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In a recent experiment, Segr_ et al. [1 ] used the particle

imaging velocimetry (PIV) technique to measure the spatial

correlation function, C(0 = (rv(r)6_,(r + C)), of the veloci-

ty fluctuation _ _,in a sedimenting suspension of non-Brownian

particles over a wide range of particle concentrations and sam-

ple sizes. They found that the measured C'(() _ exp(-f/c),

where the velocity correlation length ( depends on the particle

radius a and volume fraction do in a non-trivial power-law

form ( --_ _t0o 1/3. In this paper we propose a new set of

coarse-grained equations of motion to describe concentration

and velocity fluctuations in a dilute sedimenting suspension

of non-Brownian particles. With these equations we find that

colloidal sedimentation is analogous to high Rayleigh number,

high Prandtl number turbulent convection [2,3]. Our mod-

el explains the experimental results by Segr_ et al. and also

provides a coherent framework for the study of sedimentation

dynamics in different colloidal systems.

To understand the basic principles governing the colloidal

sedimentation, we consider a simple case of a dilute sediment-

ing suspension of hard spheres in a long cylindrical tube of

radius L. To separate the velocity fluctuation b u from the

mean settling velocity _, we choose a uniform suspension

with _ = 0 as our reference system, It has been suggested

[1,4] that velocity fluctuations in a sedimenting suspension

may arise from fluctuations of the local particle concentra-

tion. Therefore, we model the colloidal sedimentation with a

coarse-grained Navier-Stokes equation. The fluid velocity _u

and pressure bp at a point x satisfy the creeping flow equation

[5]
7"_],(x) - o7"2_u(x) = f_(x), (1)

where _1is the viscosity of the fluid and 6_, [= _dx) - fi]

represents the fluctuation of the particle number density _dx)

about its mean ft. In the above, f = (47r/3)c_3Apg is the

buoyancy force acting on a particle of radius _, where g is

the gravitational acceleration and Ap = p_, - p._ is the density

difference between the particle (p;) and the solvent (p..). In

writing Eq. (l) we have assumed that the fluid volume ele-

ment bl_ is a coarse-grained volume, which is large enough

to contain many particles but is small enough such that the

particle distribution inside ,,Sl" is uniform. In this case, we

have f_,(x) = Apg[0(x) - 00], where 6(x) is the particle

volume fraction and O0 is its mean value.

Nondimensionalizing Eq. (1) with respect to the length L,

the time L2/D, and the concentration _60, we have

- 1-7"_t,(x) + 7"2_u(x) = R_,_(x)_, (2)
O"

where the unit vector _ is directed upward opposite to the

direction of g, and the dynamic pressure 6p has included a

term, -ApgOoz, to absorb contributions from the constant

forcing term -Apgr0. In Eq. (2) the Rayleigh number R, is

defined as

R,, = apgaot S/O1D), (3)

where D is an effective diffusion constant of the particles.

The Schmidt number o- is given by o- = v/D with v being

the kinematic viscosity of the fluid. For a dilute suspension

of small colloidal particles, D is approximately equal to the

particle self diffusion constant D= = l,'BT/(6rqa), where

k_T is the thermal energy. For large non-Brownian particles,

however, the effect of thermal agitations is negligible and their

diffusion-like motion is produced by the hydrodynamic inter-

actions between the particles [6]. Nicolai et al. have shown [7]

that the hydrodynamic diffusivity has the form Z)h _ 5_¢U0,

where U0 = 2,2Ap0/(9_1) is the Stokes velocity.

With the hydrodynamic diffusivity D;,, Eq. (3) becomes

R, -= 0.9o0(L )3 (4)
(/

It should be mentioned that while it is cancelled out in Ra,

Apy is needed so that D_, can be used to describe the hy-

drodynamic diffusion of the settling particles at small length

scales. Equation (2) together with the continuity equation for

an incompressible fluid

7". _u = 0 (5)

and the advective mass diffusion equation

Or6 + (_u. 7')6 = 7"2_ (6)

complete the description of concentration and velocity fluctu-

ations in colloidal sedimentation.

