf{R} = universal gas constant, $lb_f ft/lb_m \circ R$

 g_c = gravitational constant (32.2 lb_m ft/lb_f s²)

 γ = specific heat ratio

$$Z = \text{compressibility function} = P/\rho \,\mathbf{R}T \tag{6}$$

$$D = M \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{-(1 + \gamma)}{2(\gamma - 1)}}.$$
 (7)

Example (GRUN0038):

At 100-percent venturi:

Inlet P = 474 psig = 489 psia Inlet T = 51 °F = 511 °R Ave. fuel manifold pressure (TH No. 1–4) = 239 psig = 254 psia.

For GHe, **R** = 386 ft lb_f/lb_m °R and $\gamma = 1.67$ At 489 psia and 511 °R, $\rho_{He} = 0.351 \ lb_m/ft^3$; using equation (6):

$$Z = \frac{(489 \text{ lb}_{f} / \text{in.}^{2})(144 \text{ in.}^{2} / \text{ft}^{2})}{(0.3511 \text{ b}_{m} / \text{ft}^{3})(386 \text{ ft} \cdot \text{lb}_{f} / \text{lb}_{m} \cdot \text{°R})(511 \text{ °R})} = 1$$

Note: For the GH_2 and GHe conditions used in this test program, Z=1 was assumed for all calculations.

Flow through the venturi was choked at the throat $(P_{out}/P_{in} = 254/489 \sim 0.5)$, so M=1. Therefore, solving for equation (7):

$$D = l \left(1 + \frac{1.67 - 1}{2} (1)^2 \right)^{\frac{-(1+1.67)}{2(1.67 - 1)}} = 0.5625$$

Values of D are also tabulated in most compressible flow tables for various γ and pressure ratios.

For the 100-percent venturi, with a throat diameter of 0.685 in. and a $C_d = 0.97$, its AC_d is 0.3575 in.²

Finally solving equation (5),

$$\dot{m} = (0.3575 \text{ in.}^2)(489 \text{ lb}_{\text{f}} / \text{ in.}^2)(0.5625) \sqrt{\frac{(1.67)(32.2 \text{ lb}_{\text{m}} \cdot \text{ft} / \text{ lb}_{\text{f}} \cdot \text{s}^2)}{(1)(386 \text{ ft} \cdot \text{lb}_{\text{f}} / \text{ lb}_{\text{m}} \cdot ^\circ \text{R})(511^\circ \text{R})}} = 1.62 \text{ lb}_{\text{m}} / \text{sec}$$

For hot-fires with GH₂, $\gamma = 1.4$ and $\mathbf{R} = 766 \text{ lb}_{\text{f}} \text{ ft/lb}_{\text{m}} \,^{\circ}\text{R}$ and D = 0.5787 when flow is choked through the venturi.

Choked flow conditions were checked with the pressure ratio across the venturi:

for $\gamma = 1.4$, $P/P_t = 0.53$ or less creates choked flow

for $\gamma = 1.67$, $P/P_t = 0.5$ or less creates choked flow,

where

P = downstream pressure, such as the fuel manifold pressure

and

 P_t = total upstream pressure = venturi inlet pressure.

The total fuel flow rate for the LOW thrust side was the sum of the flow rate through the 80and 20-percent venturies.

Note: For the hot-fires, GRUN0037 and GRUN0036, the fuel venturies during mainstage did not choke (based on pressure measurements). So, values for D were found from a compressible flow table for $\gamma=1.4$ at the actual pressure ratios.

Example (GRUN0037):

100-percent fuel venturi:

inlet pressure, $P_t = 466$ psig

average downstream pressure, at the fuel manifolds:

 $P = \frac{307 + 304 + 305 + 308}{4} = 306 \text{ psig}$ Across venturi, $\frac{P}{P_t} = \frac{(306 + 15) \text{ psia}}{(466 + 15) \text{ psia}} = 0.67$.

For $\gamma = 1.4$ at $P/P_t = 0.67$, D = 0.5523 (M=0.78), instead of D = 0.5787 for M=1.

So, D=0.5523 was used to calculate the fuel flow rate through the 100-percent venturi in GRUN0037.

I.2 Fuel Side AC_d Calculations

For each thruster in the engine, the flow area, AC_d , of the fuel side of the injector was calculated for each test. These values were used as a reference for the hardware. Significant changes to the flow areas of the injectors could be indications of hardware anomalies.

These flow areas were also calculated using the compressible flow equation, along with the conditions measured in each thruster:

$$AC_d = \frac{m}{PD\sqrt{\frac{\gamma g_c}{Z\mathbf{R}T}}}$$
 (8)

Assume Z = 1 for GHe or GH₂.

Example (GRUN0037):

Thruster No. 1:

fuel mfd P = 307 psig = 322 psia fuel mfd T = 18 °F = 478 °R $P_c = 217$ psig = 232 psia $\frac{P}{P_t} = \frac{232}{322} = 0.72 \rightarrow D = 0.5293$ for $\gamma = 1.4$ $\dot{m} = \frac{\dot{m} \text{ from } 100\% \text{ venturi}}{4} = \frac{1.03 \text{ lb}_m / \text{sec}}{4} = 0.26 \text{ lb}_m / \text{sec}$. Solving equation (8)

$$AC_{d} = \frac{0.26 \text{ lb}_{\text{m}} / \text{sec}}{(322 \text{ lb}_{\text{f}} / \text{in.}^{2})(0.5293) \sqrt{\frac{1.4(32.2 \text{ lb}_{\text{m}} \cdot \text{ft} / \text{lb}_{\text{f}} \cdot \text{s}^{2})}{(766 \text{ lb}_{\text{f}} \cdot \text{ft} / \text{lb}_{\text{m}} \cdot ^{\circ}\text{R})(478 ^{\circ}\text{R})}} = 0.137 \text{ in.}^{2}$$

For the cold flows with GHe, flow across the fuel side of the injector was choked, so D = 0.5625; but for the hot-fires, D was found relative to the resulting pressure ratio across the injector.

