

JUP

## Nanomaterials in Biotechnology

Richard W. Siegel Materials Science and Engineering Department School of Engineering Rensselaer Polytechnic Institute Troy, NY 12180



------

,



## Nanotechnology in Biotechnology

Richard W. Siegel Robert W. Hunt Professor Materials Science and Engineering Department Rensselaer Polytechnic Institute

The past decade has seen an explosive growth worldwide in the synthesis and study of a wide range of nanostructured materials. A brief overview of this field, and its relationship to nanotechnology in general, will be presented with respect to possible applications in biotechnology. Results from our recent investigations of a variety of nanocomposites and cellular interactions with nanoscale ceramics will be presented, along with some considerations of novel future directions.

Materials Science and Engineering Department

R. W. Siegel



































| Materials                                 | Modulus (GPa) | Strain to failure(%) |
|-------------------------------------------|---------------|----------------------|
| Ероху                                     | 3.0           | 4.9 ± 0.9            |
| 5 wt% nano<br>TiO <sub>2</sub> / Epoxy    | 3.4           | N/A                  |
| 10 wt% nano<br>TiO <sub>2</sub> /Epoxy    | 3.3           | 5.6 ± 0.9            |
| 10 wt% micron<br>TiO <sub>2</sub> / Epoxy | 3.3           | 4.1 ± 1.5            |
| 20 wt% nano<br>TiO,/Epoxy                 | 3.5           | 3.0 ± 0.8            |

















## Bending Stiffness of Nanophase and Conventional Ceramics

| Ceramic Grain Size (nm) |                      | Bending<br>Stiffness (GPa |
|-------------------------|----------------------|---------------------------|
|                         | 24 (nanophase)       | 35.1 ± 2.8                |
| Alumina                 | 167 (conventional)   | 52.0 ± 6.8                |
| Titania                 | 39 (nanophase)       | 38.0 ± 7.6                |
|                         | 4,520 (conventional) | 56.2 ± 8.9                |
| Hydroxyapatite          | 67 (nanophase)       | 50.9 ± 4.5                |
|                         | 179 (conventional)   | 71.1 ± 8.2                |
| Hu                      | man Femur Bone       | 19.4 ± 2.4                |

















| and Conventional Alumina<br>Composites with PLA<br>Bending Modulus (MPa) |              |             |           |               |           |
|--------------------------------------------------------------------------|--------------|-------------|-----------|---------------|-----------|
|                                                                          |              |             |           |               | Pure PLA  |
| $324 \pm 200$                                                            | Nanophase    | 1,950 ± 510 | 977 ± 200 | 1,430 ± 800   | 3.7 ± 0.5 |
|                                                                          | Conventional | 14.6 ± 2.0  | 1.7 ± 0.9 | $1.0 \pm 0.7$ | 2.6 ± 0.5 |





| Technology                  | Present                                                                                                                                                                                                                          | Potential                                                                                                  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Dispersions and<br>Coatings | <ul> <li>Thermal barriers</li> <li>Optical barriers<br/>(visible and UV)</li> <li>Imaging<br/>enhancement</li> <li>Ink-jet materials</li> <li>Coated abrasive<br/>slurries</li> <li>Information-<br/>recording layers</li> </ul> | <ul> <li>Targeted drug<br/>delivery/gene<br/>therapy</li> <li>Multifunctional<br/>nano-coatings</li> </ul> |

| Technology                     | Present                                                                                                                               | Potential                                                                                                                                                  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High Surface<br>Area Materials | <ul> <li>Molecular sieves</li> <li>Drug delivery</li> <li>Tailored catalysts</li> <li>Absorption/<br/>adsorption materials</li> </ul> | <ul> <li>Molecule-specific<br/>sensors</li> <li>Large hydrocarbon<br/>or bacterial filters</li> <li>Energy storage</li> <li>Grätzel solar cells</li> </ul> |

| Present and Potential (Cont.) |                                             |                                                                                                                                                                                                                                                |
|-------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technology                    | Present                                     | Potential                                                                                                                                                                                                                                      |
| Nanodevices                   | <ul> <li>GMR recording<br/>heads</li> </ul> | <ul> <li>Terabit memory and<br/>microprocessing</li> <li>Single molecule DNA<br/>sizing and sequencing</li> <li>Biomedical sensors</li> <li>Low noise, low<br/>threshold lasers</li> <li>Nanotubes for high<br/>brightness displays</li> </ul> |
| Materials Science             | and Engineering Department                  | R. W. Siege                                                                                                                                                                                                                                    |

| Present and Potential (Cont.) |                                                                                                                                                   |                                                                                                                                                                                                                               |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technology                    | Present                                                                                                                                           | Potential                                                                                                                                                                                                                     |
| Consolidated<br>Materials     | <ul> <li>Low-loss soft<br/>magnetic materials</li> <li>High hardness, tough<br/>WC/Co cutting tools</li> <li>Nanocomposite<br/>cements</li> </ul> | <ul> <li>Superplastic formi<br/>of ceramics</li> <li>Ultra-high strength<br/>tough structural<br/>materials</li> <li>Magnetic<br/>refrigerants</li> <li>Nano-loaded<br/>polymer composite</li> <li>Ductile cements</li> </ul> |



