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Colloidal suspensions have proven to be excellent

model systems for the study of condensed matter and its

phase behavior [1]. Many of the properties of colloidal
suspensions can be investigated with a systematic varia-

tion of the characteristics of the systems and, in addition,

the energy, length and time scales associated with them

allow for experimental probing of otherwise inacces-

sible regimes [2, 3]. The latter property also makes

colloidal systems vulnerable to external influences such

as gravity. Experiments performed in micro-gravity by

Chaikin and Russell have been invaluable in extracting

the true behavior of the systems without an external

field [3]. Weitz and Pusey (private communication) in-

tend to use mixtures of colloidal particles with additives

such as polymers to induce aggregation and form weak,

tenuous, highly disordered fractal structures that would

be stable in the absence of gravitational forces.

Between any two colloidal particles, there is an at-

tractive force caused by the interactions between the

fluctuating dipole moments of their constituent atoms.
This van der Waals force leads to irreversible aggre-

gation of unprotected particles and it is desirable to

diminish its magnitude [4] and provide a stabilization
mechanism. Common mechanisms are steric stabiliza-

tion and charge stabilization [1]. For steric stabilization,

colloidal particles are coated with polymers so that

there is a short-range highly repulsive (nearly hard core)

force between two colloidal particles when their respec-

tive polymer layers are compressed• We shall consider

these types of colloidal particles later.

Charge stabilization occurs when charged surface

groups on colloidal particles dissociate, ionizing the

particle and emitting counterions into the solution. The

standard theory of interaction in these charged colloidal

suspensions is due to Derjaguin, Landau, Verwey and

Overbeek (DLVO) [5[ and the DLVO potential includes

a non-negligible screened Coulomb repulsion

UDLVO(r) = Z'2c2 exl)(-ar) (1)
r

in addition to the short-range van der Waals attraction.

The inverse Debye screening length, _: and the effective
charge, Z" are given by _ = 4rrpe2/kBTe, Z* =

Zexp(no)/(1 + ha). Here, _ is the dielectric constant of

the solvent, p is the density of counterions, a is the radius

of a colloidal "macroion", Z is its bare charge, ku and

T are the Boltzmann constant and temperature. The

screened Coulomb potential is obtained in the mean-

field linearized Poisson-Boltzmann approximation and

is thus expected to have have limited applicability,

although the functional form of the potential with a

renormalized charge has been argued to remain valid in

a wider regime [6].
Indeed, the DLVO theory has been shown to explain

some experimental data [7] but fails to account for others

[8]• The main experimental challenges to the theory are

numerous indications of a long-range attraction between

colloidal particles. The latter are evident in experiments

where particles are confined near a wall or in suspensions

at higher densities. When two isolated particles at a low

density have been considered, no attraction has been
found. Hence, many-body effects might be thought to

be responsible for this unexpected attractive force.

To study the role of confinement and evaluate many-

body forces, we consider a system consisting of spherical

colloidal macroions, a eounterion density distribution

p(r-') and a homogeneous solvent of a specified dielectric

constant. The effective Hamiltonian for our system can

be expressed as:

• 2

1 I,J<I

slit and /_ are the masses and coordinates of the

macroions and U(I/_j -/?t [) is the macroion-macroion

interaction energy. In the expression for the free energy
of the counterions [9, 10],

_-= d _p(_[_,_,+ ¢.,_+¢,.(p)+¢ .... (p)] (3)

we include: the macroion-counterion and counterion-

wall interaction potentials, ¢_; the Coulomb interac-

tions between counterions, ¢,,, t (r-') = ( da_ _; ideal

gas, ¢_d, and correlation, ¢ ..... contributions. The ideal

gas term is ¢_d = keTlog[A_p(r_] - 1, where A,_ is the

de Broglie thermal wavelength and we employ the free

energy of a one-component plasma [11] in evaluating

¢ ..... We use pseudopotentials for macroion-counterion
interactions [10] to suppress the large variation of the

counterion density near a macroion core.
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Given P, the forces between macroions due to coun-

terions can be evaluated using the Hellmann-Feynman

theorem. The total force acting on a macroion becomes:

FI = -V,_ Y(p(_, ¢_x,) - rfi, _ U(lfiJ - fi_ I). (4)
d

The equilibrium counterion density, p(r-'), itself can be
obtained from a functional minimization: 67 = 0 An.
efficient scheme for solving a functional minimization

of this type was developed by Car and Parrinello [ 12] in
the context of quantum-mechanical electronic properties

calculations and also used by Lowen, Madden and

Hansen [10] for colloidal suspensions. Expressing the

counterion density in terms of a wave function _,(_,
p(_ = I_'(r-')12,one can consider the Fourier components

of _,,(_, Ck-, to be dynamical variables in a Lagrangian:

/Z=I,_--_ : ¢ 1 -:-

r_ i l,J <i

(5)
with a constraint: f d3_'p(7=') = NZ. N is the number

of macroions, m r- are fictitious masses determining the

time-scale of thc dynamics of counterion density. We

used this Lagrangian to solve the functional minimiza-

tion by performing dynamical simulated annealing on

t"r. to obtain the minimum of ¢" for a fixed macroion

configuration.

We started out with a configuration of two macroions

in a periodic cubic box of length lpm at a temperature
T = 3001( in water, e = 78. The counterion density was

evaluated on a 963 grid and the radius and charge of a

macroion were a = 100nm and Z = 200c- (e- stands for

the elementary charge). The forces between macroions
at a series of different separations were measured. At

this low packing fraction, relatively low surface charge

and counterion concentration, the DLVO pair-potential

between two macroions is expected to hold. We plot

the DLVO prediction for the periodic system in Fig. 1.
We show our density functional minimization results in

the same figure as well as the force resulting from an

optimal fitting to a pair-potential of the DLVO form.

The numerical values for the inverse screening length

and effective charge for the optimal fit are presented as
the first set in Table 1.

In order to check the validity of pair-wise additivity

that we had tacitly assumed above, we placed three

colloidal particles in a unit cell with periodic boundary
conditions. Maintaining our previous pseudopotential

parameters, we studied the following geometries. First,

we positioned the three macroions in configurations of

equilateral triangles of different sizes and calculated

force l

1,2e-02 d_

--- I_st fit

-- DLVO prediction

1.0e-02

8,0e-03

6.0e-03

4.0e-03
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Figure 1: The total force on a macroion in a periodic

system with two macroions and free eounterions in the

primary simulation cell. The DLVO prediction with no

adjustable parameters (solid line) is compared to nu-

merical local density approximation data (open circles)

and the best fit of a DLVO-type potential is also plotted

(dashed line). The force is scaled to (e-/ran) e.

the force on one of the macroions as a function of

the edge of the triangle. In Fig. 2, we plot our data

for the force in these configurations as a function of

the distance and compare it to the force obtainable

from an additive pair-potential. Secondly, we also

placed the three macroions in an asymmetric triangular

configuration where two macroions were close to each

other (separation of 20Ohm) and a third macroion was at
a distance of 473nm from either of the two. We measure

a force of 1.24- 10-2 (e-/nm) 2 -I-0.05- 10- _-(e-/ran) -_on
either one of the first macroions while pairwise additive

forces predict 1.22.10 -_ (e-/nm) _-+0.05.10 -2 (e-/nm) 2

for the value. Thus, we detect no three-body component
in the effective forces.

To study forces between macroions in a confined

system, we introduced two parallel short-range repulsive

walls. We placed the macroions at different separations
and distances from a wall and measured the effective

forces between them. We fit our data to a DLVO-type

force and the effective parameters obtainable from the
fit are summarized in Table 1. Our resu]ts can be

understood as follows. The introduction of repulsive

walls increased the counterion density in the middle

of the simulation cell, while decreasing the Debye

screening length in that region (compare sets 1 and

2 in the table). On the other hand, near the walls,
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Rx (nm) _a Z" (e-) Z (e-)
1 0.374 212.5 200.9

2 500.0 0.454 220.2 203.3
3 350.0 0.444 220.5 204.2

4 200.0 0.308 213.8 205.5

Table 1: The parameters corresponding to the optimal

effective pair interaction potential between macroions

in different geometries. The first set of data was ob-

tained with periodic boundary conditions while walls
were introduced in the last three. Rx measures the dis-

tance from a wall. e;a and Z* are obtained from the fit,

the bare charge Z is calculated from na and Z'. The

DLVO prediction for a periodic system is: Z = 200,
Z" -- 205.8 and t;a--- 0.258.

force

2.0e-02'

1.6e-02

"_.2e-02

8.0e-03

4.0e-03

O.Oe÷O_o;. o 3o_.o-_oo,o
z(nm)

the counterion density must decrease and the Debye
screening length consequently increase - the latter can

be seen by comparing sets 2, 3 and 4. Thus, this simple

model for confinement changes the effective parameters

in the DLVO potential but does not introduce any

fundamentally new behavior.

