
URC97055

Fast Fuzzy A.-it, metic operations

Michael IIalmpwn~ and Olga l{oshclcva~

Departments of 1 (.kmputer Science and
2Electrical and Computer Engineering

l’he lJ[liversity of Texas at El Paso
El Paso, ‘IX 79968, USA

emaik 1 mhamptonfQcs. ut ep. edu
2olgaQece. utep. edu

A b s t r a c t

In engineering applications of fuzzy logic, the main goal is not to simulate the way the experts really
think, but to come up with a good engineering solution that would (ideally) be better than the expert’s
control, [n such applications, it makes per feet sense to restrict cm rselves to simplified approxi m ate
expressions for memtrership functions. If we need to perform arithmetic operations with the resulting
fuzzy numbers, then we can use simple and fsat algorithms that are known for operations with simple
membership functions.

In other applications. especially the ones that are related to humanities, simulating experts is one of
the main goals. In such applications, we must use membership functions that capture every nuance of
the expert’s opinion; these functions are therefore complicated, and fuzzy arithmetic operations with the
corresponding fuzzy numbers become a compu tationa] problem.

In this paper, we design a new algorithm for performing such operations. This algorithm is applicable
in the case when negative logarithms — krg(p(r)) of membership [unctions p(x’] arc convex, and reduces
computation t.irnc from 0(7t2) to O(n log(n)) [where n is the number of points r at which wc know the
membership functions p(zj).

1 Formulation of the Problem

Depending on the goal, applications of fuzzy logic can be naturaiiy divided into two classes:

● Engineering applications like juzzy corrtroi in which fuzzy logic is used iLS a tool for achievirlg a certain
god: a better (smoother and safer) control of a car, a better heating, etc. In such applications,
the expert.’s knowledge described by fuzzy rrdes is used not to szmulate the way experts solve these
probiems, but to design better corrt rol strategies,

o Applications to humanities (psychology, linguistics, etc.) in which fuzzy logic is used to drscribe and
simulate the human behavior, the human decision-making processes,
humans will react in di ITerrmt situations.

etc., and thus predict the way

In both types of applications, we have to deal with Jwzzrj numbers r, i.e., quantities whose values we do not
know precisely, and instead, we only have expert (fuzzy) knowledge about these values. ‘~his knowledge is
usually described in terms of membership Jemctzons p,(x) t}lai, assign to every rcaI nurnt)er z the expert’s
degree of belief p. (z) E [(), I] that the actual (unknown) value of the c~uantity r is equal to Z.

The formalism (rnernbership functions) is the same, but, depending on the application, wc treat these
membership functions differently:

e In engineering applications, we do not need to describe the eract opinion of the experts, because wc
are going to improve this description (b-j some fine-tuning) anyway. Therefore, it is quite sutlcient to
use membership functions t,hat approximately describe exprrt’s opinions. To sirn plify computations,
usually, the simplest i~pproxirnations are used, most often triangular or trapezoid membership functions
(see, e.g., ~2]).

319

in humanities applications, if we use oversimplified approximations to membership functions, we will
end up having very crude moclels of human behavior For such applications, we, therefore, need accurate
descriptions of membership functions. and them descriptions can be very colnplicated.

Fuzzy Data Processing and Fuzzy Arithmetic Operations: If We Must Use
Precise Membership finctions, We Have a Computational Problem

Fuzzy data processing. We want to use the expert (fuzzy) knowledge about the values rt, r,, cjf
some quantities to predict the value of some quantity r that is related to r;. I n this paper, we will consider
the simplest case when ,,“related means that we know the exact form of the dependency r = j(rl, . . ., r,,)
M,werm ri ancl r, and the only uncertainty in r is caused by the uncertainty in the values of ri.

For example, when we formalize the expert’s opinion about possible candidates for a position, we may
know that this opinion depends on the values of n clla.racteristics pi of the candidate, we have expert (fuzzy)
knowledge about the values of ~i, an d wc know that the final opinion depends on the total evaluation
r=w~. r-l + . + w~ r~ with known weights l~i.

In such situations, we must transform the fuzzy knowledge about the values ri into a fuzzy knowledge
abmrtr=J(r-l, ... ~n). ‘l’his transformation is called fuzzy daia processing.

I?UZZY ar i thmet ic opera t ions . In the computers , usual iY, only e lementary arithrrletic opera t ions (+, –,
~, /) are hardware supported. ‘~herefore, every data processing algoritll m written in a high-lcvd program-

ming language is parsed, i.e., represented as a sequence of elemcrrtary arithmetic operations. For cxampjc,
computing an expression Z1 (z2 + x3) is decolnposed into t,WO steps: Computing xz + zs and multiplying
the result by Z1.

