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ABSTRACT

The present paper is a final technical report within the NCCW-I-233 research

program (dated June 1, 1997) accomplished as a part of co-operation between United States'

NASA and Russia's Goskomoboronprom in aeronautics, and continues similar NCCW-73

and NCC-1-233 programs accomplished in 1996 and 1997, respectively.

The report concludes studies in two domains, "Analyzing the effect of skin

postbuckling on general stresses and strains in a composite structure" and "Evaluating the

effect of skin postbuckling behavior on general stability of a composite structure"; the work

was fulfilled in compliance with NCC-1-233 requirements (as of June 1, 1997).

Also, the present studies may be regarded as a partial generalization of efforts in [1,2]

conducted within the above programs in what concerns postbuckling behavior of composite

structures.
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INTRODUCTION

The previous studies in [1, 2] paid major attention to postbuckling behavior of

composite plates and built-up panels with consideration of nonuniform heating; the present

effort deals mainly with the general strength and stability problem for a built-up structure in

which some components have buckled.

In thin-walled aircraft structures the skin is known to buckle locally under loads

much less than ultimate loads. So there appears the nonlinear problem to determine general

stresses and load-bearing capability of the structures with buckled skins (refer to [3]). For

example, static strength of a wing box in bending is usually limited by general stability of the

upper stiffened panel - in which the local buckling of skin cells between stiffeners may occur

at a lower load than that of the panel.

Upon skin buckling the panel is regarded as an anisotropic structure whose skin has

some lowered (reduced) elastic characteristics that depend on the load level and are involved

in the usual equations for computing orthotropic panel stiffnesses. Thus, two diverse

problems have to be solved.

At the first stage the load should be increased gradually and the subcritical general

stresses of the structure with the skin buckled should be determined by utilizing a reliable

procedure (for example, with a simplified beam-based model or the finite element methods.)

During these operations the element stress resultants are nonlinear functions of the load,

and their values are necessary in solving the general buckling problem at each value of the

(varying) load. For built-up structures (including wings and fuselages) this second problem

may be solved by analytical and/or numerical methods. Let us consider main aspects of

these two problems taking into account features of composite structures.

A report on the numerical method for evaluating stresses in a thin-walled structure

with a buckled metal skin was delivered by the present authors in Stuttgart at the World

Congress on Computational Mechanics, WCCM-II (see [3].) New reduction techniques and

finite elements were used to transform the problem to classical iterations with variable

elasticity parameters which are employed when cal.culating stresses and strains in

nonlinearly elastic structures. Specific to the skin out of composites is the necessity to

compute its secant reduced stiffnesses by utilizing some relatively simple relations - in

particular, those derived in [I, 2]. Thus, the analytical method of [3] applies to structures

with composite elements. If required, the simplified solution to the problem on postbuckling

behavior of a composite plate derived in [1, 2] may also be used to estimate the strength of

each buckled skin cell with consideration of in-plane forces and variable bending

deformation caused by out-of-plane deflection. This problem is discussed below in Part I.

At each toad value the second problem (on general instability of an isolated

orthotropic panel or a cylindrical structure as a whole) may upon imposing some limitations



besolved effectivelyby utilizing the numerical analysismethod the authors developed in [4].

However, the stability equations, unlike the stress/strain equations, are requiring the

tangential stiffnesses which relate increments in generalized resultants and strains. This

forces analysts to compute the tangential stiffnesses (introduced in [1]) of the buckled

composite skin. Relevant issues are considered below in Part II.

In addition, both Parts pay much attention to algorithmic aspects and parametric

analyses in which the features and the level of the influence of skin postbuckling on global

stresses and stability of composite and metal structures. Moreover, both Parts allow for

mechanical and temperature-induced loads.

It is clear that the proposed approach to allowance for the skin postbuckling effect

on global stresses and stability of built-up structures is simplified and limited. However, the

only real alternative thereto is a finite-element-based solution of a general geometrically

nonlinear problem on very finemeshes, and this requires obtaining all local and general

buckling shapes and bifurcation points for variable loads up to the structural failure loads.

The latest finite-element software programs enable trying this way - but the result validity

would always be in doubt.



Part I. Analyzing the effect of skin postbuckling on general stresses and

strains in a composite structure

1.1 Simplified (engineering) methods for evaluating nonlinear stresses and strains in a

thin-walled structure with a buckled composite skin

The influence of skin postbuckling on global stresses in a structure with a thin

composite skin is very simple to consider by relying on engineering analysis methods that

use a beam model suitable in dealing with long regular wing/fuselage sections.

Let us briefly outline principles of the method.

Consideration is given to a thin-walled section of a stiffened structure with a general

cross-sectional shape; the global orthogonal coordinate system 0XYZ is introduced so that the

X and Y axes are in the cross-sectional plane and the Z axis is running along the section (see

Fig. 1.1.) In the cross-sectional plane the coordinate system origin is at an arbitrary point.

Both the skin thickness 8 and the cross-sectional dimensions of longitudinal

stiffeners are assumed to be small as compared with general cross-sectional dimensions of

the structure.

For the cross section contour (at Z = const) we introduce the local coordinate

system snz whose origin is at an arbitrary point, the s axis is tangential to the contour, the

n axis is normal, and the z axis is parallel to the Z axis. The skin is made of a composite

material with a symmetric layup of layer groups with various principal directions.

Equivalent mechanical characteristics of the skin are determined on the basis of mechanical

characteristics of orthotropic layers (Ell, E22 , G12 , _t21 and btl2 = _21 E22/E11), the

directions of layer groups, and volumetric fractions of the layer groups.

The equivalent mechanical characteristics E z, E s, Gzs = Gsz and _tsz correspond

to the data for the orthotropic material.

The analytical method relies on the following hypotheses:

1. The cross-sectional contour (at z = const ) is not deformable in its plane, i.e., the relative

contour deformation is zero (es = 0).

2. Strain in any cross section is described by the plane equation:

f

I_ z = I_ o + 0yX + 0xy , (1.1)

t ?

Herein, e o, 0y and 0 x are certain functions of z; the prime sign designates

differentiation with respect to z.

Now we use conventional stress/strain relations for an orthotropic skin

G z O"s G s G z

_:z - Ez _tsz Es _s Es P'zs Ez 0

to derive the normal stress G z profile over the sectional contour:



Ez ( , ' )-- I; o + 0yX + 0xY (1.2)
Crz 1 - laszl.t zs

As usual, crs = -_tszC z.

3. Since the skin thickness 5 is thin, the skin is assumed not to take bending, so its

tangential stress x and normal stress c z are distributed uniformly throughout the thickness

direction. In this case it is convenient to introduce the normal stress resultant and the

tangential stress flow by using, respectively,

N o=azS, q=xS. (1.3)

The flow q is tangential to the cross section contour. Similarly, stiffener sizes are small in

relation to the cross section contour sizes; therefore, we are allowed to assume that the

stiffener cross-sectional area fs is concentrated at the relevant contour point and that its

force is Ps = fsOzs where Ozs is the stiffener stress.

4. At each cross section z = const external loads are

- bending moments M x (z), My (z),

- torsional moment Mz(z),

- axial force Nz(z),

-shear forces Qx(z) and Qy(z),

these are referred to the axes X, Y, and Z above. Positive directions for the external

factors may be seen in Fig. 1.1.

Note that these factors satisfy the relations,

dM x dMy

dz - Qy' dz --Qx (1.4)

Evaluating the normal stresses

Unknown values of eo, 0_, and 0 x should be determined from equilibrium equations:

n

_CrzSds+ ZCrzsifsi = Nz;
i=l

n

_;Crzyds+ ZazsifsiY i = Mx; (1.5)
i=l

n

_;Crzxds+ _O'zsifsiX i =-My,
i=l

Here, c z is the skin stress,

ffzsi

5

fsi

n

is the stress in an i-th stiffener,

is the skin thickness,

is the cross-sectional area of the i-th stiffener, and

is the total number of stiffeners in the section.



If stiffenersare rather numerous,the integrals canbeestimatedin a simpleway by adding to

eachstiffenera half of the areasof the skin cellsneighbouringwith the stiffener (seeFig. 1.1.)

In this casethe integrals in (1.5)becomefinite sums;using(1.2)we have

where

n

EZFsiE:zi =N z,
i=!

rl

EZfsiYiE;zi = My,
i=l

n

E Z Fsi XiSzi = -My,
i=l

1

Fsi = r,if, i + _jE_,)rojCP_Sjb,j ,

Summation in (1.7) is for the set { re(i) } of panels neighbouring with the i-th node,

(1.6)

(1.7)

Ezj

rsi = Esi/E' r°J = (1 s s )E'-- _-I'sZj_l"zsj

E is the Young's modulus of the material to which the characteristics of stiffeners and skin

cells are reduced,

S

Ezj is the Young's modulus ofaj-th cell, ESzj = q_jEzj ,

S S

_j is the secant reduction coefficient for thej-th cell (with tpj < 1 if the cell buckles),

_s and its are secant Poisson's ratios for thej-th cell upon buckling, and
szj zsj

bsj is the width of the j-th cell.

Formulas for computing p s ,!a s and s
szj zsj (pj are presented in [1].

