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Abstract

Liquid bridges have been the focus of numerous
theoretical and experimental investigations since the

early work by Plateau more than a century ago. More

recently, motivated by interest in their physical behav-

ior and their occurrence in a variety of technological

situations, there has been a resurgence of interest in the
static and dynamic behavior of liquid bridges. Further-

more, opportunities to carry out experiments in the near
weightless environment of a low-earth-orbit spacecraft

have also led to a number of low-gravity experiments

involving large liquid bridges. In this paper we present

selected results from our work concerning the stability
of nonaxisymmetric liquid bridges, the bifurcation of

weightless bridges in the neighborhood of the maxi-

mum volume stability limit, isorotating axisymmetric

bridges contained between equidimensional disks and
bridges contained between unequal disks. For the latter,

we discuss both theoretical and experimental results.

Finally, we present results concerning the stability of
axisymmetric equilibrium configurations for a capillary

liquid partly contained in a closed circular cylinder.

1. Introduction

Liquid bridges occur in a number of different
situations of physical and technological interest. The

study of axisymmetric equilibria has received much

attention and the stability of static bridges has been
examined for various disk configurations, aspect ra-

tios, gravity levels and rotation rates (see, for example,
[1-7] and references therein.). There have also been

numerous investigations of liquid bridge dynamics

(e.g., [8,9]). Such investigations have been motivated
by both practical considerations and basic scientific

interest. The behavior of liquid bridges and drops are
important considerations in propellant management

problems and other fluid management problems in

space [10, 11]. Pendular liquid bridges occur widely in
the powder technology industry and are a major influ-

ence on powder flow processes and mechanical prop-

erties [12-13]. In porous media flow, liquid-liquid dis-
placement can lead to evolution of pendant and sessile

lobes or a lenticular bridge [ 13]. The formation of liq-

uid bridges from the gel that coats lung micro-airways
is a precursor in lung collapse [14]. The results for

unequal diameter supports presented here are particu-

larly relevant to floating zone crystal growth [7,15,16],
since this is a common configuration [15, 16].

2. Nonaxisymmetric Bridge Stability
The stability of two types of static nonaxisymmetric

bridge configurations was considered. In both cases,

the bridge was held between equidimensional coaxial
disks. In the first example, the stability of bridges sub-

ject to gravity oriented perpendicular to the axis

through the supporting disks was examined. The sec-

ond example dealt with nonaxisymmetric bridges sub-

ject to axial acceleration. Both problems were solved
numerically using the Surface Evolver code [17].
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Fig. 1 Computed stability limits for lateral acceleration
with Bo = 0.5, 0.2, 0.05 and 0.03.

The stability of bridges subject to lateral gravity was

examined as a function of slenderness, A (ratio of the

disk separation to the mean diameter, 2ro, of the two

support disks), and the relative volume, V (ratio of the

actual liquid volume to the volume of a cylinder with a

radius ro). The location of the stability boundary for a
given Bond number, B, was determined by fixing the

slenderness, A , and minimizing the energy for some

value of V. Outside the stability boundary, the bridges
break before the energy is minimized. Inside the stabil-

ity boundary, bridges maintain their integrity and reach

a minimum energy configuration. Thus, we employed
a simple iterative search technique to find the approxi-

mate location of the boundary. For a given B and a
fixed value of A that is less than the maximum

stable slenderness, A max, there exists a maximum
and minimum stable relative volume. The maximum

volume stability limit tends to infinity as A _ 0.
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For any given (lateral) B, the minimum volume stability
limit becomes indistinguishable from the zero B limit

when A becomes sufficiently small. A more detailed

description of these results is given in Ref. [18]
In related work carried out in collaboration with

Prof. J. Meseguer and Dr. F. Zayas of the Universidad
Politecnica de Madrid, we examined the results of an

asymptotic analysis of the stability limits of liquid

bridges. Here the maximum stable slenderness, A m_,

of a liquid bridge between equal disks, and a nearly

cylindrical volume, when subjected to both axial (Ba)
and lateral (B0 Bond numbers becomes

bl = (1 - (ba)2"3) it2 , (1)

where

ba = (3/2)22 3r2Ba, and bl = (_/2)2 -lr2Bi, (2)

are the reduced axial and lateral Bond numbers and

2 =I-A r,_xln + v12, where v=V-l. This suggests that,

at least close to the reference configuration (A -r_,

v~0, Ba-0, B_-0), there is a self-similar solution for the

stability limits, the behavior being the same regardless
of the slenderness or volume. Numerical results ob-

tained using Surface EvoIver [17] were found to be in

good agreement with Eq. (1) for a limited parameter

range.
For axisymmetric bridges subject to axial gravity, it

is known that along most of the maximum volume
stability limit axisymmetric bridges are unstable to

