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1. INTRODUCTION

Under the application of a sufficiently strong

electric field, a suspension may undergo reversible

phase transitions from a homogeneous random

arrangement of particles into a variety of ordered

aggregation patterns. The surprising fact about electric-
field driven phase transitions is that the aggregation

patterns, that are observed in very diverse systems of

colloids, display a number of common structural
features and modes of evolution thereby implying that

a universal mechanism may exist to account for these

phenomena. It is now generally believed that this

mechanism emanates from the presence of the long-

range anisotropic interactions between colloidal

particles due to their polarization in an applied field.
But, in spite of numerous applications of the electric-

field-driven phenomena in biotechnology, separation,

electrorheology, materials engineering, micro-devices
for chemical analysis, etc. which have expanded

rapidly over the last decade, our understanding of these

phenomena is far from complete. Thus, it is the

purpose of the proposed research to develop a theory

and then test experimentally, under normal- and low-
gravity conditions, the accuracy of the theoretical

predictions regarding the effect of the synergism of the

interpartiele electric and hydrodynamic interactions on

the phase diagram of a suspension.
The main results from our theoretical studies

performed to-date enable one to trace how the
variations of the electrical properties of the constituent

materials influence the topology of the suspension

phase diagram and then, by using an appropriate phase

diagram, to evaluate how the electric-field-induced
transformations will depend on the frequency and the

strength of the applied field and the particle
concentration.

2. ELECTRIC-FIELD-INDUCED PHASE

TRANSITIONS

The first step in the development of a theory for the

electric-field-induced phase transitions in a suspension
of electrically uncharged conducting particles

dispersed in a conducting fluid was taken in Refs. [1,

2]. To begin with, the density of the free energy of a

suspension containing randomly arranged hard spheres
subject to an electric field was written [1] as

F:ksTf0(c)/v p__. -W (1)

where the first term in Eq. (1) refers to the free energy

of a suspension in the absence of the electric field, as a

function of the temperature T with k s being

Boltzmann's constant, and the volume concentration of

the particles c with Vp being the particle volume; the

second term in Eq. (1) refers to the electric energy of a

suspension caused by the interaction of the particles

with the applied electric field and by the electric-field-

induced long-range interparticle interactions. The

concentration dependence of the function fo(C) in Eq.

(1) is well understood [3, 4].
The main obstacle which had to be overcome in

constructing a theory of electric-field-induced phase
transitions was that, for materials such as conducting

suspensions whose complex dielectric permittivity
* p • p!

E s = E s --IE s varies strongly with the frequency of

the applied electric field, the electric energy density

W in Eq. (1) cannot be constructed using macroscopic

electrodynamics [5]. The reason for this difficulty is
that the frequency dependence of the dielectric

permittivity implies that such a material contains

mobile charges and electric dipoles capable of
orientation, so that the stored electric energy will

depend on the time-history of how the electric field was

established [6].

To be sure, an expression for the electric energy

density W of a conducting material, namely,

Brillouin's formula (see Eq. (2) below), can be derived
from macroscopic electrodynamics [5, 6], but only

when the energy dissipation in this material is

negligibly small and the time-variations of the applied
electric field are very slow compared to the rate of

relaxation phenomena, i.e.

1 d [ :( )]_ I,))rO_e-'t.O'"E2"tO"TW-2d m (2)

only if E:'(_ << E:(tg) and cot s << 1 where m

and E(t0) are the frequency and the Fourier amplitude

of the applied electric field, respectively; the value of

t s determines the relaxation time of dielectric

and ()v denotes the timephenomena; average.

Recall, that the real component E_ gives the dielectric

constant of a material whereas the imaginary
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component E_' determines the power dissipation (loss)

in this material due to its conductivity. As can be seen

from Eq. (2), Brillouin's formula is applicable only
under the severe limitations that effects of conductivity

are negligibly small so as not to cause losses in the
stored electric energy. That is why Brillouin's formula

cannot be utilized in Eq. (1) to describe electric-field-

driven phase transformations in conducting colloids

which strongly depend on conductivity effects.
To overcome the limitations of Brillouin's formula,

we developed [1] a microscopic theory for the electric

energy density W of conducting spheres dispersed in

a conducting fluid when the particles were arranged
randomly and provided that the particles and the

