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Preface

The exploration of Mars will be a multi-decadal activity. Currently, a scientific program is underway,
sponsored by NASA’s Office of Space Science in the United States, in collaboration with international
partners France, Italy, and the European Space Agency. Plans exist for the continuation of this robotic
program through the first automated return of Martian samples in 2014. Mars is also a prime long-term
objective for human exploration, and within NASA, efforts are being made to provide the best integration
of the robotic program and future human exploration missions. From the perspective of human exploration
missions, it is important to understand the scientific objectives of human missions, in order to design the
appropriate systems, tools, and operational capabilities to maximize science on those missions. In addition,
data from the robotic missions can provide critical environmental data — surface morphology, materials
composition, evaluations of potential toxicity of surface materials, radiation, electrical and other physical
properties of the Martian environment, and assessments of the probability that humans would encounter
Martian life forms. Understanding of the data needs can lead to the definition of experiments that can be
done in the near-term that will make the design of human missions more effective.

This workshop was convened to begin a dialog between the scientific community that is central to the
robotic exploration mission program and a set of experts in systems and technologies that are critical to
human exploration missions. The charge to the workshop was to develop an understanding of the types of
scientific exploration that would be best suited to the human exploration missions and the capabilities and
limitations of human explorers in undertaking science on those missions.

This report serves to document the discussions and conclusions of the workshop, as presented there.
Little editorial license has been taken by the editor, except to organize the presentations and recommen-
dations in a logical order, based on the agenda that was developed prior to the workshop. The workshop
consisted of invited presentations on the topics identified in the agenda and group discussions on several
questions. Nearly all of the presentations made at the workshop are included in this report. One of the
questions was discussed in plenary session and three were addressed in subgroups that met separately for
about two hours on the workshop’s second day, following which the subgroup chair made brief presenta-
tions to the entire group. Although time was limited, the efforts provided by the subgroups was well
focused and useful.

Funding for this workshop was provided by the Office of Space Flight in NASA Headquarters and
organized and managed by the Lunar and Planetary Institute, in Houston, Texas. An informal program
committee consisted of Gary Martin (Office of Space Flight), Jim Garvin (NASA HQ, Office of Space
Science), Ron Greeley (Arizona State University, workshop Co-Chairman), Doug Cooke (NASA Johnson
Space Center, workshop Co-Chairman), Lewis Peach (Universities Space Research Association), and
Mike Duke (Lunar and Planetary Institute).

Goddard Space Flight Center provided the facilities for the workshop. Special thanks are due to Beverly
Switalkski (GSFC) who made arrangements for space and meeting support and Rich Vondrak(GSFC)
who participated in the workshop and handled many small logistics problems in real time.

Publications support was provided by the Publications and Program Services Department of the Lunar
and Planetary Institute. '

Michael B. Duke
Lunar and Planetary Institute
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AGENDA
January 11, 2001

8:30 AM Welcoming remarks: Gary Martin, Jim Garvin, Scott Hubbard
8:50 Organization and Objectives of the Workshop: Ren Greeley, Doug Cooke (Co-chairs)

Opening session: Chair, Doug Cooke

9:10 Scientific Goals of the Mars Exploration Program — Jim Garvin

9:40 Roles of Robots and Humans in Mars Exploration— Matt Golombek

10:00 Problem Statements — Exploration Requirements ~ What information is required to address problems
as understood now, and how will (should) that change in the next 10-12 years? Presentations and
discussion.

- Astrobiology — Chris McKay

- Climatology — Dan McCleese

- Geology/Geophysics — Ron Greeley
11:30 Plenary Discussion: What scientific investigations are most likely to require humans?
(Jim Garvin, chair, Clive Neal, rapporteur)

What are the characteristics of scientific investigations that make on-site (or at least near at hand)
human participation essential? What are the characteristics of human explorers that meet these
needs? Need trained observers? instant feedback from observations? complex manipulations?
intregrative powers? Etc? What will the important scientific questions be in a post-reconnaissance
exploration program? Are they accomplishable without direct human participation? Are scientific
investigations posed independently of the context of their implementation modes? How does the
implementation mode mold the investigation? Will more complex investigations be posed for
human missions than for robotic missions? How might these differ?

12:30 Lunch
Afternoon session Chair: Ron Greeley

1:30 PM Two Astronauts” Perspectives on Mars Exploration — John Grunsfeld and Scott Horowitz
2:15 Cognitive Prostheses — Ken Ford

2:50 Environmental constraints to surface operations (radiation, toxicity, etc.) — John Charles

3:15 Physical limitations (EVA) — Richard Fullerton

3:40 Contamination by human explorers — Mark Lupisella

4:05 Telerobotic operation of systems (rovers, other equipment) by astronauts on Mars — David AKkin
4:30 Analog studies in preparation for human exploration — Kelly Snook

4:55 Strategic issues for human exploration linking robotic and human exploration — Doug Cooke

5:15 Adjourn

January 12
Morning Session Chair: Doug Cooke

8:30 AM Mars Field Geology, Biology and Paleontology Workshop Results — Pat Dickerson
9:00 Scientific Tasks for Humans

- Field investigations - Bill Muehlberger

- Drilling — Jim Blacic

- Geological Sample analysis —~ Clive Neal

- Astrobiology Sample Analysis — Marc Cohen

- Plant growth experiments — Ken Corey

- Exploration for Resources ~ Jeff Taylor



2 LPI Contribution No. 1089

"11:00 AM Plenary Discussion: Can the expected contributions of astronauts to Martian exploration be
quantified? (W. Mendell, chair, R. Vondrak, rapporteur)

What are the criteria that one would use to judge whether a task should be carried out by
astronauts, astronaut-supervised robots, or autonomous robots? Can characteristics of task
intensity (such as critical observations/hour, number of sites investigated/day, etc.) be utilized?
Can characteristics of quality of observation (amount of information/observation, reproducibility
of observation, etc.) be used? How can the ability to synthesize information on site be quantified?
What is the value of on-site analysis done by astronauts? Can the benefits of ability for astronauts
to cormmunicate with scientists on Earth be quantified? How should public interest be
incorporated into the criteria?

§{2:00 Lunch
1:00 Breakout Session Discussions

What understanding of Mars is most likely to influence scientific objectives of human missions?
(Jim Garvin, chair, Clive Neal, rapporteur)

Categories for consideration include: (a) scientific knowledge. (b) knowledge of the environment.
Among the current MEPAG objectives, which ones are likely to remain unanswered within a
reasonable robotic program? Would they become objectives for human exploration? Which
knowledge will most influence site selection?

What science and exploration tasks are best suited to humans? Why? (Jim Head, chair, Kelly
Snook, rapporteur)

Some tasks for consideration: reconnaissance sample collection, in-situ field observations,
teleoperated robotic investigations, sample analysis, data evaluation and interpretation, in-situ
rock analysis, drilling.

What information/technology should be developed and managed to minimize human limitations
and maximize science on human missions (continued)? (Chuck Weisbin, chair, Richard
Fullerton, rapporteur)

What are the principal limitations of humans on a Mars exploration mission? The two principal
types of limitations would seem to be the adequacy of time, resulting from the need for humans to
conduct activities other than science, and reduction of capability that arises from having to work
in the environment at great distances from Earth. Which of these are more important from the
point of view of scientific accomplishment and what technology can be developed to optimize the
return of science from human exploration missions?

3:00 PM Reports from breakout sessions — Chair: Ron Greeley
5.00 PM Adjourn

ey



Pd

Human Exploration of Mars 3

Workshop Recommendations

1. Take steps to develop a multi-disciplinary community for science-human
exploration.
a. Establish a HEDS-Office of Space Science Working group with science
community representation
b. Establish a “SDT” for a new OSS/HEDS A/O dealing with issues of
science and human exploration
2. Continue and develop new mechanisms for open communications
a. Develop a web site (Frassanito) where the results of this workshop and
similar information can be accessed
b. Organize cooperative HEDS- science session(s) at technical conferences
c. Create a list server (Neal) that provides a mechanism for interaction
between scientific and technical workers in human exploration of Mars
3. Define controlled experiments that quantify the productivity of humans and their
robotic tools as scientific explorers, including:
a. Field exploration
b. Analytical capabilities
c. Communication of findings between the planetary surface and scientists
and lay people on Earth
4. Explore the capabilities and limitations of robotic tools as aids to human explorers
through development of:
a. Mechanical aids, for complex manipulations, such as sample preparation
b. Observational tools and techniques.
c. Data systems
5. Promote better understanding of the ways in which information gained from
previous missions can be utilized in the design of field experiments, particularly
in:
a. Site selection and characterization
b. Training of astronauts in Mars material recognition and field and sample
data interpretation.

Some guiding principles in developing this community include:

1. The program integration process between the Office of Space Science, Office
of (human) Space Flight, and Office of Biomedical and Physical Sciences
should be strengthened

2. Emphasize incorporation of new ideas and technologies into NASA programs
and architectures

3. Work on attracting young people to exploration

Additional recommendations:
1. Support analog studies, such as Haughton Crater field experiments
2. Conduct student design competitions with community evaluators.
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CONSIDERATION OF QUESTIONS

Four questions were put to the workshop participants:

o Can the contribution of astronauts to martian exploration be quantified?

" What investigations require humans?

> What science and exploration tasks are best suited for humans?

i What information and technologies should be developed for human explorers?

These questions were discussed by subgroups (except for the first, which was discussed
in plenary). The summaries of these discussions, as presented in briefing charts compiled

at the workshop, are included here.
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Can the contribution of astronauts
to martian exploration be
quantified?

An lll-posed Question?

W. W. Mendell

@ What is the Decision?

EXFLORKTICN DFFICE

+ Should a task be performed by
— An astronaut,
— An astronaut-supervised robot, or
- An autonomous robot
» Based on
- Task intensity
— Precision of observation
— Task complexity
- PR value
- Etc.

Why do we need measures to determine an agent at the task level?

@ A Contrast of Processes

EXPLORATION OFFICE

« The process of scientific research is
designed to produce an incremental
addition to a body of knowledge.

— The purpose of peer review is to ensure that a
usable result is obtained through proper
planning & utilization of accepted procedures.

— Special expertise and often highly specialized
instrumentation is required.

— Funded research has low risk of unusable
data.

Human Exploration of Mars 3

@ Why Quantify?
ﬂ

EPLORATIOR OFFICE

+ Any process whose quality cannot be
measured is not worth doing
— Well-known NASA Administrator
» Choices can justified if rankings can be
established.
- Step 1: Convene a panel of experts to derive
quantitative measures which, when put into an
algorithm, will generate a ranking of quality.

— Step 2: Apply the measures using a weighting
algorithm which will yield desired rankings.

@ - EXFLONATION OFFICE.

aumm— o———

Cornerstones of the NASA Mission:
Science and Exploration

Although the two activities are related, they are
qualitatively distinct modes of discovery.

The Space Science Enterprise uses robots for misslons.
The Human Enterprise {(HEDS) uses the word
‘exploration’.

Is there a dichotomy where NASA science implies robots
and NASA exploration implies astronauts?

@ A Contrast of Processes :mwzmm|
[ ——————

+ Exploration is a term used when little information
exists prior to an investigation.

— New information is expected, but its utility is unknown.

—~ Sponsors of Exploration expect new ‘discoveries' that will
lead to unpredictable benefits.

— Tools of Exploration are general rather than specialized
because phenomena to be encountered are known only
generally.

— Peer review of Exploration is limited to assessing the success
and safety of the planned activities.

- Reconnaissance Is a form of exploration In which the suite of
phenomena Is thought to be known though not quantified.
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—@ A Contrast of Processes m @ Agents of Science & Exploration Eﬁ'
— = | s —
- Scientific observation requires

* Robots excel at repeated, precise actions in a
predictable environment.

» Humans are better suited to tasks which require

- Rigor
— Specialized training

~ Careful preparation of sample or measurement adaptability and flexibility.
— Controlled conditions + As scientific understanding of an environment
- Facilities grows, the discovery process becomes more

‘'scientific’ and less ‘exploratory’.
_ Experience-based expedition plannin « Ultimately, the thorough ‘scientific’ characterization
P P P 9 of an environment requires instrumentation so

= Flexibility sophisticated or massive that it cannot operate in
— A set of general skills and broad knowledge the field. 'Sample return’ is required.

~ Ability to operate without infrastructure

+ Exploration benefits from

@ How to match task & agent? E‘E‘

= With the scientific community and the exploration
planners and the operations experts:
— Map investigations onto a short list of canonical landing sites.
~ Break Investigations into stages of observation and data
collection.
- Define generic activities involved in sorties.
+ Collect samples
« Take measurements and photos
+ Access unusual features
* Ete.
- Evaluate different modes of task completion using
multidisciplinary teams
- Decide what resources for scientific investigation shouid be
part of a surface mission on Mars.




Human Exploration of Mars 7

Science and the Human Exploration of Mars Workshop
January 11-12, 2001

Summary of plenary discussion on the question: “Can the expected contribution of astronauts to
Martian exploration be quantified?”
(Wendell Mendell, chair; Richard Vondrak, rapporteur)

Dr. Wendell Mendell (JSC) started the discussion by providing his viewpoints in several charts
(see attached). He questioned the premise that it is necessary or even desirable to produce a
quantitative calculation of the relative benefits of human compared to robotic activities. He
contrasted the roles of robotic and human agents, with robots as excellent at repetitive tasks in a
predictable environment and humans better suited to tasks that require adaptability. His
conclusion is that the agents have to be matched to the specific tasks, which vary with the
location and the stages of exploration.

The general audience discussion focused on the theme of identifying those tasks that are best
suited for humans and those that are best for robots.

William Muehlberger (U. Texas) asked the question of how canyons on Mars could be explored.
He pointed out that astronauts would need to travel in a pressurized vehicle and must be able to
remotely measure inaccessible rocks. Site selection could be based on orbital data for context.
Robotic reconnaissance could serve as a precursor to human exploration.

It was pointed out that, because of the cost of interplanetary travel, only a few astronauts
(perhaps 4 to 8) would be expected on Mars. Therefore, it would be necessary to offload work to
robots. An assertion was made that it is possible to measure human performance, as is done for
occupations as diverse as airline pilots and typists, so it should be able to establish quantitatively
the relative value of automated versus human productivity.

Pascal Lee (SETI Institute) said that EVA time is precious so humans should not be used for
dangerous or tedious tasks. He said that researchers at Carnegie Mellon had tested an automated
search for meteorites in Antarctica and found it more difficult than expected. Geologists were
needed to train the robots to improve their performance.

Jim Head (Brown U.) raised the issue of how the layered terrain could be investigated. In the
polar regions there are hundreds of layers, some only a meter thick, with both low slopes and
deep valleys. Exploration would require drilling of unexposed layers. John Rummel (NASA
HQ) indicated there might be a safety concern if volatilized carbon dioxide were released. Head
argued that we should first send robots, and then humans, with a cooperative strategy rather than
a competition (he made an analogy with humans using pigs to search for truffles).

Mendell said that any exploration strategy should be tailored to the context of the object of study,
with canyons and polar regions requiring very different approaches. A realistic approach could
be determined from prior experience in analogous situations.

Mike Duke (LPI) said that a difficulty with learning from analogs is that analog studies yield
primarily anecdotal data, with limited quantitative value. He cited the Russian space experience
as producing generally stories, rather than documented results. Another difficulty with analogs
is designing controlled interfaces.
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Mendell concluded the discussion by pointing out that 80% of what we know about the moon
(such as its age, composition, and processes) were evident in the rocks returned by Apollo 11.
So there is no substitute for collecting hard evidence as the way to solve difficult problems
(Mendell recalled the experience of Richard Feynman who was stunned to discover that the
Rogers Commission was uninterested in collecting evidence).
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Science and the Human Exploration of Mars Workshop
Plenary Discussion Report.
What Scientific Investigations are the Most Likely to
Require Humans

Over 50 investigations have been proposed for Mars - which ones would require
or would be enhanced by humans? Need to add “search for distinct life” (second
genesis) to the list of investigations.

Need favorable sites and search for evidence of life using robots. Humans would
be involved in the search for the “second genesis”.

Is the current robotic program good enough for enabling the proposed
investigations? Does it need ramping up? Do we need more robotic missions in
the plan? Robotic observations are never absolute and require human judgement.
Therefore, could the most sophisticated robotic missions be enhanced by human
presence? However, we are not going to decide that humans are better than
robots so we spend more money. Need to coach the “humans to Mars” concept
as an evolutionary process of humans in space - a question of national
pride/concern. Our job is to be proactive in this by saying “how can humans be
inserted into and expand the currently robotic exploration of Mars?”

Need to distinguish between simple and complex problems. Simple - robots are
to determine where local bedrock is, sample it, and bring it back for analysis.
Complex - multiple objectives at a given site that require human judgement. In
order to maximize exploration potential, both approaches need to be included in
mission planning.

Human advantage over robot - experience, judgement, and ability to create
hypotheses. Based on this, humans need to be inserted early in the program to
maximize the robotic capabilities (e.g., Pathfinder-type mission with humans -
could have brushed dust off surface of rock, operated rover from surface without
the communication lag time).

Decision to send humans to Mars will be political and, therefore, will be related
to risk. Risk can be reduced by knowledge and demonstrated technology. A
stepwise approach will demonstrate credibility in exploration, making the
insertion of humans a logical part of the program. The logical approach will
make it easier for future politicians to approve humans going to Mars.

