
4.1 - A History of the Improvement of Internet Protocols Over Satellites Using ACTS

Mark Allman
NASA Glenn Research CenterlBBN Technologies
21000 Brookpark Road MS 54-2
Cleveland, OH 44135
Phone: 216-433-6586; Fax: 216-433-8705
E-mail: mallman @grc.nasa.gov

Hans Kruse
McClure School of Communications Systems Management
Ohio University
9 South College Street
Athens, OH 45701
Phone: 740-593-4891
E-Mail: hkrusel @ohiou.edu

Shawn Ostermann
School of Electrical Engineering and Computer Science
Ohio University
322 Stocker Center
Athens, OH 45701
Phone: 740-593-1234
E-Mail: ostermann@c .ohiou.edu

Abstract

This paper outlines the main results of a number of ACTS experinlents on the efficacy of using standard
Internet protocols over long-delay satellite channels. These experinlents have been jointly conducted by NASA's
Glenn Research Center and Ohio University over the last six years. The focus of our investigations has been the
inlpact of long-delay networks with non-zero bit-error rates on the performance of the suite of Internet protocols.
In particular, we have focused on the most widely used transport protocol, the Transmission Control Protocol
(TCP), as well as several application layer protocols. This paper presents our main results, as well as references
to more verbose discussions of our experinlents.

1. Introduction

The work presented in this paper started in 1994 as a series of experinlents to determine the impact of a geosyn
chronous satellite link in a network path on the standard TCPIIP Internet suite of protocols [Ste94). Our investiga
tions are important for several reasons. First, commercial satellite companies would like to deliver Internet services
to consumers and institutions in remote areas of the world not covered by good terrestrial connectivity (e.g., Hughes
DirecPC). Our investigations have helped to define and identify the extensions to the Internet protocol suite that are
beneficial to delivering Internet content over network pams containing long-delay satellite channels. In addition,
NASA is interested in possibly employing off-the-shelf Internet protocols to meet its near-Earth communication
needs. Therefore, our experinlents focus on improving standard Internet protocols in ways that are both safe in all
network environments and beneficial to long-delay networks.

We utilized NASA's Advanced ConmlUnication Technology Satellite (ACTS) to conduct our experiments. We
used VSAT ground stations and data rates between roughly 0.75 Mbps and 1.5 Mbps (i.e., between half and full
Tl rate)in all our experiments. While these tests were conducted at relatively modest data rates, me results scale
with the available bandwidth (as hown in [IBF+99]). Generally, our experiments were conducted with a sender
at NASA's Glenn Research Center and a receiver at Ohio University (or vice versa). However, several of our
experiments were performed with a loop back circuit, such that the sender and receiver were located in the same
location.

The bulk of our experiments focus on the Transmis ion Control Protocol (TCP) [Pos8I). TCP is the Internet's
most used transport protocol. TCP provides reliable, in-order transmission of data to applications. In addition,
TCP provides end-to-end congestion control mechanisms that attempt to protect the network against con.gestion.

NASNCP- 2000-21 0530 279

col/apse (a state when the network is very busy, but little useful work is being done) [FF99] . Additionally, we have
explored several application layer protocols that utilize TCP.

This paper is organized as follows. Section 2 outlines our early work in determining the problems with using
standard Internet protocols over ACTS. Section 3 discusses an application layer mitigation to TCP's shortcomings
over long-delay networks. Next, Section 4 outlines our experiences using standardized solutions to mitigate TCP'
performance problems over ACTS. Section 5 discusses twO experimental mechanisms introduced into TCP and the
impact of these extensions on performance. Section 6 outlines our investigation of the performance of HTTP, the
application layer protocol used on the World-Wide Web. Section 7 discusses our investigation of using a realistic
traffic mix across a network path containing an ACTS atellite circuit. Section 8 outlines our experiments into
TCP performance over circuits with non-zero bit-error rates. Finally, Section 9 gives our conclusions and outlines
future work in this area.

2 Problems with TCPIIP Over ACTS

Our early work [Kru95] illustrates two main causes of performance degradation in TCP file transfers. First, in
long transfers the advertised window supported by off-the-shelf TCP stacks is inadequate. The throughput (or
bandwidth attained) for long-lived TCP transfers is given by the formula in equation I [pos81], where W is the
advertised window size, B is the bandwidth of the network link and RTf' is the round-trip time between the data
sender and the data receiver.

W = B·RTT (1)

The advertised window is the largest amount of data that can be buffered by the receiver. Therefore, the adver
tised window represents the largest amount of data a TCP sender can transmit before receiving an acknowledgment
(ACK) from the receiver. As Band/or R'lT grow, ltV must be increased accordingly. However, TCP places a limit
on W by only allocating 16 bits of header space for the value. Thus, the advertised window can be no more than
64 KB'. The effect of this limit is that TCP cannot fully utilize the bandwidth of a network path with a large
delay-bandwidth product. In addition, many TCP stacks use advertised window sizes much less than 64 KB by
default. For instance, the hosts used in our early experiments [Kru95] utilized advertised window sizes of 24 KB.
Therefore, the maximum throughput of a transfer over ACTS was approximately 44,000 bytes/second regardless
of the amount of capacity available over the satellite circuit.

