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1 INTRODUCTION

A liquid layer with a free upper surface and heated

from below is subject to instabilities due to both ther-

mocapillary and buoyancy forces. While buoyancy is

usually dominant in terrestrial convection experiments,

thermocapillarity is dominant in microgravity. Using
thin liquid layers (< 0.05 cm), one can also achieve

thermocapillary-dominated convection in terrestrial ex-

periments. The criterion for determining that an exper-

iment is thermocapillary-dominanted is that M/R > t,
where the Marangoni number M = crrATd/ptm char-

acterizes the thermocapillary driving and the Rayleigh

number R = agATd:_ /uh " characterizes the buoyancy

driving (see figure 1 for definitions). In the experiments

described in this paper, M/R >_ 100.

In the thermocapillary-driven regime, two qual-

itatively different instabilities can appear --- short-

wavelength hexagonal Benard convection cells [1, 2]

and a Iong-waveiength deformational mode[3, 4, 5].

The hexagonal and long-wavelength instabilities differ

in the stabilizing mechanisms that compete with desta-

bilizing thermocapillary effects due to different types
of fluctuations[6]. The short-wavelength hexagonal in-

stability originates from temperature fluctuations on the

free surface, which initiate thermocapillary flow along

the interface; the imposed vertical temperature differ-

ence across the liquid layer sustains the flow. Thermal

and viscous diffusion, however, dampen the temperature

fluctuations and associated fluid flow. Alternatively, the

long-wavelength mode originates from fluctuations of

the free surface height h(.r, _j), which cause a tempera-
ture variation on the interface because of the imposed

temperature gradient. By thermocapillarity, the cool

elevated region pulls liquid from the warm depressed

region and, if allowed to continue, thermocapillarity

would pile all the liquid from one region of the layer

into an adjacent region. Gravity, though, attempts to
flatten the interface and thus to stabilize these deforma-

tional perturbations. In addition, surface tension selects a

long-wavelength for this deformational instability since
surface tension resists curvature of the interface and

thus stabilizes long wavelength modes least.

d

Figure h Sketch or surface-tension-driven Brnard

(Marangoni) convection cell of horizontal extent L =

3._1 cm, mean liquid depih d _ 0.01 cm, mean gas

depth dy _ 0.03 cm, and local interface position

h(.r,y.t ). There is a mean tenlperature different AT

across, the liquid layer. The liquid has _urface tension

_r, temperature coefficient of surface tension aT, kine-
matic viscosity u, thermal difiusivity h, and thermal

expansion coefficient o.

2 LINEAR THEORY

The linear stability analysis for the short-wavelength

mode was first published by Pearson [1] and the sta-

bility analysis for the full problem, including the long-

wavelength mode, was first published by Smith [4].

The hexagonal mode appears at wavenumber ,t = 2

(nondimensionalized by d) when

,,L _,% (1 +_Y). (l)

where /,. and /,:u are, respectively, the liquid and gas

thermal conductivities. The long-wavelength mode

appears at wavenumber q = 0 at 3/_ = 2G/3(1 + F),
where

characterizes heat transport at the interface. In a real

experiment of horizontal extent L, the long-wavelength

mode occurs at q,_= 2rrd/L and

2c q,_,
,]b -- 3(1 + F) 4- _-, (3J

where C = pu./crd is the capillary number. The in-

stability seen in a given experiment corresponds to the

smaller of the ._I_ in equations (1) and (3). While 6' --+ 0
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in microgravity, and thus the long-wavelength mode

would be the primary instability in an experiment of

very large aspect ratio (qo --+ 0), the Benard hexagons

can still be the primary instability in a finite-aspect

ratio system. For example, experiments on Benard
convection aboard Apollo 14 [7] and Apollo 17 [8]

yielded short-wavelength Benard convection cells and

not the long-wavelength instability, even though (7 < l.

In the Apollo experiments, the aspect-ratio correction

(q_/C) shifted the onset of the long-wavelength mode
to M ,,- 2_o, above the onset of hexagons.