nonaxisymmetric perturbations. We examined the bi-

furcation of solutions for a weightless liquid bridge in

the neighborhood of this stability boundary. Depend-
ing on the system parameters, loss of stability with

respect to nonaxisymmetric perturbations resulted in

either a jump or a continuous transition to stable
nonaxisymmetric shapes. The value of the slenderness

at which a change in the type of transition occurred

was found to be A s = 0.4946. Results of experiments

using a neutral buoyancy technique agree with this
prediction. A liquid bridge of a set slenderness was

formed between coaxial disks. High precision stepping
motors were used to control the disk separation while

simultaneously injecting silicone oil. Oil was injected

until the bridge was near the upper stability limit for
the slenderness under consideration. Then precisely

controlled amounts of oil were added incrementally
using a calibrated microsyringe. The shape was moni-

tored as the bridge expanded and stability limit was

approached. The bridge was imaged using a coherent
high magnification Fourier optical arrangement to-

gether with a high pass optical filter. This permits

visualization of edges of projections of the liquid
bridge surface at approximately 100x magnification.

From this image, the minimum distance l (shown

schematically in the photographs in Fig. 2) from the
bridge surface to a stationary reticule was measured on

a computer screen. Typically, the distance decreases

slightly with each addition of oil until the stability

limit is exceeded. When this occurs, the bridge forms a

bulge. After loss of stability, the critical axisymmetric

shape changes to a stable nonaxisymmetric shape.
However, the nature of this transition was quite differ-

ent forA <0.4andA >0.6.

(a_ .-I

Fig. 2 Bridge images forA = 0.225 (a - c) andA =

1.02 (d -JO. States (a) and (d) are stable and axisym-

metric with V 1 = 1.31 and V2 = 2.82 that are, respec-
tively, slightly smaller than the critical (experimental)

volumes for the given A . The nonaxisymmetric

bridges (b) and (c) have V = V 1 + 0.025 and V I + 0.05,

(e) and (f) have V = V2 + 0.095 and V 2 + 0.19.

Figure 2 shows a sequence of images of a A =

0.225 bridge near the critical V value. The theoreti-

cally predicted critical volume is 1.36, the critical vol-

ume obtained experimentally was 1.33. For A =

0.225, a large shape deformation occurs after the addi-

tion of only a small volume increment (compare Figs.
2(a) and 2(b)). Further volume increases lead to con-

tinuous incremental shape changes (Figs. 2(b) and

2(c)). In contrast, for A = 1.02 (Figs. 2(d)-2(0), we

observed a continuous transition from critical axisym-

metric shape to a sequence of the stable nonaxisym-
metric shapes as the volume was increased. Here the

theoretical critical volume is 2.96 and our experimental
critical volume was between 2.83 and 2.85. In both

cases, our experimental critical volumes were within
5% of the theoretical values and the nonaxisymmetric

bridges were stable at volumes far beyond the maxi-

mum volume stability limit for axisymmetric bridges.
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This work is described in detail in Refs. [19,20].

For bridges between coaxial disks and subject to

axial gravity, little is known about the stability of
nonaxisymmetric configurations beyond the maximum

(axisymmetric) volume limit. We examined the stability

of these bridges numerically (using Surface Evolver)
for B = 0. l and 2. We found that the maximum volume

segment of the stability limit follows the same trend as

for lateral gravity. That is, V tends to infinity as the

slenderness, A , tends to zero.

3. Stability of Isorotating Liquid Bridges
The stability of axisymmetric equilibrium states of

an isorotating liquid bridge between equidimensional
circular disks in a constant axial gravity field was also

considered [21]. Emphasis was given to the stability
of bridges satisfying two types of constraint that are

typical for the floating zone method used for materials

purification and single crystal growth. First, we con-
sidered the constraint that the relative volume of the

bridge, V, is equa/to 1. For this case, the critical values

of the slenderness (A) and of the surface slopes (]3 t,

fl 2) at both disks have been determined for a wide

range of the Bond and Weber (W) numbers. Figure 3
shows the level lines of the slope angle at the top and

bottom disks (fl I = fl 2) for the critical surfaces of a

cylindrical volume bridge. These curves lie in the re-

gion of the ( , A )-plane enclosed by the B = 0 and

B = 5 (dot-dash line) stability boundaries.
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Fig. 3 Level lines of the slope angle at the top and
bottom disks (fl _ = fl 2) for the critical surfaces of a
cylindrical volume bridge. The regions of critical axi-
symmetric and nonaxisymmetric perturbations are
shaded green and yellow, respectively.

