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1. INTRODUCTION

The continuum description of momentum and en-

ergy transport in gases, based upon Newton-Stokes-
Fourier constitutive relations, can become inaccurate in

rarefied or highly nonequilbrium regimes, i.e., regimes

in which the Knudsen number tx'z_ (= A/L, where )_ is

the gas mean free path and L is the characteristic system

or gradient length) is no longer small. The Burnett

equations, which represent the order-Ku 2 solution to

the Boltzmann equation, ostensibly provide a means of

extending continuum formulations into the transitional

Knudsen regimes (--_ Kn < 1).

The accuracy and validity of the Burnett equations,

however, have not been firmly established. As has

been noted by several authors, the asymptotic series

expansion of the molecular distribution function - from
which the Burnett equations are derived - has unknown

convergence properties for finite h'r_. _'_- The Burnett

equations can also lead to Second-law impossibilities,

such as heat flux in an isothermal gas/ Furthermore, the

Burnett equations increase the order of the differential

equations that govern momentum and heat transport in

the gas. Additional boundary condition information is

required to fully close the problem - yet such informa-

tion is generally not available from physical principles
alone.

Because of these issues, it is generally held that

the Burnett equations are valid only in regimes in which

the Navier-Stokes-Fourier level of approximation al-

ready provides an adequate description of transport, i.e.,

regimes in which the Burnett contributions represent

a small perturbation to heat and momentum transport.
Such conditions can be representative of high-Mach

number flows, for which application of the Burnett

equations appears to have been the most successful. 4-7
On the other hand, there is not a broad understanding

of the accuracy of the Burnett equations when applied

to slow-moving, nonisothermal flow (SNIF) condi-

tions. As noted by Kogan, 'thermal stresses' (fluid
stresses resulting from temperature gradients - which

are predicted by the Burnett equations) could become
a significant convection mechanism in buoyancy-free,

nonisothermal gases, s'9 Indeed, it has been recently

suggested that thermal stress convection could affect

the growth of crystals in microgravity physical vapor

transport experiments. _o,1

The work presented here consists of a theoreti-

cal and numerical examination of thermally-induced

stresses and flows in enclosed, highly nonisothermal

gases under buoyancy-free conditions. A central objec-

tive has been to identify a strategy in which stress and/or

convection effects, as predicted by the Burnett equations,
could be isolated and measured in microgravity-based

experiments. Because of the questionable veracity of

the Burnett equations, a second objective has been to

test Burnett predictions of nonisothermal gas stress and
convection with the exact description provided by the

direct simulation Monte Carlo (DSMC) method.

2. PREDICTION OF THERMAL STRESS
CONVECTION

The initial phase of the project was aimed at cal-

culation, using continuum and DSMC methods, of gas
convection in two dimensional nonuniformly heated

rectangular enclosures. Typically, two adjacent surfaces
of the enclosure were modeled as adiabatic, zero-stress

surfaces (i.e., planes of symmetry), and the other two

adjacent surfaces were maintained at specified temper-
ature distributions with one surface transferring a net

amount of heat to the gas, and the other transferring the

heat from the gas.
The continuum formulations of momentum and en-

ergy transport are identical to Navier-Stokes-Fourier
models, with the exception of the Burnett stress tensor

in the momentum equations and the creep and jump

boundary conditions. For the conditions examined here
(i.e., slow-moving flow, with Bet, << 1) the only sig-
nificant terms in the Burnett stress tensor relations will

be those involving temperature gradients. This thermal
stress component appears as s'_ 1

+ -_T ((VT){VT) - _(_'T . VT)I) ] (1)

in which it is the dynamic viscosity, R is the gas

constant, and _3 and _ are dimensionless, order-unity

coefficients which depend on the interaction potential of

the molecules. The creep and jump boundary conditions

appear

csl'R (VT_ fi OT)u- /, (2)

cTA OT
T = T,,, + (3)

T 07_
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where n is the outward normal and the dimensionless co-

efficients cs and cT depend on the thermal and momen-

tum accommodation properties of the surface, t_ Nu-

merical solution of the governing equations was accom-

plished using the SIMPLER algorithm of Patankar. 13

Coefficients corresponding to hard-sphere molecules,

which gives a temperature-dependent viscosity of tt ,,_

T 1/°-, were used in the computations.