Besides electrostatic interactions, entropic depletion

effects that arise from (hard-core) exclusion play an

important role in determining the behavior of multicom-

ponent colloidal suspensions [13, 14]. It is well known

that the addition of free polymers to a suspension of

colloidal particles can cause an effective attraction. The
first successful attempt to predict and explain the phe-

nomenon was made by Asakura and Oosawa (AO) [15].

In their approach, there is an exclusion volume around

each large sphere within which the centers of small

ones cannot penetrate. As the entirely entropic free
energy of small spheres depends on the volume acces-

sible to them, the favored configurations are the ones

where the exclusion volumes of large spheres overlap.

This implies that there ought to be a force, pushing the
large spheres towards each other in order to increase

the entropy of the small ones. A similar mechanism

explains the attraction of a large sphere towards a wall.

Quantitative AO calculations ignore the interactions be-

tween the small spheres completely and even though

an overall acceptable experimental agreement with the

AO prediction has been reported [13, 16], the ideal

gas approximation based AO theory does not provide a
satisfactory description of entropic potentials and forces

in dense colloidal suspensions.

To go beyond the simple geometric arguments of

AO requires a detailed theory for the structure of a binary

Figure 2: Test of the additivity of the effective macroion

potential. Three macroions were placed in equilateral

triangular configurations and the force on a maeroion

as a function of the edge of the triangle was measured.
Open circles are our data whereas the solid line indi-

cates the force from an additive DLVO-type potential
with the parameters: Z* = 212.5e-, na = 0.374. The

force is scaled to (e-Into) 2.

fluid. Even though significant progress has been made

[ 17], this is a difficult task for an arbitrary binary system.

We consider instead the simplest situation in which all

the spheres are of the same size and study depletion

forces and potentials by an analysis of the data for this

system. All our numerical data were obtained from
hard-sphere molecular dynamics simulations where the

system evolves on a collision-to-collision basis: all

particles move freely until two of them come in contact,
then an elastic collision between the two occurs, after

which all particles move freely until the next collision.

Desired quantities are measured as equilibrium time

averages in these simulations.

Let us first consider the depletion potential between
two hard spheres in a "solution" of other hard spheres

of the same size. The potential of mean force, W, is

related to the pair correlation function, 9(x), as [ 18]

g(z) = exp(-llTk_T). (6)

The depletion force therefore turns out to be:

F/kBT- Oln(g(x)) (7)
O.r

where x is the distance between two particles. An ex-

ample of the depletion force between two hard spheres
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Figure 3: The depletion force as a function of tile dis-

tahoe between two hard spheres in a mixture of other

hard spheres of the same size at a packing fraction

O = 0.45. The distance is measured in hard sphere

diameters, or, and the force is scaled to kt_T/cr.

in a hard-sphere fluid derived from a pair-correlation

function using Eq. (7) is given in Figure 3. At a packing
fraction of 4 = 0.45, it suffices to consider 108 hard

spheres in a cubic box with periodic boundary condi-

tions to obtain the first features in the force profile. We

can prove the validity of our calculation by measuring

the depletion force directly by recording the total mo-

mentum transfer in a unit time on a sphere at a known

distance from another one. We compare both of those

force measurements to the AO prediction in Figure 3.

Similarly, the depletion force between a sphere and

a wall can be obtained from the density profile:

F/_,oT - 0 h,(/,(,T))
Oz (8)

where :r is the direction perpendicular to the wall and

p(.r) is the local density of the hard sphere fluid. The

well-known layering of fluid molecules near a wall

leads again to a more complex structure for the force

than AO predicts. See Fig. 4 for the force data and

the AO prediction. We also plot the force obtained
from momentum transfer measurements. The data was

obtained with the same number of spheres at the same

density as before.

