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ABSTRACT

Droplet evaporation is a common phenomenon in

everyday life. For example, when a droplet of coffee
or salt solution is dropped onto a surface and the

droplet dries out, a ring of coffee or salt particles is left

on the surface(Deegan, et al., 1997). This phenomenon
exists not only in everyday life, but also in many prac-

tical industrial processes and scientific research and

could also be used to assist in DNA sequence analysis,

if the flow field in the droplet produced by the evapo-
ration could be understood and predicted in detail.

In order to measure the fluid flow in a droplet,

small particles can be suspended into the fluid as trac-
ers. From the ratio of gravitational force to Brownian

force a4Apg/ksT, we find that particle's tendency to

settle is proportional to a4(a is particle radius). So, to

keep the particles from settling, the droplet size should

be chosen to be in a range 0.1 -1.01am in experiments.

For such small particles, the Brownian force will affect
the motion of the particle preventing accurate meas-

urement of the flow field. This problem could be

overcome by using larger particles as tracers to meas-
ure fluid flow under microgravity since the gravita-

tional acceleration g is then very small. For larger par-

ticles, Brownian force would hardly affect the motion

of the particles. Therefore, an accurate flow field could
be determined from experiments in microgravity.

Deegan et ai.(1997) measured the radial, height-

averaged velocity distribution in an evaporating drop-
let and observed the formation of a ring. Their experi-

mental results agreed well with the results of the theo-

retical analysis which they also carried out. Kan-
tor(1997) also derived a velocity field using a different

expression for the evaporation rate than that used by
Deegan et al. Both expressions predict a height-

averaged outward radial flow in an evaporating drop-
let. But both theories give only an expression for the

radial height-averaged velocity.

In this paper, we will investigate the fluid flow in

an evaporating droplet under normal gravity, and com-
pare experiments to theories. Then, we will present our

ideas about the experimental measurement of fluid
flow in an evaporating droplet under microgravity.

THEORY

Let us consider a droplet on the surface, as shown

in fig. 1. The process of its evaporation is often divided
into two phases. In the first phase, the contact angle
decreases while the contact line holds its original posi-

tion. In an evaporating droplet with a fixed, or pinned,

contact line, the liquid must flow radially outward for

the contact line to maintain its position, and the contact

angle decreases with time as the droplet volume

J(r,t) ....._......

Fig. 1 A droplet on the surface

decreases. When the contact angle decreases to a criti-

cal angle, the second phase of evaporation starts. In
this second phase, the contact line recedes while the

contact angle remains constant(D. M. Anderson et al.,
1995). The rate of decrease of the contact angle in the

first phase depends on the evaporation rate of the

droplet. Therefore, the evaporation of liquid induces
the fluid flow in a droplet. From the theory of diffu-

sion and a mass balance in the droplet, the relationship

between the height-averaged velocity and local evapo-
ration rate was obtained:

+ Pr _ = -J(r, t) (1)

Here, the boundary condition is r=0, rvh=0, v is the

height averaged velocity, J(r, t) is the local evapora-

tion rate. Deegan et al. and Kantor respectively devel-
oped their own expressions for the local evaporation

rate. From the theory of Deegan et a]., the local evapo-
ration rate is:

J = Jo(1 - r2) -a (2)

where Jo is the evaporation rate when 2 = 0, and

2 controls the heterogeneity of droplet evaporation.

From the theory of Kantor, the local cvaporation
rate is:

(h • J) = "_A[2 arctan(e-a" )/sinh2(2)+ sin2(p)]' (3)

• r- (-5283_

where A= 17.28(1- H)4T ex_--'_J, H is the
x j

n(-62/ tanh(._), 0 is theambient humidity, 5=ta -

contact angle, n is an outward-pointing normal vector

at some point on the oblate surface, and _.' and I_ are

the parameters of the oblate spheroid, defined such that
at the surface of the droplet, the r and z coordinates

satisfy:
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2 2

r Z

(cosh_ cos/z) 2 + (sinh X sinlz) 2 -I

Combining (1),(2) and (3), the radial height-

averaged velocity v for different theories were de-

rived. From the theory of Deegan et al., it is:

4 tf LM(t)] \"

where M(0), M(¢) are the mass of the droplet at

and time t, F = r//R is the dimensionless radialtime 0

position of a particle.
From the theory of Kantor, the radial height-

averaged velocity is:
Al_-a _ 1

V=

2Ra5 ?(I-? _)

1 -b "__,!