3 NONLINEAR THEORY

To examine the nonlinear stability and behavior of

the long-wavelength instability, we have derived an

evolution equation for the interface height h(_r,U,t)

from the Navier-Stokes equations in the limit of long
wavelength disturbances[6]:

0--7+V" 2 f(F,h) h_'h + V_'Vh =0, (4)

where the domain of both :,. and u is [0,2,v], f(F, h) -_

( 1+ F- Fh )2/( 1+ F), D = 3 [/G is the inverse dynamic

Bond number, and B = GC/q 2 is the static Bond

number. The first term in curly brackets describes the

effect of thermocapillarity; the second, gravity; and

the third, surface tension. Equation (4) reduces to

the evolution equations of Davis[9, 10] and Oron &

Rosenau[ll] in the limit of F = 0 (d_/d --+ vc, or

k = k_). The linear stability analysis of this equation

agrees with Smith [4] for q,, << 1.
To determine the nature of the bifurcation, we

perform a weakly nonlinear analysis of the evolution
equation (4) by considering just the two lowest order

wavenumbers in the deformation ,t =_ h - 1; we assume
that the lowest order _t__ [c:[½,where e - (M- _'_L)/.1L,

the second lowest order ,/2 _ 1_1,and all higher orders

of,/go as the 3/2 or higher power of I_1.The bifurcation
is found to be subcritical (a backwards pitchfork) for

all parameters. In addition, the signs of the second and

higher order modes 0t_, etc.) change at F = 1/2, hinting
at the qualitative difference in solutions that we will

describe later for F < 1/2 and F > 1/2.

Equation (4) can also be solved to find all the one-

dimensional steady states h(.r); The solutions we find

agree with the weakly nonlinear analysis for small )1;
the bifurcation curve continues backwards in e until

it terminates because the solutions represented cease

(a)

h
1.0

(b)

Figure 2: Two-dimensional profile of long-wavelength
mode just before rnp| ure for 5_ above linear instahili/y.

(a) Dr3' spot with F = 1/?, and /3 = 30, (b) High spot
wldl F = 2/3 and t3 = 30.
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to become physical. Nowhere does the bifurcation
curve turn over in a saddle-node bifurcation and form a

stable branch. The unstable solutions on the bifurcation

curve appear differently for F < 1/2 and F > 1/2; for
F < 1/2, the solutions are localized depressions and for

F > 1/2 the solutions are localized elevations. Oron and

Rosenau [11] performed a similar analysis for F = 0
and also found no stable solutions.

We numerically simulate (4) with both one- and

two-dimensional interfaces. We use a spectral method

in order to enforce the continuity condition, which in

one dimension is fo2_ (h - 1) d.r = 0. Fourier series are
the natural basis function since we use periodic bound-

ary conditions, and Fourier series automatically satisfy

continuity. The simulation employs a pseudospectral
method to handle the nonlinear terms. Because of the

fourth-order nonlinearity, a 2/5 rule (equivalent to the

2/3 rule for quadratic nonlinearities) is required to pre-

vent aliasing --- e.g., for 128 spatial locations, only 51

spectral modes q from -25 to +25 are used. At each

time-step, the power in the remaining 3/5 of modes is
set to zero.

A dry spot forms for F < 1/2 (figure 2 a), while

for F > 1/2 a high spot forms, which physically would

pop up to the top plate (figure 2 b). Thus, the prediction
of weakly nonlinear and potential theory of a change at

[" = 1/2 is observed in the simulations. The structure

of the dry or high spot does not depend strongly on F

far from F = 1/2, tbough the size depends on the static

Bond number B, which gives the relative strengths of

gravity and surface tension. High surface tension (B

small) prevents sharp structures from forming, while a

low surface tension (/3 large) allows the formation of

sharp structures. As predicted by the nonlinear analyses,

no stable, deformed states before rupture are seen in

either one or two dimensions. After rupture, the dry spot

eventually saturates, though this phenomenon is not not

captured by the evolution equation since as h .... --+ 0,
the power in the higher order modes begins to dominate,

spectral convergence is lost, and the simulation breaks
down.

