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ABSTRACT

Thjs paper documents the application of genetic algorithms (GAs) to the problem of robust flight path
determination for Mars precision landing. The robust flight path problem is defined here as the determination of
the flight path which delivers a low-lift  open-loop controlled vehicle to its desired final landing location while
minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The
genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial
(open-loop optimal) to 43 km RMS radial (optimized with ;espect  to perturbations) using 200 hours of computation
on an Ultra-SPARC workstation. Further reduction in the ianding error is possible by going to closed-loop control
which can utilize the GA optimized paths as nominal trajectories for linearization.

1. INTRODUCTION

In this study, GAs are applied to optimizing a nonlinear simulation of descent dynamics of a low-lift vehicle during
planetary (i.e., Mars) entry. The basic idea is to find a flight path which comes closest to a desired landing
position, yet is robust to expected perturbations in the trajectory. Such a robust  flight path is found by minimizing
a quadratic cost function representing the landing miss distance, over severaI  realistically perturbed trajectories.
The most important perturbations are the error in the initial entry conditions, and uncertainties in the atmospheric
density. In order to vary the flight path, the initial flight path angle is chosen as a free parameter, and the vehicle
angle-of-attack is controlled as a function of time. The control of the angle-of-attack is accomplished using the
center-of-mass (COM) relocation concept put forth by D. Boussalis  of .lPL [1]. The COM relocation concept is
important because it allows considerable control authority during the atmospheric entry phase to minimize landing
errors, yet it is applicable to low-lift Mars Pathfinder type aeroshells  (i.e., with lift-to-drag ratio L/I) = 0.3). This
avoids the need for designing higher lift (and much more expensive) vehicles. For simplicity the entry dynamics
have been restricted to planar motion, and the landing error is defined at 10 km altitude where the parachute opens
rather than at ground level. This paper is an abridged version of a longer report [ 11].

2. CONTROL ACTUATION

The control actuation scheme will be based on center-of-mass (COM) relocation, as outlined in Boussalis  [1]. In
this approach, a proof-mass is moved inside the vehicle so that the COM is relocated as a known fimction  of time.
The COM relocation acts to shift the dynamic equilibrium of the vehicle such that the angle-of-attack is changed.
In particular, the equilibrium angle-of-attack value varies as an explicit known fimction  of the COM relocation.
Hence, even though one is moving a proof-mass, the control can be thought of as commanding a desired angle-of-
attack. Since the angle-of-attack acts to change the amount of lift or drag on the vehicle, it provides a means to
effect the propagation of the flight path.
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Figure 1 Low lift Mars Pathfinder type aeroshell
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Figure 2 Center-of-mass relocation scheme to control lift vector

3. ROBUST FLIGHT PATH PLANNING MODEL

For the purposes of this study, the “landing error” is defined as the RMS error in the desired terminal ground track
location over a collection of 5 simulated paths, i.e.,

J= x (&@2+(syd-syif ( 1 )
i+ll,c,D,E

where sxd,  S yd (specified later) are the desired ground track at the terminal time, and Sxj,  S y~ are the

actual ground track at the terminal time.

For the purpose of evaluating the RMS error J, the 5 simulations (A, B, C, D, and E) are performed per control
profile to determine the effect of perturbations on the flight path. Parameter perturbations associated with A, B, C,
D and E are shown in Table 1 and Figure 3. These perturbations reflect the major sources of error in the descent
phase which are due to uncertainty in the atmospheric parameter beta, and uncertainty in delivery to the specitled
i&.ial  flight path angle  gamma(0)  (i.e., the entry corridor).

Three scenarios are addressed for optimization of the flight path:

Scenario 1: Two Point Boundarv Value Problem. Constant Control
Find the control (i.e., the entry condition gammaO, and fixed COM offset dz) that under perfect knowledge and no
disturbances, places the vehicle at the desired final position (in terms of its desired ground track) at the terminal
time (i.e., the time instant at which the altitude is 10 km, and the parachute deploys). Apply this control to the 5
perturbed trajectories to calculate RMS landing epor  J.

Scenario 2: Robust Flight  Path Determination. Constant Control
Find the control (i.e., the entry condition gammaO, and fixed COM offset dz) that optimizes the RMS hiding erro~
J at the terminal time over the 5 perturbed trajectories.
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Scenario 3: Robust Flight  Path Determination. 5th Order Control
Find the control (i.e., the entry condition garnmaO,  and the COM offset dz as a 5th order Chebchev  polynomial
tiction  of time dz=u(t)=Trun[aO+al*cl(t)+...a5*c5(t)]),  that optimizes the RMS landing error J at the terminal
time over the 5 perturbed trajectories. Acontrol contraint  on dz to +/-.08 m is enforced by the operator Trunc[],
which truncates the Chebychev  polynomial when it exceeds these thresholds.

Note that by minimizing the RMS landing error J, one is not only delivering the vehicle to its desired final
position under nominal conditions, but is also minimizing the effect of perturbations on the actual flight path. This
is the essence of the robust flight path planning problem.

Table I Perturbed Parameters for Simulation

Indv Runs beta gamma(o)
A l.oo*betao gammaO  + 0.0
B 1.25*beta0 gammao  + 0.2
c o.75*betao gammaO  + 0.2
D o.75*betao gammao  -0.2
~E amrnao -0.2

beta
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Figure 3 Flight path angle (gammaO) and atmospheric (beta) perturbations

The kinematics and dynamics of the vehicle. during descent are described by the a system of ddlerential  equation
which can be found in [1][11].

