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Scale-similar models employ multiple filtering operations to identify the smallest resolved scales,
which have been shown to be the most active in the interaction with the unresolved subgrid scales.

They do not assume that the principal axes of the strain-rate tensor are aligned with those of the

subgrid-scale stress (SGS) tensor, and allow the explicit calculation of the SGS energy. They can

provide backscatter in a numerically stable and physically realistic manner, and predict SGS stresses

in regions that are well correlated with the locations where large Reynolds stress occurs. In this

paper, eddy viscosity and mixed models, which include an eddy-viscosity part as well as a

scale-similar contribution, are applied to the simulation of two flows, a high Reynolds number plane

channel flow, and a three-dimensional, nonequilibrium flow. The results show that simulations

without models or with the Smagorinsky model are unable to predict nonequilibrium effects.

Dynamic models provide an improvement of the results: the adjustment of the coefficient results in
more accurate prediction of the perturbation from equilibrium. The Lagrangian-ensemble approach

[Meneveau et al., J. Fluid Mech. 319, 353 (1996)] is found to be very beneficial. Models that

included a scale-similar term and a dissipative one, as well as the Lagrangian ensemble averaging,

gave results in the best agreement with the direct simulation and experimental data. © 1999

American Institute of Physics.
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I. INTRODUCTION

In the large-eddy simulation (LES) approach all flow

variables are decomposed into a resolved, large-scale, com-

ponent, and an unresolved part due to small scales, which is

modeled. Governing equations for the large-scale variables

can be derived by the application of a spatial filter (denoted

by an overbar) of characteristic width _ to the continuity and

Navier-Stokes equations. The effect of the small scales upon

the resolved part of turbulence appears in the subgrid-scale

(SGS) stresses. The success of the LES approach depends to

a large extent on the accurate representation of this term.
Since the small scales tend to be more homogeneous and

isotropic than the large ones, they can be modeled using

simpler parameterizations than their counterparts in the

Reynolds-averaged Navier-Stokes (RANS) equations; fur-

thermore, since the resolved scales are responsible for a sig-

nificant proportion of the Reynolds stresses, modeling errors

should not be as significant. For these reasons, and also to

avoid increasing the cost of the calculations, eddy-viscosity

type models I are used for the parameterization of the SGS

stresses.

Although these models were found to give a poor pre-
diction of the SGS stresses on a local level, 2"3 they predict

the global dissipation fairly accurately; this may be one rea-
son for their success and widespread use. Many of the defi-

ciencies of eddy-viscosity models (incorrect limiting behav-

ior near solid boundaries, nonvanishing eddy-viscosity in
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laminar regions) can be avoided either by introducing ad hoc
modifications (van Driest damping, 4 intermittency

functions, 5 or low-Reynolds number corrections, 6 for in-

stance) or adjusting dynamically the model coefficients. 7'8

Two fundamental drawbacks of these models, however, can-

not be easily corrected: Their purely dissipative character,

and the assumption that the principal axes of the strain-rate
and SGS stress tensors are aligned.

While, on average, the small scales drain energy from

the large ones, reversed energy transfer (backscatter) is

known to occur locally, and be significant, even in equilib-
rium flows. Theoretical 9 arguments, as well as numerical m

and experimental II studies, have shown that the net energy

transfer is given by the difference of two terms, forward and
backward scatter, and that each is much larger than their

difference. Algebraic eddy-viscosity models cannot account

for backscatter, since the negative eddy viscosity required to

yield a negative energy transfer results in numerical instabil-

ity in the form of exponentially growing components of the

solution. Physically, one would expect backscatter to deplete

the energy available to the subgrid scales, and reduce the

magnitude of the eddy viscosity to zero on a time scale char-
acteristic of the small scales, rapidly re-establishing the equi-

librium. Algebraic eddy-viscosity models, however, cannot

follow this physical scenario since their time scale, usually

the reciprocal of the large-scale strain-rate, depends on the

largest scales of the flow. The addition of an equation for the
SGS energy can overcome this difficulty, 12 at the expense of

increased cost of the calculation.

Furthermore, in a priori investigations of interscale en-

ergy transfer in homogeneous and wall-bounded flows,
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Domaradzki and co-workers 13'14 have shown that the inter-

scale energy transfer is mainly due to interactions involving
modes within one octave of the cutoff wavenumber. Nonlo-

cal energy transfer (which can be represented by eddy-

viscosity models) was found to be less significant. This indi-

cated that there might be some correlation of the SGS

stresses with the Reynolds stresses (or, at least, with the part

of the Reynolds stresses due to the smallest resolved scales).

This conjecture was confirmed by Piomelli et al., I5 who ob-

served significant correlation between large-scale, energy-

(and Reynolds-stress-) producing events, and energy transfer

to and from the small scales.

These results supply a posteriori justification for the use

of scale-similar and mixed models, that predict the SGS

stresses based on the smallest resolved scales. The first

model of this type was proposed by Bardina et al., t6 who

performed a priori tests and calculations of homogeneous

isotropic turbulence using a mixed model, which included a
scale-similar as well as an eddy-viscosity term to account for

the dissipation by the small scales. They obtained improved

results, compared with the standard Smagorinsky model. 1A

priori tests 11'_6 have shown that scale-similar and mixed

models give higher correlation coefficients between the exact

and modeled stresses than the Smagorinsky model. Further-

more backscatter may occur in a numerically stable manner.
Piomelli et al. 3 found that the choice of model must be

coupled with that of the filter, and that an inconsistent choice

gives inaccurate results. When the Gaussian filter is used and

the Leonard stresses are computed, for instance, inclusion of

the scale-similar part of the model gives more accurate re-

suits than the eddy-viscosity part alone. Horiuti t7 observed

that the major role of the scale-similar part of the model is to

provide the backscatter of SGS energy.