4 EXPERIMENTAL DESIGN

The liquid lies on a 3.81-cm-diameter, gold-plated alu-

minum mirror (see figure 3). The mirror is attached to

an aluminum plate whose bottom is heated by a 14 t?
thin-film resistance heater. A thermistor in the center of

the aluminum plate measures %. A cooled, 3-mm-thick

sapphire window bounds the gas from above. Chloro-

form is employed as the cooling fluid to allow imaging

with an infrared (3-5 t_m) camera. Cooled chloroform

is pumped between two sapphire windows and then

through a heat exchanger that maintains the temperature
of the chloroform at 21.3 + 0.1 °C.

The total gap (d + dg) between the lower sapphire

window and the mirror bottom is uniform to 10 fringes

(3.2 pro), as verified interferometrically. The size of

the gap is determined by introducing indium shims of

various sizes and observing the change in the interfer-

ence fringes between the window and the mirror. We

consider the gap to have the same thickness as the shim

when the shim does not perturb the fringes, but a slightly

thicker shim (by 5 l_m) does.

An aluminum sidewall laterally constrains the liquid.

The liquid depth is uniform to a fringe (0.32 l,m) in the
central 75% of the cell at AT = 0. The depth is measured

using a stylus attached to a micrometer. The position

of the upper interface is determined when the liquid

suddenly wets the sharp tip of the stylus as the stylus is

lowered. The stylus is then lowered further until contact
with the mirror is signaled by an ohmmeter connected

to the stylus and the metal mirror. The liquid depths can

be measured to +5 l_m.

For most experiments we use a 1, = 0.102 Stoke (at

50 ° C) silicone oil that has been distilled once to remove

low vapor pressure components, which can condense on

the cool, upper plate [ 12]. Infrared images are made us-

ing an infrared-absorbing (at 4.61 _m with an extinction

length of order a few microns) polymethylhydrosiloxane
silicone oil with _,_ 0.25 Stoke at 50 °C.

Liquid depths range from 0.007 to 0.027 cm. Gas

layer thicknesses range from 0.02 to 0.10 cm. The

gas in the upper layer is typically air, although a few

experiments employ helium gas. We used helium since

it has a much larger thermal conductivity than that of air
and thus allows varying F without varying d or ,19.

We use an optical system that serves as both an in-

terferometer and a shadowgraph. When the deformation

is small, we use the optical system as an interferometer

to give an indication of the deformation of the inter-

face. The mirror-window fringes are much stronger than

the mirror-liquid fringes, so it is difficult to count the

mirror-liquid fringes to get a quantitative measure of
the deformation. When the deformation is large, we use

the optical system as shadowgraph, where deformation
acts as a lens to focus the incident light. The initial for-

mation of a localized depression is signaled by a bright
spot on the shadowgraph image. Once the interface is

significantly deformed (as the liquid is in the process of

forming a dry or high spot), the deformation can be seen
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PlexiglaScUpon a kinematicmount

Figure :_: Cross-section of experirnen_al apparalus. Both top and bottom plates are thermally conducting relative Io
the licluid aim gas.

by eye. For making images used in this paper, we

employed a 256 256 pixcl Amber Engineering Proview

5256 LN__-cooled InSb infrared staring array sensitive

in a 0.08 pm band centered around 4.61 j_m.

5 EXPERIMENTAL RESULTS

We see four distinct states at onset of instability: the

two long-wavelength modes of dry spots (figure 4a) and
high spots (figure 4b), a mixed long-wavelength and

hexagonal state (figure 4c), and hexagons (figure 4d).
We observe three of these states at the onset of

instability for F < 1/2. For large 6', (independent of

F), Benard hexagons form (figure 4d). For small (;,

the long-wavelength dry spot forms (figure 4a). For

intermediate G, both the long-wavelength (dry spot)
and hexagonal modes appear together (figure 4c). In

this case, the long-wavelength deformational mode is

linearly unstable and its formation induces the formation

of the hexagonal mode by increasing the local depth in

the region surrounding the dry spot. The horizontal

extent of the dry spot is ,-- 100d and the area of the dry

spot is typically 1/4 - 1/3 the area of the entire cell.

Once the dry spot forms, fluid flow consists of steady-

state convection concentrated at the edge of the dry spot.

As predicted by nonlinear theory, for F > 1/2 the

liquid layer forms a high spot (figure 4d), where the

liquid pops-up to the top plate (sapphire window).

