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ABSTRACT
The present paper is a final technical report within the NCCW-1-233 research

program (dated June I, 1997) accomplished as a part of co-operation between United States'
NASA and Russia's Goskomoboronprom in aeronautics, and continues similar NCCW-73
and NCC-1-233 programs accomplished in 1996 and 1997, respectively.

The report concludes studies in two domains, "Analyzing the effect of skin
postbuckling on general stresses and strains in a composite structure" and "Evaluating the
effect of skin postbuckling behavior on general stability of a composite structure"; the work
was fulfilled in compliance with NCC-1-233 requirements (as of June 1, 1997).

Also, the present studies may be regarded as a partial generalization of efforts in [I, 2]
conducted within the above programs in what concerns postbuckling behavior of composite

structures.
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INTRODUCTION

The previous studies in [1, 2] paid major attention to postbuckling behavior of
composite plates and built-up panels with consideration of nonuniform heating; the presevnt
effort deals mainly with the general strength and stability problem for a built-up structure in
which some components have buckled.

In thin-walled aircraft structures the skin is known to buckle locally under loads
much less than ultimate loads. So there appears the nonlinear problem to determine general
stresses and load-bearing capability of the structures with buckled skins (refer to [3]). For
example, static strength of a wing box in bending is usually limited by general stability of the
upper stiffened panel — in which the local buckling of skin cells between stiffeners may occur
at a lower load than that of the panel.

Upon skin buckling the panel is regarded as an anisotropic structure whose skin has
some lowered (reduced) elastic characteristics that depend on the load level and are involved
in the usual equations for computing orthotropic panel stiffnesses. Thus, two diverse
problems have to be solved.

At the first stage the load should be increased gradually and the subcritical general
stresses of the structure with the skin buckled should be determined by utilizing a reliable
procedure (for example, with a simplified beam-based model or the finite element methods.)
During these operations the element stress resultants are nonlinear functions of the load,
and their values are necessary in solving the general buckling problem at each value of the
(varying) load. For built-up structures (including wings and fuselages) this second problem
may be solved by analytical and/or numerical methods. Let us consider main aspects of
these two problems taking into account features of composite structures.

A report on the numerical method for evaluating stresses in a thin-walled structure
with a buckled metal skin was delivered by the present authors in Stuttgart at the World
Congress on Computational Mechanics, WCCM-II (see [3].) New reduction techniques and
finite elements were used to transform the problem to classical iterations with variable
elasticity parameters which are employed when caullculating stresses and strains in
nonlinearly elastic structures. Specific to the skin out of composites is the necessity to
compute its secant reduced stiffnesses by utilizing some relatively simple relations — in
particular, those derived in [I, 2]. Thus, the analytical method of [3] applies to structures
with composite elements. If required, the simplified solution to the problem on postbuckling
behavior of a composite plate derived in [1, 2] may also be used to estimate the strength of
each buckled skin cell with consideration of in-plane forces and variable bending
deformation caused by out-of-plane deflection. This problem is discussed below in Part I.

At each load value the second problem (on general instability of an isolated

orthotropic panel or a cylindrical structure as a whole) may upon imposing some limitations



be solved effectively by utilizing the numerical analysis method the authors developed in [4].
However, the stability equations, unlike the stress/strain equations, are requiring the
tangential stiffnesses which relate increments in generalized resultants and strains. This
forces analysts to compute the tangential stiffnesses (introduced in [1]) of the buckled
composite skin. Relevant issues are considered below in Part 11.

In addition, both Parts pay much attention to algorithmic aspects and parametric
analyses in which the features and the level of the influence of skin postbuckling on global
stresses and stability of composite and metal structures. Moreover, both Parts allow for
mechanical and temperature-induced loads.

It is clear that the proposed approach to allowance for the skin postbuckling effect
on global stresses and stability of built-up structures is simplified and limited. However, the
only real alternative thereto is a finite-clement-based solution of a general geometrically
nonlinear problem on very fine meshes, and this requires obtaining all local and general
buckling shapes and bifurcation points for variable loads up to the structural failure loads.
The latest finite-element software programs enable trying this way — but the result validity

would always be in doubt.



Part 1. Analyzing the effect of skin postbuckling on general stresses and
strains in a composite structure
1.1 Simplified (engineering) methods for evaluating nonlinear stresses and strains in a
thin-walled structure with a buckled composite skin

The influence of skih postbuckling on global stresses in a structure with a thin
composite skin is very simple to consider by relying on engineering analysis methods that
use a beam model suitable in dealing with long regular wing/fuselage sections.

Let us briefly outline principles of the method.

Consideration is given to a thin-walled section of a stiffened structure with a general
cross-sectional shape; the global orthogonal coordinate system 0XYZ is introduced so that the
X and Y axes are in the cross-sectional plane and the Z axis is running along the section (see
Fig. 1.1.) In the cross-sectional plane the coordinate system origin is at an arbitrary point.

Both the skin thickness & and the cross-sectional dimensions of longitudinal
stiffeners are assumed to be small as compared with general cross-sectional dimensions of
the structure.

For the cross section contour (at Z = const ) we introduce the local coordinate
system snz whose origin is at an arbitrary point, the s axis is tangential to the contour, the
n axis is normal, and the z axis is parallel to the Z axis. The skin is made of a composite
material with a symmetric layup of layer groups with various principal directions.
Equivalent mechanical characteristics of the skin are determined on the basis of mechanical
characteristics of orthotropic layers (Eq1, Egp, Gip, pop and pyy = pyy Es/E(1), the
directions of layer groups, and volumetric fractions of the layer groups.

The equivalent mechanical characteristics E;, Es, Gy = Gg; and pg, correspond
to the data for the orthotropic material.

The analytical method relies on the following hypotheses:
1. The cross-sectional contour (at z = const ) is not deformable in its plane, i.e., the relative
contour deformation is zero (g = 0).
2. Strain in any cross section is described by the plane equation:

€, =85 +0yx + 0y , (1.1)

Herein, ¢, 8y and 0 are certain functions of z; the prime sign designates
differentiation with respect to z.

Now we use conventional stress/strain relations for an orthotropic skin
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to derive the normal stress o, profile over the sectional contour-
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(s0 +0yx +64) (1.2)
As usual, o = —p,0,.

3. Since the skin thickness & is thin, the skin is assumed not to take bending, SO its
tangential stress t and normal stress o, are distributed uniformly throughout the thickness
direction. In this case it is convenient to introduce the normal stress resultant and the
tangential stress flow by using, respectively,

N,=0,6, q=15. (1.3)
The flow q is tangential to the cross section contour. Similarly, stiffener sizes are small in

relation to the cross section contour sizes; therefore, we are allowed to assume that the
stiffener cross-sectional area f is concentrated at the relevant contour point and that its
forceis P; = fo,, where o, is the stiffener stress.
4. At each cross section z = const external loads are

- bending moments M, (z), M, (2),

— torsional moment M, (z),

— axial force N,(z),
— shear forces Q, (z) and Qy(z),

these are referred to the axes X, Y, and Z above. Positive directions for the external
factors may be seen in Fig. 1.1.

Note that these factors satisfy the relations,

dz =Qy’ dz =_Qx (14)

Evaluating the normal stresses

Unknown values of ¢,, 6, and 05 should be determined from equilibrium equations:

n
$o,8ds + .Z]czsifsi = N,:
1=

n
§czyds+.20mfsiyi =M,; - (1.5)

1=
n
fo,xds + X o,4f5x; = -M
1=
Here, o, is the skin stress,
O,; isthestressin an i-th stiffener,
) is the skin thickness,
f,,  1sthecross-sectional area of the i-th stiffener, and

n is the total number of stiffeners in the section.



If stiffeners are rather numerous, the integrals can be estimated in a simple way by adding to
each stiffener a half of the areas of the skin cells neighbouring with the stiffener (see Fig. 1.1.)

In this case the integrals in (1.5) become finite sums; using (1.2) we have

EiFsitaZi =N,,
EZ i Yi€a =M,, (1.6)
EZFS,XISZI =-M,,
where
F,;, =14f +§JE%(‘)ro 938;by;, (1.7)

Summation in (1.7) is for the set {w(i) } of panels neighbouring with the i-th node,

r, =Ei/E, 15= Ey
i e (l—u:zjuisj)E’

E is the Young's modulus of the material to which the characteristics of stiffeners and skin

cells are reduced,

E.. is the Young's modulus of a j-th cell, E = @3 EZJ,

zj
(pj-’ is the secant reduction coefficient for the ]-th cell (with cpﬁ < 1 if the cell buckles),

p® and psm are secant Poisson's ratios for the j-th cell upon buckling, and

sZ)
b.; is the width of the j-th cell.

sJ
Formulas for computing p. i p and <pJ are presented in [1].