As (1.1) postulates, e zi

F S xE. S_ I_

ISy Ixy

n

Here, F = Z Fsi
i=l

n

S x = _ FsiYi
i=l

n

Sy = _ Fsix i
i=l

n

Ix = Z FsiYi2
i=l

n

ly = )".
i=l

I t

= eo + 0yXi + 0xYi, so we can re-write (1.6) as,

I, IlO',j

is the generalized cross section area,

is the generalized area moment for the x axis,

is the generalized area moment for the y axis,

is the generalized moment of inertia for the x axis,

Fsi x 2 is the generalized moment of inertia for the y axis, and

n

Z_ixiYi
i=l

(i .8)

Ixy = l y x = is the generalized product of inertia.
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The system (1.8) is nonlinear becausethe generalizedsectional characteristics include the

s "which depend on skin stresses (upon buckling)- and on unknownreduction factors _j

values of e o, 0 x and 0_.

Therefore, the normal stress in structural components should be determined by

iterations with external loads being increased in increments. At a fixed external load (the

vector { N z , M x , My }) the analysis runs as follows.

Initially, all reduction factors <p_ are set to 1. Equation (1.7) is used to compute Fsi

for all values of i and establish the matrix with generalized sectional characteristics. The

system (1.8) is solved to evaluate e o , 0_ and 0_,. The formula (1.2) provides stresses in skin

cells. If these stresses are greater than critical for at least one panel, the respective secant

$
reduction factors q_j and secant Poisson's ratios are calculated by employing relations from [l].

The reduction factors and Poisson's ratio values are used to obtain Fsi from (1.7) and the

matrix of generalized sectional characteristics. The system (1.8) is solved to again evaluate e o ,

0 x and, 0_¢. The successive iteration process does usually converge for 3 or 4 cycles.

Determining shear stresses

To determine the skin shear stress flow q we should consider the equilibrium

condition for a skin element dsdz (Fig. 1.2)at N z = const"

c3oz aq

az 8+_s = 0 .

Then the shear stress flow may be written as,

q = qQ + qo(Z),

i SOz 8
where qQ = -0--_- z cls and qo is an unknown closing flow.

Now we employ the above discrete section model to write:

i 8o.
- 5-"z---z'8

qQ,--_._, _ iSi
i=l 'J'-"

i )=-E)-" Fsi e o +0'vx i +0'xY i
i=l az_ -

i

, ,)= =-E i go +0yaXi +0x_Ji "

i=l

Differentiate equations ( 1.8) with respect to z and involve (1.4) to obtain,

(1.9)

(1.10)

(1.11)

equation (1.12) in which the matrix of generalized sectional characteristics is the same as

IFsx f01E.S x I x lxyl0x'_= Qy . (!.12)

Sy Ixy ly L07j Qx
tf ItThus, for us to determine the derivatives go, Oy and 0 x (present in (I II)) we have
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that in (1.8), and the right-hand sidevector contains shearforces. With this setof equations

solved, the shearstressflow is calculatedby (!. I 1)taking into consideration that
i i i

Fi = _ Fsi, Sxi = Z fsi Yi, Syi = Z Fsi xi - (1.13)
i=l i=l i=l

are the generalized sectional area and the static moments of the cut part; these are computed

allowing for sectional topology. The closing flow qo is established by satisfying the

equilibrium equation for the torsional moment M z.

If the sectional contour is simply connected, the flow qo is described by the Bredt

formula:

Mz (1.14)
qo- f2'

in which the symbol _ denotes the doubled internal area.

If, however, the section is multiply connected, the closing flows qoj should be

estimated by involving both the equilibrium equation and strain compatibility relations for

edges of the contours; taken together, these provide the number of equations necessary for

us to determine all flows qoj.

In case the skin cells buckle under compression/shear, this circumstance is allowed

for when estimating the reduction factors q_ by the method explained in [1]. Problems on

normal stresses and shear flow are solved jointly at each iteration for determining reduction

s s and s with consideration of shear stress.factors (pj and Poisson's ratios _zsj }'l'szj

This approach has been implemented in the composite structure section behavior

analysis software.

These means were utilized to investigate into the influence of postbuckling skin

deformation on global stresses in a stiffened cylindrical structure. Two examples were treated

in order to evaluate in numbers the significance of these factors in stress analyses.

The first example is a circular cylinder with a 2540-mm diameter, loaded with a

bending moment and a torsional moment, see Fig. 1.3. I3istances b s between longitudinal

stiffeners are identical throughout the contour, and the frame spacing gf is 500 ram. The

skin is a 2.64-mm thick composite stack comprising 22 layers whose stacking sequence is

[05 / 902 / 45, / -452]s. Equivalent skin data computed for the particular volume fractions

and ply angles are as follows: E z = 6682 kg/sq, mm, E s = 3768 kg/sq, mm,

• c = 44.5 kg/sq, mmGzs = 1434 kg/sq, ram, p.z_=0.3187 Similarly, skin ultimate stresses are C_fz

in compression, c_ = 31.2kg/sq. mm in tension, and xf_, = 24.8 kg/sq, mm in shear•



II

Consideration is given to two versions of longitudinal stiffening (see Fig. 1.4); these

differ in the stiffener spacing (bsl = 100mm and bs2 = 125 mm ) and the stiffener section

area (fsl = 200sq. mm and fs2 = 247sq. mm ). The sectional areas, fsl and H fsz, are chosen

such that the total stiffener areas for the two versions are equal. With this, the equivalent

stiffener data are as follows: E z =8346kg/sq. mm, ultimate compressive stress

_fzC= 55.5 kg/sq, mm , and ultimate tensile stress _z = 39.0 kg/sq, mm . The structures are

analyzed while proportionally increasing the external load vector:

M x = tMxo , M x = tMxo,

(where t is the increasing proportionality coefficient) for two load patterns:

a) pure bending with Mxo = 5.10 6 kg- mm and Mzo = 0,

b) bending and torsion with Mxo = 5.10 6 kg. mm and Mzo = 2.55.106 kg. mm.

Calculated stresses for these stiffening schemes and load conditions are shown in

Figs 1.5 and 1.6 representing the lower stiffener stresses and mean stresses in the lowest

(compressed) skin cell; the argument here is the load parameter t = M x/Mxo, Figure 1.5 is

to the load condition a); and Fig. 1.6, to the load condition b). Let us first discuss the results

for the structure loaded in bending (Fig. 1.5.)

Two straight lines (rays) which are running through the coordinate system origin and

marked with circles demonstrate the linear analysis not allowing for skin reduction at the

postbuckling stage. The upper ray reflects stiffener stresses, and the lower one, the skin stress.

Solid fine lines represent stiffener stresses and the mean skin stress in case the skin reduction

upon buckling is carried out. One can see that in the structure with the spacing bsl = 100 mm the

lower cell buckles at t = 0.58. With the load growing, the stiffener stresses increase, whereas

mean skin stresses fall in comparison with linear analysis results. In the structure with the

spacing bs2 = 125ram the skin gets buckled at an earlier time: t =0.38; in other respects the

stiffener stresses and mean skin stresses behave like those characteristics of the former version. It

should be mentioned that stresses notably re-distribute in _omparison with the linear analysis

and the difference increases as the postbuckling level gets higher.

Moreover, the skin reduction amount varies in the vertical direction, so the neutral

axis is shifted to tension-loaded panels and this circumstance, in turn, causes the compression-

loaded structural part to take a greater force. Thus, the compression-loaded stiffeners are

carrying additional forces because of not only the "early" skin buckling but also the neutral

axis shift.

The results for the case with bending and torsion are depicted in Fig. 1.5. These are

similar to those in Fig. 1.6. Note that skin buckling stresses crz have diminished since the skin
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When assessing strength of a buckled skin cell, we must compute the total

maximum stresses through the thickness which are comprising the middle-surface stress and

the bending stress depending on local skin displacement w(x,y). These stresses may be

computed by the method exposed in [1].

Figure !.7 depicts the dependence of the lower skin maximum stress (referred to the

ultimate stress 8 ) on the parameter t = M x/M xo for the case a). The total stress _z at the

point { s/b s = 0.5, z = _ x/2, h = 5/2 } reach the breaking condition

- at M x/Mxo = 0.92 for the cell with bsl = 100 mm and

- at M x/M xo = 0.98 for the cell with bs2 = 125 mm.

Figure 1.8 shows a similar kind of dependence for the load case b). Torsion

decreases the value of t = Mx/Mxo at which the breaking stress is attained:

- Mx/Mxo _0.76 for bs2 =125mm and- Mx/Mxo _0.82 for bs_ =100mm.

Coordinates of the point with the hardest load depend on the external load. As for the

above value of Mx/Mxo, the breaking stress is attained at the point with coordinates

s/bs = 0.3 ; z _ 0.32 x.

The second example is a rectangular cylinder with the 2000-mm width and the 1000-

ram height, loaded with bending or bending+torsion, see Fig. 1.9. The rib spacing g f equals

500 mm. Upper and lower panels and vertical side walls are 4.56-mm thick composite

materials with 38 layers stacked as [010 / 903 / 453 / -453 ]s" Equivalent skin data are as

follows: Ez=7383 kg/sq, mm, Es=3407 kg / sq. mm, G==1311 kg/sq, mm, _tzs=0.3217. Skin

ultimate stresses are try-z = 49.2 kg/sq, mm in compression, cr_-z = 34,5 kg/sq, mm in tension,

and zr= = 26.7 kg/sq, mm in shear.

Consideration is given to two versions of longitudinal stiffening, see Fig. 1.10; these

differ in the stiffener spacing (bsl = 125mm and bs2 = 167ram) and the stiffener section

area (fsl = 247 sq. mm and fs2 = 323 sq. mm). The secti3nal areas are specified so that the

total stiffener areas for both versions are equal. Equivalent stiffener data are the same as for

the first example.

