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Abstract

Inhomogeneous magnetic fields exert a body force on

electrically nonconducting, magnetically permeable fluids. This

force can be used to compensate for gravity and to control

convection. The effects of uniform and nonuniform magnetic

fields on a laterally unbounded fluid layer heated from below

or above are studied using a linear stability analysis of the

Navier-Stokes equations supplemented by Maxwell's equa-

tions and the appropriate magnetic body force. For a uniform

oblique field, the analysis shows that longitudinal rolls with

axes parallel to the horizontal component of the field are the

rolls most unstable to convection. The corresponding crit-

ical Rayleigh number and critical wavelength for the onset

of such rolls are less than the well-known Rayleigh-B_nard

values in the absence of magnetic fields. Vertical fields max-

imize these deviations, which vanish for horizontal fields.

Horizontal fields increase the critical Rayleigh number and

the critical wavelength for all rolls except longitudinal rolls.

For a nonuniform field, our analysis shows that the magnetic

effect on convection is represented by a dimensionless vec-

tor parameter which measures the relative strength of the in-

duced magnetic buoyancy force due to the applied field gradi-

ent. The vertical component of this parameter competes with

the gravitational buoyancy effect, and a critical relationship

between this component and the Rayleigh number is identi-

fied for the onset of convection. Therefore, Rayleigh-Benard

convection in such fluids can be enhanced or suppressed by

the field. It also shows that magnetothermal convection is

possible in both paramagnetic and diamagnetic fluids. Our

theoretical predictions for paramagnetic fluids agree with ex-

periments. Magnetically driven convection in diamagnetic

fluids should be observable even in pure water using current

technology.

I. Introduction

In a recent experiment, Beaugnon and Toumier[ 1] have

successfully levitated various diamagnetic solids and liquids

using a strong nonuniform static magnetic field. Recent ex-

periments [2,3] also observe the strong enhancing and sup-

pressing effects of an app]ied inhomogeneous static magnetic

field on thermal transport in a gadolinium nitrate solution

heated from below, indicating that the thermal gradient in-

duced buoyancy-driven convection in this paramagnetic fluid

is controllable via the applied magnetic field. We provide

here the theory of magnetically controlled convection in a

horizontal, electrically nonconducting fluid layer heated from

either above or below. We show that the convective fluid

flow can be effectively controlled by placing the layer in a

non-uniform magnetic field, which can promote or inhibit

convection for both upward and downward thermal gradi-

ents. This phenomenon has a great potential to be utilized to

enhance or to suppress the gravitational effect in terrestrial

experiments and to control the flow of nonconducting fluids

in a microgravity environment. This effect can be utilized to

increase the efficiency of heat-transfer devices.

When a magnetically permeable fluid is placed in a static

magnetic field I-l, Landau and Lifshitz [4] calculate the vol-

ume forces on the fluid [Eq. (34.3) in Ref. 4 converted to SI

units],

where po is the pressure in the absence of the field, p the

density of the fluid, T the temperature, it the magnetic per-

meability of the fluid, and _ the electric current density in the

fluid. For electrically nonconducting fluids, _ = O, and there-

fore the last term vanishes. As tr = ItO(1 +\), 1QI= \H, and

V × I-] = 0 in nonconducting diamagnetic or paramagnetic

fluids, we can rewrite Eq. (1) as

= -vpg + j,o_. vfl, (2)

where/Io is the permeability of free space, \ the volumetric

susceptibility of the fluid, p_ the modified pressure including

magnetic contribution, and _ the magnetization (the magnetic

moment per unit volume). The first term on the right side of

Eq. (2) has no contribution to convection since V × Vp_) = 0.

Paramagnetic fluids contain atoms or molecules that have in-

trinsic magnetic moment, and their magnetic susceptibilities

satisfy Curie's law [51, i.e., y = Cp/T, where C is a posi-

tive constant. Unlike pararnagnetic fluids, diamagnetic fluids

contain atoms or molecules that have no intrinsic magnetic

moment. When a static magnetic field is applied to these

fluids, the change of the field induces a magnetic moment for

each atom or molecule. Diamagnetic susceptibilities satisfy

"_ = l,,,.P, where /,,, is the susceptibility per unit mass, a

negative constant. The last term in Eq. (2) is the Kelvin body

force [6] f,, = po(lql .V)I-], which arises from the interaction

between the local magnetic field 1_ within the fluid and the

molecular magnetic moments characterized by the magnetiza-

tion lql. An imposed thermal gradient produces a spatial vari-

ation in the magnetization through the temperature-dependent
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magnetic susceptibility for paramagnetic fluids and through

the temperature-dependent mass density for diamagnetic flu-

ids, and therefore renders the Kelvin body force density f,,

nonuniform spatially. This thermal gradient induced inho-

mogeneous magnetic body force density f,, can promote or

inhibit convection in a manner similar to the gravitational

body force.

