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Introduction

Super paramagnetic particles is a new class of
magnetic materials that exhibit a susceptibility g near
the value of one while most of natural paramagnetic
materials have a magnetic susceptibility at least five
orders of magnitude lower. Ferrofluid emulsion is one

of such systems. A collection of iron oxide nanopani-
cles (in our case Fe304 with a radius of 6nm) dispersed

When the volume fraction is high, bigger aggre-
gates are formed by the lateral coalescence of several
chains [3,4,5]. While many studies and applications
deal with the rheological properties [6] or the field-
induced structural changes [3-7], this work is to better
understand the chain dynamics. We will show, in the
first section, that the kinetics of chain formation is a

diffusion-limited aggregation. The second and the
in kerosene is called a ferrofluid which has various main part of this work will talk about measurements of
properties [1]. The most important is that each nano-
particle has a permanent dipole moment. Due to the
small size of the nanoparticles, they only have a single
domain magnetization. The thermal agitation random-
izes the iron oxide particles so that the total magneti-

zation of the ferrofluid is equal to zero when no mag-
netic field is applied. Once an external magnetic field
is applied, the nanopanicles are oriented slightly in the
field direction and the ferrofluid can have a strong
magnetization. Particles, having a submicronic size, (in
our case 0.23_m as radius) can be made of this ferro-

fluid. If these ferrofluid droplets are dispersed in wa-
ter, some surfactant is added to prevent aggregation,
the system thus produced is called a ferrofluid emul-
sion.

When ferrofluid particles are suspended in water,
they diffuse under Brownian forces. Applying a mag-
netic field to such a suspension leads to dipole-dipole
interactions between particles. The amplitude of this
interaction is described by a dimensionless parameter
3., which is the ratio of the magnetic dipolar energy
over the thermal energy [2]:

A -_a3Z212°H_ (1)
18kT

Where a is the particle radius, /1 0 is the vacuum
permeability, Ho the applied magnetic field, k the
Boltzmann constant and T the absolute temperature.
When 3. is greater than one, magnetic interactions

dominate. Because of the strong anisotropy of the di-
polar interaction, particles aggregate to form chains in
the field direction (cf. Fig. I).

Low fields _,<<1 High fields 3.>1
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Figure 1: Magnetic field effect on a ferrofluid emul-
sion.

the effective diffusion coefficient by dynamic light
scattering (DLS) [8]. In particular, our experiments are
able to measure two different motions. One is from the
center of mass of the chain and the other is from inter-

nal motions (particle fluctuations). This is an extension
of our earlier work [9,18].

Experimental conditions

Our sample consists of ferrofluid particles dis-
persed in water. The particle volume fraction is 10 5 to

avoid multiply scattering as well as chain-chain lateral
aggregation. The emulsion is introduced in a test tube
of 2cm of diameter with care to avoid dust pollution.

scatteringvectorq:
4nn . 0

q:--_-.s,n 7

. I

" " "- _]k--_ Helmholtz

"__. / coils

,X=lase_1,sr.m)Yl! ...............leOns.............. I'_qk_" " _--. ___-_--qn_"/

single mode fiber

with
pigtailcollimator

tube

Figure 2: Experimental setup of dynamic light scatter-
ing. The onset specifies our scattering geometry, with
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chainsperpendicularto thescatteringplane,andthe
definition of q is also indicated.

The tube is placed in the sample holder with an in-
dex match bath to reduce reflections. The sample
holder is then put inside a pair of Helmholtz coils as
shown in Fig.2.

An Ion Argon laser beam (_=514.5nm) is focused
through a lens (with a focal length equal to 25cm) to
the sample. The detector is placed at an angle 0 from
the initial path that specifies the momentum transfer q,
defined in the experimental setup shown in Fig.2. The
scattered light is collected by a photomultiplier tube
and analyzed by a digital correlator to give the inten-
sity autocorrelation function. In self beating mode,
often called homodyne mode, the intensity autocorre-
lation function that the correlator measures

<l(q,t)l(q,O)> is related to the dynamic structure factor
S(q,t) with the relation:

<l(q,t)l(q,O)>-<l 2 >=orS 2 (q,t) (2)

And

S(q,t)= 177Y,exp{iq(rn(t)-rp (O))} (3)
Vn,p

<12> is the mean square amplitude of the intensity
and ct is a parameter that only depends on geometrical
factors. V is the scattering volume and rn(t) is the posi-

tion of the particle number n at time t. In general, in-
terpretation of DLS experiments requires a model for
S(q,t).