suspending fluid can be described by the model of a

leaky dielectric; i.e. when their dielectric constants, Ep

and £f, and conductivities, (ip and (If, are

frequency independent. This model corresponds to the
classical mechanism of the so-called Maxwell-Wagner

interfacial polarization typical of colloids [4, 7]. In this

case, the short-term polarization of the particles and of

the fluid is determined solely by their instantaneous

polarization whereas their long-term polarization arises
from the build-up of charge at the interface between the

particles and the surrounding fluid. We exploited two
microstructure-based techniques for solving the

problem. One of them is based on a mean-field

approximation (a cell model) where the average field

acting on each particle is considered to be the well-
known Lorentz-Lorenz local field [5, 6] rather than the

applied field, while the second made use of statistical
methods and a renormalization technique for

the O(c 2) term in the expansion for thecalculating

electric energy density W in powers of the particle
concentration. But, as we found [1], the main

contribution to the electric energy of a suspension as

well as to its complex permittivity is given by

multiparticle interactions leading to a change in the

local electric field acting on a particle. That is the

reason why, for example, the cell model, which
accounts only for this effect, yields the well-known

Maxwell-Wagner expression for the complex

w=. l--g: ÷

W= 1- c13_ +

permittivity of a suspension which correlates well with

experimental data.
The theory of Ref. [1] relates the electric energy

density of a conducting suspension to the dielectric
constants and conductivities of the particles and of the

suspending fluid, the particle concentration, and the

frequency and the strength of the applied electric field.
To illustrate the advantages of this theory, the first two

terms in the expansion of the electric energy density

W in powers of the particle concentration were

substituted in Eq. (1) which was then used to study the

phase separation of a dilute conducting suspension

subject to strong electric fields [1]. On this basis, we
then calculated in Refs. [1, 2] the critical conditions

beyond which the random arrangement of the particles
becomes unstable in the presence of spatially uniform

and non-uniform electric fields.

The main objective of the present work is to extend

our previous studies [1, 2] beyond the dilute regime

and to develop a microscopic theory for phase

diagrams of concentrated conducting suspensions

subject to strong dc and ac electric fields. To this end,
we employ in Eq. (1) the full expression for the free

energy density of a conducting suspension, as a
function of a concentration, which we derived in Ref.

[1] using the mean field approximation, and then
investigate the topology of the suspension phase

diagram, i.e. "the particle concentration-the electric

field strength", and relate it to the electrical properties
of the constituent materials.

As was shown in Ref. [1], thc expression for the

electric energy density W of a conducting suspension

being subjected to a dc electric field E for short

(t << t s) and for long (t >> t s) times, is given by

Eqs. (3) and (4), respectively, while, for an ac electric

field E 0 cos0)t and for the long-term t >> t s

regime, the equation for the time average of the electric

energy of a suspension is given by Eq. (5)

ef 1 + 2c_ E2W = _ (3)
2 I-c_E

9c(1 - c)(ef(i - epCr) 2 ]P ---'25" )2 E2
2(_p "1- 2_f X1 C[_ Ex(Ip + 2(If) (1- C[_ o

9C(1- C)(Ef(Ip- Ep(I f) 2 ]4(1 + 032t2 Xep + 2ef)'('i2?_)(_"_p 72(ifs .... )2 (1 _ c13 ° )2 E_

(4)

(5)
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with

For brevity, we included the vacuum permittivity 130

as a multiplier in the definition of dielectric constants

13p and 13r in Eqs. (4)-(5).

Equation (3) and the first terms in Eqs. (4) and (5),
which are determined solely by the instantaneous

polarization of the particles and the fluid, are consistent

with the relationship for the electric energy of a non-

1
conducting suspension W = _'13s(c)E 2 given by

Z

macroscopic electrodynamics [5] with 13s(C) given by

Maxwell's equation [7]. The second terms in Eqs. (4)
and (5) correspond to the energy required to build the

charge at the particle surface and to redistribute the

electric field inside the particles and the suspending

fluid when the time constants of the particles and of the

fluid are different; that is when 13f/(Y r g: 13p/CY p [1 ].