Scale-similar models have been recently revisited in the

framework of dynamic modeling ideas. A dynamic model

including a scale-similar part has been applied by Zang
et al. t8 to the calculation of flow in a driven cavity. They

found that the inclusion of the scale-similar part reduced the

contribution of the Smagorinsky part substantially. This al-
lowed them to use a local formulation of the dynamic model

in which the coefficient was allowed to vary in space, rather

than being averaged over homogeneous directions] The low

Reynolds number of the calculation, however, made the ef-

fect of the SGS stresses less significant, and makes it difficult

to generalize their findings. Vreman et al.19 reformulated this

model in a consistent fashion, obtaining improved results in

the LES of a mixing layer. Wu and Squires 2° performed the

large eddy simulation of an equilibrium three-dimensional

turbulent boundary layer using a mixed Lagrangian model

similar to that proposed by Zang et al., _8 in the formulation

by Vreman et al. 19 The model coefficient was evaluated us-

ing the Lagrangian ensemble-averaging procedure. 2t

Liu et al. Lt performed a detailed analysis of the SGS

energy fluxes using experimental data at the far field of a

round jet at Reh= 310. They decomposed the velocity field

into logarithmic bands and found that the flow fields in con-

secutive bands are similar, and that rij and the resolved tur-

bulent stresses (which represent the stresses due to the small-

est resolved scales), as well as their contractions with o_,: are

well correlated. They then proposed a new scale-similar

model in which the SGS stresses are assumed to be propor-

tional to the resolved turbulent stresses £gi. This model,

with the addition of a dissipative term, was applied by
Anderson and Meneveau, 2z within the framework of the

Lagrangian-ensemble averaging, 21 to the study of isotropic

turbulence decay. It was found that the contribution of the

similarity term to the turbulent kinetic energy is negligible,

while its contribution to the SGS force (the divergence of the

SGS stresses) is more then double that of the dissipative

term.

Several additional dynamic versions of mixed models

have been proposed and tested. 23-z5 Their application has,

however, been almost entirely limited to equilibrium or near-

equilibrium flows.

Purpose of this paper is to examine the behavior of
scale-similar models both in equilibrium and nonequilibrium

flows, and compare their performance with that of standard

eddy-viscosity models. Two cases have been considered:

The fully-developed flow in a plane channel, and the flow in
a three-dimensional shear-driven boundary layer obtained by

moving the lower wall of a fully-developed plane channel in

the spanwise direction. The latter is of particular interest for

SGS modeling, since the SGS stresses do not adjust instan-

taneously to the secondary shear, 26 and the temporal re-

sponse of the modeled SGS stresses can be expected to affect
the results.

In the following, mixed models and ways to evaluate the

model coefficients will be presented. Then, numerical results

will be discussed. Finally, some conclusions will be drawn.

II. PROBLEM FORMULATION

A. Governing equations and boundary conditions

In LES the filtered and SGS quantities are defined as

fDf(x')G(x-x';7_)dx', f' =f-f, (2.1)y=

where G is the filter function of characteristic width 7_ and

the integral is extended to the entire domain D. The applica-

tion of the filtering operation to the continuity and the

Navier-Stokes equations gives the resolved Navier-Stokes

equations, which, in incompressible flow, are

c)ui O __ 1 Op Orij
-- + --(ui")) = t- vV2ui, (2.2)

Ot OXj p OX i OXj

8ui
--=0, (2.3)
c)xi

(where p is the pressure, v the kinematic viscosity, and u I ,

u2, and u3, or u, u, and w, are the streamwise, wall-normal

and spanwise components of velocity, respectively), which

govern the dynamics of the large, energy-carrying scales of
motion. The effect of the small scales upon the resolved part

of turbulence appears in the subgrid-scale (SGS) stress term,

•Tij= UiU j- UiUj, which must be modeled.
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FIG. 1. Sketch of the physical configurations: (a) Plane channel; (b) three-
dimensional boundary layer.

Two cases were examined: A two-dimensional plane

channel flow, at ReT = 8uT/v = 180 and 1 050, and a three-

dimensional (3D) boundary layer. In all cases, periodic

boundary conditions were applied in the streamwise and

spanwise directions, while the no-slip conditions were used

at the solid walls. The three-dimensional boundary layer is a

temporally developing flow obtained by imposing an impul-
sive spanwise motion, with magnitude equal to 47% of the

initial mean centerline velocity, to the wall of a fully devel-

oped plane channel flow; the initial condition was a calcula-
tion of fully developed plane channel flow at Reynolds num-

ber Rer= 180. These parameters matched the DNS
calculations of Coleman et al. 27 The flow was allowed to

develop until a collateral state (one in which the direction of

the mean velocity is the same at each y) was reached. While
in the direct numerical simulation (DNS) of Coleman et aL 27

only one wall was set in motion, in the present case both

walls were moved in opposite directions to double the statis-

tical sample. It was verified that the important statistics were

not affected up to a dimensionless time tUT, o/8= 1.2 (where

u,. o is the value of the friction velocity before the walls are
set into motion). The two configurations examined are

sketched in Fig. 1.

