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Abstract

The roles played by surfactants and interfacial rheology

on damping the shape oscillations of liquid drops are

analyzed for the case of axisymmetric shape oscillations

of a nearly spherical liquid drop surrounded by another

fluid in the absence of gravity. Both fluids are taken to

be viscous, although the Reynolds number associated

with the shape oscillations is assumed large enough that

deviations from inviscid flow are only present in thin

Stokes boundary layers near the no-slip interface. Also,

an insoluble surfactant is assumed to be present at the

interface and surface tension is taken to be a linearly de-

creasing function of local surfactant concentration. This
surfactant layer is further assumed to behave as a two-

dimensional Newtonian fluid layer characterized by sur-
face shear and dilatational viscosities.

Under these conditions, several sources can be iden-

tified for mechanical dissipation and the ultimate damp-
ing of the shape oscillations of the drop. These include

viscous effects associated with the bulk fluids that ap-

pear in two distinct forms: one associated with the os-

cillatory viscous boundary layers which form near the

interface between the drop and surrounding fluid, and
the other associated with the flows far from the inter-

face which resemble potential flow although they dissi-

pate energy through weak viscous action. Surfactants

and surface rheology additionally contribute to dissipa-

tion in other ways. The surface shear and dilatational

viscosities dissipate energy within the interface in much

the same way as the viscous dissipation in the three-
dimensional bulk fluids just mentioned. Moreover, as

various parts of the interface locally increase or decrease

in area during shape oscillations, the concentration of

surfactants locally decreases or increases. This leads
to gradients in surfactant concentration on the interface

where the process of gradient diffusion of surfactants

within the interface, itself an irreversible process, leads
to energy dissipation. Also, the Marangoni flow re-

sulting from this non-uniformity in surface tension con-

tributes to viscous damping.

This paper outlines the derivation of a general me-

chanical energy equation for such a system. It con-

tains dissipation terms accounting for each of the mech-

anisms described above. The energy equation is applied
to a slightly perturbed axisymmetric drop oscillating in

a low-density surrounding fluid to derive an approxi-

mate ordinary differential equation (resembling that of

a damped harmonic oscillator) which describes the time

evolution of pure shape modes.

In parallel to the analytical treatment, the imple-

mentation of a boundary integral method for potential

(i.e. inviscid) flow is presented for the case of a two-

dimensional drop oscillating in vacuum. The effect of a

constant surface dilatational viscosity is included in the

computations by combining the tangential and normal

components of the dynamic boundary condition into a

single equivalent expression. This expression, combined

with Bernoulli's equation for the pressure, the kinematic

boundary condition and the regularized Fredholm inte-

gral equation of the second kind representing Laplace's

equation for potential flow, produces a coupled set of

nonlinear equations that allow the time evolution of the

drop's shape to be followed. Surface dilatational vis-

cosity is shown to have a damping effect on the free

oscillations of the drop.

1 Introduction

Shape oscillations of drops and bubbles have been stud-

ied since the works of Kelvin [6] and Rayleigh [15] who

determined the linearized frequencies of inviscid shape

modes. Their work was extended by Lamb [7], Reid

[16] and Valentine et al. [19], who included estimates

of damping by weak viscous effects in the bulk. Miller

& Scriven [11] and Marston [10] further identified the

important role played by the boundary layers near the
interface in damping the oscillations. The additional ef-

fects of surfactants and surface theology, known to have

a strong influence on the base frequency and damping

rates of drops [1] and bubbles [3], have been analyzed

by Lu & Apfel [8] and Tian et al. [181. Numerical

studies, based upon the boundary integral method, of

the dynamics of weakly viscous drops were initiated by

Lundgren and Mansour [9] and have been extended to

include surfactant effects by Tian et aL Apfel et al. [1]

used numerical simulations in conjunction with experi-
mental studies of drops in microgravity to quantify the

important role of surfactants in such systems.