As (1.1) postulates, €, = €4 +0yX; + 0, y;,so we can re-write (1.6) as,
F S5, S,|is, N,
E-S, I, ILy}6x¢=7 M« > (1.8)
S, Ly 1,/ -M,

Here, F = Z F,; is the generalized cross section area, -

i=1
n »
S, = X Fy; isthe generalized area moment for the x axis,
1=1
n -
Sy = Y Fgx; is the generalized area moment for the y axis,
i=1
n
Iy =2 Fs,yl is the generalized moment of inertia for the x axis,

stxiz is the generalized moment of inertia for the y axis, and

._.
3
]

m M=

n
= Y Fgx,y; isthe generalized product of inertia.
i=1



The system (1.8) is nonlinear because the generalized sectional characteristics include the

reduction factors cpjf which depend on skin stresses (upon buckling) — and on unknown

values of €,, 6% and 6.

Therefore, the normal stress in structural components should be determined by

‘terations with external loads being increased in increments. At a fixed external load (the
vector {N,, M, My}) the analysis runs as follows.
Initially, all reduction factors cpﬁ are set to 1. Equation (1.7) is used to compute F;

for all values of i and establish the matrix with generalized sectional characteristics. The

system (1.8) is solved to evaluate €,, 8y and 6y. The formula (1.2) provides stresses in skin
cells. If these stresses are greater than critical for at least one panel, the respective secant
reduction factors (pj? and seéant Poisson's ratios are calculated by employing relations from [1].
The reduction factors and Poisson's ratio values are used to obtain Fg; from (1.7) and the

matrix of generalized sectional characteristics. The system (1.8) is solved to again evaluate g,,

0 and, 8} . The successive iteration process does usually converge for 3 or 4 cycles.

Determining shear stresses

To determine the skin shear stress flow q we should consider the equilibrium

condition for a skin element dsdz (Fig. 1.2) at N, = const:

oo, oq
3+—=0. .
2 0t % =0 (19)
Then the shear stress flow may be written as,
q=QQ+qo(Z), (1.10)
100, . .
where qq = -J > §ds and q is an unknown closing flow.

0

Now we employ the above discrete section model to write:

Qai ='Z

Differentiate equations (1.8) with respect to z and involve (1.4) to obtain,

ZFSIE(S +0)x; +8Ly )==—E§Fsi(s;+e;xi+e;yi). (1.11)

F Sy Syl|€o 0
E-IS¢ Ix Lyhox(=1Qy (- (1.12)
Sy Ly 1y||0y Qx

Thus, for us to determine the derivatives €, 0y and 0% (present in (1.11)) we have

equation (1.12) in which the matrix of generalized sectional characteristics is the same as
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that in (1.8), and the right-hand side vector contains shear forces. With this set of equations

solved, the shear stress flow is calculated by (1.11) taking into consideration that

i i i
F=2Fi. Sqi=XFavi, Syi =2 Fsixi - (1.13)
are the generalized lsilctional area :rlld the static mo:ents of the cut part; these are computed
allowing for sectional topology. The closing flow q, is established by satisfying the
equilibrium equation for the torsional moment M.
If the sectional contour is simply connected, the flow q, is described by the Bredt

formula:

M
Qe = Qz, (1.14)

in which the symbol Q denotes the doubled internal area.

If, however, the section is multiply connected, the closing flows qoj should be

estimated by involving both the equilibrium equation and strain compatibility relations for
edges of the contours; taken together, these provide the number of equations necessary for

us to determine all flows q;.

In case the skin cells buckle under compression/shear, this circumstance is allowed
for when estimating the reduction factors (p? by the method explained in {1]. Problems on
normal stresses and shear flow are solved jointly at each iteration for determining reduction
factors cpjf and Poisson's ratios p3; and Hszj With consideration of shear stress.

This approach has been implemented in the composite structure section behavior
analysis software.

These means were utilized to investigate into the influence of postbuckling skin
deformation on global stresses in a stiffened cylindrical structure. Two examples were treated
in order to evaluate in numbers the significance of these factors in stress analyses.

The first example is a circular cylinder with a 2540-mm diameter, loaded with a
bending moment and a torsional moment, see Fig. 1.3. Distances b, between longitudinal
stiffeners are identical throughout the contour, and the frame spacing £ is 500 mm. The

skin is a 2.64-mm thick composite stack comprising 22 layers whose stacking sequence is

[05/902/452/—452]5. Equivalent skin data computed for the particular volume fractions

and ply angles are as follows: E,=6682kg/sq.mm, Eg=3768kg/sq.mm,

G, =1434kg/sq.mm, p,=0.3187. Similarly, skin ultimate stresses are oy, =44.5 kg/sq.mm

in compression, of, =312kg/sq.mm in tension, and 1, =248kg/sq.mm in shear.
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Consideration is given to two versions of longitudinal stiffening (see Fig. 1.4); these

differ in the stiffener spacing (bg =100mm and by, =125mm) and the stiffener section
area (f, =200sq.mm and fg; = 247sq. mm ). The sectional areas, fy and u f;,, are chosen

such that the total stiffener areas for the two versions are equal. With this, the equivalent

stiffener data are as follows: E, =8346kg/sq. mm, ultimate compressive stress

of, = 55.5kg/sq.mm, and ultimate tensile stress o, =390 kg/sq.mm . The structures are

analyzed while proportionally increasing the external load vector:
M, =tM,,, My =tMx,
(where t is the increasing proportionality coefficient) for two load patterns:

a) pure bending with M, = 5.10% kg-mm and M, =0,

b) bending and torsion with M,, =5- 10 kg- mm and M, =2.55- 10% kg-mm.

Calculated stresses for these stiffening schemes and load conditions are shown in
Figs 1.5 and 1.6 representing the lower stiffener stresses and mean stresses in the lowest
(compressed) skin cell; the argument here is the load parameter t = M, /M,, . Figure 1.51s
to the load condition a); and Fig. 1.6, to the load condition b). Let us first discuss the results
for the structure loaded in bending (Fig. 1.5)

Two straight lines (rays) which are running through the coordinate system origin and
marked with circles demonstrate the linear analysis not allowing for skin reduction at the
postbuckling stage. The upper ray reflects stiffener stresses, and the lower one, the skin stress.
Solid fine lines represent stiffener stresses and the mean skin stress in case the skin reduction

upon buckling is carried out. One can see that in the structure with the spacing by =100 mm the

lower cell buckles at t=0.58. With the load growing, the stiffener stresses increase, whereas

mean skin stresses fall in comparison with linear analysis results. In the structure with the

spacing by, =125mm the skin gets buckled at an earlier time: t ~0.38 in other respects the

stiffener stresses and mean skin stresses behave like those characteristics of the former version. It
should be mentioned that stresses notably re-distribute in V'c':omparison with the linear analysis
and the difference increases as the postbuckling level gets higher.

Moreover, the skin reduction amount varies in the vertical direction, so the neutral
axis is shifted to tension-loaded panels and this circumstance, in turn, causes the compression-
loaded structural part to take a greater force. Thus, the compression-loaded stiffeners are
carrying additional forces because of not only the "early" skin buckling but also the neutral
axis shift.

The results for the case with bending and torsion are depicted in Fig. 1.5. These are

similar to those in Fig. 1.6. Note that skin buckling stresses ¢, have diminished since the skin

e o ten rarry inenlane shear 1n thic case the lower nanel featnrec the ratin e —0K
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When assessing strength of a buckled skin cell, we must compute the total
maximum stresses through the thickness which are comprising the middle-surface stress and

the bending stress depending on local skin displacement w(x,y). These stresses may be

computed by the method exposed in [1].

Figure 1.7 depicts the dependence of the lower skin maximum stress (referred to the

ultimate stress G ) on the parameter t = M, /M, for the case a). The total stress o, at the
point {s/b, =05,z =£(,/2,h= §/2} reach the breaking condition

—at M /M,, =092 for the cell with by =100mm and

_at M, /M, ~098 for the cell with by, = 125mm.

Figure 1.8 shows a similar kind of dependence for the load case b). Torsion
decreases the value of t = M, /M, at which the breaking stress is attained:

- M, /M,, ~0.76 for by, =125mm and - M, /M, =082 for by =100mm.
Coordinates of the point with the hardest load depend on the external load. As for the
above value of M, /M,, , the breaking stress is attained at the point with coordinates
s/b, ~0.3;z=03¢,.

The second example is a rectangular cylinder with the 2000-mm width and the 1000-
mm height, loaded with bending or bending+torsion, see Fig. 1.9. The rib spacing £ equals
500 mm. Upper and lower panels and vertical side walls are 4.56-mm thick composite

materials with 38 layers stacked as [010 1905 /455 / —45; ]S. Equivalent skin data are as
follows: E,=7383kg/sq.mm, E,=3407kg/sq.mm, G ,=1311kg/sq. mm, p,=0.3217. Skin

ultimate stresses are o5, =49.2kg/sq.mm in compression, o, =34,5 kg/sq.mm in tension,
and T, =26.7kg/sq. mm in shear.

Consideration is given to two versions of longitudinal stiffening, see Fig. 1.10; these
differ in the stiffener spacing (bg =125mm and by, = 167mm) and the stiffener section
area (fy =247sq.mm and fg; =323 sq.mm )- The sectilgnal areas are specified so that the

total stiffener areas for both versions are equal. Equivalent stiffener data are the same as for
the first example.