The second problem noted in [Kru95] pertains to short transfers. Our experiments illustrate that TCP's slow
start algorithm [Jac88, APS99] was the cause of the performance degradation. The slow start algorithm is part of
TCP's congestion control mechanism. The algorithm introduces a congestion window (cwnd) , which is the sending
TCP's measure of the current capacity of the network. Slow start begins conservatively, by initializing cwnd to
I segment. For each ACK received, cwnd is increased by I segment, providing an exponential increase in the
sending rate. The slow start algorithm terminates when loss is detected (assumed to indicate network congestion)
or cwnd reaches the advertised window size. For long transfers, this slow probing of the network to determine
the capacity is a small percentage of the transfer time and therefore does not have a large negative impact on
performance. However, for short transfers, TCP is never able to fully utilize the capacity of the network path.
For instance, a 2 segment transfer will take 2 RTTs (or more than I second) after TCP's three-way handshake is
completed even if the network capacity to transmit both segments was available when the transfer started.

Figure 1 from [All97] illustrates the low utilization of a satellite network during slow start, as compared to a
network with a terrestrial delay (80 ms in this model). l ust before 4 seconds into the transfer over the satellite
link the slow start phase completes. During that same amount of time, the terrestrial network is able to transfer
22 times the amount of data as is sent over the satellite link! After slow start, both networks send the same number
of bytes/second, but obviously the slow start phase hurts the performance of the long-delay connection much more
than the shorter-delay terrestrial network connection.

3 An Experimental Application Layer Mitigation

The above problems led to the development of an application-level tool to enhance the efficiency of data transfers.
We extended the the File Transfer Protocol (FTP) [PR85] to use multiple TCP connections to transfer a given file,

I For the first sets of experiments we did not consider TCP's optional window scaling mechanism [fflB92I. which allows for advertised
windows larger than 64 KB. due to the Jack of implementations of the mechanism. Later experiments did utilize these TCP extensions. as
outlined in section 4.

NASNCP-2000-210530 280

19+07 .-----,------.-----,------,-----,-----,------,-----,

le+06

'" !!!
8: 100000

~
.~
c
e!
f- 10000
~
o

1000

Satetlite Network -
Terrestrial Network -------

- ------ - -.--- ---

1 00 ~----~-----L----~------~----~----~----~----~

o 0.5 1 ~ 2 ~5 3.5 4
Time (seconds)

Figure 1: Data transferred as a function of time over satellite and terrestrial network paths.

rather than one connection as specified in [PR85]. This multiplied TCP's aggressiveness by the number of TCP
connections being utilized. The syntax and semantics of the extensions to FIP are outlined in [A097]. The ACTS
experiments involving xftp are outlined in [AOK95, AK096, All97] .

Figure 2 shows the throughput of a 5 MB transfer as a function of the number of parallel data connections used
to transfer the file over an ACTS Tllink. Each connection used an advertised (maximum) window of 24 KB which
yields throughput of approximately 44,000 bytes/second, as outlined above. Therefore, we would predict that
4 connections would be required to fully utilize the capacity of the channel (approximately 192,000 bytes/second).
However, the best performance is obtained when using 6-8 data connections. We believe it takes more than four
connections to reach optimal performance due to segment overhead, as well as lingering slow start effects. When
using 6-8 connections we achieve nearly optimal throughput when all protocol overhead is taken into account.
Using more than 8 connections leads to sub-optimal performance (but, still much better than using a single con
nection). This drop in throughput is caused by segment losses due to increased congestion from competing TCP
flows. Part ofTCP's congestion control mechanism calls for a reduction in cwnd when a loss is detected, as the loss
is assumed to indicate network congestion. As soon as xftp starts over-running router buffer queues, thu losing
segments, some of the connections reduce their sending rate, so the time required for the entire transfer increases.

The following are some of our key findings from our xftp ACTS experiments:

• Large advertised windows are required. As predicted by the experiments outlined in the previous section,
using a larger effective window size (i.e. , the sum of the advertised window sizes across all connections used
by xftp) allows full utilization of the available capacity for long-lived data transfers.

• Larger initial congestion window sizes help. Using N connections in parallel speeds up slow start by using
an effective initial cwnd of N segments. This cuts several RTTs off the transfer time and could be especially
useful for short transfers.

• The throughput of the transfer is sensative to the number of connections employed. Using too few connec
tions results in an effective advertised window less than the delay-bandwidth product and thus an underuti
lization of the capacity. Using too many connections leads to loss on the channel and a reduction in sending
rate due to network congestion. Finding a general mechanism to choose the proper number of connections
during the data transfer proved difficult [AK096].

• The multiple TCP connections acted much like a "selective acknowledgment" (SACK) mechanism. In other
words, xftp's loss recovery is more efficient than the standard TCP loss recovery [APS99] because it was

NASA/CP--2000-210530 281

170,----~==~--------__=_-__:_-,
Throughput -+-

160

ISO

140

-g 130
o
g
~ 120
;;,
~110

100

90

80

70*----.----.----r----l~---I~--~1~4--~1~6--~~--~
TCP Connections

Figure 2: Performance of xfrp as a function of the number of parallel TCP connections employed over an ACTS
Tl circuit.

spread across many connections that each keep track of their own sequence space. Standard TCP can effec
tively recover from one lost segment per RTT [FF96]. Therefore, J...ftp can effectively recover from roughJy
N losses per RTT (assuming 1\ parallel connections).

Finally we note that using multiple parallel TCP connections is not "friendly" to the network in general because
each indication of network congestion reduces clVl7d by less than the reduction would be if one connection were
used [FF99]. Therefore, while xftp is a valuable tool in learning about network dynamics it is not recommended
for general purpose use.

