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Abstract
In this paper, we first distinguish two types of fuzzy controllers, Mamdani  fuzzy

controllers and fuzzy logical controllers. Mamdani  fuzzy controllers are based on
the idea of int erpolat  ion while fwz y logical controllers are based on fuzzy logic in
its narrow sense, i.e., fuzzy propositional logic. The two types of fuzzy controlkrs
treat IF-THEN rules differently. In Mamdani  fuzzy controllers, rules are treated
disjunctively. In fuzzy logic controllers, rules are treated conjunctively.  Finally, we
provide a unified proof of the property of universal approximation for both types of
fuzzy controllers.

1 Introduction

The study of ur.iversal  approximation of a fuzzy  controller was first init iatcci by Kosko  [7;, }t’ang
[8] and Wang and Mendcl [10]. It was an important contribution. to fuzzy control theory, since
it provided a theoretical foundation for applying fuzzy controllers. It was shown that for a given
continuous function defined on a compact domain, one always can design a fuzzy controller to
approx~mate  the function to an~- given precision, Kosko proved the result for his adaptive fuzzy
system in [i’], Wang ancl Mcndcl  provided a proof for a special case of Marndani f~lzzy  cent rollers
in [8! and [10]. Buckley proved the same result for Sugeno  type fuzzy controllers in [2j. Ying
presented a proof for a general Marnclani fuzzy controller in [13]. Castro provided another proof
for a general Mamdar.i  fuzzy controller in [3]. Klawonn  and Novak  proved the same resuh for
fuzz~-  controllers basca on fuzzy logical implications in [4].

Fuzzy controllers based on the idea of interpolation and those based on the idea of logical
inference arc often not distinguished in the literature. hIore specifically, some t-norms, such as
min and product, are often treated as fuzzy implications. The dif%x-ences  between the two types
of fuzzy controllers are clearly stated in [4] and also can be found in [51. In this paper, fuzzy
controllers based on t-norms are called  Mamdarzi  j%zzy controllers, Aiie fuzzy- controllers based
on fuzzj’  implications arc called ,jiLzzy  logical controllers.

In Section 2, wc first review the str~cture of a fuzzy controller. The differences between
i’damdani  fuzzy controllers and fuzzy logical controllers are examined In Section 3. In Section
4, we present a unified proof of the property of universal approximation for both types of fuzzy
cent rollers.

2 fizzy controllers: A Brief Overview

‘To bu:lcl a fuzzy logic controller, one ncwds to follow the following four steps:
Step 1. Identifying state variables and control variables of a system to be wntrolled.
In this step, one has to determine rdevant  state and control variabIcs,  as well as the range of

each oft hese variables. For inst ante, in the simple inverted pendulum example, the state variables
are the angle of the pole, O, and the rate of change of the angle,  ~. The control varia’ole is the
force, ~, applied to the cart carrying the pole. The range 6’ may, for example, be (–~, ~).
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Figure 1: A fuzzy partition of the interval [– ~, ~]

Step 2. Dividing the range o,f each variable into several level.
The purpose of this step is to make it easier for domain experts to summarize their knowledge.

The lCVCIS,  which correspond to several linguistic terms, are usecl to describe the states of the
system and cent ro~ strategies. Usually, it is done by generating a fuzzy part it ion of the domain
using fuzzy sets with triangular membership fimctlons or, more generally, trapezoidal membership
functions. Fuzzy sets with Gaussing membership functions, splines are also often usecl in many
applications of neural-fuzzj’ type control [I] and [9]. For example, let us use fuzzy sets with
triangular membership functions to form. a fuzzy partition of the range of variable 0. We divide  the
interval (— ~, ~ ) into seven lCVCIS,  which arc labeled li~~istically  as negative large, negative medium,
negative small, approximately zero, positive small,  positive median, positive large, respectively (Fig.
1).

Step 5’. Spec@ing IF-THEN inference rules for the controller.
These IF-THEN rules express domain experts’ know;edge regarding the coctrol task. Each

rule dcscribcs a cent rol act ion that should be taken if the system is i onc state. The general form
of a rule ~n a mlc base is

Ifxis Athengis B

Intuitively, we should have IF-THEN rules that cover all possible states of the system that
arc desc~ibed  by the linguistic terms generated in Step 2. Some researchers ar~we  that fuzzy
controllers wit h less IF-THEN rules  have sufficiently good performance [12;. In these case, however,
membership functions have to bc carefully desiamed so that every state of the system is covered
by some rules ~n the rule base.