B. Numerical method

The governing equations [Eqs. (2.2) and (2.3)] were in-

tegrated in time using a Fourier-Chebychev pseudo-spectral
collocation scheme. 28 The skew-symmetric form of the mo-

mentum equation [Eq. (2.2)] was employed, and the time-

advancement was performed by a fractional time step

method with a semi-implicit scheme; the wall-normal diffu-

sion term was advanced using the Crank-Nicolson scheme,

and the remaining terms by a low-storage third-order

Runge-Kutta scheme. No de-aliasing was performed.

The computational domain in the streamwise, wall-

normal and spanwise directions was 47rSX28X4w_/3
(where 8 is the channel half-width) for the low-Reynolds

number case, 2 7rSX 2 8x 2 7r8 for the high Reynolds number

calculations, and 37rSX28X8_'8/3 for the three-

dimensional case. The calculation parameters are summa-

rized in Table I. For the sake of comparison, all quantities

expressed in wall units in the Table are calculated using the

experimental value of the friction velocity obtained from the
correlation in the reference by Dean. 29 A wider box and a

finer mesh were used in the 3D boundary-layer calculation to

account for the turning of the flow in the near wall, that

causes the streaks to be reoriented at an angle to the x axis.

To resolve these structures, which are no longer aligned in

the streamwise direction, a higher streamwise resolution is

required.

III. SUBGRID STRESS MODELS

A. Eddy viscosity, scale-similar, and mixed models

Eddy-viscosity models parameterize the SGS stresses as

8j'j

rij- Tree= -- 2 Vr$,j = -- 2Ceo±=Isls_:, (3l)

in which (Sij is Kronecker's delta and ]SI = (2Si)Sij) 112is the

magnitude of the large-scale strain-rate tensor

Sij=2 _ Oxj + Oxi/ " (3.2)

Lilly 3° determined the value of the coefficient Cev by assum-

ing that the small scales are in equilibrium, and obtained

C_o -- 0.032. C_o can also be evaluated dynamically 7's (see

below).
Scale-similar models were introduced by Bardina

et al., t6 who assumed that the component of the SGS most

active in the energy transfer from large to small scales can be
estimated with sufficient accuracy from the smallest resolved

TABLE 1. Simulation parameters.

Rer= 180 Re,-= 1 050 3D boundary layer

Domain size (outerunits) 4rraX2aX4rr,5/3 2rr6x28X2rr6 3rrSx2ax8_r&/3
Domain size (wall units) 2 260X 360X750 6600×2 100x3 300 t 700x 360x 1500
Mesh points 48× 65x 64 64x 97× 128 64× 65× 64
Grid size, _x+XAym+inX AZ ÷ 47X0.2X 12 103X0.5X26 27X0.2X23
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scales, which can be obtained by filtering the SGS velocity

given in Eq. (2.1) as u i =ui-ui. They then made the fol-

lowing assumptions:

.... - = - = (3.3)u i uj _ u i uj = (ui- ui)(uj- ufl,

u; uj-- u; uj = ( u,- t_i) u), (3.4)

to yield a model of the form

Tij = Css ( ui_j- uiuj), (3.5)

where C_., is a model coefficient that must be set to one to
recover Galilean invariance. 31

The scale-similar model (3.5) was found to be insuffi-

ciently dissipative; therefore, it was combined with an eddy-

viscosity dissipative component to yield

Tij = U iUj -- I,_ tUj -- 2 Ceo A 21_[ Sij. (3.6)

Zang et al. Ls used a dynamic form of this model, in which
the model coefficient, Ceo, was adjusted dynamically.

As mentioned above, Liu et al. II proposed a model in

which the SGS stresses are assumed to be proportional to the

resolved turbulent stresses _-.ij = _- ui_j (where ^ denotes

the application of a filter with characteristic scale z_>_):

r,j = C_.,( ffiEj- uiuj), (3.7)

where C,,. is a coefficient of order one.It An eddy viscosity
term can be added the scale-similar model (3.7) to yield

r,j = C,,( E,fi"-_- uiu i) - 2 C,vTX21eoISaj . (3.8)

B. Dynamic coefficient adjustment

Dynamic adjustments of the model coefficient has been

shown to be extremely beneficial: The models become more
sensitive to the local state of the flow, resulting in more

accurate prediction of transition or re-laminarization, better
near-wall behavior, and altogether more accurate results than

models in which the coefficients are specified a priori. For

this reason several of the models described in the previous

section have been implemented dynamically.