The present contribution also focuses on the role of

surfactants and surface rheology on drop oscillations in

the absence of gravity. In addition to Marangoni effects

which arise due to non-uniformity of surface tension
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2 THE ENERGY EQUATION

along the interface in the presence of surfactants, the in-

terracial layer of adsorbed surfactants may also possess

separate rheological properties [4] which change the dy-
namics. Our goal is to identify the specific mechanisms

through which surfactants and surface rheology affect

the system and quantify each of them. An approach

based on a global mechanical energy balance is outlined

and allows the damping rates of pure shape modes by

bulk viscosity, surface viscosity, boundary layer dissi-

pation, and surfactant transport to be quantified. This

energy equation generalizes the work of Hsu & Apfel

[5], who used a simplified energy equation to approxi-

mate the rate of damping of a viscous drop with a con-

stant surface tension oscillating in the quadrupole mode.

Supplementing the analytical treatment, a numerical im-

plementation of the boundary integral method for poten-
tial flow is described which incorporates the effects of

surface viscosity. The method is presented for the os-
cillations of two-dimensional liquid drops possessing a

constant surface dilatational viscosity.

2 The Energy Equation

Consider a liquid drop of density/3 and viscosity fi to

be suspended in an infinite medium of density p and

viscosity I_, in the absence of gravity. If both fluids are

assumed to be incompressible and Newtonian, the con-

tinuity and momentum equations take the forms:

Dv

V-v=0, p_-=V-II for xCI'(t), (1)

^Dr
_7--_ = 0, p-_-_- = V-I:I for x C f'(t), (2)

where v and _" respectively refer to the medium and

drop velocity fields, l'(t) and l'(t) are the material vol-
umes of the medium and drop, and the stress tensors II

and _ are given by

II = -pI + 2pE,

I_l = -])I + 2i*F,,

Here p and/3 represent the pressures in the two fluids,

I is the isotropic unit tensor, and E and 1_ are the sym-
metric and traceless rate-of-strain tensors.

These field equations need to be supplemented by

boundary conditions at infinity - that the velocity field

vanishes and the pressure tends to a constant value -

and at the interface S(t) between the drop and medium.
The interface is assumed to be covered with surfactants

and therefore possesses its own rheological properties,

which may be characterized by the surface stress tensor
1-I_ [4]. The boundary conditions at the interface thus

assume the respective forms [4]:

V:V _ Vs
fi.(II-fl) = -_7_.II_ ) for xES(t).

(5)

The velocity at the interface is denoted by v s and is

equal to the fluid velocities in the medium and drop
evaluated at S. The surface stress tensor is also assumed

to be "Newtonian" and defined by a Boussinesq-Scriven

constitutive relationship of the form [4, 12, 17]

1-I_ = aI_ + 2psEs + nsI_(_7_ • vS). (6)

In this expression, or, iz_, and _;s respectively refer to
interfacial tension, surface shear viscosity, and surface

dilatational viscosity. Also, Is = I - tiff is the surface
unit tensor, _r = Is ' _7 is the surface gradient, and

E_ is the symmetric and traceless surface rate-of-strain

tensor defined by

Es = 2[(_T svS) . Is + Is . (VsvS)T] - _Is(Vs "VS).

(7)
The derivation of the mechanical energy equation

begins by dot multiplying the momentum equation in

(1) by v, the momentum equation in (2) by _', integrat-
ing over the respective material volumes l "(t) and l "(t),

and adding the resulting equations. Assuming that the

concentration of surfactants F varies only slightly from

the equilibrium concentration Fo, the surface tension

may be modeled as a linearly decreasing function of the
form

_(r) = °o +,3(r-to) _= d_(ro) < 0.(8)
' dr

With the aid of the boundary conditions (5), as well

as the bulk and surface Reynolds Transport Theorems

and Divergence Theorems [2, 12], the following energy

equation is finally obtained [ 13]