Step ~. Selecting a de,fuzzijication  method.
A dcfuzzification  method is a mapping d : 7(R) + R, where F(R)  denotes the fuzzy power

set of R It maps a fuzzy set to a real number. There are many defuzzification methods in the
literature. All dcfuzzification functions must satisfy the property

d(x) = X

for any x E R. One commonly used defuzzification  method is called the center of grazity  method.
It takes the center of gravity of a fuzzy set as its defuzzification  value. In this case, the fuzzy set is
considered as the area surrounded by its membership function and the x-axis. This defuzzification
method assumes that the membership function of the fuzzy set is integrable, which is true in most
cases. Suppose A(x)  is the membership function of a fuzzy set A. Then the defuzzification value
of fuzzy set A is

(i(A)  = ‘,xA(z)dZ
J A(z)dx

(1)
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Figure2:  Agcneral diagram ofafuzzy  control system

for the continuous case, or

d(A) = ~;=l ziA(z~)
~~nl  A(~i)

(2)

for the discrete case.
After one completes Step 1-4, he/she is ready to apply the fuzzy controller. A fuzzy controller

generally has the structure show in Fig. 2. Given the current state of a controlled system or plant,
fuzzy controller generates a value of the control variable. Then a control action is applied to the
system, ancl the sj-stem,  t bus, changes its state according to this control action. Therefore, a fuzzy
cent roller can be considered as a function with the state of the system rcprcscntcd  by its inde-
pendent  variables and the control state by its dcpcndcnt  variables. Suppose x = (xl, X2, . . . . Zn) T

denotes the n-dimensional state vector of the system, g dcnoics the control variable, then a fuzzy
controller is a function

FS : D--+R

Y =  FS(X) (3)

where N is the real number set; D is a compact subset of n-dimensional space IRn, which is specified
in Step 1. Here. only one control variable is considered for the simplic~tj’  of discussion. For the
case of sm’cral control variables. it can bc easily decomposed into several fuzzy controllers with
onc cent rol variables.

The function FS is determined by the following procedure.

2 . 1  Fuzzification

At this stage, a fuzzy set is generated on the basis of current st atc vector x~= (x;,  xj, . . . . x~)T.
There zre many ways to gcncratc this fuzzy set. One way is t$-ough
triangular fuzzy numbers for all state variables x = (xl, Z2, . . . . Xn}

A ( x )  = A A.i(xi)
i= 1

where A denotes a t-norm [5] and Ai is determined by

AZ(Z) =
{

l_lK#.!  i f  ~~[~-–dz,j+di]

o ’ if otherwise;

generating symmetric

(4)

(5)

da is a constant which is monotonically related to the fuzziness of the fuzzification for each i E
{1,2,... , n}. The larger di, the fuzzier the resulting fuzzy set Ai. Constants di are specified
by the designer of the controller. In most recent applications, di is assumed to be zero for any
2s {1,2,..., n}. ‘That is, this fuzzification  step is ignorecl.  [3] and [10].



2.2 Inference

At this stage, Zadeh’s compositional rule of inference [6] and [11], is applied to calculate a fuzzy
value of the control variable based on the fuzzy set obtained by fuzzification  and the rule base
specified in Step 3. The resulting fuzzy set B is calculated by

~(y) = V z(A(x),  R(X, g)), (6)
XED

where v is a t-conorm and i is a t-norm [s]. R is a fuzzy relation defined on D x 3?, which is
determined bj’

R(x, g) = O;=ll?j(x,  v), (7)

where m is the number  of rules in the rule base; o is either a t-norm or a t-conorm depending on
the way Rj is calculated. R,j represents the jth rule in the rule base.

Rj(x, y) = f(z4j(x),  ~j(v))> (8)

where ~ : [0, 1]2 -+ [(), 1] is a binary function that is either a t-norm or a j?wzy  implication [.5].
When ~ is a t-norm. the fuzzy controller functions as interpolation; o must be a t-conorm. In this
case, u c call the fl~zzj’  controller, FS, a Mamdani  fuq controller. ~Vhen  $ is a fuzzy implication,
the fuzzy controller is based on logical infcrcncc, and o must be a t-norm. In this case, wc call the
fuzzy controller, FS, a ,fuzzg  logical controller [4]. Here a fuzzy implication is required to satisfy
at least the following two conditions

for any z ~ [0, I]. Both R-implications
discussion of fuzzy implications see [5].

2 . 3  I)efuzzificatiOn

f(o, z) = 1

f(l, x) = x (9)

and S-implications satisfy these conditions. For a detail

The fuzzj set B obtained by the inference described in Sec. 2.2 is defuzzificcl  into a real number.
The output of the fuzzj controller is the defuzzified  value of B. ‘–’L’hat  IS

Controllers and Fuzzy

V=o=sup, i= f= at-norm.

FS(X) = d(13j.

Mamdani  Fuzzy3 Differences Between
Logical Controllers

Let us consider a hIamdani  fuzzy controller FS1 : D -+ R, with
According to Eel. (6)-(8), we have

B(y) =  SUB z(A(x),  R(X, ~))

= S U P  i(A(x),  $&i(Aj(x), %(Y)))
~~D

= SUB t#&(A(x),  z(Aj(x)  , Bj(g)))

=  ;;++z(z(A(x),  Aj(x)),  Bj(IJ))—

=  $y@u P i(A(x)> J%(x))>  Bll(v))
XED
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Therefore, for a Ivkundani fuzzy controller, rules in the rule base arc considered disjunctively. One
can apply  each rule in a rule base to generate a result, then take the maximum of all results as
the result ing fuzzy set.