Dynamic adjustment of the model coefficients is based
on the identity 32

£ij = ff iff j- _i_ j = Tij -- Tij ' (3.9)

which relates the resolved turbulent stresses Eq, the subgrid-

scale stresses Tij and the subtest stresses Tij=uiuj-ttiu j ,

obtained by applying a filter G, of characteristic length S_, to

the Navier-Stokes equations.
Consider an eddy-viscosity model, valid for both subgrid

and subtest stresses, of the form

Tij = -- 2 Cev aij, Tij = - 2 Cevflq, (3.10)

where o_ij and fl# are generic terms of the form shown in Eq.
(3.1). Upon substituting Eq. (3. I0) into Eq. (3.9), the identity

can be satisfied only approximately, since the stresses are

replaced by modeling assumptions, and the system is over-
determined (five independent equations are available to de-

termine a single coefficient). Lilly s proposed that the error

incurred when a single coefficient is used be minimized in a

least-square sense. The error is

el) = _ij -- Tij + TiJ_j

=Eij+2Cev(flij-_ij)=Eij+2CevMij, (3.11)

with Mij=t_ij - _ij" The least-squares minimization proce-
dure requires that 3E2/0C_o = O(eijeij)/OCev=O, where the

brackets indicate an appropriate average; 33 this yields

1 Peg
= - - , (3.12)

Ceu 2 PMM

where PEF = (EqFij).
Consider now a one-coefficient mixed model of the form

r#=Aq-2C,oaq, Tq=Bij-2C,_flq, (3.13)

where, once again, A ;j and Bi) represent generic forms of the
scale-similar part of the stresses, as in Eq. (3.5) or Eq. (3.7).

In this case the least-squares minimization procedure gives

1 PEM-- PNM

Cev= 2 PMM ' (3.14)

A

where Nij= Bij-Aij.
An analogous method can be used in the case of two

model coefficients: Let

Tij = CssAi j - 2CeuOtij, Tij = CssBij - 2Ceol_ij.
(3.15)

The error is

eij = £ij - CssNi) + 2CeoMq • (3.16)
2

Requiring that OE"/cgC,s= OE /cgC_v =0 results in

PMNP £M- PMMP EN
Css(x,t)= - , (3.17)

PMNPMN- PMMPNN

1 PMNPEN - PNNPEM

C_v(x't)=- 2 PMNPMN--PMMPNN " (3.18)

C. Ensemble averaging

It remains to determine the ensemble-averaging operator

(.). The ensemble average has the purpose of removing very

sharp fluctuations of the coefficient, which tend to destabilize
numerical calculations and make the model inconsistent,

since the model coefficients cannot be extracted from the

filtering operation (i.e., the difference Colij--Colij becomes

significant). Germano et al. 7 averaged the model coefficient

over all homogeneous directions, thereby removing com-

pletely the mathematical inconsistency. Ghosal et al. 12 per-

formed no averaging; they, however, used an integral formu-

lation of the identity (3.9) that rigorously removed the

mathematical inconsistency at the expense of solving an in-

tegral equation at each time step (an expense comparable to
the solution of a Poisson equation, therefore, significant).

Localized filtering can be performed over the scale 3i (some-

what justifiable by the consideration that, if the same coeffi-

cient is used to model both r;, and Ti; it must be smooth on
the test-filter scale). Zang et al. is performed this type of av-
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eraging; the inclusion of the scale-similar part into their

model decreased the contribution of the eddy-viscosity term,

and no spuriously high values of the coefficient were ob-

served.
An attractive alternative localized model uses the La-

grangian ensemble proposed by Meneveau et al. 2t and de-

fined as

Zi=(f)= f_= f(t')W(t-t')dt', (3.19)

where the integral is carried out following a fluid path-line,

and W(t) is an exponential weighting functions appropri-

ately chosen to give more weight to recent times. The eddy-

viscosity model coefficient in Eq. (3.12), for instance, can
then be written as

1 (_ijMi)) 1 Z"LM
(3.2o)

Cev= 2 (Mm,M,,n) 2 EL M '

where a superscript n denotes the time step, and

ZLM: f _ = [:,j(t')Mq(t')W(t-t')dt',

(3.21)

ZM'Vt= f _ =Mij(t')Mij(t')W(t-t')dt'"

If the weight function is chosen to be

W(t) = T- t exp( - t/T), (3.22)

where the time constant is given by T= 1.5A

×(-SZ_MZ_M) -1/8, these integrals can be approximated

by

Z_M(X)=H{eEi_jMi_j+(1--e)Z"L_tI(x--unAt)}, (3.23)

E)£_-MM (X--U At)}, (3.24)z;,M(x) =/_{EMi"y_ + (1- °-' "

where H is the ramp function, the evaluation of the integrals
at x-u_At can be performed by linear interpolation, and

AtlT
e = -- (3.25)

1 + At�T"

In order to avoid complex values for T, if Cev(x,t)=O is

reached, Z_ 4 is set to zero.
This type of averaging is based on the consideration that

the memory effects should be calculated in a Lagrangian

framework, following the fluid particle, rather than at an Eu-

Ierian point, which sees different particles, with different his-

tories, at each instant. A more complete analysis of this
model can be found in the reference by Meneveau et al. 21

IV. RESULTS AND DISCUSSION

A. Models tested

It was not the purpose of this paper to perform an ex-
haustive test of all scale-similar and mixed models presented

in literature, but only to examine some representative ones,

investigate their behavior, and especially their response to

perturbation from equilibrium.

To compare mixed and eddy viscosity models, and

evaluate the effect of the scale-similar part, the following
models were tested:

(1) Smagorinsky model (SMG): Only the anisotropic

part of the SGS stresses is modeled, the coefficient C,o is set
to 0.01, and van Driest 4 damping is used to account for near-

wall effects

"cq- --_'vkk = -2Cev[A(1 -e-Y+/A÷)]ZIS[Sq, (4.1)

where y+ = ur( 1 - lyl/8)/v, and A + = 25.

