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Introduction

This project focuses on the effects of weak dissipation

on vibrational flows in migrogravity and in particular

on (a) the generation of mean flows through viscous
effects and their reaction on the flows themselves, and

Co) the effects of finite group velocity and dispersion

on the resulting dynamics in large domains. The basic

mechanism responsible for the generation of such flows

is nonlinear and was identified by Schlichting [21] and

Longuet-Higgins [14]. However, only recently has it

become possible to describe such flows self-consistently

in terms of amplitude equations for the parametrically

excited waves coupled to a mean flow equation. The

derivation of these equations is nontrivial because the

limit of zero viscosity is singular. This project focuses

on various aspects of this singular problem (i.e., the limit

C' ___,(yh _ )-J/2 << 1, where _, is the kinematic viscosity
and h is the liquid depth) in the weakly nonlinear regime.

A number of distinct cases is identified depending on

the values of the Bond number, the size of the nonlinear

terms, distance above threshold and the length scales of

interest. The theory provides a quantitative explanation

of a number of experiments on the vibration modes of

liquid bridges and related experiments on parametric

excitation of capillary waves in containers of both small

and large aspect ratio. The following is a summary of
results obtained thus far.

Surface-wave damping in a brimful circular

cylinder [19]

Henderson and Miles [6] discovered a substantial dis-

crepancy between the measured decay rate of free os-

cillations of a brimful circular cylinder and theoretical

predictions based on leading order asymptotics in pow-
ers of C 1/_, 6' = v(y R _ )-1/2, where R is the radius of the

cylinder. At the same time they found good agreement

between the measured and predicted frequencies. The

resolution of this discrepancy follows from the observa-

tion by Higuera et al [7] and Martel and Knobloch [17]

that under typical conditions the O(C) term in the expan-

sion of the damping rates Re(s) of capillary and gravity-

capillary waves is comparable to the leading order term.
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Figure 1: The gravity-capillary mode, for k : O(1).

The dots indicate lhe exact sohHion; asymplofic result..,
through O(C 1/2) and O(C') are indicaled by dashed and

solid lines, respeclively.

This is so despite the fact that (' is typically small,

C _ 1o -4. Fig. 1 shows what happens in a horizontally

infinite layer of depth h [17]. The figure shows the de-

cay rate Re(s) and frequency Im(_) as a function of the
wavenumber k, nondimensionalized using h -_ , for the

parameter values used in [6] : B - p.qh_-/a = l._J6 10 -_

and C =__v(yb_) -_/2 = 0.43 1o -1. Here c_ is the surface
tension.

In a cylinder the corresponding calculations are

more involved because of viscous boundary layers at

the sidewall and the presence of a contact line. We find

Re(s) = C1/_,j + C_.,_ + O(C*P-), (1)

Im(s) = _o - C1/_-,:1 + O(C"_n), (2)

where the O(C _/_-] terms come from viscous dissipa-

tion in the oscillatory Stokes boundary layers near the

solid wall and bottom of the cylinder, and the O(C)
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terms come from (a) viscous disipation in the bulk and

(b) a first correction to the viscous dissipation in the

Stokes boundary layers. The neglected O(C 3/2) in-

cludes viscous dissipation in the oscillatory boundary

layer at the free surface. We find that _2/_'1 for typical

Bond numbers B = pgR2/o " and aspect ratios A = h/R

is quite large even for the fundamental mode and in-

creases with the mode number. As a result the O(C)

term in ._ is important and its omission leads to errors
that increase with the mode number, as found in [6].

The absence of this term in _ implies that the leading

order approximation for the frequencies is much better

than the corresponding approximation for the damping

rates. The computation of the O(C) terms requires care

because of a singularity in the expansion at the (pinned)

contact line. The theoretical damping rates (1) are com-

pared with measured rates in Table I, and demonstrate a
substantial improvement over the O(C 1/2 ) results of [6].