_d {I,'.E. + s.E.} =
dt

- L' [21z_(E,: E,) + n,(V_.v_) 2] dS
(0

- [ 3(F - Fo)(V, • v') dS, (9)
ds (t)
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3 BOUNDARY INTEGRAL METHOD

where be obtained to describe the time-dependent dynamics:

K.E. + S.E. =

_.(t)_pv2dl'+f,(t)_fii'2aq"

+ [ ao dS (10)
(t)

is the total kinetic energy plus surface potential energy

of the system. The first two terms on the right-hand

side of (9) represent dissipation in the two bulk fluids,

The next two terms are similarly identified as dissipa-

tion terms arising from surface shear and dilatational

viscosities. The last term on the fight-hand side of (9)

requires further attention. This term can be shown [13]

to be either dissipative or provide an additional surface

energy storage depending on the surface Peclet number

characterizing surfactant transport. The complete sur-

factant transport equation for an insoluble surfactant is

itself given by

OF
-- +v".V,F+ (V,.v*)F = Vs.(D,V,F), (11)
0t

_-_-f + 4_of = -_

25a2o l- 5fiao+12#,+1%+__] ],

D8 . .

i_(t) + ---_-og(t) = ro](t).

Here, _2,o is the base frequency of the quadrupole shape

mode given by (8ao/fiaao) 1/2. The coefficient of j/on

the right-hand side of the first equation represents damp-

ing due to viscous dissipation in the bulk liquid inside

the drop, due to surface shear and dilatational viscosi-
ties, and due to the Stokes boundary layer in the gas

surrounding the drop. In addition, the term which cou-

ples that equation to surfactant concentration g(t) can

be partially dissipative, depending on the value of the

surface Peclet number ,,O2,oa_/Ds [13]. These results
are obtained in the limit where the density and viscosity

of the drop phase are large compared with those of the

surrounding fluid.

where Dr is the surface diffusivity of surfactants.

The mechanical energy equation obtained above may

be used to derive an approximate ordinary differential

equation (ODE) which describes the evolution of pure
shape modes of three-dimensional axisymmetric liquid

drops [ 13]. The key results are outlined here and the

reader is referred to the original article [13] for details.

The approximation involves using the potential flow so-

lution to estimate the kinetic energy and the dissipation

integrals in the bulk, the oscillatory Stokes boundary

layer velocity field to estimate the dissipation rate in

the thin layers surrounding the interface, and the sur-
face velocity from this analysis to estimate the surface

dissipation integrals. For the quadrupole mode of oscil-
lation, with the radial coordinate of surface points given

by

r = ao[1 + f(t)P2(cosO)], (12)

and the surfactant concentration by

F(0, t) = Fo + g(t)P2(cosO), (13)

where ao and Fo are the respective equilibrium radius
and surfactant concentration, f(t) and g(t) the time-

dependent amplitudes of deformation and concentration

change (both assumed small), /2.2 the second Legendre
polynomial, and 0 the polar angle measured from the

axis of symmetry, the following system of ODEs may

3 Boundary Integral Method

The numerical problem considers the shape oscillations
of a two-dimensional inviscid drop in vacuum without

gravity. It is assumed that the drop has an undeformed

equilibrium radius Oo and the interface is highly con-
taminated with insoluble surfactants so that the interfa-

cial properties ao, Its, and h's are constants. Parameter-

izing all the variables with arclength s, using the invis-
cid stress tensors _ = -pI and II = 0, and expressing

the gradient V = _O/Os + fiO/&_ and velocity of the
interface v s = _vs + fly,, in terms of local coordinates

and fi, the tangential and normal components of the

dynamic boundary condition in (5) take the respective
forms:

0 [Oe_
0 = _ _ +,,,,g], (14)

p = C{oo + ,_.4-82 + ,,,,c]}, (15)

where C is the local curvature of the two-dimensional in-

terface. By first noting that v, is necessarily periodic in

total arclength L and integrating (14) twice with respect

to arclength around the drop these two components may
be combined to obtain

p = C{_o + ._B(t)}, (16)

617



4 CONCLUSIONS

where the time-dependent quantity B(t) is defined by

xfoLB(t) = -_ v,_Cds. (17)

Nondimensionalizing time with (pR 3 / ao) 1/2, length

with ao, and mass with pa3o the boundary integral for-

mulation of the governing equations for this system at a

particular instant in time are

L

o Kx(si,s)[q(sl-q(si)]ds=O(.s_), (18)

L/.