Structures are analyzed for two load patterns:

a) pure bending (with the upper panel being in compression and the lower panel subjected to

tension) and

b) bending + torsion

while proportionally increasing the external load vector for M xo = 3.106 kg. mm and

M 7.o = 1.97.10 6 kg- ram.
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Stressescalculated with and without allowance for nonlinearity are shown in Figs

1.11and 1.12; as in the casewith the circular cylinder the skin and stiffener stressesare

functions of the load parameter t. Figure 1.11 is for the pure bending, and Fig. 1.12, for

bending+ torsion. Figures 1.13and 1.14representhow the maximum stressin the compressed

skin varieswith t; here,the"circle" (o) sign denotesvalues_z/_ = 1 that correspondto loads

underwhich the stressat the externalskin surfacebecomeequal to the ultimate values.

Qualitatively, the postbuckling deformation of the skin influences global stresses

and strains in the samemanner as in the circular structure. Note that the wing skin is

usually thicker than the fuselageskin and is allowed to buckle under loads that exceedthe

in-servicevalues.Therefore, the skin reduction influence on global stress/strainfields in the

wing is lesspronounced than that in the fuselage.In addition, wing skin reduction does not

almost result in additional load for compression-loadedpanels - becausespar webs give a

little contribution to the wing bending stiffness,and the forces taken by upper and lower

panels are mainly defined by the bending moment and the section height. In the example

above, the typical wing situation is modeled by the structure with bsl =125mm and

fst = 247sq. mm, and the skin buckles at t _ 0.93.

1.2. Nonlinear finite-element methods taking into account skin postbuckling behavior

An overall algorithm for numerically analyzing strength and stability of a thin-walled

structure with a buckled skin is depicted in Fig. 1.15. Here, t stands for any increasing

parameter (it may be time) which is an argument for loads; 0 < q_s _< 1 and 0 < cpt <_ 1 are

secant and tangential reduction factors that evaluate degradation of elastic characteristics of

the locally buckled skin; t, is the value of the parameter at which the structure fails because of

a) general buckling or

b) destruction of primary components not buckled or

c) destruction of the buckled (composite or metallic)skin.

In the latter case we must pay attention not only to strength criteria with in-service loads but

also to

- requirements on allowable skin displacements and

- the criterion of not reaching the yield strain (for metals) or of first-ply failure (for

composites) under in-service loads.

The problem is nonlinear because the skin reduction factors depend on skin

stresses; note that, according to [1,2], the buckled skin is modeled by a stiffness-equivalent

non-buckled orthotropic plate made out of a nonlinearly elastic material.
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When analyzing global stresses of thin-wailed structures by means of finite-element

programs, the stiffened panels and walls are usually modeled with triangular and

quadrilateral orthotropic plane-stress finite elements (Fig. 1.16a); nonlinearity is dealt with

at each value of t by conducting additional iterations which refine q0s. Stiffeners

surrounding a skin cell are usually spaced rather closely and deform in compatibility with it;

therefore, the problem is below proposed to be solved by using new types of built-up finite

elements comprising the skin and stiffeners; these are convenient in allowing for

postbuckling behavior. In this case the composite skin orthotropy axes are assumed to

coincide with stiffener directions; the skin and stiffeners may have different temperatures.

Finite-elements

Consider a thin-gage triangular or quadrilateral plate of thickness 8 orthogonally

stiffened with ribs (in x - and y directions, at spacing el, _ 2 and cross-sectional areas F I , F2 ).

A skin material is assumed to be orthotropic, with principal axes running along the stiffeners.

Local coordinate systems have x m, Ym and x m , y_, planes in a middle surface of the skin

(Fig. 1.16b), the structure is located in a global coordinate system 0xyz as desired. A skin

temperature field is considered uniform, of value Tsk, whereas a stiffener temperature varies

along the z - axis, the same law being assumed for all stiffeners of the same direction. To

transform this model to an orthotropic material membrane, use can be made of the

_orthotropic layer>> concept (by Birger, Ref. 5) with .core coefficients>> K x, Ky and K v for

x m and Ym--directions and for shear, respectively. Then, the elasticity relations for the

layer may be written as

O-x vyKy_y

8X-E x Ey

or, in terms of stresses,

O'y vxKxo x "l:xyK x "l:yxKy
+Ax, 8 -------'- +Ay 7xy- - (1.15)

Y Ey E x ' GKr GK v

vyKyEx ,
Ex (e x -Ax)+ -- _

ox = 1 - VxVyKxKy 1 -_xvyKxKy (_y -- Ay),

Ey vxKxEy

Cry = 1-VxVyKxKy (ey -Ay)+ 1-VxVyKxKy (gx -Ax), (1.16)

GK v GK v

'rxY-- K 7xy, "_yx- K 7._y, (Vy=gxy,Vx=l-t_y).
x y

Here, A x = Ctx(T-To), Ay = ay(T-To) are the thermal expansions, T O is the initial

temperature of panel. Integrating over periodical structural elements (Fig. 1.16c) and

assuming the in-plane deformation, one can derive the following elasticity relations:
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where

N x = ftx(Ex - Exo) + f2(Ey - Cyo) ,

Ny = f2(_:x - _;xo) + fly(13y -_yo),

Nxy = Nyx = fly_'xy,

h-i/2 E_ K x h-i/2 E yKy
f_x = -_/2 l - VxVyKxKy dzm' fly = -s/2 1- VxVyKxKy dzm'

h-it2 ExvyKxKy h-6_GK r dZmf2 = dz fir = _-8/2 ! - VxVyKxKy m'

(1.17)

(1.18)

are stiffnesses of the panel,

flyTix - f2Tly flxTly - f2Tix
_XO = --

flxfly _f22 , eyo flxfly _f2

h-5/2 ExKx(A x + vyKyAy)
Ttx = I ..... dzm' Tly

1- VxVyKxKy
h-i/2 EyKy(Ay + vxKxAx)

= 1 - VxVyKxKy dzm
-8/2

(l.19)

-_5/2

are temperature strains and stress resultants.

Eqs (1.15) to (1.19) are the same as formulae of Ref. 4, if the material used is

isotropic, but they are convenient for FEM codes to use. Really, eqs (1.17) correspond to

the typical matrix formulation:

where

(1.20)

are

flx f2 0 ]
[D]=[f 0 fly 00 fly-

is the constitutive matrix, {N} = [N x Ny Nxy] T, {E:} = [_:x _y _xy] T, {E;o} = [exo eyo 0]T

vectors of stress resultants, and initial strains, respectively. After dividing eq (1.20) by the

skin thickness 5 and after comparing (1.20) to (1.16) at K x =Ky = K_, =1, one can see

that, in place of the panel, there is a membrane of thickness 5, temperature Tsk, average

stresses {or}= [Ox O'y "t'xy] T = I/8{N}, made of an orthotr_pic material whose characteristics

' ' Ey Vy _'yis principal directions ( x m , Ym ) are E x , , G, , ct x , , so that

I
/ 1

{_} = [D]({¢}- t¢o,), [D]= g[D]=

Ex gx_y

I -- V x Vy ] -- V x Vy

y___2x Ey

I-vxX'y l-_xVy

0 0 G

(I.21)

where {E,,}=[_,(T,,_-T,,)_,(Tn_-T,.,)O] md
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Ex flxfly - F2 Ey FIxFIy -- F2 - f2 -- f2 -- Ex
- fly ' - FIx , G = fir, Vy - fix ' Vx - fly - Vy _y ,

_ e yo fl x - fly f2 = zF2' FI fl "t_x = :ro _ x._OTo, Ot.y - To6 _ To ' Fix _ 8 ' fly - 5 ' _' - 5 "

(I .22)

After integration in (1.18) and (1.19), formulae (1.22) can be used for specifying

material properties in usual structural analyses with triangular and/or quadrilateral membrane

FEs. However, it is important to note that the actual stress field is represented by eqs (!.16)

instead of (1.21). In particular, a skin experiences, as rule, additional local stress due to

restraint from stiffeners of lower temperature; this circumstance become important while

analyzing whether the skin can buckle (and at reducing the skin, if any). Hereinafter, let's use a

simplifying assumption of a small values of Kr <<1, and vyKy <<1, vxK x <<1 .for all

parts of the panel under study. Such an assumption is usually valid for typical airframes.

Then, the skin is characterized by K x = Ky = K, / = 1. Eqs (I. 18) will be transformed:

Ex5 EIFI Ey8 _2F2 Exvy8
- - '" + - - -- + f2 - --- , = G6

fix 1 - VxVy -_1 ' fly 1- VxVy _22 ' 1- VxVy fly ,

where E x , Ey, G, Vy are the elastic constants of skin at temperature Tsk ,

(1.23)

E z FI E ldF, E 2=F2 E 2dF

are the averaged moduli of stiffeners. By parity of reasoning with eq. (1.19), obtain

ElF1
Ex8 (CZx +VyCty)(To6-To)+_l, _I - -

Ttx - ! - VxVy e I

Ey8
B

Tiv. - l_vxVy (O_y +VxC/.x)(To6-To)+E2_F2A2,(2 A2---

I j'Elc_l(T 1 -To)dF,

EIFI F_
(1.24)

1 fE2ct2(T 2 - TO)dF,

E2F2 6

where A 1 and A 2 are the averaged thermal elongations of stiffeners. Eqs (1.16) give stresses

Ex(l- VyVx)- Ex(vy -_y )- Ex 17

-- [_O¢'x°'x- Ex(l-vxVy)Crx+ Ey(l-vxVy )°'y 1-VxVy

Ey(l - Vx_y) _ Ey(vx -Vx) - Ey [[

_y
oY-Ey(1-VxVy )cy+E_(l-vxvy )_x l-vxVy

G_

"t'xY G "_xy ---- "_xy

+ To)-

+VxOtx)(to6-To)-gyo-Vxgxo],(1,25)

for a skin,

El _ El_y

Crx - Ex O'x - g--_ -_y - El[°tl(TI - T°)- ex°]'

E2 E2_x
_x - E2[c_._(T2 - To)-_:yo],

for stiffeners.