4. Standard Solutions

During our investigations, the Internet Engineering Task Force (JETF) standardized options to TCP to mitigate
some of the problems outlined above. RFC 1323 [JBB92] introduced an option for TCP to advertise windows
much larger than 64 KB. Meanwhile, RFC 2018 [MMFR96] introduced a selective acknowledgment (SACK)
option to TCP. Using the SACK option, receivers can inform senders exactly which segments have arrived, rather
than relying on TCP's cumulative acknowledgment. This allows a TCP sender to efficiently recover from multiple
lost segments without reverting to using a costly retransmission timeout to determine which segments need to be
resent [FF96].

We conducted a series of ACTS experiments using these two new TCP options [AHK097, Hay97]. Figure 3
shows the throughput for a number of different variants of TCP as a function of transfer size. We used a half-Tl
ACTS link for these experiments. The xftp experiments use 4 parallel connections. First, we turn our attention to
the two experiments run using effective advertised window sizes of the delay-bandwidth product (which produces
no network congestion and therefore no segment loss). In this case, xftp slightly outperforms the one connection
Reno transfer. The anlount by which the throughput differs between the transfers gets smaller as the transfers grow
longer. This indicates that the difference is due to thexftp transfer using a larger initial cwnd.

The lower three lines on the plot represent experiments with a larger than necessary advertised window. The
increased advertised window leads to dropped segments due to buffer overflow in a router in the middle of the
network path. Standard Reno TCP performs the worst in these experiments. As shown, using TCP with the SACK
option drastically increases throughput. Using).ftp provides still better throughput. However, xftp has a more
aggressive response to network congestion than a single TCP connection. When one loss occurs on the set of
parallel connections only one of the four TCP connections reduces its cwnd by half, leading to an overall reduction
of an eighth in response to a single congestion indication (rather than the standard reduction of one half) in this

NASA/CP--2000-210530 282

70

20

Reno- DBP Window
XFfP- DBP Window

Reno- DBP+28K Window
XFfP- DBP+28K Window

SACK- DBP+28K Window

'"-~'''

. ,'

,~

" .• . l!t "

10 L-____ ~ __ ~~~~~~ ______ ~~~~~~~~

1.00* 10"5 1.00* 10"6
Transfer Size (bytes)

1.00* 10"7

Figure 3: Throughput of various versions of TCP as a function of transfer size,

experiment. The more aggressive response to congestion used by xftp explains the throughput benefit shown in the
plot.

The following is a summary of our conclusions from this set of ACTS experiments:

• When the network is uncongested, TCP's large window extensions (RFC 1323 [JBB92]) provide nearly the
same behavior as xftp , modulo the larger initial cwnd utilized by xftp .

• TCP's SACK option provides drastic throughput improvements in the face of network congestion.

• The results of these experiments alluded to the fact that the throughput of a transfer was quite sensative to
the advertised window chosen. Hayes [Hay97) emulated our ACTS setup and shows the disastrous effects
that choosing the wrong advertised window size can have on performance.

The ACTS experiments outlined in this section were influential to the IETF's TCP Over Satellite Working
Group as RFC 2488 [AGS99) was prepared. This RFC outlines the standard IETF mechanisms that should be used
by hosts transfering data over network paths containing satellite links.

s. Experimental TCP Mitigations

Our next short set of ACTS experiments involved investigating ways to mitigate the underutilization of the network
during the slow start phase of a TCP transfer. The first mechanism we studied was using a larger initial cwnd, as
suggested by the experiments outlined in the last section.

Figure 4 from [All97) shows throughput improvement as a function of the initial cwnd size for various transfer
sizes. As shown, the throughput increases as the initial value of cwnd is increased. The impact is especially
significant for short transfers. The impact for the longer transfers is much less due to the relatively short amount
of time spent using slow start when compared to the total time required to transfer the file.

These experiments, along with several additional investigations [AH098, PN98, SP98) , influenced the IETF's
decision to make the use of a larger initial cwnd a sanctioned experimental mechanism [AFP98) .

Our second set of experiments involved a slightly modified algorithm for increasing cwnd during slow start.
As outlined in section 2, cwnd is increased by 1 segment for each ACK received during slow start. Many TCP
receivers employ the delayed acknowledgment algorithm [Bra89, APS99] . That is, receivers are allowed to refrain
from sending an ACK for each incoming segment. However, an ACK must be sent for every second full-sized
segment received. Furthermore, an ACK can not be delayed for more than 500 ms. By reducing the number of

NASAlCP-2000-210530 283

200.-------~--~--~~~~~~------~----~~--~~~~
30,720 byte transfer ---+-

180

160

140

~
1:' 120

'" E
'" e 100
c.
E
S 80
l?-
'" " 60 e
~

40

20

102,400 byte transfer ---x---
204,800 byte transfer

1.048,576 byte transfer - 6 ,-
5,242,880 byte transfer _.-

,'i/

/
;/(

/x

,/ .. ~ ..

~~e~~~f~~~~~~~~===
-20~------~--~--~~~~~-L------~----~~--~~~~

1 10 100
Initial Window (segments)

Figure 4: Throughput improvement as a function of initial cwnd size.

ACKs sent to the data originator, the receiver is slowing the growth of cwnd. We introduced an algorithm called
byte counting which allows the sender to increase cwnd based on the number of new segments acknowledged by
each incoming ACK, rather than on the number of ACKs received.

File Size Throughput
Improvement (%)

30KB 9.4
lOOKB 16.9
200KB 15.3

1 MB 8.5
5MB 9.5

Table 1: Throughput improvement when using byte counting rather than ACK counting to increase cwnd.