Results for the fuel side flow areas in all cold flows (with GHe) were plotted in figure 27. Note the change in flow area after the ignition tests were attempted. This likely occurred due to TEA-TEB residue that built up in the fuel annuli or BLC holes. However, plenty of fuel side flow area remained to provide appropriate hot-fire test conditions (see fig. 28). This residue on the fuel side did not seem to pose any threat to the hardware. The decrease in fuel side AC_d 's produced no effect on P_c 's. It was reasonable to assume that adequate fuel side flow areas still existed and venturies were still controlling the fuel flow rate to the desired (and consistent) levels.

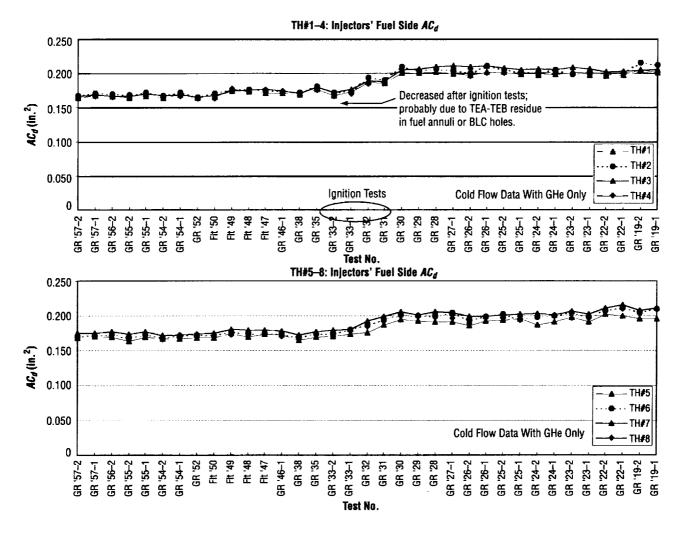
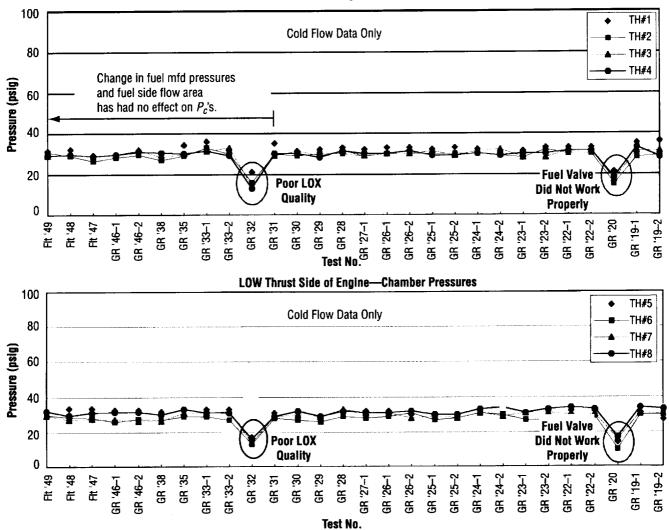



Figure 27. Fuel side AC_d results.

HIGH Thrust Side of Engine---Chamber Pressures

Figure 28. Effect of fuel side AC_d changes on P_c 's.

APPENDIX J—Ignition Test Results

Resulting chamber pressures during ignition test (GRUN0033) are shown in figure 29. Appendix F includes the steady-state data for each ignition test (GR'31–33).

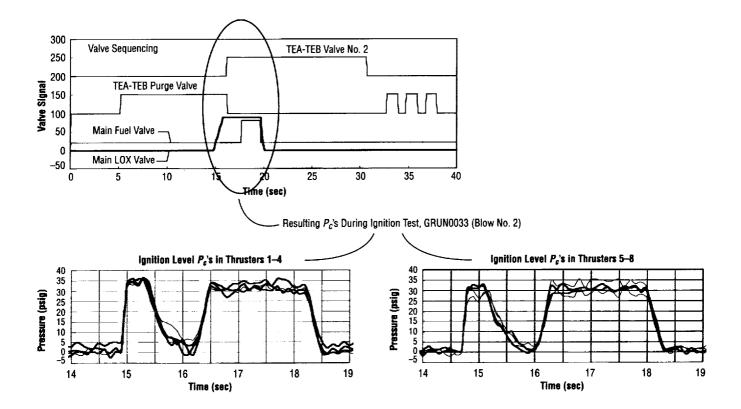


Figure 29. Thruster chamber pressures during ignition test.

J.1 TEA-TEB Flow Rate Calculations

The TEA-TEB flow rate was estimated with the incompressible flow equation:

$$\dot{m} = AC_d \sqrt{2g\rho\Delta P} \quad , \tag{9}$$

where

 AC_d = flow area of the TEA-TEB flow control orifices (dia = 0.026 in., $C_d \sim 0.6$ assumed)

 g_c = gravitational constant = 32.2 lb_m · ft/lb_f · s²

 ΔP = pressure drop across orifice, psi

 ρ = density of TEA-TEB = 44.5 lb_m/ft³.