((f1-_2)2-2_2(1-72)_(1+82)2-4_ 2-r2- (5)
t5

( /_-S-_'_1-8 ,s
%]

calculated by integrating the following equation:

a .'[ _,!J+,_)

The local radial and vertical velocityv r andv z must

satisfy the continuity equation:

dr

For the solvent with low surface tension, the drop-

let on the surface is flat, so the lubrication theory can

be applied. This implies that the radial velocity profile

is parabolic. We also take the shear stress at the droplet

surface to be zero; hence ¢3v, = 0 at z=h(r). Thus,
&

v r = A' (Z - 2h)z (7)

The relation between vr and v is therefore:

v,= - - 7 (8)
Once the evaporation rate is specified, v, and Vz

are obtained by combining eqns.(4),(5),(6) and(8).
From the theory of Deegan et al., they are:

[_r,_ ) (_-r-_ Z Zv'-8t, tr

(9)

v,-8t,_ t

(10)

Likewise, from Kantor's theory, the local radial

and vertical velocityv, andv z are:

3A_ "T 1

v, - 4R_a6 r(1 -_2)

1-5k )

1 [((! - 82)_ - 25_( -/:_))1/(1 + 5_)2 - 4'_1:' -)
2

3A_f_ -8 _ 1

v = 4R'a_ (I -?_)_

1-5'[ 1/1_ _-_(__')

Z_ Z 3 )

(11)

(12)

EXPERIMENTS
To determine which of the above two theories more

closely approximates the real behavior, we measure the

velocity field in an evaporating droplet. In these ex-

periments, fluorescent particles of diameter around

0.74_m are used as tracers to obtain the flow path lines

in the droplet.

An inverted fluorescent microscope(Nikon eclipse

TE 200, 40x Power objective)is used to observe parti-
cle motion in the droplet. Droplets of radius 800-

1000gm are spotted onto a glass substrate using an

Eppendorf pipette (adjustable volume:0.5-10gl).
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In order to measure the velocity field in the droplet

we constructed the simple apparatus shown in fig. 2. It

is a small cell covered by a millipore membrane to

slow down the evaporation rate and keep the droplet
from being disturbed by air currents. The millioprc

filters used contain 6 x 108 holes per cm 2 of diame-

ter=0.15_tm. Using these filters, the droplet evapora-

tion could be slowed down enough that the droplet
evaporation time tf could be made as long as 2 to 3

hours. Such long times are needed to allow time for

measuring the initial droplet position and size and to
track carefully a particle position as a function of time.

6 5 4

1. Support 2. Glass coverslip 3. Inverted microscope objective

4. Droptel S. Seal Cylinder 6, Porous Membrane

Fig. 2 Experimental Apparatus

The suspension of fluorescent particles obtained

from Polysciences was diluted 2000-fold to obtain a

solution with a particle concentration of 125ppm. After
spotting a droplet onto the coverslip and confining it in

the geometry shown in fig. 2, we first measure the po-

sition of the contact line along the edge of the droplet.
We then measure the air-water surface profile of the

droplet at different times so that the volume vs. time

can be determined. Finally, we choose a particle in the
droplet and follow its motion with time, recording the

particle's coordinates in the droplet at various times,
yielding a three dimensional path line.

RESULTS AND ANALYSIS

1. The shape of droplet and droplet evaporation rate

Since the rate of decrease in droplet volume with
time is a key parameter in the droplet evaporation

models, a series of droplet profiles are measured at
different times. In fig. 3, the symbols are the measured

droplet surface profiles determined form the maximum

vertical heights at which particles could be found at
each radial position r at time t. Data could not be ob-

tained near the center of the droplet because of the
limited working distance of the objective, which did

not permit viewing of the very top of the droplet. Nev-

ertheless, enough of the profile is obtained to permit a

fit by the profile expected for the droplet, namely that
of a spherical cap.

•io_ 4ma •oo: _ .¢¢0 . Ioe lot) u¢o Joo )u_
Th÷ fatal _c,_(l(_ c,rtl_ r_(,:lc, s 4na _rc_el Imp:tons

Fig. 3 The surface profiles of the

droplet at different times

" 1 1
r-; _-'T--'

0, _° . L---_,_z-..

" ----.. |• r- _o.o1).. =rlsz

Fig. 4 The droplet volume as a function of time

The droplet volume at each time is calculated using
the spherical-cap model and plotted in fig. 4. The vol-

ume of the droplet decreases linearly with time• This

implies that the overall evaporation rate of the droplet

is almost constant, which agrees with the theory of
Deegan, et at. and the experimental results of Rowan,

et a1.(1995). From theory of Deegan et al., the overall
evaporation rate nYis:

nf{= M(O)- M(t) V(O)- V(t)- p (13)
t l

where V(t) is the volume of the droplet at time t and p

is the density of the solvent. So, from the experimental
data of droplet volume vs. time, we can obtain the

drying time, overall evaporation rate, and initial vol-
ume of the droplet by fitting experimental data with a

straight line, as shown in fig.4(solid line).

The theory of Kantor predicts an overall evapora-
tion rate that depends on contact angle as:

(14)
dt a

If the initial contact angle is small, eqn. (14) be-
comes:

- ---4RA I+ 6+0(6 2) (15)
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From eqn. (15), we can see that when the initial con-
tact angle is small, Kantor's theory predicts that the

overall evaporation rate will be almost constant.