The brimful cylinder is ideal for understanding the

effects of dissipation in boundary layers because the

meniscus is pinned to the brim, thereby eliminating un-
known effects arising from the dynamics of the menis-
cus. In addition the absence of comers in the container

makes the boundary layer structure uniform and rela-

tively simple. The damping rate calculation lends us

confidence that we have correctly identified the major

source of discrepancy between existing theory and ex-

periment and that we know how to correct the theory, at
least in cases in which surface contamination and con-

tact angle dynamics can be ignored. It follows that (the

bulk of the) dissipation in clean-surface experiments is

accounted for by the classical Navier-Stokes formula-
tion and is not due to unknown dissipation mechanisms

in the meniscus or air-water interface. In particular any

residual discrepancy between theory and experiment can

now be used as a diagnostic for the presence of contami-
nation. This fact has triggered a new experimental effort

to measure damping rates of gravity-capillary waves in

finite domains by M. Schatz (private communication).
In addition the calculation forms the basis for future

nonlinear studies of gravity-capillary waves in cylinders
and their interactions.

Chaotic oscillations in a nearly inviseid ax-

isymmetric capillary bridge at 2 • I reso-

nance [16]

This paper considers a liquid bridge in microgravity sup-

ported between two disks vibrating at two frequencies

close to 2 : I resonance. Under appropriate conditions

this vibration excites the corresponding natural vibra-

Experiment Approximation Theory

(m, q) f A fl A1 f2 A2

(1, 0) 4.65 1.4 4,66 1.13 4.67 1.37

(2, 0) 6.32 1.8 6.32 1.24 6.34 1.75

(0, 1) 6.8.t 1.2 6.73 0.44 6.85 0.95

(3, 0) 7.80 2.2 7.79 1.29 7.82 2.11

(1, 1) 8.57 1.5 8.57 0.48 8.59 1.45

(4, 0) 9.26 "2..] 9.24 1.32 9.27 2.47

Table 1: Comparison belween theory and the experi-

ment [6]. Here fj is lhe dimensional frequency (in Hz)
lo O(C _/2) (j = I), 1o O(C) (j = 2), with Aj the

corresponding nondimensional damping rates, m and q
are (he azimuthal and radial wavennmbers, respectively.

After [19].

tion modes (assumed axisymmetric) and these interact

nonlinearly. In the nearly inviscid limit C << 1 this
interaction is described by a pair of amplitude equations

whose structure depends on the parity of the excited

modes. Specifically, if the displacement of the disks

follows z = +A + h+(t), where

tt << 1, ft-> = 2f2,, then the equations for the evolution

of the amplitudes of the two competing modes take the

form (k = I, 2)

• o+ ,+

Here r = 5t, A = A0 + _S(,,_<< 1, ,_.,_'_., t = O(1) and
if the mode .4_ is even in .:, ),:_ = A_,.]_, )_ = .4_. This

occurs at Ao -_ 0.249 and .\o -_ 2.23. At each of these

values two natural oscillation modes with frequencies in

2 : 1 ratio are present; it is these modes that are driven
by the vibration of the two disks. Finally < measures

the amplitude of the two modes, On the other hand, if

,4_>is odd in z the nonlinearities are of third order, and

xk = ido_>_,I,h I' + --,_21,4_>1-_)A_,_ = 1,2.
All the coefficients appearing in Eqs. (3) have been

computed from the equations of motion, including the

important (but formally subdominant) terms o5k. These

calculations require the computation of the contribu-

tions from the Stokes boundary layers at the disks, the

interface boundary layer, the two comer tori near the

edge of the disks and from the bulk. Because of the
assumption C << 1 all nonlinear terms are purely imag-

inary. The presence of the inhomogeneous terms in
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Figure 2: Contour plot of the non-oscillatory compo-
nents of lhe fihn thicknes._ (dotted), vorticity Q (solid
for O > 0, dashed for Ft < 0) and velocity arrows for an

ordured state. From [25].