_P(si) = - Jo I(2(s_,s)[q(s) - q(s,)]d_k, (19)

Do ( s_ = 1
-_-,, _ Iv_(s)l 2 - c(.s){1 + _::B}, (20)

(s) = v'(s). (21)

Equation (18) represents the regularized double-layer

potential boundary integral formulation of Laplacc's eq-

uation for potential flow [14]. I_'_ is the weakly singular
kernel defined as the projection of the gradient of the

two-dimensional Green's function for Laplace's equa-

tion in the direction normal to the interface, q(s) is a

distribution of dipole densities around the drop inter-
face, and _ is the scalar velocity potential. _b = g,l_ is

the vector velocity potential perpendicular to the plane

and is related to the velocity of the surface through its

curl, V x @ = v '*. This vector velocity potential also re-

lates to the distribution of dipole densities through an in-

tegral containing the weakly singular kernel A'e, which

is defined as the cross product of the unit normal with

the gradient of the two-dimensional Green's function.

The dynamic boundary condition (16) has been used

with Bernoulli's unsteady equation for pressure to ob-
tain (20), where the time derivative is with respect to an

observer moving with the velocity of the interface v s

and h': = ns(ao/pR'_) 1/2 is the nondimensional sur-

face dilatational viscosity. Equation (21) represents the

kinematic boundary condition.

The above equations were discretized by dividing

the periodic boundary into N equally-spaced nodes in
the interval 0 < s < L. All derivatives were calculated

using standard O[(_k.s) 6] finite-difference schemes and

the regularized integral relations in (18) and (19) were

discretized into matrix relations using a trapezoidal qu-
adrature rule between the nodes. The numerical scheme

first initialized the shape of the drop x and the scalar ve-

locity potential _p.The velocity of the interface was then

calculated using LU decomposition to solve the matrix

equivalent of (18), performing the matrix multiplication
in (19), and taking derivatives of the vector velocity po-

tential with respect to arclength. Using the updated ve-

locity of the interface and curvature, the scalar veloc-
ity potential and drop shape could be integrated in time

using a fourth-order Runge-Kutta scheme. To prevent

clustering and allow for the calculation of the deriva-
tives, the nodes were redistributed to equal spacing in

arclength after each time-step. The accuracy of the nu-
merical method was checked by calculating the con-

served quantities of total energy and volume in time.

Interestingly, the numerical problems reported by [9],

arising from the instability of modes with wavelength

twice the nodal spacing, did not appear in these two-
dimensional calculations.

Figure 1 shows an example of the damping effects
of surface dilatational viscosity for an initially perturbed

two-dimensional inviscid drop. The calculation used 40

nodes to simulate nearly 40 oscillation periods in the

quadrupole mode of moderate initial amplitude. Al-
ternate plots of similar energy versus time curves re-
veal that the attenuation in time due to surface dilata-

tional viscosity in two-dimensional drops cannot be rep-

resented by an exponential or power law.

4 Conclusions

An energy equation has been derived for the general
case of a viscous drop suspended in a viscous medium

with surfactants contaminating the interface. It contains

terms clearly identifying dissipation contributions from

the viscous effects in the bulk fluids, surface shear and

dilatational viscosity effects in the interface, and surfac-

rant transport.