"l:xy = 0,

"l:y x =0

(1.26)
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It can be seen from (1.23)-(1.26) that both determination of skin stresses and

reduction of skin require only a few data: skin parameters and integral characteristics of

stiffeners, namely, FI, ,t t, E l, AI,F 2, g2, E2, A2-

To perform a strength analysis of such finite elements, one should apply usual

relations of the Finite Element Method, Ref. 5; in addition, an elastic and thermal

performance of the skin and the stiffeners can be specified. Hereinafter, the parameters

involved are assumed to be the same over all skin and over all stiffeners of the same direction.

A triangular stiffened panel (Fig. 1.16b) carries in-plane axial loads and shear. The

displacement field in the element is assumed to be linear. For the plane-stress element with a

uniform thickness 8 the stiffness matrix is,

[K]=8 I[B]T[E)I[B]dA, (1.27)

A

Here,

[D] is the matrix with reduced element stiffnesses referred to the local { Xm, Ym }

coordinate system and derived from [D] (see (1.21)) by transforming the coordinates;

[13] is the usual constant matrix for computing the strains {e} = [B]{q}.

Upon integrating the relation (1.27) the explicit formulas for the element stiffnesses

referred to the local coordinate system appear.

Equilibrium equations taking into account initial thermal strains are,

[Kl(q} = {F} + {FIEo

Here,

{F} is the nodal force vector due to the external loads and

{F}E ° is the initial thermal force vector which may be evaluated as

{F}_ ° =8 I[BIT[E)I{eo}dA

A

The FEM problem is then solved to determine nodal displacements {q}, strains {E} ;

thereafter, (1.21) is utilized to calculate average stresses, and relations (1.25) and (1.26) are

used to compute the stress field for the panel.

A quadrilateral stiffened panel (Fig. 1.16b) is to be modelled by a simple finite element

whose thickness is that of skin, and thermo-mechanical characteristics (1.23), (1.24) take

account of performance of both skin and stringers. A stiffness matrix can be derived as

suggested in Ref. [6]. That is, the quadrilateral structure should be separated into four triangles,

and displacements of the additional internal node should be eliminated. Each triangle has a

linear displacement field and a uniform stress state. For each triangle, a structural analysis

system can compute a stiffness matrix, strains, and stresses by means of the above formulae.

Unfortunately, such FEs produce significant errors if used in areas of severe stress

or_dlents, sav, in models of spar walls subjected to bendint,.
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An accuracy can be improved through introducing the quadratic incompatible

shapefunctions, their coefficients being found under conditions of minimum strain energy

of the finite element,Ref 7. A new FE -- quadrilateral stiffened wall w has been a good

complement for the existing FEs of our structural analysis system. It represents a futher

improvement of the FE proposed in Ref. 7 and allows for additional internal structures,

orthotropic material, and temperature gradients. The stiffness matrix components can be

computed using the Gauss-Legendre four-point integration formulae, Ref: 6; eq. (1.21) is a

source of the matrix of elastic constants. The finite elements proposed can be developed

further to include different structural features.

Solving the nonlinear problem

As stated above, consideration of plastic deformation and buckling of the skin

makes us regard stiffnesses of the skin (and thepanei as a whole) as functions of an

instantaneous level of stresses and strains:

[D]= [D( {e} , {cr} )], {_o} = {8o({_},{cr})}, (1.28)

where {c_}= [crx_yXxy] T is the skin stress vector in accordance with (1.25).

The nonlinear problem may be solved on the basis of the FEM and the proposed

finite elements by resorting to iterations. At each stage we should analyze linearly the

stresses and strains by using the stiffness matrices and temperature forces which result from

strains, stresses and secant reduction factors obtained at a previous stage. In this case the

reduced stiffnesses of a buckled composite skin (E s, Ey, G s , Vx,s vyS = vxS EyS/ESx ) with

and without temperature variation consideration depend on the "supercritical strain" of a

particular finite element, and one should rely on relations of [2] and [I], respectively.

At the initial iteration we solve the usual elastic problem for the structure with no

skin buckling. Iterations stop when difference of stresses as obtained at two sequential

iterations becomes rather small. In particular, if an unbuckled metal skin is involved in

plastic deformation the present iterative process coincides with the traditional variable

stiffness method [6] for physically nonlinear problems. The new method has been

implemented in a computer program and validated by using example problems for which

theoretical and numerical solutions have been provided elsewhere. New numerical analysis

results are rather verisimilar and close to experimental data.

One knows two methods for finite-element modeling of a stiffened structure with a

buckled skin. The first method is to prepare a rather dense mesh whose characteristic step

sizes g_ and g2 are close to the stiffener spacing, to use the rod elements for modeling of

stiffeners, and to introduce unstiffened plane-stress plates (with F I = F z = 0 in (1.23) and

t l 9a,_ fnr rnc_delino c_f _kin cell_ The _ec_nct melhod i_ rllilnhle fnr analvTin_ _lrtleltlre._
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with numerous stiffeners; here, use is made of the built-up finite elements described above,

whose dimensions are much greater than gl and g2; this enables analysts to increase the

characteristic element dimensions to the distance between primary load-bearing components

such as spars and frames. Of course, the second approach requires much less computation

time and computer memory space and would be preferred.

Consider an example: nonlinear analysis of an edge-clamped cylindrical stiffened

shell loaded with a transverse shear force. Structural dimensions and the value of the force

may be seen in Fig. i.17. This example is typical of real fuselages. Results of experiments

with the present shell are reported in [8]. The skin is very thin (5 =0.51 mm), and its cells are

subjected to various combinations of normal and shear stresses which lead the skin to

buckling nonuniform over the cross section contour.

Analyses were carried out by using the nonlinear FEM program above. Introduced

as nodal points of the finite-element mesh were points of intersection of longitudinal and

transverse stiffeners. Stringers and frames were modeled with beam-type finite elements, and

the skin, with flat quadrilateral membranes. Thus, the finite element for the skin models a

real skin cell between neighboring stringers and frames. The FE model includes 126 nodal

points with the total of 630 unknown displacements. At each iteration the program

corrected the stiffnesses of element that model the shell skin: initial elastic properties of the

skin material were multiplied by current values of reduction factors. The reduction factors

for the skin under multiaxial load were computed by employing the method of [1].

Figure 1.18 depicts stress diagrams for the skin and stiffeners at the clamped end.

Also, one can see experimentally obtained results from [8]. Comparison for the compression-

loaded domain shows that data of experiments and the nonlinear analysis are in a rather good

agreement.

Figure 1.19 represents diagrams of normal stresses as computed for stiffeners at the

clamped end by using linear and nonlinear theories. It is clear that stresses differ much,

especially in the compression-loaded domain. As compared with the linear calculation, the

mean normal stress in the skin over the severest compression area has decreased by a factor

of over 2.3, whereas stiffener stresses in the same area have been higher by 23%.
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Part 2. Evaluating the effect of skin postbuckling behavior on general

stability of a composite structure

2.1. Tangential stiffnesses of stiffened structure upon general

buckling

In Part 1, we dealt with analysis of stresses and strains in a stiffened structure whose

thin composite skin carries loads while being buckled. At a certain value of the external load

global instability may occur. At that moment both the stresses and strains show small

increments which may be regarded as variations to initial (subcritical) values for the

structure with nonlinear dependence of strains on skin stresses.

In [1] the nonlinear dependence for a composite plate has been written as,

Px PY

ex - Ex P.yx _ +Be(p,s),

S

- -- + B0(P,S),
3' - Gxy

ey- Eypy I'txy "_xx + Ota2Be(p's)'
(2.1)

2
where ota = a / b and p = Px + etaPy"

The relations (2.1) were obtained by assuming proportional loading -- that is, at

p = p •t and s = s • t, where t is the load parameter (_1) and { p*, s* } is the critical load

combination (refer to Fig. 2.1). Functions B e (p, s) and B 0 (p,s) in (2.1) represent the fact

that upon local buckling the initially orthotropic plate becomes anisotropic at s ;_ 0.