There have to be clear objectives from which exploration strategies can be
developed. What specifically are the human objectives? Human missions will
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only get governmental support if there is a national interest involved. Science is
only one component that is driving Martian exploration. What would make it a
“national interest”? [Question posed but not answered].

The discussion should NOT be about humans OR robots. They have different
capabilities that operate on different time scales. Humans and robots should be
integrated into an exploration strategy. The current robot-only program needs to
be ramped up to prepare for humans (e.g., nuclear power, sample return - if we
can’t return samples can we return humans?).

Capability: should go to a site with many specific goals, but also be adaptable to
discover the unknown, so we need to be adaptable. This is a multi-parameter
problem that can only be resolved by humans going to Mars; they adaptable and
have the ability to iterate and synthesize. Humans allow you to deal with the
unexpected and they can fix broken robots!

What are the implications of inserting human/robot teams? What are the risks
that humans will be allowed to take on Mars? This will determine the role of
humans in the mission partnership. Humans should be sent to complex areas,
robots to simple areas. However, there is a need to see if there are viable spores
in and quantify the oxidation potential of the Martian soil before it is polluted by
the presence of humans.

Two fundamental parameters: access to samples and analysis of samples. Can
this be done by having robots collect the samples and the humans staying at base
camp in the lab to analyze them? Humans would be better at sample
preparation and sample selection for analysis - geological context and
documentation is critical. Humans need not be physically present, but the human
brain does - decisions need to be made in real time. A robot assistant could
repeatedly pick up and get basic characteristics of a rock sample that humans
could evaluate and tell the robot to go back and sample a selection of rocks. If
decisions were made on Earth, efficiency would be impaired because of the time
lag in communications. However, this approach could be used if, say, one were
looking for a needle in a haystack, such as looking for mantle nodules.

Currently, two classes of mission are envisaged - 30 day and 1.5 years. Don’t
want to be sitting around in a lab for the 30 day mission as time is precious.

With the 1.5 year mission there will be more time. Robots should be doing the
reconnaissance and pin-pointing interesting areas that humans would then visit.

What technology development track would need to be taken? Risk factors need
to be reduced by investigating how to sustain life (water, growing pants, etc.) on
the surface. Information is needed on the availability of water and radiation flux.
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A Possible Trajectory for Mars Scientific Exploration
Robots, Robots and
Robotic measurements- possibly Humans on
No humans on site humans Mars
Search for extant —  In-situ life detection
life x
Sample liquid H20 | Drill, sample water X
S.earch for bio- {— Prospect for fossils X
signatures
In situ analysis [ Fossils? Organics? H,0 x
Isolate test sites — H,O related geothermal? x
Evaluate 100’s of [— X
sites Does remote sensing
Ground truthand ~ |—  find water? x
Tests of H20
Wdentify key sites | Tocuson
H0 Human Mission
Global inventories | X Opportunities
l | ! | L] ,
MGS  Odyssey MER MRO  Smart  pgp Time
Gullies  Mexpress (03) (05) Mobile (Capability)
B reversals (01-03) Carps? ~ Lander
Hot Spots onr 0709
Know]edge Current Model
Human?
MSR

Reconaissance

» Time
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What science and exploration tasks are best suited to humans?

J. Head, Discussion Leader
K. Snook, Rapporteur

What science and exploration tasks are best suited to humans?

Notes from breakout discussion group
January 12, 2001

Attendance:
Jim Head, Chair
Kelly Snook, Rapporteur
—  Brian Wilcox
—  Peter Smith
—  Bill Muehlberger
— Ralph Harvey
—  Michael Sims
—  Mike Hecht
—  Steve Hoffman
—  John Taylor
— Ken Corey
—  Tom Sullivan
—  Dave Akin,
—  Marc Cohen
—  Cynthia Null
—  Tom Sullivan

Background discussion: what do humans bring to the picture?

Human Capabilities Relevant to Science and Exploration Tasks

Synoptic 3-D View, Both near-field and far-field

Rapid integration time

In-situ judgment

Rapid decision-making

Rapid mobility

Increased dexterity

Extended mobility (rover)

Increased exploration range

Ability to accept complex input and respond rapidly

Ability to deploy complex instruments

Ability to deploy instrument networks (e.g. gravimeters on Apollo 14)
Ability to deploy instruments/ networks in strategic places (e.g. geophones, seismometers)
Ability to maximize exploration integration (synergism)

Temporal integration of input + results (learning, creativity, intuition)
Serendipity, recognition, experiential leaps, ability to react and respond accordingly
Ability to redesign experiments and build tools

Generic strength and versatility

Maintenance of science equipment

Off-nominal response, ability to sense danger and say ‘no’

Ability to be debriefed and to debrief

Goal orientation vs. task orientation

13
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. Iterative experimental capability, spontaneous hypothesis and testing
. Ability to convey excitement and enthusiasm

What is the key element? Human brain is the key. In sensing and manipulation, human brain is
not necessarily as key. Realistic goal to have almost human-like manipulation and sensing.
Very high performance teleoperator in the next 10-20 years could exceed the capabilities of
humans.

Some Tasks for Consideration:

1) Reconnaissance sample collection
2) Insitu field observations

3) Teleoperated robotic investigations
4) Sample analysis

5) Data evaluation and interpretation
6) In situ rock analysis

7) Dirilling

8) Instrument deployment

9) Network deployment

10) Experimentation

11) Real time integration and decision making
12) Site region overview and integration

Example of scientifically rich and interesting site:
Mangala valles - Noachian upland cratered terrain
What would we want to do there?

Why assume smart tools vs. dumb tools like on earth. Intelligent decision making is better suited
to humans.

If you’re going to go to the trouble of sending the humans - marginal cost of having them go
EVA isn’t that large.

Example of human/robot system good on paper, but not good in practice — human to assist field
geologist in finding meteorites. Robot couldn’t keep up. Discussion of robots vs humans
regarding speed.

Are there things if you add time delay, etc remote operated scenario that the human can do that
machines can’t do better?

Proposed thought experiment: if you had all the money, budget, etc of a human program and did
it all robotically, would you be able to get the same science? Intuitive answer is no.
What studies/technologies are needed?

1) Well integrated, controlled, analog field studies and tests

2) Rover task/field tests and capability development

3) How best humans and robots work together

4) Technology development to increase sensing, mobility, and manipulation of robots, in the
context of performing science with humans

5) Develop “in laboratory” capabilities — analysis and handling

6) Extend human capabilities (?? Not sure what this means)

7) Mars reference landing sites and requirement definition

8) Identify crucial problems where technology will make a difference

9) Digging and drilling technology
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What information and
technologies should be developed
for human explorers?

C. Weisbin, Group Leader
R. Fullerton, Rapporteur

*Respective Human & Robot Strengths (ideal)
HUMAN (cognitive) ROBOT
» Flexibility *Physical strength and power
. Iéedundal'lcyt' «Speed of
. mmunicati -
ommunication movement/computation
» Learning 1
2 *Repeatability
» Taking risks C Foerh
. L ]
« Problem solving onstancy of performance
+ Decision-making *Short term storage capacity
+ FEtc. «Complete erase capability
« Not expendable *Reaction time
*Data acquisition, precision
*Expendable
*Compatibility at the human-robot interface is required to optimize the performance and
effectiveness of the overall human-robot system. Compatibility is required to get the best of both
worlds (human and robot) and not the worst.




16 LPI Contribution No. 1089

Robot & Human Surface Operations

Humans and Robots Complement Each Other .

*  Humans are supremely capable of working in unstructured situations
* Robots can do heavy duty work and provide force amplification

»  Human/robot cooperation enhances endurance, precision, reliability, speed,
situation awareness, etc.

* Robots can enhance human safety - it is safer to send robots to high-risk arcas

*  Accessibility - Machines can be built to function in a micro-world or a macro-world
not reachable by humans. :

* Division of Labor - Let Each Do What It Does Best

- Humans concentrate on supervising and ensuring the performance of the machine's functions, and
perhaps perception beyond signal processing.

-~ Machines can also be “wired” through tele-presence to emulate the dexterity of humans; this assumes
that an astronaut {s proximate to the robotic system so that there are no appreciable time delays.

— Human dexterity, versatility, adaptability, and intelligence are in many situations still unmatched by
any machine.

—~  Structurability and predictability of the work environment are real considerations. The greater the
communication delay (light time) the more autonomous the remote systems must be.

Robot & Human Surface Operations

Need More In-Depth Quantitative Analysis

*Relative strengths of humans and robots in performing a wide variety of tasks

is well-established CONCEPTUALLY
*Humans are unequaled in unstructured situations
*Robots are good at high-risk access
Etc.

*There is a wealth of EXPERIENCE to validate these general notions
*Armstrong’s decision-making in lunar terminal descent maneuver could
not have been done reliably with robotic spacecraft
*Robots have gone to “worse-than-hell” places (Venus, Jupiter) not
currently accessible to humans

*Systematic comparisons that validate these general concepts have not been

fully investigated for a wide range of envisioned surface operations .
*Need standardized METRICS to quantify performance
*Need rigorously defined criteria to EVALUATE relative performance
*Need controlled EXPERIMENTS to arrive at systematic comparisons ’
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Information/Technology Summary

Constraints/Limitations
Safety
Time availability
Time delay
Contamination
Task allocation (e.g. for one month exploration activity)
Relative performance
Human preference
Serendipity
Field and Test (maximize use of existing activity)
Read devices, rcal data
Required technology advances/systems analyses
Assure operations compatibility
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PRESENTATIONS



"l
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-SCIENCE AND THE HUMAN EXPLORATION -
OF MARS B

=Opening Conments................=
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1S EXPLORATION COMPLEMENTARY APPROACHES
ENCE RATIONALE)

H

REMOTE SENSING
IN SITU/ROBOTIC
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- MARS EXPLORATION BY HUMANS
A llocation of Time

PRE SELECTED DBJECTIVES

- Programmatic considerations.




24 LPI Contribution No. 1089

&

Science and the Human Exploration of Mars Workshop
Goddard Space Flight Center
Jan 11-12

Doug Cooke
January 11

@” Workshop Objectives

* Provide Martian exploration goals and objectives for use in
determining HEDS program content and focus.

+ Develop a better understanding of the potential capabilities of
humans working through tools and machines on the surface of
Mars.
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@ Workshop Topics

» Martian science requirements for human exploration.
— What are the principal scientific questions that are most likely to require human
explorers on Mars?
— At what stage in the exploration process would humans on Mars make a difference?
—  What understanding of Mars is most likely to influence human exploration
objectives?

» Human exploration capabilities and constraints.
— What are capabilities of and constraints to humans exploring Mars?
— What science exploration tasks are best suited for human explorers?

— What are the most important capabilities/tools that should be provided to astronauts
when they are exploring Mars? (This includes supporting tools, semi-autonomous
robots, laboratory instruments, etc.).

@ Approach to Workshop

+ Presentations providing various perspectives on the issues
« Plenary sessions to discuss issues
+ Breakout sessions to address specific questions

« Reports from Breakout sessions
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o]

Workshop Products

Presentation Materials
Summaries of the major points developed through Discussions

Overall Summary and Recommendations
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PROBLEM STATEMENT: - —
GEOLOGY-GEOPHYSICS GOAL

vestigations for Mars Exploration..

MARS GEOLOGY-GEOPHYSICS GOAL =

_Objective: determine formation and____
evolutian of crust (int priovity order) |
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FORMATION AND EVOLUTION OF THE CRUST

*_global mapping.
-+ global search for subsurface water -

~#. search o;;gysuﬁa

'FORMATION AND EVOLUTION OF THE CRUST

N - global mapping
5 -insitu study—
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FORMATION AND EVOLUTION OF THE CRUST

“Investigation 3: Absolute time scale/cratering record

GEOLOGIC HISTORY OF MARS

FRESERT WFRST B TILTAHEGN WATER Wist TICTOMTE
.l ] - gc-w HEA
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FORMATION AND EVOLUTION OF THE CRUST

. Investigation 5: Surface-atmosphere interactions
olar, aeolian, weathering, mass-wasting, etc.)

lobal mapping

global SAR mapping
Tnesitu
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FORMATION AND EVOLUTION OF THE CRUST

ERRINE Investigation 7: Tectonic history
kW . .
7 N and present activity of crust

FORMATION AND_EVOLUTION OF THE CRUST

Investigation 8: Bulk composition and evolution of crust

'+ global mapping
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CHARACTERIZE THE INTERIOR

___ Investigation 1: Determine interior configuration
- - = global gravity survey
* global magnetic measurements
-+ concurrenf rotational dynamics, 2 landers.
| itoring, 12 stations

IYNgous rus

GEOLOGY-GEOPHYSICS GOAL

= Will require >decades of work

_Progress willbe iterative




Astrobiology & Human
Exploration of Mars

Chris McKay
NASA Ames
cmckay@mail.arc.nasa.gov
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If the answer 1s:

« The Mars Program
- TOVers
- sample return
- robotic outposts
- human exploration
- human settlement

« What is the Question?

Astrobiology motivation

» Mars had early wetter environment:
- comparing early Mars and early Earth
» Test the idea that life will arise on any
suitable planet; cosmic implications

« Searching for evidence of life from early
Mars

Robotic Mars Program

« Focus on search for environment and
minerals associated with past water

« Eg: paleolake and hydrothermal minerals

+ Could result in good evidence for fossil life
on Mars

Was there life on Mars?
Is not the main question
The main question is:

Was there a second genesis
of life on Mars?

What is the biochemistry?
What was its ecology?

Only one life on Earth:
we seek a second example

(image of tree of life here)
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Fossils are not enough:
Possible source of phylogenetic

information on Martian Life . .
Really Big Question:
* Viable spores in the soil (very unlikely)
+ Extant subsurface life

» Organisms preserved in amber or salt COU.ld Mars have a
» Organisms preserved in permafrost biosphere once againf)
Life to Mars Life to Mars
Implications for robotic
& robotic outpost programs ' Robotic Outposts
Biology Demonstrator Mission
- grow bacteria in martian soil « Establish & demonstrate agricultural
- grow plants in martian soil systems

* Assess biohazard of soil

+ Helps defuse planetary protection « Experiment with natural ecosystems
- both forward and backward

* Precusor to human visits
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Mars Climate:
Science Opportunities and

- Operational Dependence for
Human Explorers

Dan McCleese
JPL

Martian Climate

- Human exploration will contribute understanding in
and be influenced by Martian Weatherand
Climate. '

Data recently acquired by MGS orbiter confirm earlier
findings that Mars is rife with evidence of weather and
climate evolution.

- Surface records such as polar layered terrains af pear to
capture climate variability estimated to extend fro 10 Myrs.
To 1 Byrs. o

Vehicles entering the Martian environment will
experience natural variability of the
atmosphere. -
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MarTnan C hmaTe e
-«*A—-P——-——!—-————.i——:——-,!:——:——-———--———»l———+—,,——if——"——;-2-—”———‘.-——
+ A program of observations of Mar's chma’re its
_history and evolution requires: : :
_Orbital observations of global and regsonal phenomena
- T(p), Dust(p), H20(p), Clouds(p)
- Fixed meTeor‘ology stations (or‘der 20 sn‘es global)
“Acquisition and return to Earth of SQmples of e
a’rmospher'e rock and soil. - oo
- Global, or near- global access to the sur‘fcce by
r‘obo’rs and humans is essential.
"Examples of high pmor'n‘y sites include hegh latitudes.
- Polar layered terrain above +75 degr‘ees

N\aTlan Cllma‘re

—— e — — —g————,b————t——:,—-—q————,i-;——-~t—-——+—~—-—-————-———-—-——

. Layered terrains near both poles are among the
most important sites for climatology.

Perhaps the best long-term record of climate

change in the solar system

Layers are ThoughT to be variable mixtures of

dust and ice recording quasi -regular
~astronomical variability

Terrain's slopes are trafficable.

* Humans are enablmg in This field of Mars
science. EAREEE |
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Mars Chma‘re

el e e = i — - __.__.__._____._._.__...___.___

* Priority of Mcrs chmaTology enabled by humans
might be comparable with that of current robotic
~_biology experiments.

Unfortunately, the first decade of Mars Surveyor =
exploration includes no biology experiments.. ‘

+ Similarly, prospects for access to the high la‘rn‘ude sn‘res '
by humans seems remote. = )
+ Achieving needed range of human mobnlu’ry musf
begin by extending range of rovers.

