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Introduction

Electronic cooling and other high heat flux applications re-

quire a fundamental understanding of the condensation pro-

cess in small diameter channels in order to optimize design

configurations of devices used in these applications. Unlike

conventional size passages in which surface tension effects are

limited, surface tension in miniature size channels can have

a significant role on the overall hydrodynamics and in par-

ticular on the thin films that are believed to be the dominant

mechanisms controlling the heat transfer characteristics.

For forced convection condensation in miniature circular

tubes the two phase flow regime maps for conventional sized

tubes may not be relevant because of the role of surface tension

in the hydrodynamics. Srinivasan and Shah (1997) point out

that very limited data is available concerning the basic flow

patterns for two phase flow with or without heat transfer in

miniature circular tubes.

Condensation in conventional size circular tubes comprise

a well-defined body of work. Collier and Thome (1994)

present a generally accepted description of the two phase

flow patterns during forced convection condensation in con-

ventional size horizontal tubes with co-current flow. The range

of flow patterns present depend on the total energy convected

into the tube. In order of increasing velocity, the flow is found

to be stratified, slug, plug or wavy, and annular.

The objective of this work is to model annular film con-

densation in miniature circular cylinder tubes where capillary

phenomena can conceivably result in blocking of the tube cross

section with liquid at some distance from the condenser en-

trance. A physical description is illustrated in Fig. 1 (a). This

phenomenon is referred to as complete condensation. An ex-

periment with visualization was conducted and a mathematical
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Figure 1: Description of the physical model for annular film

condensation in a miniature tube. (a) Structure of two phase

flow for complete condensation. (b)Coordinate system and

conventions for film condensation model.

model was developed on this subject in this work.

Flow Visualization in Miniature

Tubes

A circular Pyrex tube of 3.25 mm inside diameter and 5.00 mm

outside diameter was used in a loop thermosyphon for flow

visualization. The overall length of the horizontal test section

was 302 mm with an insulated inlet section of 97 mm and a

condenser length of 205 ram. Experiments were conducted

over a range of heat loads from 4.9 to 10 W.

Figure 2 is a photograph of the complete condensation phe-

nomenon for the operating conditions of Qi,_ : 7.7IV, T_, =

59.0°C. A liquid film on the lower wall is obvious closer to

the location of complete condensation. A dramatic thinning of

the film on the lower wall is also apparent. Immediately after

the decrease in film thickness at the bottom wall, the liquid is

seen to completely span the tube cross section. The closing

off of the channel to vapor flow appears similar to a capillary

tube meniscus. Note the slight inclination of the meniscus due

to the effect of gravity.

Mathematical Formulation

A summary of the analysis is given below, For the complete

developmentofthe mathematical model seeBeggetal. (1998).

A steady state mathematical model of condensation which

leads to complete condensation is presented and includes cou-

pied vapor and liquid flows with shear stresses at the liquid

free surface due to the vapor-liquid frictional interaction and

surface tension gradient. The model is based on the following

simplifying assumptions:

1, The vapor is saturated and there is no temperature gra-

dient in vapor in radial direction.

2. Heat transport in the thin liquid films is only due to

conduction in the radial direction.

3,

4.

Inertia terms can be neglected for the viscous flow in

the liquid films with low Reynolds numbers.

Force on liquid due to surface tension is much greater

than the gravitational force and therefore the liquid is

distributed onto the walls in a film of locally uniform

thickness.

5. The solid tube wall is infinitely thin so that its thermal

resistance in the radial direction can be neglected as

well as the axial heat conduction.

The cylindrical coordinate system used is shown in Fig,

l(b). Both the vapor and liquid flow along the z-coordinate,

The physical situation should bc described taking into consid-

eration the vapor compressibility and the vapor temperature

variation along the channel. Also the second principal radius

of curvature of the liquid-vapor interface should be accounted

for (in the equation relating vapor and liquid pressures) while

it is usually neglected in modeling of film flows in tubes of

larger diameters. The mass and energy balances for the liquid

film shown in Fig. 2(a) yield:

dQ = 27rk_ T., - T, d --
d-_- In[R/(R - 6)] d= (cv,c,h,,T_) (1)

where T_ is the area-averaged liquid temperature for a given

z location. For consideration of subcooling in the condensed

liquid, T_ is found from an average area given by

= (2)
In= - (n - _)_]

where Te(r) is the assumed liquid film temperature profile

given by the temperature distribution in a cylindrical wall.

Zu, - _1 r

T_(r) = T_+ ------._--._-- (3)

The derivative of Tt is approximated by
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T_ + 2 8 (8)

where

')_- In + 2 4 (9)

The pressure difference between the vapor and liquid

phases is due to capillary effects (Faghri, 1995).

Figure 2: Photograph of annular film condensation resulting

in complete condensation in a 3.25 mm inside diameter tube.