In the absence of magnetic field, the suspension is
isotropic without any interactions between particles
and the structure factor reduces to a single exponential
S(q,t)o¢ exp(-q2Dot). Do=(kT/_) is the diffusion coef-
ficient of a particle. _=6zc rI a is the Stokes frictional
coefficient of a spherical particle in a fluid of viscosity
7/ . If interactions or polydispersity can not be ig-
nored, an effective diffusion coefficient has to be in-

troduced. Formally, D,._ is defined as:

Deft =- l--LO--ln(S(q,t))
q 2 3t t-_o

It reduces to Do if no interactions between particles
arc present. Therefore, without magnetic field, we can
use DLS to measure particle size. The particle radius
was found to be a=O.23fl m with 7% of polydispersity
through a fitting procedure called cumulant expansion
[8]. In this case, if we vary the scattering angle 0
(and so q) we do not have any change in the measured
diffusion coefficient: it is q-independent.

When a magnetic field is applied, the system con-
sists of particles and chains. Equation 2 can still be
used to fit our data if we assume S(q,t)~exp(-g2 t) and

,Q =q2Deg. 1-2 measures the frequency of scatters
(particles, chains).

The magnetic field is controlled by a computer
(with a digital-analog converter board) connected to a
remote power supply. The field was first calibrated
without any magnetic material and a linear relation
between the current and the field was found. Each

Amp produces 67.0!-0.5 Gauss. The relation giving _,

for a given magnetic field strength is not simple since
the susceptibility varies with the magnetic field. How-
ever, an order of magnitude can be found with the
equation L=0.01B 2, where B is the external magnetic

field applied, expressed in Gauss. For 200Gauss,
k=400. Our expressions of _., given in this paper, are

rigorous solutions of the equations of the magnetic
field in heterogeneous media.

Results

I) Kinetics of chain formation

When a strong magnetic field is applied (_,=406), at

a fixed q, we first notice a monotonous decrease of the
effective diffusion coefficient with time. Physically,
this means that chains are becoming longer and longer
with time (see Fig.3).
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Figure 3: Normalized effective diffusion coefficient
versus time. (_,=406, q= 4.2x106 m-l)

To obtain chain length from Deg, a theoretical
model of rigid chains of N spherical particles is used
f11,12] since it agrees very well with a recent experi-
ment [10]. The result is shown below:

D chai, = f ( N ) D o

f(N)- 31n(2N)+ 1.254 (4)
4N

Here, we assume that the effective diffusion coeffi-

cient measures the average motion of isolated chains.
In very dilute system like the one we used, this is cer-
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tainlytrue.Fromequation4, weareableto getthe
meannumberof particlesperchain, N, from the effec-
tive diffusion coefficient.

This is illustrated in the Fig.4 where the effective
diffusion coefficient is normalized by that of a single
particle. Figure 4 shows a Log-Log plot of the results
based on measurements of Fig.3.

Calculating the value of N as a function of the time
gives us information about the kinetics of aggregation
(i.e. N versus time).
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Figure 4: Mean number of particle per chain versus
time, kinetics of chain formation.

Fitting the data with a power-law relation gives an
exponent of 0.47_+0.05. Thus, N depends on time as a
square root (within our experimental uncertainties for
this short chain formation). As expected, since the vol-
ume fraction is very low, the kinetics of particle ag-
gregation into chains is a diffusion-limited aggrega-
tion. This is consistent with our earlier data and other

work [9,18,13].