Structures are analyzed for two load patterns:
a) pure bending (with the upper panel being in compression and the lower panel subjected to
tension) and

b) bending + torsion
while proportionally increasing the external load vector for M, =3.10% kg-mm and

M,, =197-10° kg-mm.
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Stresses calculated with and without allowance for nonlinearity are shown in Figs
1.11 and 1.12; as in the case with the circular cylinder the skin and stiffener stresses are
functions of the load parameter t. Figure {.11 is for the pure bending, and Fig. 1.12, for
bending + torsion. Figures 1.13 and .14 represent how the maximum stress in the compressed
skin varies with t; here, the "circle" (o) sign denotes values 6,/c =1 that correspond to loads
under which the stress at the external skin surface become equal to the ultimate values.

Qualitatively, the postbuckling deformation of the skin influences global stresses
and strains in the same manner as in the circular structure. Note that the wing skin is
usually thicker than the fuselage skin and is allowed to buckle under loads that exceed the
in-service values. Therefore, the skin reduction influence on global stress/strain fields in the
wing is less pronounced than that in the fuselage. In addition, wing skin reduction does not
almost result in additional load for compression-loaded panels — because spar webs give a
little contribution to‘ the wing bending stiffness, and the forces taken by upper and lower
panels are mainly defined by the bending moment and the section height. In the example

above, the typical wing situation is modeled by the structure with by =125mm and

fy =247sq. mm, and the skin buckles at t =0.93.

1.2. Nonlinear finite-element methods taking into account skin postbuckling behavior

An overall algorithm for numerically analyzing strength and stability of a thin-walled

structure with a buckled skin is depicted in Fig. 1.15. Here, t stands for any increasing

parameter (it may be time) which is an argument for loads; 0 < ¢° <land 0< o' <1 are
secant and tangential reduction factors that evaluate degradation of elastic characteristics of
the locally buckled skin; t« is the value of the parameter at which the structure fails because of

a) general buckling or

b) destruction of primary components not buckled or

¢) destruction of the buckled (composite or metallic) skin.
In the latter case we must pay attention not only to strength criteria with in-service loads but
also to
— requirements on allowable skin displacements and
_ the criterion of not reaching the yield strain (for metals) or of first-ply failure (for

composites) under in-service loads.
The problem is nonlinear because the skin reduction factors depend on skin

stresses; note that, according to [1, 2], the buckled skin is modeled by a stiffness-equivalent

non-buckled orthotropic plate made out of a nonlinearly elastic material.

P
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When analyzing global stresses of thin-walled structures by means of finite-element
programs, the stiffened panels and walls are usually modeled with triangular and

quadrilateral orthotropic plane-stress finite elements (Fig. 1.16a); nonlinearity is dealt with

at each value of t by conducting additional iterations which refine @*. Stiffeners

surrounding a skin cell are usually spaced rather closely and deform in compatibility with it;
therefore, the problem is below proposed to be solved by using new types of built-up finite
elements comprising the skin and stiffeners; these are convenient in allowing for
postbuckling behavior. In this case the composite skin orthotropy axes are assumed to

coincide with stiffener directions; the skin and stiffeners may have different temperatures.

Finite-elements

Consider a thin-gage triangular or quadrilateral plate of thickness & orthogonally
stiffened with ribs (in x- and y directions, at spacing ¢,, £, and cross-sectional areas F;, F,).
A skin material is assumed to be orthotropic, with principal axes running along the stiffeners.
Local coordinate systems have x,, ¥, and x},, y,, planes in a middle surface of the skin
(Fig. 1.16b), the structure is located in a global coordinate system Oxyz as desired. A skin
temperature field is considered uniform, of value T, whereas a stiffener temperature varies
along the z - axis, the same law being assumed for all stiffeners of the same direction. To
transform this model to an orthotropic material membrane, use can be made of the
«orthotropic layer» concept (by Birger, Ref. 5) with «core coefficients» K, K, and K, for

’
m

x' and y! — directions and for shear, respectively. Then, the elasticity relations for the

layer may be written as

o, VKo, oy v.K,0, ToKx  TuKy
=—— +A,, g5~ A, = = .
““g, " E, ‘4%, "B ‘Mv¥vToxk, “ok, P
or, in terms of stresses,
E, \ v,K,E,
= — > - A
o I_vanyKy (ex X)+1“VXVyKXKy' (Sy )’)’
= ViRt 1.16
= -A -A .
y I-v,v,KK, (8y y)+l—vxvyK,‘Ky(g" x> (1.16)
GK, GK,
Txyz K ny’ Tyxz K ‘Yx_v’ (Vyzuxy’vx ':pxy)'
A y

Here, A, =a,(T-T,), &, =a,(T~T,) are the thermal expansions, T, is the initial

temperature of panel. Integrating over periodical structural elements (Fig. 1.16c) and

assuming the in-plane deformation, one can derive the following elasticity relations:



N, = flx(sx —€xo) +f2(8y _eyo)'
N, =f,(e, —,,) +fiy(ey, —€,.), (1.17)
Ny = Ny =fiy Vs '
where
h-5/2 h-5/2
fo= | EX, dz fi, = B8, dz__,
T, 1-v,v,K.K, m’> e S l-v,v, KK M s
h-22 E v K,K, h-8/2 (1.18)
f, = e f,= [GK.d
? -8/2 - vanyKy Zm, v -6“‘/2 Y Zm
are stiffnesses of the panel,
e = flyTlx - fZle e = flely - f2T]x
* fle]y _f22 ’ ¥ fl:ﬂ(fly —f22 ,
(1.19)

h-8/2 h-8/2
_— B8+ WKy8) I E,K,(Ay +viKady)
X m?» m
5, - vy K Ky y 1-v,v, KK,

are temperature strains and stress resultants.

-3/2

Egs (1.15) to (1.19) are the same as formulae of Ref. 4, if the material used is
isotropic, but they are convenient for FEM codes to use. Really, eqs (1.17) correspond to

the typical matrix formulation:

{N} = [DJ({e} - te,}), (1.20)
where
f, f» O
[D]= fz fly 0
0 0 f,

is the constitutive matrix, {N} = [N, N, ny]T, {e} =g, syyxy]T, {0} =[ex0 Eyo 0]" are

vectors of stress resultants, and initial strains, respectively. After dividing eq (1.20) by the

skin thickness & and after comparing (1.20) to (1.16) at K, =K, =K, =1, one can see

that, in place of the panel, there is a membrane of thickness &, temperature T, average

L

stresses {c} = [0, 0, Ty, ]T =1/8{N}, made of an orthotrcpic material whose characteristics

is principal directions (xp, , ym ) are E,, Ey, G, vy, a4, O, S0 that

y
E_*_ E"_vy_ 0
1—_vxvy I—Xxvy
_ ! E,v, E,

. fel _ fe \ _lmi=

{0} [D]((& leoy)a [D] 8[D] I—VxVy I—vay 01, (1.21)
0 0 G

L J

T
where {€,} =[6‘(Tnﬁ ~-THoa (T =T 0] and



_ fi fe -2 _  f.f. —f? _ f f E
E = I)‘]f),l 2'Ey= ]x’f_'y, Z’sz'Y’ Vyz_lz—’ Vx=|—2=\7y_l—f_x’
y X X y y
(1.22)
- €0 — E)’O = flx T f] £ fz f f”
- = B A - — = — = = f ="T.
BT T, W T Te-1, T = e =

After integration in (1.18) and (1.19), formulae (1.22) can be used for specifying
material properties in usual structural analyses with triangular and/or quadrilateral membrane
FEs. However, it is important to note that the actual stress field is represented by eqgs (1.16)
instead of (1.21). In particular, a skin experiences, as rule, additional local stress due to
restraint from stiffeners of lower temperature; this circumstance become important while

analyzing whether the skin can buckle (and at reducing the skin, if any). Hereinafter, let’s use a

simplifying assumption of a small values of K, <<1, and Ky <<1, v,K, <<1 -for all

parts of the panel under study. Such an assumption is usually valid for typical airframes.

Then, the skin is characterized by K, = K, =K, =1.Eqs (1.18) will be transformed:

E.$ E,F E, E,F E,v,8
£ = X 11 _ 22 __oxTy? _ _
Ix l-—vxvy+ SRR A T vy+ £, fr= I=vyv,’ fiy =Gs,  (1.23)
where Ey, E;, G, v, are the elastic constants of skin at temperature T,
El——jEldF E =g jEzdF
K F Fz
are the averaged moduli of stiffeners. By parity of reasoning with eq. (1.19), obtain
E,8 E/F -
T = 2o+, (T = T,) + — &), B, = jE,al(T, T, )dF,
xVy
Es EE | (1.24)
y 22+ =
T]y = - vay (G.y + anx)(Toﬁ "To)+ Az, A2 = -EZF JEzaz(Tz —To)dF,

where A and A, are the averaged thermal elongations of stiffeners. Eqs (1.16) give stresses

L. W M R
GX— Ex(l—VXVy)Gx+ Ey(]_vxvy)cy—l_vxvy ax +V‘/ay 06_ o Vyeyo ’
E.(1-v,v E (v, -V,) E |
_ y Xyl y X X = _ y — —
Gy—_ (l_vxvy)cy+ Ex(l—VXVy GX l_vay [(ay+vXax)(T06 To) 8y° X XO]’(I 25)
G_
for a skin
E]_ Elvy_
NTE OTE Sy = Effoy(T - Ty) - £, 0
X y (1.26)
_E_  Eno E[ T,-T, ] =0 |
Oy, O E, o EoaTTo)mep) tyo=

for stiffeners.
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It can be seen from (1.23)-(1.26) that both determination of skin stresses and
reduction of skin require only a few data: skin parameters and integral characteristics of
stiffeners, namely, F,, (,, Ej, A}, F, £,, Ez, Aj.