(2) Dynamic eddy-viscosity model (DEV): plane-

averaged formulation of the dynamic model, similar to the
implementation by Piomelli: 35

fii) 1 (l_.ijMi))

r;j- -5--r_k= - 2C,_AZlglg,j, Cev(y,t) = 2 (MijMi)) '

(4.2)

where the brackets denote plane-averaging.

(3) Dynamic mixed model (DMM): Mixed, one-
coefficient model similar to that used by Zang, Street, and

Koseff. 18 The model is given by Eq. (3.6) (the entire SGS

stress tensor is modeled, rather than the anisotropic part

only); the coefficient Ceo is obtained from Eq. (3.14), the

brackets denoting local averaging over the test-filter cell.

(4) Lagrangian eddy-viscosity model (LEV): Localized,

Lagrangian-averaged dynamic model, similar to the imple-

mentation by Meneveau et al.; 21 the model is given by Eq.

(4.2), with C,o= Cev(x,t) and the brackets representing La-

grangian averaging performed according to Eqs. (3.23) and

(3.24).

(5) Lagrangian one-coefficient mixed model (LMI): The

model is again given by Eq. (3.6), and it is similar to the one

used by Wu and Squires, 2° apart from a difference in the

Lagrangian time-scale and in the filtering length; the coeffi-

cient Cev is obtained from Eq. (3.14) using the Lagrangian

averaging procedure. In order to avoid complex values for T,

if Ceo(x,t)=O is reached, Z_M is set equal to Z[_v. The

scale similar part is defined according to the consistent for-
mulation proposed by Vreman et al. 19

(6) Two-coefficient Lagrangian mixed model (LM2):

Following Anderson and Meneveau 22 the scale-similar part

is proportional to the resolved turbulent stresses £#. The
two model coefficients are obtained from Eqs. (3.17) and

(3.18) using the Lagrangian averaging procedure. In this

case, the clipping required to avoid complex values of T is

performed by setting

ZnLNZnM N

n _ _ (4.3)ZLM - n

_NN

Coarse DNS calculations that used no model were also

carried out to evaluate whether the SGS model had a signifi-

cant contribution. They will be denoted by CDS.

The top-hat filter was used for all explicit filtering op-

erations required for the evaluation of the scale-similar
model, and as test filter. The expressions employed by Zang

et al. 18 were used here. Filtering was performed in planes of

homogeneity only, to avoid commutation errors. The test-
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FIG. 2. Mean velocity profiles in wall coordinates in the two-dimensional
plane channel, Re,=l 050. Dynamic eddy-viscosity model (plane-
averaged). -- Fourier cutoff filter; --- top-hat filter, _i/_i = ,f6; --

• -- top-hat filter, /._,/&i= 2; -- logarithmic law.

filter width in the x and z directions was chosen to be /_i

= V_-z, following the work of Lund, 34 who demonstrated
that the use of a consistent filter width (determined based on

the standard deviation of the discrete filter function) gives

more accurate prediction of the turbulent statistics. This re-
sult was confirmed here: The mean velocity profile obtained

with the inconsistent filter width _i = 2_'i, shown in Fig. 2,

are characterized by an excessively high wall stress, which

results in a higher intercept of the logarithmic layer. It should
be noted that the use of the top-hat filter rather than the

Fourier cutoff, the natural choice when a spectral code is

used, leads to a general decrease in the accuracy of the re-
sults, as also shown in Fig. 2. The choice of the top-hat filter

in the present calculations was dictated by the desire to ex-

amine mixed models (with the Fourier cutoff filter t7z= ui);

furthermore, present applications of LES to complex flows
are bound to use finite-difference and finite-volume tech-

niques, for which discrete filters similar to the top-hat filter
are the natural choice.

B. Two-dimensional channel flow

The parameters of the 2D channel flow calculations were
summarized in Table I. The wall stress obtained with the

various models, at both Reynolds numbers examined, is re-

ported in Table II. The most accurate prediction of the wall
stress is obtained with the one-coefficient Lagrangian mixed

model (LM1). The prediction of the wall stress is extremely
sensitive to the SGS model used and, especially, to the span-

wise grid resolution. In the present calculations the grid size

TABLE II. Wall shear stress.

rwX 103 (Error)
Re,= 180 Re,.= 1050

Experiment (Ref. 29) 1.86 1.13
SMG 1.47 (-20%) ""
DEV 1.58 (-15%) 0.90 (-20%)
DMM 1.65 (-12%) 0.94 (-16%)
LM1 1.66 (-11%) 1.00 (-11%)
LM2 1.68 (-10%) 1.32 (+19%)

3O

2O

10

........ L

l 10 100
y"

(b)

1 io 10o 100o
yO

FIG. 3. Mean velocity profiles in wall coordinates in the two-dimensional
plane channel. (a) Re_.=180, (b) Re_.= I 050.XDNS data;- dynamic
eddy-viscosity model; --- dynamic mixed model; -- - -- one-
coefficient Lagrangian mixed model; .... two-coefficient Lagrangian
mixed model; -- logarithmic law.

30 | .... '

r2O

in the spanwise direction was AZ += 12 and 26, respectively,

for the low and high Reynolds number calculations. The lat-

ter is barely sufficient to resolve the streaks, and some error

in the prediction of the wall stress should be expected. Even
when the Fourier cutoff filter is used, in fact, the wall stress

is underpredicted by 5%; use of the tophat filter, as shown in

Fig. 2, amplifies this problem by increasing the model dissi-

pation.
The mean velocity profiles, shown in Fig. 3, give the

same indications: All models give a somewhat high intercept

of the logarithmic layer, consistent with the low rw , with the

exception of the two-coefficient Lagrangian mixed model
(LM2), which, at high Reynolds number, was found to be

insufficiently dissipative, resulting in too high a value for rw

and too low an intercept of the logarithmic layer•

All models predict turbulence intensities in good agree-
ment with the DNS 36 and experimental 37 data. The stream-

wise intensities are shown in Fig. 4; similar results are ob-

tained for the other components.