Table 1 shows the performance improvement of using byte counting as opposed to traditional ACK counting
[AlI97]. As shown, the improvement for short transfers is better than for long transfers (even though the im
provement is good for long transfers, as well). This shows that byte counting is important in slow start, but is
also important during congestion avoidance (the phase whereby TCP probes for additional network capacity by
increasing cwnd linearly).

Byte counting has been adopted by the IETF as a proposed standard during the congestion avoidance phase
of TCP connections [APS99] . Further refinements to byte counting have been suggested since the above ACTS
experiments [A1l98, A1199). Our hope is to develop an experimental document within the IETF to allow some form
of byte counting during slow start in addition to its already sanctioned use during congestion avoidance.

6 HTTP Experiments

The next set of ACTS experiments we conducted employed the HyperText Transfer Protocol (HTTP) [BLFN96,
FGM+97], the application layer protocol used for World-Wide Web (WWW) transfers. HTTP uses TCP for
reliable transport of its data. Two versions of HTTP have been defined and are in widespread use on the Internet.
HTTP/l.O [BLFN96] transfers a single WWW "object" (HTML document, image file , etc.) per TCP connection.
Oftentimes, WWW browsers open multiple HTTP/l.O connections simultaneously to decrease the time required to

NASAlCP-2000-210530 284

L __ . _ ____ ~

transfer all objects necessary to render a web page. HTfP/ l.l [FGM+97] allows a TCP connection to be re-used
for transfering multiple WWW objects2 . In addition, HTTP/1.l provides a "pipelining" mechanism, whereby a
WWW browser can request any number of objects as soon as possible, rather than waiting until the previous object
has been transfered to request the next object.

18 r-------------r-------------,------------~

16

4

2
acts

1.0/C=4/4K=no
l.O/C=1/4K=yes
l.l /C=1/4K=no

1.1/C=1I4K=yes

----)(----

..... *
·········8···_· .. ·

..... ~~, ..

~-...-/~./ ... ~.

.... _ __ . ___ ._ ... ___ ... __ ._._ ... _ .. _. :31!:.¥: ,;;.-.:

LeRC
WWWPage

oufr

Figure 5: Comparison ofHTTPvariants.

Test

Figure 5 shows the results of our ACTS experiments with both versions of HTTP. The Iahds along the x-axis
represent different WWW pages. The WWW pages used in our study have differing characteristics (number of
objects, size of objects, etc.). See [KAGT98, KAGTOO] for a description of the page charaetenstics. Each line on
the plot is labeled with three settings used for the particular experiment, as follows.

I. The version ofHTfP used (" l.0" or "1.1").

2. The number of parallel TCP connections employed to transfer the WWW object' 1'"(' = J " \\ here :r is the
number of connections used).

3. Whether the underlying TCP stack used a larger initial cwnd, per the proposal outllnl'd In I AFP981 C'4K= z"
where z is "yes" when using a larger initial cwnd or "no" when using the standard Inlllal nl"lll/).

The following are the key results from our study of HTTP transfers over ACTS.

• HTTP/l.l generally outperforms HTTP/l.O, even when HTTPIl .O is used in conjunction with multiple si
multaneous TCP connections.

• When using only one TCP connection, HTTP/1.0 performs quite badly, even when using a larger initial
congestion window. This happens because each object must endure TCP's slow start phase. When using
a single connection with HTTP/l.l , the effects of slow start are diminished because the TCP connection is
reused a number of times. Therefore, the small objects that make up the WWW page are combined to behave
more like a bulk transfer and therefore improve network utilization (as discussed in the previous sections).

• As outlined in the previous section, using a larger initial value for the congestion window improves perfor
mance for short transfers (which are characteristic of WWW traffic).

2HTTP/ I.O also has a "keepalive" option for using persistent connections. Use of this option in HTTP/ I.O implementations is limited and
the mechanism is equivalent to the base HTTP/I. l persistent connection mechanism. Therefore, we do not present any results using HTTP/ I.O
with keepalives, as our experiments indicated the HTTP/ l.l (without pipelining) case is roughly equivalent.

NASAfCP--2000-210530 285

• Kruse [KAOTOO] defines a model for HTTP transfers that accurately predicts the transfer time of web pages
of various size.

These experiments aided the IETF in deciding to make the use of a larger initial value for cwnd an experimental
mechanism [AFP98]. In addition, these experiments highlight the importance of carefully designing application
protocols such that the interactions between the application and the underlying transport do not hinder performance.

7. Representative Network Traffic

Up to this point our experiments have involved a single file transfer over an otherwise unloaded network path. In
our next set of ACTS experiments, we strive to assess the ability of a realistic group of TCP transfers to utilize
the available bandwidth across a network path containing a satellite channel [KAO+99]. As shown in the previ
ous sections, short TCP transfers can underutilize the available bandwidth when no competing traffic is present.
However, our previous experiments have not assessed the ability of a group of TCP connections to utilize the full
capacity of a long-delay network path. We developed a traffic generator called trafgen [HeI98], based on tcplib
[DJ91] for these experiments. First, we take a packet-level trace of network traffic from a production network (e.g.,
the network connecting NASA ORC to the Internet). The trace is then analyzed using rep trace [Ost97] for traffic
characteristics. Finally, these characteristics are inlported into rrafgen, which then generates a realistic mix ofTCP
connections based on the particular production network that produced the original trace.