Since the time-scale of formation of the hexagons is

the vertical diffusion time (d_/_ _ 0.1 S), while the time-

scale for the long-wavelength mode is the horizontal

diffusion time (L_-/a ' _ :_ hours), quickly ramping the

temperature above 3I = 8o allows formation of the

hexagons as the primary instability even when the long-

wavelength instability would be primary if AT were
increased quasistatically, as assumed by linear theory.

If AT is then decreased slowly below onset of hexagons,

a dry spot can form once the hexagons have disappeared.
A comparison of the experimental measurements

of onset to linear stability theory is given in figure 5.

The linear stability theory assuming periodic boundary

conditions (the dotted line in figure 5) gives good

agreement with the experiments for deep liquid depths

(d >_ 0.015 cm), but poor agreement for shallow liquid
depths. Much of the deviation of theory from experiment

is due to sidewall effects, both the pinning of the liquid

at the sidewalls and under- or over-filling of the liquid.

The experiments used a fixed sidewall height of 0.02

cm, so experiments with thinner depths were underfilled
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(a) (b)

Figure 4: Infrared images of states seen in the experi-

ment. (a) a dry spot (d = 0.02.5 cm, F = -O.OG). (1_/

a high spot (d = 0.037 era, F = 0.91). (c) dry spot

with hexagon._ in lhe surrounding region (d = 0.025

cm). (tile dry spot looks cold tlw camera sees through

the infiared-absorbing liquid to the mirror, which ap-

pears cohl in the infl'ared); (d) hexagons (d = 0.045 cm,
G = 370).

and experiments in thicker depths were 0verfilled. The

presence of sidewalls of height different from the mean

liquid depth led to an initially deformed interface, even

for no imposed temperature gradient. To examine

the effects of the sidewalls, we solved equation (4)

using non-periodic boundary conditions with Chebyshev

polynomials as our basis functions. The boundary

conditions used corresponded to pinning of the liquid
surface at the sidewall and no net liquid flux through

the sidewalls; these boundary conditions automatically

satisfied the conservation of liquid condition. The

curved, solid line in figure 5 shows the comparison of

the experiments with the new theoretical prediction [ 13].

The quantitative agreement is much better than with

periodic boundary conditions, though the agreement is
still not exact.

6 CONCLUSION

Two modes of instability exist in surface-tension-driven

Benard-Marangoni convection where the liquid is heated

from below and cooled from above. The short-wavelength

D(I+F)

0.4

0.005 0.01 0.015 0.02 0.025 0.03

d (cm)

Figure 5: Comparison of instability onset with the pre-
dictions of linear stability theory. The prediction of

linear stability theory assuming periodic boundary con-

ditions is given by the dashed line at 0.70. This theory

gives good agreement with the experiments for thick liq-

uid depths, but there is a significant departure for thin
depths. The predk'tion of linear stability theory inch,l-

ing the sidewall effects is given by the curved solid line.

hexagonal mode (q = 2) occurs for large G, when diffu-

sion is the important (slow) stabilizing mechanism. The

long-wavelength deformational mode (q = '_'ud/L << l)

occurs for small G',,when gravity is the important (slow)

stabilizing mechanism. This long-wavelength instabil-

ity can take the form of either a localized depression

that evolves to a dry spot, or a localized elevation (high

spot) that accelerates upwards and causes the liquid
to pop up to the top plate. The relative thicknesses

and thermal conductivities of the liquid and gas layers

determine whether the dry spot or high spot forms; a
high spot forms where the liquid thermal conductivity

is much larger than the gas thermal conductivity and

the liquid depth is nearly equal to or greater than the

gas depth. The deformation due to the long-wavelength

mode can cause the formation of the hexagonal mode by
increasing the local value of 31 above the critical value

for the hexagons.

The long-wavelength instability is be described by

an evolution equation for the height of the interface.

Analysis of the evolution equation predicts that the in-
stability is subcritical and that the unstable, backwards
branch of the bifurcation curve never turns over to a

stable branch. Numerical simulations of the evolution

equation reveal dry spot and high spot states that agree

qualitatively with what is seen in the experiment. Lin-

ear stability theory using periodic boundary conditions

works well when the interface is initially flat; however,
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when the interface is deformed, the deformation much

be included in the theory to predict the correct onset.
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