H) Dynamics of single chains

If we apply a magnetic field of 200 G to the sample
for 6 hours, we can get chains long enough (more than
19 particles) and far away (more that 70 particle di-
ameters) that the chain growth slow down. Now, we
can do other experiments. In this case, the absolute
time is no longer important since chain length is al-
most constant during the next 30 minutes. First, we
vary 0 (or q) at a constant magnetic field strength,
and measure the effective diffusion coefficient.

Varying q allows us to select a window within
which different length scales of motion will be probed.
This can be seen in another way: q defines a charac-
teristic length (l=2x /q) over which dominantly mo-
tion will contribute to the intensity correlation func-
tion. To be able to probe different length scales by

varying the scattering angle is an important property of
DLS.

In this work, the experimental range of the scatter-
ing angle is 5° < 0 < 130 °. The equivalent range for
the scattering wave vector is 1.4x 106<q(m-_)<2.9x 107.

Thus, the characteristic length scale will have the
range 0.21< l (lam) <4.42. In terms of the particle ra-
dius:

0.9a < l < 20a. (5)

We can see here that motions will bc probed over
quite a broad range in a single experiment from one
particle radius up to twenty particle radii.

Next, we vary the magnetic field intensity (or _,)
and repeat the q-dependence experiment.

Figure 5 shows four series of experiments per-
formed at different magnetic field or coupling constant
_, (indicated in the onset). To work with the same chain
length, these four experiments are done consecutively
after the 6 hours at _=406. The first one is for _=406,
the second one is for L=I7, the third one is for L=157

and the last one is for L=46. Each experiment takes
around 30 minutes. This procedure allows us first to
decrease the magnetic energy of interaction between
chains to slow down again the kinetics of aggregation
and second to cool the coils which were warm after a

long-time experiment. At each fixed 2, value, we
measure the effective diffusion coefficient D,a as a
function of q. D,# is normalized by the single particle
diffusion coefficient Do, and l=2_r /q is normalized by
the particle radius a.
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qa/2n = a,q

Figure 5: Dependence of the normalized effective dif-
fusion coefficient versus the normalized scattering
wave vector for different _, values.

Figure 5 shows a few interesting features. First, for
all k values, De# is linearly proportional to qa. Second,

102



DYNAMICSOFSINGLECHAINSOFSUSPENDEDFERROFLUIDPARTICLES:S.CutillasandJ.Liu

as_increasestheslopeofDe,versusqdecreases.But
all thesestraightlinesconvergeto thesamepoint
(DdD0=0.16)asq approaches zero.

To understand the q dependency of D,.0-,let us look
at the probing length used. In our study, the character-
istic length scale probed is l=2_r /q which is in the
range of 0.9<//a<20. When 1 is much larger than the
particle radius (//a _ _) we are mainly sensitive to the

center of mass diffusion of the chain. D,# is then the
diffusion of the entire chain and depends only on N

and Do but not on q and 7L.The value D_0-allows us to
obtain the number of particles per chain N. In the op-
posite limit (i.e. ha<l), we are sensitive to motions on
the size of individual particles. The main contributions
to the measured diffusion coefficient come from inter-

nal motions of the chains (i.e. particles' fluctuations
inside the chain). However, the reason for a linear de-

pendence of D_on q is not clear.

The fact that the initial value of De q'Do (here equal
to 0. t 6 when q approaches zero) does not depend on ;_
indicates that the straight chain configuration is well
maintained even for the lowest ;_ values we used. This

value can be used to find the number of particles per
chain from the equation (4). This gives us N=19+I as
the mean number of particles in a chain (after 6 hours
at X=406).

Figure 6 shows the dependence of Deff on _ based
on the data in Fig.5. Since De_Do-k(qa), we plotted, in
a Log-Log plot, the slope k versus in

Fiff.6. Here, a

fit of power-law is obtained D_y/Do _: 2 giving the
exponent (_ =- 0.47_+ 0.05.
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Figure 6: Slope of the curves shown in Fig.5 as a
function of k to obtain power law dependence.