250000 ,-----,-----,--,..---,----,----,

B 200000

~ ~ 150000

~
.2 100000

~
5 50000

oL---~----~--~----~--~-...l
o 2000 4000 6000 8000 10000

Time (seconds)

(a) Aggregate throughput.

1800 ro---=--'----,----,----,--...,-,

1600

1400

§ 1200
v
~ 1000 c:
0
u 800
.~
v 600 «

400

200

0

-

0

+ T

--<-

...l

2000 4000 6000 8000 10000
Time (seconds)

(b) Number of active connections.

Figure 6: Behavior of a realistic mix of traffic as a function of time over an ACTS T1 circuit.

Figure 6 shows the results of a trafgen experiment over a TI ACTS circuit between NASA ORC and Ohio
University. As illustrated, the network is fully utilized in many instances, while a large number ofTCP connections
(or users) is easily supported. This indicates that a representative group ofTCP connections can utilize the available
bandwidth. While the long RTT may increase the transfer time of some individual TCP transfers (when compared
to the same transfer over a network with a shorter RTT), it does not prevent the sum of the transfers from fully
utilizing the satellite channel.

8. The Impact of Bit-Errors

The final experiment we conducted over ACTS attempts to quantify the impact of non-zero bit-error rates (BER)
on TCP performance. An outline of this experiment and some preliminary results are given in [KOAOO]. These
experiments were conducted by adjusting the Earth-station at Ohio University such that it did not track the inclined
orbit ACTS satellite. As the satellite moved with respect to the dish, the BERs observed varied. We ran long-lived
(l hour) TCP flows through the network during this time and measured the bit-error rate using an out-of-band
channel. Further details can be found in [KOAOO]. The TCP stack employed in this set of experiments used a

NASAlCP-2000-21 0530 286

-------------------------- - - -- ._- -- - -

512 KB advertised window (via the high performance TCP options outlined in ection 4). This allows the network
path to determine the performance of a TCP connection, rather than having the performance dictated by a limit on
the sending or receiving host (this situation simulates socket buffer autotuning [SMM98]). In addition, the stack
employed the TCP SACK option with the rate-halving algorithm [MSML99].

200000

180000

~ 160000
c::
8 140000
~

~ 120000
>.. e 100000
.....
5. 80000
~
:::l 60000
~
f-o 40000

20000

o
le-09 le-08 Ie-07 le-06 Ie-OS

Bit-Error Rate

Figure 7: Throughput as a function of bit-error rate.

0.0001

Figure 7 shows the throughput obtained by a TCP connection as a function of the bit-error rate of the satellite
channel with 90% confidence intervals. The figure shows that with no bit-errors (denoted on the plot as le-09)
the TCP connection is able to full y utilize the Tl capacity of the satellite channel. However, as expected, as the
BER increases the throughput obtained by TCP decreases. The root of this problem is the fact that TCP cannot
determine why a particular segment was dropped. Therefore, in an effort to behave conservatively, TCP interprets
all segment loss as an indication of network congestion and reduces cwnd accordingly. Therefore, when a segment
is lost due to corruption, TCP mistakenly decreases the sending rate. Research into protocol mechanisms that
allow TCP to determine the true cause of a segment loss is ongoing. RFC 2760 [ADG+OO] contains a discussion
of several of these mechanisms. Our results are consistent with analytical models of TCP performance that show
throughput is indirectly proportional to the loss rate [MSM097, PFTK98].

9. Conclusions and Future Work

Over the last six years, our ACTS experiments have shed light on the performance of the Internet protocol suite
over networks containing long-delay links. Table 2 gives a summary of each of our experiments, the papers written
about the experiments and the IETF standards influenced by our results. The following are the key results from
our experiments.

• TCP can fully utilize the capacity of a satellite link when transfering large amounts of data.

• Short transfers often underutilize the capacity of the network, especially in long-delay environments. While
we have introduced mechanisms that may mitigate this problem, more research in this area would be useful.

• Application layer protocols can have a large influence on the performance of a data transfer. For instance,
using bener application level mechanisms drastically decreased the transfer time required to load WWW
pages. Careful attention to the design of future application protocols is required to avoid poor interactions
between the transport and application layers.

• A realistic mix of network traffic can fully utilize the available bandwidth in a satellite network.

NASNCP- 2000-210S30 287

Experiment Outcome Papers Standards
Contributions

Preliminary FfP Larger effective advertised windows are needed. [Kru95] RFC 2488 [AGS99]

Experiments Slow start decreases performance for short transfers.

xftp Experiments While throughput improves when using multiple [AOK95] RFC 2760 [ADG+OO]

parallel connection . choo ing the right number [AK096]

of connections is difficult. [AIl97]

High Perfornlance Large windows help perfornlance but lead to a [AHK097] RFC 2488 [AGS99]
TCP Extensions higher probability of dropping multiple packets

from a window of data and thus causing a drastic
reduction in the transmission rate.

SACK The SACK option significantly improves throughput [AHK097] RFC 2488 [AGS99]

Experiments throughput over satellite channels. [Hay97]

Larger Initial cIVlld Using a larger initial cIVlld improves throughput. [A1l97] RFC 2414 [AFP98]

Experiments especially for short transfers. RFC 2581 [APS99]

Byte Counting Using a modified cIVlld increase algorithm [AlI97] RFC 2581 [APS99]

Experiments increases throughput. especially for short transfers

ffITP Experiments Using old versions of ffITP increases WWW response [KAGT98]

time significantly. Using HITP/l.l with pipelining [KAGTOO]
provides significant benefits over satellite links.