Example (GRUN0033):

During ignition phase between LOX and TEA-TEB:

TEA-TEB supply pressure to engine = 693 psia (PT0651) Average thrust chamber pressure = 45 psia

With an orifice diameter of 0.026 in. and assuming a $C_d=0.6$, AC_d was 3.186×10^{-4} in.² for each thruster ignition port.

Solving equation (9)

$$\dot{m} = (3.186 \times 10^{-4} \text{ in.}^2) \sqrt{\frac{2(32.2 \text{ lb}_{\text{m}} \cdot \text{ft} / \text{lb}_{\text{f}} \cdot \text{s}^2)(693 - 45)\text{lb}_{\text{f}} / \text{in.}^2}{144 \text{ in.}^2 \text{ft}^2}} = 0.036 \text{ lb}_{\text{m}} / \text{sec per thruster}$$

APPENDIX K—Hot-Fire Test Results

System performance during GRUN0036 is shown for LOX (fig. 30), fuel (fig. 31), TEA-TEB (fig. 32), water (fig. 33), and engine (fig. 34) systems. All systems responded as expected. Results were similar for hot-fire GRUN0037. Figure 35 shows the chamber pressure behavior during hot-fire. During mainstage, chamber pressures continue to rise slightly due to increasing fuel flow rate.

The LASRE engine supply systems for GRUN0037 is shown in figure 36. Table 13 lists the performance results for GRUN0037 and GRUN0036. Appendix F provides the steady-state data and calculation results for each hot-fire test, GR'36 and GR'37.

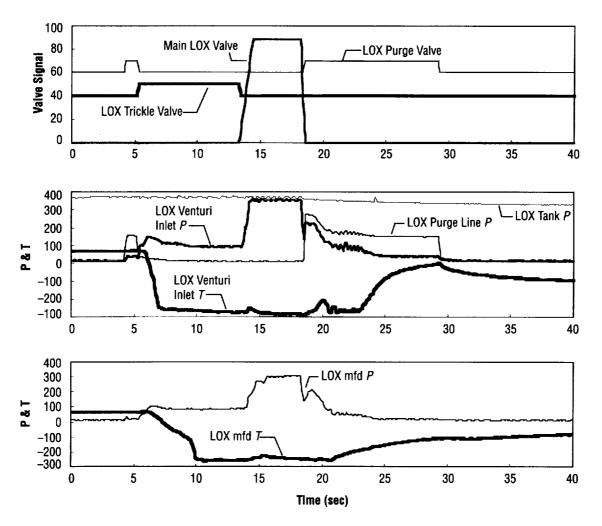


Figure 30. LOX system performance during GRUN0036.

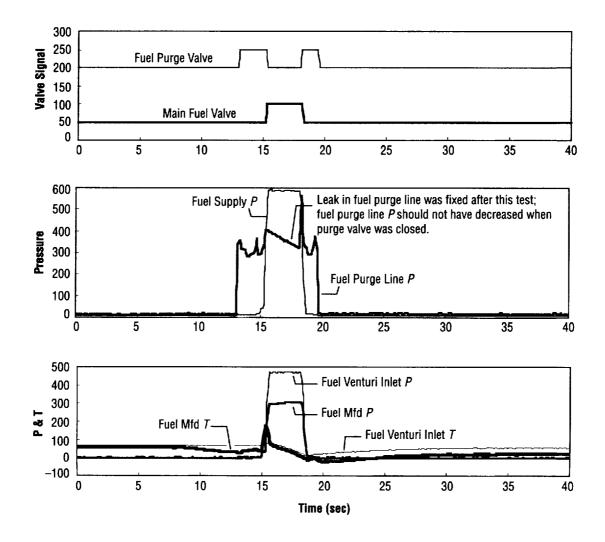


Figure 31. Fuel system performance during GRUN0036.

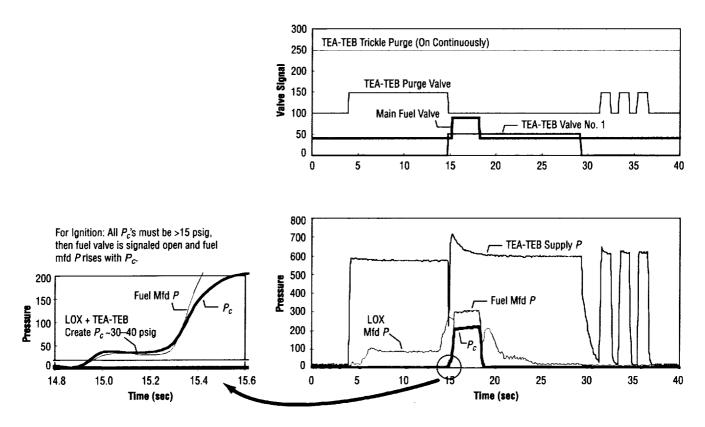


Figure 32. TEA-TEB system performance during GRUN0036.