- Extending operating environments for humans
begms wn‘h ach|evmg global access by robotics

Martian C limate

————— —,-—————,i————p——»—-—r-———-————b————-———-—-—-———--————-—--—-

Global scale atmospheric phenomena
represent challenges to human explor'er‘s

- Upper atmosphere variability could be
hazardous to vehiles that aerocapture into
orbit. ,

- Recently discovered "dust devils” will want to
be identified and, perhaps, forecast. o

- Global-scale and regional dust storms, although not

hazardous, may limit human activities and possibly
communications, . -
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Mar"rlan Chma’rogy

-—--————-—-———-—-————-——— Wi e i e — -——.————.———-—l——-—-—'--—-AAD——

- Density at aer'ocap‘rure al’rl‘rudes varies up
“toa facTor 5. e
" In response To reg:onal and global dusT sTorms

- Airborne dust alters visibility of the
atmosphere, such Tha'r near'by moun‘rams
“maybe obscured. - . 2

_Atmospheric pr'essur'e a’r surface var'les by
20 % cmnual ly
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Martian Climate

Dan McCleese
Chief Scientist
Mars Program Office

APL
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Martian Environment: The surface of Mars is a dynamic anvironment. This chart shows the passage of a dust devil directly over
tha Pathfinder lander as recorded by the landed pressure and wind sensors in the meteorology package. These dust devils are
common at many locations over the panat's surface. Dust devils may be the primary mechanism by wrich dust is fifted at at the
onset of dust sloms.
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Martian Environment: The dynamic environment of Mars may impact mission implementation strategies, for example aerocaplure.
The chart shows the change in pressure with time {and MGS orbit number) at alfitudes of 61 km derived from ground-based Mars
disk-averaged microwave data {solid triangles) and 126 km derived from MGS accelerometer (open circles), both normafized to
surface pressure. The arrow indicates the onset of the Noachis dust storm,
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Human exploration objectives: Today, the investigations of the robotic program, characterized simply as “follow the water” and the
*search for evidence of (ile”, are likely to be adopted by human explorers, The image shows the edge of the parmanent north polar
cap of Mars that has a great many layers. The layers have a thickness ranging from less than 10 m to tens of meters. The fayers
are thought to be expressions of climate variations, possibly induced by the known variability in the obliquity of the orbit of Mars.
Human explorers may have, a! location such as this, direct access to the history of Martian climate change.

Human exploration objectives: The north wall of Newton Crater has many narrow gullies eroded into it, These are hypothesized to
have been formed by flowing water and debris flow. Al these gullies human explorers may have relalively easy access to
subsurface water, perhaps from depths of a few hundred meters, possibly from great depth.
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Cognitive Prostheses

Kenneth M. Ford
Institute for Human & Machine Cognition
University of West Florida

ABSTRACT

This emerging concept of human-centered computing represents a significant shift in
thinking about intelligent machines, and indeed about information technology in general.
It embodies a "systems view," in which human thought and action and technological
systems are seen as inextricably linked and equally important aspects of analysis, design,
and evaluation. This framework focuses less on stand-alone exemplars of mechanical
cognitive talent and is concerned more with computational aids designed to amplify
human cognitive and perceptual abilities. Essentially these are cognitive prostheses,
computational systems that leverage and extend human intellectual capacities, just as the
steam-shovel was a sort of muscular prosthesis. The prosthesis metaphor implies the
importance of designing systems that fif the human and machine components together in
ways that synergistically exploit their respective strengths. The design and fit of these
computational prostheses require a broader interdisciplinary range than has traditionally
been associated with Al work, including computer scientists, cognitive scientists,
physicians, and social scientists of various stripes. This shift in perspective places
human/machine interaction issues at the center of focus. The "system" in question isn't
"the computer" but instead includes cognitive and social systems, computational tools,
and the physical facilities and environment. Thus, human-centered computing provides a
new research outlook, with new research agendas and goals. Building cognitive
prostheses is fundamentally different from Al's traditional Turing Test ambitions — it
doesn't set out to imitate human abilities, but to extend them. As humans contemplate
journeys to Mars and beyond, research requirements clearly exist for developing a wide
range of performance support systems for both astronauts and ground operations
personnel.
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Cognitive Prosthesis
Notes by Doug Cooke

Cognitive Prothesis information was gleaned from discussions with Ken Ford from the University of
West Florida and from an article in Computer Magazine by Scott Hamilton. This was published in the
January 2001 edition. The title of the article is “Thinking Outside the Box at the IHMC”.

Although Ken was not able to attend this workshop, I thought it was important to relay some of the key
points and strategies that he would have discussed. Our discussions tend to revolve around humans
versus robots and humans collaborating with robots. The ideas incuded here take this discussion into a
different dimension.

Cognitive Prosthesis involves the study of human cognition, studying the human being as a system.
Based on this knowledge, the focus of this activity is to augment the capabilities of the human and
overcome his limitations. The idea is not to replicate a human being through robotics, but to augment
his capabilities.

In looking at human capabilities “humans are wonderful analog computers that process huge quantities
of data, often without conscious awareness.” The human brain is able to react instantaneously to
stimuli, based on all its memory and experience, without any apparent logical search. On the other
hand, computers have tremendous logical capabilities and computational skills. If there is a close and
carefully designed interchange between them, the combination can be made more powerful.

Examples of prostheses are:

e Eyeglasses, which augment the eye, but don’t replace them.
e A steam shovel run by a person greatly enhances his ability to dig.
e The pathfinder rover was an extension of the scientists on earth.

Examples such as these can all be made more effective by designing the human and machine as a
system. “Build a total system that includes the user. Fit the human and machine components together
in ways that synergistically exploit their respective strengths.”

Ken recommends a “shift from making artificial super humans who replace us to making
superhumanly intelligent artifacts that can amplify and support our own cognitive abilities.”

Our current EVA suits are designed to minimize their debilitating effects on the humans who use them,
yet they are still debilitating. Imagine an EVA suit that is designed to enhance the astronauts’ abilities
in terms of information and computational augmentation available; and in terms of enhanced strength,
mobility, and sensory inputs. It could have miniaturized sensors built into the gloves that can make the
appropriate scientific measurements that aid in sample selection. There could be additional sensors that
provide data that address other scientific investigations. This data could all be computationally
integrated and provided to the astronaut real time in the suit, as well as being transmitted back to Earth.

In our thinking about what can be achieved on exploration missions, we should begin to look forward
and conceptualize how our capabilities to perform with humans could be advanced well beyond
today’s capabilities and experience. In our thinking of future designs, these concepts should be
employed to maximize performance and achievement. The discussion of robotics and human
interaction should begin to include the idea of merged humans and machines.
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~ Primary Factors of -

. Effective Human Performance

althy bram and moo v_; N
« Focused concentration =
[Behavioral medicine] .

——

) Phynlcal mterfacn to warkpiace

"3 L‘?J‘l ST

[Operatlonal psychology]

"To Perform

“» Sensible workload

[Human-to-system interface]
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IARQ QIINEACE ARS

Crew health care x Hahitat

= Radiation Protection . : _
« Medical Surgical care . 8 - Maintenance/housekeeping
» Nutritiorr - Food Supply workshop with HRET
» Psychological support capabilities

- Exercise supplemental to

= meaningful work
.surface science -~ - Mars surface activities
_planetary B _Recreation.

biomedical : )
.simulations of Mars launch, Privacy
_trans-Earth injection, and
contlngenmes
-progressive debriefs,. . .
~sample processing, O
-housekeeping
- communications capability

NC.QIIREACE A°S  Bioastronautics =
**~ Critical Path Roadmap (CPR]

- CPR: blueprint for focused evolving research and technology for “risk reductlon“ to
prevent or reduce the risks to humans in space environment R
+ Mars Design Reference Mission (1997) - “most challengmg scenano
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CPR Issues: Radiation

CPR: Radiation effects (possible synergy with
hypograwty, other environmental factors)

« Early or Acute Effects from Radlatlon Exposure (esp damage to
Central Nervous System) co i
Carcinogenesis Caused by Radiation B

Surface Radiation Environment

tat ‘rovers assumed ) prowde storm shelters (+)

¢ Countermeasures (+)
= Shielding: HDPE, H,0

Issue: Dust
— Operational: fouling of habitat or pressure garment fittings
and mechanisms could pose risk to health and safety

"« Possihle health threat to crew (maybe not)
- ...« Planetary protection issues (Mars as weil as Earth)

¢ CPR: Immune/infection/Hematology
— Allergies and Hypersensitivity Reactions
“— Immunodeficiency and susceptibility to infections

=~ Altered Wound Healing
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MARS QIIREALE RERI "
. = GPRIssues:

Hypogravity

Issue: Efficacy of 0.38 g in countering deconditioning = ??7?
Therefore, Mars surface gravity assumed to be:. :

- Too LOW to be beneficial (for preserving bone mtegrlty, efc.)
= Too HIGH to be ignored (for avoiding g-transition & vestlbular symptoms)

: 8 Current (1999
Periodic health monitoring will also N cxpert g_é_g§§§;

- serve as applied research: =~ ¥ on minimum =~
= probably longest period away from Earth 174 adequate gravity
to date level
- probably longest exposure to
hypogravity (0<g<1) to date %
=

g>0.5 g=0 0<g<0.5

CRUREALE QRS . CPR Issues:
Hynogravity (continued)

Physical tolerance of stresses during aerobrakmg, landing, and launch phases, )
and strenuous surface activities .

¢ CPR: Musculo-skeletal atrophy

— Inability to perform tasks due to loss of skeletal muscle mass, strength,
and/or endurance . i

— Injury of muscle, bone, and connectwe tissue .~ T
- Fracture and impaired fracture healmg
— Renal stone formation

* CPR: Cardiovascular alterations
— Manifestation of serious cardiac dysrhythmias and latent disease

— Impaired cardiovascular response to orthostatic stress and to exercise
stress

» CPR: Neurovestibular aiterations (possible synergy with radiation)
- — Disorientation
~ Impaired coordination
—~ Impaired cognition
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gng lesﬁf‘; ABS - “Gravity Augmentation”
nurmg Exerclse On Mars 8urtace

. Resistive’
Exercise
~ Device
(Schneider,
NASA JSC)

f Self-Generated
B LBNP o

o | (Hargens, NASA
"1 ARC)

MARC GIIREACE RS

-~ ____GPRIssues:
Iluman Behavior and Performance

’lgh autonomr

" High risk (both expensivef
& life-threatening)
High visibility (e.g., high
pressure to succeed)

CPR: Behavior and

Performance

¢ _Sleep and circadian
rhythm problems
Poor psychosocial
adaptation

Neurobehavioral
dysfunction

" Human-robotic interface
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P CPRIssues:
’lIuman Behavior and I’eriormance

Issue: Circadian Rhythm
¢ Sol=24.62hr
— Human intrinsic rhythm=24.1+015hr___ .
¢ synchronization not assured - may requure (chromc) mterventlon?

" Synchronization successful (best case): Unknown efficacy in maintaining circadlan,i
health

- Dayllght EVA ops _safety, efficiency
~ _Shorten perceived stay (by 2.5% 1)
— Complicate Earth-based support (ref. Viking, PathflderSo]oumer, MER 2003
ping)
= Failure to synchronize (worst case):

~ Crew awake during Mars night every 41 days (40 sols) N

» Well-rested “night-time” ops vs. fatigued daylightops

s -200 deg F temperature

—~ EMU issues

o Limited visibility (no IR capability): increased risk of accident, trauma

— Radiation minimized: reduced SPE influence at night (?)

médiéél capability

Expected |llnesses and probjems_k
— Qrthopedic and musculoskeletal
problems (esp. in hypogravity}
~ Infectious, hematological, and
immune-related diseases
- Dermatological, ophthalmolo ic,
and ENT problems _v N

[ CPR: Medical care: systems for ] *Acute medical emergencies

— Wounds, tacerations, and burns
prevention, diagnosis or treatment _Toxic exposure and acute

—_ Difficulty of rehabilitation following anaphylaxis
landing ' ' — Acute radiation illness
e } —Development and treatment of
rauma and acute medical decompression sickness

h - Dental, ophtha!mologlc, and
problems psychiatric )

—~ lliness and ambulatory health * Chronic diseases
problems ~ Radiation-induced problems

. -~ Responses to dust exposure
- Altered pharmacodynamics and — Presentation or acute

adverse drug reaction _ manifestation of nascent illness
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‘AARR QIIREALE ABX proiected Rates of liness or Injury

Based on U.S. and Russian space flight data, U.S. astronaut
longitudinal data, and submarine, Antarctic winter-over, and .
military aviation experience:
I« Incidence of significant iliness or injury is 0.06 persons per
year
____+as defined by U.S. standards
~_srequiring emergency room (ER) visit or hospital admission §
«_ Subset requiring intensive care (ICU) support is 0.02 person  |§

_}]El’SBIII'UBﬁif y

For DRM of 6 crewmembers on a 2z year mission, expect:
.0 9persons per mission, or ~one person per mission,

0.3 persons per mission, or ~once per three missions,
__to require ICU capability
¢+ ~80% require intensive care only 4-5 days
] + ~20%domot.
person/mission Note: Decreased productivity, increased risk while crew
reduced by 1-2 (including care-giver)

Bala from R Billica, January 1998, and'D. Hamilon, June 1958

. The humaﬁélemén,tis;tbé'ﬁéét coAmpIex' -
elemént of the mission design

Planetary mlsslons wn]vasesvgmﬂcant

physnologlcal and psychological challenges to
_crew members R

- Human engineering, human rootlc/machme
interface, and life support issues are critical

The Critical Path Roadmap Project has identified
issues that may be show-stoppers (bone, radiation)

The ISS platform must be used to address exploration
issues before any “Go/No Go” decision

__A significant amount of ground-based and specialized flight
___research will be required to support Crewed Planetary
Expeditions
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MARE Q1IN

MARR QIREASEABS - -
B 'Ac'll%ne Integrity

grity

-25 | ‘ 4,- | Time
6 12 18 24 30 §6 (months)

20 18 [Oulbound I ) On Mars IIn—bound | Mission
2022[ oubowd | On Mars [ | Opportunities
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Anecdotal evidence suggests ~50% of Russian Mir
crewmembers were ambulatory with assistance
mmediately after landing, increasing to nearly 100%

within Rours (with effort), then decreasing for days
thereaﬂer before gracruaf recnvery R

Only 3 ouf of 6 Mars crewmembers a are ‘ambulatory
immediately after landing

Start with passive tasks, progress to strenuous tasks
~ Flrst 1-3 days activities limited to reconfiguration of
_lander/habitat and surface reconnaissance
- "Then, conduct first Mars walk(s] iri_vicinity of lander
(umbilical instead:of backpack?}
- Next, use unpressurized rover for early, shorter
excursions
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EVA
PROJECT
OFFICE

EVA Considerations

Human Exploration of Mars Workshop

JSC/XA/R. Fullerton December 13, 2000

OQutline

Human Contributions

Tasks For Humans (History and Future)
Environmental and Physical Limitations
Human and Robotic Implementation Options
Ground Test Experience

Needed Enabling Information and Technology
Strategic Issues

Summary
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Human Contributions

While automated means are appropriate for selected applications, the
combination of human and robaotic capabilities provides leverage to enable
otherwise difficult or impossible ventures.

+  Productivity - Use of the brain’s creative cognitive abilities enables
rapid on-scene decisions which overcome time delays and data
bandwidth limits.

+  Reliability — Adaptive and proven capability for manual response to
unforeseen, unique and non-repetitive activities

+  Cost/Mass - Less need to expend resources upon complex, redundant
and fully automated designs

- Terrestrial Benefits - Human space activities engage public interest
and advance new opportunities

Metrics = $/data/time, hdw replace risks/costs/time, automation costs, spinoff $

Tasks For Humans

History
» Apollo lunar geology prospecting and instrument deploy
» Skylab (solar array release, thermal shield install, science repairs}
« Mir (solar array assembly, docking system repairs, external science, commerce)
» Shuttle contingencies (Ku antenna stow)

+ Satellite servicing {Solar Max, Westar/Palapa, Leasat, GRO, Intelsat, Eureca,
Spartan, HST)

« 1SS planned and unplanned assembly (mech, elec, fluid)
+ 1SS maintenance/repair (2A FGB antennas, 2A.2a Node antenna, 2A.2b SM TV
target, 4A solar arrays, .......... }
Mars Exploration
+ Infrastructure setup & repair {(power generation/distribution, radiation shielding)
+ Science equipment setup and repair (surface sensors, drills, rovers)
« Access and study of challenging terrain (outcrops, ravines, rock fields, subsurface)

* Rescue (crew and hardware)
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Environmental and Physical Limitations

Environmental
« Radiation (exposure time constraint and heaith risk)
« Temperature (extreme hot and cold varies with altitude, seasons and day/night)
« Pressure (1/100 atmosphere, CO2 rich, requires special CO2 and thermal sys)
- Lighting (constrains work time and distance in unfamiliar areas w/o artificial lighting/power)
- Dust (defeats pressure seals, obscures vision and solar arrays)
- Wind (entrained dust erodes, obscures and moves unsecured hardware)
- Gravity (extended 0-G and 1/3-G exposure time weakens bones and muscles)
« Organic Contamination (2 way issue impedes productive time)

» Terrain (slopes/cliffs, obstacles, instability, hardness impede site access)

Physical
- Productive time (limited by assy/maint/ops overhead, exercise, sleep, meals, comm coverage)
+ Mobility (only limited by transport aids, suit mass/bearings/consumables, tools)

- Five senses (degradation by enclosures can be compensated by info aids & sensors)

Exploration Implementation Options

Robot Method  Human Role Site pata Rl Hdw  Safety
Access Scope [Cost Repair - Risk

Remote teleoperation  Earth based control Lowest Jowest Low None  None

Fuily automated Farth based monitoring  Low Low Low-Med None  None

| ocal teleoperation Orbital habitat Low Low- Med None  Low
Med

| ocal teleoperation L.ander habitat-No EVA  Low Low- Med-Hi [None  High
Med

Mariable autonomy Lander habitat-No EVA  Low Med Med-Hi [None High

\ariable autonomy Lander habitat-No EVA  Low Med Med-Hi [Partial High

pressurized garage)

\ariable autonomy ICanned mobility Low-Med Med High Partial  Highest

dockable to habitat) No EVA Capability)

Precursors only Suited humans on foot  Med-Hi  High Med-Hi [Full Med

\ariable autonomy Suited transportable Highest Highest Highest Full Med-Hi

total crew access) humans (w/Rovers)
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Needed Enabling Information and Technology

Environmental Data
« UV and particle radiation levels at surface

« Season, daily and altitude variations of atmospheric composition, temp, press,
dust, natural lighting and wind speed/direction

« Dust and wind impacts to convective/radiation heat transfer and solar flux

« Soil/dust chemical compaosition, reactivity, electrostatic charge, size, shape, mass
« Soil bearing strength, penetration resistance, cohesion, adhesion, abrasion

» Amount of trapped pressurized fluids/gases, volatile gases and toxic materials

» Terrain characteristics and maps (slopes, cliffs, caves, ravines, craters, obstacle
size/distribution, surface instability, subsurface/rock hardness)

« Touch temperatures of surface and subsurface materials

+ Short/long term effects from corrosion and abrasion of suit materials and coatings

Technology
« Portable life support, surface transport, airlocks, info/nav aids, robotics, facilities

« Radiation protection, insitu resources, compact power, sample curation

Strategic Issues

- Existing NASA EVA capability is over 23 years old. Only useable in zero gravity and hard
vacuum. High costs to purchase, operate and sustain. Only minor upgrades are practical.