To perform a strength analysis of such finite elements, one should apply usual
relations of the Finite Element Method, Ref. 5; in addition, an elastic and thermal
performance of the skin and the stiffeners can be specified. Hereinafter, the parameters
involved are assumed to be the same over all skin and over all stiffeners of the same direction.

A triangular stiffened panel (Fig. 1.16b) carries in-plane axial loads and shear. The
displacement field in the element is assumed to be linear. For the plane-stress element with a
uniform thickness & the stiffness matrix is,

(K]=3 [[BIT[DI[BIdA, (127

A
Here,

[D] is the matrix with reduced element stiffnesses referred to the local {Xm> Ym)

coordinate system and derived from [D] (see (1.21)) by transforming the coordinates;

[B] is the usual constant matrix for computing the strains {e} = [Bl{q}.

Upon integrating the relation (1.27) the explicit formulas for the element stiffnesses
referred to the local coordinate system appear.

Equilibrium equations taking into account initial thermal strains are,

[K1{g} = {F} + {Fle,

Here,
{(F} is the nodal force vector due to the external loads and

{F}¢, Is the initial thermal force vector which may be evaluated as

(F},, =8 (BT (Dl 1dA
A
The FEM problem is then solved to determine nodal displacements {q}, strains {e};

thereafter, (1.21) is utilized to calculate average stresses, and relations (1.25) and (1.26) are
used to compute the stress field for the panel.

A quadrilateral stiffened panel (Fig. 1.16b) is to be modelled by a simple finite element

whose thickness is that of skin, and thermo-mechanical characteristics (1.23), (1.24) take
account of performance of both skin and stringers. A stiffness matrix can be derived as
suggested in Ref. [6]. That is, the quadrilateral structure should be separated into four triangles,
and displacements of the additional internal node should be eliminated. Each triangle has a
linear displacement field and a uniform stress state. For each triangle, a structural analysis
system can compute a stiffness matrix, strains, and stresses by means of the above formulae.
Unfortunately, such FEs produce significant errors if used in areas of severe stress

eadientc cav. in models of spar walls subiected to bending.
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An accuracy can be improved through introducing the quadratic incompatible
shape functions, their coefficients being found under conditions of minimum strain energy

of the finite element, Ref 7. A new FE — quadrilateral stiffened wall — has been a good

complement for the existing FEs of our structural analysis system. It represents a futher
improvement of the FE proposed in Ref. 7 and allows for additional internal structures,
orthotropic material, and temperature gradients. The stiffness matrix components can be
computed using the Gauss-Legendre four-point integration formulae, Ref: 6; eq. (1.21)isa
source of the matrix of elastic constants. The finite elements proposed can be developed

further to include different structural features.

Solving the nonlinear problem
As stated above, consideration of plastic deformation and buckling of the skin
makes us regard stiffnesses of the skin (and the panel as a whole) as functions of an

instantaneous level of stresses and strains:
[D]=[D({e}, (o}, {eo}={eoUe}, oD}, (1.28)

where {c} = [O’xGyTxy]T is the skin stress vector in accordance with (1.25).
The nonlinear problem may be solved on the basis of the FEM and the proposed

finite elements by resorting to iterations. At each stage we should analyze linearly the
stresses and strains by using the stiffness matrices and temperature forces which result from

strains, stresses and secant reduction factors obtained at a previous stage. In this case the

reduced stiffnesses of a buckled composite skin (ES, E}, G*, v, vy = vy E;/Ei ) with

and without temperature variation consideration depend on the "supercritical strain" of a
particular finite element, and one should rely on relations of [2] and [1], respectively.

At the initial iteration we solve the usual elastic problem for the structure with no
skin buckling. Iterations stop when difference of stresses as obtained at two sequential
iterations becomes rather small. In particular, if an unbuckled metal skin is involved in
plastic deformation the present iterative process coincides with the traditional variable
stiffness method [6] for physically nonlinear probler}\s, The new method has been
implemented in a computer program and validated by using example problems for which
theoretical and numerical solutions have been provided elsewhere. New numerical analysis
results are rather verisimilar and close to experimental data.

One knows two methods for finite-element modeling of a stiffened structure with a

buckled skin. The first method is to prepare a rather dense mesh whose characteristic step

sizes ¢, and {, are close to the stiffener spacing, to use the rod elements for modeling of
stiffeners, and to introduce unstiffened plane-stress plates (with F,=F,=0in (1.23) and

(1241 for modeling of skin cells. The second method is suitable for analyzing structures
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with numerous stiffeners; here, use is made of the built-up finite elements described above,
whose dimensions are much greater than ¢, and ¢,; this enables analysts to increase the

characteristic element dimensions to the distance between primary load-bearing components
such as spars and frames. Of course, the second approach requires much less computation
time and computer memory space and would be preferred.

Consider an example: nonlinear analysis of an edge-clamped cylindrical stiffened
shell loaded with a transverse shear force. Structural dimensions and the value of the force
may be seen in Fig. 1.17. This example is typical of real fuselages. Results of experiments
with the present shell are reported in [8]. The skin is very thin (8§ =0.51 mm), and its cells are
subjected to various combinations of normal and shear stresses which lead the skin to
buckling nonuniform over the cross section contour.

Analyses were carried out by using the nonlinear FEM program above. Introduced
as nodal points of the finite-element mesh were points of intersection of Iohgitudinal and
transverse stiffeners. Stringers and frames were modeled with beam-type finite elements, and
the skin, with flat quadrilateral membranes. Thus, the finite element for the skin models a
real skin cell between neighboring stringers and frames. The FE model includes 126 nodal
points with the total of 630 unknown displacements. At each iteration the program
corrected the stiffnesses of element that model the shell skin: initial elastic properties of the
skin material were multiplied by current values of reduction factors. The reduction factors
for the skin under multiaxial load were computed by employing the method of [1].

Figure 1.18 depicts stress diagrams for the skin and stiffeners at the clamped end.
Also, one can see experimentally obtained results from [8]. Comparison for the compression-
loaded domain shows that data of experiments and the nonlinear analysis are in a rather good
agreement. '

Figure 1.19 represents diagrams of normal stresses as computed for stiffeners at the
clamped end by using linear and nonlinear theories. It is clear that stresses differ much,
especially in the compression-loaded domain. As compared with the linear calculation, the
mean normal stress in the skin over the severest compreséion area has decreased by a factor

of over 2.3, whereas stiffener stresses in the same area have been higher by 23%.
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Part 2. Evaluating the effect of skin postbuckling behavior on general

stability of a composite structure

2.1. Tangential stiffnesses of stiffened structure upon general

buckling

In Part 1, we dealt with analysis of stresses and strains in a stiffened structure whose
thin composite skin carries loads while being buckled. At a certain value of the external load
global instability may occur. At that moment both the stresses and strains show small
increments which may be regarded as variations to initial (subcritical) values for the
structure with nonlinear dependence of strains on skin stresses.

In [1] the nonlinear dependence for a composite plate has been written as,

Px._ ., Py Py _, P
€x =1_3‘);—_uyx E*‘Be(p,s)s Cy =E;_HXYE_i+aach(paS)’
] 2.1

=5

+ By (p,s),
xy

where o, =a/b and p=py +a§py.

The relations (2.1) were obtained by assuming proportional loading — that is, at
p= p* .t and s=s -t,where tis the load parameter (t21 ) and {p", s} is the critical load
combination (refer to Fig. 2.1). Functions B.(p,s) and Bg(p,s) in (2.1) represent the fact

that upon local buckling the initially orthotropic plate becomes anisotropic at s=0.

Variations to the initial relations (2.1) look like this:
de, =a|, 8p, +a,,8p, +a;33s,
de, =a} 8p, +ah3p, +ayss, (2.2)

8y =a};8p, +a3,8p, +ayds,

Here,
ol B By o 0B 3B
E, ép’ '"TE, e’ TP sy
1 B 1 0B OB
t 4“0 t 68 t 257
a5 =—+a , ajy= +—, ajy =« :
22 Ey a ap 33 Gx\ a 23 a as
b B 208
op’ 7t op’
Potentiality conditions require that aj; =aj}, and aj; =aj,; this means that
B, 0Bg

0s op
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The latter condition will be met if the loading is proportional and the ratio of
supercritical out-of-plane displacements, y =fy/f;;, does not depend on the

"supercriticality index" t; i.e.,

= el C(23)
v 4-9
where p = p'/p;0 and § = s‘/s; . In this case
2 *
Be=glz—f,2,(1+4w2), By =422 B,y |, (2.4)
a So
and
-1+4ys s
=, p=—, 3=
IEC"_WZCS Pxo So

Expressions for C5 and Cg are provided in [1].