4. GENETIC ALGORITHM IMPLEMENTATION

The Genetic Algorithm Toolbox [7] is used to solve the three scenarios posed in the previous section. For this
purpose, the chromosomes are set up as shown in Table 2 and the initial conditions are given in Table 4. The
desired final landing location is specified as, Sti = 556.1 km and S,d = 976.65 km.

Table 2 Chromosome Coding

Chromosome Range value Precision
gammaO  (degree) -9 to -17 15 bit
dz (m) -0.08 to 0.08 15 bit
ai, i=O,...,5 -0.08 tO 0.08 15 bits

Table 3 Summary of Computational Requirements

Scenario # Individuals per # Generations Machine Memo~ Speed Hours
population RAN

I 10 20 Pentium 16 Meg 133 Mhz 172
II 20 27 Ultra SPARC 132 Meg 143 Mhz 90
III 20 60 Ultra SPARC 132 Meg 143 Mhz 200
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Table 4 Initial States (all scenarios)
Altitude 125.0 kilometer
Longitude theta 0.0 degree
Latitude phi -10.0 degree
Velocity 7.5 kilometerkc
Flight path angle, gammaO Evolved degree
Azimuth (heading) angle, psi 60.0 degree
Pitch rate, q 0.0 degreekec
Pitch garnmao+alphao degree
alphao -Cmoz * &(o) 1 cm= degree

Sx Ground track 0.0 kilometer
Sy Grormd  track 0,0 kilometer

5. ANALYSIS OF THE RESULTS

The results of all three scenarios are tabulated in Table 5.

Table 5 Summary of Results

gammao dz Landing Error - RMS Radial
(degree) (cm) )

Scenario I Evolved -12.54 Evolved - 111.68
0.03713

Scenario II Evolved -13.58 Evolved - 75.825
0.0610

Scenario III Evolved -12.5080 Chebychev 43.3855
aO = 0.0145
al = 0.04096
a2 = -0.0690
a3 = 0.0260
a4 = 0.0530

For comparison purposes, the kmding error plots for Scenarios 1,11 and 111 are organized from left to right  in
Figure  4. As expected the RMS landing errors decrease from left to right with increasing control authority.

a. Scenario I b. Scenario 11 c. Scenario 111
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Figure 4 Summary of landing errors for all scenarios

The improvement in going from Scenario I (111 km) to Scenario II (76 km) is to be expected since Scenario I was
not optimized with respect to the perturbed trajectories while Scenario 11 was. The improvement in going tlom
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Scenario II (76 km) to Scenario III (43 km) is also expected since Scenario III is a generalization of Scenario II in
terms of progressing from a zeroth order polynomial to a 5th order polynomial control representation.
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Figure 5 Summary of altitude paths for all scenarios

It is instructive to compare the altitude plots of the three Scenarios in Figure 5. It is seen in Scenario III how the
GA successfi.dly  reduces landing error by making the perturbed flight paths coalesce.

The flight path determined by GA for the 43 km (Scenario III) result is very interesting and suggests a new
“bounce and plop” strategy for precision landing. In order to study this strategy in more detail, the altitude and
control signal dz=u(t)  for Scenario 111 are plotted on the same x-axis (i.e., versus time) in Figure 6. The scale for
the control signal has been converted to mm to allow sharing of the same y-axis. It is seen that the “bounce” is
induced by lowering the COM (i.e., dz=u(t))  to its maximum negative location of u= -.08 m (i.e., maximum
positive lift), at approximately 10 seconds. Note that the bounce does not take effect until the atmosphere is
sufficiently dense at an altitude of 40 km (occurring at approximately 75 seconds), to create a significant lift effect.
The “plop” is induced by raising the COM location to its maximum positive location of u= +.08 m (i.e., maximum
negative lift), at approximately 135 seconds. Again, the negative lift is seen to take effect when the atmosphere
becomes sufficiently dense at an altitude of 40 km (occurring at approximately 200 seconds). This overall approach
forces the perturbed trajectories to coalesce, which eftkctively  reduces landing error.

Scenario Ill: %th order  PAY.  Cptmiked  Tra@lories
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Figure 6 Superposition of vehicle altitude and control signal dz=u(t)
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6. CONCLUSIONS

A genetic algorithm was applied to the problem of robust flight path determination for Mars precision landing. The
notion of a robust flight path appears to be new, although it is a natural statement of what is desired in many open-
loop control scenarios. In this study, the objective of the robust flight path problem was to determine the flight path
which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the
effect of certain realistic perturbations.

The results of the study can be summarized as follows. When the control (i.e., the CC)M location) is chosen
constant with time and the flight path is optimized with respect to the nominal trajectory, the resulting landing
error is 111 km RMS radial. When the control is chosen constant with time and the flight path is optimized over
perturbed trajectories, the landing error is reduced to 76 km RMS radial. When the control is allowed to vmy as a
fifth order polynomial and the flight path is optimized over perturbed trajectories, the landing error is 43 km. The
trajecto~  determined by GA for the 43 km result is very interesting and suggests a new “bounce and plop” strategy
for landing.

The major computational bottleneck for this study was in evaluating the objective fimction  (or equivalently, the
“fitness”) for each individual in the population, since it required integrating the kinematics and dynamics of
motion. For implementation purposes, it was necessary to trim down the GA implementation to a reduced
population of 20 individuals and no more than 60 generations, requiring approximately, 20*10*60/60=200 hours
of computation on an Ultra SPARC computer. Methods to reduce the computation time would be greatly beneficial.

Resuhs  indicate that even though genetic algorithms may require long processing times, they are ftirly easy to
program, and can provided useful solutions to complex optimization problems, such as those associated with
problems of robust flight path planning, and spacecraft autonomy.
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