Experiments with a The Internet protocol suite is able to fully utilize [HeI98]

Realistic Traffic Mix the capacity provided by satellite channels when a [KAG+ 99]

representative traffic load is used.

Bit-Error Rate Tests As the BER increases the throughput obtained by [KOAOO]

TCP decreases due to the mistaken assumption
that lost segments indicate network congestion.

Table 2: Summary of key results .

• As the BER of a channel is increased the TCP throughput decreases. Future reo eareh I ' needed into ways to
distinguish between congestion-based segment loss and conuption-based segment 1o".

These key results have been influential in several Internet Engineering Task Fore.: \\"rl..ln~ Groups. In partic
ular. the results aided the TCP Over Satellite WG in producing RFC 2488 [AGS99] that lk :nO':' " hieh standard
TCP mechanisms should be used when transfering data over satellite channel and RFC ::"'tl(l [ADG-OO] which
describes some of the open research topics in this area. Additionally. our ACTS n r}(:nmcnh hdpcd the IETF
decide to increase the initial value of cwnd to 2 segments in RFC 2581 [APS99] and nll>r.: npcnmentally to
3--4 segments in RFC 2414 (AFP98].

NASA/CP-2000-210530 288

I

I
I
I

I
i

__________ 1

1
I
I
I

I
1

I

Acknowledgments

We would like to thank all our colleagues at NASA GRC and Ohio University, whose help was invaluable during
our experiments. We would like to especially thank Bob Bauer, Kul Bhasin, Dan Glover, Jim Griner, Chris Hayes,
Eric Helvey, Will Ivancic, Paul Mallasch, Cindy Tran and Mike Zerruc. In addition, these experiments simply
would not have been possible without a great deal of help from the ACTS operations team. We especially thank
Terry Bell, John Diamond, Peter Harbath and Paul McMa ters. Finally, we'd like to thank the many colleagues
with whom we have discussed our experiments for their comments and suggestions over the years. While there are
too many people to list, the input we have received from the research community has been invaluable. Our thanks
to all!

References

[ADG+OO) Mark Allman, Spencer Dawkins, Dan Glover, Jim Griner, John Heidemann, Tom Henderson, Hans Kruse, Shawn
Ostermann, Keith Scott, Jeff Sen1ke, Joe Touch. and Diepchi Tran. Ongoing TCP Research Related to Satellites,
February 2000. RFC 2760.

[AFP98] Mark Allman, Sally Floyd, and Craig Partridge. Increasing TCP's Initial Window, September 1998. RFC 24 14.

[AGS99) Mark Allman, Dan Glover, and Luis Sanchez. Enhancing TCP Over Satellite Channels Using Standard Mecha
nisms, January 1999. RFC 2488, BCP 28.

[AHK097) Mark Allman, Chris Hayes, Hans Kruse, and Shawn Ostermann. TCP Performance Over Satellite Links. In
Proceedings of the 5th imel71ationai Conference on Telecomlllunication Systems. pages 456-469, March 1997.

[AH098) Mark Allman, Chris Hayes , and Shawn Ostermann. An Evaluation ofTCP with Larger Initial Windows. COlllputer
Communicalion Review, 28(3), July 1998.

[AK096) Mark Allman, Hans Kruse, and Shawn Ostermann. An Application-Level Solution to TCP's Satellite Ineffi
ciencies. In Proceedings of the First Intel71ationai Workshop on Satellite-based Information Services (WQSBIS),
November 1996.

[A1l97] Mark Allman. Improving TCP Performance Over Satellite Channels. Master's thesis, Ohio University, June 1997.

[A1198] Mark Allman. On the Generation and Use of TCP Acknowledgments. Computer Communication Review, 28(5),
October 1998.

[All99) Mark Allman. TCP Byte Counting Refinements . Computer Communication Review, 29(3), July 1999.

[A097] Mark Allman and Shawn Osternlann. Multiple Data Connection FTP Extensions. Technical Report TR-19971 ,
Ohio Universi ty Computer Science, February 1997.

[AOK95) Mark Allman, Shawn Ostermann, and Hans Kruse. Data Transfer Efficiency Over Satellite Circuits Using a
Multi-Socket Extension to the File Transfer Protocol (FTP). In Proceedings of the ACTS Results Conference.
NASA Lewis Research Center, September 1995.

[APS99) Mark Allman, Vern Paxson, and W. Richard Stevens. TCP Congestion Control, April 1999. RFC 2581.

[BLFN96) Tim Berners-Lee, R. Fielding, and H. Nielsen. Hypertext Transfer Protocol- HTTP/1.0, May 1996. RFC 1945.

[Bra89]

[OJ91]

[FF96)

[FF99)

Robert Braden. Requirements for Internet Hosts - Communication Layers, October 1989. RFC 1122.

Peter Danzig and Sugih Jamin. tcplib: A Library of TCPIIP Traffic Characteristics. Technical Report CS-SYS-
91-01 , University of Southern California, October 1991.

Kevin Fall and Sally Floyd. Simulation-based Comparisons of Tahoe, Reno, and SACK TCP. Computer Commll
nications Review, 26(3), July 1996.

Sally Floyd and Kevin Fall. Promoting the Use of End-to-End Congestion Control in the Internet. IEEElACM
Transactions on Networking , 7(6), August 1999.

[FGM+97) R. Fielding, Jim Gettys, Jeffrey C. Mogul , H. Frystyk, and Tim Berners-Lee. Hypertext Transfer Protocol -
HTTP/l.l , January 1997. RFC 2068.