Let us symbolize derivatives of B, and By with respectto p and s as follows:

oB oB OB B
Be,p :———e, Be‘sz.—__e—’ 6.p =_i, Be‘s =__6_ . (25)
op s op ds
Then we take into account (2.3) and (2.4) to obtain:
1 w2 1+4y? L o2 1+4y?
Be‘p.—_— . 8 2 ] , Be,sz—*—.zaz. l W=B9,p’
Pxo 887 —C; ~y’Cy %0 —C;7 -y Cy
16 16
* 2 2 (26)
1 py 2m 1+4y 5
Be,S =T : 2 °

With (2.4) and (2.5) written and the stability boundary equatidn being

‘p‘* + 4w§* =1, the original expressions (2.1) may be re-written in the form usual in studies

on anisotropic materials:

\Px +23)Py +2338, 2.7

where
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However, analyses are easier to perform upon transforming the relation (2.1) to the

version corresponding to a quasi-isotropic material with variable elasticity parameters:

pxy ZBe 1 4BC
e =(———+aa-;- pPx t E—+aa_p_ Py (2.8)

As for secant reduction factors (o3, 05, ¢5) and the secant Poisson's ratio, the formulas
%, 0)s @Y

derived in [1] are valid.
Also, (2.2) ma

y be re-written to the form usual in studies on orthotropic materials

with variable elasticity parameters. Loading is assumed to be proportional, so dp, = p;8t,

;St ,and &s= s &t ; for p‘ 20 and s #0 we obtain:

dpy =P
Slk St
dey = (a{l +aq3 ’_‘1 3P« +(a}2 +agals *} 8py >
P p
ey = (a}z +alal, —S—;} Spy + (a‘zz +atal; E:) 8py
P P (2.9)
8y = (afw +aj; p.)ﬁs.
S
Then the stress increment expressions which are inverse to (2.9) become
t
— E; t 6 __?y___ t t
dpy = ——\8ex + Hyx0Cy |> dpy = (% + P yyOey ,85= Gy 07,
l_l“'xy“yx l_p'xyp'yx
where
s s’
aj +°'2213'13’—*_ aj +0‘§a}3‘7
E! = 1 v v p
x = * H)\ N Hxy 7 «\
t p S S . S
ajp+ap Ty (all'*'alfi——vj (32? +0‘aa13—71
p p |%
(2.10)
1 1
t_ U
Ey= s Gy = P‘
ah +aqaly aly +aiy
p s

. t 1 t o, t _ .
We proceed from relations Ey = E,9,, Ey=Ey0y, and Gy = Gyy9y: relevant

reduction factors may be determined from (2.10).

eI T
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For increments of stress resultants and moments upon global buckling the

following equations are valid:

N, = Ipr dz, Ny = Iﬁpy dz, ny = I&sdz,
h h h

M, = [8p, zdz, M, = f&py zdz, M,y = [8szdz.
h h h

Now we can employ the Kirchhoff-Love hypothesis and the Shanley hypothesis on
loading continuation at bifurcation; with this, the latter equations provide the following

expressions for reduced tangential stiffnesses of the skin:

Eth Evh RyxExh
Bjo = F——, Bhy=——i—, Biy=Gih, Bljy=—71T
l—pxy“yx l—uxy“'yx l—uxyp'yx
Etp Ethd Gl p3 (2.11)
Dt X t y Xy
110 =

= » Doy = , D33 =—5—, Diz =uy Dijo-
12(1 - uiyu‘yx) 12(1 - uiyu‘yx) 12
If the skin is stiffened regularly with longitudinal and transverse elements (having

spacings b, and b, respectively) then the tangential stiffnesses of the stiffened panel are

similar to (2.11):
F F¢
Bltl = Es(rtsh + b_s) , BE7.2 = Ef([‘tfh +E) , B53 —(Gt h + Gsfhsf)
S

Bl, =Bjy, Bj=Bi3 +Bjyy,
h3 I
Dltl =Es|:rts[ﬁ+hh12] _b_s:
3
¢ h

DY, = Eg| rg| 1o + b2 eil (g —n,) |, DY =G,
22 fl*ef 12 2 bf bf 2 ’ 33 xy 6’

crl-n

(25 -hy) } (2.12)

G,IP N GIf
2b,  2bg

Dj =2Dj30 + Djy +
where
E} Ey
toot )’ hr = t ot
Es(l_nypyx) Ef(l_pxyp'yx)

E.,E;,G,, and G are elastic moduli and shear moduli of the longitudinal and

I =

transverse elements,

P . o
F,Fp, 1, I, I, and l? are cross-sectional areas, central moments of inertia, and

the product of inertia of the longitudinal and transverse elements, respectively,
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z, and z; are distances from the skin midsurface to centroids of the longitudinal
and transverse elements, respectively,

h, and h, are distances from the skin midsurface to centroids of the longitudinal
and transverse elements with relevant skin strips, respectively, and

G -hg is the shear stiffness of the frames/spars with no skin; this value depends

on a method for joining the longitudinal and transverse frames/spars.

These equations for secant and tangential stiffness parameters are used hereinafter
to analyze subcritical stresses and strains and general stability of the stiffened structure. In
the case with no skin buckling the equations become the traditional expressions for

stiffnesses of a stiffened panel.

2.2. Stability of regularly stiffened cylindrical and flat composite panels and shells

in the case of uniform loading with compression and shear

Consideration now is given to a stiffened cylindrical panel whose radius is R and
planform dimensions are A and B (see Fig. 2.2). The panel is regularly stiffened with
longitudinal and transverse elements. The cross-sectional area and the spacing of
longitudinal element are F, and by, respectively; and those of transverse elements are Fy
and by, respectively. It is assumed that the panel skin is a thin composite with layup

sequence being symmetric with respect to the skin midsurface. Reduced mechanical

characteristics of the skin correspond to characteristics of a homogeneous orthotropic
material — E, Ey, Gyys Hxys> Hyx (Exiyx =Eyhyy)- The skin thickness is h. Dimensions
b, and by are much lower than A and B, so the skin cell may be assumed to be flat.

Let us use u, v, and w to denote projections (on axes X, Y, and z, respectively) of a
small displacement of a panel point.

For a shallow panel either stiffened or unstiffened being uniformly loaded with
stress resultants NS, N()), ,and N?(y (with no moments applied) and unbuckled, we can write
the following linear equations:

[L]{u} =0, (2.13)

Here, [T.] is a symmetric 3 by 3 matrix whose components are differential operators

Ly for stability equations (i,j = 1,2, 3) and

{U} is the displacement vector with components u, v, and w.
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The differential operators in (2.13) have the following form (as provided in [9D):

L1|=B}|%+B§3§yz7, le—Lzl—ngxa—;y‘a
L3 =L Elil“:;» L22=B‘22%23+Bt33§;7, L23=L32=—%§, (2.14)
L33=Df1247 2D5 24 2 thz(aas: 1122:5_22 RlJ B—éi—

NSB‘% 2N2y5x‘%—N‘;§%

In the case of a panel whose edges x=0, x=A, y=0, and y=B are freely

supported, the solution to (2.13) may be written as

= < mnx . Nw 2 S mnx  nm
u=2 2Am cos R Gin Y y= Y 2 Bmn sin 2% cos 2.
n=1 m=l| A B n=] m=l A B
2 mnx . nuy 2.15)
=3 Y Cppsi in = |
w nz=:1 mZ::] mn SN —SIN "

Upon substituting relations (2.15) into (2.13) and resorting to the Bubnov-Galerkin
method we obtain an infinite homogeneous algebraic system of linear equations for the

constants Cp,,:

(C11°23 —013022)031 +(CI3C21 -011023)032 _
mn 2 +C33 —Pg |=
Cii€22 =12 ’
(2.16)
32amnsg rs
= 7 22l 5 5 gy
T ros (m*-=r°)(n° -s%)
wherem, n, r,s = 1, 2, 3, ... and the values of m+r and n+s are odd numbers,
=m? +b;;n’a’ =cy =b =cy =b
¢, =m°+bn‘a”, ¢ =cy =bsymna, ¢j3=c3 =b;mp,
2 2.17)
Cy3 =C33 =b22na[5, C33 =n2[dllm4 +2d3m2n2c12 +d22(n2a2 —Bz) ]"'bzzB,
0 0 0
_Nx 2 Ny 2.2 _ny
Pg =Tt to PO Sg =Ty
Biy B By,
{ t
WA Ay By D
’ ] 1 ’
B nR ) B}l ] BI A2

The stress resultants Ng, Ng, and Ngy are assumed to be proportional to a single
parameter t; one could limit the system (2.16) with a certain set of equations (it suffices to

adopt m and n of 6 to 8); with this, it is easy to establish the critical value t = t" which zeros

the system (2.16) determinant.
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The global stability analysis is performed in compliance with the algorithm depicted
in Fig. 1.15:

— the load parameter is incremented from zero in steps of at;

— at each load step the iterative procedure is run in order to determine subcritical
stresses and strains in both the skin and stiffeners;

—_if the skin is to buckle at the current load level, then relations (2.10) and (2.12)
are employed to establish tangential stiffnesses of the panel and their respective determinant
of the system (2.16);

——if the system (2.16) determinant changes its sign at a certain load level, then the
critical value of t~ should be refined to the accuracy required.

