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ABSTRACT

The dynamics of a drop of a Newtonian liquid that

is pendant from or sessile on a solid rod that is forced to

undergo time-periodic oscillations along its axis is

studied theoretically, The free boundary problem

governing the time evolution of the shape of the drop

and the flow field inside it is solved by a method of

lines using a finite element algorithm incorporating an

adaptive mesh. When the forcing amplitude is small,

the drop approaches a limit cycle at large times and

undergoes steady oscillations thereafter. However, drop

breakup is the consequence if the forcing amplitude

exceeds a critical value. Over a wide range of ampli-

tudes above this critical value, drop ejection from the

rod occurs during the second oscillation period from

the commencement of rod motion. Remarkably, the

shape of the interface at breakup and the volume of the

primary drop formed are insensitive to changes in

forcing amplitude. The interface shape at times close to

and at breakup is a multi-valued function of distance

measured along the rod axis and hence cannot be

described by recently popularized one-dimensional

approximations. The computations show that drop ejec-

tion occurs without the formation of a long neck.

Therefore, this method of drop formation holds promise

of preventing formation of undesirable satellite

droplets.

1. INTRODUCTION

Formation of small drops of one phase into another

phase by flowing the former phase through a suitable
nozzle is of great scientific interest because of wide-

spread use of the phenomenon in practical applications.
Some well known applications include mass transfer
operations in solvent extraction, 1'2 ink-jet printing, 3'4

and measurement of dynamic surface tension, 5'6 among
others.

When a liquid is fed continuously through a

capillary tube at a low flow rate, a portion of the drop

liquid hanging from the tip of the capillary breaks off it

when the force of gravity acting on the drop becomes

large enough to overcome the force of surface
78

tension.' Unfortunately, the gravitationaIIy induced

mechanism of drop breakup is not available in zero-g.
One way to form drops under low-g conditions would

be to vibrate the substrate supporting the drop liquid.

This paper presents a theoretical analysis of the

situation in which a vertical rod which supports an

initially quiescent pendant drop is impulsively set into

oscillations of sufficiently large amplitude along its

axis so that a portion of it detaches or is ejected from

the rest of the liquid that is left behind on the rod.

Forced oscillations of pendant and sessile drops

sans breakup have been studied extensively because

they exhibit rich non-linear behavior and also are

important an" applications., For_ example, oscillations10 of
pendant drops and also of l'quid bridges can be used

to infer the surface tension and viscosity of the drop

liquid.

Formation of drops from line capillaries through
which liquid is forced at a constant flow rate has also

been extensively studied experimentally, 7'8A1 by means

of one-dimensional approximations, 7"12 and computa-

tionally in the inviscid, irrotational flow limit, 13 in the

Stokes flow limit, 14 and at arbitrary Reynolds
numbers. 15 These studies have shown that as the drop is

nearing breakup, a long thread or neck of liquid

connects the about to form primary drop from the rest

of the liquid hanging from the capillary. The thread first
breaks at its downstream end and its tip is accelerated

toward the drop that remains hanging from the tube.

However, before the thread

become absorbed by the liquid

breaks at its upstream end and

satellite droplets. The satellite

can recoil entirely and

hanging from the tube, it

gives rise to one or more

droplets are undesirable

in virtually all applications. In ink-jet printing, for

example, they can lead to stray marks on the paper and

reduce print quality. Therefore, it is desirable to come

up with ways to suppress the formation of satellite
droplets. 16

When a drop that is hanging from or sitting on the

tip of a solid rod is forced to undergo time periodic
oscillations along its axis and sufficient time is allowed

for the drop to reach a steady oscillatory state, the drop
deformation is maximized at a number of values of the

forcing frequency known as the resonance frequencies

for a fixed value of the forcing amplitude. When the

forcing amplitude is sufficiently large, the drop should

no longer oscillate and instead should undergo breakup.