Variations to the initial relations (2.1) look like this:

t 138St 8p x +al28py +a8% :all

Bey = a_l 8Px + a_28Py + at_3 8s, (2.2)

t a_sSs,t 8p +a328py +5y =a31 x

Here,

1 c3Be ]'txy 2 aBe caBe

all=_xx + -_ , al2=ail=--_x +eta _, al3=_s ,

1 4 aBe 1 aB 0 2 c3Be

at 2 - t_y + ff'a _, a13 - (_y + _s ' a[3 = eta _ ,

a t aB0 t = et a c3B0
31- c3p ' a32 o_p ,

t and at3 =a_2" this means thatPotentiality conditions require that a13 =a31

aB e OB0

Ks
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supercritical out-of-plane

"supercriticality index" t; i.e.,

The latter condition will be met if the loading is proportional and the ratio of

displacements, _=f22/flt, does not depend on the

ill

g

w-4-_" '

• ./• . ./.where_ =p Px0 andg =s s0 . In this case

n2B e_ -- f12(l+4t¢2), B 0=4 BeW ,
8a 2 so

(2.3)

(2.4)

and

= __.-l+4j__ffg _ p _- s

f?' p:o s;
I0

Expressions for C 7 and C 8 are provided in [1].

Let us symbolize derivatives of B e and B 0 with respect to p and s as follows:

0B e 0Be 0B0 0B0

Be'p- 0p ' Be's- 0s ' B0'p- Op ' B0's- 0s

Then wetakeinto account(2.3)and(2.4)to obtain:

1 n 2 I+4W 2 1 _2 I+4_

(2.5)

ex =a_lpx + a_2py + a_3s,

ey =a_lPx + a_2py + a_3s,

7 =a_lpx + a_2Py +a_3s,

--- + Be, p i- ,aPl- Ex

aP3 =a_l = Be.s I- ,

= -- + ff.a Be,p 1-- E '

aS3 =a_2 =ot_Be. s 1- ,

a_3-G-xy + I- • BO,s-Be, s_ •

where

on anisotropic materials:

(2.7)

Be'p Pxo 8a2 " i-6C71 _qj2C 8' Be's --So 2a2 1_C7- qt2C8 "_J B°'P'
(2.6)

I Pxo 2n2 1+4_ 2

Bes = --7" "-aT" klj2", So So i
_C 7 - q/2C 8

With (2.4) and (2.5) written and the stability boundary equation being

_* + 4t¢_* = 1, the original expressions (2.1) may be re-written in the form usual in studies
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However, analysesareeasierto perform upon transforming the relation (2.l) to the

version correspondingto a quasi-isotropic material with variable elasticity parameters:

ex = _p Px + --_-y +_a Py,

ey = - E-'-_. Px + cta py, (2.8)

As for secant reduction factors (q_s s s×, (py, q_y) and the secant Poisson's ratio, the formulas

derived in [1] are valid.

Also, (2.2) may be re-written to the form usual in studies on orthotropic materials

with variable elasticity parameters. Loading is assumed to be proportional, so 5px = Px St,

* * S*Spy =pySt, and 6s=s*6t; for p ,0 and ,0 we obtain:

( "15e x = all +a[3-_- 5p
P

t 2 t

5ey = al2 + ¢taal3 _Px

2
x + a_2 + °_aa_3 (3py,

P

4 t
+ a_2 +C_aal3 Spy,

(2.9)

Then the stress increment expressions which are inverse to (2.9) become

5px - ( ) ( )-- t tt Ey _Sey+ I.txy_iex (Ss= Gxy5 Y
t t ' '

t t Sex + I'tyx6ey ' Spy 1 - _xyl.tyx1 - btxyp.yx

where

EL-- l t

kt_ =* ' 'X

all +ah _.
P

2a_3 sa_ 2 +cta al 2 2 t s+ tXaal3 ----;

P* P

al, +ah ah +_.ah

1 1
t G tEy= . , xy=

4 t S ___at2+Ctaal 3 . a_3+al3P
p s

(2.10)

We proceed from relations E t = Ex_ t t t tx, Ey =Ey(py, and Gxy

reduction factors may be determined from (2.10).

t. relevant= Gxygv,
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For increments of stress resultants and moments

following equations are valid:

N x = ISPxdZ, Ny=ISpydz, Nxy= j'Ssdz,
h h h

upon global buckling the

M x=j'Spxzdz, My=SSpyzdz, Mxy=JSszdz.
h h h

Now we can employ the Kirchhoff-Love hypothesis and the Shanley hypothesis on

loading continuation at bifurcation; with this, the latter equations provide the following

expressions for reduced tangential stiffnesses of the skin:

Eth B_20 Eyh_ =Gxyh, B[20-- t t ' 1 t t ' B_30 tB[I° 1 -- _xy_yx -- ]J'xy_tyx

Eth 3 Eyh 3 Gtyh 3

D_1° 12(1-!axy_yxt t )' D_2° 12(1-!atxyktyx)' D_3°- 12 '

t Etx hktyx

1 - _t txykt tyx

t D_10.D[20 = ktyx

(2.11)

If the skin is stiffened regularly with longitudinal and transverse elements (having

spacings b s and bf, respectively) then the tangential stiffnesses of the stiffened panel are

similar to (2.1 1):

B[I E s rtsh + Us B_2 = Ef rtfh + , B_ 3 Gtyh t= , = + Gsfhsf ,

B{2=B{2 o, B_--B_,so+B[2 o,

D{,=E s rts _+hh_ +_s+ -h, ,
(2.12)

h3h 3 If Ff (Zf-h2) 2 D_3 =Gty 6 'D_2=Ef rtf -i_'+hh_ +_f-f+b V ' --

where

D_ =2D_3 0 + D[2 0 +
GsIs p GfI_

+

2b s 2bf

t
Etx Ey

E s, Ef,G s , and Gr are elastic moduli and shear moduli of the longitudinal and

transverse elements,

Fs, Ff, I s, If, IsP , and IP are cross-sectional areas, central moments of inertia, and

the product of inertia of the longitudinal and transverse elements, respectively,
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z s and zf are distances from the skin midsurface to centroids of the longitudinal

and transverse elements, respectively,

h I and h 2 are distances from the skin midsurface to centroids of the longitudinal

and transverse elements with relevant skin strips, respectively, and

Gsf • h sf is the shear stiffness of the frames/spars with no skin; this value depends

on a method for joining the longitudinal and transverse frames/spars.

These equations for secant and tangential stiffness parameters are used hereinafter

to analyze subcritical stresses and strains and general stability of the stiffened structure. In

the case with no skin buckling the equations become the traditional expressions for

stiffnesses of a stiffened panel.

2.2. Stability of regularly stiffened cylindrical and flat composite panels and shells

in the case of uniform loading with compression and shear

Consideration now is given to a stiffened cylindrical panel whose radius is R and

planform dimensions are A and B (see Fig. 2.2). The panel is regularly stiffened with

longitudinal and transverse elements. The cross-sectional area and the spacing of

longitudinal element are F s and b s, respectively; and those of transverse elements are Ff

and bf, respectively. It is assumed that the panel skin is a thin composite with iayup

sequence being symmetric with respect to the skin midsurface. Reduced mechanical

characteristics of the skin correspond to characteristics of a homogeneous orthotropic

material -- E x, Ey, Gxy, /.txy, _l.yx ( Ex_ty x = Ey_txy ). The skin thickness is h. Dimensions

b s and bf are much lower than A and B, so the skin cell may be assumed to be fiat.

Let us use u, v, and w to denote projections (on axes x, y, and z, respectively) of a

small displacement of a panel point.

For a shallow panel either stiffened or unstiffe'ned being uniformly loaded with

0 0
stress resultants N O, Ny, and Nxy (with no moments applied) and unbuckled, we can write

the following linear equations:

t2.13)

Here, [L] is a symmetric 3 by 3 matrix whose components are differential operators

Lij for stability equations (i,j = 1,2, 3) and

{U} is the displacement vector with components u, v, and w.
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The differential operators in (2.13) have the following form (as provided in [9]):

02 02 O2

= -- + Bt3 0y2, L12 = L21 = B_ "0x0yLll Bll ax 2

S12 0
Lt3=L31-- R Ox'

O2 32 B_2 3

L22 =B_2_-_ +B_33x2, L23=L32 =--R Os'
.(2.14)

04 04 t (_ G_4 2 0 2L33 = DII _ + 2D_ 0x 2 c_ 2 + D22 0s 4 +
_-@ B_2R 2 0s 2 + +---_-

--_ 0-N O02_ -2N°x ,, 02 Ny 02
0x 2 " 0x0y 0y 2"

In the case of a panel whose edges x=0, x=A, y=0, and y=B are freely

supported, the solution to (2.13) may be written as

_ mnx . nny
U = _ _-_,Amn cos--_Sln g

n=l m=l

_ mnx nny
W = _ _ C mn sin --_ sin --ff-

n=l m=l

oo _ mnx nny
V = _', _-_'_Brnn sin --_--- cos B

n=l m=l
(2.15)

Upon substituting relations (2.15) into (2.13) and resorting to the Bubnov-Galerkin

method we obtain an infinite homogeneous algebraic system of linear equations for the

constants Cmn "

Cmni'C,,C23-C13C22'C3,+'C,3C2,--C,,C23)C32lCl 1C22 -- C22 + C33 - pg =

32czmnSg r s

- r_ 2 _r _s Crs (m 2 -r2)(n 2 -S 2)

(2. ! 6i

where m, n, r, s = 1, 2, 3, ..._ and the values of m+r and n+s are odd numbers,

_-m2Cll + bl2n2ot 2 ,

C23 = C32 = b22nRI3,

0
N o Ny

m2+--
pg - B[ I B]I

A A

a-B' 13- nR '

Cl2 = C21 = b3mnot , cl3 = c31 = b12m[3,

m' d2:(C33 =r_- dll + + n2c_ 2

N O
xy

n2ot 2 Sg B_ I

D;
bij - B[, diJ B[I A2

132)2] (2.17)- + b2213,

0 0
The stress resultants N O, Ny, and Nxy are assumed to be proportional to a single

parameter t; one could limit the system (2.16) with a certain set of equations (it suffices to

adopt m and n of 6 to 8); with this, it is easy to establish the critical value t = t" which zeros

the system (2.16) determinant.
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The global stability analysis is performed in compliance with the algorithm depicted

in Fig. 1.15:

the load parameter is incremented from zero in steps of At;

at each load step the iterative procedure is run in order to determine subcriticai

stresses and strains in both the skin and stiffeners;

if the skin is to buckle at the current load level, then relations (2.10) and (2.12)

are employed to establish tangential stiffnesses of the panel and their respective determinant

of the system (2.16);

if the system (2.16) determinant changes its sign at a certain load level, then the

critical value of t ° should be refined to the accuracy required.