Depletion forces in complex geometries with step

edges and non-trivial curvature have been measured and

argued to have profound consequences for cellular biol-

ogy or entropic control and directed motion of colloidal

particles. The AO-type calculations of entropie forces

Figure 4: The depletion force between a hard sphere

and a wall for the system described in the text. x is mea-

sured in hard sphere diameters and the force is scaled to

kBT/a. The walls are parallel to the yz plane and are

located at :c = -t-2.37. In the simulation, presented in

this figure, thermal walls were used but reflecting walls

resnlt in a qualitatively similar force profile.

and potentials in these geometries are simple enough

to carry out while more precise predictions quickly

become rather laborious and, to our knowledge, have

nol been attempted. To go beyond the AO theory, we

calculated entropic forces and potentials for a system of

324 hard spheres at a packing fraction of about 0.45 in

a three-dimensional T-shaped channel. Potentials near

step-edges and corners are of principal interest and are

shown in Figure 5. A comparison with the AO predic-

tion is also shown in the figure. The potential barrier

repelling a hard sphere from a step-edge is simply a re-

flection of the density decrease near it. Analogously, the

potential minimum attracting particles towards a corner
and the sharp increase in density there are different
manifestations of the same effect.

There is an interesting and important feature to the

depletion forces that already manifests itself in the AO

approach. Depletion forces need not be pairwise ad-

ditive. In the AO approximation, the force between
two particles arises from the overlap of excluded vol-

umes. Three-body effects become relevant when the
hard spheres are considered in configurations in which

their pairwise overlap volumes themselves overlap, re-

sulting in an over-counting of the actual overlap volume.

An example could be a triangular configuration. The AO

prediction for an equilateral configuration is calculable.
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Figure 5: Tile effective potential profiles for a hard

sphere fluid confined ill a T-shaped channel. To form

the channel, walls in tile 9z plane were placed at:

x = 4.74cr; x = 0 for [y] > 2.37cr; x = -4.74a for

lyl < 2.37tr; and in the xz plane at y -- -I-2.37cr for

-4.74cr < x < 0. (Periodic houndary conditions were

used otherwise.) The upper figure displays the effective

potential at x = 0, i. e. along a "step," tile edges of

which are located at y = +2.37cr. The lower figure is

the effective potential at x = -4.74a where the "cor-

ners" are located at y = +2.37tr. The potential is given

in units of thermal energy and y is measured in hard

sl)here diameters.

For the packing fraction ¢ = 0.45, the AO two-body
force at two sphere contact is F.4o = -2.0 kBT/t7. If

forces were additive, the magnitude of the total force

on a sphere in this triangular configuration would be

2FaO cos(Tr/6) = --3.5 kBT/cr. Instead, when all over-

lap volumes are correctly accounted for, an AO-like

analysis predicts instead a force of -2.9 k_T/a. The
exact three-body force can in principle be found from

a three-point correlation function but obtaining reliable
statistics for this measurement is rather time consuming.

Instead, we prepared the described triangular configu-
ration and measured the momentum transfer on each

of the spheres in a simulation. The two-body force

at contact for _ = 0.45 is G,_ = -6.8 kz_T/cr (see

Fig. 3). The actual measured force, -10.0 kBT/a,
is again significantly lower than the additive pairwise

force: 2F,,,, cos(rr/6) = -11.8 kBT/cr. Indeed, the

three-body component in this geometry for our system

of hard spheres is a significant percentage of the total
force.

In conclusion, we have performed calculations of

effective forces between charged colloidal particles in

different configurations and studied effective depletion
forces in hard sphere colloids. In the first case, our

data are well fit to screened Coulomb type potentials. It
should be noted that in our calculations, the walls were

not charged and dielectric discontinuities between the

suspension and the walls were not considered. One may

speculate that long-range attraction cannot be accounted
for by static calculations and that they probably originate

from temporal fluctuations. In the second case, a com-

parison of our numerical data and the Asakura-Oosawa

theory indicates that the AO theory underestimates the

magnitude of depletion forces at contact, ignores the
complex nature of entropic interactions, consisting of
several maxima and minima and underestimates the

range of the interactions.
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