But since the second term in Eq. (5) approaches zero as

O)t s ---) oo the electric energy of the suspension for

high frequencies becomes the same as that for a non-

conducting material. On the other hand, for a slowly

varying electric field, COts << 1, Eq. (5) yields the

expression for the time average of the electric energy
which is consistent with the expression given by the

substitution of the Maxwell-Wagner relation for

E_(0_) into Brillouin's formula, Eq. (2), [1].

Now, the osmotic pressure of a suspension FI

to -(aF/aV)r_,T. E [8])and the chemical(equal

potential of a particle }.1,(equal to (F + 1-IV)/N [8])

can be evaluated from the equation of the free energy,

(1). On calculating these expressions, f0(c) isEq.

conveniently expressed in the terms of the suspension

compressibility factor Z(c) where a good

approximation for Z(c) of a suspension in the

disordered state is given, for example [3, 4], by the

Carnahan-Starling equation and the asymptotics

Z---)oo as c---)c m where Cm--0.63--0.64

corresponds to random close packing of spheres.

The random arrangement of the particles in a
suspension is stable as long as the osmotic pressure
increases with concentration, which can be written as

dZ
ac t ku s )= Z + C-d-_c - c _----_[ k--_) > 0 (6)

E --13f (_p --(_f
r_ p flo_

13p + 2El ' (_p + 2or

Consequently, as seen from Eq. (6), as long as the third

term on the right-side is positive, in the other words as
long as the interparticle interactions increase the

suspension energy, an increase in the strength of the

electric field decreases the value of _rI/_c and

finally renders the random arrangement of the particles
unstable when

8n
w = 0 (7)
bc

Now, Eq. (7) represents the spinodal curve in an

equilibrium phase diagram of particle concentration vs.
the electric field strength of a conducting suspension

subject to an electric field. Specifically, this curve is

the locus of points for which the curvature of the

suspension free energy changes from convex to
concave [8].

For the case when ()2W/_c2 > 0 over the entire

range 0 _< c < c m, the spinodal points exist over the

entire concentration range as well, so that increasing

the strength of an electric field applied to this
suspension will eventually cause the electric-field-

induced transition. Thus, the phase diagram of such a

suspension consists of the low-field one-phase region

which includes the random spatial arrangement of the
particles in the absence of an electric field and the

high-field two-phase region corresponding to the

appearance of aggregates caused by the action of an

applied field. This phase diagram appears to be similar

to the phase diagram concentration vs. temperature of a
binary fluid or a binary alloy with a miscibility gap [8],

so that these species exist in solution at high

temperature but their mixture eventually separates into
coexisting phases below the critical point of

miscibility. In this regard, the application of an electric

field to a conducting suspension is equivalent to a
quench of an atomic system from its high-temperature

one-phase state. Although such a similarity between the
structural ordering in colloids and the structural

behavior in conventional atomic systems- gas, liquid,

crystal, and glasses- under suitable conditions has

already been well recorded [3, 4], electric-field driven
phase transitions in colloids have not been treated from

this point of view thus far.

The critical point on the spinodal curve of the

suspension, namely, c¢_ and E_r, coincides with the

inflection point of YI as a function of c, so that Eq.

(7) has a multiple root. In a two-phase region (at

287



PHASEDIAGRAMSOFELECTRIC-FIELD-INDUCED...:B.KhusidandA.Acrivos

E2 _> E 2 ), the value of the osmotic pressure and of

the chemical potential of the particles in the coexisting

phases are equal. The latter leads to the following

relations [8] between the particle concentrations in the

both phases, C l and c 2 , respectively:

,(C 1) = ,(C_ ) and I-l(C l) = 1-I(C 2) (8)

Now, Eqs. (8) represents the coexistence curve in the

phase diagram of a suspension. This curve is located to
the left of the spinodal curve in the low-concentration

part of the phase diagram and to the right of the

spinodal curve in the high-concentration part of this

diagram. Moreover, C 1 _ Ccr and C 2 _ Ccr as

E _ Ecr.

On the other hand, if the third term on the right-side

of Eq. (6) is negative, in other words when the long-
range interparticle interactions lower the suspension

energy (i.e. when _2W/_c2 < 0 over the entire

range 0 _<C < Cm), an increase in the strength of the

applied electric field increases the value of c)lq/OC. In

this case, the random arrangement of the particles
appears to be stable, so that the phase diagram of such

a suspension reduces to the one-phase domain.

