Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms

David S. Bayard and Hamid Kohen

Jet Propulsion Laboratory California Institute of Technology Pasadena, California 91109-8099

ABSTRACT

This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a **low-lift** open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km **RMS** radial (open-loop optimal) to 43 km **RMS** radial (optimized with **respect** to perturbations) using 200 hours of computation on an **Ultra-SPARC** workstation. Further reduction in the **landing** error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.

1. INTRODUCTION

In this study, GAs are applied to optimizing a nonlinear simulation of descent dynamics of a low-lift vehicle during planetary (i.e., Mars) entry. The basic idea is to find a flight path which comes closest to a desired landing position, yet is robust to expected perturbations in the trajectory. Such a *robust* flight path is found by minimizing a quadratic cost function representing the landing miss distance, over **several** realistically perturbed trajectories. The most important perturbations are the error in the initial entry conditions, and uncertainties in the atmospheric density. In order to vary the flight path, the initial flight path angle is chosen as a free parameter, and the vehicle angle-of-attack is controlled as a function of time. The control of the angle-of-attack is accomplished using the center-of-mass (COM) relocation concept put forth by D. Boussalis of JPL [1]. The COM relocation concept is important because it allows considerable control authority during the atmospheric entry phase to minimize landing errors, yet it is applicable to low-lift Mars Pathfinder type **aeroshells** (i.e., with lift-to-drag ratio L/D = 0.3). This avoids the need for designing higher **lift** (and much more expensive) vehicles. For simplicity the entry dynamics have been restricted to planar motion, and the landing error is defined at 10 km altitude where the parachute opens rather than at ground level. This paper is an abridged version of a longer report [11].

2. CONTROL ACTUATION

The control actuation scheme will be based on center-of-mass (COM) relocation, as outlined in Boussalis[1]. In this approach, a proof-mass is moved inside the vehicle so that the COM is relocated as a known function of time. The COM relocation acts to shift the dynamic equilibrium of the vehicle such that the angle-of-attack is changed. In particular, the equilibrium angle-of-attack value varies as an explicit known function of the COM relocation. Hence, even though one is moving a proof-mass, the control can be thought of as commanding a desired angle-of-attack. Since the angle-of-attack acts to change the amount of lift or drag on the vehicle, it provides a means to effect the propagation of the flight path.

Figure 1 Low lift Mars Pathfinder type aeroshell

Figure 2 Center-of-mass relocation scheme to control lift vector

3. ROBUST FLIGHT PATH PLANNING MODEL

For the purposes of this study, the "landing error" is defined as the **RMS** error in the desired terminal ground track location over a collection of 5 simulated paths, i.e.,

$$J = \sqrt{\sum_{i=A,B,C,D,E} (S_{xd} - S_{xi})^2 + (S_{yd} - S_{yi})^2}$$
(1)

where S_{xd} , S_{yd} (specified later) are the desired ground track at the terminal time, and S_{xi} , S_{yi} are the actual ground track at the terminal time.

For the purpose of evaluating the **RMS** error *J*, *the* 5 simulations (A, B, C, D, and E) are performed per control profile to determine the effect of perturbations on the flight path. Parameter perturbations associated with A, B, C, D and E are shown in Table 1 and Figure 3. These perturbations reflect the major sources of error in the descent phase which are due to *uncertainty* in the atmospheric parameter beta, and uncertainty in delivery to the **specified initial** flight path **angle gamma(0)** (i.e., the entry corridor).

Three scenarios are addressed for optimization of the flight path:

Scenario 1: Two Point Boundary Value Problem. Constant Control

Find the control (i.e., the entry condition **gamma0**, and fixed **COM** offset **dz**) that under perfect knowledge and no disturbances, places the vehicle at the desired final position (in terms of its desired ground track) at the terminal time (i.e., the time instant at which the altitude is 10 km, and the parachute deploys). Apply this control to the 5 perturbed trajectories to calculate **RMS** landing **error** *J*.

Scenario 2: Robust Flight Path Determination. Constant Control

Find the control (i.e., the entry condition gamma0, and fixed COM offset dz) that optimizes the RMS landing error J at the terminal time over the 5 perturbed trajectories.

Scenario 3: Robust Flight Path Determination. 5th Order Control

Table I Perturbed Parameters for Simulation

Find the control (i.e., the entry condition **gamma0**, and the **COM** offset **dz** as a **5th** order **Chebchev** polynomial **function** of time dz=u(t)=Trun[a0+a1*c1(t)+...a5*c5(t)]), that optimizes the **RMS** landing error *J* at the terminal time over the 5 perturbed trajectories. Acontrol contraint on dz to +/-.08 m is enforced by the operator **Trunc[]**, which truncates the **Chebychev** polynomial when it exceeds these thresholds.