- No notewarthy EVA projects sponsored by other U.S. or International governmental agencies,
commercial industry or academia.

- Existing programs and flat budgets leave few resources for new ventures.

- No incentives to re-invest potential cost savings or commercial profits.

—  Near total adversion to human risks and costs constrains progress.

- EVA's a victim of past successes. Perceived by many to be “rich” & ready for instant callup.

— I8S funding for EVA technology development has been cut by 50% in FY01 and 100% in
FY02. All that remains comes from Code U NRA's and SBIR.

- Downward spiral of funding rolier coaster makes it impossible to sustain NASA expertise,
industrial competition and targeted university research. Existing low TRL solutions languish
and limited expertise continues to disappear.

- Existing research solicitation processes will not achieve desired results
—  Single page announcements no substitute for SOW or quantified requirements
—  NASA expertise excluded or discouraged as peer reviewers and Pl's
- No project level dollars for targeted competitive procurements

—  More visions and initiatives than coordinated resources (Code M, R, S, U, Centers)
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Summary

Human beings have robust cross cutting skills which historically
enabled terrestrial, undersea and space exploration. Future
space exploration and commercial endeavors will be less
productive and less successful without human intervention.

It will take up to 10 years to develop and produce a destination
independent set of flight and training quality hardware ready to
support existing and long term programs.

Potential exists to reduce high costs of sustaining current
hardware thru less expensive new hardware and scrubbing of
current inefficiencies. Government resource commercialization
not possible unless legal prohibitions removed and profit
retention incentives created.

Future programs are in jeopardy if advanced EVA and robotic
capabilities are not consistently and adequately developed.
Existing efforts are not effective or sustainable.

Backup
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Human Operated External Work System

Vehicle/Science/Tool Anthropometric Airlock fnteractive
interfaces EVA Suit Robotics
Environmentat Life Support
Garment System

| |

CcO2 &

Mif:;si“" Soft Hard/Soft Humidity ( 02 l E:; ":;I’
Cooling
Medical
l Self &

Assisted
Rescue Avionics &

Oust, Radiation, MMOD, Rear Waist Info Sys
Thermal, Contamination Entry Entry

Boots Gloves [ Heilmet

Power

l Work Aids

Limitations of Existing Architecture

EVA overhead penalties are high in terms of mass, volume and time. Historically, less than 20%
of crew time related to EVA is spent on productive external work. 2600 Ibs and 90 ft3 were
manifested for suits, tools, carriers and consumables on STS-103 for Hubble Space Telescope
servicing (1470 Ibs and 60 #3 for 4 suits). The 300 Ib mass and 13 ft3 stowage volume of the
current U.S. suit is not compatible with the restricted delivery capacity of remote exploration.

The mass, mobility and visibility of the current suits are not compatible with partial gravity
planetary environments. Suited body control in zero gravity is also hampered by these factors.
The current U.S. suit is twice as heavy as the Apollo suit and is not designed for kneeling,
prolonged walking or inertia free handling. Arm/hand work envelope and foot visibility are
severely degraded by chest mounted controls. Physical comfort is not sustainable for high
frequency work in partial gravity.

Suit protection from dust intrusion is inadequate. Even the Apolio suits would have been doubtful
for more than 3 days of lunar work due to highly abrasive minerals preventing rotation of mobility
bearings.

Available thermal insulation materials either only work in vacuum conditions or are thick and
impede suit mobility and glove dexterity. Even with active heating, touch temperatures are limited
to short durations and narrow ranges (-120 to +150F).

Radiation environment definition, monitoring and protection are inadequate beyond earth’s
ionosphere.

Suit consumables are wastefully expended and require frequent replenishment or considerable
time/power to recharge. Heavy cooling water is vented. CO2 scrubbing canisters require
wholesale replacement or time/power consuming bakeout between sorties. No insitu resource
utilization is possible.

No real suit maintenance capability exists beyond limited resizing and consumables replacement.
Spares change out is only done via large integrated assemblies. Many intricate parts are not
crew serviceabls. :
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Limitations of Existing Architecture (cont)

The effects of planetary unique gases (such as argon) on EVA physiology are undefined.

Medical monitoring and treatment of EVA crew is minimal. Cannot yet quantitatively track fatigue or
decompression sickness symptoms. Non-intrusive and 100% 02 compatible devices are lacking.

There is no effective insuit treatment capability for injury or illness.
Sensitive environments and science devices are contaminated from suit by-products (water,

particulates, atmosphere leakage).

EVA information processing is limited to suitmedical telemetry and is based on old technology that
is not inflight reprogrammable. Radio communication is the sole means of information exchange for

science interaction, worksite unique data and navigation/tracking status. Visible imagery is
marginally captured by simple photographic means. Reference information is paper based
because no compatible display yet exists. Hands free interaction is needed to avoid fatiguing

manual efforts and obstructed work volumes.

Robotic EVA aids in use are primarily large arms with limited mobility and dexterous capability.
Human capable wheeled rovers are not in development. Highly mobile and dexterous robotics get

limited attention. None are yet fully developed for autonomous inspections, cargo handling,

worksite setup, crew tracking or self charging/storage/maintenance. Most are too reliant upon

unique visual and handiing aids.

Airlock designs have remained static. Depress/repress gas is still vented or pumped with large
power penaities. Existing designs are not compatible with dust/biologic isolation or hyperbaric

treatment.

Separate self rescue and emergency life support limits return range and adds to suit mass/volume

Tools are limited to manual force/torque reaction & zero-G transportirestraint. Limited
environmental & mechanical analysis devices. No drills. Few true repair options. Delicate

materials not easily handled.

Advanced EVA Technology Topics

Challenges

Priorities

CO2, humidity, trace gas removal
02 storage and delivery
Low habitat and suit pressures
Thermal heating/cooling
Suit entry design
Anthropometric sizing
Backpack integration/maintenance
Self rescue integration
Gioves
MCP physiology and comfort
Dust protection
Radiation definition/protection
Contamination provisions
Low temperature tolerance
Low bulk multipressure thermal insulation
- Strong, durable, light materials
. Small high energy power supply
. Wireless sensorsfactuators
Airlock entry and exit
Airlock gas loss prevention
DCS studies and monitoring
Hyperbaric treatment
Non intrusive medical sensors
Navigation and communication
Multisensory Info displays & controls
Automation
Freeflyer, manipulator & rover aids
Mechanical strength/dexterity aids
Ergonomic interfaces
Design/mobility/fit tools
Environmental test facilities
Vehicle interface standards
Field test experience and verification

Integrated Concept Definition and

Requirements {suit, airfock, robotics)

CO2 system

Mass/Volume reduction and system

definition (SSA and LSS)
02 system

Environmental Protection (thermal,
puncture, radiation, dust)

Thermal Control System
Test Personnel and Facilities
Analysis Tools

Power supply system

Instrumentation and info technology

(wireless, sensors, automation,
controls/displays and crew/vehicle
interfaces)
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Intelligence Enhancement Concepts

Miniature and low power environmental sensors (portable or suit mounted for magnification, range finding, x-ray,
UV, IR, radar, fow light, geochemistry, biochemistry, electromagnetic fieids, radiation)

Small, low power, low light, multiwave length, variable focus/range camera (suit mounted, HUD or laser pointing
image feedback)

Low mass, ultra-low volume, low power and wireless sensors (mobility, suit life support, extemnal environment,
contamination)

Small, low power, high intensity lighting systems {suit mounted and portable}

Interactive hands free EVA displays and controls for system telemetry/functions and photo/TV images of
environment and vehicle interfaces. Capability for crew and ground team updates of software format and content.
Multiuse displays to be portable for suit or vehicle mounting. Heimet and arm mounted displays featuring miniature
optics, low power, low profile and voice activation,

Ultraminiature, low power, long range and multiuser radio (voice, video, data, commands)

Autonomous terrain/spacecraft mapping, navigation and crew tracking integrated with crew and ground team
displays. Data supplied by sateffite, robotics or cameras attached to suited crew. Target recognition to include
artificial landmarks (e.g. colored/pattemed flags, targets, radio beacons)

Non-invasive, low power, wireless, 100% O2 compatible medical sensors (blood N2, ECG, temp, fatigue)
Continuous autonomous system monitoring, trend analysis, diagnostics, malfunction response and feedback for
orbital and planetary mission EVA systems (airfock, suits, robotics, tools) in collaboration with crewmembers and
ground team members

Autonomous systems that can support voice communication with and leamning from ground support team members
and space explorer crew

Adaptive collaborative system for labeling, recording, catalogulng and retrieval of EVA collected science data
(science samples, photos, video, technical notes, etc)

Autoncmous intelligent inventory management system accessible by crewmembers and ground teams

OO~ AWK

Planetary EVA Ops Questions

. Comfortable walkable distance and rate (single day)

. Forced march walking distance and rate (single day)

. Safe return cache spacing and contents

. Normal duration of EVA sortie (egress-ingress)

. Mandatory duration of consumable margin {(nominal and backup systems)
. Normal duration of EVA prep and post activities

. Number of elapsed days before initial EVA (post arrival)

. Duration of initial EVAs (post arrival)

. Minimum distance of safe visibility (dust storm severity)

. Terrain constraints (stable footing, slope angle, caves, cliff edges, overhangs,

. Rescue capabilities (climbing harness, winch,

. Injury treatment (suited in the field or suitless in a safe haven)

. Training materials access (in-suit or at safe haven or both, full or partial access)

. Minimum number and location of EVA crew outside (nominal, emergency)

. Maximum number and location of EVA crew outside (nominal, emergency)

. Minimum comm and sensor/data definition (voice, email, suit, weather, navigation)
. Permission for recreational or PAO oriented EVA (in transit or after arrival)

. Cable routing and crossover techniques (bury, elevate, ramp)

. Lighting and temperatures constraints on EVA duration, location, distance, etc

. Robotic aid preferrences (pressurized, unpressurized, range, cargo/crew capacity)
. Suit rechargability constraints (avoid for nominal EVA, OK or not while outside)
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Ground Test Experience

+» Apollo/USGS experience, 1970’s

« Comparative suit mobility tests (EMU, Mark ilt, AX-5), JSC, 1980's

« Comparative suit mobility tests (A7LB, EMU, Mark lil}, JSC, 1996

» Shirt sleeved geology exercises, Death Valley, 1997

« Lower torso mobility tests (Mark 111}, KC-135, 1997

« Mobility and geology exercises (Mark 1It), Flagstaff, 1998

« Remote site experience, Antarctica, 1998

« Mobility and robot aid tests (I-suit, Marsokod rover), Mojave Desert, 1959

+ Mobility tests (D, | and H suits), JSC, 1999

+ Reconnoiter of Devon Island as future test site, Canada, 1999

- Rover seating tests, KC-135, 2000

« Mobility, geology, drilling, power deploy demos (ATRV rover, H/l suits), JSC, 2000
+ Mobility, geclogy, drilling, power deploy demos (ATRV rover, H/l suits), Flagstaff, 2000

« Remote site experience, Antarctica, 2000/1
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Human Mars Mission Contamination Issues

M. L. Lupisella

« A potential challenge for a human Mars mission is that while humans are by most measures
the obvious best way to search for life on Mars, we may also be the most problematic in that
we could unduly compromise the search for life by contaminating relevant environments
and/or possibly adversely and irreversibly affecting indigenous life.

+ Perhaps more problematic is the fundamental epistemic challenge of the “one data point”
limitation which could decrease confidence in applying terrestrially based research to

extraterrestrial life issues in general.

+ An informal decision tree is presented as one way to begin thinking about contamination
issues. There are many sub-questions and distinctions not shown such as biological vs. non-
biological (but biologically relevant) contamination, viable vs. dead organisms, masking
indigenous organisms vs. merely making the search more difficult, and independent origin vs.

panspermia distinctions.

« While it may be unlikely that terrestrial microbes could survive on Mars, let alone reproduce
and unduly compromise the search for life, the unpredictable potential for microbial life to
survive, grow exponentially, evolve and modify (and sometimes destroy) environments,
warrants focusing carefully on biologically relevant contamination as we prepare to send
humans to the first planet that may have indigenous life-forms.

A Decision Tree for Addressing Human Mars Mission Contamination Issues

Ta what extant will there be contamination?
1

. 1
Nagligible Substantial (deflnalquantify?}
(definetquantify) ~ Could such ] ite?
T 1
no yes
GOl Could such contamination unduly To what axtent can | SHOULD | WILL we control it?

compromise the search lor a7

KEY

Primarily scientific questions

PRIMARILY SCIENTIFICTECHMCAL iSSUES WITH POLICY COMPONENT
PRIMANLLY POLICY 1SSUES WITH SCTENTIFIC/TECH COMPONENT
«—% depandency

EFFECTIVELY NOT EFFECTIVELY
Wik contamination bie local or global?
no yus 1
‘ Gor | 1
Local
Gol 2 caveats:

We have adequate
Kknowladga of planet

CRITERIA FOR BIOLOGICAL Faw Missior:

STATUS OF LOCALE.

HOW MANY MISSIONS? How many? Whare?
DRILL? HOW DEEP? ETC. Orill? How deep?

Pick localions

Datermine biotagical status of
locale via precurser robatic

missians. NoLi#a Fossds Lile

First der understancing
Ho il movemnant affect
ooy 4 ROBOTIC 17 DETECTION POLICY
DO WE NEED HUMANS?
‘ ASSESS POTENTIAL IMPACT OF HUMAN PRESENCE
it . .
FUMAN 1Y DETECTION POLICY o hmans
(E.G. AVOTD DIRECT CONTACT Sand humans t
INITIALLY, STUDY REMOTELY FOR Assesskminimize contamination
TBD TIME, ETC.) e Assessiminimize due to many robotic missions
potontial thraats. Extensive Ijbbﬂﬂc study
| . s
Different from L]

Go!

CRITER FOR ASSESSING THE BIOLOGICAL STATUS OF MARS?
WE STAY "LOCAL™ {r.g. How weil can we extrapolate from a forw misxions?)

Global

Many Missions:
How many? Whera?
Defil? How deep?

Life
No Life

Same as - ot

lorrestrial e 1erTesfrial fife

Extongive study
! No Ga

polential threats 5
potential threats

GO! Gor
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Summarizing thoughts:

» First questions first to avoid unnecessary resource consumption and unduly delaying a
human mission. Obviously need more research/data to make informed decisions.
Decision tree can help roadmap a research program.

» By addressing the issue now, we may find that the relevant precursor planning and
execution should begin now.

E.g. If contamination could go global, and if it is deemed necessary to assess the
biological status of the entire planet (or just surface) with TBD confidence level,
then many more life detection missions than otherwise thought may be required,

“likely effecting the overall program planning (especially schedule) for a human
mission.

» Anticipates and addresses public concern.

+ Contribute to astronaut safety - much of the research could inform procedural
guidelines - e.g. how astronauts might be affected by indigenous organisms.

» Could help establish a planetary protection policy category to help guide program
development for human exploration of the rest of the solar system and beyond.

Additional thoughts
« “Traditional” national interests may not be the ultimate driver. Alternatives might be:

Search for a “second genesis” - not yet fully appreciated. E.g. practical implications such as
medical, as well as more theoretical/general scientific rewards such as significance to
understanding the nature of life. And the potential cosmological relevance: e.g. does the
universe naturally produce life? *Is life a cosmic imperative?” Potential “world-view” relevance
also. If the search for a sccond genesis is a primary driver, the contamination issue could be
critical.

Other motivations such as cultural significance (e.g. “Into the Unknown”, inspiration for
practical and emotional reasons, culture for its own sake), or perhaps international cooperation,
may singularly, or together, be enough to justify a human mission. 1f we think these are
important reasons, we should continue to cultivate them vigorously, both internally and with the
public, and be a part of the motivation for a human mission, instead of of waiting for the pofitical
tide to raise our boats to Mars.