As can be seen from Eqs (4)-(5), the sign of

c)2W/c)c2 depends on the particle-to-fluid ratios of

the conductivities and of the dielectric constants, the

frequency of the applied electric field, and the particle
concentration. For a high-frequency electric field when

COts ----) oo, Eq. (5) yields

_2 w 2 23£f_E0

c)c----_-= 2(1- _Ec) 3 > 0 (9)

Thus, the sign of O2W/t)c2 at _E _ 0 always

becomes positive over 0_< c < Cm when the

frequency of the applied electric field becomes

sufficiently high. Hence it follows that there always

exists a threshold value of the frequency, above which
the particles having a dielectric constant different from

that of the suspending fluid (regardless of the mismatch

of their conductivities, (Yp/CYf ) will aggregate as the

strength of an applied electric field becomes

sufficiently large. However, as we shall see, the sign of

_2W/c)C: may become negative for low frequencies.

If this happens over the entire concentration range,

0 < c < c m, the electric-field-induced aggregation of

the particles will not occur at all. A peculiarity of
concentrated suspensions is that the sign of the electric

energy density of the interparticle interactions, i.e.

_t_o2W/dc 2 , may change at some value of the

concentration. As a result of this feature, which is

absent in the theory for a dilute case [1], the ability or

inabilty of the particles to aggregate in the presence of

applied electric fields depends on the particle
concentration as well.

As in the case of conventional atomic systems [8],

the use of a spinoda] curve provides a convenient way
to distinguish "metastable" and "unstable" states of a

suspension subject to an electric field, where we refer
to the domain between the coexistence curve and the

spinodal curve in its phase diagram as metastable, and

the domain beyond the spinodal line as unstable. The

free energy of a suspension, being considered as a
function of the particle concentration, is convex in the

metastable region of the phase diagram "the particle

concentration-the electric field strength", so that the
free energy will increase with a spontaneous

concentration fluctuation, giving rise to an energetic

barrier that will stabilize the suspension. The free
energy, however, turns into a concave function of the

particle concentration in the unstable region of the
phase diagram, so that no energetic barrier to phase

separation will exist in this state. This distinction can
correspond to two different mechanisms of electric-

field-induced transformations in a suspension: spinodal

decomposition and nucleation, as occurs in atomic

systems. For atomic systems, the former (in the

unstable domain) corresponds to the growth of long-
wavelength spontaneous concentration fluctuations
with time whereas the nucleation of microdomains of

the other phase starts the transformation for the latter
(in the metastable domain). However, as recent

research demonstrates (see review in Ref. [9]), there is

no sharp dividing line between nucleation and spinodal

transformations in atomic systems. Rather there exists a
gradual transition in the dynamic behavior of a

quenched system as the quench point on its phase

diagram varies from one domain to the other in the
vicinity of the spinodal curve.

In any event, we can expect that there exists some

similarity between how spinodal and nucleation
transformations operate in a suspension subject to an

electric field and how they operate in quenched atomic

systems, even though the electric-field-induced
interparticle interactions are anisotropic. In this

connection, we proceed in Sec. 3 to construct, based on

Eqs. (7) and (8), a classification scheme which shall

predict how the topology of the suspension phase
diagram "the particle concentration-the electric field

strength" depends on the particle and fluid dielectric

constants and conductivities and the frequency of

applied field. This will make it possible to exploit the
great body of experimental data and theoretical
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predictions available for the quenching of atomic

systems and use it as a framework for interpreting the

morphology and kinetics of aggregation patterns in
colloidal suspensions generated by the application of
electric fields.

3. CLASSIFICATION SCHEME OF DC-

AND AC-FIELD PHASE DIAGRAMS

A thorough analysis of Eqs. (7) and (8) which

yields a complete set of phase diagrams of suspensions

subject to electric fields as a function of the mismatch
of the dielectric constants and of conductivities of the

particles to those of the fluid will be published
elsewhere. Due to the limitations on the length of the

paper, we consider only the main features of these

diagrams shown in Fig. 1 where _, = £fE2Vp/kRT-

is the electric-to-thermal energy ratio, 1 and 2 are the

spinodal and coexistence curves, and M and U denote
the metastable and unstable domains.
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Figure 1.