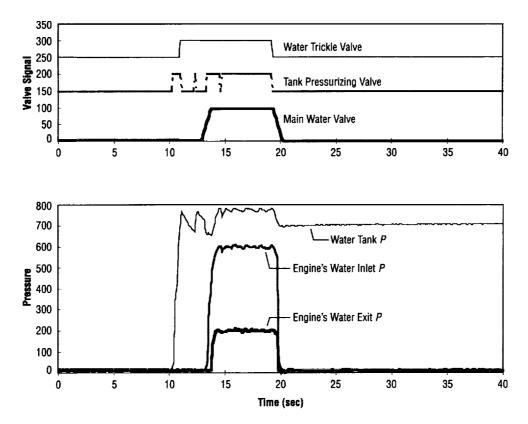


Figure 33. Water system performance during GRUN0036.

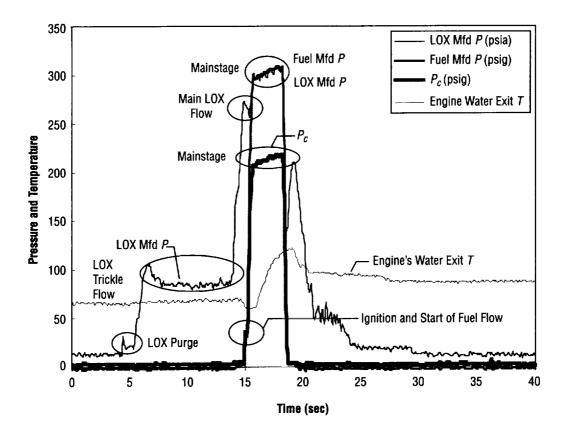


Figure 34. Engine performance during GRUN0036.

r

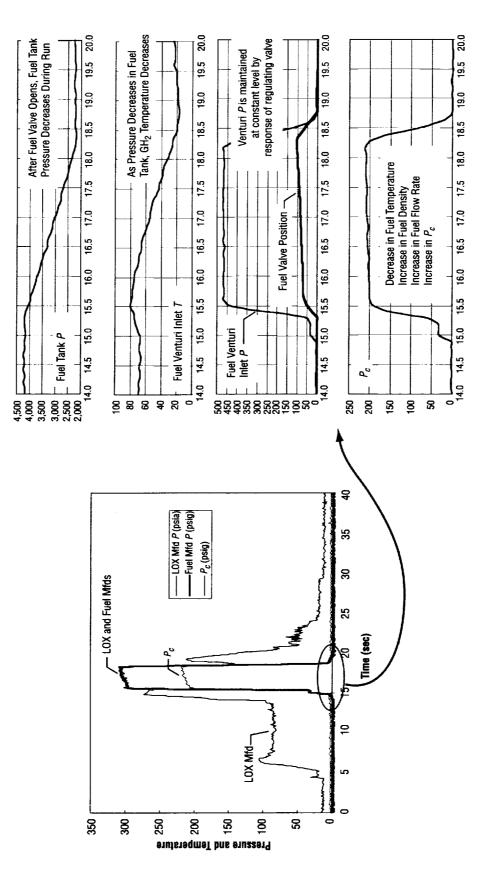


Figure 35. Chamber pressure behavior during hot-fire.

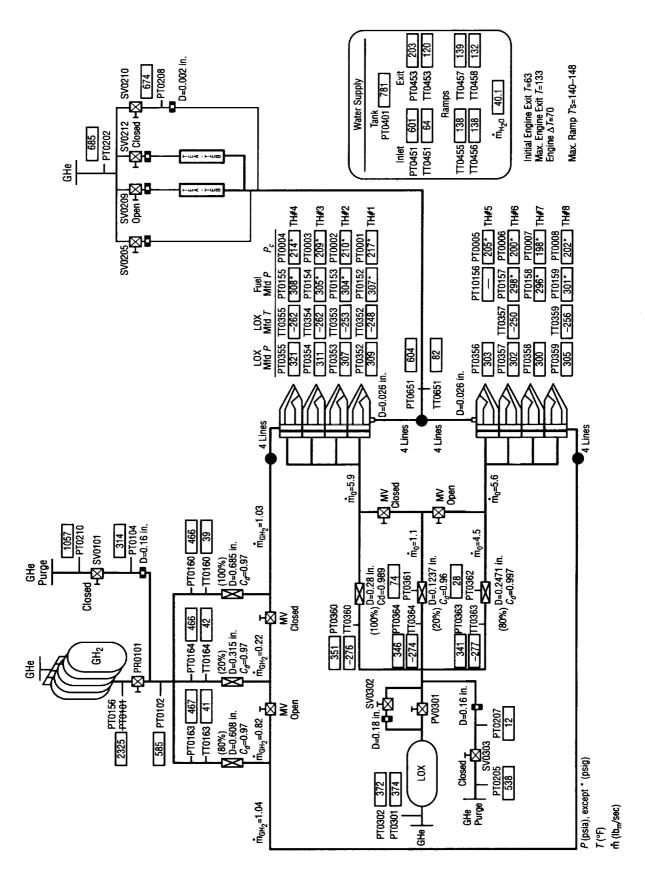


Figure 36. LASRE engine supply systems GRUN0037.