An efficient numerical boundary integral method has

been developed which incorporates the effects of a con-

stant surface dilatational viscosity in simulations of an
oscillating two-dimensional inviscid drop. Surface di-

latational viscosity is shown to have a significant damp-

ing effect on the otherwise undamped inviscid oscilla-

tions. This damping was found to be neither an expo-

nential nor a power law.
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Figure 1: Total energy of the drop versus time after an initial condition r = 1 + 0.1 cos(20) and _ = 0 for the cases

• "* 1 (dashed)._* = 0 (solid line), and r:_ =

References

[1] APFEL, R.E., T1AN, Y., JANKOVSKI, J., SHI., T.
& CHEN, X., Free oscillations and surfactant stud-

ies of superdeformed drops in microgravity, Phys.
Rev. Letters, 78, 1912-1915 (1997).

[2] ARIS, R., Vectors, Tensors and the Basic Equa-
tions of Fluid Mechanics, Dover (1962).

[3] ASAKI, T.J., MARSTON, P.L. & TRINH, E.H.,

Free decay of shape oscillations of bubbles acous-

tically trapped in sea water, J. Fluid Mech., 300,
149-167 (1995).

[4] EDWARDS, D.A., BRENNER, H. & WASAN,

D.T., lnterfacial Transport Processes and Rheol-
ogy, Butterworth-Heinemann (1991).

[51 HSU, C.J. & APFEL, R.E., Model for the

quadrupole oscillations of drops for determining
interracial tension, J. Acoust. Soc. Am., 82, 2135-

2144 (1987).

[6] KELVIN, LORD, Oscillations of a liquid sphere,

Mathematical Papers, Clay & Sons (1890).

[71 LAMB, H., Hydrodynamics, 6th ed., Cambridge
University Press (1932). (Reprinted by Dover,

1945.)

[8] Lu, H.L. & APFEL, R.E., Shape oscillations

of drops in the presence of surfactants, J. Fluid

Mech., 222, 351-368 (1991).

[9] LUNDGREN, T.S. & MANSOUR, N.N., Oscilla-

tion of drops in zero gravity with weak viscous ef-

fects, J. Fluid Mech., 194, 479-510 (1988).

[10] MARSTON, P.L., Shape oscillation and static de-

formation of drops and bubbles driven by modu-

lated radiation stresses -- theory, J. Acoust. Soc.

Am., 67, 15-26 (1980). [Erratum 71, 511-512,

(1982).]

[11] MILLER, C.A. & SCRWEN, L.E., The oscilla-

tions of a fluid droplet immersed in another fluid,

J. Fluid Mech., 32, 417--435 (1968).

[12] NADIM, A. Introduction to surface rheology with

application to dilute emulsions of viscous drops,

Chem. Eng. Commun., 148-150, 391-407 (1996).

[13] NADIM, A. & RUSH B. M, Mechanisms con-

tributing to the damping of shape oscillations of

liquid drops. In Third International Conference

on Multiphase Flow, Lyon, France, June 8-12,
(1998).

[14] POZRIKIDIS, C., Introduction to Theoretical and

Computational Fluid Dynamics, Oxford Univer-

sity Press (1997).

619



REFERENCES

[15] RAYLEIGH,LORD,The Theory of Sound, 2nd ed.,

Macmillan (1894). (Reprinted by Dover, 1945.)

[16] REID, W.H., The oscillations of a viscous liquid

drop, Quart. Appl. Math., 18, 86-89 (1960).

[17] SCRIVEN, L.E., Dynamics of a fluid interface,

Chem. Eng. Sci., 12, 98-108 (1960).

[18] TIAN, Y., HOLT, G., APFEL, R.E., Investigations

of liquid surface theology of surfactant solutions

by droplet shape oscillations: Theory, Phys. Flu-

ids, 7 (12), 2938-2949 (1995).

[19] VALENTINE, R.S., SATHER, N.E & HE1DEGER,

W.J., The motion of drops in viscous media,

Chem. Eng. Sci., 20, 719-728 (1965).

62O