The effect of the SGS model is significant, especially at

the high Reynolds number. The contribution of the eddy vis-

cosity term remains fairly small (less than 10% of the wall

stress, Fig. 5) especially with the two-coefficient mixed
model LM2. The contribution of the scale-similar part of the

model is larger, often significantly, than the eddy-viscosity
one. The two mixed models yield comparable values of the

total SGS shear; the dynamic mixed model (DMM) has a

significantly larger eddy-viscosity contribution, caused by

spurious high values due to the lack of averaging, as will be
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FIG. 5. Subgrid-scale shear stress in the two-dimensional plane channel. (a)

Rer = 180, (b) Re,= 1050. -- Dynamic eddy-viscosity model; --- dy-

namic mixed model; -- . -- one-coefficient Lagrangian mixed model;

.... Lagrangian two-coefficients mixed model. Lines: eddy viscosity com-

ponent; lines and symbols: eddy viscosity and scale-similar components.

shown later; the fact that the total SGS stress is essentially

the same as the Lagrangian mixed model (LM1), however,

indicates that the scale-similar stresses adjust accordingly. In

both models the scale-similar stresses have the same coeffi-

cient (C,.,= 1); this indicates that the velocity spectra are

being modified in a subtle manner as to maintain the total

shear stress unchanged. In plane channel flow the plane- and

time-averaged streamwise momentum equation

L -dy -(u'u')-<_'12>+v , (4.4)

(where (. > denotes plane- and time-averaging, and a prime

indicates a fluctuating quantity, f' =f- (f)) forces a balance

between the SGS and resolved stresses (above y+=20 the

viscous contribution is negligible), that cannot change inde-

pendently from each other.

The different behavior of the mixed models is also re-

flected in different energy interchange mechanisms. In Figs.

6 and 7 the contributions of the eddy-viscosity and scale-

similar parts of the SGS model to the SGS dissipation are

shown. The SGS dissipation, defined here as e_g,= - "l'ijaij,

represents the net large-scale energy drained by the subgrid

scales; forward scatter (energy transfer to the small scales)

corresponds to esgs>0, backscatter (energy feedback from

the small to the large scales) to %gs<0. In mixed models,

two contributions to the SGS dissipation can be identified,

one due to the eddy-viscosity part of the model, Esgs

=-2CeuO_ijSij, the other to the scale-similar part, E_ s

t_
,,u

to
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FIG. 6. Subgrid-scale dissipation in the two-dimensional plane channel,

Rer = 180. (a) Dissipation by the eddy-viscosity part of the SGS stresses,
co _s

e_ ; (b) dissipation by the scale-similar part of the SGS stresses, e_gs; (c)

total SGS dissipation, _sg_. -- Dynamic eddy-viscosity model; --- dy-
namic mixed model; -- • -- one-coefficient Lagrangian mixed model;

.... two-coefficient Lagrangian mixed model.
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total SGS dissipation, e,g.,.• -- Dynamic eddy-viscosity model; --- dy-
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.... two-coefficient Lagrangian mixed model.

= CssAijSij. At the low Reynolds number, Fig. 6, the two

mixed models behave in a very similar manner; reflecting the

differences in _'12, the eddy-viscosity component is larger for

the dynamic mixed model, but the scale-similar parts adjust

in such a way that the total SGS dissipation is nearly identi-

cal [Fig. 6(c)]. The dynamic eddy-viscosity model has the

largest eddy-viscosity contribution, but the total esgs is the

smallest. The two-coefficient Lagrangian mixed model,

LM2, is the one with the smallest eddy-viscosity dissipation.

At the higher Reynolds number, Fig. 7, the same behav-

ior is observed for all models, with the exception of the

two-coefficient Lagrangian mixed model, LM2, which ex-

hibits a significant increase in the scale-similar contribution,

partially balanced by a large decrease in the eddy-viscosity

component. The total SGS dissipation is the lowest among

the models examined, for y + > 20. The significant difference

in the scale-similar and eddy-viscosity components of the

SGS stresses and dissipation at the two Reynolds numbers is

due to very different values of the model coefficients. At the

high Reynolds number, Cs_. is three to four times higher than

in the low Reynolds number case in the near-wall and buffer

layers (Fig. 8). A decrease of Ceo corresponds to this in-

crease. It is difficult to determine whether the eddy-viscosity

component of the decreases to adjust for the increase in the

scale-similar part, or vice versa. The fact that the high con-

tribution of the scale-similar part is due to an increased co-

efficient, rather than to an increase of the resolved turbulent

stresses £_j, indicates that the dynamic procedure might be

giving suspect results in this case. This may be due to the

1.4
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FIG. 8. Eddy-viscosity and scale-similar model coefficients in the two-
dimensional plane channel. Two-coefficient Lagrangian mixed model. --

Re_= 1 050; -- - Re_-= 180. (a) C,_ ; (b) C,_,.

fact that the two-coefficients Lagrangian mixed model LM2

requires three levels of filtering, the principal (grid) filter, the

test filter, and a coarser one necessary to evaluate B U . With

the resolution of the high Reynolds number calculation, the

last one corresponds to a filter width equal to 620 wall units

in the streamwise direction, 156 in the spanwise direction.