The simplest phase diagram shown in Figs. la

corresponds to the case when _2W/c)c2 is negative

over the entire concentration range, 0 < c < c m, so

that no aggregation at all is predicted to occur in the

presence of an electric field. In contrast, the phase

diagram sketched in Figs. lb shows the predicted

behavior when ¢)2W/c)c2 is positive over

0 <- c < c m so that, regardless of the particle

concentration, the suspension will start aggregating as

long as the applied dc field becomes sufficiently large.

The diagrams depicted in Figs. lc and ld are

encountered when t)2W/_c 2 changes its sign with

increasing concentration from positive at c=0 to

negative at c = Cm, SO that it equals zero at some

concentration Cr . The phase diagrams given in Figs.

le and If represent the case when _2W/Oc 2 changes

its sign with decreasing concentration from positive at

C = C m to negative at c=0, so that it equals zero at

some concentration Cr . The separation between the

spinodal and coexistence curves along the vertical lines
of constant concentrations on the phase diagram in Fig.

1 increases indefinitely with increasing strength of the
electric field.

As seen from Fig. 1, a metastable domain in the

high-concentration parts of the phase diagrams in Fig.

lc(at Cr <C<C])andFig. ld(at cr <c<c m)as

well as in the low-concentration parts of the phase

diagrams in Fig. le (at C_ < C < Cr) and in Fig. If

(for 0 < c < c r ) is retained regardless of the strength

of the applied dc field. Hence, only the nucleation
mechanisms of electric-field-induced transformations

will operate in such suspensions under these
conditions. However, for the phase diagram in Fig. lb,

an increase in the electric field strength along the
vertical line of constant concentration will inevitably
lead to the transition from a metastable to an unstable

domain at any concentration. Thus for such

suspensions, the nucleation mechanism will operate in
weak fields (below the spinodal curve) whereas the

spinodal decomposition will inevitably operate in
strong fields (above the spinodal curve). This

qualitative distinction between the transformation
mechanisms should manifest itself by the dependence

of the morphology of the aggregation patterns to be

formed on the strength of the applied field.

The map plotted in Fig. 2 demonstrates how the

topology of the phase diagram of a suspension subject
to dc fields relates to the mismatch of the dielectric

constants and the conductivities of the particles and
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those of the suspending fluid. The domains in Fig. 2

are lettered to correspond to the phase diagrams in Fig.
1 whereas the numbers 1, 2, 3, and 4 denote the curves

=o, =o,
Cm

O,a. 
o

Cm

_ (Cm- cX02W/_c2)_]C-- O, respectively.

o

E
p

i
3
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15
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b 1

p/O'f

I 2 3 4 5 fi, 7 $ 9 I0 I1 12 13 14 15

n8c4o6]R__'_Ia

2 b

02

02 04 0g 08

Figure 2.

An increase in the frequency of an ac electric field

affects the shape and the size of sub-domains in Fig. 2.

For example, as cot s increases, the domain "a" located

in the region t_p < (_f shrinks to the line Ep = E f, so

that it disappears gradually as tot s _ oo. On the

other hand, the domain "a" located in the region

(Ip >Of is retained while its boundaries move

indefinitely to the right as cots _ _ and, moreover,

the separation between them along the lines

P/1_ f -- const increases. In particular, this

demonstrates why O2W/Oc 2 should always become

positive at any fixed values of the (_p/(_f and

_p/Ef ratios as the field frequency is made

sufficiently high.
It should be pointed out that the particle content,

c 2 , of the high-concentration phase of a suspension in

the phase diagrams in Fig. 1 increases dramatically
with the strength of the applied field. Thus, it is quite

realistic to suppose that a high-concentration phase in

the diagrams in Fig. 1 should undergo subsequent
disorder-to-order transitions in the presence of

sufficiently strong electric fields as occurs in the
absence of an electric field [3, 4]. In this connection,

we also mention recent studies of non-conducting

suspensions subject to strong electric fields [10] which
demonstrate that a high-concentrated phase in such

colloids eventually form a crystalline body-centered

tetragonal solid. Unfortunately, a description of these
transformations cannot be included in the diagrams in

Fig. 1 because of the absence of an equation for the

free energy of conducting anisotropic aggregates,
which is required for this analysis.
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