2. Particle's path in the droplet.
Two typical experimental results are plotted in figs

5 and 6. The filled and open symbols are the experi-
mental radial and vertical positions of a particle as a

function of time. The radial position(open symbols)

increases and the vertical position(filled symbols) de-

creases, showing that the particle moves toward the

edge of droplet and toward the substrate as drying pro-

gresses.
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Fig. 5a The position of particle vs. time for _,=0.5

according to the theory of Deegan, et al.
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Fig. 5b The position of particle vs. time for H=0.975

according to the theory of Kantor
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Fig. 6a The position of particle vs. time for _,=0.5

according to the theory of Decgan, et al.
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Fig. 6b The position of particle vs. time for H=0.975

according to the theory of Kantor

We also compare the experimental data with the

theory of Deegan, et al. and of Kantor. Before we cal-
culate the radial and vertical position of a particle in

the droplet using the evaporation models, we must to

find the parameter _, in the model of Deegan,et al.

(equations 9 and 10) and the humidity H in the Kan-

tor's model(equations 11 and 12). In order to find _,

and H, we adjust _, and H so that the time for a particle

in the center of the droplet, which is supposed to be

fixed on the surface of the droplet, to reach the glass

substrate is equal to the drying time of the droplet.

Using the fitted _, and H, we calculate the radial

and vertical position of a particle in the droplet pre-

dicted by the two theories; these predictions are plotted
in fig. 5 and 6. In each figure the solid line is that cal-

culated from the theory without Brownian motion,

while the dashed lines show the range of deviations

expected to be produced by Brownian motion, using
the theoretical diffusivity value. In general, the vertical

position of the particle agrees with the prediction of
both theories to within the experimental error due to

Brownian motion. In one case(fig. 5), the predictions
of the model of Deegan at al. are somewhat better than

those of Kantor's model, while the reverse is true in

fig. 6. The predictions of the radial velocity do not
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agree as well with the experiments as do the predic-
tions of the vertica] velocity.

3. Additional predictions

3.1 The fluid velocity in the droplet.
From eqns. (9) to (12), we calculate the vertical and

radial velocities respectively, which are plotted in figs

7 and 8 for the theory of Deegan et aI. and Kantor at
times 4400 sec. Here we have taken the droplet radius

R to be 7971sm, its height h(0) to be 3651am and the

drying time tf to be 4480 sec.. We can see the veloc-

ity fields for the two theories differ significantly. In the
theory of Decgan, et al., the radial velocity is higher

than in the theory of Kantor, especially near the edge
of the droplet. Kantor's theory shows a higher vertical

velocity than does the theory of Deegan et al., so that

when the droplet is nearly dry the velocity vectors

point almost completely downward; see fig. 8.
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Fig. 7 The velocity field at t=4400s

according to the theory of Deegan, et al.
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Fig. 8 The velocity field at t=4400s

according to the theory of Kantor

3.2 Different evaporation conditions

By changing _. in the theory of Deegan, et al. and

changing the H humidity in Kantor's theory, we can

determine how the evaporation rate affects the calcu-

lated results. The results are plotted in figs. 9 to 12. In

figs 9 and 10, we can see that the variation in r and z

becomes larger with increasing _,. This implies that the

more nonuniform the evaporation rate is, the stronger

the flow is. In figs. 11 and 12, a decrease in the hu-

midity produces an increase in the driving force for
mass transfer during evaporation, and so the variations

in z and r also become larger.
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Fig. 9 The effect of _. on the time-dependent radial
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Fig. 12 The effect of humidity H on the time-dependent
vertical position of a particle from Kantor's theory

CONCLUSION

I. Experimentally, the overall evaporation rate of an

evaporating droplet is almost constant. This result
agrees perfectly with the theory of Deegan, et al., and

approximately with Kantor's theory.

2. The surface shape of droplet is that of a spherical

cap.
3. The theory of Deegan et al. and that of Kantor give

predictions of radial and vertical velocity that are in
reasonable agreement with measured velocities, espe-

cially for the vertical velocity. A precise comparison is

not yet possible, because of experimental error due to
Brownian motion.

4. Near the end of the drying process, the theory of

Deegan et al. predicts a much higher radial velocity
than vertical velocity. For Kantor's theory, the vertical

velocity is larger than the radial velocity near the end

of drying.

ACKNOWLEDGE

We appreciate that NASA funds this project.

REFERENCE

1. D. M. Anderson and S. H. Davis, Phys. Fluids,

2:248(1995).
2. R. D. Deegan, O. Bakajin, T. F. Dupont, G.

Huber, S. R. Nagel, T. A. Witten, Contact line deposits

in an evaporation drop(to be published, 1996).
3. R. Kantor, A model of DNA Stretching in

spots,(to be published, 1997).
4. S. M. Rowan, M. I. Newton, and G. McHale, J.

Phys. Chem., 99:13268-13271 (1995).

364