Q,, = 7.7W, T_. = 59.0°C

dYt _ dT_ ( d%, dT_)dz dz + \ _z dz

×in [m - (n - _)_1

]n_ 6 T + ----T--- (4)

The momentum conservation for viscous flow in a liquid

film in which the inertia terms are assumed to be negligible is

1 0 (rOtt',_ = 1 (dp, )r 01" \ Or ] It'-_ \ dz + ptgsin_ (5)

The boundary conditions for the last equation are the non-slip

condition at r = R and specified shear stresses at the liquid-

vapor interface due to the frictional liquid-vapor interaction,

7-_,,, and the surface tension gradient related to the interracial

temperature gradient along the channel,

wtl_=n = 0 (6)

ow,, 1 [_T,,,, _aT_ 1(,=n-_) = p_. dT dz J :- E (7)

where T_ is the local liquid-vapor interface temperature and

a___is the Marangoni effect.
dT

Taking into account the effect of the condensation process

on the shear stress term, an expression from the Munoz-Cobol

et al. (1996) analysis is used for rt,_.. The equation for the

axial pressure gradient in the liquid is

_(

d: p_gsin_

[ C<' l:l
Pv-Pe=a_z2 l+ \dz/ j +

' (R-_c°s atan z -Pa (10)

The term with cosine in the fight-hand side of this equation is

due to the second principal radius of the interracial curvature

for a cylindrical film, Introducing an additional variable

dt/dz = A

eq. (10) can be rewritten as follows.

(ll)

dAd_.___= [1+ (A)213/2 ( p'' - t'A + pda cos(atanA))____ (12)

The compressible quasi-one-dimensional momentum

equation for the vapor flow in the form suggested by Bankston

and Smith (1973) is modified to account for non-uniformity

of the vapor cross-sectional area of the liquid-vapor interface

following Faghri (1995).

dp_,

dz p_,gsin_+

1 [!I , --2 --_-- f,,p,,w,,rr(R - _)+A,, La:o(-,_,,p,,.,,,A,)-

27r(R - 6)p,,v_, 6 sin (atanA)] (13)

with 3,, = 1.33 for small radial Reynolds numbers.

The perfect gas law is employed to account for the com-

pressibility of the vapor

Therefore

dp,,

dz

v" (14)
P"- R_T,,

The saturated vapor temperature and pressure are related by

the Clausius-Clapeyron equation which can be written in the

following form.
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dT_ = dp_, R_T_ (16)
dz dz p_,hj9

The seven first order differential equations Eqs. (1), (8),

(ll), (]2), (13), (15), and (16) include the following seven

variables: 6, A, Pt, Q, p,,, p_,, and T,,. Therefore, seven

boundary conditions are set forth at z -- 0

6=6., (17)

A=O

2o

Pt = P,.,_, R - 6i,_

Q=O

+ P,t (19)

(20)

p,, - p,,,i. = p,,,,._(T,,,i_) (21)

p,,,i. (22)
p,,.in -- RaT_,,.,

Yv _- Tv,in (23)

In boundary condition (17), ai,_ is defined from the condition

in the adiabatic zone at the entrance to the condenser where the

liquid and vapor pressure gradients are equal. This condition

is satisfied by solving equations (8) and (13) for 8i,, for the

case of Q =0, v,.,6 =0, dA_./dz =0 and dTo/d: =0. There are

also parameters rnt,_,_ and _F,, _,, and an additional variable

To involved in this problem. They will be considered using

additional algebraic equations. The parameter m_.,,,, should

be found using a constitutive condition at the entrance of the

condenser.

me,i,, = rn, - Qt/hf_ (24)

where Qt is the total heat load of the condenser. Also _,,i_ =

Qt/(hl_p,.A,.,,_).

The liquid-vapor interface temperature, Ta, differs from

the saturated bulk vapor temperature because of the interfacial

resistance and effects of curvature on saturation pressure over

liquid films. The interfacial resistance, is defined as (Faghri,

1995):

where p_. and (p_,t)a are the saturation pressures correspond-

ing to T,. and at the thin liquid film interface, respectively.

The following two algebraic equations should be solved to de-

termine 7'6 for every point along the z-direction. The relation

between the saturation vapor pressure over the thin evaporating

film, (p_t)6, affected by the surface tension, and the normal

saturation pressure corresponding to T6, p_t(T_), is given by

the extended Kelvin equation (Faghri, 1995):

(p..,)a = v..,(Ta)

exp[ (p,at),S - Psat(T6) - crI( + pa ]pp_ T; (26)

where K is the local curvature of the liquid-vapor interface

defined by the term in outer brackets in eq. (10). Noticing

that under steady state conditions, q_ is due to heat conduction

through the liquid film, it follows from this condition and eq.

(25):

Ta =T=.+

\2 - a,I

his, [ p,, (Psat),s ] (27)

Equations (26) and (27) determine the interfacial temperature,

T6, and pressure, (p_,t)_, for a given vapor pressure, p, =

pe,sat(Zv), temperature of the solid-liquid interface, T_., and

the liquid film thickness, 5.