The problem of general stability of a stiffened circular cylindrical shell (Fig. 23)1s
solved in a similar way. A particular solution to the system (2.13) is represented by,

u=A cos(kmi - n(p), V= Bcos(kmi - ncp), w=C sin(xmi - n(p), (2.18)
where X=x/¢, o=s/R,

¢ is a shell half-length,

s is a cross section point coordinate measured along the circle,

A, and n are wave parameters.

By substituting (2.18) into (2.13) at a fixed value of n and performing the necessary
mathematical manipulations we arrive at the characteristic algebraic equation of the eighth

order with respect to A, ; roots of this equation taken together with the eight constants
C,(m=12..38) make it possible to write the general solution to (2.13):

W= %lCm sin(A X —NQ) . (2.19)
Constants A, and B, are r;t;nctions of Cp,.

Boundary conditions for shell ends {x = x££ } are the following:

8*w
w= —é——z— =N, = v =0 in the case of free support at the ends,
X .
ow ) .
w=—=Ne= v =0 in the case of clamping of the ends.

These allow one to formulate 8 linear homogeneous algebraic equations for
constants C,. . Coefficients of these equations depend on shell end loads N2, N9, and N;.
The condition of existence of a nontrivial solution to the system provides the critical load
parameter value t* and the critical load {N;, N;, N;s} of global buckling.

Let us delve into particular problems with stiffened structures whose skins buckle

and carry loads upon buckling until the structure undergoes global buckling.
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The initiatory problem is on a flat (1/R=0) stiffened panel with planform
dimensions A=480 mm and B=400 mm. The skin with the thickness of 2.64 mm is made out

of a composite with the following equivalent characteristics: E, =6682kg/sq.mm,

E, =3768 kgsq.m.m , Gyy =1434 kg/sq.mm, p,, =032. Ultimate stresses of the skin are
ol =445kg/sq.mm  in compression, o\ =312kgsq.mm in tension, and
1" =248kg/sq.mm in shear. Longitudinal and transverse stiffeners are rectangular

shapes with cross-sectional sizes 20 by 5 mm and the spacing steps b, =100mm and

b =120mm . Stiffener material characteristics are as follows: the Young modulus
E=8346 k g/sq.mm, the compressive strength o =55.5kg/sq.mm, and the tensile strength
o' =39.0kg/sq. mm. |
Critical stresses of local buckling of a skin cell between stiffeners in the case of
uniaxial léading are p;O =10.87 kg/sq. mm , p;o =7.55kg/sq.mm and s(‘)=21.29 kg/sq.mm.
Figures 2.4 and 2.5 show the analytical results. More particularly, Fig. 2.4represents

the global buckling boundary curve in the plane {Ng, N?(y} (note that Ng =0); it defines

the critical load combination {N; , N;y} (shown by the solid line) and has been drawn with

consideration of skin postbuckling behavior (until the panel becomes buckled) for the

following load combinations:

vy NS
5 =0, 02, 04, 06, 08, 1.0 and —5—=10, 08, 06, 04, 0.2, 0.
Ny xy

Also, one sees here a similar kind of boundary curves computed for the same panel
without assuming the skin to carry loads upon local buckling (the dashed line). By
comparing these curves it is clear that the global stability analysis with no correction for
load-carrying capability of the buckled skin may be misleading in its overestimating the
global buckling load by 25% to 60%.

Figure 2.5 represents stresses in components‘ of the stiffened panel being in
subcritical state, immediately before global buckling; consideration is given to all the above-
mentioned combinations of shear and compressive loads at the edges. Here, solid lines are
for component stresses if the analysis takes into account load-carrying capability of the
buckled skin, and dashed lines, for component stresses calculated with no account of load-

carrying capability of the buckled skin. In case the shear load is relatively low the most

notable difference is between mean stresses in the buckled skin, p,, and the nominal skin
stress o, if the analysis does not allow for early skin buckling. When the shear load is great,

one could reveal additional compression of both longitudinal and transverse stiffeners which
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is caused by appearance of oblique waves in the skin — see o, and o in Fig. 2.5 for
0 0
Ny =0 at Ny, =0.
However, it should be noticed that, when the shear load is increased,the mean shear

stress 5_ in the skin grows rather rapidly and reachesthe ultimate level (-cs" ~25kg/sq. mm)

at Ngy ~ 72 kg / mm . Thus, if the shear stress resultant N0 is higher than 72 kg/mm, we

xy
should expect the skin to break at loads less than the global instability load.

Consider also analysis of global stability of a stiffened cylindrical panel with radius
R=1270 mm. Panel planform dimensions, longitudinal and transverse stiffener shape and
sizes, skin thickness and material characteristics are the same as those of the flat plate above.

Figure 2.4 demonstrates the panel buckling boundary computed by the present
method. Clearly, the panel curvature does notably improve general stability. Calculation for
the same panel with no allowance for buckled skin stiffness provides results which are
greatly overstated — by 20% to 40%.

Consider now the problem of stability of stiffened circular cylindrical shell subjected
to torsion. The shell has the following main parameters: curvature radius R=750 mm, overall

lehgth 2¢=2100 mm, skin thickness h=1 mm. The skin is regularly stiffened with stringers
(with the spacing by =118 mm) and frames (with the spacing by =150 mm ). The stringers

are rectangular 8 mm by 20 mm shapes, and frames are angles with leg sizes of 15 mm and
35 mm and the web thickness of 2.0 mm. The material of both the skin and stiffeners is
isotropic, E=7200 kg/sq.mm and p =0.33.

Three identical metal shells have been manufactured and tested under torsion. At

skin stresses T~ 4.8 kg/sq.mm the skin had buckled and remained in this state until the shell

failed due to its global buckling. Figure 2.6 demonstrates one of the shells in a subcritical
state (as for global buckling). One can readily see local waves in skin cells. Here, the
"supercriticality level" is approximately 3. Figure 2.7 represents global buckling of the shell;
spiral waves involve stringers and frames into large defofmation. The experiments provided

the following values of critical shear for the three shells tested:

Ny =142 kgmm, Ny ) =138kg/mm, Niy =137 kg/mm .

Our analyses with postbuckling skin stiffness reduction suggest N;y =15kg/mm.

Thus, the experimental data are at the level of 91% - 95% of the theory. In contrast, analysis
of the same shells with no allowance for stiffness reduction overstates the critical load by

approximately 35%.
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2.3 Analyzing the stability of a built-up cylindrical structure with consideration
of global and local buckling, nonuniform loading and buckled-skin load-

bearing capability

Below, we describe a high-accuracy numerical method for analyzing stability of
built-up composite/metal structures subjected to subcritical loading with compressive and
shear forces which vary along the cross section contour.

The structure is a cylindrical or slightly conical system of interacting rods, plates
and shells made of composites or metals and subjected to mechanical and thermal loads.

Account is taken of variable curvature, loads, thickness, initial out-of-plane
displacements, and subcritical deformation of the system along the contour. Also, the skin is
assumed to be multi-layered; elements, anisotropic; stiffeners, discrete; and global/local
buckling, likely.

The method is based on

— formulating the corresponding homogeneous boundary-value problem,
—— separating the problem variables, and
— solving numerically the stability equations for the structural elements by means of
the discrete orthogonalization method of {10].
Of course, all the structural components are linked into a system by using finite element
methods.

Consider an isolated anisotropic non-circular cylindrical shell that in the subcritical
state is loaded with stress resultants N?((s, ), N(s)(s,t) ,and N?(S(s,t) (Fig. 2.8) where t is the

load growth parameter, t20. General equations of structural stability which describe
buckling of the shell may be represented as three groups of relations (refer to [4]).
I. Neutral equilibrium equations:

ON, oS 0 ou ou)y 0 ou Ju
™2 2w -2 (e Beed).
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I1. Elasticity relations (from [11, 12]): )
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Here, the meaning of new symbols is as follows:
(N} =[N N, SJT My = MM HTT (e =Lecsarae]
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I11. Geometric interrelations:
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Hereafter,

u, v, w, 0,,and 6 are additional linear displacements and rotation angles of
the normal to the skin;

€yr €5 Yxso Bxs &g and @, are strains and curvature variation components;

wo(s) and w%(s) are initial and naccumulated” subcritical out-of-plane

displacements; and

By, Cy» and Dy (i,j=1, 2, 3) are shell stiffness parameters.