The equations governing the physics of drop oscilla-

tions and breakup are summarized in section 2. A

powerful finite element algorithm that can go behind
earlier works 9'10 and follow drops all the way to

breakup is presented in section 3. Results and conclu-

sions are taken up in sections 4 and 5.
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2. PROBLEM STATEMENT

The system, shown in Figure 1, is an axisymmetric

drop of an incompressible Newtonian liquid of constant

volume Vo, density p and viscosity p which is pendant

from a solid circular rod of radius R and surrounded by

a dynamically inactive ambient gas. The drop/ambient

gas interface has constant surface tension o. As in
Wilkes and Basaran, 9 the rod is impulsively set into

motion along its symmetry axis and sinusoidally in

time with forcing amplitude AR and frequency
_4r_pR 3 . The three-phase drop/rod/ambient gas

contact line is constrained to remain at the outer sharp

edge of the rod face as the drop deforms. As time

advances, the response of the drop surface S(t) will be

either (a) attainment of a steady oscillatory state, or

limit cycle, once the initial transients decay, or (b) ejec-

tion of a primary drop from the rest of the liquid which
will remain on the rod surface.

To cast the problem in dimensionless form, the rod

radius R is chosen as a characteristic length scale and

the capillary time tc =- 4rpR3/¢i is chosen as a time

scale. TM The corresponding velo_pressure/
stress scales are then _ and Jo_t2/pR 3, respec-

tively. The dimensionless groups governing the motion

of the liquid are the Reynolds number Re--,4_pR/kt,

the gravitational Bond number G-pgR2/t_, dimen-

sionless forcing amplitude A, dimensionless forcing

frequency D, and dimensionless volume Vo/R 3. There-

vanishing of the shear stress along the free surface, and
the fixed contact line.

Initially, the drop shape is a hemisphere and the

fluid is quiescent; rod motion is impulsively com-
menced at t = 0.

3. COMPUTATIONAL METHOD

The transient system of governing equations (I)-(3)
subject to the boundary and initial conditions stated

above are solved numerically by a method of lines

using the Galerkin/Finite Element Method (G/FEM) for

spatial discretization and an adaptive, implicit finite dif-
ference method for time discretization. The Galerkin

weighted residuals of these equations are solved for the

velocity, pressure, and free surface shape by Newton

iteration at each time step. Time integration is achieved

using a backward-difference predictor for the first four

time steps and for four time steps following each

remeshing (see below), and a trapezoid-rule integrator

and second-order Adams-Bashforth predictor at all

other time steps. In the latter case, time step sizes are

chosen adaptively such that the time truncation error
does not exceed 10 -3.

The problem domain is divided into elements using

one of three methods 15. Method 1, Figure 2(a), consists

of a central fixed cylindrical region of radius -r extend-

ing from the rod to a distance ~z below it along the cen-

terline, which is surrounded by outer regions which
fore, the instantaneous position of the rod relative to its deform with the drop surface. The outer regions' elc-

initial position is given by z'(t) A sin Dt. The equations
are solved in a noninertial frame of reference, in which

the origin of the cylindrical coordinate system (r, z, 0)
moves with the rod as it oscillates. The motion of fluid

within the drop is governed by the Navier-Stokes

system,

V._v = 0 (1)

Re( Dy-
E) = V. T + ReGg z (2)+

kDt =

In Equation (2), E=--Af_2sinf_tez is the fictitious
acceleration term which arises because of the use of a

noninertial frame of reference, ez is a unit vector in the
downward z-direction, and the dimensionless stress

tensor for a Newtonian fluid is given by T =

-pI + [V_ + Vv_r]. The drop shape, which is unknown

a priori, is determined by using the kinematic condition

as an additional governing equation,

n. (_v- v_,) = 0 on S(t) (3)
where 1! is the outward unit normal vector to the surface

and v and v s are velocities of points just inside and on

the free surface S(t), respectively. The other boundary

conditions are axisymmetry about the z-axis, no slip

and no penetration along the rod surface, the balancing
of the normal stress by the capillary pressure and the

ments are separated by fixed spines and by curves

which deform in proportion to the moving surface.

Method 2, Figure 2(b), consists of the same regions and

a neck region between the rod and the drop regions of

Method 1. The spines in this new region are horizontal
and spaced at intervals which become smaller as the

surface curvature increases. Method 3, Figure 2(c), is
identical to Method 2 except that the spine angles in the

neck region are varied so as to enable discretization of a

portion of the interface which is about to overturn.