The problem of general stability of a stiffened circular cylindrical shell (Fig. 2.3) is

solved in a similar way. A particular solution to the system (2.13) is represented by,

u:Acos(Xm_'-n_), v:Bcos(_.m_-nq_ ), w:Csin(3,m2-nq_ ), (2.18)

where_=x/g, q_= s / R ,

g is a shell half-length,

s is a cross section point coordinate measured along the circle,

_'m and n are wave parameters.

By substituting (2.18) into (2.13) at a fixed value of n and performing the necessary

mathematical manipulations we arrive at the characteristic algebraic equation of the eighth

order with respect to _'m; roots of this equation taken together with the eight constants

C m (m = 1, 2, ..., 8) make it possible to write the general solution to (2.13):
8

w= ECm sin(Lm_-nq0). . (2.19)
m=l

Constants A m and B m are functions of C m .

Boundary conditions for shell ends { x = +g } are the following:

02w
w - - N x = v = 0 in the case of free support at the ends,

0x 2

0w

w - 0x - N× = v = 0 in the case of clamping of the ends.

These allow one to formulate 8 linear homogeneous algebraic equations for

constants C m . Coefficients of these equations depend on shell end loads N O, N °, and N°xs.

The condition of existence of a nontrivial solution to the system provides the critical load

parameter value t" and the critical load {N_, N s , N_s } ofglobal buckling.

Let us delve into particular problems with stiffened structures whose skins buckle

and carry loads upon buckling until the structure undergoes global buckling.
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The initiatory problem is on a flat (I/R=0) stiffened panel with planform

dimensions A=480 mm and B=400 ram. The skin with the thickness of 2.64 mm is made out

of a composite with the following equivalent characteristics: E x =6682kg/sq. mm,

Ey = 3768 kg/sq, mm, Gxy = 1434 kg/sq, mm, laxy =0.32. Ultimate stresses of the skin are

cxc = 44.5 kg / sq. mm in compression, Cxt = 31.2 kg/sq, mm in tension, and

x sh =24.8 kg/sq.mm in shear. Longitudinal and transverse stiffeners are rectangular

shapes with cross-sectional sizes 20 by 5 mm and the spacing steps b s =100mm and

bf =120mm. Stiffener material characteristics are as follows: the Young modulus

E=8346 k g/sq.mm, the compressive strength crc = 55.5 kg/sq, ram, and the tensile strength

crt = 39.0 kg/sq, mm.

Critical stresses of local buckling of a skin cell between stiffeners in the case of

uniaxial loading are Px0 =10.87 kg/sq, ram, Py0 =7.55 kg/sq, mm and s0=21.29 kg/sq, mm.

Figures 2.4 and 2.5 show the analytical results. More particularly, Fig. 2.4represents

the global buckling boundary curve in the plane {N °, N,,y°} (note that Ny° = 0); it defines

the critical load combination {N x , N_y } (shown by the solid line) and has been drawn with

consideration of skin postbuckling behavior (until the panel becomes buckled) for the

following load combinations:

N°y
No -0, 0.2, 0.4, 0.6, 0.8, 1.0

and
N O

xy

-1.0, 0.8, 0.6, 0.4, 0.2, 0.

Also, one sees here a similar kind of boundary curves computed for the same panel

without assuming the skin to carry loads upon local buckling (the dashed line). By

comparing these curves it is clear that the global stability analysis with no correction for

load-carrying capability of the buckled skin may be misleading in its overestimating the

global buckling load by 25% to 60%.

Figure 2.5 represents stresses in components" of the stiffened panel being in

subcritical state, immediately before global buckling; consideration is given to all the above-

mentioned combinations of shear and compressive loads at the edges. Here, solid lines are

for component stresses if the analysis takes into account load'-carrying capability of the

buckled skin, and dashed lines, for component stresses calculated with no account of load-

carrying capability of the buckled skin. In case the shear load is relatively low the most

notable difference is between mean stresses in the buckled skin, Px, and the nominal skin

stress _x if the analysis does not allow for early skin buckling. When the shear load is great,

one could reveal additional compression of both longitudinal and transverse stiffeners which
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is caused by appearance of oblique waves in the skin -- see o s and of in Fig. 2.5 for

N 0-)0 at N°xy_0.

However, it should be noticed that, when the shear load is increased,the mean shear

stress s in the skin grows rather rapidly and reachesthe ultimate level (_sh _ 25 kg / sq. ram)

at N°y _. 72 kg/ram. Thus, if the shear stress resultant N°y is higher than 72 kg/mm, we

should expect the skin to break at loads less than the global instability load.

Consider also analysis of global stability of a stiffened cylindrical panel with radius

R=1270 ram. Panel planform dimensions, longitudinal and transverse stiffener shape and

sizes, skin thickness and material characteristics are the same as those of the flat plate above.

Figure 2.4 demonstrates the panel buckling boundary computed by the present

method. Clearly, the panel curvature does notably improve general stability. Calculation for

the same panel with no allowance for buckled skin stiffness provides results which are

greatly overstated- by 20% to 40%.

Consider now the problem of stability of stiffened circular cylindrical shell subjected

to torsion. The shell has the following main parameters: curvature radius R=750 ram, overall

length 2g = 2100 mm, skin thickness h=l ram. The skin is regularly stiffened with stringers

(with the spacing b s =118 mm) and frames (with the spacing bf = 150mm). The stringers

are rectangular 8 mm by 20 mm shapes, and frames are angles with leg sizes of 15 mm and

35 mm and the web thickness of 2.0 mm. The material of both the skin and stiffeners is

isotropic, E=7200 kg/sq.mm and _ = 0.33.

Three identical metal shells have been manufactured and tested under torsion. At

skin stresses z _ 4.8 kg/sq, mm the skin had buckled and remained in this state until the shell

failed due to its global buckling. Figure 2.6 demonstrates one of the shells in a subcritical

state (as for global buckling). One can readily see local waves in skin cells. Here, the

"supercriticality level" is approximately 3. Figure 2.7 represents global buckling of the shell;

spiral waves involve stringers and frames into large deformation. The experiments provided

the following values of critical shear for the three shells tested:

N_y(i ) =14.2 kg/mm, N_y(2 ) =13.Skg/mm, Nxy(3 ) =13.7 kg/mm.

Our analyses with postbuckling skin stiffness reduction suggest Nxy = 15 kg/mm.

Thus, the experimental data are at the level of 91% - 95% of the theory. In contrast, analysis

of the same shells with no allowance for stiffness reduction overstates the critical load by

approximately 35%.
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2.3 Analyzing the stability of a built-up cylindrical structure with consideration

of global and local buckling, nonuniform loading and buckled-skin load-

bearing capability

Below, we describe a high-accuracy numerical method for analyzing stability of

built-up composite/metal structures subjected to subcritical loading with compressive and

shear forces which vary along the cross section contour.

The structure is a cylindrical or slightly conical system of interacting rods, plates

and shells made of composites or metals and subjected to mechanical and thermal loads.

Account is taken of variable curvature, loads, thickness, initial out-of-plane

displacements, and subcritical deformation of the system along the contour. Also, the skin is

assumed to be multi-layered; elements, anisotropic; stiffeners, discrete; and global/local

buckling, likely.

The method is based on

formulating the corresponding homogeneous boundary-value problem,

separating the problem variables, and

-- solving numerically the stability equations for the structural elements by means of

the discrete orthogonalization method of [10].

Of course, all the structural components are linked into a system by using finite element

methods.

Consider an isolated anisotropic non-circular cylindrical shell that in the subcritical

state is loaded with stress resultants N°(s,t), N°(s,t), and N°s(S,t) (Fig. 2.8)where t is the

load growth parameter, t___0. General equations of structural stability which describe

buckling of the shell may be represented as three groups of relations (refer to [4]).

I. Neutral equilibrium equations:

0x

R 3x --_=- R 0x R + '

Qx_ +_saMx c3Msx N00×_N0_0s_(0_+00)S -,

Qs- 0Ms& -t-aMxso_x-NsOs0 -N_sx0×-(0s°+0o)Ns

( Msx i (Mxs +Msx))S=Nxs- R -Nsx' H=2

(2.20)



II. Elasticity relations (from [11, 12]):

{M}J--L[c][D]Jt{_}J
(2.21)

Here, the meaning of new symbols is as follows:

{N} =LNxNs G.I T , {M} =[Mx M s HJ T

{a_}=La_ a_sa_xsJT, [B]=[B0]=[B] T,

[D] =[Dij] =[D] w , i,j=1,2,3.