The second constraint considered is that the surface

slope fl 1 at one of the disks is prescribed. The chosen

values were 90 ° and 75 °. These values correspond to

extremes in growth angle values encountered in float-
ing zone crystal growth. For this case, the dependencies

of critical A and V values on B and W were calcu-

lated. In addition, both axial gravity directions (i.e., up
and down) were considered separately and the values of

the slope angle, fl 2, at the other disk were also ana-

lyzed for critical states.

oe " _" .....
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Fig. 4 Stability diagrams for bridges with fl ] = 90 °

in the (W, V)-plane. Numbers on curves denote values

of the positive Bond number (i.e. gravity acts such that

fl l is the surface slope at the lower disk, B. Solid

(dashed) lines represent segments that correspond to

states with critical axisymmetric (nonaxisymmetric)

perturbations. Dot-dash lines represent states with lim-
iting surfaces [21 ].

The solution of the stability problem for any axi-

symmetric isorotating liquid bridge between equal

disks is discussed in detail using the case for B = W =

0.1 as an example. In particular, the relationship be-
tween the general boundary of the stability region and
the stability of bridges subject to the constraints out-

lined above is examined. The stability region in the

(A , V)-plane can also be constructed for any fixed

pair of values of B and W. Examples of such regions
are shown in Fig. 5.

The curves 1, 2, 3 and 4 represent the stability re-
gion boundaries for the cases of B = W = 0; B = 0.1, W
=0;B=0, W=0.I and B = W= 0.1. Curves2and3

illustrate the independent effects of gravity and cen-
trifugal force. Each of these forces narrows the stabil-

ity region as compared to the case B = W = 0. How-

ever, the shapes of the stability regions are different
due to the different nature of the gravitational and

centrifugal forces. Curve 4 illustrates the combined

effect of these forces. As expected, the stability region
for their combined action belongs to the intersection of

the stability regions for their independent action.
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Fig. 5 General boundaries of the stability region for
the cases: (1) B = W=0; (2) B =0.1, W= 0 ; (3) B =0,

W = 0.1 ; (4) B = W = 0.1. States critical to axisym-

metric (nonaxisymmetric) perturbations are denoted by
solid (dashed) lines.

The shapes of the boundaries 2, 3 and 4 are typical

for moderate values of B and W. Along the upper parts

of all boundaries 1 - 4, stability is lost to nonaxisym-
metric perturbations. The lower part of each boundary

consists of two segments separated by a cusp-point. On

the right-hand segment, loss of stability occurs with
respect to axisymmetric perturbations. The left-hand

segments of these boundaries merge. However, the
nature of the related critical slates may be different.

The entire left-hand segments of the curves I and 2 are

determined by states with limiting surfaces. For curve

1, these limiting surfaces are also the critical ones with
respect to nonaxisymmetfic perturbations. For an iso-

rotating bridge (the curves 3 and 4), only a part of this

segment closer to the point (0, I) is determined by
states with limiting surfaces. The other part corre-

sponds to states that are critical to nonaxisymmetric
perturbations. If at least one of the parameters B and

W is reasonably large, there is no neutrally stable state

that is critical with respect to axisymmetric perturba-
tions. Here the boundary points correspond either to

neutrally stable surfaces that are critical with respect to

nonaxisymmetric perturbations or to limiting surfaces.

Figure 6 shows the values of A and V for families

of stable states, and for some unstable states, that have

fixed values of fl [ or fl 2. The stability boundary is

curve 4 of Fig. 5. For stable states with fl 2 = 90° or

fl 2= 105 ° the A values lie between 0 and the criti-

cal value A = A *. Values of V are bounded by 1

and the critical value V = V*. A * and V* are de-

termined by the point of intersection of fl 2 = const.

and the general stability boundary. This point corre-

sponds to the state that is neutrally stable to nonaxi-
symmetric perturbations and represents a "pitch-fork"

bifurcation point. The construction of a level line fl 1

= const, or fl 2 = const, in the (A , V)-plane is im-

portant for determining the values of A and V for a

stable bridge with a prescribed slope angle at one of
disks. Finally, we note that the critical slenderness for

a cylindrical volume bridge is determined by the point
of intersection of the (dot-dash) line V = 1 and the

general boundary.
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Fig. 6 Values of the slenderness, A , and the rela-

tive volume, V, for the stable (solid lines) and unstable

(dotted lines) bridges with prescribed values of fl 1 or

fl 2. The dashed line is the general boundary of the
stability region for B = W = 0.1. The critical points are

denoted by "open circles" and the transition point be-
tween axisymmetric and nonaxisymmetric dangerous

perturbations by "closed circles".