Such a filter width is significantly larger than most of the

eddies that govern the momentum and energy transfer in the

buffer layer. At the low Reynolds number, on the other hand,

the coarsest filter has a more reasonable width of 282 wall

units in x and 72 in z.

The Lagrangian ensemble-averaging procedure is very

effective in removing spurious oscillations of the eddy-

viscosity coefficient, as observed by Meneveau et al., 2t even

in mixed models. Figure 9 compares the average, root-mean-

square (rms) and maximum values of the eddy-viscosity co-

efficient, Cev, for the dynamic eddy-viscosity model, DEV,

the dynamic mixed model, DMM, and the two Lagrangian

mixed models, LM1 and LM2. The values obtained using the

plane-averaged DEV model are consistent with previous re-

suits: Ceo approaches the Smagorinsky constant value, C_

= 0.01 towards the center of the channel, but decays rapidly

(like y+3) near the wall. With the Lagrangian averaging, the

values of the rms and maximum C,o are of the same order as

the average. As mentioned previously, the dynamic mixed

model gives a higher value of the coefficient; this is due to

the fact that, following Zang et al., t8 the only averaging per-

formed here was over the test-filter size; this results in spu-

riously high values of the coefficient, as confirmed by the

rms and maximum values of the coefficient which are, re-

spectively, twenty and fifty times higher than the mean

value. These oscillations, however, do not cause numerical

instabilities (partly because the most severe ones occur near

the center of the channel, where the shear is small). It is

conceivable that in finite-volume codes (especially those that

use upwind schemes such as the one used by Zang et al. Is)

the velocity spectra might decay more rapidly than in the

present case, leading to smoother fields of C,_.
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C. Three-dimensional boundary layer

A completely different physical scenario occurs in the "

three-dimensional boundary layer, in which local nonequilib-

rium effects are significant. In Fig. 10 the evolution of the

wall-shear stress, %, and the turbulent kinetic energy aver-

b-
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FIG. 10. Time history of the wall shear stress and average turbulent kinetic

energy in the three-dimensional boundary layer flow. All quantities are ini-

tialized by their initial values. (a) %/r_. o ; (b) K:/E o . -- Coarse DNS;

- - - Smagorinsky model; -- • -- dynamic eddy-viscosity model; ....

dynamic mixed model; ..... one-coefficient Lagrangian mixed model;

- - - two-coefficient Lagrangian mixed model; A DNS (Ref. 27).
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FIG. l 1. Total (viscous+SGS) dissipation profiles. -- Smagorinsky model;

--- dynamic eddy-viscosity model; -- . -- one-coefficient Lagrangian

model. (a) t/u,.o<_O; (b) t/u,.o=O.08; (c) t/u,.o=O. 16.

aged over the entire channel height,/C, are shown as a func-

tion of dimensionless time tu_,o/_. Both quantities are nor-

malized by their initial values, %,,o and/C O.

Although at this Reynolds number the SGS stresses are

smaller than at Re= 1050, the effect of the model is signifi-

cant. Computations performed without any model (CDS), in

fact, are unable to predict the nonequilibrium effects, and

give the incorrect time development of all the quantities ex-

amined. The Smagorinsky model also gives significant er-

rors: Before the shear is applied, the model over-predicts the

dissipation slightly, especially in the buffer region. The im-

position of the strain leads to a doubling of the SGS dissipa-

tion (Fig. 11), that results in excessive damping of the tur-

bulent fluctuations.

Other models (DEV and LM1, for instance) have a less

abrupt change in the dissipation, due to the fact that the

model itself adjusts to the imposition of the shear: In Fig. 12

the time development of the plane-averaged coefficient is

shown at three locations in the layer. Near the wall, the sud-

den appearance of dW/dy results in an increased value of the

strain-rate magnitude IS[, but also in an increase of the de-

nominator of Eq. (3.14), and, hence, in a decrease of the

magnitude of the coefficient that counteracts the increase of
+

IS[. Notice how the decrease of C_ occurs later at Yo = 13
+ +

than aty o =6, and not at all at Yo + =57, reflecting the time

required by the disturbance to propagate away from the wall.

The self-adjusting character of the dynamic models led to

improved prediction of the response of the flow to the per-

turbation. The one-coefficient Lagrangian mixed model,

LM1, predicts the turbulent kinetic energy development very

accurately, the wall stress only slightly less so. The two-
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coefficient Lagrangian mixed model, LM2, also gives accu-

rate results.

Very little difference can be observed between the mean

velocity profiles obtained with the various models (Fig. 13).

A more significant difference is apparent in the prediction of

the turbulent kinetic energy/C, shown in Fig. 14. The results

obtained with the Lagrangian eddy-viscosity model, LEV,

are generally more accurate than those yielded by the plane-

averaged model DEV, confirming the positive features of

this technique. The introduction of a scale-similar term, how- .
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coefficient Lagrangian mixed model; .... two-coefficient Lagrangian
mixed model; A DNS (Ref. 27).

