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INTRODUCTION

Previous research by the authors [1-3] has shown

that either oscillatory, nonplanar shear or temporal

modulation of a boundary temperature can stabilize sig-

nificantly the onset of thermocapillary convection in a

fluid layer originally at rest and heated from below.

Within the context of control theory, both methods are

forms of open loop control. We now extend our investi-

gation of the control of Marangoni-Benard convection

by considering the effects of closed loop control using

feedback. The basic model for the linearized problem is

similar to one employed by Tang and Bau [4] who

showed that Rayleigh-Benard convection can be stabi-

lized by the use of linear feedback control. We also use

the temperature of the lower boundary as an actuator

but, instead of sensing the temperature within the layer,

we assume that the depth of the layer can be measured

in order to input information to the actuator.

Marangoni-Benard convection can occur in one of

two distinct ways. One mode of instability, typical of

situations involving moderate Bond numbers, was stud-

ied first by Pearson [5]. I occurs for a critical wave-

length of the order of the depth of the layer and

typically involves negligible surface deformation. The

preferred pattern of convection is one of hexagons. A

quite different mode of instability occurs at the very
small Bond numbers typical of a microgravity situation.

It was studied first by Scriven and Sternling [6] and by

Smith [7]. The critical wavelength for this mode is

much larger than the depth and considerable surface

deformation occurs. A recent experimental investiga-

tion [8] has shown that the onset of this long wave-

length mode can often lead to rupture of the fluid layer.

We therefore felt that control of this mode of instability

would be a worthy test of the use of feedback control

because rupture of the layer is usually detrimental to

any application where thermocapillary convection is

possible.

The long wavelength mode of Marangoni Benard
convection differs from Rayleigh-Benard convection

not only by its length-scale but also by the fact that a

sub-critical instability is dominant rather than the

supercritical bifurcation characteristic of Rayleigh-
Benard convection (which gives rise to convective

rolls). Due to this difference, a control strategy consid-

erably more complicated than that used by Tang and
Bau [4] must be employed. In fact, we show that a non-

linear control strategy is essential in order to eliminate

the subcritical instability and to stabilize the layer.

Another major difference between our analysis and that

of Tang and Bau, who considered the control of an indi-
vidual normal mode, is that we can consider direct con-

trol of arbitrary disturbances as long as they are

composed of large wavelength components.

ANALYSIS

Only a brief review of the problem formulation and

analysis will be given here because a detailed

presentation [9] has recently been submitted for journal

publication. We consider a gas-liquid layer model

contained between two parallel walls contained at

constant but unequal temperatures, with the wall

bounding the liquid having the higher temperature. In

particular, the simplified two-layer model of VanHook
et al. [8] is used, in which the effects of heat transfer in

the gas layer are modeled but dynamical effects of the

gas are ignored. Because we restrict the analysis to

large wavelength disturbances, both linear and

nonlinear effects can be investigated by means of a

small wavenumber expansion [8,10]. We further restrict

the analysis to values of the Marangoni number (M)
close to the critical value (Me). This restriction allows

us to explore the problem on a weakly nonlinear basis

for arbitrary values of the surface tension, which is

usually assumed to be large for nonlinear studies where

M is well above M c. For the large wavelength case, it is

convenient to define and use the parameter D = M/G,

where G is the Galileo number. VanHook et al. [8] refer
to D -1 as being the dynamic Bond number. At lowest

order in an expansion involving the nondimensional

wavenumber q(<<l), the critical condition for the case
without control is determined to be _D(1]F) = 1,

where F is the two-layer Biot number as defined in [8].
3

We can then define e _D( 1 IF) - I as a measure of sub-
or supercriticality. If rI represents the deflection of the
interface relative to the undisturbed level of the

interface, the weakly nonlinear regime is explored by
means of the scalings c = q2R and rl = q2A, where R and

A are O(1). After defining a suitable nondimensional
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time x, an amplitude equation arises at O(q 2) in which

nonlinear quadratic terms appear, namely,

3A V
-_x "(R1V2(2F-I)A) VA = 0 (1)

where B is the ordinary Bond number. Because the

amplitude equation involves quadratic terms, subcriti-

cal instability with R < 0 of the transcriticaI type occurs.