+ May need direct life-detection missions sooner than later depending on criteria for assessing
the biological status of locale, region, planet (surface or sub-surface?) - and depending on when
we’d like to send humans. May be more feasible than we’re imagining (technically, and cost)
given a commitment and present work being done.
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Additional thoughts con’t -

+  Co-evolutionary dependence is not required for organisms/species to adversely effect each
other. E.g. consumption of, and competition for, resources is likely fundamental to anything
biological, giving rise to indirect effects such as competition for resources. Predation, toxicity,
and general ecological disturbance (environmental modifications) are also possibilities that
appear to transcend even a very broad notion of co-gvolutionary dependence. So, the
significance of, and unknowns of, a second genesis will likely call for much caution.

+  Worrying about this now may help boost confidence when the times comes for a decision.

+ A near-human/~in-situ” tele-robotic mission could mitigate many contamination concerns,
and others as well. Here is a potential answer to what specific scientific pursuits require what
kind of humarvrobot relationship. As we are doing with the broader program now, the near-
human tele-operated mission could be done in a “seek, in-situ, sample” approach at the next
level of exploration, that is, more detailed exploration with humans present on the planet,
perhaps localized initially to a human base. If orbital data is insufficient, we can “seek” via
tele-operated vehicles on the ground and in air (e.g. balloons/aerobots). In-situ searches for life
and other science objectives can be pursued via tele-operating sophisticated robots at a specific
locations from a home base. Samples can be brought back to the home base/lab on the surface
or low Mars orbit, moon, etc., or perhaps an astronaut can go directly to a location to sample
after sufficient tele-remote analysis. This keeps the human brain in the loop, allows for “real-
time” responses and flexibility, and mitigates risk. Humans driving robots could also have
surprising PR value - a different kind of “BattleBots™ on Mars? Robots (and humans)
challenged by the Martian environment instead...
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= January 1120010
- Science and the Human Exploration

il ::Key.question
« How will humans and machines work together -
. doing field science and exploration on Mars?.
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Can.we do field science on MafS'—'-A5~
~ the Way we do 1t on Eal th? -
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» . Spacesuits’- Can we go from

do we need to for doing Mars field
science?

14

spaceship to parka? To whatextent

121
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Spacesuits - Can we go from
spaceship to parka? To what extent
do we need to for doing Mars field
science?.

== 1. Information
Technology - What ar
the high-leverage areas
for IT? How will the
- interaction really work?
~ Will field scientists let
* machines make’. ..
- autonomous science -
~ decisions?

~ Spacesuits - Can we go from

< spaceship to parka? To what extent
~“do'we need to for doing Mars field
“science? -

Information
* Technology - What are
the high-leverage areas
for IT? How will the
- interaction really wotk?
“Will field scientists Tet..
machines make -
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: ~—1mdersea, underwater, etc., most eklther pure sc1ence, QI‘
““focused on speciﬁc technology ’démonstration (e.g.

NASA Haughton—Mars Pro;ect is’ the ﬁrst attempt at A
~comprehensive integrated field science and exploratxon

~'7 research program in the context of advancmg overall

.*Field science at the Haughton Impact Crater and surroundings on Devon Island,

Canada (High Arctic), since summer 1997

+. International, interdisciplinary team (up to 30 separate mvestlgatnons per field .
Tseason, typlcally 20-30 field participants at a time) . .

Research program: Field science, and opporfunistic. gxploratton research . .

experiments in support of field science (www.arctic-mars.org): o

. SCIENCE PROGRAM
To. charactenze those aspects of the local geology and biology lhat mi ght be relevantto -
Mars s geologic. (in particular hydrologic) and possibly biologic evolution = ™ o

T o further our understanding of the effects of impacts on Earth through studles of the
formattonrand evolutwn of Haughton Crater over tnme i i k
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Linking Human and Robotic Missions
- Early Leveraging of the Code S Missions

Doug Cooke
Johnson Space Center
January 11, 2001

¥8.18 For NASA Inlernal Use Only 1

Introduction

+ A major long term NASA objective is to enable human
exploration beyond low Earth orbit
« This will take a strategic approach, with a concentration on
new, enabling technologies and capabilities
» Mars robotic missions are logical and necessary steps in the
progression toward eventual human missions
— To reduce risk and cost

— Assure the maximum science and discovery return from human
missions

vB.18 For NASA internat Use Only 2




126 LPI Contribution No.

. 1089

v8.18

Robotic Missions Add to Knowledge Base

* Provide scientific basis for human exploration
» Understand the environment to:
— Identify and mitigate hazards to assure safety

— Reduce environmental uncertainties and identify constraints to assure safe and
efficient spacecraft and systems

Analogies- Ranger, Lunar Orbiter, and Surveyor for Apollo

»  Demonstrate technologies that can only be verified in the Martian
environment

Analogies- Surveyor, Mercury, and Gemini for Apollo
» Emplace infrastructure for human use
» Identify high yicld landing sites for futurc missions
» Provide operational experience from analogous missions

» Use Mars resources to enable human missions (Living off the Land, or
ISRU)

For NASA Internal Use Only

Efficient In-Space Prop.. I

Core Capabilities & Technologies

Potential

Aeroassist. ]

* Low-costEngines |

Common Technology Building Blocks...  Common System Building Blocks
) {Core Technologies) o (Core Capabilities) Destinations .. ———
. . . = .
LI L]
. L]
L] L
Examples . .
L] L]
L .
.
SE— »
-

-—

Cryo Fluirrirwianagemem l

Robust/Efficient Power ]

= Lightweight structures |
- "

|

. ZerofLow-g Rusea,rch’ I

Radiation Research

[
- -

Regenera!:;Ié Life S«ipport l
. _—  Advanced Lightweight
EVA- -

o

v8.18

" “Brastihrey
Lo

T Braabihravah”

sSesesasEssessenseENEAEES

For NASA Infemal Use Only
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Enabling Capabilities- The Importance of Mass
Savings

It takes 40 Kg of mass in Low Earth Orbit to propel a Kg of
mass all the way to Mars and then return it to Earth, in terms
of engines, tanks, fuels, propellants, and supporting systems

« A number of technologies/capabilities have been shown to
significantly reduce mission masses and therefore costs

— Aecrocapture- using the atmosphere of a planet and the drag of the
vehicle to slow vehicles into orbit instead of using propulsive
techniques- saving propellant and supporting systems

— Advanced In-space propulsion technologies can improve fuel
efficiencies by 4 to 5 times over the most efficient chemical propulsion.
Example- electric propulsion

— In situ propellant production- If fuel is produced at Mars to get a
vehicle into Mars orbit, then that fuel docs not have to be brought all
the way from Earth

« Savings from these technologies can benefit both human and
robotic missions

¥B.18 Far NASA Internal Use Only 5

SEP is assumed based on non- |
nuclear approach

Space Station o Mars
Orbit (LEO) Elllpt'lcal Aerocapture
Parking
~ Y W/ Orbit (EPO)

T C;cw Transfer M
E’lﬂ‘[l! - via Crew Taxi ’

3 7
) b o
}\%/?{ - Chem Transfer
EP Transfer \
e

Chemical
Injection Bumn

Sear Larth
Antcroidy
Moon

Libraticn
Paints
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Mars Mission Overview

Surface Habitat and
cxploration gear

Surface Habital lands and
performs initial setup and

aerocaptures into Mars
orbit

§ Ascent/Descent Vehicle
acrocaplures and remains
x]

in Mars orbit for the crew - B

Habitat Lander and Ascent/Descent Vehicles
delivered to Low Earth Orbit with “Shuttle
Class” launcher. Solar Elcctric Propulsion

stage spirals cargo to High Earth Orbit.
Chemical injeetion used al perigee. SEP
spirals back to LEO for reuse.

Crew travels to Mars in “fast
transit” 180-day transfer.
Aerobrakes into Mars orbit

Transit Habitat vehicle delivered to LEO with
“Shuttle Class™ launcher. SEP spirals Transit Habitar
to High Farth Orbit. Crew detivered to vehicle via
crew taxi. SEP spirals back to LED for reuse.

For NASA Internai Use Only

vB. 18

checkout - Initial outpost

Crew rendezvous with DescentAscent established

Vehicle in Mars Orbit then tands in 1
vicinity of Habitat Lander g

A ————

30 days provided
to satisfy “long-
stay™ criteria.

I~ =3

Crew ascends and
rendezvous with waiting
Habitat Transit Habitat
remains in
Mars orbit

33%

&
Y

Crew returns to Earth on “fast
wansic” 180-day transfer

£
- Direct entry at Earth

Transhab Mars Aerocapture Configuration

For NASA Intamal Use Only

Tnertial Velocity at EI = 7.36 km/sec
Flight Path Angle at EI= -11.92"
Angle of Attack at EI = 457

Usable Corridor = 1.1°

CL=13715

Co = 2.2805

L/D = .6014

‘Wt at Acrocapture = 115 mt

Frontal Area = B4.35 m?

WICDS = 597 8 kg/m?

v

>
Nominal Max G-Load = 2.5
Dispersed Max G-Load = 3.5
Ellipsled Design Loads:
F(x) = -98,259 kg
F(z) =390,322 kg
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; HEDS

! ‘ Technology
! Science : b Demonstration
'.‘ Objectives G Objectives

) i

increase overall
science return

For NASA Infernal Use Only

Aerocapture and Entry, Descent, and Landing
' Capabilities

Aeroassist is more efficient than propulsion for the deceleration required to
enter Mars orbit- reduces IMLEO for HEDS missions by 30% to 35%
compared to propulsive capture even for efficient propulsion systems

Provides for less complexity in systems for aerocapture

Aero entry is required for descending through the Mars atmosphere to the
Mars surface. Mid L/D shapes (.4-.8)with aeromaneuvering provide
significant improvements in landing accuracy

Precision landing required for landing near
previously deployed assets

Aero shell can be synergistic with Earth

to orbit launch shroud, significantly

reducing mass

Can control g's on crew and payloads to
levels that reduce risk and mass of systems
Automated hazard detection and avoidance
required to minimize landing risks

For NASA internal Use Only
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wi

=z,

EEISO knyd

No entry guidance
{attitude hold only)

(96 km)
With entry guidance

and optical navigation— &5,
3 kny) :

Mars '05 landing accuracy

oGiprint ™~

th optical navigation

i e

~ ' (Adapled from a chait by

Dave FadessJPLY "

3) Ascent to Low Mars Orbit (Chemical |
Propulsion} *

5) Hetlocentric Ballistic Return Targeted to
“Miss™ Earth {by a lof}

4) lon Prapulsion to Earth
Transfer Trajectary

6} lon Propulsion Targets Capture into Very High
Earth Orbit {HEO)

re—

2) Direct Mars Entry (Mid LID
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End-Of-Mission Scenario

+  Sample delivered to Low Earth Orbit 3
- Earth Retum Vehicle (ERV) spirals down toj
Shuttle-compatible orbit via electric
propulsion
«  Shuttle crew performs rendezvous
~ RMS grapples ERV
—  RMS transfers ERV to containment cask in §
payload bay

- Shuttle conducts nominal entry and landing
~ Containment cask designed to survive Shuttle contingencies
~ Landing site in remote, controlied area (Dryden, White Sands)

vB.13 For NASA Intemal Usa Cniy 13

MEPAG GOAL 1V:
PREPARE FOR HUMAN EXPLORATION

A. Objective: Acquire Martian environmental data sets (priority order of
investigations under review)

B. Objective: Conduct in-situ engincering science demonstrations (priority order
of investigations under review)

C. Objective: Emplace infrastructure for (future) missions (priority order of
investigations under review)

vB.18 For NASA intamai Use Oniy 14




132 LPI Contribution No. 1089

v8.18

A. Objective: Acquire Martian environmental data sets

jon: Determine the radiation environment at the Martian surface
and the shielding properties of the Martian atmosphere. Requires simultaneous
monitoring of the radiation in Mars' orbit and at the surface, including the
ability to determine the directionality of the neutrons at the surface.

2. Investiqgation: Characterize the chemical and biological properties of the
soil and dust. Requires in-situ experiments. If in-situ experiments can not achieve
adequate levels of risk characterization, returned samples will be required.

3. Investigation: Understand the distribution of accessible water in solils,
regolith, and Martian groundwater systems. Requires geophysical
investigations and subsurface drilling and in situ sample analysis.

ion; Measure atmospheric parameters and variations that affect
atmospheric flight. Requires instrumented aeroentry shells or aerostats.

5. Investigation: Determine electrical effects in the atmosphere. Requires
experiments on a lander.

6. Investigation: Measure the engineering properties of the Martian surface.
Requires in-situ measurements at selected sites.

For NASA tnlarnal Use Only

vB.18

A. Objective: Acquire Martian environmental data sets

(Continued)

L. Investiqgation: Determine the radiation shielding properties of Martian
regolith. Requires an understanding of the regolith composition, a lander with
the ability to bury sensors at various depths up to a few meters. Some of the in
situ measured properties may be verified with a returned sample.

8. Investiqation: Measure the ability of Martian soil to support plant life.
Requires in-situ measurements and process verification.

9. Investigation: Characterize the topography, engineering properties, and
other environmental characteristics of candidate outpost sites. Specific
measurements are listed in other investigations.

jon: Determine the fate of typical effluents from human activities
(gases, biological materials) in the Martian surface environment.

For NASA Inlernal Use Onty
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B. Objective: Conduct in-situ engineering science
demonstrations

1. Investigation: Demonstrate terminal phase hazard avoidance and precision
landing. Requires flight demonstration during terminal descent phase.

. 2 Investigation: Demonstrate mid-L/D aeroentry /aerocapture vehicle flight.
Mid-L/D (0.4-0.8) aeroentry shapes will be required as payload masses increase.
Requires wind tunnel testing and flight demonstration during aeroentry phase
of the mission.

« 3. Investigation: Demonstrate high-Mach parachute deployment and
performance. Higher ballistic coefficient entry vehicles wili be resuit from flying more
massive landers. Requires high-altitude Earth-based testing and flight
demonstration during Mars entry phase. '

- 4, Investigation; Demonstrate in-situ propellant (methane, oxygen) production
(ISPP) and in-situ consumables production (ISCP}) (fuel cell reagents, oxygen,
water, buffer gasses). Requires process verification with in-situ experiments.

+ 5 Investigation; Access and extract water from the atmosphere, soils, regolith,
and Martian groundwater systems. Requires subsurface drilling.

+ 6. Investigation: Demonstrate deep drilling. The Martian subsurface will provide
access to potential resources (e.g., water) as well as providing access to valuable
scientific samples. Requires landed demonstration.

v8.18 For NASA Internal Use Only 17

/ C. Objective: Emplace infrastructure for (future) missions

+  1._High capacity power systems to support ISPP activities in support of robotic
sample return missions and eventual human support.

« 2. Communication infrastructure to support robotic missions with high data rates or

a need for more continuous communications, and eventual human support.

- 3 Navigation infrastructure to support precision landings for robotic or human

missions.

v8.18 For NASA Inlemal Uss Only 18
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How HEDS Investigations Benefit Science

~+ In General
« Engineering and life science data gathering will provide data relevant to other science
disciplines
+ Life Sciences Data
« Soil/rock compositional data is identical or at least relevant to local geological
characterization
» Aeroassist/Precision Landing
» Reduces risk of entry/descent/landing
= Provides pinpoint landings at sites of high scientific interest
« Flying low-g profiles potentially reduces structural mass of rovers, landers and payloads
» Provides capability to return to previous sites/resources

+ ISRU
« Potential mass savings could be used for additional science, or increase mass of retumed
samples

vB.18 For NASA [nternal Use Only 19

Summary

+ Robotic missions are a logical and necessary step in the
progression toward eventual human Mars exploration.
"~ To reduce risk and cost
— To provide a basis for maximum science and discovery return from
human missions
» HEDS science data sets compliment the understanding of Life,
Climate and Resources

« HEDS Technologies can greatly improve reliability,
performance and science return

+ Science and HEDS objectives can be combined into a
successful single integrated program

v8.18 For NASA intemal Use Only 20
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BACKUP CHARTS

HEDS/SSE Potential Synergies

Space Science and HEDS exploration goals are synergistic

— Scientific measurements desired by HEDS and Space Science
regarding the environment and resources on Mars are similar or
identical

— HEDS technology demonstrations, when incorporated in the mission
design, can greatly improve reliability, performance and return for
Mars robotic missions o

— Science and discovery will be the major focus of both robotic and
human missions

vB.18 For NASA inlernal Usa Only . 22
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End-to-end ISPP Production and
Propulsion Demonstration

* Human mission studies have shown that utilizing locally produced
propellants can reduce the overall mission mass by up to 25%
+ Similar percentage reductions in mission cost

» Resource utilization is synergistic with othr human exploration elements such as life
support and EVA

» Use of local materials augments crew self-sustainability and autonomy

» Test and Demonstration Characteristics:

* End-to-end, simultancous operation of resource collection, chemical processing, and
product liquefaction and storage subsystems

*+ Autonomous control and failure recovery capability for the ISPP plant for robotic and
human mission support

» ISPP product liquefaction & cryogenic long-term storage in the Mars surface
environment

» ISPP and propulsion system integration
» Use of in-situ propellants for a Mars ascent vehicle

¥3.18 For NASA Internal Usa Only 23

End-to-end ISPP Production and
Propulsion Demonstration (continued)

+ Demonstrate the technologies and provide the operation
experience required to support a 2007 ISPP Mars sample return
mission

* Subsystems:

* Atmosphere Acquisition System
» Mars atmospheric carbon dioxide acquisition and compression using sorption pumps

» In-Situ Propellant Production System
» Advanced Zirconia Carbon dioxide Electrolysis (ZCE) oxygen generation subsystem
(similar to MIP), or
* New technology based on Sabatier/Water Electrolysis (SWE) or Reverse Water Gas
Shift (RWGS)/water clectrolysis processes
* Autonomous Control and Failure Recovery
» Incorporate ARC “Livingstone”software developed for the Deep Space I (DS-1), and
KSC “KATE” reason based control software
* Liquefaction & Long-Term Cryogenic Storage

» Pulse tube cryocooler can be used to liquify and store >= 0.1 kg per day.