Direct simulation Monte Carlo calculations of

hard-sphere gas convection and heat transfer were

accomplished using the standard procedure developed

by Bird. 14'15 The cell size was nominally set to 0.1Ao,

where A0 represents the mean-free-path at the equi-

librium state of the system, and 10-20 molecules were

assigned per cell. Simulations were conducted for a
Knudsen range of IVu = 0.01 - 0.2. Because thermal

creep and stress flows will be on the order of IVu times
the mean molecular velocity, resolution of the flows

using DSMC required simulation times on the order of
106 - 107 time steps.

Our continuum and DSMC calculations to date in-

dicate that it would be very difficult to create conditions
in the enclosure that result in measurable thermal stress

flows that are comparable to or larger than thermal

creep flows, and simultaneously maintain the Kn < O. 1

regime required of the Burnett equations. With the ex-
ception of the pure continuum limit (Kn --r 0, under
which thermal stress vanishes), elimination of ther-

mal creep cannot be accomplished by maintaining the
heated/cooled walls at uniform temperatures. Rather,

the discontinuity (or jump) between the surface and ad-

jacent gas temperatures - which will be proportional to
I(n and the local normal temperature gradient - will

lead to nonuniform gas temperatures along the nonuni-

formly heated surfaces. For all realistic values of IVn,
thermal creep flows generated by the temperature jump

effects were substantially larger than those resulting
from thermal stress.

To minimize the effects of creep, we performed

additional simulations in which the temperature dis-

tributions along the heated/cooled surfaces were as-

signed to provide, for a given Kn, nearly uniform gas

temperature adjacent to the surface. Surface tempera-
ture distributions were determined from solution of the

gas conduction equation with uniform gas temperature
boundary conditions along the heated/cooled surfaces,

and subsequent application of the solution into Eq. (3)

to predict To,(x). This approach imposed a surface

temperature on the heated surface which increased to-

wards the junction with the cooled surface, with an

opposite trend along the cooled wall. The effect of

this strategy resulted in thermal creep flows that were
confined about the hot/cold junction, and left a bulk,
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Fig. l : DSMC (top) and continuum (bottom) results

thermal-stress driven convection pattern in the bulk

of the enclosure. However, this strategy would also

lead to highly nonequilibrium conditions in the vicinity

of the hot/cold surface junction, for which the Burnett

equations are not expected to hold.

The comparison between continuum/Burnett and

DSMC predictions of convective flows in the enclo-
sure has been inconclusive. DSMC calculations have

shown convective flows that are qualitatively similar

than those predicted by the continuum model. As an

example, we show in Fig. 1 plots of velocity vec-
tors and isotherms, calculated using the DSMC (top)

and continuum (bottom) models, for a Kn = 0.02

hard-sphere gas contained in an enclosure with a rela-
tive temperature difference on the hot and cold walls of

2(TH - Tc,)/(TH + To,) = 1. The heated wall is on the

top, and the left and bottom walls are symmetry surfaces.

A strip of the walls adjacent to the hot/cold junction,

equal to 0.1 of the wall length, is held adiabatic, and the
remainder of the walls have temperature distributions

set to give isothermal gas conditions per the procedure
discussed above. Velocity vectors corresponding to ther-
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mal creep along the adiabatic surfaces (seen in the tight

counterclockwise rotation in the upper right corner) have

been removed from the plot to allow resolution of the

thermal stress flows. The stress flow - as predicted by
the continuum model - results in a clockwise rotation

in the main body of the gas for the given conditions.

