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Abstract

Results of three problems are summarized in this con-
tribution. Each involves the fundamental capillary in-

stability of an interfacial bridge and is an extension

of previous work. The first two problems concern

equilibrium shapes of liquid bridges near the stability

boundary corresponding to maximum length (Plateau-
Rayleigh limit). For the first, a previously formulated

nonlinear theory to account for imposed gravity and
interfacial shear disturbances in an isothermal environ-

ment [1,2] is quantitatively tested in experiment. For the

second problem, the liquid bridge is subjected to a shear
that models the effect of a thermocapillary flow gener-

ated by a ring heater in a liquid encapsulated float-zone

configuration[3]. In the absence of gravity, this sym-

metric perturbation can stabilize the bridge to lengths

on the order of 30% beyond the Plateau-Rayleigh (PR)
limit, which is on the order of heretofore unexplained

shuttle observations. The third problem considers the

dynamics of collapse and pinchoff of a film bridge (no

gravity) --- what happens in the absence of stabilization.
Here we summarize experimental efforts to measure

the self-similar cone-and-crater structure predicted by a

previous theory[4].

Introduction

A liquid/gas or liquid/liquid interface is shaped by
surface tension whenever surface area is large relative

to volume (small physical length) or when gravity is
reduced relative to the surface force (small capillary

length). The stability of such an interface is important

to a variety of earth-based applications, to float-zone

experiments in a space shuttle and to successful liquid
management in a space laboratory, more generally.

Overview

Deformable interfaces of finite extent are of inter-

est. Attention is restricted to axisymmetric shapes and

pinned contact lines. Axisymmetric disturbances are the
most dangerous for the axisymmetric shapes considered.

These may be classified according to number of relevant

length scales.

With only surface tension acting, an incompressible
fluid mass of prescribed volume V takes the shape of a

sphere. The sphere is characterized by a single length-

scale, say V _/'_. If the fluid mass contacts a solid circular
disk of radius R, then its equilibrium shapes (pieces of

spheres) are characterized by length scales R and I '_/3.

If, in addition, gravity acts on the mass (force/volume
pU) then the shapes depend on capillary length (alp9) _12

as well as on/2 and I "1/3. These figures are known as

the sessile drop, bubble or pendant drop, depending on

the orientation of gravity and density contrast. Three

lengths are relevant, alternatively, if, in the absence
of gravity, the mass contacts two solid disks, arranged

coaxially and separated by length C.This is known as the

liquid bridge. Droplets and bridges can also bc exposed

to a flow. Suppose p: represents a typical pressure

gradient. Then, an additional relevant length scale
enters, alp:t?, say. And so forth. Ratios of relevant

lengths form the dimensionless control parameters of

the problem. Interfacial bridges are characterized by
two contact lines and at least two control parameters.

The number of contact lines is related to potential

instabilities of the shapes. The sphere is always stable.

Shapes with a single contact line (spherical bubbles and

pendant or sessile droplets) suffer only turning point in-

stabilities (codimension 0 bifurcations). On increasing

_, liquid bridges, on the other hand, undergo pitch-
fork bifurcations that can be unfolded with two control

parameters (codimension 2). Singularity theory [5] pro-
vides the mathematical framework for the experimental

results presented in the first liquid bridge problem. The

interacting symmetries of pitchfork and imposed dis-

turbance provide the framework for the second liquid

bridge problem. The thin film bridge is a liquid bridge
with zero net curvature (nl + K_ = 0). In that problem,

the dynamics of interest start at the instability occurring

at a turning point bifurcation.
The influence of flow on capillary instability can

be understood through the normal stress balance across
the interface. In the absence of motion and body force

and in an isothermal environment, this reduces to the

Young-Laplace equation,

[p] = or(t;1 + t<e) (1)

where [p] is the jump in pressure across the interface
and _;_ and n., are the principal curvatures of the math-
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ematical surface. Thus, the axial pressure gradient [p_]

can be viewed as having two contributions, each from

a curvature gradient. If gravity acts coaxially, there

is an additional constant contribution proportional to

pg. Suppose motion arises from an imposed interfacial

shear. Although the motion is driven through the tan-

gential stress balance, it influences the shape as an axial

pressure gradient in the normal stress balance. There-

fore, the free boundary problem for the interface can

be solved with the following strategy. Guess an inter-

face shape, solve for the flow field to obtain the flow

contribution to the pressure gradient, solve the normal
stress balance for a corrected shape, and so forth. This

approach also works for the nonisothermal case pro-

vided the coupling between thermal and velocity fields

occurs only at the interface (ie. small Peclet number).