In view of this decomposition, in order to implement. an arbitrary data processing algorithm with fuzzy
[nputs, i~ is sufficient to be able to apply elementary arithmet~c operations o = +, —, ., to fuzzy numbers.
The formulas for these operations come from the eztension principle (see, e.g., ~J]): In particular, if we use
an algebraic product c - b as a fuzzy analog,uc of &, we arrive at the following formula for t = r o s:

pi(~;) = s u p (/Jr(y) p,,(z)). (1)
y,z 3’02=X

[n particular, for o = +, we have
(2)

For simple membership functions, fuzzy arithmetic operations are coxnputationally easy. For
example, if we use Gaussian membership functions

p.(x) = rw{(x – %-)2/(0.)2),
p,(z) = r?xp((x – cL.,)2/(a,,)2),

then (2) leads to a Gaussian merntrerslrip [r.rilction for t: P, (x) == exp((x – cr~]z~(rt)2) with

_ ur(u,)-~+ fl, (u,)-~
a’ – (ur)-’J + (u,,)-~

and (ut)–2 = (r7r)-2 + (u,) ‘2 ~ ~ T}lese are Compiltatiorlai]y verv sirnplc formulas tO lrnpiem~nt.{Q,].
There are simple forrnuias for several other cases (see, e.g., {3] a;id refer-erices therein).

For complicated membership functions, fuzzy arithmetic operations are computationally corn-
piicated. When wc cannot use approxirnatin,g simple expressions, t.hcn we cannot use simplified formulas
that stem from t.hc use of these expressions, and therefore, wc Ilave to use the formula (2). This formula is
straightforward, so, we can simply ue.e it to compute pt(x). To find out how long it would take to cornputc
pt(x), let us estimate t,hc number of colnputational steps that arc required to compute pi (x).

Of course, in reality, wc can only know the values of p,(z) and i~.,(.c) for finitely many values x. Let us
denote the total number of such values by n. In this case, it is rm.wmablc to cornputc only rt values of pi(x).
For each of t,hesc n values, according to the formula (2), we must find the largest of n products. Computing
each product takes 1 elementary cornplllational step, computing the largest of n. numbers requires that we
CIO n -- 1 comparisons. So, the total number of computation steps thiit needs to be done to compute one
value of pt(x) is 2TL – 1 = O(n).

320

If we have n parallel processors at our disposal. then wc can use each processor Lo compute its own value
of Vi(z) and thus, compute all these values in Iincar time.

[n many real-life situations, however, we only have one computer. In such Situatic)ns, to compute all n
values of the desired membership function pi(x), we need 0(n2) computational steps.

The more accurately we wish LO represent the expert’s opinion, the larger 7t we need to take. For large
n, O(n2) is too long. Can we perform fuzzy ardhrnetic operations faster?

In [4], an approximate algorithm is given that performs arithmetic operations with fuzzy numbers in time
O(nlog(n)).

1.2 What We Are Planning to Do

In this paper, we design a new fast algorithm that computes the precise value of the resulting membership
functions in 0(9t log(7t)) t,irne.

This algorithm is applicable when the negative logarithms – log(p(z)) of the membership functions
p(x) are convex. This class of membership functions includes many hIpOrLaIlt classes such as Gaussian
membership functions.

2 Fast Addition of Fuzzy Numbers

2.1 Main Idea

Let us describe, step-by-step, how we can simplify the problem of computing the SUM of two fuzzy numbers.

First simplification: reformulation in discrete terms. We only know the membership functions p,(x)
and p.,(s) in finitely many points. and usually, these points are of the type Zi = z’ Ax. In this case, the
formula (2) takes the following form:

t~ = IIl?X(7’j St-j), (3)
1

where we denoted ti = p~(z’ Ax), r, = p.(i . Az), and Si = ~,, (i Az).

Further simplification: reducing multiplication to addition. ‘l’he formula (3) can be simplified even
further if wc recall that the equality i = r ~ s is equivalent to ‘T = R + S, where T = – In(t), R = – ln(r-),
and S = – in(s). [n view of this equivalence, and taking into consideration the fact that – in(z) is a strictly
decreasing function, we can reformulate the formula (3) as follows:

Ti = Kll,in(Rj + S’i-j), (4)
1

where we denoted 7; = – In(ti), lti = – In(r;), and Si = – ln(si). We wiil clescribe bow, given the two
sequences R.i and Si, we will be able to compute the elements T; fast. Then, if we know the values ri =

~r(~ “ ~z) and si = Ps(~ ~Z), we will be able to compute the values Ri and Sil cornputc Ti = – In(ii), and
then reconstruct the desired values ii = pj(i Ax) as ii = exp(–~).

How to compute the formula (4)?