We can approximate D,_rDo~l/v / 2 . We can see
here that when the magnetic field increases (so k in-
creases) this reduces the internal motions. Therefore,

based on the results of Fig.5 and 6, D_/Do may be
written as:

A
Defy/D o =_g(N)qa+ f (N) (6)

.CA

This effective diffusion coefficient given by Eq.6 is

consisted of two parts.
The first term is the contribution due to internal mo-

tions of the chain (particle fluctuations) while the sec-
ond part is due to the whole chain motion (diffusion of
the center of mass of the chain).

In Eq.6, g(N) accounts for the chain length depend-
ence. g(N) and the constant A is determined from ex-
periments described below.

We created two chain lengths to study the effect of

chain length on the effective diffusion coefficient. To
obtain a longer chain size than 19 particles per chain,
we hold the magnetic field at _=406 for 3 more hours
(this increases the experimental time up to more than 9
hours). We then reduced the field down to L=46 and

repeated the q-dependence measurements. The result is
shown in Fig.7 below where for the same value of )t
(L=46) two experiments with two different chain sizes

are compared here:

Figure 7: Effect of different chain sizes on the meas-
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urea diffusion coefficient versus q.

From the data shown in Fig.7, we notice that when
N varies, not only the initial value is different but also
the slope changes. If we also assume that D,oC'Do o_
Nt , e is found to (-0.7+0.1).

To summarize the results from figures 5,6 and 7,
we found that the effective diffusion coefficient fol-

lows the simple relation:

3
Defy/D O - r.___qa+f(N) (7)

NO.7 -4X

Here fiN) is given by equation 4. The constant A
was found equal to 3.0-&-_0.2.It was determined expert-
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mentallyby findingtheexactvalueof De_'Do from

Fig.5 for a given qa/2n.
It is worth noting here that our experiments do not

cover the whole range of probing window (1=2x /q).
We were only sensitive to the most interesting range
where a q dependency of De# can be observed. How-
ever, if we expand the q range toward both ends, dif-

ferent behavior of Deg may be observed. Based on dy-
namics of polymers [14,15], we expect a qualitative
behavior as shown in the Fig.8. Here, three dynamical

regimes exist.

For small qa values, DeffrOp corresponds to the dif-
fusion coefficient of the entire chain. In the opposite

limit (qa>21r) it corresponds to the diffusion coeffi-
cient of the monomer inside a polymer chain Dp.

1,0_ ........ i ........ i ........ i ........ i

t0.8

___0.6"

0.4-

0.2-

0.0
1E-3

........ i ........ i ........ i ........ i
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qa/2n

Figurc 8: Universal behavior of the effective diffusion
coefficient versus q in polymer physics.

In our case Dp is the diffusion coefficient of a sin-
gle particle in the chain configuration. Notice that Dp
is different from the case of isolated particles Do. In

both of these regions, the behavior of DeffrDp does not
depend on qa#2_r . If a broader range of qa/2/r was
accessible we expect to see also these two others re-

gions where DelCq)o becomes constant.

In our experiment, the characteristic frequency [15]
probed by DLS is defined as .Q (q)=Def?q 2.

_(q) = 3 +f(N)Jq2Do
(8)

N °7 ._/___qa

The two constant regions can be obtained by setting
qa=O and qa=2x . When qa=O, D._Dc_,. or, in
terms of the minimum frequency, D ,._.=q2Dch.i..

When qa/27r approaches 1, the maximum frequency
is obtained by replacing qa by 2g in Eq.7 for the ef-
fective diffusion coefficient. The result, valid for

q>(2_ /a), is:

f_max (q)=( 6_______n.__nFf(N))q2Do (9)
N 07

In this work, we just reached the boundary of the
two limits. If we extend qa a little large, we may see
thc saturation behavior. From equations (7, 8 and 9)

we can see that the higher _ and N are, the lower the
internal vibration frequency and the slower the diffu-
sion motion. Increasing the magnetic interaction leads
to a more rigid chain, which is reasonable. Decreasing
_. reduces the dipolar binding between particles in a
chain. Thus, fluctuations of higher frequency are ob-
served. However, 3. can not be reduced below the

value of 1. In this case, only the motion of isolated
particles will be probed (if no irreversible aggregation
occurred) since chains break [16]. The N dependence
indicates that when the number of particles per chain

increases, internal frequencies of the chain reduce.
This behavior may be explained by the fact that more
vibrational modes are present for a longer chain than
that of a shorter chain. If the slowest modes (or the

longest wavelength) contribute mainly to the probed
fluctuations, the characteristic frequency will decrease

with chain length.