For the case of variable wall temperature, an additional

variable, T,,,, and first order ordinary differential equation must

be added to the seven previously specified.

T,, is local wail temperature and can vary along the con-

denser length. If the convective heat transfer coefficient at the

outer tube wall, ho and the cooling liquid temperature, T_,

are known, the local wall temperature can be defined using an

energy balance.

dO
ho(Tu, - T_) = 2_rR d,.. (28)

Another boundary condition is also required and that is

given by

z = 0, T_,, = T,,i,_ (29)

Numerical Procedure

Equations (1), (8), (13), (15), and (16) with corresponding

boundary conditions have been solved using the standard

Runge-Kutta procedure, Algebraic equations (26) and (27)

with two unknowns, (p_,_t)6 and T6, have been solved numeri-

cally for every point on z using a standard numerical procedure
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(Wegstein's iteration method). All the unknown variables were

found with the accuracy of 0.0005%. During the numerical

procedure the interval 0 < z < L_ was divided into at least

500 parts, and the thermophysical properties of the saturated

vapor and liquid were recalculated for each of the parts at the

corresponding vapor temperature T_, (z).

Results and Discussion

Figure 3 (a) shows variation of the liquid film thickness along

the condenser with a constant wall temperature of 340 K. The

vapor (T,, _ = 363 K) pressure drop over the condensation .

length is insignificant compared to the liquid pressure drop as

shown in Figs. 3 (b, c). Condensation is more intensive in the

region where the film thickness is at the minimum. For the

cases of Q_r_= 8 w and Q_,, = 10 w, representing complete

condensation and critical complete condensation, respectively,

the incoming vapor is totally condensed. This is not true for

Q,,, = 12 W, the incomplete condensation case. Figure 3 (d)

shows the cumulative sum of the heat removed from the vapor

by condensation. For Qi,, = 12 w, not all of the heat load

coming into the condenser is rejected at the termination of the

calculation.

Results are obtained for the convective cooling boundary

condition shown in Fig. 4. The wall temperature is non-

uniform with a significant increase just prior to the point of

complete condensation, coincident with the thinning of the

liquid film, as shown in Fig. 4 (d). Decrease of the convective

heat transfer coefficient, ho, from 20,000 to 15,000 W/m2K

resulted in an increase of the wall temperature that shortened

the condensation length, as shown in Fig. 4 (a, d).

Summary of the Complete Condensation Phenomenon

Features of complete condensation in the annular film regime

include the segregation of liquid and vapor into distinct regions

within the tube. Initially, the annular film thickness increases

gradually in the downstream direction After reaching the

local maximum value, it suddenly decreases to its minimum

thickness and then dramatically increases to the radius of the

tube. The region at the convergence of the liquid film is similar

to the classic capillary meniscus in appearance. This forms a

well defined location marking the transition to single-phase

liquid flow. Downstream of the location of the meniscus-

like surface, the entire cross section of the tube is occupied

by liquid. Any additional heat removal downstream of this

location only results in subcooling of the liquid. The axial

distance from the inlet of the condenser tube at z = 0 to the

location at which the entire cross section is filled with liquid

is defined as L_, the condensation length.

900 I -- Qin =8W {complaleoc_densatJon) (a)

| ..... O in = 10 W (cnt_ complete condenzatk_)
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Figure 3: Annular film condensation in circular tube with con-

stant wall temperature. R : 1.5ram, rnt : O.Olg/s, Ta. =

340K, T_. = 363K (a) film thickness (b) vapor pressure (c)

liquid pressure (d) cumulative heat rate rejected
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Figure 4: Annular film condensation in circular tube with

convective boundary condition. /i' : 1.5rom, rot =

0.0l_d/.s, T_.,i,_ = 323K, Tint = 300K, Q_,_ = 5.83w

(a) film thickness (b) vapor pressure (c) liquid pressure (d)

wall temperature

Conclusions

Based on the numerical results and visual observations, the

following conclusions have been made.

1. Length of film condensation in miniature tubes is very

restricted due to surface tension effects that result in

complete condensation a short distance from the con-

denser inlet.

2. The complete condensation length is a non-linear func-

tion of the vapor-wall temperature difference, increas-

ing with the temperature difference approaching zero.

3. Pressure drop in the vapor phase was usually insignif-

icant compared to the pressure drop in liquid. Con-

sequently, the vapor temperature variation along the

condenser was infinitesimal.

4. Variation of the wall temperature can be significant for

convective cooling boundary condition.

5. Complete condensation in small diameter tubes is a

truly steady phenomenon.

A very distinct transition is anticipated between the steady

phenomenon of complete condensation and the next two-phase

flow regime, which is referred to here as incomplete conden-

sation. It is anticipated that incomplete condensation will be

characterized by fluctuations of the liquid-vapor interface in the

annular film which result in bubbles of vapor passing down-

stream of confluence of the liquid film. The meniscus-like

feature will no longer be stationary and an unsteady two-phase

flow bubbly-type flow will exist in the tube.
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