III. Geometric interrelations:

{=}=L=xesyxsJT,

[C] = [Cij ] = tEl T ,

ovw( )ex-_, _s=-_+_+o°+%os,

00 x 00 s 00 s O0 x 1 0v

a_x- ox_-' a_s- u_-' _exs= 0x Os +R Ox

Ow

0x = Ox 0s

Hereafter,

u,

( dwooOS + _' O0 =-d--'_' Os = dss f "

(2.22)

v, w) 0 x , and 0 s are additional linear displacements and rotation angles of

the normal to the skin;

ex, Es, 7 xs, _x, a_s, and a_xs are strains and curvature variation components;

Wo(S ) and w°(s) are initial and "accumulated" subcritical out-of-plane

displacements; and

Bij, Cij, and Dij (i,j=l, 2, 3) are shell stiffness parameters.

Boundary conditions for edges {s=0} and {s=b} of the isolated shell are described by,

wls=o0-_,o)÷_sls=o_,O=o,

O,ls=o(l-8o)+Msls=oSO=o,

U[s=o(l - q_o) + SIs=o_O =o,

vl,__00- v0)+_ Is_-0v0=0,

Osls=b0-.8,)+ M,[s=b6, =o,

ul,__,0-+,)+ _I,__,_, =o,

vls=b(l-WI)+ Nsls=bWi =0,

(2.23)

Here, the constants 70, 60, q_0, _So, 7r, 61, ¢Pl, and uji take the values 0 or 1 for

cases with displacement control and load control, respectively. Lastly, additional symbols are,

3u 00u OM sx

S=S+Ns°x_x+Ns_ ' Qs=Qs+ _x '

Ns =Ns +NsO _xx +Ns + .
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The critical value t. of the load parameter t_ is sought to be the minimum value of t

at which the homogeneousboundary-value problem (2.20)+ (2.23) hasa non-zero solution

(subjected to the extra condition of simple support at shell ends {x=0} and {x=a}).

Underlined terms in the above equations provide options for analyzing general stability of

the structure in combination with local and temperature-induced buckling.

Stability equations for a built-up stiffened cylindrical structure composed of

interacting cylindrical shells, plates and rods may be written in a similar way. For instance, an

i-th web (see Fig. 2.8) may be analyzed by employing relations similar to (2.20) - (2.23) in the

local coordinate system { XI, X2, X3} which are provided in the work [13]; the latter also

gives compatibility conditions for displacements in the skin and stiffeners. Stability equations

for plates in the structure may be derived from (2.20) - (2.23) by assuming that I/R=0.

All equations are written for each shell, plate and stiffeners. At all joints of shells

and plates the equations are complemented with the fitting conditions which include

equilibrium equations and the condition of generalized displacements being identical at each

joint (refer to [l 3]). Free and supported longitudinal edges of some elements must meet the

boundary conditions (2.23).

The major difference between the new system of homogeneous differential

equations and the one in [13] is that the former system includes general elasticity relations

(2.21) which are characteristic of anisotropic composite structures; this circumstance

notably complicates solution procedures.

To begin with, we have to consider a particular problem with no subcritical shear

load and no orthotropy in elements - more specifically,

0
Nsx=0, BI3=B23=CI3---C23=DI3=D23=0. The solution for each shell may be written as,

where

{P} = {Pn} nnx nrtxcos_, {F} = {F n}sin_ (2.24)
a a '

{P}=LU0x_'xs a_xsSHQx3 T , {pn}=Lunoxn_,n a_xsn S

{F} =Lv W0s Ex es _ex a_s Nx Ns Mx Ms hsJ w ,

{Fn} = Lvn Wn 0n _:xn Cn a_xn a_n Nxn Nn Mxn Mn QnJ w

n Hn Qxnj T ,

In addition, n is the number of longitudinal half-waves in the shell, and the functions with

the subscript n are only depending on the coordinate s.

Stability equations (2.20) - (2.22) can in this case be transformed into the system of

8 ordinary differential equations (at any values of n and t as the work [13] states):

d{u}

ds -[C]{u}, (2.25)
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Here,

{U}=kWn On Mn Qn Un Vn Nn SnJ T is the column vectorto besought,

dun °fdvn R) nnSn=Sn +NO d's ' Nn =Nn +Ns_-s + , Qn=Qn-_ - Hn

[C] is the matrix whose coefficients are known functions of s.

Boundary conditions for an isolated element may be written as,

iF o]{ u(0)} = 0, iF, ]{ u(b)} = 0, (2.26)

where IF0] and IF,] are constant 4by 8 matrices.

The problem (2.25) - (2.26) may be efficiently solved by utilizing the discrete

orthogonalization method (which requires solving some Cauchy problems). For a point

{s=b} the solution is,

{u(b)}
and the condition for obtaining the critical value t* is written as follows:

det[D(t)] = 0, (2.27)

where [D] =[F,][Z(b)] and [Z(b)] is the established solution matrix.

To analyze a built-up cylindrical system, the following procedure is applicable.

Solutions in the form of (2.24) are written for all elements. Equations (2.25) are obtained for

each shell and plate while assuming the unit-displacement boundary condition - for

example, for the following conditions at points { s k = 0 } and { s k = b k }"

sk On k nks,=0 k ok k k[Wnk =0 =1, k =U n =V =Wn = n =Un =Vn sk=b k --0

Here, the superscript k is the identification number of the element. Proceeding in' the same

stiffness matrices are established for each element ([K'] k) and the entiregeneralizedway,

structure ([K]); use is made of conventional algorithms of assumed-displacement finite

element methods. The resulting equations for neutral equilibrium become linear algebraic

equations (at any n and t):

[K]{y} =0, (2.28)

where {y} is the generalized displacement vector for all nodes in a cross section of the

system. The vector comprises all nodal displacement vectors:

v T{Yi}=Lwni q°ni uni ni_l , i=i,2,...,N

The equation for determining t. takes the form,

det[K(t)] =0. (2.29)
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Initially, we should use (2.29) to find t n at various values of n; thereafter, t, is sought as

min t n at n= n.. Finally, (2.28) is utilized to determine the eigenvector {y.} and the
n

structure buckling shape.

In the general case the subcritical shear load is non-zero and/or elasticity relations

(2.21) for at least one element have a general form; then the solution to the structural

stability problem assumes a form differing from (2.24):

.(P} = {Pn} cos-+ {F}{Fn} +, = sin- 7- {Pn}COS_: •g sm -7- (Z24')

Here, variables of the first group ({Pn},and {Fn}) are the same as in (2.24),

whereas variables of the second group are

{Pn}=[G 0_ _'n _x,n S. Hn QxnJ T ,

{_n} = LVn_. 0n ex. en a_x. g_. Nxn gl. l_lx. Mn Q. JT-

In this case the structure is assumed to be rather long; g > 0 denotes the buckling

half-wave for the longitudinal direction (in practical analyses it suffices to adopt

g=gn =a/n, n=l, 2, 3, ...).

Further, we can substitute (2.24') into shell stability equations (2.20) - (2.21) to

separate the variables and obtain 16 simultaneous ordinary differential equations below (in

which the prime sign symbolizes differentiation with respect to s; _o = 00 + 00):

V n
W' =-O n +-

n R '

, =( 0-02) - -o- 0-oMn N°+NsOs On +Qn +2P'nHn +0sNn-Ns0sen +

0
-0 0 _" + Nsx_n._n0s Nsxbtn n

--, 2( 0 0-02) 2-0 0 Nn -o-Qn =l'tn Nx +Ns0s Wn -btnOsNsvn +--R -'-btn0sSn +

-0 0 2 0 - 2-To _0-
+_n0sNs'[n +lanMxn-btnNxs0n +P.nl_xsOsUn,

i

,Un =)In - l'tnVn + l'tnWn ,

Wn __00n '
0

vn = en - R

2-.,0_0 Qn lan(Nx +
_;,=_btnJNstJsWn_W+ 2 0 Ns0)Vn +_ng n _

- p. nN_'fn + N_xbtn _'n - O00n - NsO×_tnun,

Sn =btnN0uq-btnNxn-btnNxs(gn +}'tnVn
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v n

Wn =-On + R '

_ = _,

0-02- _o_. o-o-= _Ns0 sen - 2pnH n -
(2.30)

-0 0 0
-0 sNsxpnvn -Nsx_nWn,

"_, 2 0 0--02- 2_'0"_-0-- +_._ + ,n_O_nQ_--,o(Nx+N_0_)wo- _o_,_s_o
-0 o- 2 ~ NOOn + 2 -0- _n0sNs)'n + _tnMxn + btn btnNsx0s Un,

--0

Un =_'n +btn_n - 0s/'tnWn,

Vn R

"-, 20-0- Qn 2(NO +N0)V nNn =-l'tnNs0s Wn ---_-- + _n _ _ - I'tn_n + P'nNOy'n -

Nsxla n_ _ -NsxgnUn,

_n 2 0- _ny0x(y __nVn+t.tn0sWn),=/'tnYxun + ]'l'n_rxn + n -0

Additionally, we introduced lan = _/gn •

The similar way may be used to transform the equations for rods, the boundary

conditions of form (2.23), and compatibility conditions for longitudinal edges of elements in

the system.