Boundary conditions for edges {s=0} and {s=b} of the isolated shell are described by,

Wl _ol-70)+ Qul _yv0=0, w0 —7)+ Q5| 11 =0
65l5=0(l—80)+Ms‘s=060 =0, o (i -5))+ M| _, 8 =0,
“|s=o(l‘¢0)+§‘s=o¢0 =0, U|s=b(1—<b|)+§|s=b<p| =0, (2.23)
Vo= wo)+ Nyl _wo =0, Vi (1-v)+ Ny _ wi =0,

Here, the constants v, 89, @9, Wo» Y1» 81> @15 and y, take the values 0 or 1 for

cases with displacement control and load control, respectively. Lastly, additional symbols are,

ou — oM
S= S+Nsxa +N0 =" Q. =Q + ,s" ,
— ov ov w
NS=NS+N(S)xa +N (65 R)'
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The critical value t. of the load parameter t_ is sought to be the minimum value of t

at which the homogeneous boundary-value problem (2.20) + (2.23) has a non-zero solution
(subjected to the extra condition of simple support at shellrv ends {x=0} and {x=a}).
Underlined terms in the above equations provide oﬁ)tions for analyzing general stability of
the structure in combination with local and temperature-induced buckling.

Stability equations for a built-up stiffened cylindrical structure composed of
interacting cylindrical shells, plates and rods may be written in a similar way. For instance, an
i-th web (see Fig. 2.8) may be analyzed by employing relations similar to (2.20) — (2.23) in the
local coordinate system {X;, X,, X3} which are provided in the work [13]; the latter also
gives compatibility conditions for displacements in the skin and stiffeners. Stability equations
for plates in the structure may be derived from (2.20) — (2.23) by assuming that 1/R=0.

All equations are written for each shell, plate and stiffeners. At all joints of shells
and plates the equations are complemented with the fitting conditions which include
equilibrium equations and the condition of generalized displacements being identical at each
joint (refer to [13]). Free and supported longitudinal edges of some elements must meet the
boundary conditions (2.23).

The major difference between the new system of homogeneous differential
equations and the one in [13] is that the former system includes general elasticity relations
(2.21) which are characteristic of anisotropic composite structures; this circumstance
notably complicates solution procedures.

To begin with, we have to consider a particular problem with no subcritical shear

load and no orthotropy in elements - more specifically,

N3,=0, B,3=B,,=C,;=C,;=D,;=D,;=0. The solution for each shell may be written as,

(P} ={Pafcos™, {F}={F,}sin"2, (2.24)
where
{P} =l_uex Yxs Exs SHQx_lT ) {Pn} =l_un exn,Yn 2y Sy H, an_!T )
{F}=|vwo, e e, 2, 2, NyN,M, M, Q, |7,

T
{Fn}=|_vn Wn en Exn €n &4y & an Nn Mxn Mn QnJ
In addition, n is the number of longitudinal half-waves in the shell, and the functions with
the subscript n are only depending on the coordinate s.

Stability equations (2.20) — (2.22) can in this case be transformed into the system of

8 ordinary differential equations (at any values of n and t as the work [13] states):

%z[q{u}, (2.25)
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{u}=|w, 08, M, Quu, v No Sy T is the column vector to be sought,

_ dv w — nn
N, =N, +N2( ds“ +E)’ Q, =Q, ——a—H,,

[E] is the matrix whose coefficients are known functions of s.

Boundary conditions for an isolated element may be written as,
[FoJ{u@} =0, [r]{um)}=0, (2.26)
where [FO] and [F,] are constant 4 by 8 matrices.

The problem (2.25) — (2.26) may be efficiently solved by utilizing the discrete
orthogonalization method (which requires solving some Cauchy problems). For a point
{s=b} the solution is,

{u(b)} =[zm)]{CT o)}

and the condition for obtaining the critical value t* is written as follows:

de D(v)] =0, (2.27)

where [f)-] = [Fl ][Z(b)] and [Z(b)] is the established solution matrix.

To analyze a built-up cylindrical system, the following procedure is applicable.
Solutions in the form of (2.24) are written for all elements. Equations (2.25) are obtained for
each shell and plate while assuming the unit-displacement boundary condition — for
example, for the following conditions at points {s* =0} and {s¥ = bk}

k _ k _ .k _k _wk _nk _k _yk
Whn Sk=0—l’ 9n"un'vn Sk=0—wn_en"un“vn

=0.

sk___bk

Here, the superscript k is the identification number of the element. Proceeding in the same

way, generalized stiffness matrices are established for each element ([K’]k) and the entire

structure ([K]); use is made of conventional algorithms of assumed-displacement finite

element methods. The resulting equations for neutral equilibrium become linear algebraic

equations (at any n and t):

[K]{y} =0, (2.28)
where {y} is the generalized displacement vector for all nodes in a cross section of the

system. The vector comprises all nodal displacement vectors:
T .
{yi}zl_wni Pni Uni Vi s l=l,2,...,N
The equation for determining t. takes the form,

defK(1)] =0. (2.29)
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Initially, we should use (2.29) to find t,, at various values of n; thereafter, t. is sought as
mintnA at n=n.. Finally, (2.28) is utilized to determine the eigenvector {y.} and the
n

structure buckling shape.
In the general case the subcritical shear load is non-zero and/or elasticity relations
(2.21) for at least one element have a general form; then the solution to the structural

stability problem assumes a form differing from (2.24):

{p}={P, }cos—g—+{ }sm , {F}={F,}sin ;+{F }cos%. (224"

Here, variables of the first group ({ } and {Fn ) are the same as in (2.24),
whereas variables of the second group are

(B} =18 Ban T Bron 5o o Qn |
(B} =(Fa W0 By Eon B Ban Bp Ny N M 8, Qo |

In this case the structure is assumed to be rather long; >0 denotes the buckling
half-wave for the longitudinal direction (in practical analyses it suffices to adopt
£=¢,=a/n,n=1273..).

Further, we can substitute (2.24") into shell stability equations (2.20) - (2.21) to
separate the variables and obtain 16 simultaneous ordinary differential equations below (in
which the prime sign symbolizes differentiation with respect to s; 52 =00 +8,):

Vi )
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n n R

M; =(N? + N0B0%)e,, +Q, +2u,H, + 8N, - NJBJe, +
BINY 1oV, +NOp, Wy,
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' 2 0 0502 27020
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+PnestYn +pa My, —UnN?&sen +pgN2592Un,

70
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‘ a0
Vn =&q —-?n'_esenv
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0 0 ~ ray ey
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§ Ng n —WnNgn = NO (Yn +UaVy —ég“nwn)v
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o m

wn=—6n+7R"—,

6 =2,,

¥, = (N + NOGO2)G, + Q, + 80N, - NIBLE, - 2, - |

o . (2.30)
- estxP'nVn - Nsxpnwn’

—~

= = ~ — - N —0=
Qn = P%(Ng +N2922)Wn _PfxegN(s)vn +T{L+Pnegsn -

ray 0~ 2 %A 0 2 ~0
"PnegNs'Yn +p1nMyq +un N6y +un N O5up,

W, =g~
V;l='5n——1{‘—929n,
R = —p2NDBOw, -2 ¢ a2 (N 4 N2JT, - oS, + aNF, -
n="HnNsYs¥n T p Ho{Ny + NgjVp —HyOn TR NsYn

St = u2NOT, + N +paNG(Ya = HaVa + 80w, ) )
Additionally, we introduced p, =7/¢, .

The similar way may be used to transform the equations for rods, the boundary
conditions of form (2.23), and compatibility conditions for longitudinal edges of elements in
the system. |

Substitution of (2.24') into elasticity relations (2.21) allows us to express the
variables €, @45 Yn» Ens ®ns Tns Nxns Mxn»> Hp ,N,., M,,, H, (which are present in

(2.30)) in terms of basic variables

~

— —_ = ~ o~ = = T
{u}=|_wn9nMnQnunvnNnSanenMnQnunvnNnSnJ . 2.31)

For example, values of {€,, &,, ¥, } and {&,, &,, y", } should be determined from the

following systems of equations:

0 ~N 0 ~ 070
By, + Ny Cp B; € N, + Ngp,V, + N80,
sz D')z C23 &, 133 Mn +
0|~ z ~ F0 =
Bs; Cs; By +Ng|{Vn Sy +N(s)xp'nun _N(s)(pnvn —eg“nwn)

2

B?.lpn —C2lun C23Pln Un
2

+ CZIPn _D2lpn D23P‘n
2

B3l“n '—CSI}"'n C33P’n
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~ N 0507
By, + NY  Cy By €n N, - Ny p,vo + N80,
Cn Dy Cis &, _ . T‘(’)In . -
B;; Cs, B33+N(s) Yn Sn — NgxinUp —Ns(_ HnVn +espnwn)

2

Blen CZIPn C23“n
2

~{Cytn Dakn Daskn
2

Bytn Caen Ciska

n

(2.33)

n b

o 5#

n

and, similarly, the stress resultants and moments {N,,, M, H,} and (N,,, My,, Hy}

would be found from the equations,

anl “Byp, Cumi  -Cika |[ua| |Bz Cu B3
=|-Cyty Dypd  -Dispn fWa[+|Ciz Di2 Ciz (2> (2.34)

H, ] |-Cakn Djp2 —2Ds3pq |{ 00 Cy; D3 Ca3jl¥n

m
=

N |Bika Cipd  Cikn ||Ua B, Cp2 BisllEn

M =] Crittn Dyp2 Dispn [Fag+{C2 Dn Cis i ®n1(- (2.35)
2

H, | [Csita Disitn 2Dsskn 0,) [Cx2 Da Cajly

n

The relevant matrix-based problem statement and the solution method completely
coincide with those proposed above; however, dimensions of all vectors and matrices are

twice as much, so in the general case
e = o~ o~ |7 .
{Yi}::‘_wnieniunivniWnieniunivni_‘ , i=12...,N.
Integral stiffnesses Bjj, Cjj and Dy of multilayered composite element should be

evaluated on the basis of elastic properties of layers present in the stack; use is made of the
methods exposed in [11, 12]; if early buckling takes place, these are replaced with tangential
characteristics considered in Section 2.1. Any component in the system can be isotropic,
metallic or orthotropic "by design" (refer to [10)).