Final simplification: a local criterion for the maximum. For a given i, when does the sum ~j =
Rj + Si_j attains its minimum’? If it does attain the minimum for some j, this means that the value of this
sum for this particular j is not larger than the values of this sum for j – 1 and for j + 1: ~j < ~j_l and
~j < ~j+l . If we denote Dj = ~j - ~j_,, then these two inequalities take the form

(5)

We can use binary search to find the desired j. Since the function – In(p, (x)) is convex, the sequence
Rj is also convex, and therefore, the differences fij – Rj _ ~ are monotonically increasing with j. Similarly,
the diffcrenc.es Si_(j-,) – Si-j are strictly damming with j. Therefore. the difference Dj = (Rj – Rj_l) –
(Si-j – Si-(j-l)) is increasing with j.

Hence, we can find the dcsircrl value j that satisfies the condition (5) by using binary search: This will
be an iterative process on which, on each step, wc will have lower and upper bounds for the desired value j.
We start with the lower and upper bounds that encompass all possible values of j. Then, on each iteration.
we:

321

● t,akc a midpoint m = (lower + upper) div 2 between the current lower anrf the upper bounds;

● compute Dm for t,his rniclpoillt, m, iiild

● compare the resulting value I_)n, with 0.

Depending on the result of this comparison, wc do the foilowing:

●

●

e

This

If 11~ = 01 then, due to the monotonicity of the sequence Dm, we have Dfi, +l ~ D,n = O, i.e.,
Dm+l > 0. Hence, this m satisfies the crmdition (5). lJsing mouotonicity of Dj, one can easily show
that in this case,

— either m is the only value for which (5) in true (in which case, it is the only possible minimum of

X.,),
— or Dj = O not on[y for j = m, bLlt also for several vaiues of j tha~ are neighboring to na, in which

case, there arc Severiil minima with exactly the same value of ~J.

In both cases, the value of ~~ for the midpoint m is the desired minimum.

If Dm >0, this means, due to monotonicity of the sequence Dj, that j < m. III this Case, We Can take
m as the new value of the variable upper.

Similarly, if D~ <0, this means, due to monotonicity of the seqLleI~ce Dj, that ~? < ~. xn this ca=,
we can take m as the new value of the variable lower.

algorithm takes O(rz log(n)) steps. On each iteration of the binary search, we reduce the size in
half. In k iteration, we go down from n to ~ n/2k possible values. When n/2k < 1, we are down to a single
point, and thus, wc have localized the desired j. The inequality n/2k < 1 is achieved when k N Iogz(n), so,
we need Cr(log(n)) points to find the desired j and thus, to compute the desired value of Ti for this particular
i,

To comprrtc the values of ‘ri for 71 different i’s, we thus need 71. f3(log(n)) = O(n log(n)) computat ional
steps.

2.2 Resulting Algorithm

G’1 VEN: the values p,(r) and p,(x) for n equally spaced values ~i = r’ . Ac.

A .L GOR1 THM:

● First, for each of n values xi, We cortiputc the valrres iii = – ln(f~,(~i)) and ,S’; = – ln(p., (zi)).

● For each i, we:

— apply binary search to find the index j for which the non-decreasing sequence
Dj = (Rj – Rj _ 1) – (.5i_j – S’i _(j -1 ~) passes from the non-positive to non-negative values;

compute Ti as Rj + ,Si_j for this very ~:

‘ - compute ~~(~i) M f? Xp(-Tl).

3 Algorithms for Other Arithmetic Operations

3.1 Subtraction

To compute t = r –s, we can represent it as t = -r+ (–s). Since we know the membership function p.(z) for
s, we can easily compute the membership function ,u–, (x) for –s as p-,,(x) = P,(--x). TIIeII, wc can apply
the above algorithm to compute the desired membership function for i = r – s = r + (–s),

322

3.2 Multiplication

If Lhe quantities r and s both t,akc only positive values, then, to compute r s, we can use the formula
r .s=cxp(ln(r-)+ ln(.s)):

●

●

●

3 . 3

From the membership functions for r and s, wc can easily compute the membership functions for in(r)
and [n(s) as pl”(~)(x) = p~(ln(x)) arid pi,,(,)(x) = p,(ln(~)).

Applying the algorithm presented above, we compute the membership function pin(,) for In(f) = In(r)+
ln(s’).

Finally, from P,ntl), we compute p,(y) as Pt(v) = plr,ft)(exp(y))

Division

Division t = r/s can he expressed as t = r (1/s). So, to divide two fuzzy numbers, we can use the following
algori Lhm:

●

☛

3 . 4

First, we compute the membership function for 1/s as plj..(x) = p., (1 /x).

Then, wc use the algorithm for multiplication to compute the membership function for

t = r (1/s) = r/s.