Table 13. Performance results from GRUN0037 and GRUN003

Performance		GRUN0037						GRUN0036								
Results	TH#1	TH#2	TH#3	TH#4	TH#5	TH#6	TH#7	TH#8	TH#1	TH#2	TH#3	TH#4	TH45	TH#6	TH#7	TH#8
total propellant flow rate (lb_/s)	1.73	1.73	1.73	1.73	1.66	1.66	1.66	1.66	1.76	1.76	1.76	1.76	1.69	1.69	1.69	1.69
LOX mfd. P (psia)	309	307	326	321	303	302	315	305	306	307	327	319	297	299	312	298
LOX mfd. T (F)	-248	-253	-262	-262	-249.94	-250	-256.41	-256	-246.22	-256.46	-263.77	-263.22	-253.37	-253.37	-257.52	-257.52
h (BTU/Ib _) for LOX mfd P & T	-36.2	-40.6	-42.3	-42.3	-37.1	-37.1	-39.7	-39.8	-35.4	-39.7	-43.1	-42.7	-38.5	-38.5	-40.6	-40.6
Fuel mfd. P (psig)*	307	304	305	308	298	298	296	301	305	304	303	308	296	296	294	300
P_ at altitude (psia)	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7
Fuel mfd. P (psia)	322	319	319	323	312	312	310	316	320	318	318	323	311	311	309	315
Fuel mfd. T (F)	18	18	18	18	31	31	31	31	10	10	10	10	23	23	23	23
h (BTU/Ib) for GH , mfd P & T	1587	1587	1587	1587	1634	1634	1634	1634	1558	1558	1558	1558	1605	1605	1605	1605
Pc (psig)	217	210	209	214	205	200	198	202	218	210	210	212	205	199	197	201
(Convert enthalpies to cal/mol & subtract std.	values)															
CEA/CETPC INPUT:																
GH, h (cal/mol)	-262.73	-262.73	-262.73	-262.73	-210.56	-210.56	-210.56	-210.56	-294.92	-294.92	-294.92	-294.92	-242.75	-242.75	-242.75	-242.75
GH ₁ T (K)	265.45	265.45	265.45	265.45	272.86	272.86	272.86	272.86	261.17	261.17	261.17	261.17	268.1	268.1	268.1	268.1
LOX h (cal/mol)	-2713.1	-2791.2	-2821.4	-2821.4	-2729.1	-2729.1	-2775.2	-2777	-2698.9	-2775.2	-2835.6	-2828.5	-2753.9	-2753.9	-2791.2	-2791.2
LOX T (K)	117.57	115.18	109.9	110.07	116.7	116.7	113.11	113.11	118.77	113.08	109.01	109.32	114.8	114.8	112.49	112.49
Pc (psia)	232	225	223	228	220	215	212	217	233	225	225	226	220	214	211	216
MR	5.7	5.7	5.7	5.7	5.4	5.4	5.4	5.4	5.7	<u>5.</u> 7	5.7	5.7	5.4	5.4	5.4	5.4
Ac/At	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
CEA/CETPC RESULTS:																
Pc,ns (psia)	227	220	219	224	215	210	208	212	228	220	220	222	215	209	207	211
c*, theo (ft/s)	7661	7658	7 6 57	7658	7748	7746	7745	7746	7660	7656	7655	7656	7746	7744	7742	7744
9	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1,1	1.1	1.1	1.1	1,1	1.1	1.1	1.1	1.1
Mc	0.144	0.144	0.144	0.144	0.144	0,144	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144
T,gas (R)	6014	6007	6005	6010	5940	5936	5933	5936	6014	6006	6005	6007	5938	5933	5931	5935
Calculations:																
c*,actual (ft/s)	7509	7277	7244	7410	7420	7247	7178	7316	7408	7148	7148	7213	7288	7085	7017	7153
C*, efficiency %	98	95	95	97	96	94	93	94	97	93	93	94	94	9 1	91	92

K.1 Performance Calculations

For the hot-fires, performance data included MR, actual C^* values, and C^* efficiencies.

K.1.1 Mixture Ratio

For each thruster,

$$MR = \frac{\dot{m}_o}{\dot{m}_f} , \qquad (10)$$

where

$$\dot{m}_o$$
 = oxidizer flow rate, lb_m /sec
 \dot{m}_f = fuel flow rate, lb_m /sec.

Example (GRUN0037):

For thruster No. 1: $\dot{m}_o = 1.48 \text{ lb}_m/\text{sec}$ and $\dot{m}_f = 0.26 \text{ lb}_m/\text{sec}$

Solving equation (12)

$$MR = \frac{1.48}{0.26} = 5.7$$

K.1.2 Actual C* and C* Efficiency

 C^* is defined as the characteristic velocity of the resulting combustion gases:

$$C_{\text{actual}}^* = \frac{P_{c,ns} \cdot A_t \cdot g_c}{\dot{m}_o + \dot{m}_f} , \qquad (11)$$

where

 P_{cns} = nozzle stagnation pressure (psia)

 A_t = chamber throat area (in.²)

 g_c = gravitational constant = 32.2 lb_m ft/lb_f s².

In order to calculate the actual C^* correctly, $P_{c,ns}$ was determined. This stagnation pressure would be less than the P_c measured up near the injector due to Rayleigh losses from the injector to the nozzle stagnation point (where the chamber contour starts to converge). In addition, there was a theoretical C^* value that was associated with specific propellant combinations, P_c 's and MR's. This theoretical C^* was the velocity that should result if the design and operation were perfect, and the combustion gases experienced no energy losses (such as Rayleigh losses or heat losses to the coolant). By comparing the theoretical value to the actual value, the C^* efficiency was determined to provide a relative idea of each thruster's performance.

A rocket performance code called "CETPC" was used to determine $P_{c,ns}$ and the theoretical C* values. CETPC is also known as ODETRAN and CEA—they are all basically the same FORTRAN code (developed by Gordon and McBride at NASA's Lewis Research Center). A computer code called MIPROPS was used to find the specific thermodynamic properties of oxygen and hydrogen.