A similar pattern is seen in the DSMC results. We
cannot establish, however, whether the observed DSMC

flows result from thermal stress, or are due to slip ef-

fects at the walls. As mentioned above, the veracity of

the Burnett relations is also questionable for the highly
nonequilibrium conditions of the simulations. On the

other hand, temperature profiles calculated via DSMC
and continuum models show significant agreement.

3. THERMAL STRESS IN 1-D HEAT
TRANSFER

A simpler situation in which to compare contin-

uum/Burnett and DSMC predictions of thermal stress

effects is offered by l-D heat transfer in a stationary
gas. In this situation, the effects of thermal stress would

be seen in the pressure distribution and normal stress in

the gasJ 6

The computational domain was now taken to be

a slab of gas contained between two parallel surfaces,

separated by a distance L, with the surfaces at ./" = 0

and L maintained at uniform temperatures of Tc's and

Tns (with TIts > Tcs), respectively. In nondimen-

sional form (with pressure and stress normalized with

the equilibrium pressure P,_ and temperature by the

equilibrium temperature T,,_), the Burnett equation for

the .r-directed, normal component of the stress tensor
is 7A7

r o,o, I _7-*=¢+ 7
k

In the above, _ = P/Pm, T* = r/P,,,, 0 = T/T,,,, the

prime denotes differentiation with respect to _ = x/L,
Cl = (4_/3)(5/16) 2 = 0.4091, and the dimensionless

o.' coefficients depend on the molecular interaction po-

tential. Since the gas is stationary and buoyancy-free,
the stress r will be a constant. In the limit of h:n _ 0,

this gives the Navier-Stokes result of P = r = con-
stant. For finite h)t, however, the additional source

of thermal stress can act within the nonisothermal gas.

The magnitude of the thermal stress will vary with po-

sition - by virtue of the dependence of temperature and
temperature gradient on position - and consequently

pressure will vary to maintain a constant normal stress.

The Burnett equations make no contribution to the

heat flux for a stationary gas. Consequently, the gas

temperature will be described by

q* = constant = 01l'_0' (5)

where q* is the dimensionless heat flux (= qL/kT,,).

Equation (5) can be used to combine the last two terms

in Eq. (4), which results in

c,;c,,'  '47 _T'=¢+- 7- e

C2_ .2 ]
(6)

where c_ = (-Ja - 2_'5)/2 = 0.9900 for hard-sphere
molecules.

Two separate effects - or regimes - on ¢ can be

anticipated from inspection of Eq. (6). One effect, which

is discussed by Kogan is and Makashev I '_, derives from

the fact that the derivatives of ¢ will be multiplied by

the small parameter (for near-continuum conditions) of
lfn 2. The solution to Eq. (6) could therefore exhibit

'boundary layers' of width _k_ --. h'n. It is shown below

that this property, combined with appropriate boundary

conditions, will allow for a limited description of the

Knudsen layers adjacent to the surfaces.

A second characteristic regime, as indicated by

Eq. (6), would occur outside the Knudsen layers. By
expanding 0 in a power series of Ifn _, and neglecting

all terms higher than Kn 2, the pressure distribution in

the bulk gas would be given approximately by

cle.,(ICn q,)'a
¢ _ r* + r*O (7)

As is evident from inspection of Eq. (7), thermal stress

would create a pressure gradient in the gas, with pres-

sure increasing towards the cooler regions in the gas.

The gradient would be proportional to the square of

h)_ q* _-, v/-OdO/d(x/A) - which can be interpreted as

a Knudsen number based on the characteristic length of

the temperature gradient (note that this quantity is inde-
pendent of L). It should be emphasized that the effect

predicted from Eq. (7) is fundamentally different than

the pressure gradient created by 'thermal transpiration'

of a gas in a tube with an imposed axial temperature

gradient. 2°'2_ The latter is a result of thermal slip at the

walls of the tube, and leads to a pressure that increases in

the direction of increasing temperature. Thermal stress,

on the other hand, results from the effect of temperature

gradients on the molecular velocity distribution function

within the gas.
Although the thermal stress pressure gradient can

be labeled 'hydrostatic' - since the gas is at rest - it
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is distinctly different than that resulting from a gravita-

tional acceleration in the x-direction• Unlike the latter,
thermal stress would not result in a difference between

the normal forces acting on the hot and cold surfaces. In

other words, the 'pressure' measured at the surfaces -

which would physically represent the normal stress r -
would be identical for both surfaces.