Eqs. (3) implies that new phenomena are present that
are not captured by standard treatments of the 2 : 1

resonance [12, 9]. Both cases have been analysed, and
the results used to make a number of predictions about

the sub- and superharmonic response of a liquid bridge

subjected to this type of excitation under experimentally
relevant conditions. The ensuing chaotic oscillations

have becd studied numerically and characterized using

numerically determined Liapunov exponents.

Quasi-steady vortical structures in verti-

cally vibrating soap films [25]

In a recent paper Afenchenko et al [ 1] describe the results

of an experimental study of flows in vertically vibrated

soap films; in this experiment the frame holding the film

was rigidly and symmetrically attached to the lateral wall
of a closed cavity, which was vibrated vertically. These

vortical structures (first reported by Taylor [24]) are

similar to ones described by Airiau [2], who excited

the film using a loudspeaker fitted to the bottom of the

cavity, which was otherwise open. We have examined

in detail the possible mechanisms that could lead to

the generation of such flows, with special emphasis on
those effects that are independent of the shape of the

frame supporting the film, of the attachment mode (i.e.,
the size of the meniscus), and of the excitation process.

y O.L

X

Figure 3: Vorticily contour,', for a spatially disordered

stale, From [25].

Thus we focus on those effects thai are present in any

experiment, e.g., in [1, 2]. In this theory the observed
vortical structures are a consequence of the oscillatory

tangential and normal stresses on the film due to the
surrounding air. The air also damps out Marangoni
waves. Because of nonlinearities these stresses (and the

inertia of the film) produce non-oscillatory deflection

of the the film, variation in its thickness, and forcing

terms that combine to produce a streaming flow in the

film. Coupled evolution equations for these quantities
are derived. When the excitation frequency is close

to an eigenfrequency of a Marangoni mode of the soap

film, the dominant forcing in these equations arises from

the nonlinear hydrodynamics within the film volume,
while both volume forcing and surface forcing by air are

important when there is no resonance with a Marangoni
mode. The computed vortex patterns (see Figs. 2,3)

agree qualitatively with the experiments.

Compressional modes in parametrically driven

Faraday waves in an annulus [18]

Experiments by Douady et al [4] on parametrically
driven water waves in an annulus ((' = 4.4 10 -4,

B = 8.9) reveal the presence of a secondary insta-

bility of a uniform pattern of standing waves (SW) in

the form of an oscillatory compression mode (CM). We

develop a theory describing this observation based on
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(suitably modified) nonlocal amplitude equations for the
subharmonic response of the system of the type derived

by Knobloch and De Luca [ l 0] for traveling wave con-

vection and Alvarez-Pereira and Vega [3] for pulsating
flames, with the nonlinear coefficients deduced from

Hansen and Alstrom [5]:

A, = (-1 + i,,).4 + ,,<B> + i.4(.,31AI2 + _{IBIs>)+ ic_A_._

(4)

B, (-l+i_,)B+t,<ft)+iB(3lB[ _- a= +_(IAI ))+roB**,

(s)
subject to the periodic boundary conditions A (, + l, t) =

A(,, l), B(.r + 1, t) = B(,, t). Here (...} represents a

spatial average over 0 _< a- < 1. These equations de-

scribe the slow temporal evolution of the amplitudes of

left-(A) and right-traveling (B) waves in their comoving

frames, and provide an asymptotic description of the

system sufficiently close to threshold of the Faraday
instability that the envelope dynamics are dominated

by advection at the group velocity of the waves. A

description of this type is appropriate in the weak dissi-
pation limit in which the natural modes of the unforced

system, left and right-traveling waves, decay slowly.
For this reason the coefficients of the cubic terms are