[Hay97] Chris Hayes. Analyzing the Performance of New TCP Extensions Over Satellite Links. Master's thesis, Ohio
University, August 1997.

[HeI98] Eric Helvey. Trafgen: An Efficient Approach to Statistically Accurate Artificial Network Traffic Generation.
Master's thesis, Ohio University, June 1998.

[lBF+99] William Ivancic, David Brooks, Brian Frantz, Doug Hoder, Dan Shell , and David Beering. NASA's Broadband
Satellite Network Research. IEEE Communications Magazine, July 1999.

NASAlCP- 2000-210530 289

[Jac88] Van Jacobson. Congestion Avoidance and Control. In ACM SIGCOMM, 1988.

[JBB92] Van Jacobson, Robert Braden. and David Borman. TCP Extensions for High Perfonnance, May 1992. RFC 1323.

[KAG+99] Hans Kruse, Mark Allman, Jim Griner, Shawn Ostermann, and Eric Helvey. Satellite Network Perfonnance Mea-
sllfements Using Simulated Multi-User Internet Traffic. In Proceedings of the Seventh Intel71ational Conference
on Telecommunication Systems, March 1999.

[KAGT98] Hans Kruse, Mark Allman, Jim Griner, and Diepchi Tran. HTTP Page Transfer Rates Over Geo-Stationary Satel
lite Links. In Proceedings of the Sixth Inrel71arional Conference on Telecolllmunication Systems. March 1998.

[KAGTOO] Hans Kruse, Mark Allman. Jim Griner. and Diepchi Tran. Experimentation and Modeling of HTTP Over Satellite
Channels. Intemational Joumal of SaTelliTe CommunicaTion, 2000. To appear.

[KOAOO] Hans Kruse, Shawn Ostennann, and Mark Allman. On the Perfonnance of TCP-based Data Transfers on a Faded
Ka-Band Satellite Link. In Proceedings of The 6th Ka-Band Utili:arion Conference. June 2000.

[Kru95] Hans Kruse. Perfonnance of Common Data Communications Protocols Over Long Delay Links: An Experimental
Examination. In 3rd IntemaTional Conference on TelecommllnicaTion SYSTems Modeling and Design, 1995.

[MMFR96] Matt Mathis , Jamshid Mahdavi , Sally Floyd, and Allyn Romanow. TCP Selective Acknowledgement Options,
October 1996. RFC 2018.

[MSML99] Matt Mathis, Jeff Sernke, Jamshid Mahdavi, and Kevin Lahey. The Rate-Halving Algorithm for TCP Congestion
Control, August 1999. Internet-Draft draft-mathis-tcp-ratehalving-OO.txt (work in progress).

[MSM097]

[Ost97]

[PFTK98]

[PN98]

[pos81]

[PR85]

[SMM98]

[SP98]

[Ste94]

Matt Mathis, Jeff Senlke, Jamshid Mahdavi , and Teunis Ott. The Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm. Compllfer Communication Review. 27(3),luly 1997.

Shawn Ostennann. tcptrace, 1997. Available from http://jarok.cs.ohiou.eduJ.

Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP Throughput: A Simple Model and
its Empirical Validation. In ACM SIGCOMM, September 1998.

Kedarnath Pod uri and Kathleen Nichols. Simulation Studies of Increased Initial TCP Window Size, September
1998. RFC 2415 .

Jon Postel. Transmission Control Protocol, September 1981. RFC 793.

Jon Postel and Joyce Reynolds. File Tranfer Protocol (FTP), October 1985. RFC 959.

Jeff Sernke, Jamshid Mahdavi , and Matt Mathis. Automatic TCP Buffer Tuning. In ACM SIGCOMM, September
1998.

Tim Shepard and Craig Partridge. When TCP Starts Up With FOllf Packets Into Only Three Buffers, September
1998. RFC 2416.

W. Richard Stevens. TCPIIP Illustrated Volllme I: The Protocols. Addison-Wesley, 1994.

NASAJCP-2000-21 0530 290

4.1 - A History of the Improvement of
Internet Protocols Over Satellites

Using ACTS

Mark Allman
NASA Glenn Research Center/BBN
Cleveland , Ohio

Hans Kruse
Ohio University
Athens, Ohio

Shawn Ostermann
Ohio University
Athens, Ohio

Sixth Ka-Band Utilization Conference/ACTS Conference 2000, May 31 - June 2, 2000, Cleveland, Ohio

ativation

• Delivering Internet content via satellite to places that are

not necessarily well covered by good terrestrial connectivity .

• NASA is interested in possibly using off-the-shelf products

for space communication.

NASN CP-2000-210530 135

L __

Network Setup

• Half-to-full T1 ACTS channels

- Some loop-back, some between GRC and au

• ~ 560-575 ms RTT

• Unless otherwise noted we used standard ACTS FEC

• NetBSD workstations as data clients and servers

• Cisco 25xx routers

TCP Problem 1

• The TCP window size (W) required to f i ll a network
channel with B W bits/second of capacity and a round-trip
time of RTT is:

W == B W ·RTT

• For a T1 ACTS circuit W ~ 100 KB

• As originally written , TCP's maximum window size is
64 KB.

• So, TCP's maximum rate over an ACTS link is roughly
117 KB /secon d regardless of the amount of capacity
available.

- For instance, an ACTS T1 circuit (~192 KB/secon d)
can never be fully utilized.

- (Note: This limit has been significantly raised since
these experiments).