II. Governing Equations

To study magnetically controlled convection in electri-

cally nonconducting fluids, we consider an incompressible

horizontal layer of such fluids heated on either top or bottom

in the presence of an external nonuniform magnetic field. We

choose our coordinate system by defining Izl < d/2 with

pointing up, where d is the layer thickness. We assume that

the external field satisfies I-]_x_ = I-]0 + (_- V)t] _xf, where

= :ri + .@ + z_ is the position vector. Here the vector tlo

is the field at the center of the layer, and the field gradient

VIi *xt is a constant tensor. Maxwell's equations require this

tensor to be symmetric and traceless.

The fluid flow is governed by the Navier-Stokes equa-

tions in addition to Maxwell's equations for the magnetic

field I-] and magnetic induction g --= po(lql + 1i). Under the

Oberbeck-Boussinesq approximation, which allows density

variations only in the large gravity term of the Navier-Stokes

equations, we write the dimensionless governing equations

for the convective flow [7],

p,m -57 + `7. V`7 = -Vp + (R_ - l_,,)0 + ff sin 2 _0_

+ tx'(z - 0),e/o . X-'fa+ V2,7, (3)

00

0-7+ v. vo - _. ,7= v_o + _,, (4)

v. _ - Jqo. vo = o, (5)

v. ,7= o. (6)

Here, `7, p, 0, and h represent the respective departures of

velocity, pressure, temperature, and magnetic field from the

static thermal conduction state. In these equations, fto ---

IT[o/Hu is the unit vector in the I-]o direction, 0 the angle

between flo and the horizontal, and cO the viscous dissipation.

Equation (3) involves the Prandtl number Pr = v/Dr, the

Rayleigh number R = a.qdaAT/vDT, the Kelvin number

I( = t'°x_AT_"t_'ltg f 1/(1 + xo)To 2 paramagnetic:

pot, DT × !. a2 diamagnetic,

(7)
and the vector control parameter

ri,,, = '°_°'r_aroo_Dr(fl Vfl__"r=o× { _,l/T°
paramagnetic;

diamagnetic,

(8)

where a is the thermal expansion coefficient, v the kinematic

viscosity, DT the thermal diffusivity, To the average temper-

ature of the layer, AT the temperature difference between the

bottom and the top, \o the susceptibility at To, and po the

density at To.

Ili. Results and Implications for Experiments

The Rayleigh number R in Eq. (3) measures the strength

of gravitational buoyancy relative to dissipation. In the ab-

sence of magnetic fields, the thermal convective instability

in a fluid layer heated from below is determined by this

parameter R, and Rayleigh-B4nard convection sets in for

R > R_ _ 1708. In the presence of a uniform magnetic

field (K ¢ 0 but 1_,_ = 0), the magnetic effect on convec-

tion is determined by the Kelvin number K and the angle O.

For ordinary diamagnetic fluids such as water, our linear sta-

bility analysis shows that the difference for the marginal state

due to the magnetic effect is less than 0.1% for a field up to

30 Tesla, and therefore the uniform field effect on convection

in these fluids might be negligible. For paramagnetic fluids,

our linear stability analysis [8] shows that longitudinal rolls

with axes parallel to the horizontal component of the field

are the rolls most unstable to convection. The corresponding

critical Rayleigh number and critical wavelength for the onset

of such rolls are less than the well-known Rayleigh-B_nard

values in the absence of magnetic fields. Vertical fields max-

imize these deviations, which vanish for horizontal fields.

Horizontal fields increase the critical Rayleigh number and

the critical wavelength for all rolls except longitudinal rolls.

The vector parameter 1_,,, in Eq. (3) measures the relative

strength of the magnetic buoyancy force due to the applied

field gradient. Since this parameter is the only one contain-

ing the external field gradient VI-] _ in the governing equa-

tions (3-6), the effect of the field gradient on convection in a

nonconducting fluid layer is completely characterized by this

vector parameter. The combination of the vertical component

of I_,, with R in Eq. (3) shows that the gravitational effect

on the convective flow can be balanced by this component

of 1_,,. Therefore, convection in electrically nonconducting

fluids can be controlled by an inhomogeneous magnetic field.

The application of this theory to experiments [2,3] yields a

good agreement [9]. Our analysis also shows that magnet-

ically controlled convection in diamagnetic fluids should be

observable even in pure water using current technology [10].

This work shows that thermal convection in electrically

nonconducting fluids can be controlled by an external inho-

mogeneous magnetic field through the vector parameter R,,_.

The inhomogeneous field exerts a magnetic body force on

these fluids, and this force can balance the gravitational body

force in terrestrial experiments. This magnetic field induced

body force can be utilized to control the flow of noncon-

ducting fluids in a microgravity environment with possible
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applications in mixing, heat transfer, and materials process- 6.

ing.
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