It is evident that Eqs. (2)-(6) are the same as those for

buoyancy-driven convection [3]. Velocity and concentration

fluctuations in colloidal sedimentation arc therefore analogous

to those in buoyancy-driven convection, and they are com-

pletely controlled by the two dimensionless parameters Ra

and o-, once the boundary conditions are specified. We now

estimate typical values of R, and ,7 in colloidal sedimenta-

tion. In the experiment by Segr6 et aI. [1 ], the particle's radius

a __ 8/_m, Stokes velocity U0 _ 6.5 ltrn/s, volume fraction

60 -_ 0.05, and the characteristic sample size L --- 1 cm. With

these experimental values, we find Dj, _ 2.6 × 10 -6 cm2/s,

Ra __ 8.8 × 107, and a __ 3800. The Schmidt number _r
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is equivalent to the Prandfl number in thermal convection.

Colloidal sedimentation is, therefore, associated with high

Rayleigh number, high Prandfl number turbulent convection.

To understand the sedimentation dynamics, it is helpful

to distinguish two characteristic length scales in convection:

the viscous dissipation length ,_L and the diffusive dissipation

length ,% The values of 6,, and 6d are determi_d, respective-

ly, by the transition Reynolds number Re_ = 6u62/v and the

transition Peclet number Pe_ = _,ltbd/.Oh. Here bu is the rms

value of the velocity fluctuation _o averaged over a volume

of b3 (or ha3). It is the ratios of these lengths to each other

and to the sample size L that determine the flow state of the

system [2]. For high-Ro, high-or turbulent convection, one

anticipates that the flow consists of three different regions: (i)

a < ( < ba,(ii) _,a < ( < _,and(iii) _a < ( < L. In

Region (i), molecular viscosity and hydrodynamic diffusivlty

determine the momentum and mass transport processes, re-

spectively, and hence the particle distribution remains uniform

without any large fluctuations. In Region (it) turbulent (or

eddy) diffusivity and molecular viscosity are dominant, and

thus large fluctuations in particle concentration are expected

but the velocity field remains relatively smooth. Finally, in

Region (iii) turbulent diffusivity and viscosity both dominate

over the corresponding hydrodynamic and molecular process-

es, In this case, one expects to see large fluctuations both in

particle concentration and in velocity at different length scales.

We first discuss the length ,Sa, above which velocities

become large and concentration fluctuations are transported

by convection. This occurs when the local Peclet number

Pc = _ (/Dh becomes larger than Pe _. Recent thermal

convection experiments have shown [8] that while turbulent

mixing creates on average an isothermal fluid in the turbulent

bulk region, large temperature fluctuations still remain in the

region and the characteristic length scale associated with these

fluctuations is of the order of _a. Therefore, the velocity cor-

relation length _ is determined by b,t in Region (it). According

to Kraichnan's theory [2],

_, _- (2_2p,_) ''_ LR. -d3, (7)

where the power law amplitude is expressed in terms of the

numerical value of P_ _. Priestley [9] first gave a direct argu-

ment for the R,-1/3 scaling. He argued that when R_ is large

enough, _,t should be a new length scale independent of the

sample size L. With Eqs. (7) and (4), we immediately have

,._ t5a _ LRt_ -1/3 "_ a.Oo 1/3. The mapping of colloidal

sedimentation to turbulent convection, therefore, explains the

experimental finding that ( " 1laoo if3. It also provides a

physical interpretation for the existence of a velocity cut-off

length, which prevents hydrodynamic dispersion coefficients

from being divergent.

We now discuss the velocity variance _ in colloidal sed-
imentation. According to Kraichnan's theory [2],

_u _- P_D_______h_"_ P_Dh (8)

/_d (2rEpc2) 1/3 LRa-1/3"

Eq. (8) states that at the transition Peclet number P_ _, the

mass flux due to hydrodynamic diffusion, Dh_/Oa, is ap-

proximately equal to that by convection, :u/g¢. Because

_a -_ _0o 113 and Dh --_ aU0, we find from Eq. (8) that

_, ,,, _l __ Dj,/ba "_ U00x0/3, which is independent of the

sample size L. This result agrees well with the experimental

,,,- _/3 [I I.finding that 6_, __ ,_t 0_,o
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