Method 1 is used for the initial stages of drop oscilla-

tion until the minimum neck radius R m reaches a speci-

fied value; at that point, Method 2 is used until the

slope of the interface near the point of breakup

becomes so high that Method 3 is required. Once

Method 3 is invoked, no further remeshing occurs. The

accuracy of this computational algorithm was con-
firmed by comparison of results obtained to those

reported by Wilkes and Basaran 9.

Periodically, the mesh structure is reconstructed so

as to conform to the present drop shape: this is referred

to as remeshing. At various increments of the drop

length L or when the minimum neck radius Rra

approaches the present fixed region boundary _r, new

values of _r and _iz are chosen based on the present drop
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shape. When Method 2 is used, the neck region length

fly and the number of spines in this region are also
recalculated. Once the new elements are located, all

unknowns are interpolated from the old mesh onto the

new mesh using the relevant basis functions, and time

integration is resumed. When R m falls below 0.003, the

primary drop is considered to have detached.

4. RESULTS AND DISCUSSION

Figure 3 illustrates the response of a drop for a typi-

cal situation in which drop ejection occurs. In this case,

Re = 20, G = 0, _ = 3.5, and A = 0.50. When the forc-

ing amplitude is lower but the other parameters are the

Figure 3 illustrates the response of a drop for a typical
situation in which drop ejection occurs. In this case,

Re = 20, G = 0, f] = 3.5, and A = 0.50. When the forcing

amplitude is lower but the other parameters are the

same, the .primary resonance frequency is known to be
about 3.5.'Figure 3 shows that during the first oscilla-

tion period after rod motion begins, the maximum elon-

gation of the drop is considerably lower than that for

each subsequent period, in accord with the results of

Wilkes and Basaran. 9 During the second period, how-

ever, the drop tip nearly touches the rod and then moves

farther away from it than in the first period. As the tip

recedes once more, the interface necks rapidly and the

drop starts breaking into two distinct fluid masses. In

contrast to drop formation from a tube, 13'15 the primary

drop is now moving upward toward the neck while the

rod is accelerating the liquid in its vicinity toward the

neck. As shown in Figure 4 at a time step near ejection,

the down moving fluid near the rod and the up moving

fluid in the bulk of the primary drop work in unison to

prevent drop breakup. However, by this time the capil-

lary pressure in the thin neck is so high that evacuation

of the neck prevails over the former mechanism. More-

over, on account of the receding primary drop and the

down moving rod, the interface above the neck over-
turns and becomes a multi-valued function of z. The

manner in which the interface breaks is thus quite dif-

ferent from that observed for drop formation from a
tube: Because a long thread does not form, the likeli-

hood of satellite drop formation is minimized.

A similar series of computations was performed

using the same parameters as in Figure 3 except for A,
which was varied from 0.2 to 0.3. These computations

showed that the critical forcing amplitude A c for ejec-
tion under these conditions was 0.274_+0.001. For

cases in which A< A c, the drops oscillated without ejec-

tion, whereas when A> A c, ejection was observed and

the final drop shapes (not shown) were remarkably sim-

ilar - the most notable variation in drop shape over this

range of amplitudes was the extent of interface over-

turning, which increases with A. In each of these cases,

the time of drop ejection, when it occurred, was near

the end of the second rod oscillation period, except for

the case with A= 0.274 when it occurred during the

fifth period. Because the drop is at rest at the start of the

oscillations, a considerably higher forcing amplitude is

necessary to effect ejection in a single period. By con-

trast, ejection after two or more periods appears to oc-

cur only when A is equal to or slightly higher than A c.
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5. CONCLUSIONS AND OUTLOOK

The computational method used in this paper can

accurately account for the fluid dynamics of drop ejec-

tion from an oscillating rod. According to the foregoing

results, the interface develops an infinite slope before

the radius of the thread or the neck vanishes. Therefore,

recently popularized one-dimensional slender-jet equa-

tions that represent interface shape as a function of
axial distance alone 7'12'14 cannot be used to model the

dynamics of drop ejection.

Suppression of neck formation, in contrast to situa-

tions when a liquid is made to flow at a constant flow

rate through a capillary, is an unexpected but highly

desirable outcome of the technique of drop production

considered here. Exploitation of this finding in practical

applications such as ink-jet printing is pending.
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