Inputs to CETPC include:

- LOX and fuel inlet enthalpies
- LOX and fuel inlet temperatures
- P_c (psia) as measured at the injector end
- MR
- A_c/A_t = chamber's contraction ratio
- A_c = chamber area at the injector end
- A_t = chamber throat area.

Example (GRUN0037):

Thruster No. 1:

Inlet enthalpies have to be input in cal/mol:

LOX mfd. pressure = 309 psia LOX mfd temp. = -248 °F $h_{\text{O}_2} = -36.2 \text{ BTU/lb}_{\text{m}}$.

Convert this value to cal/mol:

$$h_{o_2} = -36.2 \frac{BTU}{lb_m} \left(\frac{2.23 \text{ J/g}}{BTU/lb_m} \right) \left(\frac{32 \text{ g}}{\text{mol}} \right) \left(\frac{252.2 \text{ cal}}{1055 \text{ J}} \right) = -642.45 \text{ cal/mol}$$

Subtract the enthalpy for O_2 at standard conditions (14.7 psia, 78 °F)

 $h_{\rm o_{2}, std} = 2070.5 \text{ cal/mol}$

 $h_0 = -642.45 - 2070.5 = -2713$ cal/mol.

LOX inlet temperature must be input in K: $T_o = (-248 + 460)/1.8 = 117.8$ K.

Fuel mfd. pressure = 322 psia Fuel mfd. temperature = 18 °F From MIPROPS: $h_{\rm H_2}$ = 1,587 BTU/lb_m.

Convert this value to cal/mol :

$$h_{\rm H_2} = 1587 \ \frac{\rm BTU}{\rm lb_m} \left(\frac{2.23 \ {\rm J/g}}{\rm BTU/\rm lb_m}\right) \left(\frac{2g}{\rm mol}\right) \left(\frac{252.2 \ {\rm cal}}{1055 \ {\rm J}}\right) = 1760.3 \ {\rm cal/mol}$$

Subtract the enthalpy for H_2 at standard conditions:

$$h_{\rm H_2, std} = 2,024.3 \text{ cal/mol}$$

$$h_f = 1,760 - 2,024.3 = -263.99$$
 cal/mol

Fuel inlet temperature must be input in K: $T_f = (18+460)/1.8 = 265.55$ K.

The rectangular cross-sectioned chamber measured:

At the injector end: 5.015 in. ×1.5 in. At the throat: 4.995 in. ×0.357 in. $A_c = (5.015)(1.5) = 7.5225$ in.² $A_t = (4.995)(0.357) = 1.7832$ in.²

$$\frac{A_c}{A_t} = \frac{7.52}{1.78} = 4.2$$
 .

Based on the output from CETPC, when the chamber contracts, $(A_c/A_t = 4.2, M = 0.144) P_{inj}/P = 1.0234$, where $P_{inj} = P_c$ measured at the injector end and $P = P_{c,ns}$.

So,

$$P_{c,ns} = \frac{232\,\mathrm{psia}}{1.0234} = 227\,\mathrm{psia}$$

Solving equation (11)

$$\therefore C_{\text{actual}}^* = \frac{(227 \text{ lb}_{\text{f}} / \text{in.}^2)(1.78 \text{ in.}^2)(32.2 \text{ lb}_{\text{m}} \cdot \text{ft} / \text{lb}_{\text{f}} \cdot \text{s}^2)}{(1.48 + 0.26)\text{lb}_{\text{m}} / \text{sec}} = 7509 \text{ ft} / \text{sec} .$$

From CETPC,

$$C_{\text{theo}}^{\tau} = 7661 \text{ ft / sec}$$
. As a result,

$$C_{\text{efficiency}}^* = \frac{C_{\text{actual}}^*}{C_{\text{theo}}^*} = \frac{7509}{7661} = 0.98$$
.

Output from CETPC is shown in table 14.

Table 14. Output from CETPC program	Table 14.	Output fro	om CETPC	program.
-------------------------------------	-----------	------------	----------	----------

PINJ = 232.0	PSTA						
AC/AT = 4.2000							
CASE NO.							
CHEMICA	AL FORMULA		WT H	RACTION	ENERGY	STATE	TEMP
			(SEF	E NOTE)	CAL/MOL -263.000		DEG K
FUEL H 2.00	0000		1.0	00000	-263.000	\mathbf{L}	265.50
OXIDANT O 2.00	0000		1.0	00000	-2713.000	L	117.60
O/F= 5.7000 H	PERCENT FUE	EL= 14.9	254 EQU	IVALENCE	RATIO= 1.39	924 PH	I=1.3924
			THROAT				
PINJ/P			1.7499				
PINF/P	.98864	1.0000	1.7300	1.0117	-		
P, ATM			9.0214				
	3346.63						
RHO, G/CC							
H, CAL/G U, CAL/G	-91.602	-91.602	-3/0.6/	-9/./30			
G, CAL/G S, CAL/(G)(K)	4.6346	4.6364	4.6364	4.6364			
M, MOL WT	12.649	12.648	12.815	12.651			
(DLV/DLP)T	-1.03540	-1.03548	-1.02858	-1.03533			
(DLV/DLT) P	1.6496	1.6512	1.5515	1.6491			
CP, CAL/(G)(K) GAMMA (S)	2.8004	2.8059	2.5692	2.8013			
GAMMA (S)	1.1328	1.1328	1.1321	1.1	327		
SON VEL, M/SEC	1578.6	1578.3	1528.2	1577.2			
MACH NUMBER	.000	.000	1.000		144		
PERFORMANCE PAF	AMETERS						
AE/AT				4.2			
CSTAR, FT/SEC			7661	-			
CF			.654				
IVAC, LB-SEC/LB				1011.6			
ISP, LB-SEC/LB			155.8	23.1			