Note that by minimizing the **RMS** landing error **J**, one is not only delivering the vehicle to its desired **final** position under nominal conditions, but is also minimizing the effect of perturbations on the actual flight path. This is the essence of the robust flight path planning problem.

Indv Runs	beta	gamma(o)
А	1.00*beta0	gamma0 + 0.0
В	1.25*beta0	gamma0 + 0.2
с	0.75*beta0	gamma0 + 0.2
D	0.75*beta0	gamma0 -0.2
E	1.25*beta0	gamma0 - 0 .2

Figure 3 Flight path angle (gamma0) and atmospheric (beta) perturbations

The kinematics and dynamics of the vehicle. during descent are described by the a system of **differential** equation which can be found in [1][11].

4. GENETIC ALGORITHM IMPLEMENTATION

The Genetic Algorithm Toolbox [7] is used to solve the three scenarios posed in the previous section. For this purpose, the chromosomes are set up as shown in Table 2 and the initial conditions are given in Table 4. The desired final landing location is specified as, $S_{xd} = 556.1$ km and $S_{yd} = 976.65$ km.

Table 2 Chromosome Coding			
Chromosome gamma0 (degree)	Range value -9 to -17	Precision 15 bit	
d z (m)	-0.08 to 0.08	15 bit	
<u>ai, i=0,,5</u>	-0.08 to 0.08	15 bits	

Scenario	# Indivic	luals per # Generations	Machine	Memory	Speed	Hours
	populatio	n		KAM		
Ι	10	20	Pentium	16 Meg	133 Mh	z 172
II	20	27	Ultra SPARC	132 Meg	143 Mb	iz 90
III	20	60	Ultra SPARC	132 Meg	143 Mh	iz 200

Table 4 Initial States (all scenarios)			
Altitude	125.0	kilometer	
Longitude theta	0.0	degree	
Latitude phi	-10.0	degree	
Velocity	7.5	kilometer/sec	
Flight path angle, gamma0	Evolved	degree	
Azimuth (heading) angle, psi	60.0	degree	
Pitch rate, q	0.0	degree/sec	
Pitch	gamma0+alpha0	degree	
alpha0	$-C_{m0z} * dz(0) / C_{ma}$	degree	
Sx Ground track	0.0	kilometer	
Sy Ground track	0,0	kilometer	

5. ANALYSIS OF THE RESULTS

The results of **all** three scenarios are tabulated in **Table 5**.

Table 5 Summary of Results

	gamma0 (degree)	dz (cm)	Landing Error - RMS Radial (km)
Scenario I	Evolved -12.54	Evolved - 0.03713	111.68
Scenario II	Evolved -13.58	Evolved - 0.0610	75.825
Scenario III	Evolved -12.5080	Chebychev a0 = 0.0145 a1 = 0.04096 a2 = -0.0690 a3 = 0.0260 a4 = 0.0530	43.3855

For comparison purposes, the **landing** error plots for Scenarios **I**,**II** and **III** are organized from **left** to **right** in *Figure 4*. As expected the **RMS** landing errors decrease from left to right with increasing control authority.

Figure 4 Summary of landing errors for all scenarios

The improvement in going from Scenario I (111 km) to Scenario II (76 km) is to be expected since Scenario I was not optimized with respect to the perturbed trajectories while Scenario II was. The improvement in going from

Scenario II (76 km) to Scenario III (43 km) is also expected since Scenario III is a generalization of Scenario II in terms of progressing from a zeroth order polynomial to a 5th order polynomial control representation.

Figure 5 Summary of altitude paths for all scenarios

It is instructive to compare the altitude plots of the three Scenarios in Figure 5. It is seen in Scenario III how the GA **successfully** reduces landing error by making the perturbed flight paths coalesce.