4. Effect of Unequal Disk Radii on Stability
The stability of an axisymmetric liquid bridge be-

tween unequal circular disks in an axial gravity field

was examined for all possible values of the liquid vol-
ume and disk separation, The parameter defining the

disk inequality is K, the ratio between the radii of the
smaller and larger disks. Both axisymmetric and

nonaxisymmetric perturbations were considered.

The A -V plane was chosen as the appropriate pa-

rameter space to delimit the stability regions. Wide

ranges of the B and K were considered. Emphasis was
given to previously unexplored parts of the stabilily

boundaries. In particular, we examined the maximum

volume stability limit for bridges of arbitrary A and

the minimum volume stability limit for small A

bridges. The maximum volume stability limit was
found to have two distinct properties: large values of

the critical relative volume at small A , and the possi-

bility that stability is lost to axisymmetric perturbations
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at small K. For a given set of K, we determined the

maximum Bond number beyond which stability is no

longer possible for any combination of V and A .
We also obtained the maximum value of the actual

liquid volume of a stable bridge that can be held be-

tween given disks for all possible disk separations for
fixed B. It was found that this volume decreases as K

decreases and (depending on the sign of B) tends to the

critical volume of a sessile or pendant drop attached to

the larger disk.
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Fig. 7 Shapes of critical liquid bridge surfaces under

a downward-directed axial gravity.

Figure 7. shows selected results for K =0.2 and 0.7.

The Bond number is positive (negative) when the

smaller disk is above (below). The corresponding states

are marked by filled circles on the general stability
boundaries for: (a) K = 0.7, B = !-0.1; (b) K = 0.2, B =

i-0.1. Numbers on curves denote values of B. Solid

(dashed) lines correspond to states critical to axisym-

metric (nonaxisymmetric) perturbations. Dotted lines

represent states with limiting surfaces, and the dot-dash

line is the minimum volume stability limit for zero-

gravity bridges between equal disks (K = 1, B = 0). A

filled circle corresponds to the state with A =A max

for a given stability boundary. Open circles represent

transition points between different types of boundary

segments (e.g., when states critical to axisymmetric
perturbations become critical to nonaxisymmetric per-

turbations or change to states with limiting surfaces).

Experimental results [20] are in good agreement with

the results predicted by this analysis.
Finally, we present results concerning the stability

of axisymmetric equilibrium configurations of a capil-

lary liquid in a circular cylindrical container with pla-
nar ends that are orthogonal to a cylindrical wall. The

liquid either is subject to an axial gravity field or is

under zero-gravity conditions. We consider doubly
connected free surfaces (i.e., they do not cross the

cylinder's axis of symmetry) that bound an annular

region occupied by the gas. This study was motivated

by the problem of partly contained melts in low gravity
solidification experiments. Preliminary results prove
that a free surface with one of contact lines on one of

the cylinder's planar ends and the other on a lateral

wall is always unstable if the wetting angle, a , lies in

the range 0 _<ot _<90 °. The stability regions for this

configuration have been constructed in the plane "tr

V' (here V = vg/ro 3 is the relative gas volume) for set
values of the B in the interval -10 < B < 60. It has been

established that the stability region is connected if B >

B 0orB<B l (-l.69>B 0>-l.70and-l.79 >Bl >

-1.80). If Bi < B < B 0, the stability region consists of

two disconnected parts. It was also found that a dou-
bly connected free surface with both contact lines on a

cylindrical wall may exist only under zero-gravity

conditions (see Fig. 8). Further analysis revealed that
only unduloidal free surfaces with profiles that contain

inflection points may be stable to nonaxisymmetric
perturbations. Such a free surface may be stable to

arbitrary perturbations if or > 121 °. For a given 121 °

< ar < 180 °, the minimum and maximum stability

limits of the relative gas volume have been deter-
mined.

Two special liquid bridge type configurations were

also analyzed. One with a free surface pinned to edges

of both end plates of a cylinder and the other with one
part of the free surface pinned to edges of a cylinder's

planar end and the other to a solid rod contained within
the cylinder. This problem is connected with a new

technique for "contactless" directional crystallization

in low gravity• We analyzed stability conditions for the
first configuration at B = 0 and B = 0.05, and arbitrary
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values of other parameters (wetting angles, aspect ratio

and the liquid relative volume). Similar results have
been obtained for the second configuration for

rod/cylinder radius ratios equal to 0.8 and 0.6.

60 t _ J

I |
t35 t50

\\,

t65 180

Wetting Angle __ [Oegreo_}

Fig. 8 Dependence of the vapor relative volume, V v

= VVlro 3, on the wetting angle, _, for critical states of

configurations with contact lines on the lateral wall of

the cylinder.
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