Note: Theoretical C^* was calculated in CETPC relative to theoretical T_{gas} , but some heat was actually lost to the coolant in the combustion chamber—making the actual T_{gas} lower than the theoretical value. To adjust T_{gas} relative to the heat picked up by the coolant:

$$C_{\text{theo}}^* = \frac{\sqrt{g_c \gamma \mathbf{R} T_{c,ns}}}{\gamma \sqrt{\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}} \qquad T_{c,ns} = T_{\text{gas}} \text{ at nozzle stag. point}$$
(12)

$$\dot{Q} = (\dot{m}C_p \Delta T)_{\rm H_2O}$$
 (heat gained by coolant = heat lost from gas) (13)

$$\Delta T_{\text{gas}} = \frac{\dot{Q}}{(\dot{m}_o + \dot{m}_f)C_{p,\text{gas}}}$$
(14)

Actual
$$T_{gas} = \text{theo } T_{gas} - \Delta T_{gas}$$
 (15)

Corrected
$$C_{\text{theo}}^* = \frac{C_{\text{theo}}^* \sqrt{\arctan T_{\text{gas}} - \Delta T_{\text{gas}}}}{\sqrt{\arctan T_{\text{gas}}}}$$
 (16)

However, ΔT_{H_2O} is the temperature rise by the coolant in each thruster between the injector and the nozzle stagnation point. In the LASRE program, only the total ΔT picked up by the coolant through the thrusters and the fences/ramps was available. The ΔT up to each thruster's nozzle stagnation point would be significantly smaller, creating little effect on the theoretical C^* value. Therefore, corrections for heat loss were not performed for this program. Actually, in the LASRE program, the C^* efficiencies were only meant for comparisons between thrusters and hot-fire tests, not true performance evaluation, so this correction was not important.

APPENDIX L—Flight Configuration Test Results

Figure 37 shows the transient data for the LOX and fuel systems. Transient plots compare GR'35: ground cold flow prior to ground hot-fire; GR'36: first ground hot-fire; GR'37: second ground hot-fire; and FLT'49: flight cold flow. Data shown for all tests starts at \approx 5 sec prior to "SS." Flight configuration testing produced results similar to ground tests.

Transient data are shown for the water system (fig. 38) and engine system (figs. 39 and 40). The water system, engine and TEA-TEB systems responded appropriately and consistently for cold flows and hot-fires in the ground and flight configurations.

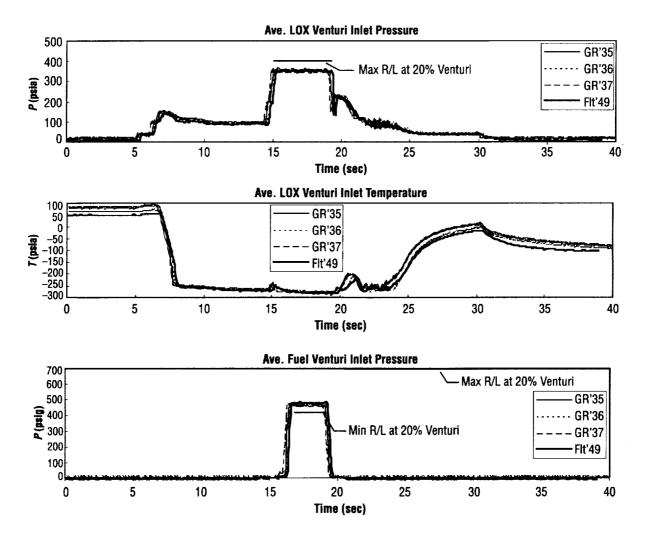


Figure 37. LOX and fuel-transient data.

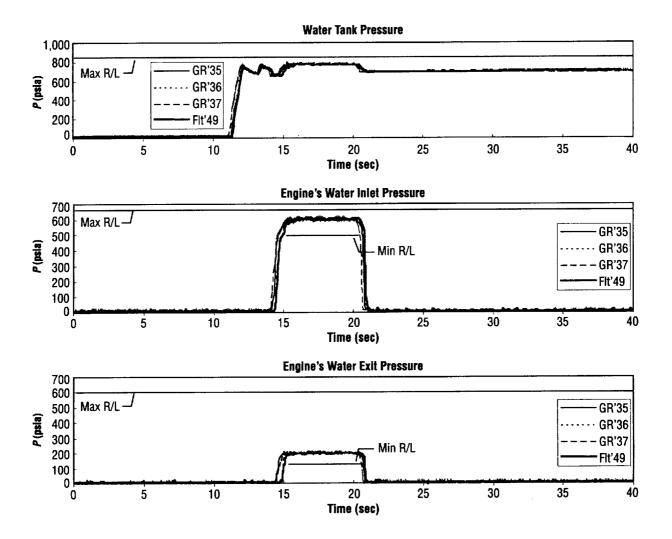


Figure 38. Water system-transient data.