« Utilization of ISPP Products
w18 + Static engine firing, soundingsecket,arathgr use of ISPP products 2
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Transhab Mars Aerocapture Corridor

¥
L -losn
1
G FRRES < rodwve
H 11.00 i L —
T
F
BUI - PO -
A 1.1° Usable Corridor
T
H 4—— Nominal Gamma|
-1200 |-a-eaa Fallh e e e e
A Gamma =-12,10%_
N
G Gamina=—12.48, (3.5 Gs)
S12350 (S a-- jyepp—p——
L
E

For NASA (nternal Usa Cnly

Yehicle Characteristlcs:
Length = 3048 m (100 )
Weight = 115 metric tons (253,532 Ibs)
Frontal Arez = 84.35 m? (9(‘)7‘92 i)
CL=1375
CD =2.2805
L/D =0.6014
WICDS = 557 84 kg/m?
Angle of Attack = $5° .

Trajectory Characteristics:
Inertial Velocity at EI = 7.36 km/sec

Relative Velocity at EI = 7.12
kmy/sec

Nominal Max G Level = 2.5
Dispersed Max G Level =3.5
Corridor Reductions:
Oversheot Side: 0.40°
Undershoot Side: 0.38°
Exit Apoapsis Height = 500 km

Exit Relative Velocity = 3.3 lan/sec

va.18

- N -
Assumed Technologies: Mass Credits Taken
TODAY EXAMPLE MISSION SAVINGS
Technology SOTA Mass Current Mass{ Mass Saved Agency
Area Currsnt State of the-Art (SOTA) (kg} Current Assumption (xg} {kg) Savings (%} | Technology
Inve stment
)
EVA Suit None exist na Advanced pianetary high-mobility 182 na Establishes 2
light-weight suit, dust resistant, high non-existent
cycle life materals, Mars insulation capability
EVA PLSS None exist na Lightweight pfanetary, modular, on- 319 na Establishes 2
orbit maintainabie, rapid/in-feld non-existert
recharge capabifity
Wireless Avionics |ISS MDM 21b / channel x 1000 1021 High density MCM packaging, 57 964 9% 2
+ MEMS channels. Comentional wiring MEMS spart sensors, RF MEMS
Technologies
Maintenance & [TBO 1SS Reference: Prepositioned 3400 Companert level repalr, kee form 1000 2400 71%-92% 1
Spares spares Ihrough flight 12A manufacturing, prnted circuit boards
EVA Open loop (0% closure oxygen and 1601 Oxygen Prowded n-Situ (Zirconia 165 1436 0% 2
Consumables water) Cells}, waler via ECLSS closure,
semi-closed foop atmosphere &
thermal (CO2 scrubber & radiator)
Solar Amays Thin cyrstalline Si ces on pofymer: 13000 Thin #tm CuinS2 cefl on polymer: 2200 11000 85% 3
17% LEO efficiency (20+% Mars 18% LEO efficiency (~14% Mars
surface eficiency), 1.75 kg/m2 surface efficiency), 0.2 kg/m2 panel
panal mass mass
PMAD Space slation lechnology and as50 2005 PEBH based technology and 350 500 58% 3
masses in ball park of 1-3 kg/kW masses in the 0.1-0.3 kg/kW range
Thermal Control | Atuminum honey-comb rigid 1900 Advanced, light-weight, body- 820 980 S2% 3
radiators mouried thermal radiators
Fotr NASA Internal Use Onty 28




138

LPI Contribution No. 1089

Assumed Technologies: Mass Credits Taken

va.18

For NASA Inlernal Use Only

TODAY EXAMPLE MISSION SAVINGS
Te:hn‘c’:’k’)‘gy R SOTA Mass Current Mass] Mass Saved Agency
Area Current State-of the Art {SOTA) (kg) Currant Assumption (g} ko) Savings (%4 | Technology
Inve stment
— (1-5)
Mars Orbit Propulsiva Cagture in fow-Mars Orbi 196000 Mid-L/D aerocaplure into low-Mars 108000 88000 45% 1
Aeracapture” Orbit
Nuctear Thermal Al chernical injection with 857000 Bl-modal nuctear thermal propulsion 436000 221000 34% 1
Propulsion” aercbraking at Mars prowdas high thrust and power for
payload elements
Solar Array Dust {No dust abalement technique 3300 Electrostatic dust abatement al 2200 1100 33% 1
Abaternent” known (0% efficiency] with complete 95% officlency (7% power loss in
power loss in 500 days 500 days)
Eleciric All chemical injection with 857000 High power electric propuision to 457000 190000 29% 2
Propulsion” aerobraking at Mars and from Mars
ISRU Propellants® | Bring all prepellants 800000 Produce ascent propefiants fom 599000 204000 25% Z
local resources
Food Individually packaged, de- 8418 Paniry-style, dehydrated/frozen 7320 1098 13% 1
hydrated/fozen capatie of teing stored for up to 5
ysars in doep-space
* Mass estimates provided for Mars architecture
vB.18 For NASA Internal Use Only 27
- 1LY
Human Exploration Common Capabilities
EVA &
Crew Taxi/ Surface Mobilit
Return o
» Moon {follow on) - Moon » Moon
* Asteroids + Sun-Earth Libration + Sun-Earth Libration + Mars
* Mars + Asteroids » Asleroids « Asteroids
+ Mars + Mars
In-Situ Resource Com/Nav
Advanced Space Transportation Options Utilization Infrastructure
Advariced Chemical Blectric Propuision Nuclear Thermal . Moon
E =800 KNe » Asteroids . Mars
« Moon {foflow on) + Moon * Mars
« Sun-Earth Libration + Sun-Earth Libration * Moon (follow-on)
4 " « Mars Outpost
« Asteroids >1 Mie
« Mars * Asteroids
« Mars
28

Al
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Supporting Critical Technologies

Human Research & Technologies
« Radiation research and protection
» Zero/low-gravity research and countermeasures
+ Regenerable closed-loop life support
+ Advanced medical care and diagnostics

Propulsion Technologies
+ Efficient in-space propulsion
- FElectric/Ptasma
— Nuclear Thermal I
— Advanced Chemical
« Low-cost, high efficiency engines
« Long-term cryogenic fluid management

RobusVEfficient Power Systems
» Generation, management, and storage
» Stationary and mobile

Flight Technologies
» High-speed aerocapture

» Automated Rendezvous and Docking
« Guided entry and precision landing/hazard avoidance

Information & Automation

» Advanced automation
+ Information technologies

Lightweight Structures, Systems, Sensors

« Light-weight materials
= Micro/nano electronics

Sample Curation

For NASA intarnal Use Only

» High rate communications and data transfer

SEP Earth Return Vehicle Concept

0.1s Heritage: Mars Surveyor 2001 Lander

AEC-Able UltraFlex PV arrays

Hughes NSTAR lon Engine
For NASA’Inl.mMMMge: Deep Space 1

Spacecraft Bus o
Heritage: Stardust
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Mars Field Geology, Biology & Paleontology

Workshop (November, 1999)
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Field Exploration Strategy

RECOMMENDATIONS

* Robotic reconnaissance of biohazards, terrain, local geology, potential
resources '

+ Safety protocols/contingency plans in place, and drills conducted, prior
to any EVA

*  Only 2 or 3 astronauts on EVA at any time

« Design traverses for flexibility in time and tasks, with greater
complexity as skill and confidence increase

« Initial traverses should be to sites of highest priority

Field Exploration Strategy

RECOMMENDATIONS, continued

*  When walking traverses are complete, Earth and Mars science teams
should synthesize results, plan extended traverses

+ Begin geophysical surveys early, for indications of water and other
resources

» Significantly improve EVA suit and glove functionality
* Develop a new reach-and-grasp tool for 10- to 30-cm samples
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Field Exploration Strategy

PROGRESS

«  Astronaut candidate field training — increased emphasis on sampling
techniques, implications of rock types re planetary origins/processes

+ Astronaut candidate field training — geophysical data acquisition and
planning next survey line based upon results

+  Workshop on Apollo exploration strategies and experience, and their
relevance for Mars exploration, will soon be convened.

Analytical
Capabilities and Instruments

RECOMMENDATIONS

+ The need for specific observations/analyses should drive development of
compact, integrated instruments.

+ Begin miniaturizing existing field/laboratory instruments:
Helmet-mounted fiber-optic camera, magnifying camera/hand lens
Voice-operated data-recording system with real-time data display
within visor , '

In-visor map for locating (x,y,z) samples and outcrops

« Biologists, field geologists, geochemists, engineers should collaborate

throughout mission planning.
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Analytical
Capabilities and Instruments

PROGRESS

« Advances in glovebox design for noncontaminating sample handling
{Oceaneering Corp.)

« Probable test of voice-activated data-recording system at Devon Island
this season

Crew Skills & Training

RECOMMENDATIONS

» Crew should have twice as many members with surface science skills as with
spacecraft and operations systems skills — a possible combination:

Prime Role Backup Role
Commander/Research & Operations Manager Geologist
Geologist Paleobiologist
Systems Engineer Electronics Engineer/Technician
Physician or Medical Technician Microbiologist
Geologist Mechanical Engineer/Technician

Paleobiologist Systems Engineer
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Crew Skills & Training

RECOMMENDATIONS, continued

+ Extensive field training — crew, operations and support tcams should
participate in at least six realistic field exploration sims before launch.

« Field training should begin in 1999 for astronauts, mission operations
personnel, and scientific support teams.

«  Workshops should be convened on crew selection, on site selection for
scientific exercises, and for recording experience/insight of Apollo and
Skylab teams.

« An expert workshop should be held to investigate the gender and
nationality mix best suited for Mars mission success.

Crew Skills & Training

PROGRESS

« Geophysical exploration
training began for astronaut
candidates in 1999
http://geoinfo.nmt.edu/penguins/home.html

+ Field mapping exercise for
astronaut corps and ISS field
science training plans

» Shuttle and ISS crew briefings
on Earth/Mars analogues

= Astronaut participant in Ant-
arctic meteorite expedition
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Earth-Mars Communications

RECOMMENDATIONS

« Communications network including:
Satellites in Mars orbit for navigation, communication
Dependable communications with Earth, orbiting outposts
Capability for compressing/transmitting large volumes of data,
as from geophysical surveys
«  More structured communications with Earth during reconnaissance,
less as exploration program matures '

« Telcoperation of field/laboratory equipment, robotic rovers from Mars
base or orbiting outposts

Earth-Mars Communications

RECOMMENDATIONS, continued

« Communications between science teams on the two planets at well-
defined levels:

Astronaut scientists and “science back room” on Earth in regular
contact throughout mission

Science team members on Earth would change depending upon
the nature of discoveries, exploration progress, data returned

+ Briefings/debriefings between departing and arriving crews, as
permitted by spacecraft in transit

» Keep the public engaged:
Report mission news (crew selection, training, science questions,
discoveries) promptly and accurately
Translate scientifc discoveries directly into teaching materials
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Earth-Mars Communications

PROGRESS

« Communications console in JSC Mission Control dedicated to field
exploration and training

« Data compression/transfer capability developing on 1SS

« Private-sector plans for communications/navigation satellites orbiting
Mars

* Press/public engagement in astronaut field geophysical training
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MARS AND MEN

W. Muehlberger, University of Texas
Apollo 16 Lunar Field Geology Team Leader

“Wherever mankind travels in space, people will always be preceded by
unmanned probes that will provide the first bit of information. But there comes a
time when we’ve learned all we can by unmanned vehicles. Man comes on the
scene and makes the decisions about what is most valuable to us here, and that
makes space into a new laboratory. Photography plays a vital role in all that ‘-
John Glenn, in ‘The View from Space’.

Why do you take a photograph? We took a lot of documentation pictures
because we were supposed to. But a lot of photographs were taken on instinct-
things you can’t predict you're going to see or that are going to impress you. You
say, ‘Now I've got to take a picture of that” or “Look at the way that is positioned’
or' Look at the way the sun is shining on that.” Those ‘stand-back’ pictures were
taken with aesthetics in mind, to capture and document the venture itself.” -
Eugene Cernan in ‘The View from Space’.

The Apollo mode for a Science Support Room in Mission Control will not work for
Mars. The time delay makes it nearly useless. Our team was available for
instantaneous reaction and assistance to the crew on EVA. Therefore the
Science Support Team has to be on Mars! The crew that went out the day before
will do the supporting. They will hand off to each other for the next EVA. They will
send a daily report back to Earth as to what was accomplished, problems that
need resolution, supporting video, data, etc. etc. In Apollo, that was the role of
my "Tiger Team,” who sat in Gene Krantz' office watching and listening but
having no role for directly helping the Back Room. They wrote a summary of the
EVA, what was accomplished, what got omitted that was important to insert into
the next EVA. It was distributed throughout Mission Control- especially to the Big
Brass, Flight Director, and the CapCom.

Apollo Geology Back Room Support Team

Tim Hait - using an overhead projector, kept track of geological comments from
the crew- each was preceded by the MET (mission elapsed time) — and projected
on the wall. With this we could review recent events as needed, for example, do
‘we need to send a message before they leave that site.

George Ulrich - an overhead TV camera looked down on the landing site map
with traverses drew on it. George kept a pointer on the astronauts’ locality. He
also had a cue sheet that contained the MET of arrival followed by the MET for
departure from the Station. Below that were listed the tasks to be done at that
station. As the crew accomplished a task he would cross it out. The map and
message were transmitted to the leftmost screen in Mission Control for viewing
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there. On that map were placed the messages we needed to be forwarded to the
crew. The CapCom would insert them into the conversation when time permitted.

Bob Sutton- kept 3x5 cards on samples collected (rocks, soils, rakes, core, etc).
A card per sample. Station number, time collected, type of material as described
by the crew, was it photo documented (thus capable of being reoriented on earth
into its lunar position), sample bag number, which large carrying bag did it get put
into, etc. He filed these by rock type. This could then be studied quickly for
review and for making collecting suggestions to the crew, if needed.

Dale Jackson (sat beside me) and Lee Silver (directly behind me- usually
standing and bouncing around!) were my ‘science thinkers’ who would catch
important points in the crews conversation, relay them to me (I was commonly
involved in a discussion with Jim Lovell [Head of Science Support Room- and the
one who would forward our approved requests to the Flight Director]), and have
me forward thru Jim to the crew. Also behind me, would be various people-
mostly geologists from NASA (JSC-ex. Bill Phinney) or NASA Headquarters
(BellComme- ex. Jim Head). Gordon Swann, my predecessor as PI for Apollo
Field Geology, was advisor, gofer, etc. He was invaluable!

Our photogrammetry team (Ray Batson, chief) took Polaroid camera mosaics of
the TV camera pan that was performed at the beginning of each stop, annotated
it and gave it to me within minutes of taking it. Important rocks or other features
were circled, tick marks along the bottom were added so that when time was
available when we did not need to watch the crew we could ask the operator of
the TV camera in Mission Control (Ed Fendell) to move the camera to the object
of our interest and zoom in on it for a better view.

We also had a team of court reporters and typists taking down the entire air-to-
ground conversation and furnishing us with a complete transcript within days of
the EVA. (Weeks to months before we would get the NASA transcript).

MARS FIELD EXPLORATION

| assume that two astronauts will be the EVA team on a given day. They will
trade off with another pair for successive days. | assume that the two teams will
not leapfrog each other but will go on separate, but related traverses. They may
want to switch pairs during the exploration so that each person sees the
relationships between each traverse.

Space suit constraints will prevent writing notes or looking at stereo photos while
on traverse. The notes will be the astronauts to Mars Base conversations with
the designated CapCom for that EVA- presumably one of the day-before EVA
astronauts. The others should (may?) be doing other tasks- meal prep, looking at
rocks brought in the day before, maintenance, etc. Helmet-mounted video
cameras will help transmit pertinent info back to Base. Video camera on the MRV
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(Mars Roving Vehicle) would be operated by Base and will furnish context for
sampling, zoom capabilities to investigate features beyond the range of the
geology hammer, etc.

In Apolio, we never (with the possible exception of the margin of Hadley Rille,
ever sampled an outcrop in place. It was always trying to sample for context.
Sampling on the rim of a crater on the assumption that all the rocks came out of
that crater, sampling a boulder that we could see by its tracks where it had rolled
down from (Apollo 17), etc.

The Moon is nothing but impact debris- Mars has stratigraphy! Another reason a
human has to go! No machine could do the thinking and sorting of info to work
out the history recorded in those layers.

And- we blew the photo interpretation on both Apollo 16 and 17. Thus, | suspect
that there will be interpretation errors in the maps that we will land with and on
which we have laid out the first set of traverses.

Only reason to send men to Mars is to do science, geology being most important
to me. On Apollo only one man went to the Moon as a scientist. The others were
well trained in sample procedures, verbal commentary, and documentary
photography so that the geologic context could be interpreted from their results.
Harrison H. Schmitt made a significant difference as to the quality and quantity of
geologic information that was recovered from the mission. After the mission, he
constantly interacted with the sample PI's to give his insights to the complex
breccias that were sampled, photographed and returned to earth.