For N>5, fiN)-- (3/2)N °75 . Therefore, we may re-
place N 0"7 in Eq.6-9 by fiN). Thus, equation (7) be-
comes:

2

Deft __(____qa+ l) f ( N)Do (10)

We can write Eq.10 by separating the two parts. The
internal part with an apparent internal diffusion coeffi-
cient D,,,, and the global part with the diffusion coeffi-
cient of the whole chain Dch_;,.

With

De# = Dim + D chai n

2qa

Dint = 7 D chain and D _i, = f ( N ) D 0

Equations (8) and (9) can also be expressed in a
closed form:

_(q)=(_._q3a+q2)f(N)D o (ll)

And, for q>(2x /a):

_)max (q)=(-'_2+l)f(N)q2Do (12)

The apparent diffusion coefficient of particles in a
chain configuration Dp is given in terms of the maxi-
mum frequency (term "apparent" is used since a parti-
cle does not have a real diffusion behavior inside a

chain because of its bounding motion):

_'_ max 4_

Dp = _- =( + 1) Dch_/" (13)
q "_

From equation (13) we see that Dp reduces to D_h_,
when L>>(41t) 2 =160 and that the particle radius is

completely contained in the single particle diffusion
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coefficient Do. Because of the square root dependence,
even in the case _,=!04, internal fluctuations still con-
tribute f 12% of that of the whole chain. To reach

Din/Dchain = 1%, _-=I06 is necessary. In practice, such a
large k value is difficult to obtain with submicronic
particles, due to saturation of magnetization. In our
case, if no saturation effect is taken account, the mag-
netic field would have the value of 1 Tesla to get a
completely rigid chain. In our case, for the maximum
magnetic field used, k=406 and Oin/q)chai n = 62%.

Physically, this means that in almost all experi-
ments realized with these systems composed of submi-
eronic super-paramagnetic particles, chain fluctuations
can not be neglected. Furthermore, the only way to
obtain rigid chains is to increase the particle size well
above the micrometer. Since the magnetic interactions
is proportional to the cube of the particle radius (of.
Eq. 1), a panicle diameter about 3 micrometers need to
be used with a magnetic field of 300 Gauss to reach
_=10 6 (assuming the same magnetic susceptibility).

The biggest problem with such particles will be their
sedimentation and stability of ferrofluid droplets. Fur-
thermore, using these particles we can test if rigid
chains coalesce into bigger aggregate as theoretical
prediction suggested [17]. This is our next project.

Conclusion

In conclusion, we find that DLS is a powerful tech-
nique in probing the dynamics of chains. We made
quantitative measurements concerning the variation of
our parameters; the coupling parameter 3,, the mean
number of particles per chain N and the particle radius
a. For instance, we showed that the frequency of the
fluctuations depend on the magnetic interaction
through 1/3/ 2 (the higher the field, the more rigid
the chain). The dependence of the number of particle
per chain also leads to slow down the characteristic
frequency when the chain length increases.

We found separated motions when the scattering
wave vector varies. The effective diffusion coefficient

comprises two parts. The first one comes from the dif-
fusion of the center of mass of the chain (drift motion),
and the second one comes from the internal fluctua-

tions of particles that compose the chain. These inter-
nal fluctuations can not be neglected even for the
highest magnetic field used in our experiments
(_,=406, D,,/Dch_n=62%). This work is a basic study of
the chain dynamics. It is the first step leading to a bet-
ter understanding the mechanism of chain-chain lateral
aggregation in the field-induced structural formation of
dipolar fluids.
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