Although subcritical equilibrium solutions are possible,

they turn out to be unstable. Equilibrium solutions are

not possible for R > 0. We then have a picture of a very

unstable situation, with instability occurring for R < 0 as

well as R > 0 and growth being possibly limited only by

higher-order nonlinear terms. The above scaling fails if
F = 1/2, in which case cubic terms in A must be consid-

ered. For that case, it can be shown that the cubic term

augments the instability instead of limiting growth.

We now seek to stabilize this very unstable situation

by utilizing feedback control. The interfacial deflection

is assumed to be measured, and a control temperature

Tc at the lower wall is assumed of the form

T = KIqIK2_2IK3xl 3. (2)

Higher-order terms could be included in the control

law but would not appear in our weakly nonlinear

analysis. The lower boundary now has an inhomo-

geneous temperature, which is assumed to vary

smoothly along the wall. For the linear problem, the

critical condition for disturbances with q ---) 0 is found

to be c = K 1 where K)= 3D/_/2(1 I I/), j = 1,2,3, and
where//is the one-layer Biot number [9]. Thus, linear

feedback control has a stabilizing effect, obtained

basically by heating or cooling the fluid in such a way

that the thermocapillary effect at the interface is in part

cancelled. In terms of the ratio of the critical Marangoni
number with control to that without, we obtain

_,_ _ 1 (3)
C(Kl= 0) 1-Kl.,#"

where Kl,ef f = Kl/(1 +F)(I +H). As K|,eff increases
from zero, the ratio (3) increases in magnitude and

approaches infinity as KI,,::--)1. In this limit, the
thermocapillary effect arising at the interface is exactly

cancelled by the control. However, stabilization by
linear control does not affect the fact that subcritical

instability can occur. Because this instability is asso-

ciated with the quadratic terms in (1), we must have

K24:0 in (2) in order to eliminate the possibility of

subcritical instability. With control, the coefficient of

the quadratic term turns out to be

2F - 1 - al/_ 1 - 2/( 2 (4)

where al = 2(1- (1 I F)H). We want to make this term
small by suitable selection of /_2. However, exact

cancellation might not occur, and so we let

2F- 1 - al/( 1 - 2/_"2 = otq (5)

where a is an O(1) parameter. With the quadratic term

in (1) almost eliminated, we can then balance the linear

terms with the next order nonlinear (cubic) term by

defining c-/(1 = q2R and rl = qA to obtain the following

cubic amplitude equation:

_A V.(R1V2aAI[3A2)VA = 0 (6)0x

which can be compared to (1). The cubic term can now

control the growth of the instability for R > 0 if [3 < 0
where [3 = _ (H, E K1, K3) is a function defined by the

analysis. When this is achieved, the original subcritical

instability has been converted into a supercritical
bifurcation.

Values ofK 1, K 2 and K 3 required to achieve a super-

critical bifurcation at c > 0(i.e., Mc(K 1, K 2, K3) >

Me(O)) arc given in Table I. As is clear, the values of

K 1, K2 and K3 and all O(1) even for an increase of
100% in the critical Marangoni number.

F r [3 D c K 1 g 2 g 3

0.33 0.50 0.00 0.75 0149 -0.59 0.54

0.67 0.50 0.00 0.60 0.61 -0.30 1.18
0.33 0150 -0.50 0.75 0.49 -0.59 0.70

0.67 0.50 -0.50 0.60 0.61 -0.30 1.38

0.33 1.00 -0.50 1,00 0.73 -0.76 0.86

0.67 1.00 -0.50 0.80 0.92 -0.61 1.49

Table 1: Values of Control Gains Computed from
Selected Parameters

CONCLUSIONS

We conclude that feedback control can be used to

postpone the onset of Marangoni-Benard long-wave-

length convection and even to convert the subcritical
bifurcation characteristic of the case without control

into a supercritical bifurcation. In order to achieve this

goal, however, a nonlinear control strategy of the type

given by (2) is required. The gain Kj is selected to give

the desired increase in M c, K 2 is chosen so as to elimi-

nate the possibility of a transcritical bifurcation, and K 3

is then selected to give a forward pitchfork (supercriti-

cal) bifurcation. With K 2 and K3 = 0, convection could

start for M well below M c due to finite amplitude distur-

bances even though Me(K1) > Me(O).
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