Now, let us consider a fuzzy logicaI  controller F.% : D + R, with V = SUP, o = m-in, ~ = a
t-norm and ~ = a fuzzy implication. According to Eq. (6)-(8), we have

(lo)

= SUP i(i4(x), &f(Aj(x)> %(Y)))
XED

Suppose A is a crisp point X(I  in Rn, that is,

{

1 if x=xo
A(x)= () if X#XO

Then, Eq. (10) becomes

B(V)  = @Aj(XO),Bj  (Y))) (11)

Therefore, wc can scc that a fuzzy logical controller treats rules in a ru~e base conjunctively.  In
the case of no fuzzification,  onc applies each rule in the rule base and takes then the rnlnimum of
all obtained results as t hc final resulting fuzzy set.

In conclusion, we can sec that onc major difference between a Mamdani  fuzzy controller and a
fuzzy logical cent roller is that the former t rcats rules in a rule ‘base disjunctively while the lat tcr
treats them con:, unct ivcly. For a more detail discussion of the differences between Mamdani  fuzzy
controllers ancl fuzzy logical controllers, see Ref. [4].

4 Universal Approximation of Marndani and Fuzzy Logical
Controllers

Wang slid h lCUCIC1  in [10] have shown that hfamdani  fuzzj cent rollers with j =- product  arc uni-
versal  approximators.  Ying [13] and Castro [3] have proven this for a general Marndani  fuzzy
comrollcr.  using different approaches. Klawonnn and N’ovik  in :4 proved that fuzzy lo~lcal  con-
trollers are universal approximators. Here, we show a unifiecl proof of the same result for both
types of fuzzy ccmtroilers.

Theorem 1 Let g : U + R. be a wntinuous  function from a compact subset U of R“ to R. Then
for any z >0, we always can ,jind a fuzzy controller FS such that

IFS(X)  - g(x)l < : (12)

Proof. Since g is continuous, for any s >0, ancl any u E U, there exists d(u, ~) >0, such that
for an~ x E B(u, d(u, s)) = {x E U Ilx - ul < d(u, e)},

Id+ - 
9(U) I <=. (13)

Since U g (JU~u B(u, d(u, E) ) and U is a compact set, there exists a finite number of elements
{Ul, Uz,... ,u~} such that

L’ g &3(u.i,C@i,E)) (14)
~=1

Now wc generate a finite disjoint cover of U based on Eq. (14). Let Al = B(LI1,  d(uI, s)),

‘i-1

Ai = ~(U~,d(U~,C)) \ u Aj
j=l

(15)
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fori  =2,3,,.. , m. It is easy to see that

A~nAj=@

for i #j, and
m

UCUA~ (16)
‘i= 1

Now, we build a fuzzy controller without the fuzzification step and based on the following
inference rules in the rule base

If x is Al then g is B1 = g(ul)
. . . . . .

If x is Am then y is Bm = g(u~)

For any x ~ U, it follows from Eq. (16) that there exists a unique iO G {1, 2,..., m} such that
z ~ A.iO and z @ AZ for i #io.  That is

AiO(x)  = 1 and Ai(x)  = O for i #io.

According to Eq. (6)-(8), the resulting fuzzy set is

B(I/)  =  V i(A(x’), R(X’, y))
X’GD

=  R(X>  y ) )
= 0:1 R2(X,  y)”

=  o&f(-4i(x),  Bi(Y))

for any g ~ R.
When f is a t-norm and o is a t-conorm,

B(g)  =  f(l, B~O(y))

= BiO (y)

Therefore
FS(X)  = d(B) = d(BzO)  = g(u~, ).

for any type of defuzzification  function d.
When f is a fuzzy implication and o is a t-norm

B(IJ)  = o(oi#iOf  (Ai(x),  Bi(Y)),  f (Ai. (x)> % (Y)))
—— 4oi#io f (O, Bi(y)), f(AiO (x), BiO(y)))

=  o(l, f(Az. (x), Bio(~)))

= f (Aio (x)> Bio(v))

=  f(l, Bi. (Y))
= Bio (y)

Therefore, again we have
FS(X)  = d(B) = d(13i0  ) = g(uiO).

for any type of defuzzification  function d.
Finally, according to Eq. (13), we have

F’s(x)  -  9(X)1  =  19(%)  -  9(X)1<  ~.

This completes the proof.
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5 Conclusions

In this paper, we argue that two different types of fuzzy controllers, Marndani fuzzy controllers and
fuzzy logical controllers, should be distinguished. We also present a unified proof of the property
of universal approximation for these two types of fuzzy controllers.
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