This means that the method for numerically analyzing built-up cylindrical
structures that had been developed by the authors in [l 3‘] is now made capable to deal with
structures which incorporate composite materials.

The present method and the respective software programs can be employed to solve
many classical problems (for which the researchers have provided exact and/or reliable
approximate solutions), new problems of structural buckling, as well as complicated problems
on stability of built-up composite structures that appear in designer's practical work.

For example, Table | compares the new numerically obtained results with the exact
solution of [12] for a rectangular orthotropic plate simply supported at all four edges.

Analyses were performed assuming the following parameters:
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—the total number of orthogonalization points for each element, ng =10,
—_ the total number of Runge-Kutta steps between orthogonalization points, np_x = 10,

—_the allowable relative error in the ty determination procedure, € =0.001.

Table | ;
5 ( N, b? ] e=10"
k = =
"\ n2 /DD, /, ng =10
np_K = 10
K
ab | Dy=d, | Dy=dy | Dy=dip+2d3 b N -
Exact Numerical
solution| solution
1 10* 16D, D, 2007 2 2.5 2.5011
8 16D, 10° D, 200m 4 2.5 2.5011
1 16D, 10° D, 2007 1 4.75 4.7523
1 4-10* D, D, 2007 1 4.0 4.0006

It is clearly seen that the error of the numerical solution at the aforementioned
procedural parameters does not exceed 0.05% and the critical load thus obtained is above
the exact value.

A similar result is seen in comparison of the exact value of stability coefficient,
k=7.69 (refer to [14]) and the numerically obtained one, k=7.6916, for the problem of
buckling of a square isotropic plate with clamped longitudinal edges.

As for the boundary condition version mentioned, we find it interesting to estimate
the accuracy of the work [15] simplified solution which is widely used in analysis of
composite plates. The solution is compared with the newly obtained data in Table 2 and

shown to overestimate the critical load by 1.6% to 4%.

_1n0-3
Table 2 { Nxbz } ‘ e=10
X

k=N. =| ———= ng =10
' ﬂz«\’DlDz 0
np_K =10
k
ab | Dj=dy | Da=dn D, =d;; +2d3; b N -
Exact Numerical
solution] solution
] 410* D, D, 200m 2 8 7.6916
1 16D; 10° D, 2007 ] 6 5.9022
8 16D, 10° D, 2007 6 5.28 5.1562
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Further, we solved the problem on stability of a longitudinally compressed
composite panel whose stiffeners are longitudinal webs with a rectangular cross section.
Panel dimensions are a=500 mm and b=300 mm; stiffener spacing is 60 mm; stiffener
thickness x height, 3.64 mm X 30 mm; and skin thickness, 234 mm. A stiffener has a
stacking sequence [+452/-452/010]s, and the skin, [+452/-452/04/90]s; ply characteristics are
E,=20930 kg/sq.mm, E,=800 kg/sq.mm, G,,=520 kg/sq.mm, Vi3 =026, $=013mm.

Consideration was given to

— global buckling (Fig. 2.9a) for the panel with unsupported longitudinal edges
and

__local buckling (Fig. 2.9b) for the panel with simply supported longitudinal edges.

In the case of global buckling the panel has one half-wave (n. =1) and the critical
compressive load P.=57500kg; and in the case of local buckling, n«=35,
¢.=a/n. =100 mm, and P. =92500 kg.

Also, we treated the problem on buckling of a shear-loaded long composite plate
(a=2000 mm, b=500 mm) whose layers have E,=27000 kg/sq.mm, E,=2000 kg/sq.mm,
G,,=980 kg/sq.mm, v,,=0.22, 8piy=0.1 mm. The stacking sequence was defined as
[0/90/ ot 4)s where the angle a was varied from 0 to +90 and from 0 to -90.

Figure 2.10 represents the dependence of the critical shear load Ny, on the angle o
of the eight middle layers. One can see that if the angle o is negative, the critical shear load
is maximum at the angle of approximately -60°. If the angle a is positive, the critical shear
load is much lower.

Figure 2.11 demonstrates how the critical compressive load N, of the same plate

depends on the angle a of the eight middle layers. The critical load is maximum at a =45°.

Of particular interest is stability of a composite plate in which certain layers are
disbonded over a domain with the length &. Even if the initial layup was symmetric, the
debonding makes the panel become a structure with two asymmetric stacks over the domain
mentioned. This system may well be analyzed by the above methods and software programs
since these are capable to treat the structure as a system of asymmetric elements included in
the general model.

Used as an example may be the problem for a composite panel with the stacking
sequence [90/0/+452/—452/904/0]5. Each ply is assumed to have the following characteristics:
E,=18000 kg/sq.mm, E, =900 kg/sq.mm, G,, =514 kg/sq.mm, v,,=0.31, 8ply=0.05 mm. Panel
sizes are a=120 mm and b=40 mm. Now we presume that three upper layers at the center of

the plate are not bonded over the length & which is varied in the course of the analyses.
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Theoretical results are shown in Fig. 2.12 together with the analytical model
comprising five elements and five nodes. Elements 2, 3, and 4 feature an asymmetric layup
and anisotropy.

In the debonding domain the subcritical stress resultant is distributed between the
upper and lower stacks in accordance with the deformation compatibility condition for the
limiting points of the debonding domain.

Dependence of the critical load Ny on the relative debonding domain length & /b is
shown in Fig. 2.12 by the solid line. The dashed line represents the critical load for an intact
plate, and the dash-and-dot line corresponds to the critical load for a stepwise plate with

disbonded layers removed in the domain with the length & .

Analyzing the solid line in Fig. 2.12, it is clear that a short debonding domain
(& /b<0.1) does not cause the substacks to separate, so the plate is buckling as a whole
following the usual global buckling shape. One can see an insignificant decrease in the
critical load for the interval {0<E /b<0.1}; the reason is the stack stiffness being reduced in
the debonding domain.

If £/b>0.1 the thin part of the plate is buckling, with the rest of the plate being

almost straight and capable of carrying a load increment. At higher loads the stiffness of the
thin part gets reduced, which is followed by global buckling; the critical load at the moment
of reaching the load-carrying capacity limit corresponds to the critical load for a panel with

a weakened part over the disbonded area.
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CONCLUSION

In compliance with the NCCW-1-233 the investigation into the influence of the skin
postbuckling load-bearing capability on general stress and strains and on stability of
composite structures has been accomplished.

The following results have been generated:

— a simplified method for analyzing stresses and strains and load redistribution
between structural components which is caused by skin buckling;

— a nonlinear finite element method taking into account the skin postbuckling
load-bearing capability;

— an analytical solution to stability problems; evaluation of the effect of the skin
postbuckling behavior on general stability of stiffened composite panels and shells;

— a high-accuracy numerical method for analyzing stability of built-up cylindrical
structures that allows for discrete stiffening, nonuniform multiaxial load, and skin

postbuckling behavior.

The results and proposals on further research work would be discussed with NASA

experts.
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FIGURES

Figure 1.1. A cylindrical section in a stiffened structure

Figure 1.2. Skin cell and its edge stress resultants
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Figure 1.3. A circular section
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Figure 1.4. Section stiffening
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Figure 1.5. Mean stresses in lower panel skin and stiffeners: load A
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Figure 1.6. Mean stresses in lower panel skin and stiffeners: load B
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Figure 1.8. Maximum stresses in lower panel skin: load B
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Figure 1.18. Normal stress diagram
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Figure 2.2. Stiffened cylindrical panel



Figure 2.3. Cylindrical shell
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Figure 2.4. The general buckling limit for flat and cylindrical panels
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Figure 2.8. Element for evaluating anisotropic cylindrical shell
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Figure 2.9. General and local panel buckling
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Figure 2.10. Critical shear stress resultant vs.fiber orientation angle
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Figure 2.11. Critical compressive stress resultant as a function of the angle a
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Figure 2.12. Stability and load-carrying capability of anisotropic
composite plate with partial debonding
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