Our analyses of liquid bridges follows this approach. A

bifurcation equation is derived from a functional equa-

tion representing the normal stress balance. The steady

states of this equation are studied.

Liquid bridge: shear and gravity effects

The bridge is subject to gravity and is immersed in a

pipe flow, with both perturbations acting coaxially, as
sketched in figure 1. We have previously established that

although each perturbation on its own is destabilizing,
they can stabilize by acting in concert[6]. This is the

fingerprint of a nonlinear effect. Here we summarize

experimental results that probe the neighborhood of the

PR limit. Figure 2 plots the deflection _ of the interface

from cylindrical against the flow rate Q. The solid lines

are the predictions of the bifurcation equation derived
from a normal stress balance that takes account of motion

of liquids on both sides of the interface[7]. The symbols

represent measurements taken over a range of strengths
of gravity and flow rate, lengths and volumes. Here
Bond number is defined as B =_ro2pg/a, scaled length

L - g/ro and volume imperfection _ is the deviation of

the volume from cylindrical, scaled by the cylindrical
volume.

The lengths can be ordered from 10% to 3% short of
the PR limit. Several trends are discernible. For equal

lengths, the slopes are comparable and the magnitude of

slope increases with increasing length. The position of
the intercepts depend on volume and Bond number. The

region between the turning points gives the window of

stable states. This is a true window (upper and lower

limits) for quiescent shapes that bulge down (B > 0).

The window narrows as the length increases. The the-

Top rod

Liquid

bridge

Connector
rod

Bottom rod

L

i- Plateau

chamber

2r

rt

Figure 1: Sketch of a two-fluid system.
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Figure 2: Surface deflection as a flmetion of flow rate.

Symbols represent experiment and solid lines are two-

fluid theory [7].
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ory is not only able to account for trends in the data,

but it is capable of quantitative prediction. Figure 2

further suggests that the regime of validity of theory is

considerable, especially as regards to length. Theory

and experiment are in tight agreement except closest

to the stability limit where experimental limitations of

temperature control seem to preclude reliable measure-

ments [7]. This explains the absence of data beyond the
PR limit (L = 270.
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Liquid bridge: encapsulated float-zone model

The second problem is motivated by observations of

extra-long float zones in the Liquid Encapsulated Melt

Zone (LEMZ) materials science experiment on STS5718].

The float zone is modeled as a liquid bridge (no gravity)

whose normal stress balance is influenced by pressure

gradients induced by thermocapillarity. In contrast to

the isothermal problem where the imposed shear is uni-

directional, symmetry of the full float zone (ring heater)

generates a shear symmetric about the midplane. In

figure 3, the solid center rod that makes the bridge an an-

nulus models an unmelted core or a viscosity that varies

with temperature. The symmetric pressure disturbances

can interact significantly with the PR pitchfork. Figure

4 plots stability limit against strength of tbermocapillary

flow where Ca = -_rAT/_ and _ - _ + a(T - T) and

T is temperature. Figure 4 predicts stabilizations of 30-

40%, depending on the extent of the solid core, offering

an explanation for observations (largely qualitative in
nature).

Figure 3: Sketch of a liquid float-zone in zero gravity.
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Figure 4: Maximum bridge length versus capillary num-

ber at a=0.25 and a=0.5 where a -= 1 - rt/ro. Dashed
line represents results from perturbation method and

solid lines are from computation.
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Figure 5: Schematic of soap fihn experiment.

Film Bridge: collapse and pinchoff

Figure 5 shows a sketch of the thin film stretched be-

tween two circular contact lines. The collapse is driven
by capillary instability and resisted by the inertia of the

surrounding fluid (air). Of interest is the prediction i)
that both principal curvatures _ and n2 diverge by a

t -2/3 scaling law as time t approaches the instant of
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