Thermal stress, however, will result in a different

value of the normal stress than that predicted from the

Navier-Stokes level of approximation. This follows

from conservation of energy requirements. In particular,

the average pressure in the gas represents the equilib-

rium pressure that would be attained if the walls were

instantaneously made adiabatic. Since the equilibrium

pressure is used to normalize the dimensional pressure

P, this statement is equivalent to

fo 1 : 1 (8)

Regardless of the values of q* and I(n, the pressure

distribution in the gas must satisfy the energy conser-

vation constraint implied by Eq. (8). Consequently, the

normal stress 7-* would be obtained as the eigenvalue

to Eq. (6) such that the solution (for specified boundary

conditions) satisfies Eq. (8). In general, this value will
bc different than the Navier-Stokes result of 7-* = 1.

An approximate value for r* can be obtained by

neglecting the effects of the Knudsen layers at the

surfaces, for which the pressure distribution would be
given by Eq. (7). To order tx'n 2, this gives ]6

r* _ 1 - c]c.2 (/_'n q*) 2 (9)

This relatively-simple approximation indicates that
thermal stress will lower the normal stress in a closed

system relative to that predicted from the Navier- Stokes

level - although we note again that the effects of Knud-

sen layers have been neglected in the analysis.
The final elements required to close the prob-

lem are the boundary conditions for pressure. As is

the case with the Navier-Stokes approximation, the

boundary conditions for the Burnett equations should

represent an extrapolation of the solution across the

region, adjacent to the wall, where the solution is no
longer valid. Makashev L_and Schamberg 22 have pro-

posed boundary conditions that are consistent with the
order-Kn _ accuracy of the Burnett equations. The

accuracy of these approaches, however, has not been

well established. 23 Alternatively, order-lOt relations

can be derived for the pressure 'slip' adjacent to a heated

or cooled surface. 1-0,-9] However, our work at this stage

is primarily concerned with determining whether there

are boundary conditions which, when coupled to the
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Figs. 2-4: DSMC and continuum pressure distributions

Burnett equations, can reproduce DSMC predictions of

pressure distributions in a nonisothermal gas. Therefore,

the pressures at the hot and cold surfaces were taken

to be parameters, and were chosen to provide the best

agreement between theory and DSMC results. The ob-
vious choice for the pressure at the surfaces will be the

values determined from DSMC predictions.

Comparisons of Burnett (via numerical solution of

Eq. (6)) and DSMC predictions of pressure distribution

appear in Figs. 2-4. Each plot shows P/T -----_/7-* VS.
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zi = x/L for a fixed value of q*, with I(n a parame-
ter. Two theoretical predictions of P/r are shown for

each set of DSMC results. The first corresponds to the

numerical solution of Eq. (6), with boundary conditions

obtained from extrapolation of the DSMC-derived pres-

sures to the surfaces and temperatures predicted from

Eq. (5). The second represents the bulk gas thermal stress

pressure distribution predicted from Eq. (7), which does
not account for boundary effects• This latter predic-

tion has been shifted by a constant to match with the

full-Burnett solution at ( = 0.5.

As is evident from the results, the pressure profiles

show distinct Knudsen layers at both the cooled and

heated surfaces. The drop in pressure at the cooled

surface, and the increase in pressure at the hot surface,

are both consistent with the predictions of pressure slip

relations. -°l The pressure drop at the cold surface can
be considerable for the conditions examined here -

amounting to around an 8% decrease for K, = 0.2 and

q* = 1.5.