Everyone going to Mars needs to be capable field geologists! In contrast to most
sciences, geology is an accumulative one- the more rocks and geologic field
problems solved the better is the geologist to be able to interpret the next field
area. Thus 10-15 years of geological experience should be required of the
astronauts going to Mars before they launch. Now is the time to start the
geological field training of the geologist/astronauts, before they launch for Mars!
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GEOLOGICAL INVESTIGATIONS OF MARS: THE HUMAN FACTOR.
Clive R. Neal. Dept. Civil Eng & Geological Sciences, University of Notre Dame, Notre
Dame, IN 46556. neal.1@nd.edu.

Humans make better geologists than robots, and putting astronauts on the surface
of Mars will greatly enhance scientific exploration and increase the chances for key
scientific discoveries. Humans can recognize interesting samples and, importantly,
place those samples in the overall geological context of the particular landing site.
These attributes were amply demonstrated during the Apollo program, as for example
when Jack Schmitt accidentally slipped and discovered the “orange soil” (glass beads)
at the Apollo 17 site. These samples remain some of the most important collected
during the Apollo program and are still being analyzed by scientists worldwide.
Because the Apollo missions were each of limited duration, no instruments were carried
along for actual analysis of rock samples prior to returning them to Earth. However,
human expeditions to Mars will likely involve extended stays (months). Assuming a
limited capacity for returning geological samples, it will be highly advantageous to
carry some rudimentary kinds of analytical equipment to the Martian surface in order
to ensure that the most significant geological samples are collected and returned to
Earth. This paper discusses some of the most useful and practical types of analytical
equipment that might be taken along in order to characterize geological samples on the
surface of Mars.

Some useful tools actually can be carried by astronauts into “the field” as opposed
to remaining on the spacecraft lander. These portable instruments are mainly the
simplest yet most important instruments. There is no substitute for a human eye
coupled with a well-trained mind, and what the eye can see will be greatly enhanced by
having a geological hammer (to expose fresh rock surfaces) and some kind of helmet-
compatible magnifier for first-order rock and mineral characterization.

But the electrical power available on the lander, and its controlled atmosphere
(permitting removal of spacesuits), permit more sophisticated equipment there than can
be carried by a walking astronaut. The most useful analytical tools for the astronaut
geologist are a binocular microscope and a petrographic microscope. A simple
binocular microscope would be broadly useful for examining both rock and regolith
samples to gain an understanding of the components present. But ultimately, for solid
rocks, the ability to prepare and examine petrographic thin sections is of paramount
importance. A petrographic thin section of all but the finest grained rocks reveals in
detail the mineralogy, type, and even the general chemistry of a rock. No other single
technique gives so much diverse information so easily about a rock. The conventional
technique on Earth requires oil or water cooled rock saws to cut a “billet” of rock, which
is then glued to a glass thin section, cut again using a water-cooled rock saw before
being ground to the require thickness (30 microns) with water as the lubricant. The
liberal use of water in this process means it cannot be used on Mars. An alternative
would be the use of lasers to precisely cut a 30 micron wafer from a given rock sample.
This would negate the need for water and allow a detailed look at rock textures and,
possibly, the identification of microfossils. If coupled with a Raman Spectrometer,
mineralogical as well as textural information can be obtained. An estimate of the bulk
chemistry of samples is useful for rock classification and obtaining an idea of rock
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diversity. Use of APXS technology can be made, provided the capabilities are available

for reducing the data. This combination of analytical approaches will yield textural,

mineralogical, and bulk chemical information on the surface of Mars that can be used to
choose a suite of samples to be brought back the Earth for more detailed analyses (trace
elements, isotopes, age dating, etc.).

While outside the main scope of the topic, the following three items are not
analytical techniques, but are vitally important for gaining a better understanding of
Mars. First, astronauts can conduct geological investigations via remote sensing. A
network of seismometers around the landing site can be used for short and long term
experiments. For the short term, simply striking the surface will allow a look at the
immediate subsurface in great detail. This is especially important in the hunt for water.
These data can be combined with the sample data to yield a quite detailed look at the
local subsurface geology. For the longer term, the network could become one of several
to look at the deeper interior of Mars. Second, depending upon mobility, the astronauts
can also undertake detailed geological mapping of the region around the landing site.
This is crucial for identifying potential aquifers as a water source for more long-term
habitation, as well as defining any other potential resources. Third, drilling can gain
samples of the subsurface either by cores (as demonstrated by the terrestrial Ocean
Drilling Program) or as chips as in oil exploration.

Packaging analytical instrumentation for planetary exploration of the sort described
above will require a number of technological advances:

e Hardware development for precise rock cutting with lasers.

e Technique development of precise rock cutting with lasers and mounting the
sections for microscope studies.

» Development of a robust, petrographic microscope with a magnification range that
will allow petrographic thin sections to be examined.

e APXS and Raman Spectrometer technology are reasonably advanced for use on
planetary surfaces, but in order for these to be effective, sufficient computing power
is required on the surface to reduce the data obtained by these instruments.

e Miniaturization of seismometers and sufficient computing power to reduce the data.

In summary, a number of important analyses of geological samples can potentially
be conducted on the surface of Mars during a manned mission. Perhaps the most
important factor involved is having humans to put samples/formations into the
geological context using their training and judgement.
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Science and Human Exploration

NASA-Goddard Space Flight Center
January 11-12, 2001

ASTROBIOLOGY SAMPLE
ANALYSIS
AS A DESIGN DRIVER

Marc M. Cohen, Arch.D, Architect
Advanced Projects Branch
NASA Ames Research Center

INTRODUCTION:

This effort supports the Astrobiology Objective 8 the
Search for LIFE ON MARS, PAST AND PRESENT --
(Astrobiology Program Office, 1998, p.7).
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The essential trade analysis is between
returning very small samples to the Earth while
protecting them versus in situ analysis on
Mars.

Developing these explicit parameters encompasses
design, instrumentation, system integration, human
factors and surface operations for both alternatives.

This allocation of capability approach
incorporates a "humans and machines in the loop”
model that recognizes that every exploration
system involves both humans and automated
systems.

The question is where in the loop they occur --
whether on Earth, in the Mars Base, in the rover or
creeping over the Mars surface.

A FOCUS ON ASTROBIOLOGY SAMPLE
ANALYSIS -- LEADS TO THE REQUIREMENT FOR
A SURFACE SCIENCE LABORATORY AT A MARS
BASE.
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MARS SURFACE ASTROBIOLOGY

LAB
WORKING ENVIRONMENT FOR SAMPLE PREP

AND ANALYSIS

* There is an unfortunate history of the Human
Space Program squeezing Science out of
missions.

PURPOSES FOR THIS DESIGN RESEARCH:

* Substantiate the continuum from
e Terrestrial samples to
 Mars Return samples to
e In-Situ Laboratory Sample Analysis on Mars

* Demonstrate and Ensure a robust Astrobiology
science capability from the beginning of Mission
Architecture Design and the beginning of
Mission Operations
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Probably the best statement on Mars
Surface Science Lab activities comes
from Carol Stoker (Stoker, Strategies for
Mars, 1996, p. 558).

Laboratory analysis of samples in the Mars base
lab would involve cutting and sectioning samples
and using various analytical instruments. For
geological samples, standard techniques for
determining mineralogy, petrology, grain size,
elemental composition, age dating, isotopic
composition, and trapped volatile analysis could be
used. For samples of biological interest, macro
and micro-scale inspection of any prospective
fossils would be performed as well as organic
analysis, biological culturing, and wet chemistry.
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ASTROBIOLOGY: THE SEARCH FOR
SAMPLES

These environments correspond in the broadest
terms to the three phases of matter:

Solid, Liquid and Gas.

Solid Samples

Scientists conceive living organisms as essentially solid.

The waste products they leave behind and fossils are solid.

Liquid Samples

Levin & Levin speculate that liquid water on may exist today on the
surface of Mars, and these pools or reservoirs could serve as
cradles of life (Levin & Levin, 1997, 1998).

Kuznetz and Gan produced liquid water in a bell jar under simulated
Mars surface atmospheric conditions, at which the conventional
wisdom says that liquid water cannot exist (Kuznetz & Gan, 2000).

Gas _Samples

Atmospheric Samples are part of any solid or surface water sample.

In picking up a fascinating rock from the Mars surface, the astronauts
will want to preserve in its native ambient atmosphere.
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LOCATION & DISCIPLINE ISSUES:

e the scientific objectives such as the types of data
the principal investigators seek,

 the types of samples in which they seek it, and

 the locations where they expect to find those
samples.

* These locations suggest the environment and
terrain in which the science crew will operate, and
leads to assumptions about the site and proximity of
the Mars base.

* The disciplines for the Project to accommodate
include paleontology, geology, atmospheric science,
exobiology, exopaleontology, and life science
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APPROACH -- Concern that faulty

assumptions may lead inevitably to an inadequate
Mars Surface Science Capability:

Assumption 1 -- Astronauts are essentially just
extensions of telescience for principal investigators
back on the Earth.

Assumption 2 --Crew sizing to staff the laboratory
and planetary rovers is a function of “mission
architecture” rather than determined by exploration
or Astrobiology goals, objectives and requirements.

Assumption 3 --The Laboratory serves the mission
to perform a triage level of analysis, and sends the
“interesting rocks” back to Earth for serious analysis.

Assumption 4 --A Mars Surface Laboratory is
essentially just a slightly modified Habitat.

Assumption 5 --The use of a crew rover —
pressurized or unpressurized is just to pick up rocks
and back to the lab for further study.

Assumption 6a: Robot Landers will prove there is
No Life on Mars.

.. . but if they don’t . . ._Assumption 6b --Sterilize
everything.

g
In Situ Analysis

Rapid Sample Return is not possible from Mars or
Europa.

Neither is it possible to preserve biotic samples in pristine condition
for 3 years in space.



164 LPI Contribution No. 1089

Therefore, it becomes necessary to perform
comprehensive, high quality analysis

IN SITU.
Seigel, Clancy, Fujimori and Saghir On-Board (space

station) specimen analysis for Life Science research
(1989, pp. 77-78).

Four Advantages of On-board/In Situ analyéis:

* Allows rapid production of experimental results, enabling iterative
research activity.

* Provides a quick-response science capability

» |s critical for characterization of samples which cannot survive
return to Earth, or degrade with time.

» Significantly reduces sample storage prior to return to the ground,

and reduces specialized return requirements (e.g. thermal
conditioning).

Two Disadvantages of On-board/In Situ analysis:,
» Greater costs than performing the analysis on Earth.

+ “High skill levels required of crew members” with the associated
expenditure of crew time and effort.
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ACTIVITY NODES --

Principal investigators and their institutions on earth;
The laboratory in a Mars habitat;

Mobile instrumentation in both a pressurized and
unpressurized rover,

And what an EVA astronaut will use in exploring the
surface.

The best allocation of capabilities or distribution of
responsibilities among the nodes often is not obvious.
An example of a solution might be that:

» Principal investigators on Earth select the investigation
site,

« Mission planners on Earth plan the traversal route,

» The astronauts send a Mars airplane (Hall, Parks and
Morris, 1997) ahead of the pressurized rover to survey the
route in detall,

e The astronauts drive the pressurized rover to the
investigation site, and

e The astronauts select and analyze the samples.
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HUMAN ELEMENT 1--

The human element is the essential component
in the Mars exploration strategy.

What size crew and skill mix is necessary to
conduct the Mars surface exploration successfully?

» Who is necessary to perform the science work?

 And who is necessary to keep everyone alive
while the explorers do their job?

FIGURE 2. Example of a long-range pressurized rover

with robotic arm and power cart.
(Courtesy of Roger Arno, NASA-Ames Research Center)
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HUMAN ELEMENT 2--

This study will address primarily science, with a
focus upon Mars Base science lab and mobile field
operations:

« How many science crew with what skills are
necessary to carry out the work from the most
physical to the most intellectual exertions?

e Who should explore in the rover and who
should stay "home" in the laboratory?

» What are the crew requirements for
supporting crew members in the pressurized rover
and to maintain and operate the Mars base?

The nature of sample collection will affect crew
selection and work assignment.

For example, if the deep drilling equipment is
installed close to the Mars Base, it may relieve a
burden from the rover and its crew.
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FIGURE 3. The crew attaches an inflatable
laboratory to their lander to increase the internal
pressurized volume of their Martian home.
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FIGURE 4. Pressurized AP Curved Plan "Glovebox”
Research Chamber.
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OPERATIONAL SCENARIO:
NARRATIVE OF THE SOLID SAMPLE
PROCESSING SCENARIO —

FIGURE 5

1. Collect Samples -- Collect samples at drilling site or other
location. Place samples into a protective canister.

2. Stow Samples for Transport -- Place canisters on transporter
vehicle to carry them to the Astrobiology Sample Lab. The crew may
conduct some on-board analysis to make a preliminary evaluation of
the samples.

3. Stow Sample Canisters for Retrieval -- Place canisters into
robotic external storage.

4. Retrieve Samples -- Use robotic retrieval system to bring
desired sample, place it in the sample airlock.

5. Bring Sample into Lab -- In sample airlock, remove sample
from its canister. Crew members use remote manipulators or robots
to handle and sort the samples.

6. Move Sample to Working Environment -- Robots move the
sample through a transit airlock to the Preparation Chamber, where
crew members examine it then slice, dice and spice it for analysis.

7. Move Sample to Analysis -- Robots move the prepared
sample to the Dry Lab Chamber or Wet Lab Chamber.

8. Prepare Lab Chambers -- Crew prepares lab chambers with
tools and equipment, maintenance, repair, and cleaning.

9. Take Precautions -- Sterilize and autoclave samples, tools,
equipment and chambers at appropriate times and opportunities.

10. Remove Sample after Analysis -- Crew removes processed
samples from the laboratory system via the exit airlock.
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Figure 6. Stanford/Ames Direct Linkage Prehensor, invented by John W.
Jameson
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FIGURE 7. Astrobiology Laboratory comprised of
AP “glovebox” research chambers, installed in a
circular arrangement.
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FIGURE 8. Rear view of a simplified planetary rover, with
the aft bulkhead removed. The scientific sample airlock
appears on the starboard (right) side, between the two
wheels, with its handle projecting up at about 45°.

The sample airlock's internal hatch opens into the
Astrobiology glovebox, which is essential to handle
potentially biotic specimens in a safe manner that
will protect both the crew and the sample from
contamination.

The sample exit airlock appears in the center of the
rover cabin, with its handle pointing straight down.
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CREW SIZING - Perhaps the largest
unresolved question:

What is the optimal crew size and skill mix to
conduct a Mars Astrobiology and Exploration
Mission of ten days duration, 500 km away from the
Mars Base?

Pressurized rover as microcosm of a Mars mission?

Option A -- two crew members constitute the minimum EVA buddy
pair. One is a scientist and the other an engineer who divide the
specialized tasks. They stop the rover to conduct an EVA.

Option B -- three crew members afford a buddy pair and a driver
who remains in the rover. The skill mix includes both engineer and
scientist. The driver can follow the EVA in the rover and use a
robotic arm or digger to assist them in digging or turning over rocks.

Option C -- four crew members provide two full EVA buddy teams,
involving a multiple mixture of scientists and engineers. While one
pair is out EVA, and the driver is observing and following them, the
fourth crew member may conduct real-time science investigations of
the samples they pass through a sample airlock into a science
glovebox in the rover.

Option D -five crew members provide two full EVA buddy teams plus
an engineer/driver in the rover.

Option E — Redundant rover for safety and backup. This reliability
strategy could require from four to eight crew members.
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CONCLUSION

NASA needs to conduct a complete Mars Science
Accommodations and Operations Study to
understand the In Situ Astrobiology issue.

Developing the Mars surface science laboratory for
astrobiology and all the allied sciences represents a great
technical and scientific challenge for NASA.

The challenge consists in developing the ability to collect,
transport, receive, prepare, process, and analyze exotic
samples while preserving them in their ambient
environment.

Design research for Mars science exploration
requirements:

1. Types of analysis and amounts of data. '

2. The expected number type, location, depth, size, mass, etc. of the
samples.

3. Mars Science Crew sizing and skill analysis — and overall crew
sizing and skill analysis.

4. Mars science accommodation requirements and conceptual
design for laboratory facilities.

5. Define the demands on the Mars Base and Habitat to support
science laboratory activities and field operations.

6. Laboratory Subsystems modeling and prototyping.

7. The role of Mars surface mobility systems in conducting surface
science investigations.

The best way to provide substantive and justifiable
requirements to Mars exploration planners is to
conduct this design research in cooperation with
planetary scientists and astrobiologists.
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SCIENTIFIC TASKS FOR HUMANS: PLANT GROWTH EXPERIMENTS

Ken Corey

Biographical Sketch

Ken Corey, former University of Mass/Amherst professor, received his M.S. and Ph.D. at North
Carolina State University in plant physiology with minors in statistics and soil science. His research has
involved the study of physiological processes and responses of a wide range of agronomic and vegetable
crops. As a teacher, he has developed and taught numerous courses in plant, soil, and environmental sci-
ences, including a special topics course in advanced life support systems. For the past 11 years, Corey
has been involved with advanced life support systems research for NASA with an emphasis on the use of
plants for bioregenerative purposes. Recently, his work has focused on plant responses to rarified atmos-
pheres with applications to the design of atmospheres for extraterrestrial plant growth systems and struc-
tures.