purely imaginary. In the first instance we ignore the

presence of viscosity-generated mean flows and study

the resulting nonlocal equations. Within this description

the onset of the compression mode is described as a sec-

ondary pitchfork bifurcation from SW with eigenvector

that breaks the SW reflection symmetry. We show

that such CM are described by steady but nonuniform

solutions of the nonlocal equations with periodic bound-

ary conditions (appropriate to an annular cell) and are

present for experimental parameter values. We explore

the transition from this mode and identify consecutive
bifurcations to nonsteady but uniform states, and to

states with complex spatio-temporal dynamics (Fig. 4),

some of which are strongly hysteretic. Future work will

include viscosity-driven mean flows with self-consistent

coupling to the amplitude equations and explore the dy-

namics of the resulting system of equations. Such mean

flows are present not only in large aspect ratio annuli

but also in smaller systems, and hence are relevant to
the experiments.

A related investigation of the corresponding prob-
lem with exact or broken D4 symmetry is under way,

motivated by the Faraday problem in a square or nearly

square container. In a container with exact square sym-

metry two modes related by a 90° rotation are exactly

degenerate; this degeneracy is broken if the container is

slightly rectangular. Simonelli and Gollub [22] found

J. M. Vega
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Figure 4: Stable solutions of Eqs. (4,5) for 1/= 0, fl = 3,

"_ = -1, o = 0.1, sl,owing SW (0 < p < 1.46), CM

(1.,t6 < p < 1.62) and complex stales (11 > 1.62).

no time-dependent dynamics associated with the result-

ing mode interaction in a square domain. However in

a slightly rectangular container they observed periodic

and chaotic bursts very close to onset. The real parts

of the necessary cubic coefficients are being calculated

to leading order in O(C') together with the mean flows

generated in these two geometries. A self-consistent

inclusion of such flows offers the possibility of provid-

ing the first quantitative description of this interesting

behavior. An explanation along the lines described in

the next section for the presence of bursts is anticipated.

Bursts [15]

Under appropriate conditions the competition between

nearly degenerate Hopfmodes with odd and even parity

results in dramatic bursting behavior very near the onset

of primary instability. This behavior arises in two-

dimensional systems of large but finite aspect ratio

undergoing an oscillatory instability, or in systems with
nearly square symmetry, as discussed by Landsberg and

Knobloch [13]. In both cases it is due to the same
mechanism.

In a slender system with left-right reflection sym-

metry (such as a narrow rectangular convection cell)

undergoing an oscillatory instability from the trivial

state the first two unstable modes typically have op-
posite parity under reflection. Moreover, because the

neutral stability curve for the unbounded system has

a parabolic minimum these set in in close succession

as the control parameter is increased. We write the

perturbation from the trivial state as

1

• (_, .q,t) = _.-"Re {z+ f+{,., g) + z_ f_(_r, y)} + O(¢),

where e << 1, f.(-a-,y) = ±f±(x,y), and y denotes

the transverse variables. The complex amplitudes : ± (t)

then satisfy the equations [ 13]

_-_ = [A ± ,.x_ + i(._,± ,_x_,)],±+ .,t(l=+l_ + I-_1=)=+

+nl=_-['--+ + ce±:{. (_)
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In these equations the nonlinear terms have identical

(complex) coefficients because of an approximate inter-

change symmetry between the odd and even modes. The

resulting D4 symmetry [13] is weakly broken whenever
A_ ¢ 0 and/or A.,, ¢ 0, a consequence of the finite

aspect ratio of the system. The dynamics in systems
with exact D4 symmetry (A), = A_, = 0) can be shown

to take place on a two-dimensional manifold [23] and

hence are necessarily simple although the solutions can

become unbounded. This is no longer so when the

D4 symmetry is broken. In this case the solutions can

experience repeated episodes of dramatic growth fol-

lowed by collapse but do not become unbounded. The

resulting bursts can be periodic or chaotic and set in at

a secondary instability very close to onset. To identify

such bursts we write

p-½ 0_ rr rr ±,:,+ _,)/_
z+ = sin(., + _ + _-) c 'c

and introduce a new time-like variable r defined by

dr/dr = p-i In terms of these variables Eqs. (6)
become

dp
- _ +(,sin 0cos20]p[eAu+BR(l+cos-O) , . 2

dr

-2(A + AA co._0)p 2 (7)