The solutions of the Burnett equation, with DSMC

derived boundary conditions, are seen to capture the
essential features of the DSMC pressure distribution.

In particular, the solutions provide a good description
of the width and form of the Knudsen layers and the

pressure distribution outside the layers. The difference
between the theoretical and DSMC results is greatest at

the edge of the cold-surface Knudsen layers, for which
the theoretical model tends to overpredict the pressure.

This is most evident for the results corresponding to

q* = 2.0 in Fig. 4. Nevertheless, the fact that the

Burnett equations can resolve, to a reasonable accuracy,

the Knudsen layers at the surface is somewhat surprising

- especially when considering that the theory is based on
the order-I_'_ continuum temperature profile. We also

examined solutions to Eq. (6) using boundary values of
that were different than the DSMC results, and found that

the exact, DSMC-derived boundary conditions provide

the best overall agreement between Burnett equation

predictions and DSMC results.

The DSMC results for q* = 2.0 appear to show

a pressure distribution in the bulk gas that is described

by Eq. (7). On the other hand, the pressure distribution

for q* = 1.5 and Kn = 0.2 (Fig. 3) - for which

Eq. (7) predicts a greater effect - is dominated by

the Knudsen layers extending from the surfaces. To
eliminate the effects of the Knudsen layers at the hot

wall, we performed additional DSMC calculations in
which the velocities of the incoming molecules at the

hot boundary were sampled from the Chapman-Enskog
distribution function for the fixed values of q* and Nn.

By doing so, the hot surface now approximated an open

boundary. The corresponding DSMC results showed a

1.00

0.98

"b- 0.96

0.94
DSMC \

r_DlClQD eurnett eigenvolues

J
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Kn q"

Fig. 5: DSMC and continuum normal stress

pressure distribution in the bulk gas that was accurately

represented by Eq. (7).

A final comparison of theory and experiment can
be obtained from the dimensionless normal stress. The

simplified model of Eq. (9) indicates that r* should be

a function primarily of I(n q*. Accordingly, we plot in

Fig. 5 the DSMC values of r* vs. K_ q* for the seven
different combinations of Ix)_ and q* that were used

in the closed system calculations (results of Figs. 2-4).
Theoretical results correspond to the derived eigenvalues

of Eq. (6) for the DSMC-derived boundary conditions,

and to the approximation given by Eq. (9).

The first point to make is that the predictions of v*
from full solution of the Burnett differential equation are

nearly equivalent to those obtained from the bulk-gas

approximation of Eq. (9). Evidently, the decrease in

pressure at the cold surface is compensated by the
increase at the hot, so that the Knudsen layers have

a small effect on the averaged pressure in the gas.

Secondly, the primary dependence of "r* on I(, q* is
supported in the DSMC results at Nn q* = 0.1 and 0.2

- which each correspond to two combinations of Nn

and q*. As observed, the results are nearly identical

at these points. Finally, the theoretical predictions

are in excellent agreement with the DSMC results for

/x-n q* < 0.15, beyond which the theory overpredicts
the decrease in _-*. As can be seen from the results, the

relative decrease in normal stress on the surfaces is quite

small, i.e., r* = 0.975 for q* = 2.0 and Nn = 0.2, or

a 2.5% decrease in 'measured' pressure at the surface.

We should emphasize, however, that this decrease is

still significantly larger than the numerical precision of
the DSMC simulations.

SUMMARY

The project has sought to ascertain the veracity of
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the Burnett relations, as applied to slow moving, highly

nonisothermal gases, by comparison of convection and

stress predictions with those generated by the DSMC

method. The Burnett equations were found to provide

reasonable descriptions of the pressure distribution and
normal stress in stationary gases with a 1 -D temperature

gradient. Continuum/Burnett predictions of thermal
stress convection in 2-D heated enclosures, however,

are not quantitatively supported by DSMC results. For

such situations, it appears that thermal creep flows,

generated at the boundaries of the enclosure, will be

significantly larger than the flows resulting from thermal

stress in the gas.
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