Summary

The bioregenerative functions performed by plants are vital to the sustainable manage-
ment of human life in extreme environments and will require development of new methods and
technologies for plant cultivation on Mars. Such methods will likely involve scenarios for culti-
vating plants in their own atmospheric environments and those directly integrated with human
habitats. It will be desirable to use low-pressure atmospheres to reduce structural loads and start-
up and maintenance masses for plant growth. Provision of human life support requirements by
bioregenerative methods, engineering constraints for construction and deployment of plant
growth structures on the surface of Mars, and in-situ resource utilization all suggest the use of
hypobaric pressures for plant growth. Past work demonstrated that plants will likely tolerate and
grow at pressures at or below one-tenth of sea level pressure on Earth. The use of atmospheri-
cally-isolated structures also enables the regulation of plant growth with atmospheric composi-
tions tailored to the plant species. Geometric configurations of those structures will also influ-
ence resource requirements, light interception, and function of engineering designs.

There are two broad categories of scenarios for the use of reduced pressures. First, there
are scenarios that include direct integration of plants with human habitats or that permit ease of
human entry to those habitats. Those habitats would involve the use of moderately low atmos-
pheric pressures (40 to 70 kPa) and relatively high partial pressures of oxygen (14 to 21 kPa).
Second, there will be a need for isolated plant growth habitats that will employ very low atmos-
pheric pressures (5 to 40 kPa) potentially with a full range of oxygen partial pressures (1 to 21
kPa) and carbon dioxide partial pressures (0.1 to 10 kPa). The second set of conditions will in-
volve the use of inflatable structures that will employ relatively thin, lightweight materials, capa-
ble of transmitting a maximum of ambient photosynthetically active radiation on the surface of
Mars. Very few studies have been conducted in either area, but available literature strongly sug-
gests the feasibility of the first (moderately low pressures) and hints at the feasibility of the sec-
ond, though evidence at this point is scant.

A general scientific objective driven by a long term presence of humans on Mars is to
determine the atmospheric limits for normal plant growth and development. Specifically, lim-
its of interest are low pressure, low partial pressure of oxygen, and partial pressure of carbon di-
oxide. As a corollary to this objective, it is of interest to answer the following question. Can
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plants grow and develop normally at or slightly above the boiling point of water? This ques-
tion arises from the constraints of materials resupply, material engineering, and the available
photon flux available for plant growth on the Martian surface. It also arises from experimental
evidence that clearly demonstrates the ability of plants to tolerate low atmospheric pressures.
Very low pressures (<5 kPa) are associated with the boiling point of water near temperatures
suitable for plant growth. Answers to this question may also be accompanied by the use of tools
of genetic engineering to select traits and design plants for adaptation to low pressure and low
oxygen extremes. From a long-term perspective, it is of interest to answer the following ques-
tions related to the technological path by which humans choose to explore, settle, and develop
the Mars landscape. How do we choose to provide people with life support requirements? Do
we wish to develop and build a highly sustainable system of Martian agriculture to accompany
human exploration and research efforts?

Plant research efforts on Mars will require further Earth-based testing with a combination
of vacuum chambers and Mars analog environments. Analog studies could make use of a
Mountain Analog Project (MAP) that would involve controlled plant growth experiments in a
High Altitude Plant Production Environment Network (HAPPEN). High altitude balloon flights
(stratosphere) would enable short-term plant growth experiments that test and screen genotypes
for adaptation to very low atmospheric pressures; those lower than the terrestrial analog limits.
During future missions to Mars, it will be helpful to obtain additional information that charac-
terizes the Mars environment. Particularly useful will be a knowledge of the range of photosyn-
thetically active radiation incident on the Martian surfuce as a function of time, latitude, and at-
mospheric conditions (e.g. dust storms). Also, plant growth experiments on Mars provide unique
opportunities to test plant responses directly to three-eighths gravity and for cultivation in Mar-
tian soil. The direct roles of humans in such experiments will be crucial to ensure success and
the rapid technological development of sustainable bioregenerative systems. The following is a
partial list of important human roles in plant growth experiments. While one can envision many
of these roles also being served robotically, most would be better served directly by people.

Roles of Humans

* Site Selector * Data Collector * Interactor

* Initiator * Sampler * Analyst/Statistician
* Monitor * Interpreter * Explorer

* Variable Manipulator ~ * Evaluator * Discoverer

* Adjuster/Tweaker * Reporter

* *

Diagnostician Designer/Planner
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Reduced Pressure Rationale

* Structural Considerations
Minimize Pressure Gradient
Maximize Transparency of Material
Decrease Launch Mass or In-situ Processing Mass

* Atmosphere Considerations
Decrease Start-up Mass for Habitat Atmosphere
Minimize Leakage and Maintenance Mass

* Crop Performance Considerations
Photosynthesis ‘
— Diffusion
— Photorespiration
Respiration
Transpiration
Gene Expression
Other?

Key Design Decisions
One Very Large Atmosphere vs. Many Small Atmospheres
A. One Very Large Atmosphere
Buffering - thermal, atmospheric, chemical
Minimize atmospheric manipulations or adjustments (control events)
Large start-up mass, mostly water and carbon dioxide

Disaster prone — e.g., particle impacts, disease
Degree of autonomy?

=

. Many Small Atmospheres

Prelude to ecosynthesis

Modular

Scaleable

Adaptable

Penetrations

Truncones provide thermal and atmospheric buffering
Lends itself to extreme environments

Creates resource caches

Tailored to plant {(crop and noncrop species) requirements
Degree of autonomy?

C. Combinations of A & B

Concept of multiple barriers
Light transmission/attenuation — Could be used to provide different light environments,
e.g., grow lettuce at lower light
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Experimental Variables for Plant Growth Experiments on Mars

*

Atmospheric Pressure
— With human integration (moderately low pressures)
— Without human integration (very to extremely low pressures)

Possible range for plants isolated from people: 5 to 25 kPa

*

Partial Pressure of Oxygen
— Anoxia tolerance
— Intermediate range of tolerance

*

Partial Pressure of Carbon Dioxide
— Upper tolerance limit
— Importance of ppO/ppCO;

* (Genotype
— Food plants (e.g., rice, wheat, lettuce)
— Non-food plants (e.g., Arabidopsis, algal species)

*

Growth Medium
— Martian regolith
— Solid substrate shipped from Earth
— Hydroponics of some form (several options)

*

Irradiance
— Time and site-dependent
— Should the PPF for plant growth experiments be controlled?
— Materials, thermal control, nature of barriers, light attenuation

* Gravity 7
Three-eighths G has not been the focus of much work.
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Reduced Pressure Categories

There are two broad categories of scenarios for the use of reduced pressures. First, there
are scenarios that include direct integration of plants with human habitats or that permit ease of
human entry to those habitats. Those habitats would involve the use of moderately low atmos-
pheric pressures (40 to 70 kPa) and relatively high partial pressures of oxygen (14 to 21 kPa).
Second, there will be a need for isolated plant growth habitats that will employ very low atmos-
pheric pressures (5 to 40 kPa) potentially with a full range of oxygen partial pressures (I to 21
kPa) and carbon dioxide partial pressures (0.1 to 10 kPa). The second set of conditions may in-
volve the use of inflatable structures that employ relatively thin, lightweight materials, capable of
transmitting a maximum of ambient photosynthetically active radiation at an extraterrestrial site.
Very few studies have been conducted in either area, but available literature strongly suggests .
the feasibility of the first (moderately low pressures) and hints at the feasibility of the second,
though evidence at this point is scant.

Categorization of atmospheric pressure ranges
and generalized adaptations of organisms to those conditions.

Pressure Fuzzy Reference
Range (kPa)  Description Altitudes (m) Comments
101-75 slight 0 - 2500 * gbundant terrestrial analogs
* human adaptation easy
74 -50 moderate 2500 - 5500 * many accessible terrestrial analogs
e.g., White Mt. Res. Sta. —4343 m
(59 kPa)
* human adaptation difficult, but
possible over entire range
49 - 25 very 5500 — 10400 * terrestrial analog limit: Mt. Everest
- 8,848 m (~ 31 kPa)
* humans require supplemental oxygen
25-0.7 extreme 10400 — 27000 * gtratosphere, lower Mars

atmosphere (0.7 kPa)

* plants & microbes can survive and
grow, depending upon temperature
and atmospheric composition
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Can Plants Grow at the Boiling Point?

The surface pressure of the Martian atmosphere is about 7 mb or less than one-hundredth
the sea level surface pressure of Earth. At this pressure, free water would boil off or sublime
rapidly at temperatures where most organisms exist on Earth. However, if one were able to re-
move the thermal constraint to life on Mars, what would be the atmospheric limits at which
plants can survive or even grow?

Recent interest in 2 human mission to Mars has captivated the public. However, if a
long-term human presence is to develop in such a harsh environment, it will be necessary to es-
tablish limits for maintenance and growth of other organisms, especially plant life. Plant life will
provide other heterotrophs with essential functions of oxygen evolution, carbon dioxide absorp-
tion, water recycling, and food. However, until a stage as advanced as terraformation occurs, it
will be necessary to grow plants in thermally controlled environments. What then will be the
atmospheric design for such a controlled habitat? What are the lower limits of atmospheric pres-
sure for plants? Recent experiments at NASA’s Kennedy Space Center strongly suggest that
lettuce plants will at least be able to tolerate pressures at or below one-tenth atmosphere pressure
for several hours, provided that sufficient water vapor is maintained in the atmosphere. Since
plants do not wilt, it is reasonable to presume that they would be capable of long-term growth if
provided with carbon dioxide, suitable temperatures, and sufficient photon flux. The limit sug-
gested on the basis of pure water vapor would suggest that pressures of 2 to 5 kPa are likely pos-
sibilities, since saturated vapor pressures at normal growth temperatures are in the range of | to 4
kPa. Such pressure limits may necessitate the use of plants that would tolerate low partial pres-
sures of oxygen. Such a scenario is well within the realm of possibility. An examination of the
boiling point curve for water reveals that at a pressure of 3.2 kPa, water boils at a temperature of
~ 25 C. Thus, it is conceivable that plants will be capable of growth at temperatures at or very
near the boiling point. Capability of plant growth at such low pressures would enable the use of
lightweight, transparent structures that would minimize launch masses required to establish ex-
traterrestrial plant growth facilities. Given suitably engineered habitats, early Martian travelers
and settlers would then have plants as a foundation and life boat for the necessary consumables
of oxygen, water, and food.

Figure 1. The relationship of boiling point of water with total atmospheric pressure.
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Pathway to Early Martian Agriculture
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HUMAN EXPLORATION FOR RESOURCES ON MARS
Jeff Taylor, Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i, 2525

Correa Rd., Honolulu, HI 96822

I consider two main periods of resource exploration: (1) Near term, defined as the first ten years
of operation of a base on Mars, and (2) Long-range resources. I argue that the search for long-
range resources must begin during the first ten years.

1. Near-term resources

Searching for water/ice

Undoubtedly a lot of work will have been done to find sources of water or its frozen
equivalent before selecting a base on Mars, and surely the base will be near a supply of water if
they are identified remotely. Nevertheless, an active base that is expected to grow must have a
well-defined supply of water. Hence, the local and regional aquifer must be characterized. This
requires:

o Drilling, probable in more than one place

e Examination and study of cores or cuttings to identify lithologies

e Measurement of physical properties of the rocks (permeability etc.)
Measurement of the ice/rock ratio
Electromagnetic surveys
Tracer studies, if liquid water is present
Sample selection for detailed studies
Detailed studies of the local and regional geology

Of these tasks, humans may be essential for:

Core/cuttings examination (macroscopic)

Determining the ice/rock ratio

Measurement of the physical properties

Sample selection for geologic studies, and doing those studies
Geologic studies

Studies of core samples or cuttings will be valuable for many reasons, not just the exploration for
water resources and aquifer characterization. Such studies will help understand local resources in
general, such as identifying particularly iron-rich horizons, clay layers, etc.

Resources for Agriculture
It will be crucial for base inhabitants to grow their own food on Mars. This will require
using Martian surface materials as soils. However, it is unlikely that we will be able to take any
random soil and grow plants in it. We will need:
e The right mix of drainage and water retention, implying both sand and clay
components
e Experiments on the value of local regolith as a useful soil for agriculture
Search for soil additives to increase soil productivity (e.g., sand, clay)
Search for key fertilizers, such as phosphates and nitrogen.

Nitrogen might be abundant enough in the regolith, though a source of nitrates would be
useful. Exploration for rich deposits of phosphates may be difficult. On Earth, these form in



Human Exploration of Mars 182

marine sedimentary environment and depend on organisms concentrating the phosphorous. This
will not have happened on Mars, unless it was teeming with life. Instead, Martians will need to
search in other geologic environments. Sediments might still be promising, depending on how
they were deposited, the composition of the waters that deposited them, etc. Igneous rocks could
be use if highly evolved so that the phosphorous content was increased greatly. The most
promising near term source might be the regolith because it contains a few tenths % of P;0s. Soil
processes, which are not understood at all, might have concentrated P to some extent. This will
require detailed studies of the upper meter or so of the regolith.

Aggregates

Aggregate is extremely important when building an infrastructure. It is by far the most
mined material in the United States (2.3 billion tons per year). It is used for roads, concrete,
bridges, roofing materials, and glass. On earth, the main sources are sand and gravel deposits,
and solid rock quarried to produce crushed stone. At first, Mars explorers might simply grade
surfaces to make simple roadways, or smooth paths by repeated use. More actively, they will
have to seek out naturally occurring aggregates on Mars. These will occur at the bases of gullies
and cliffs, and in river beds. The Martian regolith near the site will be the first naturally
occurring aggregate that they will use. Depending on the site, there ought to be a range of grain
sizes and materials. All these possibilities will need to be characterized by field observations and
measurements (e.g., grain size distributions).

Structural materials

The prime resource for structural materials will be the regolith. Humans will have only
minor role in exploring the regolith for use as shielding, raw material for bricks, or a source of
iron (the regolith has 13-18 wt% FeO). However, humans will play a major role in searching for
concentrations of Ca-sulfates and carbonates for cements and clays for ceramics. This will
require many soil samples and shallow drill cores. Although in principle some of this exploration
could be done by autonomous rovers equipped with instruments that do not exist yet, it is likely
that humans will be needed to assess the total resource potential of the regolith in the vicinity of
the base. ‘

2. Long-term resources

Essential for future Martian development

Development of all the resource potential on Mars is essential to the continued
exploration of the planet. We will need to continuously enhance the Martian infrastructure, and
that requires long-range planning. Most important, we will need to eventually export
commodities useful elsewhere in the Solar System. For comparison, LEO has its microgravity
environment to sell. The Moon has a very hard vacuum, huge solar energy export potential, and
possibly *He. What will be the commercially viable products from Mars? The answer will come
only from extensive exploration for resources, and that exploration must begin during the first
few years of Mars base operations.

Need vigorous program of industrial research and development

We do not know what resources will be most important on Mars. One important way of
determining that will be to develop manufacturing processes on Mars. Experiments will clucidate
the value of the unique Martian environment; for example, could the highly oxidizing properties
of the regolith be a useful property that could be exploited? Industrial R&D will help define what
resources are needed, hence shape the exploration program. Finally, the development of an
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industrial infrastructure on Mars will give us opportunities to experiment with unique resources
found on Mars. As above, this must be done soon after the base is established.

Potential long-term resources
Some possibilities are pretty clear:
e Find rich iron ores
o Discover other metal deposits (Ni, Ti, Au, Ag, Cr, Al, Cu, Zn, Pb, Pt-group,
etc.)
e Organic compounds
¢ Extensive clay deposits

Finding these resources requires intensive, global geological exploration
We need to explore certain logical geologic settings for potential resources:
¢ Sedimentary deposits (clays, evaporites, maybe even placers)
s Hydrothermal deposits (Cu, Zn, S, Au, Ag)
s Differentiated igneous provinces (Ti, Cr, Ni, Cu, Pt-group, S, possibly REE,
halogens)
e Search in assorted tectonic settings.

Global search requires both humans and robots

Astronauts will not be able to travel all over the globe. But they can beam themselves
into teleoperated rovers equipped with high-quality vision systems, multispectral imaging, and
chemical analytical sensors. These must be operated by geologists at a base on Mars. The long
time delay prohibits thorough geological field work, though some tasks can probably be handled
from Earth (e.g., doing the chemical analysis and anything else that takes a long time).

Conclusions

e Resources needed during the first decade of Mars operations need to be kept simple:
use the local regolith for as much as possible.

e Water will be essential, so a thorough characterization of the local aqu1fer must be
done. This will require drilling, E-M surveys, and study of drill cores and the
properties of subsurface rocks.

e A search will probably need to be done for certain key ingredients, such as fertilizer
and other agricultural components. High quality aggregates might also be needed.

¢ Once the base is operational and local resources are relatively well defined, it will be
essential to begin planning for the future. An industrial R&D program must be
established. This can include experiment done of Earth before being implemented on
Mars. The experiments will help define what resources will be needed.

¢ A global search for resources must be started early. This is important in attracting
capital for Martian investment.

e Humans will need to do most of the exploration. However, they can be helped by
appropriate robotic devices, including those teleoperated from Mars, autonomous, and
those guided from Earth.
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