Computational Complexity

For all these operations, the major part is computing the sum of fuzzy numbers that takes O(n log(n)) steps.
Therefore, the computational complexity of computing the difference, product, or ratio of two fuzzy numbers
is also O(nlog(n)).

4 What If A t-Norm (&–Operation) Is Different From Algebraic
Product?

4 . 1

For an

4 . 2

Idea.

Fuzzy Arithmetic Operations: Case of a General t-Norm

arbitrary &—operation j’& (a, b), the extension principle for addition leads to the following formula:

p,(z) = supj&(#r(7J), /J. (x – y)) (3)
Y

Strictly Archimedean t-Norms and Reduction to the Case of Algebraic
Product

[t is known (see, e.g., (3]), that
represented i n the form

for some strictly increasing function @
Lions are called striclfy Archirnedean).

if an &—operatiorl satisfies some reaaonabie conditions, then it can

J&(a, O = O-l(+(U) . 7/!!(6)) (4?

: /0, 1] -+ [0, I] (&–operatiom that satisfy these “reasonable” condi-

Since the function ~ is strictly increasing, the value j&(p, (y), }L.(x – y)) is the largest iff the value
l’(~b(Nr(Y),p$(x – y))) is the largest, so.

Wt(~)) = SUP w-.%(A-(Y) >fh(~ – u)). (5)
Y

From (4), we conclude that rj(~~(p,(y), P,(z-–Y))) = @(p~(y)). ~~(f~,,(z– y)). Therefore, (7) can be rewritten
as:

O(W(Z)) = S:P V@(u)) O(P,, (X - y)) . (6)

If we denote v,(z) = @(ftr(x)), v,(r) = ~(pr(x)), and Vt(s) = ~(pi(r)), then this formula will take the form

Vt(x) = Sup(%. (y) %(Z – Y)) ! (7)
Y

323

which is exact,ly like tklc formula (2) that we already know how to compute fast. From u~(x) = ~)(pt(x)), we
can compute pt(x) by applying an inverse functicm rf– i: p!(x) = r#-l(vt(z)).

So, to compute pt(x), wc can apply the following algorithm:

A1gorithm.

● For every Z, compute Vr(x) = @(p,(x)) and v~(r) = @(p~(z)). This takes O(9a) steps.

● Apply the algorithm (described in the previous section) to Vr (x) and V$ (x); this algorithm will take
O(n log(n)) computational steps and return nut(z).

o Apply the inverse function r/I– 1 to Vt(z), resulting in p~(z) == r/J- l(Vf(X)). This is done value-by-value.
so, for O(n) values of x, it takes 0(7L) skps.

Computational Complexity. The resu Iting algori Lhrn requires

o(n) + O(n log(n)) + o(n) = O(n log(n))

computational steps.

4.3 Clther Arithmetic Operations

For other arithmetic operations with fuzzy numbers (–, . . /), we have a similar reduction to the case of
algebraic product that leads Lo similar O(rr log(n)) algorithms.

Acknowledgments. This work was supported by the Office of Naval Research Gran6 No. NOOO14-93-l-
1343 and, partially, by the National Science Foundation Grant No. CDA 9522903, and by the NASA Pan
American Center for Environmental and Earth Stuclies (PACES). Any opinions, findings, and conclusions
or recomrnendat.ions expressed in this paper are those of the authors and do not necessarily reflect the view
of the funding agencies.

The authors are thankful to Ann Gates, Vladik Krcinovich, Luc Longpr4, and Scott Starks for their
encouragement.

References

[1] Th. H. Cormen, Ch. L. Leiserson, R,. L. R,ivest, lntroduciion to aigorithrns, MI’1’ Press. Cambridge, MA,
1990.

[2] K. Hirota and hf. Sugeno. industrial Applications of F’u.z.zy Technology in the World. World Scientific,
Singapore, 1996.

[3] G. Klir and B. Yuan, Fuzzy sets and jwzy logic: theory and applications. Prentice Hali, Upper Saddle
River, N.J, 1995.

[d] O. Kosheleva, S. D. Cabrera, G. A. Gibson. and hf. Koshelev, “Fast Implementations of Fuzzy Arith-
metic Operations Using Rast Fourier ‘Ikansform (F F1’)”. Proceedings of the 1996 IEEE International
Conference on Ftizzy Systems. New Orleans. September 8-11, 1996, Vol. 3, pp. 1958-1964.

[5] V. Kreinovich, C. Quintana, and I.. Reznik. Gaussian membership functions arc most adequate in rep-
resenting uncertainty in rneasurcments. Proceedings of /VA FIPS’92: North A merican Fuzzy /nforrnaiion
Processing Society ConJmence, Puerto Valiarta, Mexico, December 15-17, 1992, NASA Johnson Space
Center, Houston, TX, 1992. pp. 618-625.

324