The flight path determined by GA for the 43 km (Scenario III) result is very interesting and suggests a new "bounce and plop" strategy for precision landing. In order to study this strategy in more detail, the altitude and control signal dz=u(t) for Scenario III are plotted on the same x-axis (i.e., versus time) in Figure 6. The scale for the control signal has been converted to mm to allow sharing of the same y-axis. It is seen that the "bounce" is induced by lowering the COM (i.e., dz=u(t)) to its maximum negative location of u= -.08 m (i.e., maximum positive lift), at approximately 10 seconds. Note that the bounce does not take effect until the atmosphere is sufficiently dense at an altitude of 40 km (occurring at approximately 75 seconds), to create a significant lift effect. The "plop" is induced by raising the COM location to its maximum positive location of u= +.08 m (i.e., maximum negative lift), at approximately 135 seconds. Again, the negative lift is seen to take effect when the atmosphere becomes sufficiently dense at an altitude of 40 km (occurring at approximately 200 seconds). This overall approach forces the perturbed trajectories to coalesce, which effectively reduces landing error.

Figure 6 Superposition of vehicle altitude and control signal dz=u(t)

6. CONCLUSIONS

A genetic algorithm was applied to the problem of robust flight path determination for Mars precision landing. The notion of a robust flight path appears to be new, although it is a natural statement of what is desired in many **open**-loop control scenarios. In this study, the objective of the robust flight path problem was to determine the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of certain realistic perturbations.

The results of the study can **be** summarized as follows. When the control (i.e., the **COM** location) is chosen constant with time and the flight path is optimized with respect to the nominal trajectory, the resulting landing error is 111 km **RMS** radial. When the control is chosen constant with time and the flight path is optimized over perturbed trajectories, the landing error is reduced to 76 km **RMS** radial. When the control is allowed to **vary** as a fifth order polynomial and the flight path is optimized over perturbed trajectories, the landing error is 43 km. The **trajectory** determined by GA for the 43 km result is very interesting and suggests a new "bounce and plop" strategy for landing.

The major computational bottleneck for this study was in evaluating the objective **function** (or equivalently, the "fitness") for each individual in the population, since it required integrating the kinematics and dynamics of motion. For implementation purposes, it was necessary to trim down the GA implementation to a reduced population of 20 individuals and no more than 60 generations, requiring approximately, 20*10*60/60=200 hours of computation on an Ultra **SPARC** computer. Methods to reduce the computation time would be greatly beneficial.

Results indicate that even though genetic algorithms may require long processing times, they are **fairly** easy to program, and can provided useful solutions to complex optimization problems, such as those associated with problems of robust flight path planning, and spacecraft autonomy.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. D. **Boussalis** of **JPL's** Automation and Control section for technical advice and support. The research described in this document was carried out by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. The research was performed for the **Microspacecraft** Systems Technology **Office** of the **JPL** Technology and Applications Programs Directorate **by** personnel **from** the **JPL** Engineering and Science Directorate, and it was sponsored by the Spacecraft Systems Division of the NASA Office of Space Access and Technology.

REFERENCES

[1] D. Boussalis, Investigation of the Longitudinal Motion of Low-Lift Vehicles, JPL Internal Document,

Engineering Memorandum EM 3456-96-002, May 7, 1996

[2] J. Koza, D.E. Goldberg, D.B. Fogel and R.L. Riolo (Eds.), *Genetic Programming 1996*, Proceedings of the First Annual Conference, Stanford University, July 28-31, 1996

[3] J. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, 1975.
[4] D. Farless, "Mars Precision Landing Study Team Summary Report for FY95," JPL Internal Document,

Interoffice Memorandum IOM 3 12/96.6-002, January 23, 1996.

[5] M. Srinivas and L.M. Patnaik, *Genetic Algorithms: A Survey*, IEEE Computer Magazine, Vol. 27, No. 6, pp. 17-27, June 1994.

[6] J.L.R. Filho, P.C. Treleaven and C. Alippi, *Genetic-Algorithm Programming Environments*, IEEE Computer Magazine, Vol. 27, No. 6, pp. 28-45, June 1994

[7] A. Chipperfield, P. Fleming, H. Pohlheim, C. Fonseca, *Genetic Algorithm Toolbox, User's Guide*, Version 1.2, Dept. Automatic Control and Systems Engineering, University of Sheffield.

[8] D. E. Goldberg, *Genetic Algorithms in Search, Optimization and Machine Learning*, Addison Wesley Publishing Company, January 1989.

[9] J. E. Baker, *Reducing bias and inefficiency in the selection algorithm*, Proc. ICGA 2, pp. 14-21,1987.
[10] Z. Michalewicz, Genetic Algorithms+ Data Structures= Evolution Programs. AI Series. Springer-Verlag, New York, 1994.

[11] D.S. Bayard and H. Kohen, Genetic Algorithms for Spacecraft Autonomy: Flight Path Optimization for Mars Precision Landing. JPL Internal Document JPL D-13900, Volume 6, October 11, 1996.