4 J

3 ..";" "'

^ 3

1

o

o 20 40 60 80 1oo

y"

FIG. 14. Turbulent kinetic energy profiles in the three-dimensional bound-

ary layer flow. (a) tU_.o/_=0.075; (b) tur.o/_=0.3; (c) ruT.o/8=0.6. --

Dynamic eddy-viscosity model; --- dynamic mixed model; -- • --
one-coefficient Lagrangian mixed model; .... two-coefficient Lagrangian

mixed model; A DNS (Ref. 27).

ever, appears to be beneficial, since the three mixed models

tested give consistently better results than either the purely

dissipative ones.

Particularly important, in this flow, is an accurate predic-

tion of the secondary stresses (u'w') and (u'w'). Although

both are significant, the former can become significantly

larger than the primary stress, (u'v'). The mixed models,

and in particular the one-coefficient Lagrangian mixed model

LM1, predict the secondary stresses very accurately (Fig.

15).

V. CONCLUSIONS

The predictions of three mixed models have been com-

pared with those of three eddy-viscosity models, and with

DNS and experimental data, in two flows, a two-dimensional

plane channel, both at low and moderately high Reynolds

numbers, and a three-dimensional boundary layer obtained

by moving the wall of a fully-developed plane channel in the

spanwise direction.

In general, mixed models are found to give more accu-

rate results than eddy-viscosity ones. For the dynamic and

one-coefficient Lagrangian mixed models (DMM and LM1)

this might be due to the fact that using these model is equiva-

lent to filtering the Navier-Stokes equations explicitly.

Lund 34 discussed the advantages of such procedure, which

has the drawback that Galilean invariance is lost unless a

scale-similar model of the form Eq. (3.5) with a coefficient

equal to one is used. Lund 34 expressed some concern that the

use of a scale-similar model might introduce higher frequen-

cies into the calculation and lead to less accurate results. This

potential problem was not observed here, even when the dy-
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namic mixed model, DMM, was used; this model gave im-

proved results over the plane-averaged eddy-viscosity model

in all the cases examined, although only very significant

fluctuations of the model coefficient were present (which,

however, did not lead to numerical instabilities).

The Lagrangian averaging procedure was found to be

extremely beneficial, giving in general better results than ei-

ther plane or local averaging. The value of the time constant

T recommended by Meneveau et al. 2t was used here for the

eddy-viscosity term and (in the case of the two-coefficient

mixed model, LM2) for the scale-similar part as well. The

results obtained with the LM2 model were not, altogether,

satisfactory: While at low Reynolds number the model per-

formed well, both for the two-dimensional and three-

dimensional calculations, the results obtained at the higher

Reynolds number were not particularly accurate. Two pos-

sible reasons for this decrease in accuracy are the fact that

the LM2 model requires three levels of filtering, A-, z_

= 6,_-, and A = 6&'. At high Reynolds numbers the coarsest

filter is clearly in the energy-containing range, and the as-

sumptions on which the dynamic procedure is based (prima-

rily, that of similarity of the stresses) are expected to fail. It

is also possible that the use of a different time constant T in

the Lagrangian averaging for the terms that involve the

scale-similar terms might be required (since those represent

interaction between scales of similar size, while the eddy-

viscosity term models the distant interactions). It is unlikely

that a Reynolds-number dependence of T might be the prin-

cipal cause of error, since the higher Reynolds numbers cal-

culation was performed at a value of Rer only 50% higher

than the value of 640 computed by Meneveau et al. 21

Sarghini, Piomelli, and Balaras

TABLE llI. CPU time required by various models, normalized by that used

by the Smagorinsky model.

Model CPU

No model (CDS)

Smagorinsky (SMG)

Dynamic eddy viscosity (DEV)

Dynamic mixed (DMM)

Lagrangian eddy viscosity (LEV)

Lagrangian mixed one-coefficient (LM1)

Lagrangian mixed two-coefficient (LM2)

0.93

1.00

1.07

1.ll

1.20

1.25

1.31

One important consideration regards the increased re-

sources required by more complex LES models. The dy-

namic model requires more operations and memory than the

Smagorinsky one, since the various terms used in the con-

tractions must be computed and stored. Mixed models and

the Lagrangian averaging procedure require additional effort.

Table III reports the CPU time (normalized by the Smagor-

insky model) of each model. The numbers reported show, of

course, only qualitative trends, since they are strongly

implementation- and machine-dependent. In this particular

case, all the computations were run on a Cray C90, and the

model coefficient (or coefficients) were evaluated once per

step, while both the eddy-viscosity and the scale-similar

models were computed at each Runge-Kutta stage. It is

quite readily seen that the additional cost of the Lagrangian

models is significant.

The increased CPU time may be partly due to the diffi-

culty in vectorizing the Lagrangian interpolation routines.

The CPU time used by the dynamic mixed model, DMM, is

actually substantially higher than apparent in Table III, since,

due to the fluctuations of the coefficient Cev, the time step

had to be decreased by 25% to avoid numerical instabilities.

Altogether, the additional effort required by the one-

coefficient mixed model, LM1, may be justified by its higher

accuracy. The use of additional filters, or the evaluation of

additional model coefficients might make the cost of the

model excessive, and might not be worth the computational

effort.

The one-coefficient Lagrangian mixed model (LM 1) was

the one that gave, in our opinion, the best results, on the

average, among those tested. Compared with the dynamic

mixed model (DMM) it was more stable and cost effective,

and more likely to be accurate when extended to more com-

plex configurations.
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