Substitution of (2.24') into elasticity relations (2.21) allows us to express the

variables en, _en, 7n, _'n, _n, _'n, Nxn, Mxn, Hn ,_lxn, l_lxn, Hn (which are present in

(2.30)) in terms of basic variables

¢_ |
n Vn Yn Sn _'n 0n lVIn Qn U'n _'n _'rn Sn jT,u, =l_Wn0nMn Qn u . (2.31)

For example, values of {e n , a_ n , _'n } and {_'n, g_n, 7".n} should be determined from the

following systems of equations:

B22+N_ C22

C22 D22

B32 C32
c23B23]{ nt=  n N x n'+0Mn0"s0s0n°°,}

B33 +N° Y'n _n +Nsxl'tnun -Ns(P'nV'n -001"tnWn

+ B2 nc23 nl{u }C21bt n D2lbt2n D231.t n w n ,

B31_n C31k t2 C331an 0n

(2.32)
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l ]{}B211-tn C21g2n C23gn Un

- C21/'tn D21g2n D231"tn _'n ,

B31P. n C31bt2n C33Pn On

(2.33)

and, similarly, the stress resultants and moments { Nxn, Mxn, Hn } and { ]_xn, 1Mlxn, Hn }

would be found from the equations,

M_. =-C,,,. D,,,_ -D,_,./lw.f./C,= D,z C,3/t_.f. (2.34)

[ Hn -C31btn D311a2 -2D33gnJI. On J Lc32 932 .C33Jl.7"n 3

i%'[xn = CIIP'n DllP "2 DI3Pn *n + CI2 D,2 Cl3|'_nr. (2.35)

[Hn J C311-tn D3tl-t2n 2D331.t n On C32 D32 C33J['fnJ

The relevant matrix-based problem statement and the solution method completely

coincide with those proposed above; however, dimensions of all vectors and matrices are

twice as much, so in the general case

_ _ .iT{Yi }=Lwni 0 ni U ni V ni W ni eni U ni V ni , i = 1,2,..., N.

Integral stiffnesses Bij , Cij , and Dij of multilayered composite element should be

evaluated on the basis of elastic properties of layers present in the stack; use is made of the

methods exposed in [11, 12]; if early buckling takes place, these are replaced with tangential

characteristics considered in Section 2.1. Any component in the system can be isotropic,

metallic or orthotropic "by design" (refer to [10]).

This means that the method for numerically analyzing built-up cylindrical

structures that had been developed by the authors in [13] is now made capable to deal with

structures which incorporate composite materials.

The present method and the respective software programs can be employed to solve

many classical problems (for which the researchers have provided exact and/or reliable

approximate solutions), new problems of structural buckling, as well as complicated problems

on stability of built-up composite structures that appear in designer's practical work.

For example, Table 1 compares the new numerically obtained results with the exact

solution of [12] for a rectangular orthotropic plate simply supported at all four edges.

Analyses were performed assuming the following parameters:
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the total number of orthogonalization points for eachelement, no= 10,

the total number of Runge-Kutta steps between orthogonalization points, n P-K = l 0,

the allowable relative error in the t n determination procedure, e = 0.001.

Table i

a/b

k=_x =( Nxb2 1 e=10-3
7t2 Dl_-l_;, n o =10

na_ K =10

Dj = d I j D 2 = d22

104 16Dl

16D2 104

16D2 10 4

4. l0 4 DI

D_ =d12 +2d33 b

Dl 200n

D2 2oo 
D2 200n

D1 200re

n_

2

4

1

1

k

Exact Numerical

solution solution

2.5 2.5011

2.5 2.5011

4.75 4.7523

4.0 I 4.0006

It is clearly seen that the error of the numerical solution at the aforementioned

procedural parameters does not exceed 0.05% and the critical load thus obtained is above

the exact value.

A similar result is seen in comparison of the exact value of stability coefficient,

k=7.69 (refer to [14]) and the numerically obtained one, k=7.6916, for the problem of

buckling of a square isotropic plate with clamped longitudinal edges.

As for the boundary condition version mentioned, we find it interesting to estimate

the accuracy of the work [15] simplified solution which is widely used in analysis of

composite plates. The solution is compared with the newly obtained data in Table 2 and

shown to overestimate the critical load by 1.6% to 4%.

Table 2 -- ( Nxb2 .1

k=Nx" =t,=2 Dx/-D_ID_).

a/b

1

1

8

D I =dll

4.10 4

16D2

16D2

D 2 =d22

DI

10 4

104

D3 =d12 + 2d33

DI

D2

D2

200rt

200_

2oo, 

n_

2

1

6

g =10 -3

n o =10

rip_ K = 10

k

Exact Numerical

solution solution

8 7.6916

6 5.9022

5.28 5.1562
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Further, we solved the problem on stability of a longitudinally compressed

composite panel whose stiffeners are longitudinal webs with a rectangular cross section.

Panel dimensions are a=500 mm and b=300 mm; stiffener spacing is 60 mm; stiffener

thickness x height, 3.64 mm x 30 mm; and skin thickness, 2.34 mm. A stiffener has a

stacking sequence [+45v'-452/0t0]s, and the skin, [+45v'-452/04/90]s; ply characteristics are

E 1=20930 kg/sq.mm, E2=800 kg/sq.mm, Gi2 =520 kg/sq.mm, vl2 = 0.26, c5= 0.13 ram.

Consideration was given to

global buckling (Fig. 2.9a) for the panel with unsupported longitudinal edges
and

local buckling (Fig. 2.9b) for the panel with simply supported longitudinal edges.

In the case of global buckling the panel has one half-wave (n. = l ) and the critical

compressive load Po =57500kg; and in the case of local buckling, n. =5,

g. = a/n. = 100 ram, and P. = 92 500 kg.

Also, we treated the problem on buckling of a shear-loaded long composite plate

(a=2000 ram, b=500 ram) whose layers have E1=27000 kg/sq.mm, E2=2000 kg/sq.mm,

Gj2=980 kg/sq.mm, vl2=0.22, _ply=0.1 ram. The stacking sequence was defined as

[0/90/ot 4Is where the angle ct was varied from 0 to +90 and from 0 to -90.

Figure 2.10 represents the dependence of the critical shear load Nsx on the angle cc

of the eight middle layers. One can see that if the angle ot is negative, the critical shear load

is maximum at the angle of approximately -60 °. If the angle ot is positive, the critical shear

load is much lower.

Figure 2.11 demonstrates how the critical compressive load N_ of the same plate

depends on the angle ot of the eight middle layers. The critical load is maximum at ct =45 °.

Of particular interest is stability of a composite plate in which certain layers are

disbonded over a domain with the length _. Even if the initial layup was symmetric, the

debonding makes the panel become a structure with two 4asymmetric stacks over the domain

mentioned. This system may well be analyzed by the abox_e methods and software programs

since these are capable to treat the structure as a system of asymmetric elements included in

the general model.

Used as an example may be the problem for a composite panel with the stacking

sequence [90/0/+452/-45990j0]_. Each ply is assumed to have the following characteristics:

E t =18000 kg/sq.mm, E2=900 kg/sq.mm, Gt2=514 kg/sq.mm, vt2 =0.31 , _y=0.05 mm. Panel

sizes are a= 120 mm and b=40 ram. Now we presume that three upper layers at the center of

the plate are not bonded over the length _ which is varied in the course of the analyses.



38

Theoretical results are shown in Fig. 2.12 together with the analytical model

comprising five elements and five nodes. Elements 2, 3, and 4 feature an asymmetric iayup

and anisotropy.

In the debonding domain the subcritical stress resultant is distributed between the

upper and lower stacks in accordance with the deformation compatibility condition for the

limiting points of the debonding domain.

Dependence of the critical load N s on the relative debonding domain length _,/b is

shown in Fig. 2.12 by the solid line. The dashed line represents the critical load for an intact

plate, and the dash-and-dot line corresponds to the critical load for a stepwise plate with

disbonded layers removed in the domain with the length _.

Analyzing the solid line in Fig. 2.12, it is clear that a short debonding domain

(_/b<0.1) does not cause the substacks to separate, so the plate is buckling as a whole

following the usual global buckling shape. One can see an insignificant decrease in the

critical load for the interval {0< _/b<0.1}; the reason is the stack stiffness being reduced in

the debonding domain.

If _,/lo>0.1 the thin part of the plate is buckling, with the rest of the plate being

almost straight and capable of carrying a load increment. At higher loads the stiffness of the

thin part gets reduced, which is followed by global buckling; the critical load at the moment

of reaching the load-carrying capacity limit corresponds to the critical load for a panel with

a weakened part over the disbonded area.
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CONCLUSION

In compliance with the NCCW-I-233 the investigation into the influence of the skin

postbuckling load-bearing capability on general stress and strains and on stability of

composite structures has been accomplished.

The following results have been generated:

a simplified method for analyzing stresses and strains and load redistribution

between structural components which is caused by skin buckling;

a nonlinear finite element method taking into account the skin postbuckling

load-bearing capability;

an analytical solution to stability problems; evaluation of the effect of the skin

postbuckling behavior on general stability of stiffened composite panels and shells;

a high-accuracy numerical method for analyzing stability of built-up cylindrical

structures that allows for discrete stiffening, nonuniform multiaxial load, and skin

postbuckling behavior.

The results and proposals on further research work would be discussed with NASA

experts.
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Figure 1.2. Skin cell and its edge stress resultants
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Figure 1.3. A circular section

Figure 1.4. Section stiffening
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Figure 1.10. Torsion box attachment model
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Figure 2.1 The buckling limit and the proportional loading
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Figure 2.2. Stiffened cylindrical panel
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Figure 2.9. General and local panel buckling
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