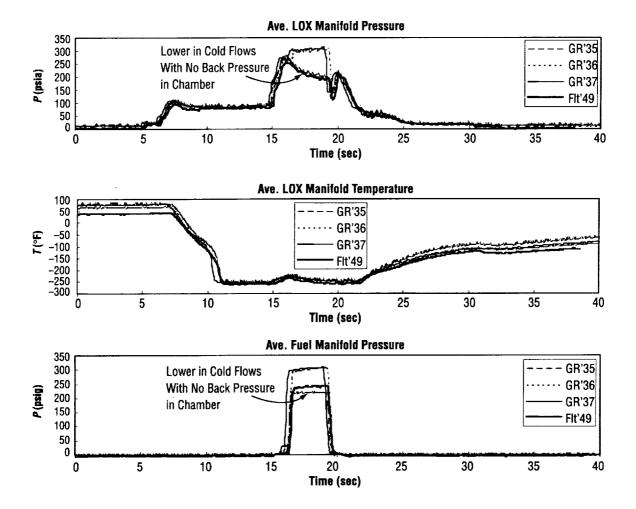


Figure 39. Engine—transient data.

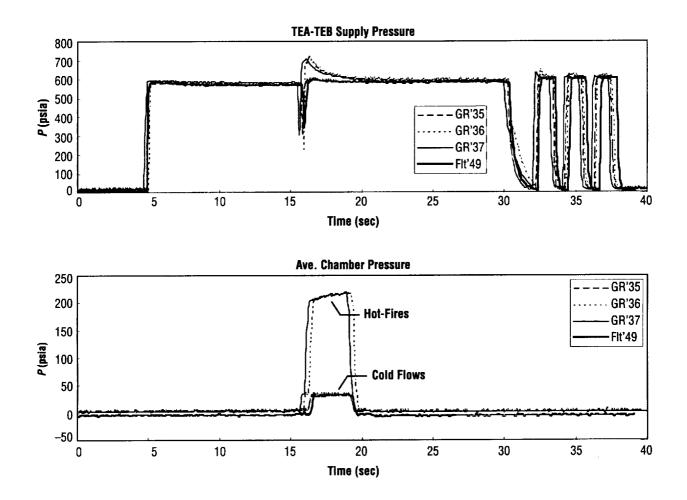


Figure 39. Engine—transient data (Continued).

BIBLIOGRAPHY

Corda, S.; Lux, D.; Schneider, E.; and Meyer, R.: "Blackbird Puts LASRE to the Test," Aerospace America, February 1998.

Kutin, M.S.: "Linear Aerospike SR-71 Experiment (LASRE) Rocket Engine," 33rd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference, AIAA 97-3319, Seattle, WA, June 1997.

Linear Aerospike/SR-71 Experiment Design Safety Review Package, NASA Dryden Flight Research Center, October 11-13, 1995.

Huzel, D.; and Huang, D.: Design of Liquid Propellant Rocket Engines, NASA SP-125, 2nd ed., 1971.

REPORT DO	Form Approved OMB No. 0704-0188								
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operation and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503									
1. AGENCY USE ONLY (Leave Blank)	AND DATES COVERED								
	nical Memorandum								
4. TITLE AND SUBTITLE Test Report for NASA MS Experiment (LASRE)	SFC Support of the Linear Ad	erospike SR–71	5. FUNDING NUMBERS						
6. AUTHORS S.K. Elam									
7. PERFORMING ORGANIZATION NA	MES(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER						
George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 M–973									
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING									
National Aeronautics and Washington, DC 20546-00	AGENCY REPORT NUMBER								
11. SUPPLEMENTARY NOTES									
Prepared by the Subsystem and Component Development Department, Space Transportation Directorate									
12a. DISTRIBUTION/AVAILABILITY ST	TATEMENT		12b. DISTRIBUTION CODE						
Unclassified-Unlimited									
Subject Category 15 Nonstandard Distribution									
13. ABSTRACT (Maximum 200 words)									
The Linear Aerospike SR-71 Experiment (LASRE) was performed in support of the Reusable Launch Vehicle (RLV) program to help develop a linear aerospike engine. The objective of this program was to operate a small aerospike engine at various speeds and altitudes to determine how slipstreams affect the engine's performance. The joint program between government and industry included NASA's Dryden Flight Research Center, The Air Force's Phillips Laboratory, NASA's Marshall Space Flight Center, Lockheed Martin Skunkworks, Lockheed-Martin Astronautics, and Rocketdyne Division of Boeing North American. Ground testing of the LASRE engine produced two successful hot-fire tests, along with numerous cold flows to verify sequencing and operation before mounting the assembly on the SR-71. Once installed on the aircraft, flight testing performed several cold flows on the engine system at altitudes ranging from 30,000 to 50,000 feet and Mach numbers ranging from 0.9 to 1.5. The program was terminated before conducting hot-fires in flight because excessive leaks in the propellant supply systems could not be fixed to meet required safety levels without significant program cost and schedule impacts.									
14. SUBJECT TERMS 15. NUMBER OF PAGES 136									
aerospike engine, reusable launch vehicle, liquid propulsion engine A07									
17. SECURITY CLASSIFICATION OF REPORT II. SECURITY CLASSIFICATION OF THIS PAGE IV. L.									
Unclassified Unclassified Unclassified Unlim									

NSN 7540-01-280-5500

•

•

!

.

ŧ

National Aeronautics and Space Administration AD33 **George C. Marshall Space Flight Center** Marshall Space Flight Center, Alabama 35812

•

ł

1