dO
- sin 0[co._0(-BR + C_ cos 20) - (-'1 sin 2_5]

dr
--2A), psin 0 (8)

do
-- cos O(B1 - ('I cos 2_5) - C'R sin 20

dr

+ eA_., p, (9)

where A = .tR + iA_, etc., together with adecoupled

equation for (,(t). The amplitude of the disturbance
is measured by r - Iz+l 2 + Iz-I 2 = p-_; thus t' = 0

corresponds to infinite amplitude states. Eqs (7-9) show
that the restriction to the invariant subspace E -_- {p = 0}

is equivalent to taking ,x_, = A_., = 0 in (8,9). The

fixed points of the resulting D_-symmetric problem

correspond to (infinite amplitude) periodic oscillations
in time because of the decoupled phase (,(t). Depending

on A, B and (' the subspace S may contain additional

fixed points and/or limit cycles [23]. In our scenario,
a burst occurs for ,_ > 0 when a trajectory follows

the stable manifold of a fixed point (or a limit cycle)
P_ E E that is unstable within E. The instability within

'_2then kicks the trajectory towards another fixed point

(or limit cycle) 1°_,E Z. If this point has an unstable

p eigenvalue the trajectory escapes from E towards a

p > 0 fixed point (or limit cycle), forming a burst.
If .x,X and/or A_, ¢ 0 this fixed point may itself be

unstable to perturbations of type P, and the process then

and J. M. Vega
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Figure 5: Bursts arising from periodic and chaotic ro-
tations. (a) A = 0.I and (b) A = 0.072. The coefficients

are A)_ = 0.03, A_, = 0.02, ,4 = I -- 1.5i, B = -2.8+5i.

C'=I +i.

repeats. The scenario thus requires that at least one of
the branches in the D4-symmetric system be subcritical

(P_) and one supercritical (PD.
When A_ and/or A_,, ¢ 0 two types of oscillations

in (0,d) are possible: rotations and librations. These

oscillations are coupled to excursions in amplitude.

Fig. 5 shows a typical sequence of large amplitude bursts

arising from repeated excursions towards the infinite

amplitude (p = 0) solutions. The amplitude of these
events decreases with increasing A)_ and their frequency

increases, much as found in several experiments. The
mechanism outlined here arises naturally in systems

with reflection symmetry and appears to be responsible

for the regular and irregular bursting exhibited by such

systems very close to onset of a primary oscillatory

instability.

Dynamics of parametrically modulated dis-

sipative systems in an annulus [11]

Dynamics of parametrically modulated dissipative sys-

tems undergoing a symmetry-breaking Hopf bifurcation

on a line are explored in full generality, with particular

emphasis on the case in which either standing waves or

travelling waves are subcritical [20]. The spatially uni-
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form states satisfy equations of the form (cf. Eqs. (4,5))

..i = aA + bf3 + clAI2A + dlBI2A (10)

[3 = aB+bA+cIBIeB+dIAI2B. (11)

Here a, c and d are complex while b may be taken to

be positive. In contrast to Eqs. (4,5) we assume that

Re[,) can pass through zero leading to a spontaneous

oscillatory instability, and study the effect of parametric

modulation (b > 0) on these oscillations. In closely

related equations (see Eqs. (6)) bursts occur when one

of the branches is subcritical (cf. [8]). We have identi-

fied the possible dynamical regimes involving spatially

uniform states. These include standing waves and non-

symmetric mixed modes phase-locked to the drive and

interactions between them. The effects of group velocity

and dispersion on the stability properties of the spatially

uniform states identified above are being analyzed. As

a result a number of new instabilities leading, for ex-

ample, to compression-like states have been described

and these lead to various novel spatially inhomogeneous
states.
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