NASNCP-2000-210530 l36

I

I

• To avoid congestion collapse , a set of congestion control
algorithms were added to TCP in 1988.

• The slow start is designed the gradually increase TCP 's
sending rate at the beginning of a transfer.

I

• Slow start works by sending a single segment into the
network and waiting for the corresponding acknowledgment
(ACK) .

• In the remaining RTTs TCP doubles the number of
segments sent per RTT, until. ..

- There is no more data to send

- TCP hits the maximum window size

- TCP detects packet loss (i.e., congestion)

• Our first cut at a "solution" to these problems was an
application-layer modification to the FTP protocol.

• We designed an FTP client and server that would use
multiple TCP connections to transfer a file, rather than the

standard single connection.

- This effectively increased TCP's maximum window size.

NASNCP-2000-210530 137

I

L __

A.n Application Level Mitigation (cont.)

170~------~====~----------------~--~--~
Throughput +-

160

150 ...

140

] 130
o u
Q)

~ 120
CI)

2
;>.,

~ 110 .

100

90 ..

.. ..~. ',"

.;.

_ .. i·

80 ············,······ : ,_.. ~ ...••. ;. • •. _.. • •• _.0· .~ , ... • ••.

70~--~--~----~--~1~~1=---~1~4 ---=16~~=---~~
TCP Connections

Standards-Based Solutions

• The IETF has come up w ith two mechanisms that help

TCP over satellite channels:

- RFC 1323 defines an option that allows TCP to use

window sizes much larger than 64 KB .

<, I

- RFC 2018 defines a selective acknowledgment (SACK)

option that allows TCP to recover from lost segments
more effectively.

NASNCP-2000-210530 138

. - .. -- ._- ---~ -_. -- - --

\

I

• Congestion-free network:

- TCP+Window Scaling performed nearly as well as xftp

with 4 connections (i.e., full utilization for a long

transfer)

• Congested network:

- TCP+Window Scaling+SACK performed much better

than TCP without SACK, but was outperformed by xftp.

• xftp is more aggressive during congestion than
standard TCP, so this result is understandable

• Beginning slow start with an initial congestion window
larger than 1 segment.

- Our ACTS experiments show a 25% performance
improvement when using a 4 segment initial congestion
window to transfer a short file .

• Using byte counting rather than standard ACK counting to
increase the congestion window.

- Basing congestion window increase on the number of
bytes acknowledged rather than the number of ACKs
received makes the increase more accurate (due to
delayed ACKs, ACK loss, etc.).

- Our ACTS experiments show a 17% performance
improvement when using byte counting.

N ASNCP-2000-21 0530 139

~---~--~

HTTP Experiments

• We used both HTTP/1 .0 and HTTP/1.1 in our ACTS
experiments, in conjunct ion with several options on both

protocols.

• We found at least a factor of 2 difference in performance

between the best set of options a nd the worst .

• Using a single HTTP /1.1 connection with the pipelining
option provided the best performance.

• This set of experiments illustrates the importance of good
design in application protocols and highlights the need to

remain constantly vigilant as new application protocols are

developed.

I

Representative Network Traffic · -,

• Up to this point our experiments had consisted of only a

handful of flows traversing the network simultaneously. But ,

this is not a realistic condition for production networks ...

• Therefore, we wrote a tool that generates random network

traffic that is based on network traffic observed in

prod uction networks.

- Generates: WWW, FTP, SMTP, NNTP, Telnet

• We wanted to gauge how well a significant amount of

network traffic could utilize a network path with a satellite

channel.

NASNCP- 2000-210530 140

----~ --- ---- ----

I
l_

250000 ~----~----~----~----~----~~

~ 200000
::::
o u
Q)
r:/:J

'U3 150000
B
;;>-.
.0
'--'

= .S 100000 ro
N
~ 50000

o ~----~----~----~----~----~~
o 2000 4000 6000 8000 10000

Time (seconds)

• As expected, a non-zero bit-error rate has the effect of
reducing TCP performance because the segment losses are

interpreted as indications of network congestion.

- TCP reduces the sending rate when detecting network
congestion .

• A more verbose discussion of our ACTS tests and results

will be given on Friday morning.

NASNCP- 2000-210530 141

-~- - --

____________ S_t_a_n_d_a_r_d_s __ C_o_n_t_r_ib_u_t_i_o_n_s ________ ~r

• These IETF RFCs were directly or indirectly influenced by

our ACTS experiments:

- RFC 2414 : Experimental proposal to increase the initial

congestion window size.

- RFC 2488 : Discussion of the standard mechanisms that

should be implemented when using TCP over satellite

channels.

- RFC 2581 : Standardized the use of a 2 segment initial

congestion window and byte counting during congestion

avoidance.

- RFC 2760: Outline of ongoing research in TCP over

satellite networks.

Conclusions

• TCP can use the full capacity of a satellite channel when
transferring large amounts of data.

• Short transfers often underutilize the capacity.

- We have mitigated this, but future research is needed .

• Application layer protocols can have a big impact on
performance. We must be vigilant when we design these
protocols.

• A realistic mix of network traffic can fully utilize the
available capacity of a satellite channel.

• Future work (starting tomorrow!) includes investigating
additional host and router mechanisms to further increase
data transmission performance over satellite links.

NASNCP-2000-210530 142

I

I

I
1

I

!
--~

\@it(

if.!

Our work simply would not have been possible without the

assistance , patience and hard work of many people in the

ACTS operations team and the research community. Our

thanks to all!

NASAlCP-2000-210530 143

\ L-_____ _

